WorldWideScience

Sample records for chestnut ridge tennessee

  1. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline

  2. Calendar year 1996 annual groundwater monitoring report for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1996. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge west of Scarboro Road and east of an unnamed drainage feature southwest of the US Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid). The Chestnut Ridge Regime contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring associated with these waste management sites is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included in this annual monitoring report are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Chestnut Ridge Regime (post-closure permit) issued by the Tennessee Department of Environment and Conservation (TDEC) in June 1996. Besides the signed certification statement and the RCRA facility information summarized below, condition II.C.6 of the post-closure permit requires annual reporting of groundwater monitoring activities, inclusive of the analytical data and results of applicable data evaluations, performed at three RCRA hazardous waste treatment, storage, or disposal (TSD) units: the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin), the Chestnut Ridge Security Pits (Security Pits), and Kerr Hollow Quarry

  3. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. 1993 Groundwater quality data interpretations and proposed program modifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste management facilities associated with the US DOE Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. to the Tennessee Department of Environment and Conservation (TDEC) in February 1994. Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management sites located within the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Chestnut Ridge Regime encompasses a section of Chestnut Ridge south of the Y-12 Plant and is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual GWQR for the Chestnut Ridge Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, the Part 1 GWQR is submitted to the TDEC by the RCRA reporting deadline (March 1 of the following CY). Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities.

  4. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. 1993 Groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1994-09-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste management facilities associated with the US DOE Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. to the Tennessee Department of Environment and Conservation (TDEC) in February 1994. Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management sites located within the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Chestnut Ridge Regime encompasses a section of Chestnut Ridge south of the Y-12 Plant and is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual GWQR for the Chestnut Ridge Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, the Part 1 GWQR is submitted to the TDEC by the RCRA reporting deadline (March 1 of the following CY). Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities

  5. Calendar Year 1997 Annual Groundwater Monitoring Report For The Chestnut Ridge Hydrogeologic Regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.

    1998-02-01

    This report contains the groundwater monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation and Recovery Act (RCRA) post-closure permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). In July 1997, the Tennessee Department of Environment and Conservation (TDEC) approved modifications to several of the permit conditions that address RCRA pow-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (Security Pits), and RCIU4 post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin) and Kerr Hollow Quarry. This report has been prepared in accordance with these modified permit requirements. Also included in this report are the groundwater and surface water monitoring data obtained during CY 1997 for the purposes ofi (1) detection monitoring at nonhazardous solid waste disposal facilities (SWDFS) in accordance with operating permits and applicable regulations, (2) monitoring in accordance with Comprehensive Environmental Response, Compensation, and Recove~ Act Records of Decision (now pefiormed under the Integrated Water Quality Program for the Oak Ridge Reservation), and (3) monitoring needed to comply with U.S. Department of Energy Order 5400.1.

  6. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-03-01

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI

  7. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI.

  8. Remedial Investigation Report on Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1. Main Text

    International Nuclear Information System (INIS)

    1994-08-01

    This document is a report on the remedial investigation (RI) of Chestnut Ridge Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant. Chestnut Ridge OU 2 consists of Upper McCoy Branch (UMB), the Filled Coal Ash Pond (FCAP), and the area surrounding the Sluice Channel formerly associated with coal ash disposal in the FCAP. Chestnut Ridge OU 2 is located within the U.S. Department of Energy's (DOE's) Oak Ridge Reservation in Anderson County, Tennessee, approximately 24 miles west of Knoxville. The pond is an 8.5-acre area on the southern slope of Chestnut Ridge, 0.5 mile south of the main Y-12 Plant and geographically separated from the Y-12 Plant by Chestnut Ridge. The elevation of the FCAP is ∼ 950 ft above mean sea level (msl), and it is relatively flat and largely vegetated. Two small ponds are usually present at the northeast and northwest comers of the FCAP. The Sluice Channel Area extends ∼1000 ft from the northern margin of the FCAP to the crest of Chestnut Ridge, which has an elevation of ∼1100 ft above msl. The Sluice Channel Area is largely vegetated also. McCoy Branch runs from the top of Chestnut Ridge across the FCAP into Rogers Quarry and out of the quarry where it runs a short distance into Milton Hill Lake at McCoy Embayment, termed UMB. The portion south of Rogers Quarry, within Chestnut Ridge OU 4, is termed Lower McCoy Branch. The DOE Oak Ridge Y-12 Plant disposed of coal ash from its steam plant operations as a slurry that was discharged into an ash retention impoundment; this impoundment is the FCAP. The FCAP was built in 1955 to serve as a settling basin after coal ash slurried over Chestnut Ridge from the Y-12 Plant. The FCAP was constructed by building an earthen dam across the northern tributary of McCoy Branch. The dam was designed to hold 20 years of Y-12 steam plant ash. By July 1967, ash had filled up the impoundment storage behind the dam to within 4 ft of the top

  9. Remedial Investigation Report on Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1. Main Text

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This document is a report on the remedial investigation (RI) of Chestnut Ridge Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant. Chestnut Ridge OU 2 consists of Upper McCoy Branch (UMB), the Filled Coal Ash Pond (FCAP), and the area surrounding the Sluice Channel formerly associated with coal ash disposal in the FCAP. Chestnut Ridge OU 2 is located within the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation in Anderson County, Tennessee, approximately 24 miles west of Knoxville. The pond is an 8.5-acre area on the southern slope of Chestnut Ridge, 0.5 mile south of the main Y-12 Plant and geographically separated from the Y-12 Plant by Chestnut Ridge. The elevation of the FCAP is {approximately} 950 ft above mean sea level (msl), and it is relatively flat and largely vegetated. Two small ponds are usually present at the northeast and northwest comers of the FCAP. The Sluice Channel Area extends {approximately}1000 ft from the northern margin of the FCAP to the crest of Chestnut Ridge, which has an elevation of {approximately}1100 ft above msl. The Sluice Channel Area is largely vegetated also. McCoy Branch runs from the top of Chestnut Ridge across the FCAP into Rogers Quarry and out of the quarry where it runs a short distance into Milton Hill Lake at McCoy Embayment, termed UMB. The portion south of Rogers Quarry, within Chestnut Ridge OU 4, is termed Lower McCoy Branch. The DOE Oak Ridge Y-12 Plant disposed of coal ash from its steam plant operations as a slurry that was discharged into an ash retention impoundment; this impoundment is the FCAP. The FCAP was built in 1955 to serve as a settling basin after coal ash slurried over Chestnut Ridge from the Y-12 Plant. The FCAP was constructed by building an earthen dam across the northern tributary of McCoy Branch. The dam was designed to hold 20 years of Y-12 steam plant ash. By July 1967, ash had filled up the impoundment storage behind the dam to within 4 ft of the top.

  10. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeological Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    International Nuclear Information System (INIS)

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN

  11. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located {approximately}800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1.

  12. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located ∼800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1

  13. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater quality data and calculated rate of contaminant migration, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  14. Best management practices plan for the Chestnut Ridge-Filled Coal Ash Pond at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-05-01

    The Chestnut Ridge Filled Coal Ash Pond (FCAP) Project has been established to satisfy Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the Chestnut Ridge Operable Unit 2. FCAP is on Chestnut Ridge, approximately 0.5 miles south of the Y-12 Plant. A 62-foot high earthen dam across Upper McCoy Branch was constructed in 1955 to create a pond to serve as a settling basin for fly and bottom ashes generated by burning coal at the Y-12 Steam Plant. Ash from the steam was mixed with water to form a slurry and then pumped to the crest of Chestnut Ridge and released through a large pipe to flow across the Sluice Channel area and into the pond. The ash slurry eventually overtopped the dam and flowed along Upper McCoy Branch to Rogers Quarry. The purpose of this document is to provide a site-specific Best Management Practices (BMP) Plan for construction associated with environmental restoration activities at the FCAP Site

  15. Phase 2 Sampling Plan for Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-08-01

    CDM Federal Programs Corporation (CDM Federal) was contracted by Martin Marietta Energy Systems, Inc. to prepare a Phase H Sampling Plan to describe field investigation work necessary to address regulatory agency review comments on the Remedial Investigation of Filled Coal Ash Pond (FCAP)/Upper McCoy Branch, Chestnut Ridge Operable Unit 2 at the Y-12 Plant, conducted by CH2M Hill in 1990. The scope and approach of the field investigation described in this plan specifically focus on deficiencies noted by the regulators in discussions at the comment resolution meeting of May 8, 1992, in Oak Ridge, Tennessee. This Phase II Sampling Plan includes a field sampling plan, a field and laboratory quality assurance project plan, a health and safety plan, a waste management plan, and appendixes providing an update to applicable or relevant and appropriate requirements for this site and field and laboratory testing methods and procedures. To address deficiencies noted by the regulators, the following activities will be conducted: Background surface soil and surface water/sediment samples will be collected based on statistical considerations for comparison to site data. Existing and new data to be collected will be used to support a human health risk assessment that includes the future homesteader scenario. Biological surveys, samples, and measurements will be collected/conducted to augment existing data and support an ecological risk assessment. Another round of groundwater sampling will be conducted, including on-site wells and the wells on Chestnut Ridge downgradient of the Security Pits. Borings will be completed in the FCAP to collect samples from below the surface depth to describe the chemical characteristics and volume of the ash. The volume of ash associated with sluice channel on Chestnut Ridge will be determined. Soil samples will be corrected below the coal ash in the FCAP and adjacent to sluice channel to evaluate soil contamination and migration of contaminants

  16. Phase 2 Sampling Plan for Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-01-01

    CDM Federal Programs Corporation (CDM Federal) was contracted by Energy Systems to prepare a Phase II Sampling Plan to describe the field investigation work necessary to address regulatory agency review comments on the Remedial Investigation of the Filled Coal Ash Pond (FCAP)/Upper McCoy Branch, Chestnut Ridge Operable Unit 2 at the Y-12 Plant, conducted by CH2M Hill in 1990. The scope and approach of the field investigation described in this plan specifically focus on deficiencies noted by the regulators in discussions at the comment resolution meeting of May 8, 1992, in Oak Ridge, Tennessee. This Phase II Sampling Plan includes a field sampling plan, a field and laboratory quality assurance project plan, a health and safety plan, a waste management plan, and appendixes providing an update to the applicable or relevant and appropriate requirements for this site and field and laboratory testing methods and procedures

  17. Annual report of 1995 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-02-01

    The Kerr Hollow Quarry (KHQ) and the Chestnut Ridge Sediment Disposal Basin (CRSDB) are inactive waste management sites located at the Oak Ridge Y-12 Plant. The KHQ and CRSDB are regulated as treatment, storage, or disposal (TSD) facilities under the Resource Conservation and Recovery Act (RCRA). The facilities were granted interim status in calendar year (CY) 1986 under Tennessee Department of Environment and Conservation (TDEC) Hazardous Waste Management Rule 1200-1-11-.05. Historical environmental monitoring data and baseline characterization under interim status indicated that releases of contaminants to groundwater had not occurred; thus, the detection monitoring was implemented at the sites until either clean closure was completed or post-closure permits were issued. The CRSDB was closed in Cy 1989 under a TDEC-approved RCRA closure plan. A revised RCRA PCPA for the CRSDB was submitted by DOE personnel to TDEC staff in September 1994. A final post-closure permit was issued by the TDEC on September 18, 1995. Closure activities at KHQ under RCRA were completed in October 1993. The Record of Decision will also incorporate requirements of the RCRA post-closure permit once it is issued by the TDEC

  18. Quality assurance project plan for the Chestnut Ridge Fly Ash Pond Stabilization Project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-07-01

    The Chestnut Ridge Fly Ash Pond Stabilization (CRFAPS) Project will stabilize a 19-m-high (62-ft-high) earthen embankment across Upper McCoy Branch situated along the southern slope of Chestnut Ridge. This task will be accomplished by raising the crest of the embankment, reinforcing the face of the embankment, removing trees from the face and top of the embankment, and repairing the emergency spillway. The primary responsibilities of the team members are: Lockheed Martin Energy Systems, Inc., (Energy Systems) will be responsible for project integration, technical support, Title 3 field support, environmental oversight, and quality assurance (QA) oversight of the project; Foster Wheeler Environmental Corporation (FWENC) will be responsible for design and home office Title 3 support; MK-Ferguson of Oak Ridge Company (MK-F) will be responsible for health and safety, construction, and procurement of construction materials. Each of the team members has a QA program approved by the US Department of Energy (DOE) Oak Ridge Operations. This project-specific QA project plan (QAPP), which is applicable to all project activities, identifies and integrates the specific QA requirements from the participant's QA programs that are necessary for this project

  19. Thickness of Knox Group overburden on Central Chestnut Ridge, Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Staub, W.P.; Hopkins, R.A.

    1984-05-01

    The thickness of residual soil overlying the Knox Group along Central Chestnut Ridge was estimated by a conventional seismic refraction survey. The purpose of this survey was to identify sites on the Department of Energy's Oak Ridge Reservation where ample overburden exists above the water table for the shallow land burial of low-level radioactive waste. The results of the survey suggest that the upper slopes of the higher ridges in the area have a minimum of 16 to 26 m (52 to 85 ft) of overburden and that the crests of these ridges may have more than 30 m (100 ft). Therefore, it is unlikely that sound bedrock would be encountered during trench excavation [maximum of 10 m (32 ft)] along Central Chestnut Ridge. Also, the relatively low seismic wave velocities measured in the overburden suggest that the water table is generally deep. On the basis of these preliminary results, Central Chestnut Ridge appears to be suitable for further site characterization for the shallow land burial of low-level radioactive waste. 3 references, 5 figures, 1 table

  20. Remedial investigation work plan for Chestnut Ridge Operable Unit 4 (Rogers Quarry/Lower McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge Y-12 Plant includes - 800 acres near the northeast comer of the reservation and adjacent to the city of Oak Ridge (Fig. 1-1). The plant is a manufacturing and developmental engineering facility that produced components for various nuclear weapons systems and provides engineering support to other Energy Systems facilities. More than 200 contaminated sites have been identified at the Y-12 Plant that resulted from past waste management practices. Many of the sites have operable units (OUs) based on priority and on investigative and remediation requirements. This Remedial Investigation RI work plan specifically addresses Chestnut Ridge OU 4. Chestnut Ridge OU 4 consists of Rogers Quarry and Lower McCoy Branch (MCB). Rogers Quarry, which is also known as Old Rogers Quarry or Bethel Valley Quarry was used for quarrying from the late 1940s or early 1950s until about 1960. Since that time, the quarry has been used for disposal of coal ash and materials from Y-12 production operations, including classified materials. Disposal of coal ash ended in July 1993. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern, support an Ecological Risk Assessment and a Human Health Risk Assessment, support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this work plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU 4. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the risk posed to human health and the environment by OU 4.

  1. Construction quality assurance report for the Y-12 Construction/Demolition Landfill VII (CDL VII), Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Burton, P.M.

    1994-11-01

    This Construction Quality Assurance (CQA) Report provides documentation that Bid Option 2 of the Y-12 Plant Construction Demolition Landfill 7 (CDL-7) was constructed in substantial compliance with the Tennessee Department of Environment and Conservation (TDEC) approved design, as indicated and specified in the permit drawings, approved changes, and specifications. CDL-7 is located in Anderson County on the south side of Chestnut Ridge, approximately 0.5 miles south of the Y-12 Plant in Oak Ridge, Tennessee. This report applies specifically to the limits of excavation for Area No. 1 portions of the perimeter maintenance road and drainage channel and Sedimentation Pond No. 3. A partial ''As-Built'' survey was performed and is included

  2. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater Quality Data for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1999-01-01

    The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of the U.S. Department of Energy (DOE) Y-12 Plant (Figure 1). Groundwater monitoring is performed at several hazardous and nonhazardous waste management facilities located in the regime per the requirements of applicable operating/post closure permits and governing state/federal regulations and guidelines, including DOE Order 5400.1A - General Environmental Protection Program. Applicable provisions of DOE Order 5400.1A require evaluation of available monitoring data with regard to: (1) groundwater quality in areas that are, or could be, affected by Y-12 Plant operations, (2) the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) long-term trends in groundwater quality at the Y-12 Plant. This report presents the results of these DOE Order 5400.1A evaluations based on available data for the network of monitoring wells and springs in the Chestnut Ridge Regime sampled during calendar year (CY) 1998. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the illustrations (maps and trend graphs) and data summary tables referenced in each section are presented in Appendix A and Appendix B, respectively

  3. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater Quality Data for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    none

    1999-09-01

    The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of the U.S. Department of Energy (DOE) Y-12 Plant (Figure 1). Groundwater monitoring is performed at several hazardous and nonhazardous waste management facilities located in the regime per the requirements of applicable operating/post closure permits and governing state/federal regulations and guidelines, including DOE Order 5400.1A - General Environmental Protection Program. Applicable provisions of DOE Order 5400.1A require evaluation of available monitoring data with regard to: (1) groundwater quality in areas that are, or could be, affected by Y-12 Plant operations, (2) the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) long-term trends in groundwater quality at the Y-12 Plant. This report presents the results of these DOE Order 5400.1A evaluations based on available data for the network of monitoring wells and springs in the Chestnut Ridge Regime sampled during calendar year (CY) 1998. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the illustrations (maps and trend graphs) and data summary tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  4. Site characterization of the West Chestnut Ridge site

    International Nuclear Information System (INIS)

    Ketelle, R.H.; Huff, D.D.

    1984-09-01

    This report summarizes the results of investigations performed to date on the West Chestnut Ridge Site, on the Department of Energy (DOE) Oak Ridge Reservation. The investigations performed include geomorphic observations, areal geologic mapping, surficial soil mapping, subsurface investigations, soil geochemical and mineralogical analyses, geohydrologic testing, groundwater fluctuation monitoring, and surface water discharge and precipitation monitoring. 33 references, 32 figures, 24 tables

  5. Proposed modifications to the RCRA post-closure permit for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (CRHR) (permit number TNHW-088, EPA ID No. TN3 89 009 0001). These permit conditions define the requirements for RCRA post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (CRSDB) and Kerr Hollow Quarry (KHQ), and RCRA post-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (CRSPs). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring at the CRSPs with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) record of decision (ROD), (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA monitoring programs during 1996, (3) replace several of the technical procedures included in the PCP with updated versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP), and (4) correct inaccurate regulatory citations and references to permit conditions and permit attachments. With these modifications, the Y- 12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2 provides the technical justification for each proposed permit modification. Section 3.0 contains proposed changes to Section II of the PCP. Modifications to site-specific permit conditions are presented in Section 4.0 (CRSDB), Section 5.0 (CRSPs), and Section 6.0 (KHQ). Sections 7.0 and 8.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the permit attachments

  6. Proposed modifications to the RCRA post-closure permit for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (CRHR) (permit number TNHW-088, EPA ID No. TN3 89 009 0001). These permit conditions define the requirements for RCRA post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (CRSDB) and Kerr Hollow Quarry (KHQ), and RCRA post-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (CRSPs). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring at the CRSPs with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) record of decision (ROD), (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA monitoring programs during 1996, (3) replace several of the technical procedures included in the PCP with updated versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP), and (4) correct inaccurate regulatory citations and references to permit conditions and permit attachments. With these modifications, the Y- 12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2 provides the technical justification for each proposed permit modification. Section 3.0 contains proposed changes to Section II of the PCP. Modifications to site-specific permit conditions are presented in Section 4.0 (CRSDB), Section 5.0 (CRSPs), and Section 6.0 (KHQ). Sections 7.0 and 8.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the permit attachments.

  7. Remedial investigation report on Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This report comprises appendices A--J which support the Y-12 Plant`s remedial action report involving Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch). The appendices cover the following: Sampling fish from McCoy Branch; well and piezometer logs; ecological effects of contaminants in McCoy Branch 1989-1990; heavy metal bioaccumulation data; microbes in polluted sediments; and baseline human health risk assessment data.

  8. Remedial investigation report on Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendixes

    International Nuclear Information System (INIS)

    1994-08-01

    This report comprises appendices A--J which support the Y-12 Plant's remedial action report involving Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch). The appendices cover the following: Sampling fish from McCoy Branch; well and piezometer logs; ecological effects of contaminants in McCoy Branch 1989-1990; heavy metal bioaccumulation data; microbes in polluted sediments; and baseline human health risk assessment data

  9. Calendar Year 2007 Resource Conservation and Recovery Act Annual Monitoring Report for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee - RCRA Post-Closure Permit Nos. TNHW-113, TNHW-116, and TNHW-128

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental

    2008-02-01

    This report contains groundwater quality monitoring data obtained during calendar year (CY) 2007 at the following hazardous waste treatment, storage, and disposal (TSD) units located at the US Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee; this S-3 Site, Oil Landfarm, Bear Creek Burial Grounds/Walk-In Pits (BCBG/WIP), Eastern S-3 Site Plume, Chestnut Ridge Security Pits (CRSP), Chestnut Ridge Sediment Disposal Baste (CRSDB), few Hollow Quarry (KHQ), and East Chestnut Ridge Waste Pile (ECRWP). Hit monitoring data were obtained in accordance with the applicable Resource Conservation and Recovery Act of 1976 (RCRA) hazardous waste post-closure permit (PCP). The Tennessee Department of Environment and Conservation (TDEC) - Division of Solid Waste Management issued the PCPs to define the requirements for RCRA post-closure inspection, maintenance, and groundwater monitoring at the specified TSD units located within the Bear Creek Hydrogeologic Regime (PCP no. TNHW-116), Upper East Fork Poplar Creek Hydrogeologic Regime (PCP no. TNHW-113), and Chestnut Ridge Hydrogeologic Regime (PCP no. TNHW-128). Each PCP requires the Submittal of an annual RCRA groundwater monitoring report containing the groundwater sampling information and analytical results obtained at each applicable TSD unit during the preceding CY, along with an evaluation of groundwater low rates and directions and the analytical results for specified RCRA groundwater target compounds; this report is the RCRA annual groundwater monitoring report for CY 2007. The RCRA post-closure groundwater monitoring requirements specified in the above-referenced PCP for the Chestnut Ridge Regime replace those defined in the previous PCP (permit no. TNHW-088), which expired on September 18, 2005, but remained effective until the TDEC issued the new PCP in September 2006. The new PCP defines site-specific groundwater sampling and analysis requirements for the

  10. Annual report of 1991 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant: Ground water surface elevations

    International Nuclear Information System (INIS)

    Shevenell, L.; Switek, J.

    1992-02-01

    The purpose of this document is to provide a summary and interpretation of hydraulic head measurements obtained from wells surrounding the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin sites at the US Department of Energy Y-12 Plant in Oak Ridge, Tennessee. Periodic water level observations are presented using hydrographs and water table contour maps based on data obtained from quarterly sampling during calendar year 1991. Generalized, preliminary interpretation of results are presented. The two sites covered by this report have interim status under the provisions of the Resource Conservation and Recovery Act (RCRA). A subset of the wells at each rate are used for groundwater monitoring purposes under the requirements of RCRA. A discussion of the up-gradient and down-gradient directions for each of the sites is included

  11. Groundwater Protection Program Calendar Year 1998 Groundwater Monitoring Report, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained during calendar year (CY) 1998 by the Lockheed Martin Energy Systems, Inc. Y-12 Plant Groundwater Protection Program (GWPP) at the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant, Groundwater and surface water monitoring during CY 1998 was performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), and the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley (BCV), and the Chestnut Ridge Regime which is located south of the Y-12 Plant.

  12. Groundwater Protection Program Calendar Year 1998 Groundwater Monitoring Report, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1999-01-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained during calendar year (CY) 1998 by the Lockheed Martin Energy Systems, Inc. Y-12 Plant Groundwater Protection Program (GWPP) at the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant, Groundwater and surface water monitoring during CY 1998 was performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), and the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley (BCV), and the Chestnut Ridge Regime which is located south of the Y-12 Plant

  13. Independent Verification Survey Report For Zone 1 Of The East Tennessee Technology Park In Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    King, David A.

    2012-01-01

    Oak Ridge Associated Universities (ORAU) conducted in-process inspections and independent verification (IV) surveys in support of DOE's remedial efforts in Zone 1 of East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Inspections concluded that the remediation contractor's soil removal and survey objectives were satisfied and the dynamic verification strategy (DVS) was implemented as designed. Independent verification (IV) activities included gamma walkover surveys and soil sample collection/analysis over multiple exposure units (EUs)

  14. Calendar Year 2008 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2009-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2008 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2008 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2008 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2008 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the

  15. Annual report of 1991 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant: Reporting and statistical evaluation of the subsequent year (sixth) data

    International Nuclear Information System (INIS)

    McMahon, L.W.; Mercier, T.M.

    1992-02-01

    This annual report has historically been prepared to meet the annual reporting requirements of the Tennessee Department of and Environment and Conservation (TDEC), Hazardous Waste Management Regulation 1200-1-11-.05 (6)(e), for detection monitoring data collected on Resource Conservation and Recovery Act (RCRA) wells in place around facilities which are accorded interim status. The regulatory authority for these units at the Y-12 Plant is currently in transition. A Federal Facility Agreement (FFA) with an effective date of January 1, 1992, has been negotiated with the Department of Energy (DOE) for the Oak Ridge Reservation. This agreement provides a framework for remediation of the Oak Ridge Reservation so that both RCRA and CERCLA requirements are integrated into the remediation process and provides for State, EPA, and DOE to proceed with CERCLA as the lead regulatory requirement and RCRA as an applicable or relevant and appropriate requirement. This report is presented for the RCRA certified wells for two interim status units at the Y-12 Plant. These units are Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin. Kerr Hollow is currently undergoing clean closure under RCRA. The Chestnut Ridge Sediment Disposal Basin (CRSDB) was closed in 1989 under a TDEC approved RCRA closure plan. The relevance of a RCRA Post-Closure Permit to either of these units is a matter of contention between DOE and TDEC since the FFA does not contemplate post-closure permits

  16. An aerial radiological survey of the Oak Ridge Reservation and surrounding area, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Maurer, R.J.

    1989-09-01

    An aerial radiological survey of the Oak Ridge Reservation (ORR) and surrounding area in Oak Ridge, Tennessee, was conducted from September 12--29, 1989. The purpose of the survey was to measure and document the site's terrestrial radiological environment for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 91 meters (300 feet) along a series of parallel lines 152 meters (500 feet) apart. The survey encompassed an area of 440 square kilometers (170 square miles) as defined by the Tennessee Valley Authority Map S-16A of the entire Oak Ridge Reservation and adjacent area. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level (AGL) in the form of a radiation contour map. Typical background exposure rates were found to vary from 5 to 14 microroentgens per hour (μR/h). The man-made radionuclides, cobalt-60, cesium-137, and protactinium-234m (a radioisotope indicative of depleted uranium), were detected at several facilities on the site. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several locations within the survey boundary. In addition to the large scale aerial survey, two special flyovers were requested by the Department of Energy. The first request was to conduct a survey of a 1-mile x 2-mile area in south Knoxville, Tennessee. The area had been used previously to store contaminated scrap metals from operations at the Oak Ridge site. The second request was to fly several passes over a 5-mile length of railroad tracks leading from the Oak Ridge Y-12 Plant, north through the city of Oak Ridge. The railroad tracks had been previously used in the transport of cesium-137

  17. Post-closure permit application for the Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant

    International Nuclear Information System (INIS)

    Greer, J.K. Jr.; Kimbrough, C.W.

    1989-01-01

    This report contains information related to the closure and post closure of the Chestnut Ridge Sediment Disposal Basin of the Y-12 plant. Information concerning the background of the basin, geology, hydrology, and analysis of the sediments is included

  18. Inventory of karst subsidence in the Valley and Ridge Province of East Tennessee

    International Nuclear Information System (INIS)

    Ketelle, R.H.; Newton, J.G.

    1986-01-01

    The first regional inventory of karst activity in the Valley and Ridge Province of East Tennessee was performed as a part of ongoing studies at Oak Ridge National Laboratory pertaining to environmental impact assessment of waste disposal in karst settings. More than half the land area in the Valley and Ridge Province of East Tennessee is underlain by karst-prone carbonate bedrock. The regional karst inventory was initiated to obtain current information on the extent of active karst subsidence in the region for use in decision making by the Department of Energy in planning future waste disposal facilities at Oak Ridge, Tennessee. The inventory was performed by contacting personnel of federal, state, and county agencies to obtain reports of known active karst subsidence within the region. Data from these interviews were tabulated resulting in identificaton of more than 250 karst subsidence incidents in East Tennessee, most of which have occurred since 1980. Although the infomation obtained was largely anecdotal, approximate location, date, size, and circumstances under which the collapses occurred were recorded for as many cases as could be documented. The study also included detailed reconnaissance of selected areas similar in geology and hydrology to a study area at Oak Ridge, Tennessee to identify causative factors which contribute to karst subsidence in the region and for comparison of the occurrence of visible karst features at different sites. Human activities affecting site hydrology such as large scale land clearing and earthmoving projects were related to most of the subsidence incidents inventoried

  19. Stratabound pathways of preferred groundwater flow: An example from the Copper Ridge Dolomite in East Tennessee

    International Nuclear Information System (INIS)

    Lee, R.; Ketelle, D.

    1987-01-01

    The Copper Ridge Dolomite of the Upper Cambrian Knox Group underlies a site at Oak Ridge, Tennessee under consideration by the Department of Energy (DOE) for a below ground waste disposal facility. The Copper Ridge was studied for DOE to understand the influence of lithology on deep groundwater flow. Three facies types are distinguished which comprise laterally continuous, 1 to 4 m thick rock units interpreted to represent upward-shallowing depositional cycles having an apparently significant effect on groundwater flow at depth. Rock core observations indicate one of the recurring facies types is characterized by thin to medium-bedded, fine-grained dolostone with planar cryptalgal laminae and thin shaley partings. Distinctive fracturing in this facies type, that may have resulted from regional structural deformation, it considered to be responsible for weathering at depth and the development of stratabound pathways of preferred groundwater flow. In addition, geophysical data suggest that one occurrence of this weathered facies type coincides with an apparent geochemical interface at depth. Geophysical data also indicate the presence of several fluid invasion horizons, traceable outside the study area, which coincide with the unweathered occurrence of this fine-grained facies type. The subcropping of recurrent zones of preferred groundwater flow at the weathered/unweathered interface may define linear traces of enhanced aquifer recharge paralleling geologic strike. Vertical projection of these zones from the weathered/unweathered rock interface to the ground surface may describe areas of enhanced infiltration. Tests to determine the role of stratigraphic controls on groundwater flow are key components of future investigations on West Chestnut Ridge. 14 refs., 13 figs

  20. Calendar Year 2005 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2005 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2005 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2005 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2005 monitoring data is deferred to the ''Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium'' (BWXT 2006). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including

  1. Calendar Year 2004 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2005-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2004 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2004 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2004 monitoring data is deferred to the Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium (BWXT 2005). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including sampling methods and

  2. Fiscal year 1996 well plugging and abandonment program Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, from August 1995 through August 1996. A total of 27 wells, piezometers, and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991).

  3. An aerial radiological survey of the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Maurer, R.J.

    1993-04-01

    An aerial radiological survey of the Oak Ridge Reservation (ORR) and surrounding area in Oak Ridge, Tennessee, was conducted during the period March 30 to April 14,1992. The purpose of the survey was to measure and document the terrestrial radiological environment of the Oak Ridge Reservation for use in environmental management programs and emergency response planning. The aerial survey was flown at an altitude of 150 feet (46 meters) along a series of parallel lines 250 feet (76 meters) apart and included X-10 (Oak Ridge National Laboratory), K-25 (former Gaseous Diffusion Plant), Y-12 (Weapons Production Plant), the Freels Bend Area and Oak Ridge Institute for Science and Education, the East Fork Poplar Creek (100-year floodplain extending from K-25 to Y-12), Elza Gate (former uranium ore storage site located in the city of Oak Ridge), Parcel A, the Clinch River (river banks extending from Melton Hill Dam to the city of Kingston), and the CSX Railroad Tracks (extending from Y-12 to the city of Oak Ridge). The survey encompassed approximately 55 square miles (1 41 square kilometers) of the Oak Ridge Reservation and surrounding area

  4. Wetland Survey of Selected Areas in the Oak Ridge Y-12 Plant Area of Responsibilty, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Rosensteel.

    1997-01-01

    This document was prepared to summarize wetland surveys performed in the Y- 1 2 Plant area of responsibility in June and July 1994. Wetland surveys were conducted in three areas within the Oak Ridge Y- 12 Plant area of responsibility in June and July 1994: the Upper East Fork Poplar Creek (UEFPC) Operable Unit (OU), part of the Bear Creek Valley OU (the upper watershed of Bear Creek from the culvert under Bear Creek Road upstream through the Y-12 West End Environmental Management Area, and the catchment of Bear Creek North Tributary 1), and part of Chestnut Ridge OU 2 (the McCoy Branch area south of Bethel Valley Road). Using the criteria and methods set forth in the Wetlands Delineation Manual, 18 wetland areas were identified in the 3 areas surveyed; these areas were classified according to the system developed by Cowardin. Fourteen wetlands and one wetland/pond area that are associated with disturbed or remnant stream channels and seeps were identified in the UEFPC OU. Three wetlands were identified in the Bear Creek Valley OU portion of the survey area. One wetland was identified in the riparian zone of McCoy Branch in the southern portion of Chestnut Ridge OU 2

  5. East Chestnut Ridge hydrogeologic characterization: A geophysical study of two karst features

    International Nuclear Information System (INIS)

    1991-01-01

    Permitting and site selection activities for the proposed East Chestnut Ridge landfill, located on the Oak Ridge Reservation, have required additional hydrogeologic studies of two karst features. Geophysical testing methods were utilized for investigating these karst features. The objectives of the geophysical testing was to determine the feasibility of geophysical techniques for locating subsurface karst features and to determine if subsurface anomalies exist at the proposed landfill site. Two karst features, one lacking surface expression (sinkhole) but with a known solution cavity at depth (from previous hydrologic studies), and the other with surface expression were tested with surface geophysical methods. Four geophysical profiles, two crossing and centered over each karst feature were collected using both gravimetric and electrical resistivity techniques

  6. Subsurface characterization and geohydrologic site evaluation West Chestnut Ridge site

    International Nuclear Information System (INIS)

    1984-01-01

    The West Chestnut Ridge Site at the Oak Ridge National Laboratory is being considered for use as a repository for low-level radioactive waste. The purposes of this study were to provide a geohydrological characterization of the site for use in pathways analysis, and to provide preliminary geotechnical recommendations that would be used for development of a site utilization plan. Subsurface conditions were investigated at twenty locations and observation wells were installed. Field testing at each location included the Standard Penetration Test and permeability tests in soil and rock. A well pumping test was ocmpleted at one site. Laboratory testing included permeability, deformability, strength and compaction tests, as well as index and physical property tests. The field investigations showed that the subsurface conditions include residual soil overlying a weathered zone of dolomite which grades into relatively unweathered dolomite at depth. The thickness of residual soil is typically 80 ft (24 m) on the ridges, but can be as little as 10 ft (3 m) in the valleys. Trench excavations to depths of 30 ft (9 m) should not present serious slope stability problems above the water table. On-site soils can be used for liners or trench backfill but these soils may require moisture conditioning to achieve required densities. 19 figures, 8 tables

  7. Fiscal year 1993 well plugging and abandonment program, Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from December 1992 through August 20, 1993. A total of 70 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the US Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991).

  8. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-09-30

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure 1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 which provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater sampling (Section 3.0), whereas well granted ''inactive'' status are not used for either purpose. The status designation also determines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 4.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 5.0). This plan applies to groundwater monitoring wells associated with Y-12 and related waste management facilities located within three hydrogeologic regimes (Figure 1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime is directly south of Y-12 and encompasses a section of Chestnut Ridge that is bound to the

  9. Fiscal Year 1993 Well Plugging and Abandonment Program Summary Report Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from October 1993 through August 1994. A total of 57 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee.

  10. Calendar Year 2011 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC,

    2012-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2011 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. This report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and known extent of groundwater contamination. The CY 2011 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by the DOE Environmental Management (EM) contractor responsible for environmental cleanup on the ORR. In August 2011, URS | CH2M Oak Ridge LLC (UCOR) replaced Bechtel Jacobs Company LLC (BJC) as the DOE EM contractor. For this report, BJC/UCOR will be referenced as the managing contractor for CY 2011. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC/UCOR (i.e., coordinating sample collection and sharing data) ensures

  11. Removal action report on the Building 3001 canal at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    Oak Ridge National Laboratory (ORNL) is a federal facility managed by Lockheed Martin C, Energy Research, Inc., for the U.S. Department of Energy (DOE). ORNL on the Oak Ridge Reservation in East Tennessee at the Anderson and Roane County lines, approximately 38 km (24 miles) west of Knoxville, Tennessee, and 18 km (11 miles) southwest of downtown Oak Ridge. The Oak Ridge Graphite Reactor and its storage and transfer canal are located in Bldg. 3001 in the approximate center of Waste Area Grouping I in the ORNL main complex. 4:1 The Bldg. 3001 Storage Canal is an L-shaped, underground, reinforced-concrete structure running from the back and below the Graphite Reactor in Bldg. 3001 to a location beneath a hot cell in the adjacent Bldg. 3019. The Graphite Reactor was built in 1943 to produce small quantities of plutonium and was subsequently used to produce other isotopes for medical research before it was finally shut down in 1963. The associated canal was used to transport, under water, spent fuel slugs and other isotopes from the back of the reactor to the adjacent Bldg. 31319 hot cell for further processing. During its operation and years subsequent to operation, the canal's concrete walls and floor became contaminated with radioisotopes from the water.This report documents the activities involved with replacing the canal water with a solid, controlled, low-strength material (CLSM) in response to a Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action

  12. Tiger team assessment of the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1990-02-01

    This document contains findings identified during the Tiger Team Compliance Assessment of the Department of Energy's (DOE's) Y-12 Plant in Oak Ridge, Tennessee. The Y-12 Plant Tiger Team Compliance Assessment is comprehensive in scope. It covers the Environmental, Safety, and Health (including Occupational Safety and Health Administration (OSHA) compliance), and Management areas and determines the plant's compliance with applicable federal (including DOE), state, and local regulations and requirements. 4 figs., 12 tabs.

  13. Fiscal Year 1998 Well Installation, Plugging and Abandonment, and Redevelopment summary report Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-01

    This report summarizes the well installation, plugging and abandonment, and redevelopment activities conducted during the federal fiscal year (FY) 1998 at the Y-12 Plant, Oak Ridge, Tennessee. Five new groundwater monitoring wells were installed at the Y-12 Plant under the FY 1998 drilling program. Two of the wells are located in west Bear Creek Valley, one is in the eastern Y-12 Plant area near Lake Reality, and two are located near the Oil Landfarm Waste Management Area, which were installed by Bechtel Jacobs Company LLC (Bechtel Jacobs) as part of a site characterization activity for the Oak Ridge Reservation (ORR) Disposal Cell. Also, two existing wells were upgraded and nine temporary piezometers were installed to characterize hydrogeologic conditions at the Disposal Cell site. In addition, 40 temporary piezometers were installed in the Boneyard/Bumyard area of Bear Creek Valley by Bechtel Jacobs as part of the accelerated remedial actions conducted by the Environmental Restoration Program. Ten monitoring wells at the Y-12 Plant were decommissioned in FY 1998. Two existing monitoring wells were redeveloped during FY 1998 (of these, GW-732 was redeveloped tsvice). All well installation and development (including redevelopment) was conducted following industry-standard methods and approved procedures from the Environmental Surveillance Procedures Quality Control Program (Energy Systems 1988); the Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document (EPA 1992); and the Monitoring Well Installation Plan for the Department of Energy Y-12 Plant, Oak Ridge, Tennessee (Energy Systems 1997a). Well installation and development of the non-Y-12 Plant GWPP oversight installation projects were conducted using procedures/guidance defined in the following documents: Work Plan for Support to Upper East Fork Poplar Creek East End Volatile Organic Compound Plumes Well Installation Project, Oak Ridge Y-12 Plant, Oak Ridge

  14. Calendar Year 2010 Groundwater Monitoring Report, U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2011-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2010 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2010 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2010 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the

  15. Calendar Year 2007 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2008-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2007 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2007 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2007 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). In December 2007, the BWXT corporate name was changed to Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12), which is applied to personnel and organizations throughout CY 2007 for this report. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2007 monitoring results fulfill requirements of

  16. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

  17. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year

  18. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities

  19. Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-01-01

    The Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (Y/ER-301) was prepared (1) to safely, cost-effectively, and efficiently evaluate the environmental impact of solid material in the two debris areas in the context of industrial land uses (as defined in the Bear Creek Valley Feasibility Study) to support the Engineering Evaluation/Cost Assessment and (2) to evaluate, define, and implement the actions to mitigate these impacts. This work was performed under Work Breakdown Structure 1.x.01.20.01.08

  20. Calendar Year 2009 Groundwater Monitoring Report, U.S. Department of Energy, Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2010-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2009 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2009 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2009 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and

  1. Calendar Year 2006 Groundwater Monitoring Report, U.S Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2007-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2006 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2006 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., preparing SAPs, coordinating sample collection, and sharing data) ensures that the CY 2006 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and

  2. Calendar Year 2009 Groundwater Monitoring Report, U.S. Department of Energy, Y-12 National Security Complex, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    2010-01-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2009 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2009 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock and Wilcox Technical Services Y-12, LLC (B and W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2009 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the

  3. Closure certification report for the Bear Creek burial grounds B area and walk-in pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-06-01

    On July 5, 1993, the revised RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, DOE/OR/01-1100 ampersand D3 and Y/ER-53 ampersand D3, was approved by the Tennessee Department of Environment and Conservation (TDEC). The closure activities described in that closure plan have been performed. The purpose of this document is to summarize the closure activities for B Area and Walk-In Pits (WIPs), including placement of the Kerr Hollow Quarry debris at the WIPs

  4. Implementation plan for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-06-01

    Plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL) were initially submitted in ES/ER-17 ampersand D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. The information presented in the current document summarizes the progress that has been made to date and provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present the plans and schedules associated with the remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. A comprehensive program is under way at ORNL to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be submitted to the US Environmental Protection Agency and the Tennessee Department of Environment and Conservation (EPA/TDEC) as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were originally submitted in ES/ER-17 ampersand D 1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in the present document. Chapter I provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5

  5. Environmental Management Waste Management Facility Proxy Waste Lot Profile 6.999 for Building K-25 West Wing, East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Rigsby V.P.

    2009-02-12

    In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2002. The purpose of this agreement is to define a streamlined decision-making process to facilitate the accelerated implementation of cleanup, resolve ORR milestone issues, and establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. Decontamination and decommissioning (D&D) activities of Bldg. K-25, the original gaseous diffusion facility, is being conducted by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. The planned CERCLA action covering disposal of building structure and remaining components from the K-25 building is scheduled as a non-time-critical CERCLA action as part of DOE's continuous risk reduction strategy for ETTP. The K-25 building is proposed for D&D because of its poor physical condition and the expense of surveillance and maintenance activities. The K-25/K-27 D&D Project proposes to dispose of the commingled waste listed below from the K-25 west side building structure and remaining components and process gas equipment and piping at the Environmental Management Waste Management Facility (EMWMF) under waste disposal proxy lot (WPXL) 6.999: (1) Building structure (e.g. concrete floors [excluding basement

  6. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. Part 2: 1995 groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1996-08-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater monitoring data obtained during calendar year (CY) 1995 from monitoring wells and springs located at or near several hazardous and non-hazardous waste management facilities associated with the Y-12 Plant. These sites are within the boundaries of the Chestnut Ridge Hydrogeologic Regime, which is one of three hydrogeologic regimes defined for the purposes of the Y-12 Plant Groundwater Protection Program (GWPP). The objectives of the GWPP are to provide the monitoring data necessary for compliance with applicable federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. corporate policy. The following evaluation of the data is organized into background regulatory information and site descriptions, an overview of the hydrogeologic framework, a summary of the CY 1995 groundwater monitoring programs and associated sampling and analysis activities, analysis and interpretation of the data for inorganic, organic, and radiological analytes, a summary of conclusions and recommendations, and a list of cited references. Appendix A contains supporting maps, cross sections, diagrams, and graphs; data tables and summaries are in Appendix B. Detailed descriptions of the data screening and evaluation criteria are included in Appendix C

  7. Porosity development in the Copper Ridge Dolomite and Maynardville Limestone, Bear Creek Valley and Chestnut Ridge, Tennessee

    International Nuclear Information System (INIS)

    Goldstrand, P.M.; Menefee, L.S.; Dreier, R.B.

    1995-12-01

    Matrix porosity data from deep core obtained in Bear Creek Valley indicate that porosities in the Maynardville Limestone are lithology and depth dependent. Matrix porosities are greater in the Cooper Ridge Dolomite than in the Maynardville Limestone, yet there is no apparent correlation with depth. Two interrelated diagenetic processes are the major controlling factors on porosity development in the Copper Ridge Dolomite and Maynardville Limestone; dissolution of evaporate minerals and dedolomitization. Both of these diagenetic processes produce matrix porosities between 2.1 and 1.3% in the Copper Ridge Dolomite and upper part of the Maynardville Limestone (Zone 6) to depths of approximately 600 ft bgs. Mean matrix porosities in Zones 5 through 2 of the Maynardville Limestone range from 0.8 to 0.5%. A large number of cavities have been intersected during drilling activities in nearly all zones of the Maynardville Limestone in Bear Creek Valley. Therefore, any maynardville Limestone zone within approximately 200 ft of the ground surface is likely to contain cavities that allow significant and rapid flow of groundwater. Zone 6 could be an important stratigraphic unit in the Maynardville Limestone for groundwater flow and contaminant transport because of the abundance of vuggy and moldic porosities. There are large variations in the thickness and lithology in the lower part of the Maynardville (Zones 2, 3, and 4 in the Burial Grounds region). The direction and velocity of strike-parallel groundwater flow may be altered in this area within the lower Maynardville Limestone

  8. Field Sampling and Analysis Plan for the Remedial Investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-10-01

    This report provides responses to US Environmental Protection Agency Region IV EPA-M and Tennessee Department of Environment and Conservation Oversite Division (TDEC-O) comments on report ORNL/ER-58, Field Sampling and Analysis Plan for the Remedial Investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Waste Area Grouping (WAG) 2 consists of the White Oak Creek (WOC) drainage system downgradient of the major ORNL WAGs in the WOC watershed. A strategy for the remedial investigation (RI) of WAG2 was developed in report ES/ER-14 ampersand Dl, Remedial Investigation Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This strategy takes full advantage of WAG2's role as an integrator of contaminant releases from the ORNL WAGs in the WOC watershed, and takes full advantage of WAG2's role as a conduit for contaminants from the ORNL site to the Clinch River. The strategy calls for a multimedia environmental monitoring and characterization program to be conducted in WAG2 while upgradient contaminant sources are being remediated. This monitoring and characterization program will (1) identify and quantify contaminant fluxes, (2) identify pathways of greatest concern for human health and environmental risk, (3) improve conceptual models of contaminant movement, (4) support the evaluation of remedial alternatives, (5) support efforts to prioritize sites for remediation, (6) document the reduction in contaminant fluxes following remediation, and (7) support the eventual remediation of WAG2. Following this strategy, WAG2 has been termed an ''integrator WAG,'' and efforts in WAG2 over the short term are directed toward supporting efforts to remediate the contaminant ''source WAGS'' at ORNL

  9. Environmental Compliance and Protection Program Description Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2009-02-26

    The objective of the Environmental Compliance and Protection (EC and P) Program Description (PD) is to establish minimum environmental compliance requirements and natural resources protection goals for the Bechtel Jacobs Company LLC (BJC) Oak Ridge Environmental Management Cleanup Contract (EMCC) Contract Number DE-AC05-98OR22700-M198. This PD establishes the work practices necessary to ensure protection of the environment during the performance of EMCC work activities on the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee, by BJC employees and subcontractor personnel. Both BJC and subcontractor personnel are required to implement this PD. A majority of the decontamination and demolition (D and D) activities and media (e.g., soil and groundwater) remediation response actions at DOE sites on the ORR are conducted under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). CERCLA activities are governed by individual CERCLA decision documents (e.g., Record of Decision [ROD] or Action Memorandum) and according to requirements stated in the Federal Facility Agreement for the Oak Ridge Reservation (DOE 1992). Applicable or relevant and appropriate requirements (ARARs) for the selected remedy are the requirements for environmental remediation responses (e.g., removal actions and remedial actions) conducted under CERCLA.

  10. Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

  11. Geophysical Surveys of a Known Karst Feature, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Doll, W.E.; Nyquist, J.E.; Carpenter, P.J.; Kaufmann, R.D.; Carr, B.J.

    1998-01-01

    Geophysical data were acquired at a site on the Oak Ridge Reservation, Tennessee to determine the characteristics of a mud-filled void and to evaluate the effectiveness of a suite of geophysical methods at the site. Methods that were used included microgravity, electrical resistivity, and seismic refraction. Both microgravity and resistivity were able to detect the void as well as overlying structural features. The seismic data provide bedrock depth control for the other two methods, and show other effects that are caused by the void

  12. Soil sampling and analysis plan for the Bear Creek Valley Floodplain at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This Sampling and Analysis Plan (SAP) for the Bear Creek Valley (BCV) Floodplain presents the approach and rationale for characterizing potentially contaminated soils and sediments of the Bear Creek floodplain and the impact of any contaminants on the floodplain ecosystem. In addition to this SAP, the Remedial Investigation Work Plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (ES/ER-19&D2) presents background information pertaining to this floodplain investigation.

  13. In-Process Analysis Program for the Isolock sampler at the Gunite and Associated Tanks, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-05-01

    The In-Process Analysis Program documents the requirements for handling, transporting, and analyzing waste slurry samples gathered by the Bristol Isolock slurry sampler from the Gunite and Associated Tanks at Oak Ridge National Laboratory in Oak Ridge, Tennessee. Composite samples will be gathered during sludge retrieval operations, labeled, transported to the appropriate laboratory, and analyzed for physical and radiological characteristics. Analysis results will be used to support occupational exposure issues, basic process control management issues, and prediction of radionuclide flow

  14. Soil sampling and analysis plan for the Bear Creek Valley Floodplain at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-03-01

    This Sampling and Analysis Plan (SAP) for the Bear Creek Valley (BCV) Floodplain presents the approach and rationale for characterizing potentially contaminated soils and sediments of the Bear Creek floodplain and the impact of any contaminants on the floodplain ecosystem. In addition to this SAP, the Remedial Investigation Work Plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (ES/ER-19 ampersand D2) presents background information pertaining to this floodplain investigation

  15. Proposed plan for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-03-01

    The US Department of Energy (DOE) in compliance with Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, is releasing the proposed plan for remedial action at the United Nuclear Corporation (UNC) Disposal Site located at the DOE Oak Ridge Operations (ORO) Y-12 Plant, Oak Ridge, Tennessee. The purpose of this document is to present and solicit for comment to the public and all interested parties the ''preferred plan'' to remediate the UNC Disposal Site. However, comments on all alternatives are invited

  16. Detailed analysis of a RCRA landfill for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-04-01

    The purpose of this detailed analysis is to provide a preliminary compilation of data, information, and estimated costs associated with a RCRA landfill alternative for UNC Disposal Site. This is in response to Environmental Protection Agency (EPA) comment No. 6 from their review of a open-quotes Feasibility Study for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee.close quotes

  17. Independent verification survey report for exposure units Z2-24, Z2-31, Z2-32, AND Z2-36 in zone 2 of the East Tennessee technology park Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    King, David A. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2013-10-01

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management selected Oak Ridge Associated Universities (ORAU), through the Oak Ridge Institute for Science and Education (ORISE) contract, to perform independent verification (IV) at Zone 2 of the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. ORAU has concluded IV surveys, per the project-specific plan (PSP) (ORAU 2013a) covering exposure units (EUs) Z2-24, -31, -32, and -36. The objective of this effort was to verify the target EUs comply with requirements in the Zone 2 Record of Decision (ROD) (DOE 2005), as implemented by using the dynamic verification strategy presented in the dynamic work plan (DWP) (BJC 2007); and confirm commitments in the DWP were adequately implemented, as verified via IV surveys and soil sampling.

  18. Action memorandum for the Waste Area Grouping 1 Tank WC-14 removal action at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-11-01

    This action memorandum documents approval for a Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended (CERCLA), time-critical action. The action will remove radiologically contaminated water from Tank WC-14. The water contains a polychlorinated biphenyl (PCB) at a level below regulatory concern. Tank WC-14 is located in the Waste Area Grouping (WAG) 1 WC-10 Tank Farm at the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. Contaminated sludge remaining in the tank after removal of the liquid will be the subject of a future action

  19. Fiscal year 1996 well installation program summary, Y-12 Plant Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-04-01

    This report summarizes the well installation activities conducted during the federal fiscal year (FY) 1996 drilling program at the Oak Ridge Y-12 Plant, Oak Ridge Tennessee. Synopses of monitoring well construction/well development data, well location rationale, geological/hydrological observations, quality assurance/quality control methods, and health and safety monitoring are included. Two groundwater monitoring wells were installed during the FY 1996 drilling program. One of the groundwater monitoring wells was installed in the Lake Reality area and was of polyvinyl chloride screened construction. The other well, installed near the Ash Disposal Basin, was of stainless steel construction

  20. Radionuclide migration pathways analysis for the Oak Ridge Central Waste Disposal Facility on the West Chestnut Ridge site

    International Nuclear Information System (INIS)

    Pin, F.G.; Witherspoon, J.P.; Lee, D.W.; Cannon, J.B.; Ketelle, R.H.

    1984-10-01

    A dose-to-man pathways analysis is performed for disposal of low-level radioactive waste at the Central Waste Disposal Facility on the West Chestnut Ridge Site. Both shallow land burial (trench) and aboveground (tumulus) disposal methods are considered. The waste volumes, characteristics, and radionuclide concentrations are those of waste streams anticipated from the Oak Ridge National Laboratory, the Y-12 Plant, and the Oak Ridge Gaseous Diffusion Plant. The site capacity for the waste streams is determined on the basis of the pathways analysis. The exposure pathways examined include (1) migration and transport of leachate from the waste disposal units to the Clinch River (via the groundwater medium for trench disposal and Ish Creek for tumulus disposal) and (2) those potentially associated with inadvertent intrusion following a 100-year period of institutional control: an individual resides on the site, inhales suspended particles of contaminated dust, ingests vegetables grown on the plot, consumes contaminated water from either an on-site well or from a nearby surface stream, and receives direct exposure from the contaminated soil. It is found that either disposal method would provide effective containment and isolation for the anticipated waste inventory. However, the proposed trench disposal method would provide more effective containment than tumuli because of sorption of some radionuclides in the soil. Persons outside the site boundary would receive radiation doses well below regulatory limits if they were to ingest water from the Clinch River. An inadvertent intruder could receive doses that approach regulatory limits; however, the likelihood of such intrusions and subsequent exposures is remote. 33 references, 31 figures, 28 tables

  1. Integration of Environmental Restoration and Waste Management Activities for a More Cost-Effective Tank Remediation Program Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Brill, A.; Clark, R.; Stewart, R.

    1998-01-01

    This paper presents plans and strategies for remediation of the liquid low-level radioactive waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. Much of the LLLW system at ORNL was installed more than 50 years ago. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the regulatory requirements

  2. Groundwater quality assessment for the Chestnut Ridge Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    This report contains an evaluation of groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy Y- 12 Plant. These sites are located south of the Y- 12 Plant in the Chestnut Ridge Hydrogeologic Regime (CRHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring. Section 2.0 of this report contains background information regarding groundwater monitoring at the waste-management sites located in the CRHR. An overview of the hydrogeologic system in the CRHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1991 assessment data and detailed descriptions of groundwater quality in the regime are presented

  3. Implementation Plan for Liquid Low-Level Radioactive Waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-09-01

    This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). These commitments were initially submitted in ES/ER-17 ampersand Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were submitted in ES/ER-17 ampersand Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in this document. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5

  4. Management initiatives to waste management decisions and environmental compliance in Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.G.

    1988-01-01

    Martin Marietta Energy Systems, Inc. (MMES) has been the operating contractor for the nuclear production and research facilities at Oak Ridge, Tennessee and Paducah, Kentucky for about four and one-half years. Environmental compliance, regulatory interaction, and public confidence have been very significant issues during this time. This presentation will review the environmental situation in Oak Ridge in 1984 and will discuss management initiatives and experience in the development and implementation of effective environmental and waste management and health and safety programs committed to the protection of the environment, our workers and the public with an overall goal of full compliance with all current and anticipated regulations.

  5. Management initiatives to waste management decisions and environmental compliance in Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Jones, C.G.

    1988-01-01

    Martin Marietta Energy Systems, Inc. (MMES) has been the operating contractor for the nuclear production and research facilities at Oak Ridge, Tennessee and Paducah, Kentucky for about four and one-half years. Environmental compliance, regulatory interaction, and public confidence have been very significant issues during this time. This presentation will review the environmental situation in Oak Ridge in 1984 and will discuss management initiatives and experience in the development and implementation of effective environmental and waste management and health and safety programs committed to the protection of the environment, our workers and the public with an overall goal of full compliance with all current and anticipated regulations

  6. Surface radiological investigation of Trench 5 in Waste Area Grouping 7 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Goff, D.D.

    1991-08-01

    A surface radiological investigation of areas encompassing Trench 5 on the Oak Ridge Reservation (ORR) was conducted from May 1990 through November 1990. This survey was led by the author, assisted by various members of the Measurement Applications and Development (MAD) group of the Health and Safety Research Division (HASRD) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The purpose of the investigation was to determine the presence, nature, and extent of surface radiological contamination at Trench 5, the Homogeneous Reactor Experiment fuel wells, and surrounding areas. Based on the data obtained in the field, interim corrective measures were recommended to limit human exposure to radioactivity and to minimize insult to the environment. It should be stressed that this project was not intended to be a complete site characterization but rather to be a preliminary investigation into the potential contamination problem that might exist as a result of past operations at Trench 5

  7. Finding of no significant impact: Changes in the sanitary sludge land application program on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1042) that evaluates potential impacts of proposed changes in the sanitary sludge land application program on the DOE Oak Ridge Reservation (ORR), Oak Ridge, Tennessee. Changes in lifetime sludge land application limits and radionuclide loading are proposed, and two new sources of sewage sludge from DOE facilities would be transported to the City of Oak Ridge Publicly Owned Treatment Works (COR POTW). Lifetime sludge land application limits would increase from 22 tons/acre to 50 tons/acre, which is the limit approved and permitted by the Tennessee Department of Environment and Conservation (TDEC). With the approval of TDEC, the permissible radiological dose from sludge land application would change from the current limit of 2x background radionuclide concentrations in receiving soils to a risk-based dose limit of 4 millirem (mrem) per year for the maximally exposed individual. Sludge land application sites would not change from those that are currently part of the program. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement (EIS) is not necessary, and DOE is issuing this Finding of No Significant Impact (FONSI). 70 refs., 2 figs., 17 tabs.

  8. Finding of no significant impact: Changes in the sanitary sludge land application program on the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-10-01

    The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1042) that evaluates potential impacts of proposed changes in the sanitary sludge land application program on the DOE Oak Ridge Reservation (ORR), Oak Ridge, Tennessee. Changes in lifetime sludge land application limits and radionuclide loading are proposed, and two new sources of sewage sludge from DOE facilities would be transported to the City of Oak Ridge Publicly Owned Treatment Works (COR POTW). Lifetime sludge land application limits would increase from 22 tons/acre to 50 tons/acre, which is the limit approved and permitted by the Tennessee Department of Environment and Conservation (TDEC). With the approval of TDEC, the permissible radiological dose from sludge land application would change from the current limit of 2x background radionuclide concentrations in receiving soils to a risk-based dose limit of 4 millirem (mrem) per year for the maximally exposed individual. Sludge land application sites would not change from those that are currently part of the program. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement (EIS) is not necessary, and DOE is issuing this Finding of No Significant Impact (FONSI). 70 refs., 2 figs., 17 tabs

  9. Inactive tanks remediation program strategy and plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents plans and strategies for remediation of the liquid low-level waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. These plans and strategies will be carried out by the Environmental Restoration Program's Inactive LLLW Tank Program at ORNL. The approach to remediation of each tank or tank farm must be adapted in response to the specific circumstances of individual tank sites. The approach will be tailored to accommodate feedback on lessons learned from previous tank remediation activities and will not be a rigid step-by-step approach that must be conducted identically for every tank system. However, the approach will follow a multistep decision process. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the FFA requirements. The Inactive Tank Program will focus on the remediation of the tank residues and tank shell. This strategy is discussed in detail in this report

  10. Completion report for the Inactive Liquid Low-Level Waste Tank Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-02-01

    This report documents the results of the Inactive Liquid Low-Level Waste Tank Remediation Project at Oak Ridge National Laboratory (ORNL). The work performed is compared with that proposed in the statement of work and the service contract specification for the maintenance action to remediate tanks 3013, 3004-B, T-30, and 3001-B. The Federal Facility Agreement (FFA) among the U.S. Environmental Protection Agency (EPA), the Tennessee Department of Environment and Conservation (TDEC), and the U.S. Department of Energy (DOE) requires that all tanks, which have been removed from service and are designated in the FFA as Category D, must be remediated in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. The Environmental Restoration Program's inactive tank removal program strategy and plans for remediating the inactive LLLW tanks were documented in a report issued in January 1995 (Inactive Tanks Remediation Program Strategy and Plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee, ORNL/ER-297). The inactive (Category D) tanks were initially screened for remediation according to risk, remediation technology required, level of instrumentation available, interferences with other piping and equipment, location, and available sludge removal techniques and storage requirements. On the basis of this preliminary screening, the tanks were assigned to one of five batches (I through V) for consideration of remedial action alternatives, and these batches were tentatively scheduled for remedial actions. The eight links tentatively assigned to Batch I were divided into two groups (Series I and Series II)

  11. Architectural/historical assessment of the Oak Ridge National Laboratory, Oak Ridge Reservation, Anderson and Roane Counties, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Carver, M.; Slater, M.

    The Department of Energy (DOE) is required by the National Historic Preservation Act (NHPA) of 1966, as amended, to identify any properties under its jurisdiction that are included in or eligible for inclusion in the National Register of Historic Places (National Register). In March 1993 Duvall & Associates, Inc., was engaged to survey the Oak Ridge National Laboratory (ORNL), a DOE facility located on the Oak Ridge Reservation (ORR) in Anderson and Roane Counties, Tennessee, and to prepare a determination of National Register eligibility for all ORNL properties. The purpose of this report is to summarize the results of research into the historical context of ORNL and at to identify historic properties at ORNL that are included in present or eligible for inclusion in the National Register. The identification of archaeological properties at ORNL that are included and eligible for inclusion in the National Register Clinton is addressed in a separate report.

  12. ENVIRONMENTAL BASELINE SURVEY REPORT FOR WEST BLACK OAK RIDGE, EAST BLACK OAK RIDGE, MCKINNEY RIDGE, WEST PINE RIDGE, AND PARCEL 21D IN THE VICINITY OF THE EAST TENNESSEE TECHNOLOGY PARK, OAK RIDGE, TENNESSEE

    Energy Technology Data Exchange (ETDEWEB)

    David A. King

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy’s (DOE’s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. The goal is to obtain all media no-further-investigation (NFI) determinations for the subject parcels considering existing soils. To augment the existing soils-only NFI determinations, samples of groundwater, surface water, soil, and sediment were collected to support all media NFI decisions. The only updates presented here are those that were made after the original issuance of the NFI documents. In the subject parcel where the soils NFI determination was not completed for approval (Parcel 21d), the full process has been performed to address the soils as well. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only NFI

  13. Summary review of the chemical characterization of liquid and sludge contained in the Old Hydrofracture tanks, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Francis, C.W.; Herbes, S.E.

    1997-02-01

    This report presents analytical data developed from samples collected from the five inactive tanks located at the Old Hydrofracture Facility (OHF) at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The samples were collected during December 1995 and January 1996. The purpose of the sampling and analysis project was (1) to determine whether the tank contents meet ORNL waste acceptance criteria, as specified in the Oak Ridge National Laboratory, Liquid Waste Treatment Systems, Waste Evaluation Criteria; (2) to determine various physical properties of the tank contents that would affect the design of a sludge mobilization system; and (3) to gather information to support a baseline risk assessment. The report focuses on the analytical results used to evaluate the tank contents with regard to nuclear criticality safety requirements and to regulatory waste characterization

  14. Characterization plan for the Oak Ridge National Laboratory Area-Wide Groundwater Program, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-08-01

    This characterization plan has been developed as part of the U.S. Department of Energy's (DOE's) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the characterization plan is intended to serve as a strategy document to guide subsequent GWOU remedial investigations. The plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It is important to note that the characterization plan for the ORNL GWOU is not a prototypical work plan. As such, remedial investigations will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This characterization plan outlines the overall strategy for the remedial investigations and defines tasks that are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow

  15. Environmental Survey Report for the ETTP: Environmental Management Waste Management Facility (EMWMF) Haul Road Corridor, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M.J.

    2005-12-20

    This report summarizes the results of environmental surveys conducted within the corridor of a temporary haul road (''Haul Road'') to be constructed from East Tennessee Technology Park (ETTP) to the Environmental Management Waste Management Facility (EMWMF) located just west of the Y-12 National Security Complex (Y-12). Environmental surveys were conducted by natural resource experts at Oak Ridge National Laboratory who routinely assess the significance of various project activities on the Oak Ridge Reservation (ORR). ORNL assistance to the Haul Road Project included environmental assessments necessary to determine the best route for minimizing impacts to sensitive resources such as wetlands or rare plants. Once the final route was chosen, environmental surveys were conducted within the corridor to evaluate the impacts to sensitive resources that could not be avoided. The final Haul Road route follows established roads and a power-line corridor to the extent possible (Fig. 1). Detailed explanation regarding the purpose of the Haul Road and the regulatory context associated with its construction is provided in at least two major documents and consequently is not presented here: (1) Explanation of Significant Differences for the Record of Decision for the Disposal of Oak Ridge Reservation Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Waste, Oak Ridge, Tennessee (January 2005, DOE/OR/01-2194&D2), and (2) Environmental Monitoring Plan for The ETTP to EMWMF Haul Road for the Disposal of Oak Ridge Reservation Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Waste, Oak Ridge, Tennessee (April 2005, BJC/OR-2152). The focus of this report is a description of the sensitive resources to be impacted by Haul Road construction. Following a short description of the methods used for the environmental surveys, results and observations are presented in the following subsections: (1) General description

  16. Fiscal Year 2007 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    RSI

    2008-03-01

    The purpose of this Phased Construction Completion Report (PCCR) is to present the fiscal year (FY) 2007 results of characterization activities and recommended remedial actions (RAs) for 11 exposure units (EUs) in Zone 2 (Z2-01, Z2-03, Z2-08, Z2-23, Z2-24, Z2-28, Z2-34, Z2-37, Z2-41, Z2-43, and Z2-44) at the East Tennessee Technology Park (ETTP), which is located in the northwest corner of the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee (Fig. 1). ETTP encompasses a total land area of approximately 5000 acres that has been subdivided into three zones--Zone 1 ({approx}1400 acres), Zone 2 ({approx}800 acres), and the Boundary Area ({approx}2800 acres). Zone 2, which encompasses the highly industrialized portion of ETTP shown in Fig. 1, consists of all formerly secured areas of the facility, including the large processing buildings and direct support facilities; experimental laboratories and chemical and materials handling facilities; materials storage and waste disposal facilities; secure document records libraries; and shipping and receiving warehouses. The Zone 2 Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2005) (Zone 2 ROD) specifies the future end use for Zone 2 acreage as uncontrolled industrial for the upper 10 ft of soils. Characterization activities in these areas were conducted in compliance with the Zone 2 ROD and the Dynamic Verification Strategy (DVS) and data quality objectives (DQOs) presented in the Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2007) (Zone 2 RDR/RAWP). The purpose of this PCCR is to address the following: (1) Document DVS characterization results for the accessible EUs in FY 2007; (2) Describe and document the risk evaluation for each EU, and determine if the EU met the Zone 2 ROD requirements

  17. Site descriptions of environmental restoration units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Goddard, P.L.; Legeay, A.J.; Pesce, D.S.; Stanley, A.M.

    1995-11-01

    This report, Site Descriptions of Environmental Restoration Units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee, is being prepared to assimilate information on sites included in the Environmental Restoration (ER) Program of the K-25 Site, one of three major installations on the Oak Ridge Reservation (ORR) built during World War III as part of the Manhattan Project. The information included in this report will be used to establish program priorities so that resources allotted to the K-25 ER Program can be best used to decrease any risk to humans or the environment, and to determine the sequence in which any remedial activities should be conducted. This document will be updated periodically in both paper and Internet versions. Units within this report are described in individual data sheets arranged alphanumerically. Each data sheet includes entries on project status, unit location, dimensions and capacity, dates operated, present function, lifecycle operation, waste characteristics, site status, media of concern, comments, and references. Each data sheet is accompanied by a photograph of the unit, and each unit is located on one of 13 area maps. These areas, along with the sub-area, unit, and sub-unit breakdowns within them, are outlined in Appendix A. Appendix B is a summary of information on remote aerial sensing and its applicability to the ER program

  18. Site descriptions of environmental restoration units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, P.L.; Legeay, A.J.; Pesce, D.S.; Stanley, A.M.

    1995-11-01

    This report, Site Descriptions of Environmental Restoration Units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee, is being prepared to assimilate information on sites included in the Environmental Restoration (ER) Program of the K-25 Site, one of three major installations on the Oak Ridge Reservation (ORR) built during World War III as part of the Manhattan Project. The information included in this report will be used to establish program priorities so that resources allotted to the K-25 ER Program can be best used to decrease any risk to humans or the environment, and to determine the sequence in which any remedial activities should be conducted. This document will be updated periodically in both paper and Internet versions. Units within this report are described in individual data sheets arranged alphanumerically. Each data sheet includes entries on project status, unit location, dimensions and capacity, dates operated, present function, lifecycle operation, waste characteristics, site status, media of concern, comments, and references. Each data sheet is accompanied by a photograph of the unit, and each unit is located on one of 13 area maps. These areas, along with the sub-area, unit, and sub-unit breakdowns within them, are outlined in Appendix A. Appendix B is a summary of information on remote aerial sensing and its applicability to the ER program.

  19. Remedial investigation report on Waste Area Group 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    International Nuclear Information System (INIS)

    1995-03-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives

  20. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    International Nuclear Information System (INIS)

    1995-09-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives.

  1. Project management plan for Waste Area Grouping 5 Old Hydrofracture Facility tanks contents removal at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-06-01

    On January 1, 1992, the US Department of Energy (DOE), the US Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC) signed a Federal Facility Agreement (FFA) concerning the Oak Ridge Reservation. The FFA requires that inactive liquid low-level (radioactive) waste (LLLW) tanks at Oak Ridge National Laboratory (ORNL) be remediated in accordance with requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This revision is to update the schedule and designation of responsibilities for the Old Hydrofracture Facility (OHF) tanks contents removal project. The scope of this project is to transfer inventory from the five inactive LLLW tanks at the OHF into the active LLLW system

  2. Best management practices plan for the Lower East Fork Poplar Creek remedial action project, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    The U.S. Department of Energy (DOE) has three major operating facilities on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee: the Oak Ridge Y-12 Plant, the K-25 Site, and the Oak Ridge National Laboratory (ORNL) managed by Lockheed Martin Environmental Research Corporation. All facilities are managed by Lockheed Martin Energy Systems, Incorporated (Energy Systems) for the DOE. The Y-12 Plant is adjacent to the city of Oak Ridge and is also upstream from Oak Ridge along East Fork Poplar Creek. The portion of the creek downstream from the Y-12 Plant is Lower East Fork Poplar Creek (LEFPC). This project will remove mercury-contaminated soils from the LEFPC floodplain, transport the soils to Industrial Landfill V (ILF-V), and restore any affected areas. This project contains areas that were designated in 1989 as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site. The site includes DOE property and portions of commercial, residential, agricultural, and miscellaneous areas within the city of Oak Ridge

  3. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Oak Ridge Tennessee

    International Nuclear Information System (INIS)

    Watson, David; Jardine, Philip; Gu, Baohua; Parker, Jack; Brandt, Craig; Holladay, Susan; Wolfe, Amy; Bogle, Mary Anna; Lowe, Kenneth; Hyder, Kirk

    2006-01-01

    The Field Research Center (FRC) in Oak Ridge (Fig. 1), Tennessee supports the U.S. Department of Energy's (DOE's) Environmental Remediation Sciences Program (ERSP) goal of understanding the complex physical, chemical, and biological properties of contaminated sites for new solutions to environmental remediation and long-term stewardship. In particular, the FRC provides the opportunity for researchers to conduct studies that promote the understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of existing remediation options, and the development of improved remediation strategies. It offers a series of contaminated sites around the former S-3 Waste Disposal Ponds and uncontaminated sites in which investigators and students conduct field research or collect samples for laboratory analysis. FRC research also spurs the development of new and improved characterization and monitoring tools. Site specific knowledge gained from research conducted at the FRC also provides the DOE-Oak Ridge Office of Environmental Management (EM) the critical scientific knowledge needed to make cleanup decisions for the S-3 Ponds and other sites on the Oak Ridge Reservation (ORR)

  4. Uranium enrichment conference on modified contract option, Oak Ridge, Tennessee, July 22, 1975

    International Nuclear Information System (INIS)

    1975-01-01

    The questions and answers presented in this document originated at an industry-wide meeting sponsored by the Energy Research and Development Administration held in Oak Ridge, Tennessee, on July 22, 1975, to discuss features and provisions of an ERDA plan to adjust contracts held by firms receiving uranium enriching services from ERDA. On June 19, 1975, ERDA announced terms of an expanded contract modification plan. The modified contract option broadened a previous plan proposed on January 15, 1975, by the former Atomic Energy Commission. The meeting in Oak Ridge on July 22, 1975, was designed to provide additional information on the expanded contract option and to offer ample opportunity for questions and answers prior to August 18, 1975, by which time enriching services customers who chose the one-time option had to so notify ERDA. The meeting included presentations by officials of ERDA Headquarters and ERDA's Oak Ridge Operations on the features of the contract adjustment offer, including provisions for contract termination in whole, separative work schedule adjustments, and uranium feed delivery schedule relaxation. (auth)

  5. Implementation plan for liquid low-level radioactive waste systems under the FFA for Fiscal years 1996 and 1997 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-10-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the Department of Energy Oak Ridge Operations Office (DOE-ORO), the U.S. Environmental Protection Agency (EPA)-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA was January 1, 1992. Section IX and Appendix F of the agreement impose design and operating requirements on the Oak Ridge National Laboratory (ORNL) liquid low-level radioactive waste (LLLW) tank systems and identify several plans, schedules, and assessments that must be submitted to EPA/TDEC for review of approval. The issue of ES/ER-17 ampersand D1 Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee in March 1992 transmitted to EPA/TDEC those plans and schedules that were required within 60 to 90 days of the FFA effective date. This document updates the plans, schedules, and strategy for achieving compliance with the FFA as presented in ES/ER-17 ampersand D I and summarizes the progress that has been made to date. This document supersedes all updates of ES/ER- 17 ampersand D 1. Chapter 1 describes the history and operation of the ORNL LLLW System and the objectives of the FFA. Chapters 2 through 5 contain the updated plans and schedules for meeting FFA requirements. This document will continue to be periodically reassessed and refined to reflect newly developed information and progress

  6. Implementation plan for liquid low-level radioactive waste systems under the FFA for Fiscal years 1996 and 1997 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the Department of Energy Oak Ridge Operations Office (DOE-ORO), the U.S. Environmental Protection Agency (EPA)-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA was January 1, 1992. Section IX and Appendix F of the agreement impose design and operating requirements on the Oak Ridge National Laboratory (ORNL) liquid low-level radioactive waste (LLLW) tank systems and identify several plans, schedules, and assessments that must be submitted to EPA/TDEC for review of approval. The issue of ES/ER-17&D1 Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee in March 1992 transmitted to EPA/TDEC those plans and schedules that were required within 60 to 90 days of the FFA effective date. This document updates the plans, schedules, and strategy for achieving compliance with the FFA as presented in ES/ER-17&D I and summarizes the progress that has been made to date. This document supersedes all updates of ES/ER- 17&D 1. Chapter 1 describes the history and operation of the ORNL LLLW System and the objectives of the FFA. Chapters 2 through 5 contain the updated plans and schedules for meeting FFA requirements. This document will continue to be periodically reassessed and refined to reflect newly developed information and progress.

  7. Monitoring well installation plan for the Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The installation and development of groundwater monitoring wells is a primary element of the Y-12 Plant Groundwater Protection Program (GWPP), which monitors groundwater quality and hydrologic conditions at the Oak Ridge Y-12 Plant. This document is a groundwater monitoring well installation and development plan for the US Department of Energy (DOE) Y-12 Plant located in Oak Ridge, Tennessee. This plan formalizes well installation and construction methods, well development methods, and core drilling methods that are currently implemented at the Y-12 Plant under the auspices of the GWPP. Every three years, this plan will undergo a review, during which revisions necessitated by changes in regulatory requirements or GWPP objectives may be made

  8. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-06-30

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), the Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.

  9. Fiscal Year 2008 Phased Construction Completion Report for EU Z2-33 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2008-09-11

    The Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2161&D2) (Zone 2 ROD) acknowledged that most of the 800 acres in Zone 2 were contaminated, but that sufficient data to confirm the levels of contamination were lacking. The Zone 2 ROD further specified that a sampling strategy for filling the data gaps would be developed. The Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2224&D3) (Zone 2 RDR/RAWP) defined the sampling strategy as the Dynamic Verification Strategy (DVS), generally following the approach used for characterization of the Zone 1 exposure units (EUs). The Zone 2 ROD divided the Zone 2 area into seven geographic areas and 44 EUs. To facilitate the data quality objectives (DQOs) of the DVS process, the Zone 2 RDR/RAWP regrouped the 44 EUs into 12 DQO scoping EU groups. These groups facilitated the DQO process by placing similar facilities and their support facilities together and allowing identification of data gaps. The EU groups were no longer pertinent after DQO planning was completed and characterization was conducted as areas became accessible. As the opportunity to complete characterization became available, the planned DVS program and remedial actions (RAs) were completed for EU Z2-33. Remedial action was also performed at two additional areas in adjacent EU Z2-42 because of their close proximity and similar nature to a small surface soil RA in EU Z2-33. Remedial actions for building slabs performed in EU Z2-33 during fiscal year (FY) 2007 were reported in the Fiscal Year 2007 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2723&D1). Recommended RAs for EU Z2-42 were described in the Fiscal Year 2006 Phased Construction

  10. Risk characterization data manual for Category D inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-04-01

    This manual reports the results of a risk characterization of Category D inactive liquid low-level radioactive waste (LLLW) at the Oak Ridge National Laboratory (ORNL). The risk characterization is required by the Federal Facility Agreement between the Department of Energy-Oak Ridge Operations Office, the Environmental Protection Agency-Region IV, and the Tennessee Department of Environment and Conservation. The intent of the risk characterization is to determine relative priorities for assessment and remediation. When the scores for all tanks had been weighted and summed, the tanks were ranked in descending order on the basis of their total scores. The highest possible score for a tank is 30. The descending order represents the recommended priorities for evaluation: the higher the score, the higher the priority for evaluation

  11. Characterization plan for the Oak Ridge National Laboratory Area-Wide Groundwater Program, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This characterization plan has been developed as part of the U.S. Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the characterization plan is intended to serve as a strategy document to guide subsequent GWOU remedial investigations. The plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It is important to note that the characterization plan for the ORNL GWOU is not a prototypical work plan. As such, remedial investigations will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This characterization plan outlines the overall strategy for the remedial investigations and defines tasks that are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  12. Inactive tanks remediation program strategy and plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-03-01

    This report presents plans and strategies for remediation of the liquid low-level waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. These plans and strategies will be carried out by the Environmental Restoration Program's Inactive LLLW Tank Program at ORNL. These tanks are defined as Category D tanks because they are existing tank systems without secondary containment that are removed from service. The approach to remediation of each tank or tank farm must be adapted in response to the specific circumstances of individual tank sites. The approach will be tailored to accommodate feedback on lessons learned from previous tank remediation activities and will not be a rigid step-by-step approach that must be conducted identically for every tank system. However, the approach will follow a multistep decision process. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the FFA requirements. The Inactive Tank Program will focus on the remediation of the tank residues (i.e., contents after tank has been emptied) and tank shell. This strategy is discussed in detail in this report

  13. Design demonstrations for category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or replacement tank systems with secondary containment; Category B -- Existing tank systems with secondary containment; Category C -- Existing tank systems without secondary containment; Category D -- Existing tank systems without secondary containment that are removed from service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented.

  14. Design demonstrations for category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-11-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or replacement tank systems with secondary containment; Category B -- Existing tank systems with secondary containment; Category C -- Existing tank systems without secondary containment; Category D -- Existing tank systems without secondary containment that are removed from service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented

  15. Surveillance Plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-12-01

    This Surveillance Plan has been developed as part of the Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental monitoring will be conducted in two phases: the baseline monitoring phase and the routine annual monitoring phase. The baseline monitoring phase will be conducted to establish the baseline contaminant release conditions at the Waste Area Grouping (WAG), to confirm the site-related chemicals of concern (COC), and to gather data to confirm the site hydrologic model The baseline monitoring phase is expected to begin in 1994 and continue for 12--18 months. The routine annual monitoring phase will consist of continued sampling and analyses of COC to determine off-WAG contaminant flux, to identify trends in releases, and to confirm the COC The routine annual monitoring phase will continue for ∼4 years after completion of the baseline monitoring phase. This Surveillance Plan presents the technical and quality assurance surveillance activities for the various WAG 6 environmental monitoring and data evaluation plans and implementing procedures

  16. 1996 structural integrity assessments for the Category C Liquid Low-Level Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-09-01

    This document provides a report of the efforts made to satisfy the Federal Facility Agreement for the structural integrity certification of ten Category C Liquid Low Level Waste (LLLW) tank systems on the Oak Ridge Reservation in Oak Ridge, Tennessee. Within this document, each Category C tank system is described including the associated pipeline segments evaluated as a part of those tank systems. A separate structural integrity assessment was conducted for each of the LLLW Tank Systems, four of which are located in Melton Valley, and six of which are located in Bethel Valley. The results of the structural integrity assessments are reported herein. The assessments are based on (1) a review of available tank design drawings, (2) a qualitative assessment of corrosion on the tank and pipelines, and primarily (3) leak testing program results

  17. 1996 structural integrity assessments for the Category C Liquid Low-Level Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document provides a report of the efforts made to satisfy the Federal Facility Agreement for the structural integrity certification of ten Category C Liquid Low Level Waste (LLLW) tank systems on the Oak Ridge Reservation in Oak Ridge, Tennessee. Within this document, each Category C tank system is described including the associated pipeline segments evaluated as a part of those tank systems. A separate structural integrity assessment was conducted for each of the LLLW Tank Systems, four of which are located in Melton Valley, and six of which are located in Bethel Valley. The results of the structural integrity assessments are reported herein. The assessments are based on (1) a review of available tank design drawings, (2) a qualitative assessment of corrosion on the tank and pipelines, and primarily (3) leak testing program results.

  18. Remedial investigation report on Bear Creek Valley Operable Unit 2 (rust spoil area, spoil area 1, and SY-200 yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2. Appendixes

    International Nuclear Information System (INIS)

    1994-08-01

    This document contains the appendices to the Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The appendices include Current and historical soil boring and groundwater monitoring well information, well construction logs, and field change orders; Analytical data; Human health risk assessment data; and Data quality

  19. Remedial investigation report on Bear Creek Valley Operable Unit 2 (rust spoil area, spoil area 1, and SY-200 yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2. Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This document contains the appendices to the Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The appendices include Current and historical soil boring and groundwater monitoring well information, well construction logs, and field change orders; Analytical data; Human health risk assessment data; and Data quality.

  20. Department of Energy Air Emissions Annual Report Oak Ridge Reservation, Oak Ridge, Tennessee 40 Code of Federal Regulations (CFR) 61, Subpart H Calendar Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Richard [Oak Ridge Y-12 Plant (Y-12), Oak Ridge, TN (United States)

    2017-06-30

    As defined in the preamble of the final rule, the entire DOE facility on the Oak Ridge Reservation (ORR) must meet the 10 mrem/yr ED standard.1 In other words, the combined ED from all radiological air emission sources from Y-12 National Security Complex (Y-12 Complex), Oak Ridge National Laboratory (ORNL), East Tennessee Technology Park (ETTP), Oak Ridge Institute for Science and Education (ORISE) and any other DOE operation on the reservation must meet the 10 mrem/yr standard. Compliance with the standard is demonstrated through emission sampling, monitoring, calculations and radiation dose modeling in accordance with approved EPA methodologies and procedures. DOE estimates the ED to many individuals or receptor points in the vicinity of ORR, but it is the dose to the maximally exposed individual (MEI) that determines compliance with the standard.

  1. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance.

  2. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance

  3. Modelling chestnut biogeography for American chestnut restoration

    DEFF Research Database (Denmark)

    Fei, Songlin; Liang, Liang; Paillet, Frederick L.

    2012-01-01

    Aim Chestnuts (Castanea spp.) are ecologically and economically important species. We studied the general biology, distribution and climatic limits of seven chestnut species from around the world. We provided climatic matching of Asiatic species to North America to assist the range-wide restoration...... American chestnut appears feasible if a sufficiently diverse array of Chinese chestnut germplasm is used as a source of blight resistance. Our study provided a between-continent climate matching approach to facilitate the range-wide species restoration, which can be readily applied in planning...... the restoration of other threatened or endangered species....

  4. Quality Assurance Project Plan for the Environmental Monitoring Program in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-12-01

    Waste Area Grouping (WAG) 6 is a hazardous and low-level radioactive waste disposal site at Oak Ridge National Laboratory (ORNL). Extensive site investigations have revealed contaminated surface water, sediments, groundwater, and soils. Based on the results of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) conducted from 1989--1991 and on recent interactions with the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), a decision was made to defer implementing source control remedial measures at the WAG. The information shows WAG 6 contributes < 2% of the total off-site contaminant risk released over White Oak Dam (WOD). The alternative selected to address hazards at WAG 6 involves maintenance of site access controls to prevent public exposure to on-site contaminants, continued monitoring of contaminant releases to determine if source control measures will be required in the future, and development of technologies to support final remediation of WAG 6. This Quality Assurance Project Plan (QAPjP) has been developed as part of the Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE/OR/01-1192 ampersand D1). Environmental monitoring will be conducted in two phases: the baseline monitoring phase and the routine annual monitoring phase. The baseline monitoring phase will be conducted to establish the baseline contaminant release conditions at the Waste Area Grouping (WAG), to confirm the site-related chemicals of concern (COC), and to gather data to confirm the site hydrologic model. The baseline monitoring phase is expected to begin in 1994 and continue for 12-18 months. The routine annual monitoring phase will consist of continued sampling and analyses of COC to determine off-WAG contaminant flux, to identify trends in releases, and to confirm the COC. The routine annual monitoring phase will continue for ∼4 years

  5. University of Tennessee and Oak Ridge environmental restoration education program

    International Nuclear Information System (INIS)

    Yalcintas, M.G.; Swindle, D.W. Jr.

    1992-01-01

    A joint program of the Oak Ridge National Laboratory (ORNL) and the University of Tennessee at Knoxville (UTK) has been initiated to provide education and research on environmental restoration and waste management. The program will provide opportunity for formal education and research for area businesses, while integrating their efforts in mixed-waste management with those of UTK and ORNL. Following successful results demonstrated at ORNL and UTK, the program will be integrated with other universities and research institutions in the country. During this presentation, the programs's objective, scope, and goals will be described, and details of the program structure will be explained. Also, it will be demonstrated how experience gained in environmental restoration technology transfer activities could be applied in an educational program, providing a focal point for technology transfer and information exchange. Expected accomplishments and industry benefits will also be discussed

  6. Explanation of Significant Differences for the Record of Decision for Interim Actions in Zone 1, East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2011-02-01

    Zone 1 is a 1400-acre area outside the fence of the main plant at The East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. The Record of Decision for Interim Actions in Zone, ETTP (Zone 1 Interim ROD) (DOE 2002) identifies the remedial actions for contaminated soil, buried waste, and subsurface infrastructure necessary to protect human health and to limit further contamination of groundwater. Since the Zone 1 Interim Record of Decision (ROD) was signed, new information has been obtained that requires the remedy to be modified as follows: (1) Change the end use in Contractor's Spoil Area (CSA) from unrestricted industrial to recreational; (2) Remove Exposure Units (EU5) ZI-50, 51, and 52 from the scope of the Zone I Interim ROD; (3) Change the end use of the duct bank corridor from unrestricted industrial to restricted industrial; and (4) Remove restriction for the disturbance of soils below 10 feet in Exposure Unit (EU) Z1-04. In accordance with 40 Code of Federal Regulations (CFR) 300.435, these scope modifications are a 'significant' change to the Zone 1 Interim ROD. In accordance with CERCLA Sect. 117 (c) and 40 CFR 300.435 (c)(2)(i), such a significant change is documented with an Explanation of Significant Differences (ESD). The purpose of this ESD is to make the changes listed above. This ESD is part of the Administrative Record file, and it, and other information supporting the selected remedy, can be found at the DOE Information Center, 475 Oak Ridge Turnpike, Oak Ridge, Tennessee 37830, from 8:00 a.m. to 5:00 p.m., Monday through Friday. The ORR is located in Roane and Anderson counties, within and adjacent to the corporate city limits of Oak Ridge, Tennessee. ETTP is located in Roane County near the northwest corner of the ORR. ETTP began operation during World War II as part of the Manhattan Project. The original mission of ETTP was to produce enriched uranium for use in atomic weapons. The plant produced enriched uranium from

  7. Results of 1995 characterization of Gunite and Associated Tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This technical memorandum (TM) documents the 1995 characterization of eight underground radioactive waste tanks at Oak Ridge National Laboratory (ORNL). These tanks belong to the Gunite and Associated Tanks (GAAT) operable unit, and the characterization is part of the ongoing GAAT remedial investigation/feasibility study (RI/FS) process. This TM reports both field observations and analytical results; analytical results are also available from the Oak Ridge Environmental Information System (OREIS) data base under the project name GAAT (PROJ-NAME = GAAT). This characterization effort (Phase II) was a follow-up to the {open_quotes}Phase I{close_quotes} sampling campaign reported in Results of Fall 1994 Sampling of Gunite and Associated Tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee, ORNL/ER/Sub/87-99053/74, June 1995. The information contained here should be used in conjunction with that in the previous TM. The sampling plan is documented in ORNL Inactive Waste Tanks Sampling and Analysis Plan, ORNL/RAP/LTR-88/24, dated April 1988, as amended by Addendum 1, Revision 2: ORNL Inactive Tanks Sampling and Analysis Plan, DOE/OR/02-1354&D2, dated February 1995. Field team instructions are found in ORNL RI/FS Project Field Work Guides 01-WG-20, Field Work Guide for Sampling of Gunite and Associated Tanks, and 01-WG-21, Field Work Guide for Tank Characterization System Operations at ORNL. The field effort was conducted under the programmatic and procedural umbrella of the ORNL RI/FS Program, and the analysis was in accordance with ORNL Chemical and Analytical Sciences Division (CASD) procedures. The characterization campaign is intended to provide data for criticality safety, engineering design, and waste management as they apply to the GAAT treatability study and remediation. The Department of Energy (DOE) Carlsbad office was interested in results of this sampling campaign and provided funding for certain additional sample collection and analysis.

  8. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  9. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy's (DOE's) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow

  10. Quality assurance plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-01-01

    This Quality Assurance Plan (QAP) is concerned with design and construction (Sect. 2) and characterization and monitoring (Sect. 3). The basis for Sect. 2 is the Quality Assurance Plan for the Design and Construction of Waste Area Grouping 6 Closure at Oak Ridge National Laboratory, Oak Ridge, Tennessee, and the basis for Sect. 3 is the Environmental Restoration Quality Program Plan. Combining the two areas into one plan gives a single, overall document that explains the requirements and from which the individual QAPs and quality assurance project plans can be written. The Waste Area Grouping (WAG) 6 QAP establishes the procedures and requirements to be implemented for control of quality-related activities for the WAG 6 project. Quality Assurance (QA) activities are subject to requirements detailed in the Martin Marietta Energy Systems, Inc. (Energy Systems), QA Program and the Environmental Restoration (ER) QA Program, as well as to other quality requirements. These activities may be performed by Energy Systems organizations, subcontractors to Energy Systems, and architect-engineer (A-E) under prime contract to the US Department of Energy (DOE), or a construction manager under prime contract to DOE. This plan specifies the overall Energy Systems quality requirements for the project. The WAG 6 QAP will be supplemented by subproject QAPs that will identify additional requirements pertaining to each subproject

  11. Routine environmental audit of the Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-09-01

    This report documents the results of the routine environmental audit of the Oak Ridge Y-12 Plant (Y-12 Plant), Anderson County, Tennessee. During this audit, the activities conducted by the audit team included reviews of internal documents and reports from previous audits and assessments; interviews with U.S. Department of Energy (DOE), State of Tennessee regulatory, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted August 22-September 2, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). DOE 5482.1 B, open-quotes Environment, Safety, and Health Appraisal Program,close quotes establishes the mission of EH-24 to provide comprehensive, independent oversight of DOE environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission by conducting systematic and periodic evaluations of DOE's environmental programs within line organizations, and by using supplemental activities that strengthen self-assessment and oversight functions within program, field, and contractor organizations. The audit evaluated the status of programs to ensure compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements

  12. Routine environmental audit of the K-25 Site, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report documents the results of the Routine Environmental Audit of the K-25 Site in Oak Ridge, Tennessee, conducted February 14 through February 25, 1994, by the US Department of Energy`s (DOE`s) Office of Environmental Audit (EH-24) located within the Office of Environment, Safety and Health (EH). The Routine Environmental Audit for the K-25 site was conducted as an environmental management assessment, supported through reviews of the Waste Management Program and the Decontamination and Decommissioning Program. The assessment was conducted jointly with, and built upon, the results provided by the ``DOE Oak Ridge Operations Office Environment, Safety, health and Quality Assurance Appraisal at the K-25 Site.`` DOE 5482.1B, ``Environment, Safety and Health Appraisal Program,`` established the mission of EH-24 to provide comprehensive, independent oversight of Department-wide environmental programs on behalf of the Secretary of Energy. The purpose of this assessment is to provide the Secretary of Energy and senior DOE managers with concise independent information as part of DOE`s continuing effort to improve environmental program performance. The ultimate goal of EH-24 is enhancement of environmental protection and the minimization of risk to public health and the environment. The routine environmental audit is one method by which EH-24 accomplishes its mission, utilizing systematic and periodic evaluations of the Department`s environmental programs within line organizations.

  13. Routine environmental audit of the K-25 Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-02-01

    This report documents the results of the Routine Environmental Audit of the K-25 Site in Oak Ridge, Tennessee, conducted February 14 through February 25, 1994, by the US Department of Energy's (DOE's) Office of Environmental Audit (EH-24) located within the Office of Environment, Safety and Health (EH). The Routine Environmental Audit for the K-25 site was conducted as an environmental management assessment, supported through reviews of the Waste Management Program and the Decontamination and Decommissioning Program. The assessment was conducted jointly with, and built upon, the results provided by the ''DOE Oak Ridge Operations Office Environment, Safety, health and Quality Assurance Appraisal at the K-25 Site.'' DOE 5482.1B, ''Environment, Safety and Health Appraisal Program,'' established the mission of EH-24 to provide comprehensive, independent oversight of Department-wide environmental programs on behalf of the Secretary of Energy. The purpose of this assessment is to provide the Secretary of Energy and senior DOE managers with concise independent information as part of DOE's continuing effort to improve environmental program performance. The ultimate goal of EH-24 is enhancement of environmental protection and the minimization of risk to public health and the environment. The routine environmental audit is one method by which EH-24 accomplishes its mission, utilizing systematic and periodic evaluations of the Department's environmental programs within line organizations

  14. System Description for the K-25/K-27 D and D Project Polyurethane Foam Delivery System, East Tennessee Technology Park, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Boris, G.

    2008-01-01

    The Foam Delivery System used in the decontamination and decommissioning (D and D) project for the K-25/K-27 Buildings at the East Tennessee Technology Park (ETTP) is comprised of a trailer-mounted Gusmer(reg s ign) H20/35 Pro-TEC Proportioning Unit and the associated equipment to convey electrical power, air, and foam component material to the unit. This high-pressure, plural-component polyurethane foam pouring system will be used to fill process gas and non-process equipment/piping (PGE/P) within the K-25/K-27 Buildings with polyurethane foam to immobilize contaminants prior to removal. The system creates foam by mixing isocyanate and polyol resin (Resin) component materials. Currently, the project plans to utilize up to six foaming units simultaneously during peak foaming activities. Also included in this system description are the foam component material storage containers that will be used for storage of the component material drums in a staging area outside of the K-25/K-27 Buildings. The Foam Delivery System and foam component material storage enclosures (i.e., Foaming Component Protective Enclosures) used to store polymeric methylene diphenyl diisocyanate (PMDI) component material are identified as Safety Significant (SS) Structures, Systems and Components (SSC) in the Documented Safety Analysis (DSA) for the project, Documented Safety Analysis for the K-25 and K-27 Facilities at the East Tennessee Technology Park, Oak Ridge, Tennessee, DSA-ET-K-25/K-27-0001

  15. Mathematics in energy related research at the Tennessee Valley Authority, at Union Carbide's Oak Ridge Facilities, and at University of Tennessee College of Engineering. Final report

    International Nuclear Information System (INIS)

    Barett, L.K.

    1979-05-01

    This report contains a description of the work performed under the Department of Energy Contract No. ER078-S-05-5944 to the University of Tennessee. The major objective of this contract was to survey and to classify a selection of the mathematics used in energy-related activities at the Tennessee Valley Authority (TVA), at Union Carbide's Oak Ridge Facilities (UCORF), and at the University of Tennessee College of Engineering (UTCE). Eighty-seven projects were identified at these organizations in which mathematics plays a significant modeling or problem-solving role. Uniform abstracts of these projects are included in this report, as well as abstracts of twenty-seven presentations by TVA and UCORF personnel on the topic of mathematics in energy research, at the 1978 Fall SIAM meeting. Classifications of these one hundred and fourteen abstracts are given in terms of the energy area or function involved and in terms of the mathematical disciplines used in the activity. Only a selection of the mathematical activity at the TVA, UCORF, and UTCE involved in energy research was obtained due to time and budget constraints. However, it was possible to make some important observations and recommendations based upon these sample data, and these are included in the summary of this report

  16. Routine environmental audit of the Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This report documents the results of the routine environmental audit of the Oak Ridge Y-12 Plant (Y-12 Plant), Anderson County, Tennessee. During this audit, the activities conducted by the audit team included reviews of internal documents and reports from previous audits and assessments; interviews with U.S. Department of Energy (DOE), State of Tennessee regulatory, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted August 22-September 2, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). DOE 5482.1 B, {open_quotes}Environment, Safety, and Health Appraisal Program,{close_quotes} establishes the mission of EH-24 to provide comprehensive, independent oversight of DOE environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission by conducting systematic and periodic evaluations of DOE`s environmental programs within line organizations, and by using supplemental activities that strengthen self-assessment and oversight functions within program, field, and contractor organizations. The audit evaluated the status of programs to ensure compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements.

  17. Contingency plan for the Old Hydrofracture Facility tanks sluicing project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-10-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), plans to begin a sluicing (flushing) and pumping project to remove the contents from five inactive, underground storage tanks at the Old Hydrofracture Facility (OHF) at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The tank contents will be transferred to the Melton Valley Storage Tanks, which are part of the active waste treatment system at ORNL. The purpose of the project is to minimize the risk of leaking the highly radioactive material to the environment. The five OHF tanks each contain a layer of sludge and a layer of supernatant. Based on a sampling project undertaken in 1995, the sludge in the tanks has been characterized as transuranic and mixed waste and the supernatants have been characterized as mixed waste. The combined radioactivity of the contents of the five tanks is approximately 29,500 Ci. This contingency plan is based on the preliminary design for the project and describes a series of potential accident/release scenarios for the project. It outlines Energy Systems' preliminary plans for prevention, detection, and mitigation. Prevention/detection methods range from using doubly contained pipelines to alarmed sensors and automatic pump cutoff systems. Plans for mitigation range from pumping leaked fluids from the built-in tank drainage systems and cleaning up spilled liquids to personnel evacuation

  18. Survey of protected vascular plants on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Awl, D.J.; Pounds, L.R.; Rosensteel, B.A.; King, A.L.; Hamlett, P.A.

    1996-06-01

    Vascular plant surveys were initiated during fiscal year 1992 by the environmentally sensitive areas program to determine the baseline condition of threatened and endangered (T&E) vascular plant species on the Oak Ridge Reservation (ORR). T&E species receive protection under federal and state regulations. In addition, the National Environmental Policy Act (NEPA) requires that federally-funded projects avoid or mitigate impacts to listed species. T&E plant species found on or near the U.S. Department of Energy`s (DOE) Oak Ridge Reservation (ORR) are identified. Twenty-eight species identified on the ORR are listed by the Tennessee Department of Environment and Conservation as either endangered, threatened, or of special concern. Four of these have been under review by the U.S. Fish and Wildlife Service for possible listing (listed in the formerly-used C2 candidate category). Additional species listed by the state occur near and may be present on the ORR. A range of habitats support the rare taxa on the ORR: river bluffs, sinkholes, calcareous barrens, wetlands, utility corridors, and forests. The list of T&E plant species and their locations on the ORR should be considered provisional because the entire ORR has not been surveyed, and state and federal status of all species continues to be updated. The purpose of this document is to present information on the listed T&E plant species currently known to occur on the ORR as well as listed species potentially occurring on the ORR based on geographic range and habitat availability. For the purpose of this report, {open_quotes}T&E species{close_quotes} include all federal- and state-listed species, including candidates for listing, and species of special concern. Consideration of T&E plant habitats is an important component of resource management and land-use planning; protection of rare species in their natural habitat is the best method of ensuring their long-term survival.

  19. Survey of protected vascular plants on the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Awl, D.J.; Pounds, L.R.; Rosensteel, B.A.; King, A.L.; Hamlett, P.A.

    1996-06-01

    Vascular plant surveys were initiated during fiscal year 1992 by the environmentally sensitive areas program to determine the baseline condition of threatened and endangered (T ampersand E) vascular plant species on the Oak Ridge Reservation (ORR). T ampersand E species receive protection under federal and state regulations. In addition, the National Environmental Policy Act (NEPA) requires that federally-funded projects avoid or mitigate impacts to listed species. T ampersand E plant species found on or near the U.S. Department of Energy's (DOE) Oak Ridge Reservation (ORR) are identified. Twenty-eight species identified on the ORR are listed by the Tennessee Department of Environment and Conservation as either endangered, threatened, or of special concern. Four of these have been under review by the U.S. Fish and Wildlife Service for possible listing (listed in the formerly-used C2 candidate category). Additional species listed by the state occur near and may be present on the ORR. A range of habitats support the rare taxa on the ORR: river bluffs, sinkholes, calcareous barrens, wetlands, utility corridors, and forests. The list of T ampersand E plant species and their locations on the ORR should be considered provisional because the entire ORR has not been surveyed, and state and federal status of all species continues to be updated. The purpose of this document is to present information on the listed T ampersand E plant species currently known to occur on the ORR as well as listed species potentially occurring on the ORR based on geographic range and habitat availability. For the purpose of this report, open-quotes T ampersand E speciesclose quotes include all federal- and state-listed species, including candidates for listing, and species of special concern. Consideration of T ampersand E plant habitats is an important component of resource management and land-use planning; protection of rare species in their natural habitat is the best method of ensuring their

  20. Environmental baseline survey report for West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge and parcel 21D in the vicinity of the East Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    King, David A. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy?s (DOE?s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only no-further-investigation (NFI) reports. Groundwater sampling was also conducted to support a Parcel 21d decision. Based on available data West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, and West Pine Ridge are not impacted by site operations and are not subject to actions per the Federal Facility Agreement (FFA). This determination is supported by visual inspections, records searches and interviews, groundwater conceptual modeling, approved NFI reports, analytical data, and risk analysis results. Parcel 21d data, however, demonstrate impacts from site

  1. Environmental baseline survey report for West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge and parcel 21D in the vicinity of the East Technology Park, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    King, David A.

    2012-01-01

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy's (DOE's) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only no-further-investigation (NFI) reports. Groundwater sampling was also conducted to support a Parcel 21d decision. Based on available data West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, and West Pine Ridge are not impacted by site operations and are not subject to actions per the Federal Facility Agreement (FFA). This determination is supported by visual inspections, records searches and interviews, groundwater conceptual modeling, approved NFI reports, analytical data, and risk analysis results. Parcel 21d data, however, demonstrate impacts from site

  2. Monitoring well inspection and maintenance plan Y-12 Plant, Oak Ridge, Tennessee (revised)

    International Nuclear Information System (INIS)

    1996-09-01

    Inspection and maintenance of groundwater monitoring wells is a primary element of the Oak Ridge Y-12 Plant Groundwater Protection Program (GWPP). This document is the revised groundwater monitoring well inspection and maintenance plan for the U.S. Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee. The plan provides a systematic program for: (1) inspecting the physical condition of monitoring wells at the Y-12 Plant and (2) identifying maintenance needs that will extend the life of each well and ensure that representative groundwater quality samples and hydrologic data are collected from the wells. Original documentation for the Y-12 Plant GWPP monitoring well inspection and maintenance program was provided in HSW, Inc. 1991a. The original revision of the plan specified that only a Monitoring Well Inspection/Maintenance Summary need be updated and reissued each year. Rapid growth of the monitoring well network and changing regulatory requirements have resulted in constant changes to the status of wells (active or inactive) listed on the Monitoring Well Inspection/Maintenance Summary. As a result, a new mechanism to track the status of monitoring wells has been developed and the plan revised to formalize the new business practices. These changes are detailed in Sections 2.4 and 2.5

  3. Comprehensive work plan and health and safety plan for the 7500 Area Contamination Site sampling at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Burman, S.N.; Landguth, D.C.; Uziel, M.S.; Hatmaker, T.L.; Tiner, P.F.

    1992-05-01

    As part of the Environmental Restoration Program sponsored by the US Department of Energy's Office of Environmental Restoration and Waste Management, this plan has been developed for the environmental sampling efforts at the 7500 Area Contamination Site, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. This plan was developed by the Measurement Applications and Development Group (MAD) of the Health and Safety Research Division of ORNL and will be implemented by ORNL/MAD. Major components of the plan include (1) a quality assurance project plan that describes the scope and objectives of ORNL/MAD activities at the 7500 Area Contamination Site, assigns responsibilities, and provides emergency information for contingencies that may arise during field operations; (2) sampling and analysis sections; (3) a site-specific health and safety section that describes general site hazards, hazards associated with specific tasks, personnel protection requirements, and mandatory safety procedures; (4) procedures and requirements for equipment decontamination and responsibilities for generated wastes, waste management, and contamination control; and (5) a discussion of form completion and reporting required to document activities at the 7500 Area Contamination Site

  4. Comprehensive work plan and health and safety plan for the 7500 Area Contamination Site sampling at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Landguth, D.C.; Uziel, M.S.; Hatmaker, T.L.; Tiner, P.F.

    1992-05-01

    As part of the Environmental Restoration Program sponsored by the US Department of Energy's Office of Environmental Restoration and Waste Management, this plan has been developed for the environmental sampling efforts at the 7500 Area Contamination Site, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. This plan was developed by the Measurement Applications and Development Group (MAD) of the Health and Safety Research Division of ORNL and will be implemented by ORNL/MAD. Major components of the plan include (1) a quality assurance project plan that describes the scope and objectives of ORNL/MAD activities at the 7500 Area Contamination Site, assigns responsibilities, and provides emergency information for contingencies that may arise during field operations; (2) sampling and analysis sections; (3) a site-specific health and safety section that describes general site hazards, hazards associated with specific tasks, personnel protection requirements, and mandatory safety procedures; (4) procedures and requirements for equipment decontamination and responsibilities for generated wastes, waste management, and contamination control; and (5) a discussion of form completion and reporting required to document activities at the 7500 Area Contamination Site.

  5. Comparison of the transcriptomes of American chestnut (Castanea dentata and Chinese chestnut (Castanea mollissima in response to the chestnut blight infection

    Directory of Open Access Journals (Sweden)

    Wheeler Nicholas

    2009-05-01

    Full Text Available Abstract Background1471-2229-9-51 American chestnut (Castanea dentata was devastated by an exotic pathogen in the beginning of the twentieth century. This chestnut blight is caused by Cryphonectria parasitica, a fungus that infects stem tissues and kills the trees by girdling them. Because of the great economic and ecological value of this species, significant efforts have been made over the century to combat this disease, but it wasn't until recently that a focused genomics approach was initiated. Prior to the Genomic Tool Development for the Fagaceae project, genomic resources available in public databases for this species were limited to a few hundred ESTs. To identify genes involved in resistance to C. parasitica, we have sequenced the transcriptome from fungal infected and healthy stem tissues collected from blight-sensitive American chestnut and blight-resistant Chinese chestnut (Castanea mollissima trees using ultra high throughput pyrosequencing. Results We produced over a million 454 reads, totaling over 250 million bp, from which we generated 40,039 and 28,890 unigenes in total from C. mollissima and C. dentata respectively. The functions of the unigenes, from GO annotation, cover a diverse set of molecular functions and biological processes, among which we identified a large number of genes associated with resistance to stresses and response to biotic stimuli. In silico expression analyses showed that many of the stress response unigenes were expressed more in canker tissues versus healthy stem tissues in both American and Chinese chestnut. Comparative analysis also identified genes belonging to different pathways of plant defense against biotic stresses that are differentially expressed in either American or Chinese chestnut canker tissues. Conclusion Our study resulted in the identification of a large set of cDNA unigenes from American chestnut and Chinese chestnut. The ESTs and unigenes from this study constitute an important

  6. Feasibility study for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-02-01

    In July 1990, the US Environmental Protection Agency (EPA) directed the Department of Energy Oak Ridge Operations to comply with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the remediation of the United Nuclear Corporation (UNC) Disposal Site located at the Y-12 Plant, Oak Ridge, Tennessee. EPA, Waste Management Branch, had approved a closure plan in December 1989 for the UNC Disposal Site. This feasibility study (FS) is a fully satisfy the National Oil and Hazardous Substances Contingency Plan (NCP) requirements for support of the selection of a remedial response for closure of the UNC Disposal Site. For two years the UNC Disposal Site accepted and disposed of waste from the decommissioning of a UNC uranium recovery facility in Wood River Junction, Rhode Island. Between June 1982 and November 1984, the UNC Disposal Site received 11,000 55-gal drums of sludge fixed in cement, 18,000 drums of contaminated soil, and 288 wooden boxes of contaminated building and process demolition materials. The FS assembles a wide range of remedial technologies so the most appropriate actions could be selected to remediate potential contamination to below MCLs and/or to below the maximum level of acceptable risk. Technologies were evaluated based on technical effectiveness, ease of implementation, and costs. Applicable technologies were then selected for alternative development. 33 refs., 9 figs., 27 tabs

  7. Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA.

    Science.gov (United States)

    Han, Fengxiang X; Su, Yi; Monts, David L; Waggoner, Charles A; Plodinec, M John

    2006-09-15

    A large amount of mercury has been discharged on the U.S. Department of Energy's Oak Ridge Site (Tennessee) as a part of the U.S. nuclear weapon program during the 1950s through the early 1960s. Increases in mercury concentration in fish and in lower East Fork Poplar Creek of Oak Ridge have been recently reported. This is an experimental study mimicking the initial stage of transformation and redistribution of mercury in soils, which are comparable to those of the Oak Ridge site. The objectives of this study were to investigate potential transformation, distribution, and plant uptake of mercury compounds in soils. Results show that the H(2)O(2)-oxidizable mercury fraction (organically bound mercury) was the major solid-phase fraction in soils freshly contaminated with soluble mercury compounds, while cinnabar fraction was the major solid phase fraction in soils contaminated with HgS. Langmuir relationships were found between mercury concentrations in plant shoots and in soil solid-phase components. Mercury in HgS-contaminated soils was to some extent phytoavailable to plants. Mercury transformation occurred from more labile fractions into more stable fractions, resulting in strong binding of mercury and decreasing its phytoavailability in soils. In addition, high mercury losses from soils contaminated with soluble mercury compounds were observed during a growing season through volatilization, accounting for 20-62% of the total initial mercury in soils.

  8. Implementation plan for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-06-01

    This document is an annual revision of the plans and schedules for implementing the Federal Facility Agreement (FFA) compliance program, originally submitted in ES/ER-17 ampersand D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the FFA commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chapters 2 through 5

  9. Site characterization summary report for Waste Area Grouping 10 Wells at the Old Hydrofracture Facility, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-03-01

    The Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is operated for the Department of Energy (DOE) by Martin Marietta Energy Systems (Energy Systems). As part of its DOE mission, ORNL has pioneered waste disposal technologies throughout the years of site operations since World War II. In the late 1950s, efforts were made to develop a permanent disposal alternative to the surface impoundments at ORNL at the request of the National Academy of Sciences. One such technology, the hydrofracture process, involved forming fractures in an underlying geologic host formation (a low-permeability shale) at depths of up to 1000 ft and subsequently injecting a grout slurry containing low-level liquid waste, cement, and other additives at an injection pressure of about 2000 psi. The objective of the effort was to develop a grout slurry that could be injected as a liquid but would solidify after injection, thereby immobilizing the radioisotopes contained in the low-level liquid waste. The scope of this site characterization was the access, sampling, logging, and evaluation of observation wells near the Old Hydrofracture Facility (OHF) in preparation for plugging, recompletion, or other final disposition of the wells

  10. Evaluation of sinkhole occurrence in the Valley and Ridge Province, East Tennessee: Phase 3

    International Nuclear Information System (INIS)

    Newton, J.G.; Tanner, J.M.

    1987-11-01

    Data from a reconnaissance-type inventory of sinkhole occurrence and from more detailed inventories in selected areas were used to determine regional density and frequency of sinkhole occurrence in the Valley and Ridge Province, Tennessee. The overall database consisted of 333 sinkholes of which 211, or 63 percent of the total, were classified as induced. Almost all induced sinkholes resulted from construction activities, such as grading, ditching, and impoundment of water. Extrapolation of data to provide estimates of regional sinkhole density necessitated adjustment of the reconnaissance inventory. Adjustment factors were calculated by comparing reconnaissance inventories from selected areas with those obtained from detailed inventories in the same areas. The number of sinkholes in the detailed inventories was 5 and 8.5 times greater than the number in the reconnaissance inventories

  11. Fiscal year 1995 well installation program summary Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    This report summarizes the well installation activities conducted during the federal fiscal year (FY) 1995 drilling program at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (including activities that were performed in late FY 1994, but not included in the FY 1994 Well Installation Program Summary Report). Synopses of monitoring well construction/well development data, well location rationale, geological/hydrological observations, quality assurance/quality control methods, and health and safety monitoring are included. Three groundwater monitoring wells and two gas monitoring probes were installed during the FY 1995 drilling program. One of the groundwater monitoring wells was installed at Landfill VI, the other two in the Boneyard/Burnyard area. All of the groundwater monitoring wells were constructed with stainless steel screens and casings. The two gas monitoring probes were installed at the Centralized Sanitary Landfill II and were of polyvinyl chloride (PVC) screened construction. Eleven well rehabilitation/redevelopment efforts were undertaken during FY 1995 at the Y-12 Plant. All new monitoring wells and wells targeted for redevelopment were developed by either a 2.0-in. diameter swab rig or by hand bailing until nonspecific parameters (pH and specific conductance) attained steady-state levels. Turbidity levels were lowered, if required, to the extent practicable by continued development beyond a steady-state level of pH and conductance

  12. Postconstruction report for the mercury tanks interim action at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Voskuil, T.L.

    1993-09-01

    Three underground concrete settling tanks (tanks 2101-U, 2104-U, and 2100-U) at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee, contained contaminated sludges contributing mercury to the Upper East Fork Poplar Creek (UEFPC). These tanks were cleaned out as an interim action under the Comprehensive Environmental Response, Compensation, and Liability Act as part of the Reduction of Mercury in Plant Effluent subproject. Cleaning out these tanks prevented the sludge that had settled in the bottom from resuspending and carrying mercury into UEFPC. Tanks 2104-U and 2100-U were returned to service and will continue to receive effluent from buildings 9201-4 and 9201-5. Tank 2101-U had been abandoned and its effluent redirected to Tank 2100-U during previous activities. This interim action permanently sealed Tank 2101-U from the storm sewer system. Upon removal of materials and completion of cleanup, inspections determined that the project`s cleanup criteria had been met. The structural integrity of the tanks was also inspected, and minor cracks identified in tanks 2101-U and 2104-U were repaired. This project is considered to have been completed successfully because it met its performance objectives as addressed in the Interim Record of Decision and the work plan: to remove the waste from the three storage tanks; to ensure that the tanks were cleaned to the levels specified; to return tanks 2100-U and 2104-U to service; to isolate Tank 2101-U permanently; and to manage the wastes in an appropriate fashion.

  13. Postconstruction report for the mercury tanks interim action at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Voskuil, T.L.

    1993-09-01

    Three underground concrete settling tanks (tanks 2101-U, 2104-U, and 2100-U) at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee, contained contaminated sludges contributing mercury to the Upper East Fork Poplar Creek (UEFPC). These tanks were cleaned out as an interim action under the Comprehensive Environmental Response, Compensation, and Liability Act as part of the Reduction of Mercury in Plant Effluent subproject. Cleaning out these tanks prevented the sludge that had settled in the bottom from resuspending and carrying mercury into UEFPC. Tanks 2104-U and 2100-U were returned to service and will continue to receive effluent from buildings 9201-4 and 9201-5. Tank 2101-U had been abandoned and its effluent redirected to Tank 2100-U during previous activities. This interim action permanently sealed Tank 2101-U from the storm sewer system. Upon removal of materials and completion of cleanup, inspections determined that the project's cleanup criteria had been met. The structural integrity of the tanks was also inspected, and minor cracks identified in tanks 2101-U and 2104-U were repaired. This project is considered to have been completed successfully because it met its performance objectives as addressed in the Interim Record of Decision and the work plan: to remove the waste from the three storage tanks; to ensure that the tanks were cleaned to the levels specified; to return tanks 2100-U and 2104-U to service; to isolate Tank 2101-U permanently; and to manage the wastes in an appropriate fashion

  14. Remedial design work plan for Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-10-01

    The Remedial Design Work Plan (RDWP) for Lower East Fork Poplar Creek (EFPC) Operable Unit (OU) in Oak Ridge, Tennessee. This remedial action fits into the overall Oak Ridge Reservation (ORR) cleanup strategy by addressing contaminated floodplain soil. The objective of this remedial action is to minimize the risk to human health and the environment from contaminated soil in the Lower EFPC floodplain pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Federal Facility Agreement (FFA) (1992). In accordance with the FFA, a remedial investigation (RI) (DOE 1994a) and a feasibility study (DOE 1994b) were conducted to assess contamination of the Lower EFPC and propose remediation alternatives. The remedial investigation determined that the principal contaminant is mercury, which originated from releases during Y-12 Plant operations, primarily between 1953 and 1963. The recommended alternative by the feasibility study was to excavate and dispose of floodplain soils contaminated with mercury above the remedial goal option. Following the remedial investigation/feasibility study, and also in accordance with the FFA, a proposed plan was prepared to more fully describe the proposed remedy.

  15. Surface radiological investigations at environmental research area 11, 137Cs- and 60Co-contaminated plots at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Uziel, M.S.; Tiner, P.F.; Williams, J.K.

    1993-02-01

    A surface radiological investigation at the 137 Cs- and 6O Co-contaminated forest area (Chestnut Ridge east and west plots) was conducted from January 1992 through August 1992. Results of the survey revealed numerous spots and small areas of surface contamination that followed the original placement of feeders used for 6O Co- and 137 Cs-labeled seeds in a 1969--1970 study. Surface gamma exposure rates reached 380 μR/h at the east plot and 400 μR/h at the west plot, but approximately one-half and one- third, respectively, of the identified anomalies did not exceed 39 μR/h. Results of soil sample analyses demonstrated that 137 Cs and 6O Co were responsible for the elevated radiation levels. Radionuclides were found below the surface at soil sample locations, in some cases at depths below 18 in. The same pattern of subsurface contamination may be present at other elevated surface spots at both plots. These survey results show that current radiological conditions at the site remain an environmental problem. Recommendations for corrective actions are included

  16. Bat Acoustic Survey Report for ORNL: Bat Species Distribution on the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, Kitty [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giffen, Neil R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Haines, Angelina [XCEL Engineering Inc., Oak Ridge, TN (United States); Guge, B. J. [Tennessee Technological Univ., Cookeville, TN (United States); Evans, James W. [Tennessee Wildlife Resources Agency (TWRA), Nashville, TN (United States)

    2015-10-01

    This report summarizes results of a three-year acoustic survey of bat species on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The survey was implemented through the Oak Ridge National Laboratory (ORNL) Natural Resources Management Program and included researchers from the ORNL Environmental Sciences Division and ORNL Facilities and Operations Directorate, Tennessee Wildlife Resources Agency’s ORR wildlife manager, a student from Tennessee Technological University, and a technician contracted through Excel Corp. One hundred and twenty-six sites were surveyed reservation-wide using Wildlife Acoustics SM2+ Acoustic Bat Detectors.

  17. Calendar year 1995 groundwater quality report for the upper east Fork Poplar Creek Hydrogeologic regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    International Nuclear Information System (INIS)

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater and surface water quality data obtained during the 1995 calendar year (CY) at several waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN3 89 009 0001. The sites addressed by this document are located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The East Fork Regime, which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant, encompasses the Y-12 Plant

  18. Interim remedial action work plan for the cesium plots at Waste Area Grouping 13 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-07-01

    This remedial action work plan (RAWP) is issued under the Federal Facility Agreement to provide a basic approach for implementing the interim remedial action (IRA) described in Interim Record of Decision for the Oak Ridge National Laboratory Waste Area Grouping 13 Cesium Plots, Oak Ridge, Tennessee. This RAWP summarizes the interim record of decision (IROD) requirements and establishes the strategy for the implementation of the field activities. As documented in the IROD document, the primary goal of this action is to reduce the risk to human health and the environment resulting from current elevated levels of gamma radiation on the site and at areas accessible to the public adjacent to the site. The major steps of this IRA are to: Excavate cesium-contaminated soil; place the excavated soils in containers and transport to Waste Area Grouping (WAG) 6; and backfill excavated plots with clean fill materials. The actual remedial action will be performed by Department of Energy prime contractor, MK-Ferguson of Oak Ridge Company. Remediation of the cesium plots will require approximately 60 days to complete. During this time, all activities will be performed according to this RAWP and the applicable specifications, plans, and procedures referred to in this document. The IRA on WAG 13 will prevent a known source of cesium-contaminated soil from producing elevated levels of gamma radiation in areas accessible to the public, eliminate sources of contamination to the environment, and reduce the risks associated with surveillance and maintenance of the WAG 13 site

  19. Socioeconomic Perspectives on Household Chestnut Fruit Utilization and Chestnut Blight Prevention Efforts in Turkey

    Directory of Open Access Journals (Sweden)

    Taner Okan

    2017-05-01

    Full Text Available Exotic pathogens, within the center of genetic diversity for the species, compromise European chestnut populations in Turkey. In Turkey today, the species is of tremendous economic, ecological and cultural importance. At this time of severe exotic pathogenic pressure on a highly-valued forest species, we ask, how does awareness of diseases and treatments as well as value for chestnut trees affect the efforts of households to manage pests and diseases of chestnut trees in Turkey? We conducted 96 surveys in 34 villages in 10 provinces across Turkey to investigate awareness of diseases and other challenges to the chestnut population, chestnut harvesting habits, family value for chestnuts and efforts to mitigate pest and disease pressure. We analyze our results using cluster and regression analysis. Our results show that based on analysis of all observed characteristics, our research sites in Turkey break cleanly into groups based on production level. Further, results demonstrate significant correlation between amount of chestnut-derived income and awareness of pests and diseases as well as the likelihood of households enacting disease mitigation measures. These results also demonstrate correlation between observed awareness of diseases and pests and the likelihood of households enacting disease mitigation measures.

  20. Calendar Year 1999 Groundwater Monitoring Report for the Groundwater Protection Program, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    2000-01-01

    This report contains the calendar year (CY) 1999 groundwater and surface water quality monitoring data that were obtained at the US Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee, in accordance with the applicable requirements of DOE Order 5400.1. Groundwater and surface water quality monitoring for the purposes of DOE Order 5400.1, as defined in the Environmental Monitoring Plan for the Oak Ridge Reservation (DOE 1996), includes site surveillance monitoring and exit pathway/perimeter monitoring. Site surveillance monitoring is intended to provide data regarding groundwater/surface water quality in areas that are, or could be, affected by operations at the Y-12 Plant. Exit pathway/perimeter monitoring is intended to provide data regarding groundwater and surface water quality where contaminants from the Y-12 Plant are most likely to migrate beyond the boundaries of the DOE Oak Ridge Reservation (ORR)

  1. Field grouting summary report on the WAG seeps 4 and 6 removal action project, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Text

    International Nuclear Information System (INIS)

    1997-05-01

    During the summer of 1996, a unique multi-phase, multi-stage, low-pressure permeation grouting pilot program was performed inside portions of four unlined waste disposal trenches at Waste Area Grouping (WAG) 4 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The project was deemed a non-time-critical removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); however, due to a history of heavy precipitation in the fall, the schedule was fast-tracked to meet an October 31, 1996 grouting completion date. The technical objective of the removal action was to reduce the off-site transport of Strontium 90 ( 90 Sr) by grouting portions of four waste disposal trenches believed to be responsible for over 70% of the 90 Sr leaving the site. A goal of the grouting operation was to reduce the average in situ hydraulic conductivity of the grouted waste materials to a value equal to or less than 1 x 10 -6 cm/sec. This target hydraulic conductivity value was established to be at least two orders of magnitude lower than that of the surrounding natural ground

  2. Monitoring well plugging and abandonment plan, Y-12 Plant, Oak Ridge, Tennessee (revised)

    International Nuclear Information System (INIS)

    1997-05-01

    Plugging and abandonment (P ampersand A) of defunct groundwater monitoring wells is a primary element of the Oak Ridge Y-12 Plant Groundwater Protection Program (GWPP) (AJA Technical Services, Inc. 1996). This document is the revised groundwater monitoring well P ampersand A plan for the U.S. Department of Energy (DOE) Y-12 Plant located in Oak Ridge, Tennessee. This plan describes the systematic approach employed by Y-12 Plant GWPP to identify wells that require P ampersand A, the technical methods employed to perform P ampersand A activities, and administrative requirements. Original documentation for Y-12 Plant GWPP groundwater monitoring well P ampersand A was provided in HSW, Inc. (1991). The original revision of the plan specified that a comprehensive monitoring well P ampersand A was provided in HSW, Inc. (1991). The original revision of the plan specified that a comprehensive monitoring well P ampersand A schedule be maintained. Wells are added to this list by issuance of both a P ampersand A request and a P ampersand A addendum to the schedule. The current Updated Subsurface Data Base includes a single mechanism to track the status of monitoring wells. In addition, rapid growth of the groundwater monitoring network and new regulatory requirements have resulted in constant changes to the status of wells. As a result, a streamlined mechanism to identify and track monitoring wells scheduled for P ampersand A has been developed and the plan revised to formalize the new business practices

  3. Investigation of shallow groundwater contamination near East Fork Poplar Creek, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Carmichael, J.K.

    1989-01-01

    Alluvial soils of the flood plain of East Fork Poplar Creek in Oak Ridge, Tennessee, are contaminated with mercury and other metals, organic compounds, and radionuclides originating from the Y-12 Plant, a nuclear-processing facility located within the US Department of Energy's Oak Ridge Reservation. Observation wells were installed in the shallow aquifer of the flood plain, and water quality samples were collected to determine if contaminants are present in the shallow groundwater. Groundwater in the shallow aquifer occurs under water-table conditions. Recharge is primarily from precipitation and discharge is to East Fork Poplar Creek. Groundwater levels fluctuate seasonally in response to variations in recharge and evapotranspiration. During extremely dry periods, the water table drops below the base of the shallow aquifer in some flood-plain areas. Contaminants were found in water samples from several of the wells in concentrations which equaled or exceeded drinking-water standards established by the US Environmental Protection Agency are antimony, chromium, lead, mercury, selenium, phenols, and strontium-90. Total and dissolved uranium concentrations exceeded the analytical detection limit in nearly 70% of the wells in the flood plain. The results of water quality determinations demonstrate that elevated concentrations of most trace metals (and possibly organic compounds and radionuclides) were caused by contaminated sediments in the samples. The presence of contaminated sediment in samples is suspected to be the result of borehole contamination during well installation. 21 refs., 20 figs., 6 tabs

  4. Comprehensive work plan and health and safety plan for the 7500 Area Contamination Site sampling at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Landguth, D.C.; Uziel, M.S.; Hatmaker, T.L.; Tiner, P.F.

    1992-05-01

    As part of the Environmental Restoration Program sponsored by the US Department of Energy`s Office of Environmental Restoration and Waste Management, this plan has been developed for the environmental sampling efforts at the 7500 Area Contamination Site, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. This plan was developed by the Measurement Applications and Development Group (MAD) of the Health and Safety Research Division of ORNL and will be implemented by ORNL/MAD. Major components of the plan include (1) a quality assurance project plan that describes the scope and objectives of ORNL/MAD activities at the 7500 Area Contamination Site, assigns responsibilities, and provides emergency information for contingencies that may arise during field operations; (2) sampling and analysis sections; (3) a site-specific health and safety section that describes general site hazards, hazards associated with specific tasks, personnel protection requirements, and mandatory safety procedures; (4) procedures and requirements for equipment decontamination and responsibilities for generated wastes, waste management, and contamination control; and (5) a discussion of form completion and reporting required to document activities at the 7500 Area Contamination Site.

  5. Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-06-01

    The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the Department of Energy Oak Ridge Field Office (DOE-OR), the US Environmental Protection Agency (EPA)-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA was January 1, 1992. Section 9 and Appendix F of the agreement impose design and operating requirements on the Oak Ridge National Laboratory (ORNL) liquid low-level radioactive waste (LLLW) tank systems and identify several plans, schedules, and assessments that must be submitted to EPA/TDEC for review or approval. The initial issue of this document in March 1992 transmitted to EPA/TDEC those plans and schedules that were required within 60 to 90 days of the FFA effective date. The current revision of this document updates the plans, schedules, and strategy for achieving compliance with the FFA, and it summarizes the progress that has been made over the past year. Chapter 1 describes the history and operation of the ORNL LLLW System, the objectives of the FFA, the organization that has been established to bring the system into compliance, and the plans for achieving compliance. Chapters 2 through 7 of this report contain the updated plans and schedules for meeting FFA requirements. This document will continue to be periodically reassessed and refined to reflect newly developed information and progress

  6. Preliminary engineering report waste area grouping 5, Old Hydrofracture Facility Tanks content removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-06-01

    The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facilities Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the U.S. Department of Energy (DOE) Oak Ridge Operations Office, the U.S. Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA is January 1, 1992. One objective of the FFA is to ensure that liquid low-level waste (LLLW) tanks that are removed from service are evaluated and remediated through the CERCLA process. Five inactive LLLW tanks, designated T-1, T-2, T-3, T-4, and T-9, located at the Old Hydrofracture (OHF) Facility in the Melton Valley area of Oak Ridge National Laboratory (ORNL) have been evaluated and are now entering the remediation phase. As a precursor to final remediation, this project will remove the current liquid and sludge contents of each of the five tanks (System Requirements Document, Appendix A). It was concluded in the Engineering Evaluation/Cost Analysis [EE/CA] for the Old Hydrofracture Facility Tanks (DOE 1996) that sluicing and pumping the contaminated liquid and sludge from the five OHF tanks was the preferred removal action. Evaluation indicated that this alternative meets the removal action objective and can be effective, implementable, and cost-effective. Sluicing and removing the tank contents was selected because this action uses (1) applicable experience, (2) the latest information about technologies and techniques for removing the wastes from the tanks, and (3) activities that are currently acceptable for storage of transuranic (TRU) mixed waste

  7. Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek operable unit, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-04-01

    On December 21, 1989, the EPA placed the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) on the National Priorities List (NPL). On January 1, 1992, a Federal Facilities Agreement (FFA) between the DOE Field Office in Oak Ridge (DOE-OR), EPA Region IV, and the Tennessee Department of Environment and Conservation (TDEC) went into effect. This FFA establishes the procedural framework and schedule by which DOE-OR will develop, coordinate, implement and monitor environmental restoration activities on the ORR in accordance with applicable federal and state environmental regulations. The DOE-OR Environmental Restoration Program for the ORR addresses the remediation of areas both within and outside the ORR boundaries. This sampling and analysis plan focuses on confirming the cleanup of the stretch of EFPC flowing from Lake Reality at the Y-12 Plant through the City of Oak Ridge, to Poplar Creek on the ORR and its associated floodplain. Both EFPC and its floodplain have been contaminated by releases from the Y-12 Plant since the mid-1950s. Because the EFPC site-designated as an ORR operable unit (OU) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) is included on the NPL, its remediation must follow the specific procedures mandated by CERCLA, as amended by the Superfund Amendments and Reauthorization Act in 1986

  8. Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek operable unit, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    On December 21, 1989, the EPA placed the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) on the National Priorities List (NPL). On January 1, 1992, a Federal Facilities Agreement (FFA) between the DOE Field Office in Oak Ridge (DOE-OR), EPA Region IV, and the Tennessee Department of Environment and Conservation (TDEC) went into effect. This FFA establishes the procedural framework and schedule by which DOE-OR will develop, coordinate, implement and monitor environmental restoration activities on the ORR in accordance with applicable federal and state environmental regulations. The DOE-OR Environmental Restoration Program for the ORR addresses the remediation of areas both within and outside the ORR boundaries. This sampling and analysis plan focuses on confirming the cleanup of the stretch of EFPC flowing from Lake Reality at the Y-12 Plant through the City of Oak Ridge, to Poplar Creek on the ORR and its associated floodplain. Both EFPC and its floodplain have been contaminated by releases from the Y-12 Plant since the mid-1950s. Because the EFPC site-designated as an ORR operable unit (OU) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) is included on the NPL, its remediation must follow the specific procedures mandated by CERCLA, as amended by the Superfund Amendments and Reauthorization Act in 1986.

  9. Gaining, losing, and dry stream reaches at Bear Creek Valley, Oak Ridge, Tennessee, March and September 1994

    International Nuclear Information System (INIS)

    Robinson, J.A.; Mitchell, R.L. III.

    1996-01-01

    A study was conducted, to delineate stream reaches that were gaining flow, losing flow, or that were dry in the upper reaches of Bear Creek Valley near the Y-12 Plant in Oak Ridge, Tennessee. The study included a review of maps and discharge data from a seepage investigation conducted at Bear Creek Valley; preparation of tables showing site identification and discharge and stream reaches that were gaining flow, losing flow, or that were dry; and preparation of maps showing measurement site locations and discharge measurements, and gaining, losing, and dry stream reaches. This report will aid in developing a better understanding of ground-water and surface-water interactions in the upper reaches of Bear Creek

  10. Survey Report For The Characterization Of The Five Tanks Located Near The Old Salvage Yard At The Y-12 National Security Complex, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Rollow, Kathy

    2012-01-01

    This summary report presents analytical results, radiological survey data, and other data/information for disposition planning of the five tanks located west of the Old Salvage Yard (OSY) at the Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. Field personnel from Oak Ridge Associated Universities (ORAU) and URS-CH2M Oak Ridge LLC completed data collection in May 2012 per the project-specific plan (PSP) (ORAU 2012). Deviations from the PSP are addressed in the body of this report. Characterization activities included three data collection modes: visual inspection, radiological survey, and volumetric sampling/analysis. This report includes the final validated dataset and updates associated with the Tank 2 residues originally thought to be a biological bloom (e.g., slime mold) but ultimately identified as iron sulfate crystals

  11. Dry well conductivity monitoring report for Tanks W-8, W-9, and W-10, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-10-01

    A treatability study and waste removal program are being implemented for the Gunite ad Associated Tanks Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This report documents the instrumentation and monitoring efforts to establish baseline conductivity conditions. The simulated liquid release (SLR) testing reported here demonstrates the effectiveness of the Conductivity-monitoring method (CMM) as a liquid-release detection method for consolidation Tanks W-8 and W-9 and Tank W-10 in the South Tank Farm (STF). The results show the remarkable sensitivity of the CMM to even very small simulated releases from the tank. The SLR testing for DW-8, DW-9 and DW-10 show that the dry well conductivity monitoring will be effective in detecting potential releases from the tanks during waste removal operations. The data in this report also make clear statements about the inferred integrity of the tanks, tank pads, and drain system: (1) the data substantiate earlier work and show that Tanks W-8, W-9, and W-10 are not leaking; (2) the data show that the pads under Tanks W-8, W-9, and W-10 are integral and connected to the dry wells; (3) the STF drain system appears to be functioning properly. This report presents these results and describes the release monitoring plan for the consolidation tanks and during waste removal operations at all of the tanks in the STF

  12. Environmental monitoring plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    This document presents an Environmental Monitoring Plan (EMP) for Waste Area Grouping (WAG 6) at Oak Ridge National Laboratory (ORNL). This document updates a draft monitoring plan developed in 1993. The draft plan was never finalized awaiting resolution of the mechanisms for addressing RCRA concerns at a site where the CERCLA process resulted in a decision to defer action, i.e., postpone closure indefinitely. Over the past two years the Tennessee Department of Environment and Conservation (TDEC), US Department of Energy (DOE), and US Environmental Protection Agency (EPA) Region IV, have agreed that RCRA authority at the site will be maintained through a post- closure permit; ''closure'' in this case referring to deferred action. Both a Revised Closure Plan (DOE 1995a) and a Post-Closure Permit Application (DOE 1995b) have been developed to document this agreement; relevant portions of the EMP will be included in the RCRA Post-Closure Permit Application. As the RCRA issues were being negotiated, DOE initiated monitoring at WAG 6. The purpose of the monitoring activities was to (1) continue to comply with RCRA groundwater quality assessment requirements, (2) install new monitoring equipment, and (3) establish the baseline conditions at WAG 6 against which changes in contaminant releases could be measured. Baseline monitoring is scheduled to end September 30, 1995. Activities that have taken place over the past two years are summarized in this document

  13. Phase I remedial investigation report of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Miller, D.E.

    1995-07-01

    This report presents the activities and findings of the first phase of a three-phase remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, and updates the scope and strategy for WAG-2-related efforts. WAG 2 contains White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake, White Oak Creek Embayment on the Clinch River, and the associated floodplain and subsurface environment. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This report includes field activities completed through October 1992. The remediation of WAG 2 is scheduled to follow the cessation of contaminant input from hydrologically upgradient WAGs. While upgradient areas are being remediated, the strategy for WAG 2 is to conduct a long-term monitoring and investigation program that takes full advantage of WAG 2's role as an integrator of contaminant fluxes from other ORNL WAGs and focuses on four key goals: (1) Implement, in concert with other programs, long-term, multimedia environmental monitoring and tracking of contaminants leaving other WAGs, entering WAG 2, and being transported off-site. (2) Provide a conceptual framework to integrate and develop information at the watershed-level for pathways and processes that are key to contaminant movement, and so support remedial efforts at ORNL. (3) Provide periodic updates of estimates of potential risk (both human health and ecological) associated with contaminants accumulating in and moving through WAG 2 to off-site areas. (4) Support the ORNL Environmental Restoration Program efforts to prioritize, remediate, and verify remedial effectiveness for contaminated sites at ORNL, through long-term monitoring and continually updated risk assessments

  14. GAAT dry well conductivity monitoring report, July 1997 through January 1998, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-01-01

    A waste removal program is being implemented for the Gunite and Associated Tanks (GAAT) Operable Unit at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. The waste is being removed by means of remotely operated, in-tank, confined sluicing equipment. The waste removal operations in Tanks W-3 and W-4 in the North Tank Farm (NTF) have been completed and the equipment is being moved to the South Tank Farm (STF), where it will be used to remove the sludges from the six STF tanks (W-5, W-6, W-7, W-8, W-9, and W-10) beginning later this year. During sluicing operations the dry wells adjacent to each of the tanks are instrumented so that potential releases can be detected by means external to the tank. The method of detection is by monitoring the electrical conductivity of the water in the dry well associated with each tank. This report documents the dry well conductivity monitoring data for the period from July 1997 through January 1998. The dry wells monitored during this period include DW-3, DW-4, DW-8, DW-9, and DW-10. The conductivity of the water passing through Pump Station 1 (PS 1) was also monitored. The principal activities that occurred during this period were the sluicing of Tanks W-3 and W-4 in the NTF, transfer of tank liquids from the NTF to the STF, and the installation of new risers, tank dome leveling, and emplacement of stabilized base backfill in the STF. Presented in this report are the dry well conductivity, rainfall, tank level, and STF construction information that is relevant to the analysis and interpretation of the monitoring data for the reporting period. A thorough analysis of the monitoring results for the period indicates that no releases have occurred from the gunite tanks being monitored

  15. Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956)- An Assessment of Quantities released, Off-Site Radiation Doses, and Potential Excess Risks of Thyroid Cancer, Volume 1

    International Nuclear Information System (INIS)

    Apostoaei, A.I.; Burns, R.E.; Hoffman, F.O.; Ijaz, T.; Lewis, C.J.; Nair, S.K.; Widner, T.E.

    1999-01-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel appointed by Tennessee's Commissioner of Health. One of the major contaminants studied in the dose reconstruction was radioactive iodine, which was released to the air by X-10 (now called Oak Ridge National Laboratory) as it processed spent nuclear reactor fuel from 1944 through 1956. The process recovered radioactive lanthanum for use in weapons development. Iodine concentrates in the thyroid gland so health concerns include various diseases of the thyroid, such as thyroid cancer. The large report, ''Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956) - An Assessment of Quantities Released, Off-site Radiation Doses, and Potential Excess Risks of Thyroid Cancer,'' is in two volumes. Volume 1 is the main body of the report, and Volume 1A, which has the same title, consists of 22 supporting appendices. Together, these reports serve the following purposes: (1) describe the methodologies used to estimate the amount of iodine-131 (I-131) released; (2) evaluate I-131's pathway from air to vegetation to food to humans; (3) estimate doses received by human thyroids; (4) estimate excess risk of acquiring a thyroid cancer during ones lifetime; and (5) provide equations, examples of historical documents used, and tables of calculated values. Results indicate that females born in 1952 who consumed milk from a goat pastured a few miles east of X-10 received the highest doses from I-131 and would have had the highest risks of contracting thyroid cancer. Doses from cow's milk are considerably less . Detailed

  16. Results of a seepage investigation at Bear Creek Valley, Oak Ridge, Tennessee, January through September 1994

    International Nuclear Information System (INIS)

    Robinson, J.A.; Johnson, G.C.

    1996-01-01

    A seepage investigation was conducted of 4,600 acres of Bear Creek Valley southwest of the Y-12 Plant, Oak Ridge, Tennessee, for the period of January through September 1994. The data was collected to help the Y-12 Environmental Restoration Program develop a better understanding of ground-water and surface-water interactions, recharge and discharge relations, and ground-water flow patterns. The project was divided into three phases: a reconnaissance and mapping of seeps, springs, and stream-measurement sites; a high base flow seepage investigation; and a low base flow seepage investigation. This report describes the results of the investigation. It includes a map showing measurement site locations and tables that list the coordinates for each site and measurements of discharge, pH, specific conductance, temperature, and dissolved oxygen

  17. The subsurface hydrology around Building 9201-2: Results of the July 1994 water level recovery test, Oak Ridge Y-12 plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-06-01

    A water level recovery test was conducted at Building 9201-2 at the Oak Ridge Y-12 Plant in Oak Ridge, Tennessee, from 12:45 p.m. on July 29 until 8:22 a.m. on July 31, 1994. The purpose of the test was to improve the general understanding of the subsurface hydrology around the building. The information is needed to determine the minimum pumping capacity necessary to maintain safe water levels in the basement of the building and to assist in designing systems for treating mercury-bearing waters in the basement. The test was initiated by shutting off the three main sump pumps in Building 9201-2 (i.e., O-12, E-13, and E-22) for 43.5 hr and allowing the water in the basement to approach a static level. The pumps in sumps F-3 and P-6 were also not operating during the test. During the test, water levels were monitored in 5 sumps (P-6, O-12, F-3, E-13, and E-22); a pit near sump K-22; 4 monitoring wells or piezometers in the basement near the O-12 sump, and 16 wells outside of the building. Sump K-22 was dry during the entire test

  18. GAINING CONSENSUS: THE STORY OF ''OAK RIDGE TENNESSEE - A CITIZEN'S GUIDE TO THE ENVIRONMENT''

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Robert; Freeman, Jenny; Gawarecki, Susan L; Hardy, Parker; Kopp, Steve; Mulvenon, Norman A; Pardue, William; Sarno, Doug

    2003-02-27

    In 2001, a diverse group of citizens ranging from conservationists to industrial developers joined forces to produce a factual description of Oak Ridge's environment and the issues associated with contamination on the U.S. Department of Energy (DOE) reservation. This consensus effort was a result of common values not generally seen in this spectrum of philosophies, and of shared concerns about rising property taxes, declining city services, fleeing retail establishments, and diminishing real estate values. These problems are attributed to waning local DOE budgets coupled with Oak Ridge's national reputation of being contaminated and unsafe. This undeserved reputation harms the city's ability to attract new industry to replace declining federal employment and to induce families to live in the community. Representatives from a spectrum of conservation, environmental, economic development, local government, and civic organizations were invited to meet regarding how to best explain the complex environmental story of Oak Ridge and the DOE reservation. This large group decided to publish a straightforward explanation of the environmental quality of the city and its relationship to the DOE reservation in easy-to-understand language. The result was Oak Ridge, Tennessee--A Citizen's Guide to the Environment, a 28-page glossy booklet, distributed through the Chamber of Commerce and other organizations. The Oak Ridger ensured wide distribution in the community by publishing it as an insert in the daily paper. The material is also available on several web sites. A trifold brochure summarizing and promoting the larger document was also produced for wider distribution. The integrity of the Citizen's Guide was ensured by having a six-member editorial team manage writing and review of the document. There was no direct involvement by the DOE and its contractor. Knowledgeable citizen writers from throughout the community contributed technical and descriptive

  19. Soil sampling and analysis plan for the Bear Creek Valley floodplain at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    This Sampling and Analysis Plan (SAP) for the Bear Creek Valley (BCV) Floodplain presents the approach and rationale for characterizing potentially contaminated soils and sediments of the Bear Creek floodplain and the impact of any contaminants on the floodplain ecosystem. It is an addendum to a previously issued document, the Remedial Investigation Work Plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (ES/ER-19&D2), which presents background information pertaining to this floodplain investigation. The strategy presented in the SAP is to divide the investigation into three component parts: a large-scale characterization of the floodplain; a fine-scale characterization of the floodplain beginning with a known contaminated location; and a stream sediment characterization. During the large-scale and the fine-scale characterizations, soil and biota samples (i.e., small mammals, earthworms, and vegetation) will be collected in order to characterize the nature and extent of floodplain soil contamination and the impact of this contamination on floodplain biota. The fine-scale characterization will begin with an investigation of a site corresponding to the location noted in the Remedial Investigation Work Plan (ES/ER-19&D2) as an area where uranium and PCBs are concentrated in discrete strata. During this fine-scale characterization, a 1 m deep soil profile excavation will be dug into the creek berm, and individual soil strata in the excavation will be screened for alpha radiation, PCBs, and VOCs. After the laboratory analysis results are received, biota samples will be collected in the vicinity of those locations.

  20. Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956)- An Assessment of Quantities released, Off-Site Radiation Doses, and Potential Excess Risks of Thyroid Cancer, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Apostoaei, A.I.; Burns, R.E.; Hoffman, F.O.; Ijaz, T.; Lewis, C.J.; Nair, S.K.; Widner, T.E.

    1999-07-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel appointed by Tennessee's Commissioner of Health. One of the major contaminants studied in the dose reconstruction was radioactive iodine, which was released to the air by X-10 (now called Oak Ridge National Laboratory) as it processed spent nuclear reactor fuel from 1944 through 1956. The process recovered radioactive lanthanum for use in weapons development. Iodine concentrates in the thyroid gland so health concerns include various diseases of the thyroid, such as thyroid cancer. The large report, ''Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956) - An Assessment of Quantities Released, Off-site Radiation Doses, and Potential Excess Risks of Thyroid Cancer,'' is in two volumes. Volume 1 is the main body of the report, and Volume 1A, which has the same title, consists of 22 supporting appendices. Together, these reports serve the following purposes: (1) describe the methodologies used to estimate the amount of iodine-131 (I-131) released; (2) evaluate I-131's pathway from air to vegetation to food to humans; (3) estimate doses received by human thyroids; (4) estimate excess risk of acquiring a thyroid cancer during ones lifetime; and (5) provide equations, examples of historical documents used, and tables of calculated values. Results indicate that females born in 1952 who consumed milk from a goat pastured a few miles east of X-10 received the highest doses from I-131 and would have had the highest risks of contracting thyroid cancer. Doses from cow

  1. Implementation plan for liquid low-level radioactive waste tank systems for fiscal year 1995 at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-06-01

    This document is the third annual revision of the plans and schedules for implementing the Federal Facility Agreement (FFA) compliance program, originally submitted in 1992 as ES/ER-17 ampersand D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the FFA commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW System as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. Chapter 1 provides general background information and philosophies that led to the plans and schedules that appear in Chaps. 2 through 5

  2. Fiscal year 1994 well installation program summary report, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-09-01

    This report summarizes the well installation activities conducted during the federal fiscal year (FY) 1994 drilling program at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Synopses of monitoring well construction/well development data, well location rationale, geological/hydrological observations, quality assurance/quality control methods, and health and safety monitoring are included. Two monitoring wells were installed and one piezometer installation was attempted, but not completed, during the FY 1994 drilling program. In addition, SAIC provided health and safety and geotechnical oversight for two soil borings in support of the Y-12 Underground Storage Tank (UST) Program. All new monitoring wells were developed by either a 2.0-in. diameter swab rig or by hand bailing until nonspecific indicator parameters (pH and specific conductance) attained steady-state levels. Turbidity levels were lowered, if required, to the extent practicable by continued development beyond a steady-state level of pH and conductance. All well installation was conducted following industry-standard methods and approved procedures in the Environment Surveillance Procedures Quality Control Program (Energy Systems 1988), the Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document (EPA 1986), and Guidelines for Installation of Monitor Wells at the Y-12 Plant (Geraghty and Miller 1985). Health and safety monitoring and field screening of drilling returns and development waters were conducted in accordance with approved Martin Marietta Energy Systems, Inc. (Energy Systems) guidelines. All of the monitoring wells installed during FY 1994 at the Y-12 Plant were of screened construction

  3. Evaluation of Calendar Year 1996 groundwater and surface water quality data for the Upper East Fork Poplar Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    This report presents an evaluation of the groundwater monitoring data obtained in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1996. The East Fork Regime encompasses several confirmed and suspected sources of groundwater contamination within industrialized areas of the US Department of Energy (DOE) Y-12 Plant in Bear Creek Valley (BCV) southeast of Oak Ridge, Tennessee. The CY 1996 groundwater and surface water monitoring data are presented in Calendar Year 1996 Annual Groundwater Monitoring Report for the Upper East Fork Poplar Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee, along with the required data evaluations specified in the Resource Conservation and Recovery Act (RCRA) post-closure permit for the East Fork Regime. This report provides additional evaluation of the CY 1996 groundwater and surface water monitoring data with an emphasis on regime-wide groundwater contamination and long-term concentration trends for regulated and non-regulated monitoring parameters

  4. Assessment of weather risk on chestnut production

    Science.gov (United States)

    Pereira, M. G.; Gomes-Laranjo, J.; Caramelo, L.

    2009-04-01

    Meteorological conditions play a fundamental role during entire chestnut tree vegetative cycle. Chestnut trees are well adapted to mean year temperatures of 8-15°C, requires monthly mean temperatures greater than 10°C during 6 months (Gomes-Laranjo et al. 2008) and its pollen only germinates at relatively high temperatures of 27-30°C (Bounous, 2002). Photosynthesis of an adult tree is highly dependent of temperature. Photosynthesis is maximal at 24-28°C but it is inhibited for temperatures greater than 32°C (Gomes-Laranjo et al., 2005, 2006). Furthermore, there are significant differences between chestnut trees cultivated in northfaced orchads in relation to those cultivated in the southfaced and between leaves from different sides of the chestnut canopy because they receive different amounts of radiant energy and consequently they grow under different mean daily air temperature. The objective of this work was to assess the role of weather on chestnut production variability. This study was performed for the 28 years period defined between 1980 and 2007 and it was based on annual values of chestnut production and total area of production, at national level, provided by INE, the National Institute of Statistics of Portugal. The meteorological data used was provided by Meteored (http://www.meteored.com/) and includes daily values of precipitation, wind speed, and mean, maximum and minimum air temperature. All meteorological variables were tested as potential predictors by means of a simple correlation analysis. Multiple time intervals were considered in this the analysis, which consist in moving intervals of constant length and forward and backward evolutionary intervals. Results show that some meteorological variables present significant correlation with chestnut productivity particularly in the most relevant periods of the chestnut tree cycle, like the previous winter, the flushing phase and the maturation period. A regression model based on the winter (January

  5. Design/Installation and Structural Integrity Assessment of the Bethel Valley Low-Level Waste Collection and Transfer System Upgrade for Building 3544 (Process Waste Treatment Plant) at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-12-01

    This document describes and assesses planned modifications to be made to the Building 3544 Process Waste Treatment Plant of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in response to the requirements of the Federal Facility Agreement (FFA) relating to environmental protection requirements for tank systems. The modifications include the provision of a new double contained LLW line replacing an existing buried line that does not provide double containment. This new above ground, double contained pipeline is provided to permit discharge of treated process waste fluid to an outside truck loading station. The new double contained discharge line is provided with leak detection and provisions to remove accumulated liquid. An existing LLW transfer pump, concentrated waste tank, piping and accessories are being utilized, with the addition of a secondary containment system comprised of a dike, a chemically resistant internal coating on the diked area surfaces and operator surveillance on a daily basis for the diked area leak detection. This assessment concludes that the planned modifications comply with applicable requirements of Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation

  6. Design demonstrations for Category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-07-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). ORNL has conducted research in energy related fields since 1943. The facilities used to conduct the research include nuclear reactors, chemical pilot plants, research laboratories, radioisotope production laboratories, and support facilities. These facilities have produced a variety of radioactive and/or hazardous wastes. These wastes have been stored and transported through an extensive network of piping and tankage. Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA) - Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or Replacement Tank Systems with Secondary Containment; Category B -- Existing Tank Systems with Secondary Containment; Category C -- Existing Tank Systems without Secondary Containment; and Category D -- Existing Tank Systems without Secondary Containment that are; Removed from Service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category ''B.'' The design demonstration for each tank is presented in Section 2. The design demonstrations were developed using information obtained from the design drawings (as-built when available), construction specifications, and interviews with facility operators. The assessments assume that each tank system was constructed in accordance with the design drawings and construction specifications for that system unless specified otherwise. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Subsection C)

  7. Field grouting summary report on the WAG 4 seeps 4 and 6 removal action project, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3. Appendixes E and F

    International Nuclear Information System (INIS)

    1997-05-01

    During the summer of 1996, a unique multi-phase, multi-stage, low-pressure permeation grouting pilot program was performed inside portions of four unlined waste disposal trenches at Waste Area Grouping (WAG) 4 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The project was deemed a non-time-critical removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); however, due to a history of heavy precipitation in the fall, the schedule was fast-tracked to meet an October 31, 1996 grouting completion date. The technical objective of the removal action was to reduce the off-site transport of j Strontium 90 ( 90 Sr) by grouting portions of four waste disposal trenches believed to be responsible for over 70 percent of the 90 Sr leaving the site. A goal of the grouting operation was to reduce the average in situ hydraulic conductivity of the grouted waste materials to a value equal to or less than 1 x 10 -6 cm/sec. This target hydraulic conductivity value was established to be at least two orders of magnitude lower than that of the surrounding natural ground

  8. Field grouting summary report on the WAG 4 seeps 4 and 6 removal action project, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3. Appendixes E and F

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    During the summer of 1996, a unique multi-phase, multi-stage, low-pressure permeation grouting pilot program was performed inside portions of four unlined waste disposal trenches at Waste Area Grouping (WAG) 4 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The project was deemed a non-time-critical removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); however, due to a history of heavy precipitation in the fall, the schedule was fast-tracked to meet an October 31, 1996 grouting completion date. The technical objective of the removal action was to reduce the off-site transport of j Strontium 90 ({sup 90}Sr) by grouting portions of four waste disposal trenches believed to be responsible for over 70 percent of the {sup 90}Sr leaving the site. A goal of the grouting operation was to reduce the average in situ hydraulic conductivity of the grouted waste materials to a value equal to or less than 1 x 10{sup -6} cm/sec. This target hydraulic conductivity value was established to be at least two orders of magnitude lower than that of the surrounding natural ground.

  9. Soil sampling and analysis plan for the Bear Creek Valley floodplain at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-11-01

    This Sampling and Analysis Plan (SAP) for the Bear Creek Valley (BCV) Floodplain presents the approach and rationale for characterizing potentially contaminated soils and sediments of the Bear Creek floodplain and the impact of any contaminants on the floodplain ecosystem. It is an addendum to a previously issued document, the Remedial Investigation Work Plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (ES/ER-19 ampersand D2), which presents background information pertaining to this floodplain investigation. The strategy presented in the SAP is to divide the investigation into three component parts: a large-scale characterization of the floodplain; a fine-scale characterization of the floodplain beginning with a known contaminated location; and a stream sediment characterization. During the large-scale and the fine-scale characterizations, soil and biota samples (i.e., small mammals, earthworms, and vegetation) will be collected in order to characterize the nature and extent of floodplain soil contamination and the impact of this contamination on floodplain biota. The fine-scale characterization will begin with an investigation of a site corresponding to the location noted in the Remedial Investigation Work Plan (ES/ER-19 ampersand D2) as an area where uranium and PCBs are concentrated in discrete strata. During this fine-scale characterization, a 1 m deep soil profile excavation will be dug into the creek berm, and individual soil strata in the excavation will be screened for alpha radiation, PCBs, and VOCs. After the laboratory analysis results are received, biota samples will be collected in the vicinity of those locations

  10. Gunite and associated tanks dry well conductivity monitoring report, Oak Ridge National Laboratory, Oak Ridge, Tennessee, February 1998 - December 1998

    International Nuclear Information System (INIS)

    1999-04-01

    A waste removal program is being implemented for the Gunite and Associated Tanks Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee. The waste is being removed by means of remotely operated, in-tank, confined sluicing equipment. During sluicing operations the dry wells adjacent to each of the tanks are instrumented so that potential releases can be detected by means external to the tank. The method of detection is by monitoring the electrical conductivity of the water in the dry well associated with each tank. This report documents the dry well conductivity monitoring data for the period from February 1998 through December 1998. The dry wells monitored during this period include DW-5, DW-6, DW-7, DW-8, DW-9 and DW-10. The conductivity of the water passing through Pump Station 1 (PS1) was also monitored. During this period the sluicing activities at Tank W-6 were initiated and successfully completed. In addition, flight mixers were used to remove wastes from Tank W-5, and sluicing operations were initiated on Tank W-7. Presented in this report are the dry well conductivity, rainfall, tank level, and other appropriate information relevant to the analysis and interpretation of the monitoring data for the reporting period. A thorough analysis of the monitoring results from the six dry wells in the STF and PS1 for the period between February 1998 and December 1998 indicates that no releases have occurred from the gunite tanks being monitored. Overall, the dry well conductivity monitoring continues to provide a robust and sensitive method for detecting potential releases from the gunite tanks and for monitoring seasonal and construction-related changes in the dry well and drain system

  11. Effect of chestnut extract and chestnut fiber on viability of potential probiotic Lactobacillus strains under gastrointestinal tract conditions.

    Science.gov (United States)

    Blaiotta, Giuseppe; La Gatta, Barbara; Di Capua, Marika; Di Luccia, Aldo; Coppola, Raffaele; Aponte, Maria

    2013-12-01

    The main challenge to probiotics, during their passage through the gastrointestinal tract, are the acidic gastric secretions of the stomach, and the bile salts released into the duodenum. The survival of the strains, in this phase, is strongly influenced by the food used for their delivery. This work is part of a project studying the development of novel food processes, based on the use of chestnuts from cultivar "Castagna di Montella". In detail, the effect of indigestible chestnut fiber and of chestnut extract on the viability of selected lactic acid bacteria strains was evaluated. Among 28 cultures, twelve strains were selected, on the basis of tolerance to low pH values and bile salts, and submitted to exposition to simulated gastric or bile juice in presence of chestnut extract with or without immobilization in chestnut fiber. The presence of chestnut extract proved to play a significant role on the gastric tolerance improvement of lactobacilli. The recorded protective effect could not be simply related to the starch or reducing sugars content. RP-HPLC demonstrated that in the chestnut flour, there are one or more hydrophobic peptides or oligopeptides, which specifically offer a marked resistance to simulated gastric juice, albeit present at low concentration. These beneficial effects proved to be dependent by the cultivar used to produce the flour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Design demonstrations for the remaining 19 Category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)--Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tank systems: Category A--New or Replacement Tank Systems with Secondary Containment; Category B--Existing Tank Systems with Secondary Containment; Category C--Existing Tank Systems Without Secondary Containment; and Category D--Existing Tank Systems Without Secondary Containment That are Removed from Service. This document provides a design demonstration of the secondary containment and ancillary equipment of 19 tank systems listed in the FFA as Category B. Three tank systems originally designated as Category B have been redesignated as Category C and one tank system originally designated as Category B has been redesignated as Category D. The design demonstration for each tank is presented in Section 2. The design demonstrations were developed using information obtained from the design drawings (as-built when available), construction specifications, and interviews with facility operators. The assessments assume that each tank system was constructed in accordance with the design drawings and construction specifications for that system unless specified otherwise. Each design demonstration addresses system conformance to the requirements of the FFA

  13. 2011 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation, Oak Ridge, Tennessee - Data and Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2011-03-01

    Under the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA) established between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency, (EPA) and the Tennessee Department of Environment and Conservation (TDEC) in 1992, all environmental restoration activities on the ORR are performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Since the 1990s, the environmental restoration activities have experienced a gradual shift from characterization to remediation. As this has occurred, it has been determined that the assessment of the individual and cumulative performance of all ORR CERCLA remedial actions (RAs) is most effectively tracked in a single document. The Remediation Effectiveness Report (RER) is an FFA document intended to collate all ORR CERCLA decision requirements, compare pre- and post-remediation conditions at CERCLA sites, and present the results of any required post-decision remediation effectiveness monitoring. First issued in 1997, the RER has been reissued annually to update the performance histories of completed actions and to add descriptions of new CERCLA actions. Monitoring information used in the 2011 RER to assess remedy performance was collected and/or compiled by DOE's Water Resources Restoration Program (WRRP). Only data used to assess performance of completed actions are provided. In addition to collecting CERCLA performance assessment data, the WRRP also collects baseline data to be used to gauge the effectiveness of future actions once implemented. These baseline data are maintained in the Oak Ridge Environmental Information System and will be reported in future RERs, as necessary, once the respective actions are completed. However, when insufficient data exist to assess the impact of the RAs, e.g., when the RA was only recently completed, a preliminary evaluation is made of early indicators of effectiveness at the

  14. 2010 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation, Oak Ridge, Tennessee - Data and Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2010-09-01

    Under the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA) established between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency, (EPA) and the Tennessee Department of Environment and Conservation (TDEC) in 1992, all environmental restoration activities on the ORR are performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Since the 1990s, the environmental restoration activities have experienced a gradual shift from characterization to remediation. As this has occurred, it has been determined that the assessment of the individual and cumulative performance of all ORR CERCLA remedial actions (RAs) is most effectively tracked in a single document. The Remediation Effectiveness Report (RER) is an FFA document intended to collate all ORR CERCLA decision requirements, compare pre- and post-remediation conditions at CERCLA sites, and present the results of any required post-decision remediation effectiveness monitoring. First issued in 1997, the RER has been reissued annually to update the performance histories of completed actions and to add descriptions of new CERCLA actions. Monitoring information used in the 2010 RER to assess remedy performance was collected and/or compiled by DOE's Water Resources Restoration Program (WRRP). Only data used to assess performance of completed actions are provided. In addition to collecting CERCLA performance assessment data, the WRRP also collects baseline data to be used to gauge the effectiveness of future actions once implemented. These baseline data are maintained in the Oak Ridge Environmental Information System and will be reported in future RERs, as necessary, once the respective actions are completed. However, when insufficient data exist to assess the impact of the RAs, e.g., when the RA was only recently completed, a preliminary evaluation is made of early indicators of effectiveness at the

  15. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    WAG 6 comprises a shallow land burial facility used for disposal of low-level radioactive wastes (LLW) and, until recently, chemical wastes. As such, the site is subject to regulation under RCRA and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). To comply with these regulations, DOE, in conjunction with the Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), developed a strategy for closure and remediation of WAG 6 by 1997. A key component of this strategy was to complete an RFI by September 1991. The primary objectives of the RFI were to evaluate the site's potential human health and environmental impacts and to develop a preliminary list of alternatives to mitigate these impacts. The WAG 6 one of three solid waste management units evaluated Oak Ridge National Laboratory (ORNL) existing waste disposal records and sampling data and performed the additional sampling and analysis necessary to: describe the nature and extent of contamination; characterize key contaminant transport pathways; and assess potential risks to human health and the environment by developing and evaluating hypothetical receptor scenarios. Estimated excess lifetime cancer risks as a result for exposure to radionuclides and chemicals were quantified for each hypothetical human receptor. For environmental receptors, potential impacts were qualitatively assessed. Taking into account regulatory requirements and base line risk assessment results, preliminary site closure and remediation objectives were identified, and a preliminary list of alternatives for site closure and remediation was developed

  16. Comprehensive integrated planning: A process for the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-05-01

    The Oak Ridge Comprehensive Integrated Plan is intended to assist the US Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1, Life Cycle Asset Management and Oak Ridge Operations Order 430. DOE contractors are charged with developing and producing the Comprehensive Integrated Plan, which serves as a summary document, providing information from other planning efforts regarding vision statements, missions, contextual conditions, resources and facilities, decision processes, and stakeholder involvement. The Comprehensive Integrated Plan is a planning reference that identifies primary issues regarding major changes in land and facility use and serves all programs and functions on-site as well as the Oak Ridge Operations Office and DOE Headquarters. The Oak Ridge Reservation is a valuable national resource and is managed on the basis of the principles of ecosystem management and sustainable development and how mission, economic, ecological, social, and cultural factors are used to guide land- and facility-use decisions. The long-term goals of the comprehensive integrated planning process, in priority order, are to support DOE critical missions and to stimulate the economy while maintaining a quality environment

  17. Comprehensive integrated planning: A process for the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Oak Ridge Comprehensive Integrated Plan is intended to assist the US Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1, Life Cycle Asset Management and Oak Ridge Operations Order 430. DOE contractors are charged with developing and producing the Comprehensive Integrated Plan, which serves as a summary document, providing information from other planning efforts regarding vision statements, missions, contextual conditions, resources and facilities, decision processes, and stakeholder involvement. The Comprehensive Integrated Plan is a planning reference that identifies primary issues regarding major changes in land and facility use and serves all programs and functions on-site as well as the Oak Ridge Operations Office and DOE Headquarters. The Oak Ridge Reservation is a valuable national resource and is managed on the basis of the principles of ecosystem management and sustainable development and how mission, economic, ecological, social, and cultural factors are used to guide land- and facility-use decisions. The long-term goals of the comprehensive integrated planning process, in priority order, are to support DOE critical missions and to stimulate the economy while maintaining a quality environment.

  18. DARA Solid Storage Facility evaluation and recommendations, Y-12 Bear Creek Burial Grounds, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Barton, W.D. III; Hughey, J.C.

    1992-08-01

    The Disposal Area Remedial Action (DARA) Solid Storage Facility (SSF) is a rectangular concrete vault with two high-density Polyethlene (HDPE) liners and covered with a metal building. The SSF was originally designed and constructed to receive saturated sediments from the excavation of the Oil Retention Ponds and Tributary 7 at the Oak Ridge Y-12 Plant. The sediments placed in the SSF were generally high-water-content soils contaminated with polychlorinated biphenyls (PCBs) and volatile organic carbons. The facility was intended to dewater the sediments by allowing the free water to percolate to a 6-in. sand layer covering the entire floor of the facility. The sand layer then drained into sumps located at the east and west ends of the facility. An application for a Part-B Permit was submitted to the state of Tennessee in February 1992 (MMES 1992a). This report is being submitted to support approval of that permit application and to address certain issues known to the regulators regarding this facility

  19. Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956)- An Assessment of Quantities released, Off-Site Radiation Doses, and Potential Excess Risks of Thyroid Cancer- APPENDICES Appendices-Volume 1A

    International Nuclear Information System (INIS)

    Apostoaei, A.I.; Burns, R.E.; Hoffman, F.O.; Ijaz, T.; Lewis, C.J.; Nair, S.K.; Widner, T.E.

    1999-01-01

    This report consists of all the appendices for the report described below: In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel appointed by Tennessee's Commissioner of Health. One of the major contaminants studied in the dose reconstruction was radioactive iodine, which was released to the air by X-10 (now called Oak Ridge National Laboratory) as it processed spent nuclear reactor fuel from 1944 through 1956. The process recovered radioactive lanthanum for use in weapons development. Iodine concentrates in the thyroid gland so health concerns include various diseases of the thyroid, such as thyroid cancer. The large report, ''Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956) - An Assessment of Quantities Released, Off-site Radiation Doses, and Potential Excess Risks of Thyroid Cancer,'' is in two volumes. Volume 1 is the main body of the report, and Volume 1A, which has the same title, consists of 22 supporting appendices. Together, these reports serve the following purposes: (1) describe the methodologies used to estimate the amount of iodine-131 (I-131) released; (2) evaluate I-131's pathway from air to vegetation to food to humans; (3) estimate doses received by human thyroids; (4) estimate excess risk of acquiring a thyroid cancer during ones lifetime; and (5) provide equations, examples of historical documents used, and tables of calculated values as appendices. Results indicate that females born in 1952 who consumed milk from a goat pastured a few miles east of X-10 received the highest doses from I-131 and would have had the highest

  20. Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956)- An Assessment of Quantities released, Off-Site Radiation Doses, and Potential Excess Risks of Thyroid Cancer- APPENDICES Appendices-Volume 1A

    Energy Technology Data Exchange (ETDEWEB)

    Apostoaei, A.I.; Burns, R.E.; Hoffman, F.O.; Ijaz, T.; Lewis, C.J.; Nair, S.K.; Widner, T.E.

    1999-07-01

    This report consists of all the appendices for the report described below: In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel appointed by Tennessee's Commissioner of Health. One of the major contaminants studied in the dose reconstruction was radioactive iodine, which was released to the air by X-10 (now called Oak Ridge National Laboratory) as it processed spent nuclear reactor fuel from 1944 through 1956. The process recovered radioactive lanthanum for use in weapons development. Iodine concentrates in the thyroid gland so health concerns include various diseases of the thyroid, such as thyroid cancer. The large report, ''Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956) - An Assessment of Quantities Released, Off-site Radiation Doses, and Potential Excess Risks of Thyroid Cancer,'' is in two volumes. Volume 1 is the main body of the report, and Volume 1A, which has the same title, consists of 22 supporting appendices. Together, these reports serve the following purposes: (1) describe the methodologies used to estimate the amount of iodine-131 (I-131) released; (2) evaluate I-131's pathway from air to vegetation to food to humans; (3) estimate doses received by human thyroids; (4) estimate excess risk of acquiring a thyroid cancer during ones lifetime; and (5) provide equations, examples of historical documents used, and tables of calculated values as appendices. Results indicate that females born in 1952 who consumed milk from a goat pastured a few miles east of X-10 received the highest doses from

  1. Field sampling and analysis plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Boston, H.L.; Ashwood, T.L.; Borders, D.M.; Chidambariah, V.; Downing, D.J.; Fontaine, T.A.; Ketelle, R.H.; Lee, S.Y.; Miller, D.E.; Moore, G.K.; Suter, G.W.; Tardiff, M.F.; Watts, J.A.; Wickliff, D.S.

    1992-02-01

    This field sampling and analysis (S ampersand A) plan has been developed as part of the Department of Energy's (DOE's) remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) located in Oak Ridge, Tennessee. The S ampersand A plan has been written in support of the remedial investigation (RI) plan for WAG 2 (ORNL 1990). WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake (WOL), White Oak Creek embayment (WOCE) on the Clinch River, and the associated floodplain and subsurface environment (Fig. 1.1). The WOC system is the surface drainage for the major ORNL WAGs and has been exposed to a diversity of contaminants from operations and waste disposal activities in the WOC watershed. WAG 2 acts as a conduit through which hydrologic fluxes carry contaminants from upgradient areas to the Clinch River. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This document describes the following: an overview of the RI plan, background information for the WAG 2 system, and objectives of the S ampersand A plan; the scope and implementation of the first 2 years of effort of the S ampersand A plan and includes recent information about contaminants of concern, organization of S ampersand A activities, interactions with other programs, and quality assurance specific to the S ampersand A activities; provides details of the field sampling plans for sediment, surface water, groundwater, and biota, respectively; and describes the sample tracking and records management plan

  2. Calendar year 1994 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-10-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1994 calendar year (CY) at several waste-management facilities and a petroleum fuel underground storage tank (UST) site at the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites lie within the boundaries of the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to ensure protection of local groundwater resources in accordance with federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. (Energy Systems) corporate policy

  3. Fiscal year 1995 well plugging and abandonment program Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from September 1994 through August 1995. A total of 67 wells, piezometers, and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned if (1) its construction did not meet current standards (substandard construction); (2) it was irreparably damaged or had deteriorated beyond practical repair; (3) its location interfered with or otherwise impeded site operations, construction, or closure activities; or (4) special circumstances existed as defined on a case-by-case basis and approved by the Y-12 Plant Groundwater Protection Program (GWPP) Manager. This summary report contains: general geologic setting of the Y-12 Plant and vicinity; discussion of well plugging and abandonment methods, grouting procedures, and waste management practices (a Waste Management Plan for Drilling Activities is included in Appendix C); summaries of plugging and abandonment activities at each site; and quality assurance/quality control (QA/QC) and health and safety protocols used during the FY 1995 Plugging and Abandonment Program

  4. Fiscal year 1995 well plugging and abandonment program Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from September 1994 through August 1995. A total of 67 wells, piezometers, and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned if (1) its construction did not meet current standards (substandard construction); (2) it was irreparably damaged or had deteriorated beyond practical repair; (3) its location interfered with or otherwise impeded site operations, construction, or closure activities; or (4) special circumstances existed as defined on a case-by-case basis and approved by the Y-12 Plant Groundwater Protection Program (GWPP) Manager. This summary report contains: general geologic setting of the Y-12 Plant and vicinity; discussion of well plugging and abandonment methods, grouting procedures, and waste management practices (a Waste Management Plan for Drilling Activities is included in Appendix C); summaries of plugging and abandonment activities at each site; and quality assurance/quality control (QA/QC) and health and safety protocols used during the FY 1995 Plugging and Abandonment Program.

  5. Sampling and analysis plan for volatile organic compounds in storm drain for the Upper East Fork Poplar Creek characterization area remedial investigation at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-03-01

    The Oak Ridge Y-12 Plant, located within the Oak Ridge Reservation (ORR), is owned by the US Department of Energy and managed by Lockheed Martin Energy Systems, Inc. The Y-12 Plant is one of three major facilities on the ORR. The ORR contains both hazardous- and mixed-waste sites that are subject to regulations promulgated under the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986. Under RCRA guidelines and requirements from the Tennessee Department of Environment and Conservation, the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire ORR was placed on the National Priorities List of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions

  6. Y-12 Plant Groundwater Protection Program Groundwater and Surface Water sampling and Analysis Plan for Calendar Year 2000

    International Nuclear Information System (INIS)

    1999-01-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2000 at the U.S. Department of Energy (DOE) Y-12 Plant that will be managed by tie Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 2000 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant (Figure 1). Groundwater and surface water monitoring performed under the auspices of the Y-12 Plant GWPP during CY 2000 will comply with: Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous Solid Waste Disposal Facilities (SWDF); and DOE Order 5400.1 surveillance monitoring and exit pathway/perimeter monitoring. Some of the data collected for these monitoring drivers also will be used to meet monitoring requirements of the Integrated Water Quality Program, which is managed by Bechtel Jacobs Company LLC. Data from five wells that are monitored for SWDF purposes in the Chestnut Ridge Regime will be used to comply with requirements specified in the Resource Conservation and Recovery Act post closure permit regarding corrective action monitoring. Modifications to the CY 2000 monitoring program may be necessary during implementation. Changes in regulatory or programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  7. Design demonstrations for the remaining 19 Category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-06-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). ORNL has conducted research in energy related fields since 1943. The facilities used to conduct the research include nuclear reactors, chemical pilot plants, research laboratories, radioisotope production laboratories, and support facilities. These facilities have produced a variety of radioactive and/or hazardous wastes that have been transported and stored through an extensive network of piping and tankage. Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the EPA (United States Environmental Protection Agency)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tank systems: Category A-New or Replacement Tank Systems with Secondary Containment; Category B-Existing Tank Systems with Secondary Containment; Category C-Existing Tank Systems Without Secondary Containment, and Category D-Existing Tank Systems Without Secondary Containment That are Removed from Service. This document provides a design demonstration of the secondary containment and ancillary equipment of 19 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented in Section 2. The assessments assume that each tank system was constructed in accordance with the design drawings and construction specifications for that system unless specified otherwise. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Section C)

  8. Transmittal of the Calculation Package that Supports the Analysis of Performance of the Environmental Management Waste Management Facility Oak Ridge, Tennessee (Based 5-Cell Design Issued 8/14/09)

    Energy Technology Data Exchange (ETDEWEB)

    Williams M.J.

    2009-09-14

    This document presents the results of an assessment of the performance of a build-out of the Environmental Management Waste Management Facility (EMWMF). The EMWMF configuration that was assessed includes the as-constructed Cells 1 through 4, with a groundwater underdrain that was installed beneath Cell 3 during the winter of 2003-2004, and Cell 5, whose proposed design is an Addendum to Remedial Design Report for the Disposal of Oak Ridge Reservation Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Waste, Oak Ridge, Tennessee, DOE/OR/01-1873&D2/A5/R1. The total capacity of the EMWMF with 5 cells is about 1.7 million cubic yards. This assessment was conducted to determine the conditions under which the approved Waste Acceptance Criteria (WAC) for the EMWMF found in the Attainment Plan for Risk/Toxicity-Based Waste Acceptance Criteria at the Oak Ridge Reservation, Oak Ridge, Tennessee [U.S. Department of Energy (DOE) 2001a], as revised for constituents added up to October 2008, would remain protective of public health and safety for a five-cell disposal facility. For consistency, the methods of analyses and the exposure scenario used to predict the performance of a five-cell disposal facility were identical to those used in the Remedial Investigation and Feasibility Study (RI/FS) and its addendum (DOE 1998a, DOE 1998b) to develop the approved WAC. To take advantage of new information and design changes departing from the conceptual design, the modeling domain and model calibration were upaded from those used in the RI/FS and its addendum. It should be noted that this analysis is not intended to justify or propose a change in the approved WAC.

  9. Lessons learned at Lower East Fork Poplar Creek, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Burch, K.L.; Page, D.G.

    1996-01-01

    The US Department of Energy (DOE) used several innovative strategies and technologies in conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) activities for the Lower East Fork Poplar Creek (EFPC) Operable Unit (OU) in Oak Ridge, Tennessee. These innovations helped to cost-effectively characterize the 270-ha (670-acre), 23.3-km (14.5-mile) floodplain and to obtain a 400-parts per million (ppm) cleanup level for mercury in soil. Lessons learned during the project involve management, investigation, and risk assessment strategies and techniques. Management lessons learned include (a) how to handle the large OU, (b) how to effectively involve the community in decisions, and (c) how to select a remedy that incorporates the needs of many involved agencies. Investigation lessons learned include (a) how to design an effective sampling strategy for the site, (b) how to cost-effectively analyze a large number of samples, and (c) which of several treatment technologies is best-suited to the site. Risk assessment lessons learned include (a) how to determine an appropriate cleanup level for human health and the environment, (b) how to quantify uncertainty in the human health risk assessment, (c) how to reconcile different solubilities of different mercury species, and (d) how to best conduct the ecological risk assessment. Other CERCLA sites can benefit from lessons learned during this project whether still in the investigative stage or further along in the process. Applying these lessons can substantially reduce costs and make more efficient use of Superfund resources

  10. Tennessee Oversight Agreement annual report, May 31, 1994--June 30, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The Tennessee Department of Environment and Conservation's DOE Oversight Division (TDEC/DOE-O) is responsible for assuring the citizens of Tennessee that their health, safety and environment on the Oak Ridge Reservation are protected and that appropriate remedial action is taken to provide this protection. TDEC/DOE-O has five program sections that reflect the organizational structure of the TDEC Bureau of Environment Divisions, as well as DOE's Environmental Safety and Health, Waste Management, and Environmental Restoration Programs

  11. Translocation of radiocesium released by the Fukushima Daiichi nuclear power plant accident in Japanese chestnut and chestnut weevil larvae

    International Nuclear Information System (INIS)

    Sasaki, Yoshito; Ishii, Yasuo; Abe, Hironobu; Mitachi, Katsuaki; Watanabe, Takayoshi; Niizato, Tadafumi

    2016-01-01

    To examine the translocation of radiocesium scattered by the Fukushima Daiichi nuclear power plant accident that occurred in March 2011 to the Japanese chestnut, we investigated the autoradiography and radiocesium concentration in each part of Japanese chestnuts. The Japanese chestnut fruit has a thin skin between the kernel (cotyledons) and shell; the kernel of the fruit is edible. The 137 Cs concentration in each part of the fruit was found to be almost the same at about 1.0 × 10 4 Bq·kg -1 DW, as well as leaves. The radiocesium concentration in chestnut weevil larvae found on the fruit was approximately one-seventh of that in the kernel. (author)

  12. An economic analysis of a monitored retrievable storage site for Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Fox, W.F.; Mayo, J.W.; Hansen, L.T.; Quindry, K.E.

    1985-12-17

    The United States Department of Energy is charged with the task of identifying potential sites for a Monitored Retrievable Storage (MRS) Facility and reporting the results of its analysis to Congress by January 1986. DOE chose three finalist sites from 11 sites DOE analysts evaluated earlier. All three are in Tennessee, including two in Oak Ridge and one in Trousdale/Smith Counties. This paper is a summary of research undertaken on the economic effects of establishing the MRS facility in Tennessee. All three locations were considered in the analysis, but on some occasions attention is focused on the site preferred by DOE. The research was undertaken by the Center for Business and Economic Research (CBER), College of Business Administration, the University of Tennessee, Knoxville, under contract with the Tennessee Department of Economic and Community Development.

  13. Results of calendar year 1994 monitor well inspection and maintenance program, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    McMaster, B.W.; Jones, S.B.; Sitzler, J.L.

    1995-06-01

    This document is a compendium of results of the calendar year 1994 Monitor Well Inspection and Maintenance Program at the Department of Energy Y-12 Plant in Oak Ridge, Tennessee. This report documents the work relating to well inspections and maintenance requests. Inspections are implemented in order to better assess the condition and maintenance needs of wells that are actively being monitored. Currently this approach calls for inspecting all wells on a routine (annual or triennial) basis which are: (1) in an active sampling program; (2) included in a hydrologic study; or (3) not in service, but not scheduled for plugging and abandonment. Routine inspections help to ensure that representative groundwater samples and hydrologic data are being collected, and contribute to the life expectancy of each well. This report formally presents well inspection and maintenance activities that were conducted at the Y-12 Plant during 1994. All inspections were conducted between April and December

  14. Results of calendar year 1994 monitor well inspection and maintenance program, Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    McMaster, B.W. [Univ. of Tennessee, Knoxville, TN (United States); Jones, S.B.; Sitzler, J.L. [Oak Ridge National Lab., TN (United States)

    1995-06-01

    This document is a compendium of results of the calendar year 1994 Monitor Well Inspection and Maintenance Program at the Department of Energy Y-12 Plant in Oak Ridge, Tennessee. This report documents the work relating to well inspections and maintenance requests. Inspections are implemented in order to better assess the condition and maintenance needs of wells that are actively being monitored. Currently this approach calls for inspecting all wells on a routine (annual or triennial) basis which are: (1) in an active sampling program; (2) included in a hydrologic study; or (3) not in service, but not scheduled for plugging and abandonment. Routine inspections help to ensure that representative groundwater samples and hydrologic data are being collected, and contribute to the life expectancy of each well. This report formally presents well inspection and maintenance activities that were conducted at the Y-12 Plant during 1994. All inspections were conducted between April and December.

  15. Congenital malformation and fetal mortality trends in counties surrounding Oak Ridge

    International Nuclear Information System (INIS)

    Shank, K.E.; Easterly, C.D.; Oakes, T.W.

    1979-12-01

    Stillbirth and congenital malformation death data have been evaluated for counties surrounding the Oak Ridge nuclear facilities. The observed values were compared with expected values, based on state of Tennessee and East Tennessee rates, for three time periods: prior to the existence of the nuclear facilities; the early years of operation; and the later years of operation. Oak Ridge, which is the closest city to the nuclear facilities, had significantly fewer stillbirths and no difference in congenital malformations as compared with the state or East Tennessee. No time trend was observed in the 8-county data which could be associated with the higher levels of radioactive releases during the 1944 to 1957 period followed by a period of lesser releases in the 1958 to 1971 period. However, a clustering of stillbirths was found for the last time period. In the study, no significant relationship was found between the occurrence of stillbirths and congenital malformation deaths

  16. Technical evaluation of the in situ vitrification melt expulsion at the Oak Ridge National Laboratory on April 21, 1996, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    On April 21, 1996, at 6:12 p.m., approximately 20 tons of molten glass were expelled from a 216-ton body of molten (approximately 1600 degrees C) radioactively contaminated soil (containing 2.4 Ci of 137 Cs) at a field site at the Oak Ridge National Laboratory in Oak Ridge, Tennessee. The melt expulsion was caused by pressurized steam venting rapidly through, rather than by the desired path around, the molten body. During the previous 17 days, an old seepage pit was undergoing in situ vitrification (ISV) to convert it from porous, leachable soil into a monolithic, impermeable vitreous waste form. Approximately 2 MW of electrical power was being delivered to the molten body, which was contained in the ground and covered with a stainless steel hood maintained under negative pressure to collect, filter, scrub, and monitor off-gas. Off-gas into the hood was rapidly heated by the melt expulsion from a typical operating temperature of 250 degrees C to over 1000 degrees C with an associated surge of pressure sufficient to lift the 15,000-lb hood approximately 12 in. off the ground. A small pool of molten glass was able to flow up to 3 ft outside the hood while it was raised off the ground. The escaping hot off-gas and molten glass ignited several small fires in combustible components near or attached to the external hood frame (e.g, wire insulation, plastic hose, fiberglass trays). Fire department personnel responded to the emergency notification within minutes but were not needed because the small fires self-extinguished within an hour. Four project personnel were performing tasks at the site at the time of the melt expulsion; none were injured or contaminated during the melt expulsion incident. Air samples taken from the hood perimeter near the small fires failed to detect any airborne contamination

  17. Reuse of East Tennessee Technology Park (Former K-25 Site) on the Oak Ridge Reservation: Progress, Problems, and Prospects

    International Nuclear Information System (INIS)

    Gawarecki, S.L.

    2009-01-01

    East Tennessee Technology Park (ETTP) is the former K-25 site on the Department of Energy's (DOE) Oak Ridge Reservation, Tennessee. ETTP is currently undergoing decontamination and decommissioning to support reuse by the private sector. The DOE initiated a re-industrialization program in 1996, forming the Community Reuse Organization of East Tennessee (CROET) to provide a means of leasing unused facilities at ETTP to private sector businesses. In 2003 under a changed policy direction, DOE implemented an Accelerated Cleanup Plan to remediate ETTP, as many of the buildings are contaminated with radiological constituents (including enriched uranium) and a variety of hazardous substances. In anticipation of transition of the site to a private sector industrial park and to support a nearby residential development, the City of Oak Ridge has taken title to the fire station and a portion of the utilities on site. Acquisition of the water and wastewater utilities by the city has been challenging. The city has embarked on a three-phase process that will enable it to provide electricity to the site and take ownership of on-site electric utilities. Title transfers of potentially contaminated property require an Environmental Baseline Survey and a Covenant Deferral. Two businesses that lease facilities from CROET desire to own the lightly contaminated buildings that they occupy. To date DOE has not enabled these transfers to take place due to indemnification questions and what company options are regarding the remnant contamination. There is significant potential for heritage tourism attractions at ETTP, including a railway station museum and commemoration of the U-shaped K-25 building. DOE is part of International Atomic Energy Agency's (IAEA) International Decommissioning Network. The site's successes are models for re-utilization of nuclear facilities elsewhere in the world. The 'lessons learned' at ETTP enhance IAEA's understanding of the difficulties encountered as nuclear

  18. Construction and operation of Clinch River Breeder Reactor Plant, docket no. 50-537, Oak Ridge, Roane County, Tennessee

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Construction and operation of the Clinch River Breeder Reactor Plant (CRBRP) in Oak Ridge, Tennessee are proposed. The CRBRP would use a liquid-sodium-cooled fast-breeder reactor to produce 975 megawatts of thermal energy (MWt) with the initial core loading of uranium- and plutonium-mixed oxide fuel. This heat would be transferred by heat exchangers to nonradioactive sodium in an intermediate loop and then to a steam cycle. A steam turbine generator would use the steam to produce 380 megawatts of electrical capacity (MWe). Future core design might result in gross power ratings of 1,121 MWt and 439 MWe. Exhaust steam from the turbine generator would be cooled in condensers using two mechanical draft cooling towers. The principal benefit would be the demonstration of the LMFBR concept for commercial use. Electricity generated would be a secondary benefit. Other impacts and effects are discussed

  19. Lease of Parcel ED-1 of the Oak Ridge Reservation by the East Tennessee Economic Council

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The US Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1113) for the proposed lease of 957.16 acres of the Oak Ridge Reservation (ORR) to the East Tennessee Economic Council (ETEC), a non-profit community organization, for a period of 10 years, with an option for renewal. ETEC proposes to develop an industrial park on the leased site to provide employment opportunities for DOE and contractor employees affected by decreased federal funding. Based on the results of the analysis reported in the EA and implementation of mitigation measures defined in this Finding of No Significant Impact (FONSI), DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement (EIS) is not necessary, and DOE is issuing this mitigated FONSI. DOE will implement a Mitigation Action Plan for this project and provide annual reports on mitigation and monitoring.

  20. Sampling and analysis plan for the gunite and associated tanks interim remedial action, wall coring and scraping at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-02-01

    This Sampling and Analysis Plan documents the procedures for collecting and analyzing wall core and wall scraping samples from the Gunite and Associated Tanks. These activities are being conducted to support the Comprehensive Environmental Response, Compensation, and Liability Act at the gunite and associated tanks interim remedial action at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The sampling and analysis activities will be performed in concert with sludge retrieval and sluicing of the tanks. Wall scraping and/or wall core samples will be collected from each quadrant in each tank by using a scraping sampler and/or a coring drill deployed by the Houdini robot vehicle. Each sample will be labeled, transported to the Radioactive Materials Analytical Laboratory, and analyzed for physical and radiological characteristics, including total activity, gross alpha, gross beta, radioactive strontium and cesium, and other alpha- and gamma-emitting radionuclides. The data quality objectives process, based on US Environmental Protection Agency guidance, was applied to identify the objectives of this sampling and analysis. The results of the analysis will be used to (1) validate predictions of a strontium concrete diffusion model, (2) estimate the amount of radioactivity remaining in the tank shells, (3) provide information to correlate with measurements taken by the Gunite Tank Isotope Mapping Probe and the Characterization End Effector, and (4) estimate the performance of the wall cleaning system. This revision eliminates wall-scraping samples from all tanks, except Tank W-3. The Tank W-3 experience indicated that the wall scrapper does not collect sufficient material for analysis

  1. Field sampling and analysis plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.L.; Ashwood, T.L.; Borders, D.M.; Chidambariah, V.; Downing, D.J.; Fontaine, T.A.; Ketelle, R.H.; Lee, S.Y.; Miller, D.E.; Moore, G.K.; Suter, G.W.; Tardiff, M.F.; Watts, J.A.; Wickliff, D.S.

    1992-02-01

    This field sampling and analysis (S & A) plan has been developed as part of the Department of Energy`s (DOE`s) remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) located in Oak Ridge, Tennessee. The S & A plan has been written in support of the remedial investigation (RI) plan for WAG 2 (ORNL 1990). WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake (WOL), White Oak Creek embayment (WOCE) on the Clinch River, and the associated floodplain and subsurface environment (Fig. 1.1). The WOC system is the surface drainage for the major ORNL WAGs and has been exposed to a diversity of contaminants from operations and waste disposal activities in the WOC watershed. WAG 2 acts as a conduit through which hydrologic fluxes carry contaminants from upgradient areas to the Clinch River. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This document describes the following: an overview of the RI plan, background information for the WAG 2 system, and objectives of the S & A plan; the scope and implementation of the first 2 years of effort of the S & A plan and includes recent information about contaminants of concern, organization of S & A activities, interactions with other programs, and quality assurance specific to the S & A activities; provides details of the field sampling plans for sediment, surface water, groundwater, and biota, respectively; and describes the sample tracking and records management plan.

  2. Chemometric characterization of gamma irradiated chestnuts from Turkey

    International Nuclear Information System (INIS)

    Barreira, João C.M.; Antonio, Amilcar L.; Günaydi, Tugba; Alkan, Hasan; Bento, Albino; Luisa Botelho, M.

    2012-01-01

    Chestnut (Castanea sativa Miller) is a valuable natural resource, with high exportation levels. Due to their water content, chestnuts are susceptible to storage problems like dehydration or development of insects and microorganisms. Irradiation has been revealing interesting features to be considered as an alternative conservation technology, increasing food products shelf-life. Any conservation methodology should have a wide application range. Hence, and after evaluating Portuguese cultivars, the assessment of irradiation effects in foreign cultivars might act as an important indicator of the versatility of this technology. In this work, the effects of gamma irradiation (0.0, 0.5 and 3.0 kGy) on proximate composition, sugars, fatty acids (FA) and tocopherols composition of Turkish chestnuts stored at 4 °C for different periods (0, 15 and 30 days) were evaluated. Regarding proximate composition, the storage time (ST) had higher influence than the irradiation dose (ID), especially on fat, ash, carbohydrates and energetic value. Sucrose exhibited similar behavior in response to the assayed ST and ID. The prevalence of ST influence was also verified for FA, tocopherols and sucrose. Lauric, palmitoleic and linolenic acids were the only FA that underwent some differences with ID. Saturated, monounsaturated and polyunsaturated fatty acids levels were not affected either by storage or irradiation. α-Tocopherol was the only vitamer with significant differences among the assayed ST and ID. Overall, Turkish cultivars showed a compositional profile closely related with Portuguese cultivars, and seemed to confirm that gamma irradiation in the applied doses did not change chestnut chemical and nutritional composition. - Highlights: ► γ-irradiation was applied to Turkish chestnuts as a conservation method. ► Doses till 3 kGy did not affect chestnuts nutritional parameters. ► Storage time influenced chestnuts chemical composition. ► Irradiation might be a suitable

  3. The February 21, 1993 tornadoes of East Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, K.E.; Kornegay, F.C. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1993-08-11

    A series of tornadoes struck the east Tennessee area on Sunday afternoon, February 21, 1993 around Knoxville, Lenoir City, and Oak Ridge causing millions of dollars worth of damage to both homes and businesses in the area, killing one, injuring a number of persons, and leaving a large area without power for many hours or even days due to damage to the local TVA transmission line network. One tornado touched down in the Department of Energy Oak Ridge Reservation near the Oak Ridge Y-12 Plant, continued through the Union Valley business district located just east of the plant, through the adjacent University of Tennessee Arboretum and then continued into the communities of Claxton and Powell. The path length of the tornado was approximately 13 miles. Damage to the Y-12 Plant was minimal, but the Union Valley business district was seriously damaged, including the Fusion Energy Design Center (FEDC) which houses a number of DOE related projects. The preliminary cost estimate of the damage to DOE facilities (both at Y-12 and at the FEDC) was around $520,000. This paper describes the local meteorological data, the tornado that struck near the Y-12 plant, the resulting damage both to the DOE facilities and to the surrounding communities, the plant emergency response and recovery activities, and the current hazard analyses being undertaken at the plant.

  4. The February 21, 1993 tornadoes of East Tennessee

    International Nuclear Information System (INIS)

    Fricke, K.E.; Kornegay, F.C.

    1993-01-01

    A series of tornadoes struck the east Tennessee area on Sunday afternoon, February 21, 1993 around Knoxville, Lenoir City, and Oak Ridge causing millions of dollars worth of damage to both homes and businesses in the area, killing one, injuring a number of persons, and leaving a large area without power for many hours or even days due to damage to the local TVA transmission line network. One tornado touched down in the Department of Energy Oak Ridge Reservation near the Oak Ridge Y-12 Plant, continued through the Union Valley business district located just east of the plant, through the adjacent University of Tennessee Arboretum and then continued into the communities of Claxton and Powell. The path length of the tornado was approximately 13 miles. Damage to the Y-12 Plant was minimal, but the Union Valley business district was seriously damaged, including the Fusion Energy Design Center (FEDC) which houses a number of DOE related projects. The preliminary cost estimate of the damage to DOE facilities (both at Y-12 and at the FEDC) was around $520,000. This paper describes the local meteorological data, the tornado that struck near the Y-12 plant, the resulting damage both to the DOE facilities and to the surrounding communities, the plant emergency response and recovery activities, and the current hazard analyses being undertaken at the plant

  5. Residues of diflubenzuron on horse chestnut (Aesculus hippocastanum) leaves and their efficacy against the horse chestnut leafminer, Cameraria ohridella.

    Science.gov (United States)

    Nejmanová, Jana; Cvacka, Josef; Hrdý, Ivan; Kuldová, Jelena; Mertelík, Josef; Muck, Alexander; Nesnerová, Petra; Svatos, Ales

    2006-03-01

    Residues of the insect growth regulator diflubenzuron were quantified on horse chestnut (Aesculus hippocastanum L.) leaves treated with a diflubenzuron 480 g litre(-1) SC, Dimilin. To analyse the samples, an analytical procedure was developed involving a simple extraction step followed by high-performance liquid chromatography on an octadecyl-modified silica column with methanol + 0.01 M ammonium acetate mobile phase. The results showed diflubenzuron to be highly stable on horse chestnut leaves; more than 4 months (127 days) after application, 38% (on average) of the insecticide still remained on/in the leaves. The data confirmed biological observations showing diflubenzuron's long-term efficacy against the horse chestnut leafminer, Cameraria ohridella Deschka and Dimić, which is the most important pest of the horse chestnut in Europe. The hypothesis of possible penetration of diflubenzuron into the leaf mass is explored and discussed.

  6. Work plan for support to Upper East Fork Poplar Creek east end VOC plumes well installation project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    Under the Resource Conservation and Recovery Act of 1976 guidelines and requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire Oak Ridge Reservation (ORR) was placed on the National Priorities List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) sites in November 1989. Following CERCLA guidelines, sites within the ORR require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) or an engineering evaluation/cost analysis (EE/CA) of potential remedial actions. Data from monitoring wells at the east end of the Y-12 Plant have identified an area of groundwater contamination dominated by the volatile organic compound (VOC) carbon tetrachloride; other VOCs include chloroform, tetrachloroethene, and trichloroethene

  7. Work plan for support to Upper East Fork Poplar Creek east end VOC plumes well installation project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Under the Resource Conservation and Recovery Act of 1976 guidelines and requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire Oak Ridge Reservation (ORR) was placed on the National Priorities List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) sites in November 1989. Following CERCLA guidelines, sites within the ORR require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) or an engineering evaluation/cost analysis (EE/CA) of potential remedial actions. Data from monitoring wells at the east end of the Y-12 Plant have identified an area of groundwater contamination dominated by the volatile organic compound (VOC) carbon tetrachloride; other VOCs include chloroform, tetrachloroethene, and trichloroethene.

  8. Field grouting summary report on the WAG 4 seeps 4 and 6 removal action project, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Appendixes A--D

    International Nuclear Information System (INIS)

    1997-05-01

    During the summer of 1996, a unique multi-phase, multi-stage, low-pressure permeation grouting pilot program was performed inside portions of four unlined waste disposal trenches at Waste Area Grouping (WAG) 4 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The project was deemed a non-time-critical removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); however, due to a history of heavy precipitation in the fall, the schedule was fast-tracked to meet an October 31, 1996 grouting completion data. The technical objective of the removal action was to reduce the off-site transport of Strontium 90 ( 90 Sr) by grouting portions of four waste disposal trenches believed to be responsible for over 70% of the 90 Sr leaving the site. A goal of the grouting operation was to reduce the average in situ hydraulic conductivity of the grouted waste materials to a value equal to or less than 1 X 10 -6 cm/sec. This target hydraulic conductivity value was established to be at least two orders of magnitude lower than that of the surrounding natural ground. The main report describes brief background to the project, describes and analyzes the grouting operations, draws conclusions from the work performed, and presents some of the lessons learned. Appendices contain: (A) pipe driving records; (B) casing grout injection records; (C) in-situ hydraulic conductivity testing records; and (D) grout quality control testing records

  9. Microgravity survey of the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Kaufmann, R.D.

    1996-05-01

    Karst features are known to exist within the carbonate bedrock of the Oak Ridge K-25 Site and may play an important role in groundwater flow and contaminant migration. This report discusses the results of a microgravity survey of the Oak Ridge K-25 Site. The main objective of the survey is to identify areas containing bedrock cavities. Secondary objectives included correlating the observed gravity to the geology and to variations in overburden thickness. The analysis includes 11 profile lines that are oriented perpendicular to the geologic strike and major structures throughout the K-25 Site. The profile lines are modeled in an effort to relate gravity anomalies to karst features such as concentrations of mud-filled cavities. Regolith thickness and density data provided by boreholes constrain the models. Areally distributed points are added to the profile lines to produce a gravity contour map of the site. In addition, data from the K-901 area are combined with data from previous surveys to produce a high resolution map of that site. The K-25 Site is located in an area of folded and faulted sedimentary rocks within the Appalachian Valley and Ridge physiographic province. Paleozoic age rocks of the Rome Formation, Knox Group, and Chickamauga Supergroup underlie the K-25 Site and contain structures that include the Whiteoak Mountain Fault, the K-25 Fault, a syncline, and an anticline. The mapped locations of the rock units and complex structures are currently derived from outcrop and well log analysis

  10. Oak Ridge Dose Reconstruction Project Summary Report; Reports of the Oak Ridge Dose Reconstruction, Vol. 7

    International Nuclear Information System (INIS)

    Widner, Thomas E.; email = twidner@jajoneses.com

    1999-01-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel of individuals appointed by Tennessee's Commissioner of Health. The panel requested that the principal investigator for the project prepare the following report, ''Oak Ridge Dose Reconstruction Project Summary Report,'' to serve the following purposes: (1) summarize in a single, less technical report, the methods and results of the various investigations that comprised the Phase II of the dose reconstruction; (2) describe the systematic searching of classified and unclassified historical records that was a vital component of the project; and (3) summarize the less detailed, screening-level assessments that were performed to evaluate the potential health significance of a number of materials, such a uranium, whose priority did not require a complete dose reconstruction effort. This report describes each major step of the dose reconstruction study: (1) the review of thousands of historical records to obtain information relating to past operations at each facility; (2) estimation of the quantity and timing of releases of radioiodines from X-10, of mercury from Y-12, of PCB's from all facilities, and of cesium-137 and other radionuclides from White Oak Creek; (3) evaluation of the routes taken by these contaminants through the environment to nearby populations; and (4) estimation of doses and health risks to exposed groups. Calculations found the highest excess cancer risks for a female born in 1952 who drank goat milk; the highest non-cancer health risk was for children in a farm family exposed to PCBs in and near East Fork Poplar Creek. More detailed

  11. Assessment of the chestnut production weather dependence

    Science.gov (United States)

    Pereira, Mário; Caramelo, Liliana; Gouveia, Célia; Gomes-Laranjo, José

    2010-05-01

    The vegetative cycle of chestnut trees is highly dependent on weather. Photosynthesis and pollen germination are mainly conditioned by the air temperature while heavy precipitation and strong wind have significant impacts during the flushing phase period (Gomes-Laranjo et al., 2005, 2006). In Portugal, chestnut tree orchads are located in mountainous areas of the Northeast region of Trás-os-Montes, between 600 and 1000 m of altitude. Topography controls the atmospheric environment and assures adequate conditions for the chestnut production. In the above mentioned context, remote sensing plays an important role because of its ability to monitor and characterise vegetation dynamics. A number of studies, based on remote sensing, have been conducted in Europe to analyse the year-to-year variations in European vegetation greenness as a function of precipitation and temperature (Gouveia et al., 2008). A previous study focusing on the relationship between meteorological variables and chestnut productivity provides indication that simulation models may benefit from the incorporation of such kind of relationships. The aim of the present work is to provide a detailed description of recent developments, in particular of the added value that may be brought by using satellite data. We have relied on regional fields of the Normalized Difference Vegetation Index (NDVI) dataset, at 8-km resolution, provided by the Global Inventory Monitoring and Modelling System (GIMMS) group. The data are derived from the Advanced Very High Resolution Radiometers (AVHRR), and cover the period from 1982 to 2006. Additionally we have used the chestnut productivity dataset, which includes the annual values of chestnut production and area of production provided by INE, the National Institute of Statistics of Portugal and the meteorological dataset which includes values of several variables from different providers (Meteorod, NCEP/NCAR, ECA&D and national Meteorological Institute). Results show that

  12. Department of Energy - Oak Ridge Operations and URS - CH2M Oak Ridge LLC. Partnering Framework for the Cleanup of the East Tennessee Technology Park, Oak Ridge, Tennessee, USA - 12348

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Allen L. [URS - CH2M Oak Ridge LLC (UCOR), East Tennessee Technology Park D and D and Environmental Remediation Project, Oak Ridge, Tennessee 37830 (United States)

    2012-07-01

    The cleanup and re-industrialization of the East Tennessee Technology Park (ETTP) hinges on a collaborative working relationship between the cleanup contractor and the U.S. Department of Energy's (DOE)-Oak Ridge Office (ORO). A Partnering Framework document was signed on June 30, 2011, with an ultimate goal of completing the contract scope of work ahead of schedule and under budget. This partnering process was the first time that DOE and its contractor, jointly developed and signed such an agreement before the contractor assumed management responsibilities of the Site. A strong desire of both parties to utilize a partnering approach in the performance of their respective responsibilities is evident. The Partnering Framework was modeled after a partnering process employed by the California Department of Transportation, Division of Construction. This partnering process has been used successfully by the California Department of Transportation and its major contractors for many years with great success. The partnering process used at ETTP was a phased approach. First, a Partnering Framework document was developed and signed June 30, 2011, by the Partnering Sponsors, the two leaders of the ETTP cleanup and re-industrialization project, the DOE-ORO Assistant Manager for Environmental Management and the contractor's President and Program Manager. In this way the partnering process could begin when the contactor assumed ETTP Site management responsibilities on August 1, 2011. The Partnering Framework then set the stage for the second phase of the partnering process which would be development of the Partnering Agreement and the kick-off of the first of a number of facilitated Partnering Workshops. Key elements of the Partnering Framework document include: (1) a statement of commitment which affirms the desire of both parties to work collaboratively toward the cleanup and re-industrialization of the ETTP Site; (2) a vision which describes both parties ultimate goal

  13. Department of Energy - Oak Ridge Operations and URS - CH2M Oak Ridge LLC. Partnering Framework for the Cleanup of the East Tennessee Technology Park, Oak Ridge, Tennessee, USA - 12348

    International Nuclear Information System (INIS)

    Schubert, Allen L.

    2012-01-01

    The cleanup and re-industrialization of the East Tennessee Technology Park (ETTP) hinges on a collaborative working relationship between the cleanup contractor and the U.S. Department of Energy's (DOE)-Oak Ridge Office (ORO). A Partnering Framework document was signed on June 30, 2011, with an ultimate goal of completing the contract scope of work ahead of schedule and under budget. This partnering process was the first time that DOE and its contractor, jointly developed and signed such an agreement before the contractor assumed management responsibilities of the Site. A strong desire of both parties to utilize a partnering approach in the performance of their respective responsibilities is evident. The Partnering Framework was modeled after a partnering process employed by the California Department of Transportation, Division of Construction. This partnering process has been used successfully by the California Department of Transportation and its major contractors for many years with great success. The partnering process used at ETTP was a phased approach. First, a Partnering Framework document was developed and signed June 30, 2011, by the Partnering Sponsors, the two leaders of the ETTP cleanup and re-industrialization project, the DOE-ORO Assistant Manager for Environmental Management and the contractor's President and Program Manager. In this way the partnering process could begin when the contactor assumed ETTP Site management responsibilities on August 1, 2011. The Partnering Framework then set the stage for the second phase of the partnering process which would be development of the Partnering Agreement and the kick-off of the first of a number of facilitated Partnering Workshops. Key elements of the Partnering Framework document include: (1) a statement of commitment which affirms the desire of both parties to work collaboratively toward the cleanup and re-industrialization of the ETTP Site; (2) a vision which describes both parties ultimate goal of safe

  14. Calendar Year 1997 Annual Groundwater Monitoring Report For The Upper East Fork Poplar Creek Hydrogeologic Regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.

    1998-02-01

    This report contains the groundwater monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation Wd Recovery Act (RCRA) post-closure permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) at the U.S. Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee. Issued by the Tennessee Department of Environment and Conservation (TDEC), the PCP defines the RCRA post-closure corrective action monitoring requirements for the portion of the groundwater contaminant plume that has migrated into the East Fork Regime ftom the S-3 Ponds, a closed RCW-regulated former surface impoundment located in Bear Creek Valley near the west end of the Y-12 Plant. In addition to the RCIL4 post-closure corrective action monitoring results, this report contains the groundwater and surface water monitoring data obtained during CY 1997 to fulfill requirements of DOE Order 5400.1.

  15. Biological control of chestnut blight in Croatia: an interaction between host sweet chestnut, its pathogen Cryphonectria parasitica and the biocontrol agent Cryphonectria hypovirus 1.

    Science.gov (United States)

    Krstin, Ljiljana; Katanić, Zorana; Ježić, Marin; Poljak, Igor; Nuskern, Lucija; Matković, Ivana; Idžojtić, Marilena; Ćurković-Perica, Mirna

    2017-03-01

    Chestnut blight, caused by the fungus Cryphonectria parasitica, is a severe chestnut disease that can be controlled with naturally occurring hypoviruses in many areas of Europe. The aim of this research was to measure the effect of different Cryphonectria hypovirus 1 (CHV1) strains on the growth of the fungal host and select strains that could potentially be used for human-mediated biocontrol in forests and orchards, and to investigate whether and how chestnut-fungus-virus interactions affect the development and growth of the lesion area on cut stems. Two Croatian CHV1 strains (CR23 and M56/1) were selected as potential biocontrol agents. The sequencing of CHV1/ORF-A showed that both of these virus strains belonged to the Italian subtype of CHV1. In vitro transfection of selected virus strains from hypovirulent to genetically diverse virus-free fungal isolates and subsequent inoculation of all virus/fungus combinations on stems of genetically diverse sweet chestnut trees revealed that Croatian virus strain CR23 had an equally hypovirulent effect on the host as the strong French strain CHV1-EP713, while M56/1 had a weaker effect. Furthermore, it was shown that in some cases the same hypovirus/fungus combinations induced various degrees of canker development on different chestnut genotypes. Some CHV1 strains belonging to the Italian subtype have similar hypovirulent effects on C. parasitica to those belonging to the French subtype. Furthermore, chestnut susceptibility and recovery could be influenced by the response of chestnut trees to particular hypovirulent C. parasitica isolates, and virus-fungus-chestnut interactions could have significant implications for the success of chestnut blight biocontrol. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. National Program of Inspection of Non-Federal Dams, Tennessee. Lambert Dam (Inventory Number TN 00901), Little Tennessee River Basin, near Six Mile, Blount County, Tennessee. Phase I Investigation Report,

    Science.gov (United States)

    1981-09-01

    the aam was inspected on October 17, 1963 by William P. Clark of the Tennessee Valley Authority. A written report and photos of this...region is characterized by series of alternate linear ridges and valleys extending in the southwest-northeast direction. The over- burden at the dam site...dozen homes are located along An earthei, dam impounding the six mile creek below the dam about 15 acres of water slowly in the Chota

  17. Response to comments on remedial investigation report for the Plating Shop Container Areas (S-334 and S-351) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-12-01

    The Plating Shop Container Storage Areas site is composed of two solid waste management units (SWMUs) designated S-334 and S-351. Both SWMUs were previously sampled during a remedial investigation (RI) in 1989. Samples were collected at the ground surface, 2 ft below the ground surface, and 4 ft below the ground surface. Beryllium, chromium, cyanide, lead, uranium, and nickel were detected at slightly elevated concentrations at both SWMU locations within the site. The samples were not analyzed for organics. The samples collected for the Resource Conservation and Recovery Act Facility Investigation (RFI) should have been analyzed for volatile organic contaminants. The site was resampled in August 1991. Samples were collected from between 1 ft to 3 ft from the boreholes drilled for the original RFI. In addition, samples were obtained from the same depth horizons that were sampled previously. These additional samples were analyzed for volatile organics. Tetrachloroethene was detected in some of the samples at concentrations up to 86 μg/kg. The baseline risk assessment was revised to incorporate the organic sampling data. The risks are unchanged as a result of information from the latest sampling effort (10 -7 ). This report, ES/ER-36 ampersand D2, is a companion document to Es/ER-36 ampersand D1, Remedial Investigation Report, Plating Shop Container Areas (S-334 and S-351), Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

  18. Risk characterization data manual for Category D inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    This manual reports the results of a risk characterization of Category D inactive liquid low-level radioactive waste (LLLW) underground storage tanks (Uses) at the Oak Ridge National Laboratory (ORNL). The risk characterization is required by the Federal Facility Agreement between the Department of Energy-Oak Ridge Operations Office, the Environmental Protection Agency-Region IV, and the Tennessee Department of Environment and Conservation. The intent of the risk characterization is to determine relative priorities for assessment and remediation. A total of 55 FFA Category D inactive LLLW tanks are discussed in this manual. Of the 39 tanks at ORNL that have been accepted into the Environmental Restoration (ER) Program, all have been sampled for preliminary characterization, except for 5 tanks that were found to be empty plus I that was found not to exist. The remaining 16 tanks are in the Waste Management (WM) Program. Twelve were sampled for preliminary characterization, and four were found empty. Each sampled tank was scored on a scale of I to 5 on the basis of three criteria: (1) leak characteristics, (2) location, and (3) toxicological characteristics of residual sludges and liquids. Each criterion was assigned a weighing factor based on perceived importance. The criterion score multiplied by the weighting factor equaled the tank's total score for that criterion. The three weighted criterion scores for each tank were then summed for a total score for that tank. When the scores for all tanks had been weighted and summed, the tanks were ranked in descending order on the basis of their total scores. The highest possible score for a tank is 30. The descending rank order represents the recommended priorities for evaluation: the higher the score, the higher the priority for evaluation. Of the 54 tanks sampled in the risk characterization, 23 tanks scored 16 or higher, 11 scored between 10 and 15, 5 scored between 4 and 9, and 15 scored 3 or less

  19. Risk characterization data manual for Category D inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-07-01

    This manual reports the results of a risk characterization of Category D inactive liquid low-level radioactive waste (LLLW) underground storage tanks (USTs) at the Oak Ridge National Laboratory (ORNL). The risk characterization is required by the Federal Facility Agreement between the Department of Energy-Oak Ridge Operations Office, the Environmental Protection Agency-Region IV, and the Tennessee Department of Environment and Conservation. The intent of the risk characterization is to determine relative priorities for assessment and remediation. A total of 55 FFA Category D inactive LLLW tanks are discussed in this manual. Of the 39 tanks at ORNL that have been accepted into the Environmental Restoration (ER) Pregrain, all have been sampled for preliminary characterization, except for 5 tanks that were found to be empty plus 1 that was found not to exist. The remaining 16 tanks are in the Waste Management (WM) Program. Twelve were sampled for preliminary characterization, and four were found empty. Each sampled tank was scored on a scale of I to 5 on the basis of three criteria: (1) leak characteristics, (2) location, and (3) toxicological characteristics of residual sludges and liquids. Each criterion was assigned a weighing factor based on perceived importance. The criterion score multiplied by the weighting factor equaled the tank's total score for that criterion. The three weighted criterion scores for each tank were then summed for a total score for that tank. When the scores for all tanks had been weighted and summed, the tanks were ranked in descending order on the basis of their total scores. The highest possible score for a tank is 30. The descending rank order represents the recommended priorities for evaluation: the higher the score, the higher the priority for evaluation. Of the 54 tanks sampled in the risk characterization, 23 tanks scored 16 or higher, 11 scored between 10 and 15, 5 scored between 4 and 9, and 15 scored 3 or less

  20. Effectiveness evaluation of three RCRA caps at the Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Shevenell, L.A. [Nevada Bureau of Mines and Geology, Reno, NV (United States); Goldstrand, P.M. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Geological Sciences

    1994-01-01

    Because installation of Resource Conservation and Recovery Act (RCRA)- engineered caps is costly, it is prudent to evaluate the effectiveness of this procedure for hydrologically isolating contaminants. The objective for installation of five-part engineered caps at the Y-12 Plant was to (1) satisfy the regulatory compliance issues, (2) minimize the risk of direct contact with the wastes, and (3) reduce rainfall infiltration. Although the original objectives of installing the caps were not to alter groundwater flow, a potential effect of reducing infiltration is to minimize leaching, thus retarding groundwater contaminant migration from the site. Hence, cap effectiveness with respect to reduced groundwater contaminant migration is evaluated using groundwater data in this report. Based on the available data at the Y-12 capped areas, evaluation of cap effectiveness includes studying water level and chemical variability in nearby monitoring wells. Three caps installed during 1989 are selected for evaluation in this report. These caps are located in three significantly different hydrogeologic settings: overlying a karst aquifer (Chestnut Ridge Security Pits [CRSP]), overlying shales located on a hill slope (Oil Landfarm Waste Management Area [OLWMA]), and overlying shales in a valley floor which is a site of convergent groundwater flow (New Hope Pond [NHP]). Presumably, the caps have been effective in minimizing risk of direct contact with the wastes and halting direct rainfall infiltration into the sites over the extent of the capped areas, but no evidence is presented in this report to directly demonstrate this. The caps installed over the three sites appear to have had a minimal effect on groundwater contaminant migration from the respective sites. Following cap construction, no changes in the configuration of the water table were observed. Migration of contaminant plumes occurred at all three sites, apparently without regard to the timing of cap installation.

  1. Soil mechanics and analysis of soils overlying cavitose bedrock

    International Nuclear Information System (INIS)

    Drumm, E.C.

    1987-08-01

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs

  2. RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-04-01

    In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. In January 1993, the Closure Plan was revised to include inspection and maintenance criteria and to reflect that future monitoring and remediation would be conducted as part of the ongoing Comprehensive Environmental Response, Compensation, and Liability Act activities at the Oak Ridge Y-12 Plant. This Closure Plan revision is intended to reflect the placement of the Kerr Hollow Quarry debris at the Walk-In Pits, revise the closure dates, and acknowledge that the disposition of a monitoring well within the closure site cannot be verified

  3. Engineering evaluation/cost analysis for the proposed removal of contaminated materials at the Elza Gate site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-06-01

    This engineering evaluation/cost analysis (EE/CA) has been prepared in support of the proposed removal action for cleanup of radioactive and chemically contaminated soil at the Elza Gate site in Oak Ridge, Tennessee. This property became contaminated as a result of storage of ore residues, equipment, and other materials for the US Atomic Energy Commission. The US Department of Energy is responsible for cleanup of portions of the site under its Formerly Utilized Sites Remedial Action Program. In December 1990 an area known as Pad 1 was abrasively scoured to remove surface contamination, and in March 1991 removal of Pad 1 contamination was begun under a separate EE/CA. This EE/CA is intended to cover the remaining portions of the site for which the Department of Energy has responsibility. It has been determined that an EE/CA report is appropriate documentation for the proposed removal action. This EE/CA covers removal of contaminated soils and contaminated concrete rubble from the Elza Gate site. The primary objectives of this EE/CA report are to identify and describe the preferred removal action, and to document the selection of response activities that will mitigate the potential for release of contaminants from the property into the environment and that will minimize the associated threats to human health or welfare and the environment. The preferred alternative is disposition on the Oak Ridge Reservation. 30 refs., 7 figs., 12 tabs

  4. Modeling of radionuclide and heavy metal sorption around low and high pH waste disposal sites at Oak Ridge, Tennessee: Classification review package

    International Nuclear Information System (INIS)

    Saunders, J.A.

    1994-10-01

    Modeling of mineral precipitation and metal sorption reactions using MINTEQA2 and the iron oxyhydroxide diffuse-layer model has provided insights into geochemical processes governing contaminant migration from low-level radioactive waste disposal sites at the US Department of Energy's Oak Ridge National Laboratory and Y-12 Plant at Oak Ridge, Tennessee. Both acidic and basic nuclear-fuel reprocessing wastes, locally mixed with decontamination solvents, were disposed of in unlined trenches and lagoons. Model results show that as wastes move toward neutral pH due to reactions with surrounding soils and saprolite, mineral precipitation and sorption can limit the solubility of heavy metals and radionuclides. However, observed contaminant levels in monitoring wells indicate that at least locally, wastes are moving in faults and fractures and are not retarded by sorption reactions along such flow paths. Model results also support previous studies that have indicated organic complexing agents used in decontamination procedures can enhance radionuclide and heavy metal solubility when mixed with nuclear fuel reprocessing wastes. However, complex interactions between metal-organic complexes and mineral surfaces and natural organic matter, biodegradation, and fracture flow complicate the interpretation of contaminant mobility

  5. Site descriptions of environmental restoration units at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Kuhaida, A.J. Jr.; Parker, A.F.

    1997-02-01

    This report provides summary information on Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) sites as listed in the Oak Ridge Reservation Federal Facility Agreement (FFA), dated January 1, 1992, Appendix C. The Oak Ridge National Laboratory was built in 1943 as part of the World War II Manhattan Project. The original mission of ORNL was to produce and chemically separate the first gram-quantities of plutonium as part of the national effort to produce the atomic bomb. The current mission of ORNL is to provide applied research and development in support of the U.S. Department of Energy (DOE) programs in nuclear fusion and fission, energy conservation, fossil fuels, and other energy technologies and to perform basic scientific research in selected areas of the physical, life, and environmental sciences. ER is also tasked with clean up or mitigation of environmental impacts resulting from past waste management practices on portions of the approximately 37,000 acres within the Oak Ridge Reservation (ORR). Other installations located within the ORR are the Gaseous Diffusion Plant (K-25) and the Y-12 plant. The remedial action strategy currently integrates state and federal regulations for efficient compliance and approaches for both investigations and remediation efforts on a Waste Area Grouping (WAG) basis. As defined in the ORR FFA Quarterly Report July - September 1995, a WAG is a grouping of potentially contaminated sites based on drainage area and similar waste characteristics. These contaminated sites are further divided into four categories based on existing information concerning whether the data are generated for scoping or remedial investigation (RI) purposes. These areas are as follows: (1) Operable Units (OU); (2) Characterization Areas (CA); (3) Remedial Site Evaluation (RSE) Areas; and (4) Removal Site Evaluation (RmSE) Areas.

  6. Removal action work plan for the YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    The US Department of Energy is conducting environmental restoration activities at the Y-12 Plant in Oak Ridge, Tennessee. As part of these efforts, a removal action is planned for the former YS-860 Firing Ranges as described in the Action Memorandum for the project. This removal action work plan (RmAWP) is focused on the former YS-860 Firing Ranges, located outside the primary fenceline at the eastern end of the plant. This RmAWP defines the technical approach, procedures, and requirements for the removal of lead-contaminated soil and site restoration of the former YS-860 Firing Ranges at the Y-12 Plant. This RmAWP describes excavation, verification/confirmatory sampling, and reporting requirements for the project. Lower tier plans associated with the RmAWP, which are submitted as separate stand-alone documents, include a field sampling and analysis plan, a health and safety plan, a quality assurance project plan, a waste management plan, a data management implementation plan, and a best management practices plan. A site evaluation of the YS-86O Firing Ranges conducted in 1996 by Lockheed Martin Energy Systems, Inc., determined that elevated lead levels were present in the Firing Ranges target berm soils. The results of this sampling event form the basis for the removal action recommendation as described in the Action Memorandum for this project. This RmAWP contains a brief history and description of the Former YS-860 Firing Ranges Project, along with the current project schedule and milestones. This RmAWP also provides an overview of the technical requirements of the project, including a summary of the approach for the removal activities. Finally, the RmAWP identifies the regulatory requirements and the appropriate removal action responses to address applicable or relevant and appropriate requirements to achieve the project goals of substantially reducing the risk to human health and the environment

  7. Comprehensive preserving technique for Chinese chestnut storage

    International Nuclear Information System (INIS)

    Chen Yuntang; Yang Baoan; Zhang Jianwei; Li Qiufang

    2003-01-01

    Chinese chestnut can be preserved for a long time by using a comprehensive preserving technique, which consists of casing, irradiating, treating with preserving agent and controlling environment conditions. The shelftime of the treated chestnuts reaches 11 months keeping no insects, no germination and good quality for eating with the good fruit ratio of 97.5% and water losing ratio of 3.8%

  8. An economic analysis of a monitored retrievable storage site for Tennessee. Final report and appendices

    Energy Technology Data Exchange (ETDEWEB)

    Fox, W.F.; Mayo, J.W.; Hansen, L.T.; Quindry, K.E.

    1985-12-17

    The United States Department of Energy is charged with the task of identifying potential sites for a Monitored Retrievable Storage (MRS) Facility and reporting the results of its analysis to Congress by January 1986. DOE chose three finalist sites from 11 sites DOE analysts evaluated earlier. All three are in Tennessee, including two in Oak Ridge and one in Trousdale/Smith Counties. This paper is a summary of research undertaken on the economic effects of establishing the MRS facility in Tennessee. All three locations were considered in the analysis, but on some occasions attention is focused on the site preferred by DOE. The research was undertaken by the Center for Business and Economic Research (CBER), College of Business Administration, the University of Tennessee, Knoxville, under contract with the Tennessee Department of Economic and Community Development.

  9. Environmental Baseline Survey Report for the Title Transfer of Land Parcel ED-4 at the East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    SAIC

    2008-05-01

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of a land parcel referred to as 'ED-4' (ED-4) at the U. S. Department of Energy's (DOE's) East Tennessee Technology Park (ETTP). DOE is proposing to transfer the title of this land to the Heritage Center, LLC. Parcel ED-4 is a land parcel that consists of two noncontiguous areas comprising a total of approximately 18 acres located east of the ETTP. The western tract of ED-4 encompasses approximately 8.5 acres in the northeastern quadrant of the intersection of Boulevard Road and Highway 58. The eastern tract encompasses an area of approximately 9.5 acres in the northwestern quadrant of the intersection of Blair Road and Highway 58 (the Oak Ridge Turnpike). Aerial photographs and site maps from throughout the history of the ETTP, going back to its initial development in the 1940s as the Oak Ridge Gaseous Diffusion Plant (ORGDP), indicate that this area has been undeveloped woodland with the exception of three support facilities for workers constructing the ORGDP since federal acquisition in 1943. These three support facilities, which were located in the western tract of ED-4, included a recreation hall, the Town Hall Camp Operations Building, and the Property Warehouse. A railroad spur also formerly occupied a portion of Parcel ED-4. These former facilities only occupied approximately 5 percent of the total area of Parcel ED-4. This report provides supporting information for the transfer of this government-owned property at ETTP to a non-federal entity. This EBS is based upon the requirements of Sect. 120(h) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). In order to support a Clean Parcel Determination (CPD) in accordance with CERCLA Sect. 120(h)(4)(d), groundwater and sediment samples were collected within, and adjacent to, the Parcel ED-4 study area. The potential for DOE to make a CPD for ED-4 is

  10. Design assessment for the Bethel Valley FFA Upgrades at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    This report describes the proposed upgrades to Building 3025 and the Evaporator Area at Oak Ridge National Laboratory. Design assessments, specifications and drawings are provided. Building 3025 is a general purpose research facility utilized by the Materials and Ceramics Division to conduct research on irradiated materials. The Evaporator Area, building 2531, serves as the collection point for all low-level liquid wastes generated at the Oak Ridge National Laboratory

  11. Oak Ridge Dose Reconstruction Project Summary Report; Reports of the Oak Ridge Dose Reconstruction, Vol. 7

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Widner; et. al.

    1999-07-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel of individuals appointed by Tennessee's Commissioner of Health. The panel requested that the principal investigator for the project prepare the following report, ''Oak Ridge Dose Reconstruction Project Summary Report,'' to serve the following purposes: (1) summarize in a single, less technical report, the methods and results of the various investigations that comprised the Phase II of the dose reconstruction; (2) describe the systematic searching of classified and unclassified historical records that was a vital component of the project; and (3) summarize the less detailed, screening-level assessments that were performed to evaluate the potential health significance of a number of materials, such a uranium, whose priority did not require a complete dose reconstruction effort. This report describes each major step of the dose reconstruction study: (1) the review of thousands of historical records to obtain information relating to past operations at each facility; (2) estimation of the quantity and timing of releases of radioiodines from X-10, of mercury from Y-12, of PCB's from all facilities, and of cesium-137 and other radionuclides from White Oak Creek; (3) evaluation of the routes taken by these contaminants through the environment to nearby populations; and (4) estimation of doses and health risks to exposed groups. Calculations found the highest excess cancer risks for a female born in 1952 who drank goat milk; the highest non-cancer health risk was for children in a farm family exposed to PCBs in and near

  12. Cooperative test plots produce some promising Chinese and hybrid chestnut trees

    Science.gov (United States)

    Jesse D. Diller; Russell B. Clapper; Richard A. Jaynes

    1964-01-01

    In attempts to find a chestnut tree that is resistant to the blight fungus Endothia parasitica, Asiatic chestnuts have been imported and grown in this country, and tree breeders have worked to produce hybrid trees that might be suitable substitutes for the blight-susceptible American chestnut, Castanea dentate, in timber and nut...

  13. Federal Facility Agreement Annual Progress Report for Fiscal Year 1999 Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs Company LLC

    2000-01-01

    Environmental Response, Compensation, and Liability Act and/or the Resource Conservation and Recovery Act. This plan will be implemented by means of a Memorandum of Understanding (MOU) incorporating its terms with the United States EPA and TDEC. The majority of projects described in this report are grouped into five watersheds. They are the East Tennessee Technical Park (ETTP) Watershed (formerly the K-25 Site), the Melton Valley (MV) and Bethel Valley (BV) Watersheds at the Oak Ridge National Laboratory (ORNL), and the Bear Creek Valley (BCV) and Upper East Fork Poplar Creek (UEFPC) Watersheds at the Y-12 Plant.

  14. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment for the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-01-01

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material

  15. Proceedings of the Joint IAEA/CSNI Specialists` Meeting on Fracture Mechanics Verification by Large-Scale Testing held at Pollard Auditorium, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, C.E.; Bass, B.R.; Keeney, J.A. [comps.] [Oak Ridge National Lab., TN (United States)

    1993-10-01

    This report contains 40 papers that were presented at the Joint IAEA/CSNI Specialists` Meeting Fracture Mechanics Verification by Large-Scale Testing held at the Pollard Auditorium, Oak Ridge, Tennessee, during the week of October 26--29, 1992. The papers are printed in the order of their presentation in each session and describe recent large-scale fracture (brittle and/or ductile) experiments, analyses of these experiments, and comparisons between predictions and experimental results. The goal of the meeting was to allow international experts to examine the fracture behavior of various materials and structures under conditions relevant to nuclear reactor components and operating environments. The emphasis was on the ability of various fracture models and analysis methods to predict the wide range of experimental data now available. The individual papers have been cataloged separately.

  16. Remedial site evaluation report for the waste area grouping 10 wells associated with the new hydrofracture facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary

    International Nuclear Information System (INIS)

    1996-08-01

    The Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is operated for the U.S. Department of Energy (DOE) by Lockheed Martin Energy System (Energy Systems). ORNL has pioneered waste disposal technologies since World War II as part of its DOE mission. In the late 1950s, at the request of the National Academy of Sciences, efforts were made to develop a permanent disposal alternative to the surface and tanks at ORNL. One such technology, the hydrofracture process, involved inducing fractures in a geologic host formation (a low-permeability shale) at depths of up to 1100 ft and injecting a radioactive grout slurry containing low-level liquid or tank sludge waste, cement, and other additives at an injection pressure of 2000 to 8500 psi. The objective of the effort was to develop a grout dig could be injected as a slurry and would solidify after injection, thereby entombing the radioisotopes contained in the low-level liquid or tank sludge waste. Four sites at ORNL were used: two experimental (HF-1 and HF-2); one developmental, later converted to batch process [Old Hydrofracture Facility (BF-3)]; and one production facility [New Hydrofracture Facility (BF-4)]. This document provides the environmental, restoration program with information about the the results of an evaluation of WAG 10 wells associated with the New Hydrofracture Facility at ORNL

  17. Annual Report for 2008 - 2009 Detection Monitoring at the Environmental Management Waste Management Facility, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Walker J.R.

    2010-03-01

    This annual Environmental Monitoring Report (EMR) presents results of environmental monitoring performed during fiscal year (FY) 2009 (October 1, 2008 - September 30, 2009) at the Environmental Management Waste Management Facility (EMWMF). The EMWMF is an operating state-of-the-art hazardous waste landfill located in Bear Creek Valley (BCV) west of the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee (Appendix A, Fig. A.1). Opened in 2002 and operated by a DOE prime contractor, Bechtel Jacobs Company LLC (BJC), the EMWMF was built specifically to accommodate disposal of acceptable solid wastes generated from Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial actions for former waste sites and buildings that have been impacted by past DOE operations on the ORR and at DOE sites off the ORR within the state of Tennessee. Environmental monitoring at the EMWMF is performed to detect and monitor the impact of facility operations on groundwater, surface water, stormwater, and air quality and to determine compliance with applicable or relevant and appropriate requirements (ARARs) specified in governing CERCLA decision documents. Annually, the EMR presents an evaluation of the groundwater, surface water, stormwater, and air monitoring data with respect to the applicable EMWMF performance standards. The purpose of the evaluation is to: (1) identify monitoring results that indicate evidence of a contaminant release from the EMWMF to groundwater, surface water, stormwater, or air, and (2) recommend appropriate changes to the associated sampling and analysis requirements, including sampling locations, methods, and frequencies; field measurements; or laboratory analytes that may be warranted in response to the monitoring data. Sect. 2 of this annual EMR provides background information relevant to environmental monitoring at the landfill, including

  18. Emergency preparedness at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Skipper, M.N.

    1990-03-01

    Emergency preparedness for industry was commonly believed to be an essential responsibility on the part of management. Therefore, this study was conducted to research and accumulate information and data on emergency preparedness at Oak Ridge National Laboratory (ORNL). The objective of this study was to conduct a thorough evaluation of emergency preparedness knowledge among employees to determine if they were properly informed or if they needed more training. Also, this study was conducted to provide insight to management as to what their responsibility was concerning this training. To assess employee emergency preparedness knowledge, a questionnaire was developed and administered to 100 employees at ORNL. The data was analyzed using frequencies and percentages of response and was displayed through the use of graphs within the report. 22 refs., 22 figs

  19. Emergency preparedness at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Skipper, M.N.

    1990-03-01

    Emergency preparedness for industry was commonly believed to be an essential responsibility on the part of management. Therefore, this study was conducted to research and accumulate information and data on emergency preparedness at Oak Ridge National Laboratory (ORNL). The objective of this study was to conduct a thorough evaluation of emergency preparedness knowledge among employees to determine if they were properly informed or if they needed more training. Also, this study was conducted to provide insight to management as to what their responsibility was concerning this training. To assess employee emergency preparedness knowledge, a questionnaire was developed and administered to 100 employees at ORNL. The data was analyzed using frequencies and percentages of response and was displayed through the use of graphs within the report. 22 refs., 22 figs.

  20. Identification of horse chestnut coat color genotype using SNaPshot?

    OpenAIRE

    Rendo, Fernando; Iriondo, Mikel; Manzano, Carmen; Estonba, Andone

    2009-01-01

    Abstract Background The Cantabrian Coast horse breeds of the Iberian Peninsula have mainly black or bay colored coats, but alleles responsible for a chestnut coat color run in these breeds and occasionally, chestnut horses are born. Chestnut coat color is caused by two recessive alleles, e and ea, of the melanocortin-1 receptor gene, whereas the presence of the dominant, wild-type E allele produces black or bay coat horses. Because black or bay colored coats are considered as the purebred phe...

  1. Characterization of chestnut (Castanea sativa, mill starch for industrial utilization

    Directory of Open Access Journals (Sweden)

    Demiate Ivo Mottin

    2001-01-01

    Full Text Available Studies were conducted to characterize the chestnut and its starch. Chemical composition of the chestnuts showed high level of starch. Moisture level in the raw nuts was around 50g/100g in wet basis and starch content, around 80g/100g in dry basis; other nut flour components were protein (5.58 g/100g, lipid (5.39 g/100g, crude fiber (2.34 g/100g and ash (2.14 g/100g. Starch fraction was chemically characterized in order to identify the granule quality as compared with those of cassava and corn. This fraction showed more lipids and proteins than the other starches. Chestnut starch granules showed peculiar shape, smaller than the control starches and low amount of damaged units. Chemical composition concerning amylose : amylopectin ratio was intermediate to that presented by cassava and corn starch granules. Water absorption at different temperatures as well as solubility were also intermediate but closer to that presented by cassava granules. The same behavior was observed in the interaction with dimethyl-sulfoxide. Native starch granules and those submitted to enzymatic treatment with commercial alpha-amylase and also with enzymes from germinated wheat were observed by scanning electronic microscopy. Water suspensions of chestnut starch granules were heated to form pastes that were studied comparatively to those obtained with cassava and corn starches. Viscographic pattern of chestnut starch pastes showed a characteristic profile with high initial viscosity but peak absence, high resistance to mechanical stirring under hot conditions and high final viscosity. There was no way to compare it with the paste viscographic profiles obtained with the control starches. Chestnut starch pastes were stable down to pH 4 but unstable at pH 3. The water losses observed in the chestnut starch pastes after freeze-thaw cycles showed more similarity to the pattern observed in corn starch pastes as well as clarity and strength of the gel. In general the results

  2. Year 2000 estimated population dose for the Tennessee Valley region

    International Nuclear Information System (INIS)

    Fletcher, J.F.; Strauch, S.; Siegel, G.R.; Witherspoon, J.P.

    1976-01-01

    A comprehensive study has recently been completed of the potential regional radiological dose in the Tennessee and Cumberland river basins in the year 2000, resulting from the operation of nuclear facilities. This study, sponsored jointly by the U.S. Energy Research and Development Administration and the Tennessee Valley Authority, was performed by the Hanford Engineering Development Laboratory (HEDL), the Oak Ridge National Laboratory (ORNL), and the Atmospheric Turbulence and Diffusion Laboratory (ATDL). This study considered the operation in the year 2000 of 33,000 MWe of nuclear capacity within the study area, and of 110,000 MWe in adjacent areas, together with supporting nuclear fuel fabrication and reprocessing facilities. Air and water transport models used and methods for calculating nuclide concentrations on the ground are discussed

  3. Natural phenomena evaluation of the Department of Energy-field office Oak Ridge office buildings

    International Nuclear Information System (INIS)

    Rucker, R.W.; Fricke, K.E.; Hunt, R.J.

    1991-01-01

    The Department of Energy - Field Office Oak Ridge (DOE-OR) is performing natural phenomena evaluations of existing office buildings located in the city of Oak Ridge, Tennessee. The natural phenomena considered are earthquake, wind, and flood. The evaluations are being performed to determine if the facilities are in compliance with DOE General Design Criteria 6430.IA. This paper presents results of the evaluations for three of the office buildings

  4. 2014 Oak Ridge Reservation Annual Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Joan F. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The US Department of Energy’s (DOE’s) Oak Ridge Reservation (ORR) is located in Roane and Anderson counties in East Tennessee, about 40 km (25 miles) from Knoxville. ORR is one of DOE’s most unique and complex sites. It encompasses three major facilities and thousands of employees that perform every mission in the DOE portfolio—energy research, environmental restoration, national security, nuclear fuel supply, reindustrialization, science education, basic and applied research in areas important to US security, and technology transfer. ORR was established in the early 1940s as part of the Manhattan Project for the purposes of enriching uranium and pioneering methods for producing and separating plutonium. Today, scientists at the Oak Ridge National Laboratory (ORNL), DOE’s largest multipurpose national laboratory, conduct world-leading research in advanced materials, alternative fuels, climate change, and supercomputing. The Y-12 National Security Complex (Y-12 or Y-12 Complex) is vital to maintaining the safety, security, and effectiveness of the US nuclear weapons stockpile and reducing the global threat posed by nuclear proliferation and terrorism. The East Tennessee Technology Park (ETTP), a former uranium enrichment complex, is being transitioned to a clean, revitalized industrial park.

  5. Species differences in contaminants in fish on and adjacent to the Oak Ridge Reservation, Tennessee

    International Nuclear Information System (INIS)

    Burger, Joanna; Campbell, K.R.

    2004-01-01

    Risks to humans and other organisms from consuming fish have become a national concern in the USA. In this paper, we examine the concentrations of 137 Cs, arsenic, beryllium, cadmium, lead, mercury, and selenium in three species of fish from two river reaches adjacent to the US Department of Energy's Oak Ridge Reservation in Tennessee. We were interested in whether there were species and locational differences in radiocesium and metal concentrations and whether concentrations were sufficiently high to pose a potential health risk to humans or other receptors. Striped bass (Morone saxatilis) were significantly larger than white bass (M. chrysops), and crappie (Pomoxis spp.) were the smallest fish. Lead was significantly lower in striped bass, mercury was significantly higher in striped bass, and selenium was significantly higher in white bass compared to the other species. There were no other species differences in contaminants. White bass, the only species that was sufficiently abundant for a comparison, had significantly higher concentrations of cadmium, lead, and selenium in fillets from the Clinch River and significantly higher concentrations of mercury in fillets from Poplar Creek. The low concentrations of most contaminants in fish from the Clinch River do not appear to present a risk to humans or other consumers, although mercury concentrations in striped bass ranged as high as 0.79 ppm, well above the 0.5-ppm action level for human consumption of some US states

  6. Source document for waste area groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Osborne, P.L.; Kuhaida, A.J., Jr.

    1996-09-01

    This document serves as a source document for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other types of documents developed for and pertaining to Environmental Restoration (ER) Program activities at Oak Ridge National Laboratory (ORNL). It contains descriptions of the (1) regulatory requirements for the ORR ER Program, (2) Oak Ridge Reservation (ORR) ER Program, (3) ORNL site history and characterization, and (4) history and characterization of Waste Area Groupings (WAGS) 1-20. This document was created to save time, effort, and money for persons and organizations drafting documents for the ER Program and to improve consistency in the documents prepared for the program. By eliminating the repetitious use of selected information about the program, this document will help reduce the time and costs associated with producing program documents. By serving as a benchmark for selected information about the ER Program, this reference will help ensure that information presented in future documents is accurate and complete

  7. An application of safer for the Upper East Fork Poplar Creek characterization area at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Lutz, C.T.; Provost, C.A.

    1996-01-01

    The Streamlined Approach for Environmental Restoration (SAFER) has been applied at the US Department of Energy's Y-12 Plant in Oak Ridge, Tennessee. The Y-12 Plant is an operationally and hydrogeologically complex area located within the watershed of Upper East Fork Poplar Creek (UEFPC). The plant has been in operation since 1943 and nearly 175 potentially contaminated sites resulting from past waste management practices have been identified. The need to complete Remedial Investigations (RIs) for the sites in a timely and cost-effective manner has resulted in an approach that considers the entire watershed of UEFPC, which has been designated a open-quotes Characterization Areaclose quotes (CA). This approach emphasizes the watershed rather than individual sites, focuses on key questions and issues, and maximizes the use of existing data. The goal of this approach is to focus work toward the resolution of key questions and decisions necessary to complete the remediation of the CA. An evaluation of the potentially contaminated sites, the development of key questions, and the compilation and analysis of existing data are progressing. A SAFER workshop will be held in 1996, which will allow the project team and stakeholders to discuss the status of the RI, identify additional key questions and issues, and determine the activities necessary to complete the RI. This investigation demonstrates an approach to streamlining the RI process that could be applied successfully to other complex sites

  8. The American chestnut and fire: 6-year research results

    Science.gov (United States)

    Stacy L. Clark; Callie J. Schweitzer; Mike R. Saunders; Ethan P. Belair; Scott J. Torreano; Scott E. Schlarbaum

    2014-01-01

    American chestnut [Castanea dentata Marsh. (Borkh.)] is an iconic species with important ecological and utilitarian values, but was decimated by the mid-20th century by exotic fungal species fromAsia. Successful restoration will require sustainable silvicultural methods to maximize survival and afford chestnut a competitive advantage over natural vegetation. The study...

  9. Cytogenetic analysis of American chestnut (Castanea dentata) using fluorescent in situ hybridization.

    Science.gov (United States)

    MN Islam Faridi; CD Nelson; PH Sisco; TL Kubisiak; FV Hebard; RL Paris; RL Phillips

    2009-01-01

    The American chestnut (Castanea dentata), once known as ‘The King of the Forest’ in the Appalachian Mountains of the eastern United States and southeastern Canada, has been all but extirpated by chestnut blight disease caused by an Asiatic bark fungus, Cryphonectria parasitica. A group of scientists at The American Chestnut Foundation has been working since 1983 to...

  10. Assessing potential changes of chestnut productivity in Europe under future climate conditions

    Science.gov (United States)

    Calheiros, T.; Pereira, M. G.; Pinto, J. G.; Caramelo, L.; Gomes-Laranjo, J.; Dacamara, C. C.

    2012-04-01

    The European chestnut is cultivated for its nuts and wood. Several studies point to the dependency of chestnut productivity on specific soil and climate characteristics. For instance, this species dislikes chalky and poorly drained soils, appreciates sedimentary, siliceous and acidic to neutral soils. Chestnut trees also seems to appreciate annual mean values of sunlight spanning between 2400 and 2600 h, rainfall ranging between 600 and 1500 mm, mean annual temperature between 9 and 13°C, 27°C being the mean of the maximum temperature (Heiniger and Conedera, 1992; Gomes-Laranjo et al.,2008). The amount of heat between May and October must range between 1800°D and 2400°D (Dinis et al., 2011) . In Poland, the growing season is defined as the period of time when the mean 24-h temperature is greater than 5°C (Wilczynski and Podalski, 2007). In Portugal, maximum photosynthetic activity occurs at 24-28°C for adult trees, but exhibits more than 50% of termoinhibition when the air temperature is above 32°C, which is frequent during summer (Gomes- Laranjo et al., 2006, 2008). Recently Pereira et al (2011) identified a set of meteorological variables/parameters with high impact on chestnut productivity. The main purpose of this work is to assess the potential impacts of future climate change on chestnut productivity in Portugal as well as on European chestnut orchards. First, observed data from the European Climate assessment (ECA) and simulations with the Regional Circulation Model (RCM) COSMO-CLM for recent climate conditions are used to assess the ability of the RCM to model the actual meteorological conditions. Then, ensemble projections from the ECHAM5/COSMO-CLM model chain for two climate scenarios (A1B and B1) are used to estimate the values of relevant meteorological variables and parameters und future climate conditions. Simulated values are then compared with those obtained for present climate. Results point to changes in the spatial and temporal

  11. Description of the terrestrial ecology of the Oak Ridge Environmental Research Park

    Energy Technology Data Exchange (ETDEWEB)

    Kitchings, T.; Mann, L.K.

    1976-10-01

    The Environmental Sciences Division at Oak Ridge National Laboratory has begun to develop research and administrative foundations necessary to establish and operate an Environmental Research Park (ERP) on the Energy Research and Development Administration Reservation at Oak Ridge, Tennessee. Important in developing a functional research area is a description and inventory of the species and ecosystems which comprise the Research Park. This report describes some of the floral and faunal components of the Oak Ridge Reservation. Emphasis is placed on the relationship of faunal communities to the vegetation type in which they occur. Unique vegetational areas and rare and endangered species are also discussed.

  12. Description of the terrestrial ecology of the Oak Ridge Environmental Research Park

    International Nuclear Information System (INIS)

    Kitchings, T.; Mann, L.K.

    1976-10-01

    The Environmental Sciences Division at Oak Ridge National Laboratory has begun to develop research and administrative foundations necessary to establish and operate an Environmental Research Park (ERP) on the Energy Research and Development Administration Reservation at Oak Ridge, Tennessee. Important in developing a functional research area is a description and inventory of the species and ecosystems which comprise the Research Park. This report describes some of the floral and faunal components of the Oak Ridge Reservation. Emphasis is placed on the relationship of faunal communities to the vegetation type in which they occur. Unique vegetational areas and rare and endangered species are also discussed

  13. Tennessee health studies agreement. Annual report for year 4, January 1 - December 31, 1995

    International Nuclear Information System (INIS)

    1996-04-01

    The Tennessee Department of Health (TDH) has completed the fourth full year of the Oak Ridge Health Studies Agreement grant. This report summarizes the accomplishments and concerns of the State for the period January 1, 1995, to December 31, 1995. The focus of work during the fourth grant year was the actual work on the dose reconstruction. The final work plan for Task 5, Plan to Perform a Systematic Document Search was received in November 1994. Final work plans for Task 1, Investigation of Radioiodine from Radioactive Lanthanum Processing; Task 2, Investigation of Mercury Releases from Lithium Enrichment; Task 3, Investigation of Releases of PCBs from Oak Ridge Facilities; and Task 4, Investigation of Releases of Radionuclides from White Oak Creek to the Clinch River, were received in February 1995. Final work plans for Task 6, Investigation of the Quality of Historical Uranium Effluent Monitoring at Oak Ridge Facilities; and Task 7, Additional Screening of Materials Not Evaluated in the Dose Reconstruction Feasibility Study, were received in April 1995. ChemRisk's 4th Quarterly Report, for October through December 1995, is included in Attachment 1. Attachment 2 contains a study which developed a quality improvement program for data imported to the Tennessee Cancer Reporting System and Birth Defects Verification Program

  14. Biotechnology of trees: Chestnut

    Science.gov (United States)

    C.D. Nelson; W.A. Powell; S.A. Merkle; J.E. Carlson; F.V. Hebard; N Islam-Faridi; M.E. Staton; L. Georgi

    2014-01-01

    Biotechnology has been practiced on chestnuts (Castanea spp.) for many decades, including vegetative propagation, controlled crossing followed by testing and selection, genetic and cytogenetic mapping, genetic modifi cation, and gene and genome sequencing. Vegetative propagation methods have ranged from grafting and rooting to somatic embryogenesis, often in...

  15. Closure Report for Underground Storage Tank 2310-U at the Pine Ridge West Repeater Station

    International Nuclear Information System (INIS)

    1994-07-01

    This document represents the Closure Report for Underground Storage Tank (UST) 2310-U at the Pine Ridge West Repeater Station, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Tank 2310-U was a 200-gal gasoline UST which serviced the emergency generator at the Repeater Station. The tank was situated in a shallow tank bay adjacent to the Repeater Station along the crest of Pine Ridge. The tank failed a tightness test in October 1989 and was removed in November 1989. The purpose of this report is to document completion of soil corrective action, present supporting analytical data, and request closure for this site

  16. The efficiency of introduced pisolithus tinctorius inoculum on backcrossed chestnut germination and survival

    Science.gov (United States)

    Jenise M. Bauman; Carolyn H. Keiffer; Shiv. Hiremath

    2012-01-01

    American chestnut was eliminated as a canopy tree from the Appalachian region of North America with the introduction of chestnut blight in the early 1900s. Breeding programs initiated in the 1980s have produced seedling lines that display the pure American morphology with potential resistance to chestnut blight. More work is required to assess their field performance...

  17. Oak Ridge Reservation Physical Characteristics and Natural Resources

    Energy Technology Data Exchange (ETDEWEB)

    Parr, P.D.; Hughes, J.F.

    2006-09-19

    The topography, geology, hydrology, vegetation, and wildlife of the Oak Ridge Reservation (ORR) provide a complex and intricate array of resources that directly impact land stewardship and use decisions (Fig. 1). The purpose of this document is to consolidate general information regarding the natural resources and physical characteristics of the ORR. The ORR, encompassing 33,114 acres (13,401 ha) of federally owned land and three Department of Energy (DOE) installations, is located in Roane and Anderson Counties in east Tennessee, mostly within the corporate limits of the city of Oak Ridge and southwest of the population center of Oak Ridge. The ORR is bordered on the north and east by the population center of the city of Oak Ridge and on the south and west by the Clinch River/Melton Hill Lake impoundment. All areas of the ORR are relatively pristine when compared with the surrounding region, especially in the Valley and Ridge Physiographic Province (Fig. 2). From the air, the ORR is clearly a large and nearly continuous island of forest within a landscape that is fragmented by urban development and agriculture. Satellite imagery from 2006 was used to develop a land-use/land-cover cover map of the ORR and surrounding lands (Fig. 3). Following the acquisition of the land comprising the ORR in the early 1940s, much of the Reservation served as a buffer for the three primary facilities: the X-10 nuclear research facility (now known as the Oak Ridge National Laboratory [ORNL]), the first uranium enrichment facility or Y-12 (now known as the Y-12 National Security Complex [Y-12 Complex]), and a gaseous diffusion enrichment facility (now known as the East Tennessee Technology Park [ETTP]). Over the past 60 years, this relatively undisturbed area has evolved into a rich and diverse eastern deciduous forest ecosystem of streams and reservoirs, hardwood forests, and extensive upland mixed forests. The combination of a large land area with complex physical characteristics

  18. Proposed replacement and operation of the anhydrous hydrogen fluoride supply and fluidized-bed chemical processing systems at Building 9212, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    The US Department of Energy (DOE) proposes to replace the existing anhydrous hydrogen fluoride (AHF) supply and fluidized-bed reactor systems for the Weapons Grade Highly Enriched Uranium Chemical Recovery and Recycle Facility, Building 9212, which is located within the Y-12 Plant on DOE's Oak Ridge Reservation in Oak Ridge, Tennessee. The proposed replacement system would be based upon modern design criteria and safety analyses. The replacement AHF supply and distribution system equipment would be located on the existing Dock 8/8A at Building 9212. Utilities would be extended to the dock to service the process equipment. The following process equipment modules would be prefabricated for installation at the modified dock: an AHF cylinder enclosure, an AHF supply manifold and vaporizer module, an AHF sump tank and transfer skid, and an AHF supply off-gas scrubber assembly module. The fluidized-bed reactor system would be constructed in an area adjacent to the existing system in Building 9212. The replacement equipment would consist of a new reduction fluidized-bed reactor, a hydrofluorination fluidized-bed reactor, and associated air emission control equipment. The no-action alternative, which is the continued operation of the existing AHF supply and fluidized-bed reactor systems, was also evaluated

  19. Winter Iinjury of American chestnut seedlings grown in a common garden at the species' northern range limit

    Science.gov (United States)

    Paul G. Schaberg; Thomas M. Saielli; Gary J. Hawley; Joshua M. Halman; Kendra M. Gurney

    2013-01-01

    Hybridization of American chestnut (Castanea dentata) with Chinese chestnut (C. mollissima), followed by backcrossing to American chestnut, is conducted to increase the resistance of resulting stock to chestnut blight, caused by the fungal pathogen Cryphonectria parasitica (Murr.) Barr. Backcross breeding is...

  20. Y-12 Plant Groundwater Protection Program: Groundwater and surface water sampling and analysis plan for Calendar Year 1998

    International Nuclear Information System (INIS)

    1997-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 1998 at the Department of Energy (DOE) Y-12 Plant. These monitoring activities are managed by the Y-12 Plant Environmental Compliance Organization through the Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 1998 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located within Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant. Groundwater and surface water monitoring will be performed during CY 1998 to comply with: (1) requirements specified in Resource Conservation and Recover Act (RCRA) post-closure permits regarding RCRA corrective action monitoring and RCRA detection monitoring; (2) Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous solid waste management facilities; and (3) DOE Order 5400.1 surveillance monitoring and exit pathway monitoring. Data from some of the sampling locations in each regime will be used to meet the requirements of more than one of the monitoring drivers listed above. Modifications to the CY 1998 monitoring program may be necessary during implementation. For example, changes in regulatory requirements may alter the parameters specified for selected monitoring wells, or wells could be removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  1. The Oak Ridge Reservation Annual Site Environmental Report, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Joan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thompson, Sharon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Page, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2008-09-30

    The Oak Ridge Reservation (ORR) consists of three major government-owned, contractor-operated facilities: the Y-12 National Security Complex, Oak Ridge National Laboratory, and East Tennessee Technology Park. The ORR was established in the early 1940s as part of the Manhattan Project, a secret undertaking that produced materials for the first atomic bombs. The reservation’s role has evolved over the years, and it continues to adapt to meet the changing defense, energy, and research needs of the United States. Both the work carried out for the war effort and subsequent research, development, and production activities have involved, and continue to involve, the use of radiological and hazardous materials. The Oak Ridge Reservation Annual Site Environmental Report and supporting data are available at Http://www.ornl.gov/sci/env_rpt or from the project director.

  2. Oak Ridge Reservation Site Management Plan for the Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This site management plan for the Oak Ridge Reservation (ORR) describes the overall approach for addressing environmental contamination problems at the ORR Superfund site located in eastern Tennessee. The ORR consists of three major US Department of Energy (DOE) installations constructed in the early to mid 1940s as research, development, and process facilities in support of the Manhattan Project. In addition to the three installations -- Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant) -- the ORR Superfund Site also includes areas outside the installations, land used by the Oak Ridge Associated Universities and waterways that have been contaminated by releases from the DOE installations. To date, {approximately} 400 areas (Appendix A) requiring evaluation have been identified. Cleanup of the ORR is expected to take two to three decades and cost several billion dollars. This site management plan provides a blueprint to guide this complex effort to ensure that the investigation and cleanup activities are carried out in an efficient and cost-effective manner.

  3. Oak Ridge Reservation Site Management Plan for the Environmental Restoration Program

    International Nuclear Information System (INIS)

    1994-06-01

    This site management plan for the Oak Ridge Reservation (ORR) describes the overall approach for addressing environmental contamination problems at the ORR Superfund site located in eastern Tennessee. The ORR consists of three major US Department of Energy (DOE) installations constructed in the early to mid 1940s as research, development, and process facilities in support of the Manhattan Project. In addition to the three installations -- Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant) -- the ORR Superfund Site also includes areas outside the installations, land used by the Oak Ridge Associated Universities and waterways that have been contaminated by releases from the DOE installations. To date, ∼ 400 areas (Appendix A) requiring evaluation have been identified. Cleanup of the ORR is expected to take two to three decades and cost several billion dollars. This site management plan provides a blueprint to guide this complex effort to ensure that the investigation and cleanup activities are carried out in an efficient and cost-effective manner

  4. Effects of light acclimation on photosynthesis, growth, and biomass allocation in america chestnut seedlings

    Science.gov (United States)

    G. Geoff Wang; William L. Bauerle; Bryan T. Mudder

    2006-01-01

    American chestnut [Castanea dentate(Marshall) Borkh.] was a widely distributed tree species in the Eastern U.S., comprising an estimated 25 percent of native eastern hardwood forests. Chestnut blight eradicated American chestnut from the forest canopy by the 1950s, and now it only persists as understory sprouts. However, blight-resistant hybrids with...

  5. Oak Ridge Health Studies phase 1 report, Volume 1: Oak Ridge Phase 1 overview

    International Nuclear Information System (INIS)

    Yarbrough, M.I.; Van Cleave, M.L.; Turri, P.; Daniel, J.

    1993-09-01

    In July 1991, the State of Tennessee initiated the Health Studies Agreement with the United States Department of Energy to carry out independent studies of possible adverse health effects in people living in the vicinity of the Oak Ridge Reservation. The health studies focus on those effects that could have resulted or could result from exposures to chemicals and radioactivity released at the Reservation since 1942. The major focus of the first phase was to complete a Dose Reconstruction Feasibility Study. This study was designed to find out if enough data exist about chemical and radionuclide releases from the Oak Ridge Reservation to conduct a second phase. The second phase will lead to estimates of the actual amounts or the ''doses'' of various contaminants received by people as a result of off-site releases. Once the doses of various contaminants have been estimated, scientists and physicians will be better able to evaluate whether adverse health effects could have resulted from the releases

  6. Oak Ridge Health Studies phase 1 report, Volume 1: Oak Ridge Phase 1 overview

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, M.I.; Van Cleave, M.L.; Turri, P.; Daniel, J.

    1993-09-01

    In July 1991, the State of Tennessee initiated the Health Studies Agreement with the United States Department of Energy to carry out independent studies of possible adverse health effects in people living in the vicinity of the Oak Ridge Reservation. The health studies focus on those effects that could have resulted or could result from exposures to chemicals and radioactivity released at the Reservation since 1942. The major focus of the first phase was to complete a Dose Reconstruction Feasibility Study. This study was designed to find out if enough data exist about chemical and radionuclide releases from the Oak Ridge Reservation to conduct a second phase. The second phase will lead to estimates of the actual amounts or the ``doses`` of various contaminants received by people as a result of off-site releases. Once the doses of various contaminants have been estimated, scientists and physicians will be better able to evaluate whether adverse health effects could have resulted from the releases.

  7. First report on the Oak Ridge K-25 Site Biological Monitoring and Abatement Program for Mitchell Branch

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.G. [ed.; Adams, S.M.; Kszos, L.A.; Ryon, M.G.; Southworth, G.R.; Loar, J.M.

    1993-08-01

    A modified National Pollutant Discharge Elimination System permit was issued to the Oak Ridge Gaseous Diffusion Plant (now referred to as the Oak Ridge K-25 Site) on September 11, 1986. The Oak Ridge K-25 Site is a former uranium-enrichment production facility, which is currently managed by Martin Marietta Energy Systems, Inc. for the US Department of Energy. As required in Part III (L) of that permit, a plan for the biological monitoring of Mitchell Branch (K-1700 stream) was prepared and submitted for approval to the US Environmental Protection Agency and the Tennessee Department of Environment and Conservation [formerly the Tennessee Department of Health and Environment (Loar et al. 1992b)]. The K-25 Site Biological Monitoring and Abatement Program (BMAP) described biomonitoring activities that would be conducted over the duration of the permit. Because it was anticipated that the composition of existing effluent streams entering Mitchell Branch would be altered shortly after the modified permit was issued, sampling of the benthic invertebrate and fish communities (Task 4 of BMAP) was initiated in August and September 1986 respectively.

  8. First report on the Oak Ridge K-25 Site Biological Monitoring and Abatement Program for Mitchell Branch

    International Nuclear Information System (INIS)

    Smith, J.G.; Adams, S.M.; Kszos, L.A.; Ryon, M.G.; Southworth, G.R.; Loar, J.M.

    1993-08-01

    A modified National Pollutant Discharge Elimination System permit was issued to the Oak Ridge Gaseous Diffusion Plant (now referred to as the Oak Ridge K-25 Site) on September 11, 1986. The Oak Ridge K-25 Site is a former uranium-enrichment production facility, which is currently managed by Martin Marietta Energy Systems, Inc. for the US Department of Energy. As required in Part III (L) of that permit, a plan for the biological monitoring of Mitchell Branch (K-1700 stream) was prepared and submitted for approval to the US Environmental Protection Agency and the Tennessee Department of Environment and Conservation [formerly the Tennessee Department of Health and Environment (Loar et al. 1992b)]. The K-25 Site Biological Monitoring and Abatement Program (BMAP) described biomonitoring activities that would be conducted over the duration of the permit. Because it was anticipated that the composition of existing effluent streams entering Mitchell Branch would be altered shortly after the modified permit was issued, sampling of the benthic invertebrate and fish communities (Task 4 of BMAP) was initiated in August and September 1986 respectively

  9. 137Cs Behaviour in Chestnut Honey From Northwestern Croatia Two Decades After Chernobyl Accident

    International Nuclear Information System (INIS)

    Rozmaric Macefat, M.; Rogic, M.; Nodilo, M.; Barisic, D.; Svecnjak, L.; Bubalo, D.; Popijac, M.; Kezic, N.

    2011-01-01

    Covering the large area in nectar gathering process and searching for food, honey bees yield a unique random composite sample incorporated in honey. Thus, honey represents an excellent media for studying behaviour of bioavailable elements as well as environmental pollutants. Caesium, a product of nuclear weapon testing and Chernobyl nuclear accident, still present in soils, is transferred to plants by plant uptake. It has already been established that chestnut honey can be used as a bioindicator for monitoring 137Cs many years after the Chernobyl accident. The aim of this study was to determine whether the chestnut honey is suitable for monitoring environmental pollution with 137Cs two decades after the contamination event. Chestnut honey from northwest Croatia has been analysed during the period from 2004 to 2008, for activity concentrations of 137Cs and 40K. Honey samples were collected mechanically by extracting honey from combs. Based on the pollen analysis (> 85 % of chestnut pollen grains) and measured electrical conductivity of honey (> 0.8 mS cm -1 ), honey has been identified as unifloral chestnut honey (Castanea sativa Mill.). 137Cs and 40K activity concentrations have been determined by gamma spectrometry. Decrease of 137Cs activity in chestnut honey was approximated by linear equation. The activity concentration of 137Cs in chestnut honey decreases very slowly over the time as opposed to the activity concentrations of 40K that are more or less equable. Thus, chestnut honey can be used as a good bioindicator for 137Cs even two decades after the Chernobyl accident. (author)

  10. Chemometric characterization of gamma irradiated chestnuts from Turkey

    International Nuclear Information System (INIS)

    Barreira, J.C.M.; Guenaydi, T.; Alkan, H.; Botelho, M.L.

    2011-01-01

    Complete text of publication follows. Chestnut (Castanea sativa Miller) is a valuable natural resource, with high exportation levels. Due to their water content, chestnuts are susceptible to storage problems like dehydration or development of insects and microorganisms. Irradiation has been revealing promising features to be considered as an alternative conservation technology, for Portugese cultivars. Hence, the assessment of irradiation effects in foreign cultivars might act as an important indicator of the versatility of this technology. In this work, the effects of gamma irradiation (0.0, 0.5 and 3.0 kGy) on proximate composition, sugars, fatty acids and tocopherols composition of Turkish chestnuts stored at 4 deg C for different periods (0, 15 and 30 days) was evaluated. Regarding proximate composition, the storage time (ST) had higher influence than irradiation dose (ID), especially on fat, ash, carbohydrates and energetic value. Sucrose exhibited similar behavior in response to the assayed ST and ID. The prevalence of ST influence was also verified for fatty acids (FA), tocopherols and sucrose. Lauric, palmitoleic and linolenic acids, were the only FA that undergone some differences with ID. Saturated, monounsaturated and polyunsaturated fatty acids levels were not affected neither by storage nor irradiation. α-tocopherol was the only vitamer with significant differences among the assayed ST and ID. Overall, our results confirm that gamma irradiation is a promising conservation methodology, without inducing changes in chestnut chemical and nutritional composition.

  11. Addendum to the corrective action plan for Underground Storage Tanks 1219-U, 1222-U, 2082-U, 2068-U at the Rust Garage Facility, Buildings 9720-15 and 9754-1: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID number-sign 0-010117

    International Nuclear Information System (INIS)

    1994-01-01

    This document represents an addendum to the Corrective Action Plan (CAP) for underground storage tanks 1219-U, 2082-U, and 2068-U located at Buildings 9720-15 and 9754-1, Oak Ridge Y-12 Plant, Oak Ridge, TN. The site of the four underground storage tanks is commonly referred to as the Rust Garage Facility. The original CAP was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review in May 1992. During the time period after submission of the original CAP for the Rust Garage Facility, Y-12 Plant Underground Storage Tank (UST) Program personnel continued to evaluate improvements that would optimize resources and expedite the activities schedule presented in the original CAP. Based on these determinations, several revisions to the original corrective action process options for remediation of contaminated soils are proposed. The revised approach will involve excavation of the soils from the impacted areas, on-site thermal desorption of soil contaminants, and final disposition of the treated soils by backfilling into the subject site excavations. Based on evaluation of the corrective actions with regard to groundwater, remediation of groundwater under the Y-12 Plant CERCLA Program is proposed for the facility

  12. Calendar year 1995 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime Y-12 Plant, Oak Ridge Tennessee. 1995 Groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1996-08-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1995 calendar year (CY) at several waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites lie within the boundaries of the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to ensure protection of local groundwater resources in accordance with federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. (Energy Systems) corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part I consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with reporting requirements of Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring, the Part I GWQR is submitted to the Tennessee Department of Environment and Conservation (TDEC) by the RCRA reporting deadline (March 1 of the following CY); Energy Systems submitted the 1995 Part I GWQR for the East Fork Regime to the TDEC in February 1996. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality

  13. Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek hydrogeologic regime Y-12 Plant, Oak Ridge, Tennessee: 1993 groundwater quality data interpretations and proposed program modifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This Groundwater Quality Report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. (Energy Systems) to the Tennessee Department of Environment and Conservation (TDEC) in February 1994 (HSW Environmental Consultants, Inc. 1994a). Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTS) located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis program for the following calendar year.

  14. Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek hydrogeologic regime Y-12 Plant, Oak Ridge, Tennessee: 1993 groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1994-10-01

    This Groundwater Quality Report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. (Energy Systems) to the Tennessee Department of Environment and Conservation (TDEC) in February 1994 (HSW Environmental Consultants, Inc. 1994a). Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTS) located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis program for the following calendar year

  15. Oak Ridge Reservation annual site environmental report for 1997: Color your tomorrow

    International Nuclear Information System (INIS)

    Hamilton, L.V.

    1998-01-01

    The U.S. Department of Energy currently oversees activities on the Oak Ridge Reservation (ORR), a government-owned, contractor-operated facility. The reservation contains three major operating sites: the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory, and East Tennessee Technology Park (formerly the K-25 Site). The ORR was established in the early 1940s as part of the Manhattan Project, a secret undertaking that produced the materials for the first atomic bombs. The reservation's role has evolved over the years, and it continues to adapt to meet the changing defense, energy, and research needs of the United States. Both the work carried out for the war effort and subsequent research, development, and production activities have involved (and continue to involve) radiological and hazardous materials

  16. Bedrock geology and mineral resources of the Knoxville 1° x 2° quadrangle, Tennessee, North Carolina, and South Carolina

    Science.gov (United States)

    Robinson, Gilpin R.; Lesure, Frank G.; Marlowe, J. I.; Foley, Nora K.; Clark, S.H.

    2004-01-01

    The Knoxville 1°x 2° quadrangle spans the Southern Blue Ridge physiographic province at its widest point from eastern Tennessee across western North Carolina to the northwest corner of South Carolina. The quadrangle also contains small parts of the Valley and Ridge province in Tennessee and the Piedmont province in North and South Carolina. Bedrock in the Valley and Ridge consists of unmetamorphosed, folded and thrust-faulted Paleozoic miogeoclinal sedimentary rocks ranging in age from Cambrian to Mississippian. The Blue Ridge is a complex of stacked thrust sheets divided into three parts: (1) a west flank underlain by rocks of the Late Proterozoic and Early Cambrian Chilhowee Group and slightly metamorphosed Late Proterozoic Ocoee Supergroup west of the Greenbrier fault; (2) a central part containing crystalline basement of Middle Proterozoic age (Grenville), Ocoee Supergroup rocks east of the Greenbrier fault, and rocks of the Murphy belt; and (3) an east flank containing the Helen, Tallulah Falls, and Richard Russell thrust sheets and the amphibolitic basement complex. All of the east flank thrust sheets contain polydeformed and metamorphosed sedimentary and igneous rocks of mostly Proterozoic age. The Blue Ridge is separated by the Brevard fault zone from a large area of rocks of the Inner Piedmont to the east, which contains the Six Mile thrust sheet and the ChaugaWalhalla thrust complex. All of these rocks are also polydeformed and metamorphosed sedimentary and igneous rocks. The Inner Piedmont rocks in this area occupy both the Piedmont and part of the Blue Ridge physiographic provinces.

  17. Minutes from Department of Energy/Hazardous Waste Remedial Actions Program, research and development technology needs assessment review meeting for FY 1990, September 1989, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    On September 20--21, 1989, representatives of the Department of Energy (DOE) Headquarters, DOE Operations Offices, DOE contractors, and the Hazardous Waste Remedial Actions Program met in Oak Ridge, Tennessee, to select and prioritize candidate waste problems in need of research and development. The information gained will be used in planning for future research and development tasks and in restructuring current research activities to address the priority needs. Consistent with the ongoing reevaluation of DOE's plans for environmental restoration and waste management, an attempt was made to relate the needs developed in this meeting to the needs expressed in the draft Applied Research, Development, Demonstration, Testing, and Evaluation Plan. Operations Offices were represented either by DOE staff or by contractor delegates from the area. This document summarizes the results of the meeting and lists the priority waste problems established.

  18. Site-specific standard request for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the rust garage facility buildings 9754-1 and 9720-15: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    International Nuclear Information System (INIS)

    1994-12-01

    This document represents a Site-specific Standard Request for underground storage tanks (USTs) 1219-U,1222-U and 2082-U previously located at former Building 9754-1, and tank 2086-U previously located at Building 9720-15, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The tanks previously contained petroleum products. For the purposes of this report, the two building sites will be regarded as a single UST site and will be referred to as the Rust Garage Facility. The current land use associated with the Y-12 Plant is light industrial and the operational period of the plant is projected to be at least 30 years. Thus, potential future residential exposures are not expected to occur for at least 30 years. Based on the degradation coefficient for benzene (the only carcinogenic petroleum constituent detected in soils or groundwater at the Rust Garage Facility), it is expected that the benzene and other contaminants at the site will likely be reduced prior to expiration of the 30-year plant operational period. As the original sources of petroleum contamination have been removed, and the area of petroleum contamination is limited, a site-specific standard is therefore being requested for the Rust Garage Facility

  19. Environmental Monitoring Report - United States Department of Energy, Oak Ridge Facilities, Calendar Year 1984

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, R.G.

    1999-01-01

    Each year since 1972, a report has been prepared on the environmental monitoring activities for the DOE facilities in oak Ridge, Tennessee, for the previous calendar year. previously, the individual facilities published quarterly and annual progress reports that contained some environmental monitoring data. The environmental monitoring program for 1984 includes sampling and analysis of air, water from surface streams, groundwater, creek sediment, biota, and soil for both radioactive and nonradioactive (including hazardous) materials. Special environmental studies that have been conducted in the Oak Ridge area are included in this report, primarily as abstracts or brief summaries. The annual report for 1984 on environmental monitoring and surveillance of the Oak Ridge community by Oak Ridge Associated Universities (ORAU) is included as an appendix. A brief description of the topography and climate of the Oak Ridge area and a short description of the three DOE facilities are provided below to enhance the reader's understanding of the direction and contents of the environmental monitoring program for Oak Ridge.

  20. Finding of no significant impact: Interim storage of enriched uranium above the maximum historical level at the Y-12 Plant Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) for the Proposed Interim Storage of Enriched Uranium Above the Maximum Historical Storage Level at the Y-12 Plant, Oak Ridge, Tennessee (DOE/EA-0929, September, 1994). The EA evaluates the environmental effects of transportation, prestorage processing, and interim storage of bounding quantities of enriched uranium at the Y-12 Plant over a ten-year period. The State of Tennessee and the public participated in public meetings and workshops which were held after a predecisional draft EA was released in February 1994, and after the revised pre-approval EA was issued in September 1994. Comments provided by the State and public have been carefully considered by the Department. As a result of this public process, the Department has determined that the Y-12 Plant-would store no more than 500 metric tons of highly enriched uranium (HEU) and no more than 6 metric tons of low enriched uranium (LEU). The bounding storage quantities analyzed in the pre-approval EA are 500 metric tons of HEU and 7,105.9 metric tons of LEU. Based on-the analyses in the EA, as revised by the attachment to the Finding of No Significant Impact (FONSI), DOE has determined that interim storage of 500 metric tons of HEU and 6 metric tons of LEU at the Y-12 Plant does not constitute a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement (EIS) is not required and the Department is issuing this FONSI

  1. Quantification of minerals and tocopherols isomers in chestnuts approach chemometrics

    Directory of Open Access Journals (Sweden)

    Nilson Evelazio de Souza

    2014-10-01

    Full Text Available The levels of the ?, ?, and (?+?-tocopherol isomers and the amounts of the minerals Se, Zn, Ca, Fe, K, Mn, Mg, and Cu were analyzed in chestnuts. High contents of Zn (>65% relative to the recommended dietary intake (RDI were found in all chestnuts except macadamia nuts (25% of the RDI. All samples had Se contents higher than the RDI: Brazil nuts > macadamia nuts, cashew nuts > pecans > almonds > pistachio nuts > hazelnuts > European nuts. A greater concentration of ?-tocopherol was found in almonds (30% of RDI. All samples, except for hazelnuts, almonds, and macadamia nuts, had (?+?- tocopherols, with the largest amount found in pistachios. Only pecan nuts and European nuts had ?-tocopherol and only in low amounts. Multivariate analysis allowed for better characterization and distinction of the chestnuts

  2. Reindustrialization: East Tennessee Technology Park - a year later

    International Nuclear Information System (INIS)

    Clark, L.W.

    1997-01-01

    DOE''s Oak Ridge Operations (ORO) continues to be a vital part of the nation''s energy and defense complex. Accordingly ORO must continue to position itself to take advantage of unique strengths and capabilities developed over the past five decades. This repositioning must always occur in the context of national policy debates and sometimes harsh budget realities. One important fact needs to be reinforced, the long-term budget situation, which has been termed the billion-dollar challenge, is going to cast a long shadow over every strategic decision made at ORO. A little less than two years ago Jim Hall, Manager of Oak Ridge Operations, began an effort to refocus the long term goals of the DOE Oak Ridge Complex. He called this new road map for the future Oak Ridge Vision 2010, and this vision statement acknowledges DOE''s significant economic and technical ties in the East Tennessee region and its role in maintaining a vigorous economic climate. Reindustrialization, a key component in the Oak Ridge vision, has been defined as a method of accomplishment for decontamination and decommissioning, that uses the value of DOE assets in the form of surplus materials and underutilized equipment and facilities, to attract private sector investment in facility clean-up. Reindustrialization is one of the vehicles through which ORO is realizing its vision of transforming the Oak Ridge Complex into an economically viable integrated science, education, technology, and industrial complex operated in partnership with the private sector. Reindustrialization is also an opportunity for this region to 'privatize' and reduce its dependence on an ever-decreasing federal budget

  3. Oak Ridge Reservation Bird Records and Population Trends

    Energy Technology Data Exchange (ETDEWEB)

    Roy, W. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giffen, N. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wade, M. C. [CDM Smith (United States); Haines, A. M. [Xcel Engineering, Inc.(United States); Evans, J. W. [Tennessee WIldlife Resources Agency (WRA), Nashville, TN (United States); Jett, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Bird data have been collected through surveys, environmental assessments, and other observations for decades in the Oak Ridge National Environmental Research Park, located on the US Department of Energy’s Oak Ridge Reservation (ORR) in East Tennessee. Birds were recorded in a variety of habitats, including wetlands, interior forests, grasslands, ponds, corridors, forest edges, and more. Most of the information was gathered from waterfowl surveys conducted from 1990 to 2008, from Partners in Flight (PIF) breeding bird surveys conducted from 1995 to 2013, and from past publications and research on Reservation birds. We have also included our own observations and, in a few instances, credible observations of ORR birds of which we have been made aware through eBird or discussions with area ornithologists and bird watchers. For the period 1950-2014, we were able to document 228 species of birds on the ORR. Several of these species are known from historic records only, while others were not known to have ever occurred on the Reservation until recently. This report does not include PIF breeding bird data from the 2014 season or any records after July 2014. Twenty-two species--approximately 10% of the total number of species observed--have state-listed status in Tennessee as endangered, threatened, or in need of management. Of the 228 species we documented, 120 are believed to be breeding birds on the ORR.

  4. Oak Ridge Reservation Bird Records and Population Trends

    Energy Technology Data Exchange (ETDEWEB)

    Roy, W. Kelly [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giffen, Neil R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wade, Murray [CDM Smith, Inc., Knoxville, TN (United States); Haines, Angelina [Xcel Engineering, Inc., Oak Ridge, TN (United States); Evans, James W. [Tennessee Wildlife Resources Agency, Nashville, TN (United States); Jett, Robert Trent [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-11-01

    Bird data have been collected through surveys, environmental assessments, and other observations for decades in the Oak Ridge National Environmental Research Park, located on the US Department of Energy s Oak Ridge Reservation (ORR) in East Tennessee. Birds were recorded in a variety of habitats, including wetlands, interior forests, grasslands, ponds, corridors, forest edges, and more. Most of the information was gathered from waterfowl surveys conducted from 1990 to 2008, from Partners in Flight (PIF) breeding bird surveys conducted from 1995 to 2013, and from past publications and research on Reservation birds. We have also included our own observations and, in a few instances, credible observations of ORR birds of which we have been made aware through eBird or discussions with area ornithologists and bird watchers. For the period 1950 2014, we were able to document 228 species of birds on the ORR. Several of these species are known from historic records only, while others were not known to have ever occurred on the Reservation until recently. This report does not include PIF breeding bird data from the 2014 season or any records after July 2014. Twenty-two species approximately 10% of the total number of species observed have state-listed status in Tennessee as endangered, threatened, or in need of management. Of the 228 species we documented, 120 are believed to be breeding birds on the ORR.

  5. Silvicultural and logistical considerations associated with the pending reintroduction of American chestnut

    Science.gov (United States)

    Douglass F. Jacobs

    2010-01-01

    Traditional breeding for blight resistance has led to the potential to restore American chestnut (Castanea dentata (Marsh.) Borkh.) to Eastern United States forests using a blight resistant hybrid chestnut tree. With prospects of pending wide-scale reintroduction, restoration strategies based on ecological and biological characteristics of the...

  6. Federal and state regulatory requirements for the D ampersand D of the Alpha-4 Building, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Etnier, E.L.; Houlberg, L.M.; Bock, R.E.

    1994-01-01

    The US Department of Energy (DOE) has begun the decontamination and decommissioning (D ampersand D) of Building 9201-4 (Alpha-4) at the Oak Y-12 Plant, Oak Ridge, Tennessee, The Alpha-4 Building was used from 1953--1962 to house a column exchange (Colex) process for lithium isotope separation. This process involved electrochemical and solvent extraction processes that required substantial quantities of mercury. Presently there is no law or regulation mandating decommissioning at DOE facilites or setting de minimis or ''below regulatory concern'' (BRC) radioactivity levels to guide decommissioning activities at DOE facilities. However, DOE Order 5820.2A, Chap. V (Decommissioning of Radioactively Contaminated Facilities), requires that the regulatory status of each project be identified and that technical engineering planning must assure D ampersand D compliance with all environmental regulations during cleanup activities. To assist in the performance of this requirement, this paper gives a brief overview of potential federal and state regulatory requirements related to D ampersand D activities at Alpha-4. Compliance with other federal, state, and local regulations not addressed here may be required, depending on site characterization, actual D ampersand D activities, and wastes generated

  7. Oak Ridge Reservation annual site environmental report for 1997: Color your tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.V. [and others

    1998-10-01

    The U.S. Department of Energy currently oversees activities on the Oak Ridge Reservation (ORR), a government-owned, contractor-operated facility. The reservation contains three major operating sites: the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory, and East Tennessee Technology Park (formerly the K-25 Site). The ORR was established in the early 1940s as part of the Manhattan Project, a secret undertaking that produced the materials for the first atomic bombs. The reservation's role has evolved over the years, and it continues to adapt to meet the changing defense, energy, and research needs of the United States. Both the work carried out for the war effort and subsequent research, development, and production activities have involved (and continue to involve) radiological and hazardous materials.

  8. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO)

  9. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

  10. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report presents data and information related to remedial investigation studies for Oak Ridge National Laboratory (ORNL). Information is included on a soil gas survey, surface radiological investigations of waste areas, and well installation for ground water monitoring

  11. Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Klein, J.A.; Turner, D.W.

    1994-01-01

    Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation's total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shielding Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory's (ORNL's) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels

  12. Surface radiological investigations along State Highway 95, Lagoon Road, and Melton Valley Drive, Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Tiner, P.F.; Uziel, M.S.; Rice, D.E.; Williams, J.K.

    1995-08-01

    The surface radiological investigation along State Highway 95, Lagoon Road, and Melton Valley Drive at the Oak Ridge Reservation was conducted as part of the Oak Ridge National Laboratory Environmental Restoration Program Surveillance and Maintenance activities. This report was prepared to document results of the investigation and subsequent remedial actions. The report details surface gamma radiation levels including gamma anomalies; surface beta radiation levels including beta anomalies; results of analysis of soil, water, and vegetation samples and smear samples collected from paved surfaces; remediation activities conducted as a result of the survey; and recommendations for further corrective measures

  13. Sourdough fermentation and chestnut flour in gluten-free bread: A shelf-life evaluation.

    Science.gov (United States)

    Rinaldi, Massimiliano; Paciulli, Maria; Caligiani, Augusta; Scazzina, Francesca; Chiavaro, Emma

    2017-06-01

    The effect of sourdough fermentation combined with chestnut flour was investigated for improving technological and nutritional quality of gluten-free bread during 5day shelf life by means of chemico-physical and nutritional properties. Sourdough fermentation by itself and with chestnut flour reduced volume of loaves and heterogeneity in crumb grain. Sourdough technology allowed increasing crumb moisture content with no significant variations during shelf-life. Chestnut flour darkened crumb and crust while no effects on colour were observed for sourdough. Sourdough and/or chestnut flour addition caused a significant increase in crumb hardness at time 0 while a significant reduction of staling was observed only at 5days, even if a decrease in amylopectin fusion enthalpy was observed. The percentage of hydrolysed starch during in vitro digestion was significantly reduced by sourdough fermentation with a presumable lower glycaemic index. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Artificial magma program: Report on workshop held in Oak Ridge, Tennessee on March 29-30, 1994

    International Nuclear Information System (INIS)

    Naney, M.T.; Jacobs, G.K.

    1995-03-01

    A workshop was organized and conducted in Oak Ridge, Tennessee, on March 29 and 30, 1994, to evaluate the use of in situ vitrification (ISV) technology to produce large silicate melts that would serve as analogs for natural magmas for the study of magmatic properties and processes. ISV technology would permit experiments to test hypotheses or provide new data that cannot be tested or obtained through bench-top experimentation or the study of natural systems. The scale of ISV melts is intermediate between that of natural lava lakes and laboratory crucible experiments, with melt volumes from 15 to 300 m 3 easily obtained. This approach permits investigation of dynamic processes which operate on scales difficult to simulate through bench-top experimentation and that are not amenable to direct observation or control in natural systems (e.g., degassing, convection, and crystal settling). Several aspects of the ISV process make it uniquely applicable for the study of magma systems. The process produces open-quotes containerlessclose quotes silicate melts, which permits development of important analog components of natural magma systems including: partial melt zones, stopping, contact metamorphic haloes, and open-quotes hydrothermalclose quotes fluids. The lack of a melt open-quotes containerclose quotes also enables use of standard field-scale geophysical instrumentation for studying the seismic and electrical properties of the melt and host materials. In addition, volatile and particulate emissions from the melt can be sampled using methods that avoid reaction with, and contamination by, host rocks. The consensus of the group was that the use of melts generated by ISV technology provided unique opportunities to advance the understanding of magmas and magmatic processes and warranted development of a proposal

  15. Remedial design work plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-02-01

    The Remedial Design Work Plan (RDWP) for the Lower East Fork Poplar Creek (EFPC) Operable Unit (OU) in Oak Ridge, Tennessee, has been prepared. The remedial investigation determined that the principal contaminant is mercury, which originated from releases during Y-12 Plant operations, primarily between 1953 and 1963. The recommended alternative, as stated in the Record of Decision (ROD) was to excavate and dispose of floodplain soils contaminated with mercury above the remedial goal option. Thereafter, a public hearing was held to review the proposed plan. Comments were incorporated. The revised selected remedy, per the ROD is to excavate and dispose of floodplain soils contaminated above the remediation goal of 400 parts per million mercury. The approved ROD with this goal will be the basis for remedial design (RD). The RD work plan (RDWP) is composed of six chapters. An introductory chapter describes the purpose and scope of the RDWP, the selected remedy as identified by the ROD; the roles and responsibilities of the RD team members, and the site background information, including site history, contaminants of concern, and site characteristics. Chapter 2 contains the design objectives, RD approach, regulatory considerations during RD, and the design criteria with assumptions. Chapter 3 presents the RD planning process to prepare this RDWP, as well as secondary RD support plans. Chapter 4 describes the scope of the RD activities in more detail and identifies what will be included in the design package. Chapter 5 presents the schedule for performance of the RD activities, identifying key RD milestones. Specific documents used in the preparation of this document are referenced in Chapter 6

  16. Host Preference and Performance of the Yellow Peach Moth (Conogethes punctiferalis on Chestnut Cultivars.

    Directory of Open Access Journals (Sweden)

    Yanli Du

    Full Text Available Suitability of plant tissues as food for insects varies from plant to plant. In lepidopteran insects, fitness is largely dependent on the host-finding ability of the females. Existing studies have suggested that polyphagous lepidopterans preferentially select certain host plant species for oviposition. However, the mechanisms for host recognition and selection have not been fully elucidated. For the polyphagous yellow peach moth Conogethes punctiferalis, we explored the effect of chestnut cultivar on the performance and fitness and addressed the mechanisms of plant-volatile-mediated host recognition. By carrying out laboratory experiments and field investigation on four chestnut Castanea mollissima cultivars (Huaihuang, Huaijiu, Yanhong, and Shisheng, we found that C. punctiferalis females preferentially select Huaijiu for oviposition and infestation, and caterpillars fed on Huaijiu achieved slightly greater fitness than those fed on the other three chestnut cultivars, indicating that Huaijiu was a better suitable host for C. punctiferalis. Plant volatiles played important roles in host recognition by C. punctiferalis. All seven chestnut volatile compounds, α-pinene, camphene, β-thujene, β-pinene, eucalyptol, 3-carene, and nonanal, could trigger EAG responses in C. punctiferalis. The ubiquitous plant terpenoids, α-pinene, camphene and β-pinene, and their specific combination at concentrations and proportions similar to the emissions from the four chestnut cultivars, was sufficient to elicit host recognition behavior of female C. punctiferalis. Nonanal and a mixture containing nonanal, that mimicked the emission of C. punctiferalis infested chestnut fruits, caused avoidance response. The outcome demonstrates the effects of chestnut cultivars on the performance of C. punctiferalis and reveals the preference-performance relationship between C. punctiferalis adults and their offspring. The observed olfactory plasticity in the plant

  17. Short-term storage evaluation of quality and antioxidant capacity in chestnut-wheat bread.

    Science.gov (United States)

    Rinaldi, Massimiliano; Paciulli, Maria; Dall'Asta, Chiara; Cirlini, Martina; Chiavaro, Emma

    2015-01-01

    Bread traditionally made from wheat is now often supplemented with alternative functional ingredients as chestnut flours; no data have been previously published about the staling of chestnut-containing bread. Thus short-term storage (3 days) for chestnut flour-supplemented soft wheat bread is evaluated by means of selected physicochemical properties (i.e. water dynamics, texture, colour, crumb grain characteristic, total antioxidant capacity). Bread prepared with a 20:80 ratio of chestnut:soft wheat flours maintained its moisture content in both crust and crumb. Crumb hardness, after baking, was found to be significantly higher than that of the soft wheat bread; it did not change during storage, whereas it significantly increased in the control bread until the end of the shelf life. The supplemented bread presented a heterogeneous crumb structure, with a significant decrease in the largest pores during shelf life, relative to the shrinkage of crumb grain. The control exhibited a significant redistribution of crumb holes, with a decrease in the smallest grain classes and an increase in the intermediate ones, most likely caused by cell wall thickening. The colour of the crumb remained unaltered in both breads. The crust of the control presented a significant decrease of a* (redness) and that of the supplemented bread exhibited a decrease of b* (yellowness). The antioxidant capacity was detected after day 1 of storage in the chestnut flour bread only. Chestnut flour supplementation could represent a feasible way of producing bread with improved characteristics, not only just after baking but also during shelf life. © 2014 Society of Chemical Industry.

  18. An Assessment of Future Demands for and Benefits of Public Transit Srevices in Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, F.

    2004-04-29

    This report documents results from a study carried out by Oak Ridge National Laboratory and the University of Tennessee at Knoxville for the Office of Public Transportation, Tennessee Department of Transportation. The study team was tasked with developing a process and a supporting methodology for estimating the benefits accruing to the State from the operation of state supported public transit services. The team was also tasked with developing forecasts of the future demands for these State supported transit services at five year intervals through the year 2020, broken down where possible to the local transit system level. Separate ridership benefits and forecasts were also requested for the State's urban and rural transit operations. Tennessee's public transit systems are subsidized to a degree by taxpayers. It is therefore in the public interest that assessments of the benefits of such systems be carried out at intervals, to determine how they are contributing to the well-being of the state's population. For some population groups within the State of Tennessee these transit services have become essential as a means of gaining access to workplaces and job training centers, to educational and health care facilities, as well as to shops, social functions and recreational sites.

  19. An Assessment of Future Demands for and Benefits of Public Transit Services in Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, F.

    2003-06-10

    This report documents results from a study carried out by Oak Ridge National Laboratory and the University of Tennessee at Knoxville for the Office of Public Transportation, Tennessee Department of Transportation. The study team was tasked with developing a process and a supporting methodology for estimating the benefits accruing to the State from the operation of state supported public transit services. The team was also tasked with developing forecasts of the future demands for these State supported transit services at five year intervals through the year 2020, broken down where possible to the local transit system level. Separate ridership benefits and forecasts were also requested for the State's urban and rural transit operations. Tennessee's public transit systems are subsidized to a degree by taxpayers. It is therefore in the public interest that assessments of the benefits of such systems be carried out at intervals, to determine how they are contributing to the well-being of the state's population. For some population groups within the State of Tennessee these transit services have become essential as a means of gaining access to workplaces and job training centers, to educational and health care facilities, as well as to shops, social functions and recreational sites.

  20. Geophysical survey work plan for White Wing Scrap Yard (Waste Area Grouping 11) at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-02-01

    The White Wing Scrap Yard, located on the U.S. Department of Energy's Oak Ridge Reservation, served as an aboveground storage and disposal area for contaminated debris and scrap from the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, and the Oak Ridge National laboratory. The site is believed to have been active from the early 1950s until the mid-1960s. A variety of materials were disposed of at the site, including contaminated steel tanks and vehicles. As an interim corrective action, a surface debris removal effort was initiated in November 1993 to reduce the potential threat to human health and the environment from the radionuclide-contaminated debris. Following this removal effort, a geophysical survey will be conducted across the site to locate and determine the lateral extent of buried nonindigenous materials. This survey will provide the data necessary to prepare a map showing areas of conductivity and magnetic intensity that vary from measured background values. These anomalies represent potential buried materials and therefore can be targeted for further evaluation. This work plan outlines the activities necessary to conduct the geophysical survey

  1. Detection of Oil Chestnuts Infected by Blue Mold Using Near-Infrared Hyperspectral Imaging Combined with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Lei Feng

    2018-06-01

    Full Text Available Mildew damage is a major reason for chestnut poor quality and yield loss. In this study, a near-infrared hyperspectral imaging system in the 874–1734 nm spectral range was applied to detect the mildew damage to chestnuts caused by blue mold. Principal component analysis (PCA scored images were firstly employed to qualitatively and intuitively distinguish moldy chestnuts from healthy chestnuts. Spectral data were extracted from the hyperspectral images. A successive projections algorithm (SPA was used to select 12 optimal wavelengths. Artificial neural networks, including back propagation neural network (BPNN, evolutionary neural network (ENN, extreme learning machine (ELM, general regression neural network (GRNN and radial basis neural network (RBNN were used to build models using the full spectra and optimal wavelengths to distinguish moldy chestnuts. BPNN and ENN models using full spectra and optimal wavelengths obtained satisfactory performances, with classification accuracies all surpassing 99%. The results indicate the potential for the rapid and non-destructive detection of moldy chestnuts by hyperspectral imaging, which would help to develop online detection system for healthy and blue mold infected chestnuts.

  2. Design demonstrations for Category B tank system piping at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-02-01

    Demonstration of the design of the tank systems described in this report is stipulated by the Federal Facility Agreement (FFA) between the U.S. Environmental Protection Agency-Region IV, the Tennessee Department of Environment and Conservation, and the U.S. Department of Energy. This report provides a design demonstration of the secondary containment and ancillary equipment of 30 piping systems listed in the FFA as Category B (i.e., existing tank systems with secondary containment). The design demonstrations were developed using information obtained from design drawings (as-built when available), construction specifications, and interviews with facility operators. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Section C). Deficiencies or restrictions regarding the ability to demonstrate that each of the containment systems conforms to FFA requirements are noted in the discussion of each piping system

  3. Bioreduction and immobilization of uranium in situ: a case study at a USA Department of Energy radioactive waste site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Wu, Weimin; Carley, Jack M.; Watson, David B.; Gu, Baohua; Brooks, Scott C.; Kelly, Shelly D.; Kemner, Kenneth M.; Van Nostrand, Joy; Wu, Liyou; Zhou, Jizhong; Luo, Jian; Cardenas, Erick; Fields, Matthew Wayne; Marsh, Terence; Tiedje, James; Green, Stefan; Kostka, Joel; Kitanidis, Peter K.; Jardine, Philip; Criddle, Craig

    2011-01-01

    Bioremediation of uranium contaminated groundwater was tested by delivery of ethanol as an electron donor source to stimulate indigenous microbial bioactivity for reduction and immobilization of uranium in situ, followed by tests of stability of uranium sequestration in the bioreduced area via delivery of dissolved oxygen or nitrate at the US Department of energy's Integrated Field Research Challenge site located at Oak Ridge, Tennessee, USA. After long term treatment that spanned years, uranium in groundwater was reduced from 40-60 mg · L -1 to -1 , below the USA EPA standard for drinking water. The bioreduced uranium was stable under anaerobic or anoxic conditions, but addition of DO and nitrate to the bioreduced zone caused U remobilization. The change in the microbial community and functional microorganisms related to uranium reduction and oxidation were characterized. The delivery of ethanol as electron donor stimulated the activities of indigenous microorganisms for reduction of U(VI) to U(IV). Results indicated that the immobilized U could be partially remobilized by D0 and nitrate via microbial activity. An anoxic environmental condition without nitrate is essential to maintain the stability of bioreduced uranium.

  4. Applying Hotspot Detection Methods in Forestry: A Case Study of Chestnut Oak Regeneration

    International Nuclear Information System (INIS)

    Fei, S.

    2010-01-01

    Hotspot detection has been widely adopted in health sciences for disease surveillance, but rarely in natural resource disciplines. In this paper, two spatial scan statistics (SaT Scan and Cluster Seer) and a non spatial classification and regression trees method were evaluated as techniques for identifying chestnut oak (Quercus Montana) regeneration hotspots among 50 mixed-oak stands in the central Appalachian region of the eastern United States. Hotspots defined by the three methods had a moderate level of conformity and revealed similar chestnut oak regeneration site affinity. Chestnut oak regeneration hotspots were positively associated with the abundance of chestnut oak trees in the over story and a moderate cover of heather species (Vaccinium and Gaylussacia spp.) but were negatively associated with the abundance of hay scented fern (Dennstaedtia punctilobula) and mountain laurel (Kalmia latiforia). In general, hotspot detection is a viable tool for assisting natural resource managers with identifying areas possessing significantly high or low tree regeneration.

  5. Applying Hotspot Detection Methods in Forestry: A Case Study of Chestnut Oak Regeneration

    Directory of Open Access Journals (Sweden)

    Songlin Fei

    2010-01-01

    Full Text Available Hotspot detection has been widely adopted in health sciences for disease surveillance, but rarely in natural resource disciplines. In this paper, two spatial scan statistics (SaTScan and ClusterSeer and a nonspatial classification and regression trees method were evaluated as techniques for identifying chestnut oak (Quercus Montana regeneration hotspots among 50 mixed-oak stands in the central Appalachian region of the eastern United States. Hotspots defined by the three methods had a moderate level of conformity and revealed similar chestnut oak regeneration site affinity. Chestnut oak regeneration hotspots were positively associated with the abundance of chestnut oak trees in the overstory and a moderate cover of heather species (Vaccinium and Gaylussacia spp. but were negatively associated with the abundance of hayscented fern (Dennstaedtia punctilobula and mountain laurel (Kalmia latiforia. In general, hotspot detection is a viable tool for assisting natural resource managers with identifying areas possessing significantly high or low tree regeneration.

  6. Post-cultural stand dynamics in an abandoned chestnut coppice at its ecological border

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Until the be­ginning of the last century, chestnut has played an important role as staple food and primary wood source. In many cases it was cultivated at the border of its ecological limits where it was planted by man in place of the original and more site-adapted tree species. However, with the abandonment of the rural activities, ma­nagement of chestnut forests was progressively left starting from more marginal areas, usually occupied by coppice stands. After the interruption of the traditional coppice management system (usual rotation periods of 10-25 years, natural intra- and interspecific competition dynamics have become the driving force of the stand evolution. This may lead to dramatic changes in both structure and species composition of the stands. The aim of this study is to analyse the post-cultural evolution of an abandoned chestnut coppice in the Pesio Valley (Piedmont, Italy in order to highlight the competition among different "basic silvi­cultural components" of the forest using a dendroecological approach. The "basic silvicultural components" are intended as the elements defined as groups of trees of the stand that have similar features such as silvi­culturally relevant attributes: species (chestnut, beech, fir, origin (seed, sprout and cultural age and function (standard/reserve, maiden, shoot, regeneration, dead tree. The mean growth curves of the compo­nents show the different fitness of each category. From a general point of view, the beech and fir components show a better competitive potential in comparison with chestnut. Among chestnut components, maidens from seeds reveal a better growth trend compared to coppice shoots and standards.

  7. DEVELOPMENT OF A TECHNOLOGY FOR LOW IN GLUTEN CHESTNUT PUREE

    Directory of Open Access Journals (Sweden)

    Pavlina Paraskova

    2014-03-01

    Full Text Available Nowadays the scientific research related to technologies for processing and implementation of chestnut products are aimed to establish the regimes of preliminary treatment of the nuts, such as devitalization, hydrotherapy, thermo-hydro therapy, refrigeration and freezing with the scope of long term storage of the raw material in disguise of peeled, unpeeled, cooled, chilled and etc. chestnut. Additionally added value products can be designed to designate some specific target group like consumers with food allergies, obese people as well as pupils’ nutrition

  8. Oak Ridge Y-12 Plant groundwater protection program management plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The Oak Ridge Y- 1 2 Plant (Y-12 Plant) is owned by the United States Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. (Energy Systems) under contract No. DE-AC05-84OR21400. The Y-12 Plant Groundwater Protection Program (GWPP), which was initiated in 1975, provides for the protection of groundwater resources consistent with Federal, State, and local regulations, and in accordance with DOE orders and Energy Systems policies and procedures. The Y-12 Plant is located in Anderson County, Tennessee, and is within the corporate limits of the City of Oak Ridge. The Y-12 Plant is one of three major DOE complexes that comprise the 37,000-acre Oak Ridge Reservation (ORR) located in Anderson and Roane counties. The Y-12 Plant is located in Bear Creek Valley at an elevation of about 950 feet (ft) above sea level. Bear Creek Valley is bounded on the northwest and southeast, and is isolated from populated areas of Oak Ridge, by parallel ridges that rise about 300 ft above the valley floor. The Y-12 Plant and its fenced buffer area are about 0.6 mile wide by 3.2 miles long and cover approximately 4,900 acres. The main industrialized section encompasses approximately 800 acres.

  9. Oak Ridge Y-12 Plant groundwater protection program management plan

    International Nuclear Information System (INIS)

    1996-06-01

    The Oak Ridge Y- 1 2 Plant (Y-12 Plant) is owned by the United States Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. (Energy Systems) under contract No. DE-AC05-84OR21400. The Y-12 Plant Groundwater Protection Program (GWPP), which was initiated in 1975, provides for the protection of groundwater resources consistent with Federal, State, and local regulations, and in accordance with DOE orders and Energy Systems policies and procedures. The Y-12 Plant is located in Anderson County, Tennessee, and is within the corporate limits of the City of Oak Ridge. The Y-12 Plant is one of three major DOE complexes that comprise the 37,000-acre Oak Ridge Reservation (ORR) located in Anderson and Roane counties. The Y-12 Plant is located in Bear Creek Valley at an elevation of about 950 feet (ft) above sea level. Bear Creek Valley is bounded on the northwest and southeast, and is isolated from populated areas of Oak Ridge, by parallel ridges that rise about 300 ft above the valley floor. The Y-12 Plant and its fenced buffer area are about 0.6 mile wide by 3.2 miles long and cover approximately 4,900 acres. The main industrialized section encompasses approximately 800 acres

  10. Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD-MS.

    Science.gov (United States)

    Comandini, Patrizia; Lerma-García, María Jesús; Simó-Alfonso, Ernesto Francisco; Toschi, Tullia Gallina

    2014-08-15

    In the present investigation, an HPLC-DAD/ESI-MS method for the complete analysis of tannins and other phenolic compounds of different commercial chestnut bark samples was developed. A total of seven compounds (vescalin, castalin, gallic acid, vescalagin, 1-O-galloyl castalagin, castalagin and ellagic acid) were separated and quantified, being 1-O-galloyl castalagin tentatively identified and found for the first time in chestnut bark samples. Thus, this method provided information regarding the composition and quality of chestnut bark samples, which is required since these samples are commercialised due to their biochemical properties as ingredients of food supplements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Baseline Environmental Analysis Report for the K-1251 Barge Facility at the East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Van Winkle J.E.

    2007-08-24

    This report documents the baseline environmental conditions of the U. S. Department of Energy's (DOE's) K-1251 Barge Facility, which is located at the East Tennessee Technology Park (ETTP). DOE is proposing to lease the facility to the Community Reuse Organization of East Tennessee (CROET). This report provides supporting information for the use, by a potential lessee, of government-owned facilities at ETTP. This report is based upon the requirements of Sect. 120(h) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The lease footprint is slightly over 1 acre. The majority of the lease footprint is defined by a perimeter fence that surrounds a gravel-covered area with a small concrete pad within it. Also included is a gravel drive with locked gates at each end that extends on the east side to South First Avenue, providing access to the facility. The facility is located along the Clinch River and an inlet of the river that forms its southern boundary. To the east, west, and north, the lease footprint is surrounded by DOE property. Preparation of this report included the review of government records, title documents, historic aerial photos, visual and physical inspections of the property and adjacent properties, and interviews with current and former employees involved in the operations on the real property to identify any areas on the property where hazardous substances and petroleum products or their derivatives and acutely hazardous wastes were known to have been released or disposed. Radiological surveys were conducted and chemical samples were collected to assess the facility's condition.

  12. Phase 2 confirmatory sampling data report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    A Remedial Investigation of East Fork Poplar Creek (EFPC) concluded that mercury is the principal contaminant of concern in the EFPC floodplain. The highest concentrations of mercury were found to be in a visually distinct black layer of soil that typically lies 15 to 30 cm (6 to 12 in.) below the surface. Mercury contamination was found to be situated in distinct areas along the floodplain, and generally at depths > 20 cm (8 in.) below the surface. In accordance with Comprehensive, Environmental Response, Compensation, and Liability Act (CERCLA), a feasibility study was prepared to assess alternatives for remediation, and a proposed plan was issued to the public in which a preferred alternative was identified. In response to public input, the plan was modified and US Department of Energy (DOE) issued a Record of Decision in 1995 committing to excavating all soil in the EFPC floodplain exceeding a concentration of 400 parts per million (ppm) of mercury. The Lower East Fork Poplar Creek (LEFPC) remedial action (RA) focuses on the stretch of EFPC flowing from Lake Reality at the Y-12 Plant, through the city of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation (ORR) and its associated floodplain. Specific areas were identified that required remediation at the National Oceanographic and Atmospheric Administration (NOAA) Site along Illinois Avenue and at the Bruner Site along the Oak Ridge Turnpike. The RA was conducted in two separate phases. Phase 2, conducted from February to October 1997, completed the remediation efforts at the NOAA facility and fully remediated the Bruner Site. During both phases, data were collected to show that the remedial efforts performed at the NOAA and Bruner sites were successful in implementing the Record of Decision and had no adverse impact on the creek water quality or the city of Oak Ridge publicly owned treatment works.

  13. Phase II confirmatory sampling data report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-01-01

    A Remedial Investigation of East Fork Poplar Creek (EFPC) concluded that mercury is the principal contaminant of concern in the EFPC floodplain. The highest concentrations of mercury were found to be in a visually distinct black layer of soil that typically lies 15 to 30 cm (6 to 12 in.) below the surface. Mercury contamination was found to be situated in distinct areas along the floodplain, and generally at depths > 20 cm (8 in.) below the surface. In accordance with Comprehensive, Environmental Response, Compensation, and Liability Act (CERCLA), a feasibility study was prepared to assess alternatives for remediation, and a proposed plan was issued to the public in which a preferred alternative was identified. In response to public input, the plan was modified and US Department of Energy (DOE) issued a Record of Decision in 1995 committing to excavating all soil in the EFPC floodplain exceeding a concentration of 400 parts per million (ppm) of mercury. The Lower East Fork Poplar Creek (LEFPC) remedial action (RA) focuses on the stretch of EFPC flowing from Lake Reality at the Y-12 Plant, through the city of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation (ORR) and its associated floodplain. Specific areas were identified that required remediation at the National Oceanographic and Atmospheric Administration (NOAA) Site along Illinois Avenue and at the Bruner Site along the Oak Ridge Turnpike. The RA was conducted in two separate phases. Phase 2, conducted from February to October 1997, completed the remediation efforts at the NOAA facility and fully remediated the Bruner Site. During both phases, data were collected to show that the remedial efforts performed at the NOAA and Bruner sites were successful in implementing the Record of Decision and had no adverse impact on the creek water quality or the city of Oak Ridge publicly owned treatment works

  14. Effect of the amount of chestnuts in the diet of Celta pigs on the fatty acid profile of dry-cured lacon

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, M.C. de; Dominguez, R.; Cantalapiedra, J.; Iglesias, A.; Lorenzo, J.M.

    2016-07-01

    The effect of including chestnuts in the formulation of the feed (0, 15 and 25% chestnut) on the fatty acids of dry-cured lacon from Celta pigs was studied. The inclusion of chestnuts decreases the saturated fatty acid content (SFA) and the monounsaturated fatty acid content (MUFA). With regards to the polyunsaturated fatty acids (PUFA), the lacon from animals fed with chestnuts presented higher values of total PUFA, n6 PUFAs and n3 PUFAs. This is related to the fact that chestnut diets had the highest amounts of essential fatty acids (C18:2n6 and C18:3n3), therefore the lacon from chestnut-fed animals also presented higher amounts of these fatty acids. According to nutritional ratios, lacon obtained from chestnut-fed pigs was healthier than the one obtained from pigs fed on commercial feed. The main conclusion is that including chestnuts in the diet allows us to obtain healthier dry-cured meat products. (Author)

  15. Male sterility in chestnuts

    International Nuclear Information System (INIS)

    Omura, Mitsuo; Akihama, Tomoya

    1982-01-01

    A tentative plan was proposed for chestnuts based on their pollination system, male sterility and restoration. The studies on the male sterility of 1,063 cultivars and clones suggested that there were three types of male sterility. The first type (S-1) was characterized by antherless florets. In the second type (S-2), the catkins fell before anthesis, and the third type (S-3) appeared to develop normally in gross floral morphology, but the pollen grains were abnormal in shape and did not have germinating power. In an interspecific hybrid clone CS which belonged to S-1, fertility was restored in an open pollinated progeny. The use of CS and CSO-3 with its restored fertility, permitted the planning of breeding the chestnut hybrid cultivars propagated by seeds. The inbred clones with either male sterility or restorer genes are first bred mainly by back crossing with parents with favorable pollen. The clones are selected individually for early bearing, wasp and disease resistance, and restoration. Then, the hybrid seedling lines between male sterile and restorer inbreds are evaluated for homogenity in nut characters and tree habits. Next, the hybrid seedling lines selected will be examined for crop yield, vigor and cross compatibility. The superior seedling lines are finally selected, and the parental inbreds are grafted to be propagated for seed production orchards. (Kaihara, S.)

  16. RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report describes the borehole geophysical logging performed at selected monitoring wells at waste area grouping (WAG) 6 of Oak Ridge National Laboratory in support of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI). It identifies the locations and describes the methods, equipment used in the effort, and the results of the activity. The actual logs for each well logged are presented in Attachment 1 through 4 of the TM. Attachment 5 provide logging contractor service literature and Attachment 6 is the Oak Ridge National Laboratory (ORNL) Procedure for Control of a Nuclear Source Utilized in Geophysical logging. The primary objectives of the borehole geophysical logging program were to (1) identify water-bearing fractured bedrock zones to determine the placement of the screen and sealed intervals for subsequent installation, and (2) further characterize local bedrock geology and hydrogeology and gain insight about the deeper component of the shallow bedrock aquifer flow system. A secondary objective was to provide stratigraphic and structural correlations with existing logs for Hydraulic Head Monitoring Station (HHMS) wells, which display evidence of faulting

  17. Litterfall and litter decomposition in chestnut high forest stands in northern Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Patricio, M. S.; Nunes, L. F.; Pereira, E. L.

    2012-11-01

    This research aimed to: estimate the inputs of litterfall; model the decomposition process and assess the rates of litter decay and turnover; study the litter decomposition process and dynamics of nutrients in old chestnut high forests. This study aimed to fill a gap in the knowledge of chestnut decomposition process as this type of ecosystems have never been modeled and studied from this point of view in Portugal. The study sites are located in the mountains of Marao, Padrela and Bornes in a west-to-east transect, across northern Portugal, from a more-Atlantic-to-lessmaritime influence. This research was developed on old chestnut high forests for quality timber production submitted to a silviculture management close-to-nature. We collected litterfall using littertraps and studied decomposition of leaf and bur litter by the nylon net bag technique. Simple and double exponential models were used to describe the decomposition of chestnut litterfall incubated in situ during 559 days. The results of the decomposition are discussed in relation to the initial litter quality (C, N, P, K, Ca, Mg) and the decomposition rates. Annually, the mature chestnut high-forest stands (density 360-1,260 tree ha1, age 55-73 years old) restore 4.9 Mg DM ha–1 of litter and 2.6 Mg ha{sup -}1 yr{sup -}1 of carbon to the soil. The two-component litter decay model proved to be more biologically realistic, providing a decay rate for the fast initial stage (46-58 yr{sup -}1for the leaves and 38-42 yr{sup -}1for the burs) and a decay rate related to the recalcitrant pool (0.45-0.60 yr{sup -}1for the leaves and 0.22-0.36 yr{sup -}1for the burs). This study pointed to some decay patterns and release of bioelements by the litterfall which can be useful for calibrating existing models and indicators of sustainability to improve both silvicultural and environmental approaches for the management of chestnut forests. (Author) 45 refs.

  18. Practices to manage chestnut orchards infested by the Chinese gall wasp

    Directory of Open Access Journals (Sweden)

    Turchetti T

    2012-10-01

    Full Text Available The rapid spread of the Chinese gall wasp (Dryocosmus kuriphilus Yasumatsu in Italian chestnut growing areas is causing new criticisms. In this context, in addition to a clear plant suffering due to the wasp infestation, the dangerous recurrence of chestnut blight and the sudden spread of Gnomoniopsis sp., a coloniser of galls but also the etiological agent of nut brown rot, must be considered. Therefore, it is very important to increase the plants’ vigour and prevent their decline. Preliminary experiments were carried out in different Italian regions between 2010 and 2011. Organic plant fertilizers were applied to plants showing middle or high defoliation levels caused by the wasp attacks. The observations carried out during the growing season indicate a good vegetative restart in the treated plants compared to the untreated controls, in all the situations and independently of the fertilizers applied. Most of the treated plants (between the 75% and the 100% showed an evident improvement in the canopy vegetation, while the untreated controls were always classified in the worse classes of crown condition. These preliminary results highlight the efficacy of this kind of treatments for infested chestnut stands. This strategy, which is based on the preliminary evaluation of the plant vigour (following the proposed scale of attack severity and lack of foliage, consists in a manuring treatment at vegetative restart, which can be repeated in the following years in dependence on the results obtained. Moreover, pruning may be suggested only to manage the development of plants showing a definite recovery. The gall wasp pullulation requires new management strategies aimed at preserving the chestnut orchards, in order to avoid the chestnut cultivation to be marginalized or abandoned.

  19. Environmental assessment. Y-12 Plant Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1982-12-01

    The Oak Ridge Y-12 Plant, operated by Union Carbide Corporation, Nuclear Division, under contract to the US Department of Energy (DOE), has the following five major responsibilities: production of nuclear weaposn components; fabrication support for weapon design agencies; support for other UCC-ND installations; support and assistance to otehr government agencies; and processing of source and special nuclear materials. This Environmental Assessment describesthe ongoing opertions of Y-12 and evaluates the actual and possible impacts on the environment that continuation of these operatios entails. Information is presented under the following section headings: purpose and need for the proposed action; alternatives; affected environment;; and, environmental consequences

  20. Tiger Team Assessment of the Oak Ridge K-25 Site

    International Nuclear Information System (INIS)

    1991-12-01

    The Office of Special Projects in the Office of the Assistant Secretary for Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report documents the Tiger Team Assessment of the Oak Ridge K-25 Site (K-25 Site), Oak Ridge, Tennessee. The purpose of the Assessment is to provide the Secretary of Energy with concise information on the: current ES ampersand H compliance status of the Site and the vulnerabilities associated with that compliance status; root causes for noncompliance; adequacy of DOE and site contractor ES ampersand H management programs; adequacy of response actions developed to address identified problem areas; and adequacy of ES ampersand H self-assessments and the institutionalization of the self-assessment process at the K-25 Site

  1. An aerial radiological survey of the White Oak Creek Floodplain, Oak Ridge Reservation, Oak Ridge, Tennessee: Date of survey: September-October 1986

    International Nuclear Information System (INIS)

    Fritzsche, A.E.

    1987-06-01

    An aerial radiological survey was conducted over the White Oak Creek Floodplain of the Oak Ridge Reservation during the period 30 September through 3 October 1986. The survey was performed at the request of the United States Department of Energy (DOE), Oak Ridge Operations Office, by EG and G Energy Measurements, Inc. (EG and G/EM), a contractor of the DOE. The survey results will be utilized in support of the Remedial Action Program being conducted at the site by Martin Marietta Energy Systems, Inc., operator of the Oak Ridge National Laboratory (ORNL). A flight line spacing of 37 meters (120 feet) and a survey altitude of 46 meters (150 feet) yielded the maximum data density and sensitivity achievable by the aerial system, which was greater than that achieved from prior surveys of the entire Oak Ridge Reservation. Isopleth maps of Cs-137, Co-60, Ti-208 implied concentrations, and exposure rates provided an estimate of the location and magnitude of the man-made activity. These maps, overlaid on a current photograph of the area, combine to yield a view of the radiological condition of the White Oak Creek Floodplain. 5 refs., 40 figs., 3 tabs

  2. Vertical accretion sand proxies of gaged floods along the upper Little Tennessee River, Blue Ridge Mountains, USA

    Science.gov (United States)

    Leigh, David S.

    2018-02-01

    Understanding environmental hazards presented by river flooding has been enhanced by paleoflood analysis, which uses sedimentary records to document floods beyond historical records. Bottomland overbank deposits (e.g., natural levees, floodbasins, meander scars, low terraces) have the potential as continuous paleoflood archives of flood frequency and magnitude, but they have been under-utilized because of uncertainty about their ability to derive flood magnitude estimates. The purpose of this paper is to provide a case study that illuminates tremendous potential of bottomland overbank sediments as reliable proxies of both flood frequency and magnitude. Methods involve correlation of particle-size measurements of the coarse tail of overbank deposits (> 0.25 mm sand) from three separate sites with historical flood discharge records for the upper Little Tennessee River in the Blue Ridge Mountains of the southeastern United States. Results show that essentially all floods larger than a 20% probability event can be detected by the coarse tail of particle-size distributions, especially if the temporal resolution of sampling is annual or sub-annual. Coarser temporal resolution (1.0 to 2.5 year sample intervals) provides an adequate record of large floods, but is unable to discriminate individual floods separated by only one to three years. Measurements of > 0.25 mm sand that are normalized against a smoothed trend line through the down-column data produce highly significant correlations (R2 values of 0.50 to 0.60 with p-values of 0.004 to Time-series data of particle-size should be detrended to minimize variation from dynamic aspects of fluvial sedimentation that are not related to flood magnitude; and 5) Multiple sites should be chosen to allow for replication of findings.

  3. Physico-chemical, morphological and pasting properties of starches extracted from water Chestnuts (Trapa natans from three Lakes of Kashmir, India

    Directory of Open Access Journals (Sweden)

    Adil Gani

    2010-06-01

    Full Text Available Studies on physicochemical, morphology and pasting properties of starches extracted from water chestnuts of three Lakes of Kashmir valley (Wular, Anchar and Dal Lakes were conducted to determine their application in different food products. The water chestnut starch from Dal Lake had more oval shaped granules than water chestnut starches from the Wular and the Anchar Lakes.The unique feature of the water chestnut starches were shape of starch granules which looked like horn(s protruding from the surface which did not appear in other starches already studied. Proximate analysis of water chestnut starches showed that average protein content were 0.4%, amylose 29.5 % and ash 0.007 on dry weight basis. Increase in water binding capacity, swelling power and solubility was found over a temperature range of 50-90ºC. Water chestnut starches showed an increase in syneresis during freeze thaw cycles and decline in paste clarity upon storage. Starch extracted from the water chestnuts of the Dal Lake showed higher water binding capacity, swelling, solubility, past clarity, freeze thaw stability, peak viscosity, final viscosity and lower protein content, amylose content, pasting temperature and gel firmness than starches extracted from water chestnuts of the Wular and the Anchar Lakes.

  4. Radioactive Solid Waste Storage and Disposal at Oak Ridge National Laboratory, Description and Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bates, L.D.

    2001-01-30

    Oak Ridge National Laboratory (ORNL) is a principle Department of Energy (DOE) Research Institution operated by the Union Carbide Corporation - Nuclear Division (UCC-ND) under direction of the DOE Oak Ridge Operations Office (DOE-ORO). The Laboratory was established in east Tennessee, near what is now the city of Oak Ridge, in the mid 1940s as a part of the World War II effort to develop a nuclear weapon. Since its inception, disposal of radioactively contaminated materials, both solid and liquid, has been an integral part of Laboratory operations. The purpose of this document is to provide a detailed description of the ORNL Solid Waste Storage Areas, to describe the practice and procedure of their operation, and to address the health and safety impacts and concerns of that operation.

  5. Environmental Survey preliminary report, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1989-02-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy's (DOE) Oak Ridge Gaseous Diffusion Plant (ORGDP) conducted March 14 through 25, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental risk associated with ORGDP. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ORGDP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during is on-site activities. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory (INEL). When completed, the results will be incorporated into the ORGDP Survey findings for in inclusion into the Environmental Survey Summary Report. 120 refs., 41 figs., 74 tabs

  6. Assessment of the Groundwater Protection Program Y-12 National Security Complex, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    2005-01-01

    The following report contains an assessment of the Y-12 Groundwater Protection Program (GWPP) for the Y-12 National Security Complex at the Oak Ridge Reservation, Tennessee. The GWPP is administered by BWXT Y-12, L.L.C. for the purpose of groundwater surveillance monitoring. After over 20 years of extensive site characterization and delineation efforts, groundwater in the three hydrogeologic areas that comprise the Y-12 Complex requires a long-term monitoring network strategy that will efficiently satisfy surveillance monitoring objectives set forth in DOE Order 450.1. The GWPP assessment consisted of two phases, a qualitative review of the program and a quantitative evaluation of the groundwater monitoring network using the Monitoring and Remediation Optimization System (MAROS) software methodology. The specific objective of the qualitative section of the review of the GWPP was to evaluate the methods of data collection, management, and reporting and the function of the monitoring network for the Y-12 facility using guidance from regulatory and academic sources. The results of the qualitative review are used to suggest modifications to the overall program that would be consistent with achieving objectives for long-term groundwater monitoring. While cost minimization is a consideration in the development of the monitoring program, the primary goal is to provide a comprehensive strategy to provide quality data to support site decision making during facility operations, long-term resource restoration, and property redevelopment. The MAROS software is designed to recommend an improved groundwater monitoring network by applying statistical techniques to existing historic and current site analytical data. The MAROS methodology also considers hydrogeologic factors, regulatory framework, and the location of potential receptors. The software identifies trends and suggests components for an improved monitoring plan by analyzing individual monitoring wells in the current

  7. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex

    International Nuclear Information System (INIS)

    2006-01-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted ''inactive'' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on the

  8. Volume Tables and Point-Sampling Factors for Shortleaf Pines in Plantation on Abandoned Fields in Tennessee, Alabama, and Georgia Highlands

    Science.gov (United States)

    Glendon W. Smalley; David R. Bower

    1968-01-01

    The tables and equations published here provide ways to estimate total and merchantable cubic-foot volumes, both inside and outside bark, of shortleaf pines (Pinus echinata Mill.) planted on abandoned fields in the Ridge and Valley, Cumberland Plateau, Eastern Highland Rim, and Western Highland Rim regions of Tennessee, Alabama, and Georgia (fig. 1). There already are...

  9. Project plan for the Background Soil Characterization Project on the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-08-01

    The Background Soil characterization Project (BSCP) will provide background concentration levels of selected metals, organic compounds, and radionuclides in soils from uncontaminated on-site areas at the Oak Ridge Reservation (ORR), and off-site in the western part of Roane County and the eastern part of Anderson County. The BSCP will establish a database, recommend how to use the data for contaminated site assessment, and provide estimates of the potential human health and environmental risks associated with the background level concentrations of potentially hazardous constituents

  10. Project plan for the Background Soil Characterization Project on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    The Background Soil characterization Project (BSCP) will provide background concentration levels of selected metals, organic compounds, and radionuclides in soils from uncontaminated on-site areas at the Oak Ridge Reservation (ORR), and off-site in the western part of Roane County and the eastern part of Anderson County. The BSCP will establish a database, recommend how to use the data for contaminated site assessment, and provide estimates of the potential human health and environmental risks associated with the background level concentrations of potentially hazardous constituents.

  11. Gnomoniopsis castanea is the main agent of chestnut nut rot in Switzerland

    Directory of Open Access Journals (Sweden)

    Francesca G. DENNERT

    2015-09-01

    Full Text Available Nuts of sweet chestnut have been an important food source for the alpine population in Switzerland since the Middle Ages and are still valued today for the preparation of traditional food commodities. Nut quality is reduced by insect damage and by various pathogenic fungi. In the last few years, producers and consumers perceived an increase of brown nut rot; while the nut rot agent Gnomoniopsis castanea was reported locally in southern Switzerland, its presence has not been investigated over large areas until now. This study assessed the incidence of brown nut rot and identified the causal agent present in Switzerland. Fully ripened nuts were collected from the main sweet chestnut growing areas of Switzerland. A filamentous fungus morphologically identified as G. castanea was isolated from 10 to 91% of the sampled nuts, despite only 3 to 21% of the sampled nuts showing brown rot symptoms. This fungus was isolated from symptomatic chestnuts as well as from apparently healthy chestnuts. Our results suggest a possible endophytic lifestyle in ripened nuts as well as in branches, leaves and unripe nuts as previously found. Species identity of 45 isolates was confirmed by EF-1alpha, beta-tubulin and ITS sequencing. Concatenation of β-tubulin and calmodulin sequences showed that several haplotypes were present at each sampling locality. No other nut rot pathogens could be isolated in this study, suggesting that G. castanea is the main causal agent of nut rot in Switzerland. The presence of this species is reported for the first time in a site in northern Switzerland. Further studies are needed to assess the influence of meteorological conditions and chestnut varieties on the incidence of G. castanea in order to provide prevention strategies for chestnut growers. Normal 0 21 false false false FR-CH X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso

  12. Environmental Monitoring Plan for the Oak Ridge Reservation, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Sharon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2012-10-01

    The purpose of Oak Ridge Reservation (ORR) environmental surveillance is to characterize radiological and nonradiological conditions of the off-site environs and estimate public doses related to these conditions, confirm estimations of public dose based on effluent monitoring data, and, where appropriate, provide supplemental data to support compliance monitoring for applicable environmental regulations. This environmental monitoring plan (EMP) is intended to document the rationale, frequency, parameters, and analytical methods for the ORR environmental surveillance program and provides information on ORR site characteristics, environmental pathways, dose assessment methods, and quality management. ORR-wide environmental monitoring activities include a variety of media including air, surface water, vegetation, biota, and wildlife. In addition to these activities, site-specific effluent, groundwater, and best management monitoring programs are conducted at the Oak Ridge National Laboratory (ORNL), the Y-12 National Security Complex (Y-12), and the East Tennessee Technology Park (ETTP). This is revision 5.

  13. Population genetic characteristics of horse chestnut in Serbia

    Directory of Open Access Journals (Sweden)

    Ocokoljić Mirjana

    2013-01-01

    Full Text Available The general population genetic characteristics of cultivated horse chestnut trees excelling in growth, phenotype characteristics, type of inflorescence, productivity and resistance to the leafminer Cameraria ohridella Deschka and Dimić were analyzed in Serbia. The analyzed population genetic parameters point to fundamental differences in the genetic structure among the cultivated populations in Serbia. The study shows the variability in all properties among the populations and inter-individual variability within the populations. The variability and differential characteristics were assessed using statistical parameters, taking into account the satisfactory reflection of the hereditary potential. The assessed differences in the vitality and evolution potential of different populations can determine the methods of horse chestnut gene pool collection, reconstruction and improvement. [Projekat Ministarstva nauke Republike Srbije, br. 31041: Establishment of Wood Plantations Intended for a forestation of Serbia

  14. Medical Education for Tennessee. A Report of the Tennessee Higher Education Commission.

    Science.gov (United States)

    Boone, Jerry N.; Woods, Myra S.

    This study of medical education was conducted as a part of the Tennessee Higher Education Commission's responsibility to design a master plan for higher education in Tennessee. It provides a background of information on Tennessee's needs for physicians and on the production of physicians by the three medical schools in the state. The study…

  15. Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-04-01

    Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G

  16. Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G.

  17. Project management plan for the gunite and associated tanks treatability studies project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-12-01

    This plan for the Gunite and Associated Tanks (GAAT) Treatability Studies Project satisfies the requirements of the program management plan for the Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program as established in the Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program. This plan is a subtier of several other ER documents designed to satisfy the US Department of Energy (DOE) Order 4700.1 requirement for major systems acquisitions. This project management plan identifies the major activities of the GAAT Treatability Studies Project; establishes performance criteria; discusses the roles and responsibilities of the organizations that will perform the work; and summarizes the work breakdown structure, schedule, milestones, and cost estimate for the project

  18. Electromagnetic survey of the K1070A burial ground at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Emery, M.S.

    1993-01-01

    The K1070A burial ground, located at the K-25 Site on the Oak Ridge Reservation, received chemical and radioactive wastes from the late 1940s until 1975. Analysis of water samples collected from nearby monitoring wells indicates that contamination is migrating offsite. In November 1991, Oak Ridge National Laboratory (ORNL) personnel collected high-resolution electrical terrain conductivity data at the K1070A burial ground. A Model EM31 terrain conductivity meter manufactured by Geonics Limited was used in conjunction with the ORNL-developed Ultrasonic Ranging and Data System (USRADS) to perform the survey. The purposeof the survey was to provide Environmental Restoration (ER) staff with a detailed map of the spatial variation of the apparent electrical conductivity of the shallow subsurface (upper 3 m) to assist them in siting future monitoring wells closer to the waste area without drilling into the buried waste

  19. Temperature inversions in the vicinity of Oak Ridge, Tennessee, as characterized by tethersonde data

    International Nuclear Information System (INIS)

    Blasing, T.J.; Wang, J.C.; Lombardi, D.A.

    1998-01-01

    Accidental releases of hazardous materials to the atmosphere may result from fires that create a buoyant plume which may rise several hundred meters above the ground. For such buoyant release cases, estimates of ground-level concentrations may be as much as a factor of 100 lower than similar, nonbuoyant releases. For the Oak Ridge Reservation, safety analyses often examine buoyant release accident scenarios and resulting downwind, ground-level consequence estimates. For these analyses, careful consideration of buoyant plume rise is important. Plume rise can be limited by a stable vertical atmospheric temperature profile, commonly called an inversion, where the air temperature increases with height. There is a concern that inversions may interact with the complex terrain on the Oak Ridge Reservation, particularly at the Y-12 Plant, which is located in a relatively shallow but narrow valley, to trap the plume and increase ground-level consequences. The purpose of this paper is to review the available meteorological data that provide information on inversions in the Oak Ridge area

  20. Environmental Survey preliminary report, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy's (DOE) Oak Ridge Gaseous Diffusion Plant (ORGDP) conducted March 14 through 25, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental risk associated with ORGDP. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ORGDP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during is on-site activities. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory (INEL). When completed, the results will be incorporated into the ORGDP Survey findings for in inclusion into the Environmental Survey Summary Report. 120 refs., 41 figs., 74 tabs.

  1. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data

  2. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation

  3. Oak Ridge National Laboratory Review: Volume 24, No. 2, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C. (ed.)

    1991-01-01

    The Oak Ridge National Laboratory (ORNL) is a multiprogram, multipurpose laboratory that conducts research in the physical, chemical, and life sciences; in fusion, fission, and fossil energy; and in energy conservation and other energy-related technologies. This review outlines some current endeavors of the lab. A state of the laboratory presentation is given by director, Alvin Trivelpiece. Research of single crystals for welding is described. The Science Alliance, a partnership between ORNL and the University of Tennessee, is chronicled. And several incites into distinguished personnel at the laboratory are given. (GHH)

  4. Oak Ridge National Laboratory Review: Volume 24, No. 2, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C. [ed.

    1991-12-31

    The Oak Ridge National Laboratory (ORNL) is a multiprogram, multipurpose laboratory that conducts research in the physical, chemical, and life sciences; in fusion, fission, and fossil energy; and in energy conservation and other energy-related technologies. This review outlines some current endeavors of the lab. A state of the laboratory presentation is given by director, Alvin Trivelpiece. Research of single crystals for welding is described. The Science Alliance, a partnership between ORNL and the University of Tennessee, is chronicled. And several incites into distinguished personnel at the laboratory are given. (GHH)

  5. CHARACTERIZATION REPORT FOR THE 81-10 AREA IN THE UPPER EASTFORK POPLAR CREEK AREA ATTHE OAK RIDGE Y-12 NATIONALSECURITY COMPLEX,OAK RIDGE, TENNESSEE

    International Nuclear Information System (INIS)

    King, D.A.

    2010-01-01

    A field investigation of contaminated soils was conducted at the 81-10 area to address data gaps identified by previous studies. These data gaps included (1) defining the nature and extent of contamination in 81-10-area soils, (2) determining whether soils exhibit Resource Conservation and Recovery Act of 1976 (RCRA) characteristics, (3) determining if contaminated soils are a source of mercury contamination in Upper East Fork Poplar Creek (UEFPC), (4) determining the need for conducting a soil treatability study, and (5) collecting analytical data to prepare waste profiles for meeting the Environmental Management Waste Management Facility (EMWMF) Waste Acceptable Criteria (WAC) for potential disposal of contaminated soils. The investigation design is documented in the Characterization Plan (DOE/OR/01-2419 and D2; DOE 2010), a Federal Facilities Agreement (FFA) secondary document. This site investigation report is prepared in lieu of the Treatability Study Work Plan milestone document listed in Appendix E of the Oak Ridge Reservation FFA, as agreed in the January 15, 2009, Core Team meeting between the U.S. Environmental Protection Agency (EPA), Tennessee Department of Environment and Conservation, and U.S. Department of Energy (DOE). The need for a treatability study was based on the assumptions mercury contaminated soils in the 81-10 area were RCRA characteristic and mercury contamination was migrating from the 81-10 area to UEFPC. However, significant uncertainties exist on the speciation and leachable characteristics of the mercury, the extent of contamination, and the hydraulic connectivity of the area to UEFPC. The Core Team agreed a site characterization study would be performed to address these uncertainties and to determine the need for a treatability study. As part of the remedial design envisioned in the Phase I Record of Decision for UEFPC interim source control actions (DOE 2002a), implementation of the Characterization Plan followed by data evaluation

  6. Survey for the presence of Phytophthora cinnamomi on reclaimed mined lands in Ohio chosen for restoration of the American chestnut

    Science.gov (United States)

    Shiv Hiremath; Kirsten Lehtoma; Jenise M. Bauman

    2013-01-01

    We have been planting blight resistant American chestnut seedlings on reclaimed coal mined areas in Southeastern Ohio, which was once within the natural range of the American chestnut. Towards the goal of restoring the American chestnut, we are testing suitable sites that can aid survival, growth and establishment of planted seedlings pre-inoculated with...

  7. Improvement of maturation and conversion of horse chestnut androgenic embryos

    Directory of Open Access Journals (Sweden)

    Ćalić-Dragosavac, D.

    2010-12-01

    Full Text Available Horse chestnut (Aesculus hippocastanum L., Hippocastanaceae is a relict species of the tertiary flora and endemit of Balkan peninsula. It has enormous horticultular and medical important. Horse chestnut trees are native to the Balkan peninsula, but grow as ornamental trees in parks and avenues throughout the Northern Hemisphere. Because of the slow and difficult reproduction of great importance to be fast and cheap in vitro multiplication. Possible solution is regenerated by androgenesis. Microspore culture has been used in recent years as a tool for producing haploid plants in a varyety of higher plants, but the low frequencies of microspore-derived plants restrict the use of the technique in plant breeding.

  8. Waste characterization data manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA), Sect. IX.G.1. This manual contains the results of sampling activities that were conducted at the Oak Ridge National Laboratory in 1988. Thirty-three tanks were sampled and analyzed at that time. Sampling of the remaining inactive tanks is currently underway, and data from these tanks will be added to this manual as they become available. Data are presented from analysis of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, radiochemical compounds, and inorganic compounds

  9. Waste characterization data manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA), Sect. IX.G.1. This manual contains the results of sampling activities that were conducted at the Oak Ridge National Laboratory in 1988. Thirty-three tanks were sampled and analyzed at that time. Sampling of the remaining inactive tanks is currently underway, and data from these tanks will be added to this manual as they become available. Data are presented from analysis of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, radiochemical compounds, and inorganic compounds.

  10. Native Grass Community Management Plan for the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Ryon, Michael G [ORNL; Parr, Patricia Dreyer [ORNL; Cohen, Kari [ORNL

    2007-06-01

    Land managers at the Department of Energy's Oak Ridge National Laboratory in East Tennessee are restoring native warm-season grasses and wildflowers to various sites across the Oak Ridge Reservation (ORR). Some of the numerous benefits to planting native grasses and forbs include improved habitat quality for wildlife, improved aesthetic values, lower long-term maintenance costs, and compliance with Executive Order 13112 (Clinton 1999). Challenges to restoring native plants on the ORR include the need to gain experience in establishing and maintaining these communities and the potentially greater up-front costs of getting native grasses established. The goals of the native grass program are generally outlined on a fiscal-year basis. An overview of some of the issues associated with the successful and cost-effective establishment and maintenance of native grass and wildflower stands on the ORR is presented in this report.

  11. Oak Ridge Reservation Federal Facility Agreement quarterly report for the Environmental Restoration Program, Volume 1, October--December 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This quarterly progress report satisfies requirements for the Environmental Restoration (ER) Program which are specified in the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA) established between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC). The reporting period covered is October through December 1992(first quarter of FY 1993). Sections 1.1 and 1.2 provide respectively the milestones scheduled for completion during the reporting period and a list of documents that have been proposed for transmittal during the following quarter but have not been formally approved as FY 1993 commitments. This first section is followed by: significant accomplishments; technical status at Y-12 operable units, Oak Ridge National Laboratory, Oak Ridge K-25 site, Clinch River, Oak Ridge Associated Universities, and technical oversight and technical programs; and response action contractor assignments

  12. Design demonstrations for Category B tank systems piping at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-12-01

    Demonstration of the design of the piping systems described in this report is stipulated by the Federal Facility Agreement (FFA) between the U.S. Environmental Protection Agency (EPA)-Region IV, the Tennessee Department of Environment and Conservation (TDEC), and the U.S. Department of Energy (DOE). This report provides a design demonstration of the secondary containment and ancillary equipment of 30 piping systems designated in the FFA as Category B (i.e., existing tank systems with secondary containment). Based on the findings of the Design Demonstrations for the Remaining 19 Category B Tank Systems, (DOE/OR/03-1150 ampersand D2), three tank systems originally designated as Category B have been redesignated as Category C (i.e., existing tank systems without secondary containment). The design demonstrations were developed using information obtained from design drawings (as-built when available), construction specifications, and interviews with facility operators. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Section C). Deficiencies or restrictions regarding the ability to demonstrate that each of the containment systems conforms to FFA requirements are noted in the discussion of each piping system and presented in Table 2.0-1

  13. RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk- In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-01-01

    In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Subsequently, this plan was modified again and approved as Y/TS-395, Revised RCRA Closure Plan for the Bear Creek Burial Grounds (February 29, 1988). Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. The plan was presented to the state of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. This amended closure plan goes further to include inspection and maintenance criteria along with other details

  14. Technical specification for transferring National Pollutant Discharge Elimination System water data to the Oak Ridge Environmental Information System

    International Nuclear Information System (INIS)

    1996-11-01

    The primary goal of this technical specification is to meet the consolidated environmental data requirements defined by the Federal Facility (FFA) and the Tennessee Oversight Agreement (TOA) as they pertain to NPDES surface water data maintained in Oak Ridge, Tennessee, by the Department of Energy's Maintenance and Operations (M ampersand O) contractor Martin Marietta Energy Systems and prime contractors to DOE. This technical specification describes the organizational responsibilities for getting NPDES data into OREIS, describes the logical data transfer file required from NPDES, addresses business rules and submission rules, describes the physical data transfer file, addresses configuration control of this technical specification, and addresses required changes to the current OREIS data base structure due to the requirements of NPDES

  15. Soil preparation methods promoting ectomycorrhizal colonization and American chestnut Castanea dentata establishment in coal mine restoration

    Science.gov (United States)

    Jenise M. Bauman; Carolyn H. Keiffer; Shiv Hiremath; Brian C. McCarthy

    2013-01-01

    The objective of this research was to evaluate soil subsurface methods that may aid in seedling establishment and encourage root colonization from a diverse group of ectomycorrhizal (ECM) fungi during restoration projects. American chestnut Castanea dentata Marsh. Borkh. and backcrossed chestnuts seedlings were planted on a reclaimed coal mine site...

  16. Oak Ridge Reservation Volume 3. Records relating to RaLa, iodine-131, and cesium-137 at the Oak Ridge National Laboratory and the Oak Ridge Operations Office: A guide to record series of the Department of Energy and its contractors

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this guide is to describe each of the documents and record series pertaining to the production, release, and disposal of radioactive barium-lanthanum (RaLa), iodine-131, and cesium-137 at the Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. History Associates Incorporated (HAI) prepared this guide as part of DOE's Epidemiologic Records Inventory Project, which seeks to verify and conduct inventories of epidemiologic and health-related records at various DOE and DOE contractor sites. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI's role. It provides information on the history of the DOE-Oak Ridge Reservation (ORR), particularly ORNL. Specific attention is given to the production of RaLa and the fission products iodine-131 and cesium-137. This introduction also describes the methodologies HAI used in the selection and inventorying of documents and record series pertaining to RaLa, iodine-131, and cesium-137, and in the production of this guide. Concluding paragraphs describe the arrangement of the record series, explain the information contained in the record series descriptions, and indicate restrictions on access to the records

  17. Hg isotopes reveal in-stream processing and legacy inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA.

    Science.gov (United States)

    Demers, Jason D; Blum, Joel D; Brooks, Scott C; Donovan, Patrick M; Riscassi, Ami L; Miller, Carrie L; Zheng, Wang; Gu, Baohua

    2018-04-25

    Natural abundance stable Hg isotope measurements were used to place new constraints on sources, transport, and transformations of Hg along the flow path of East Fork Poplar Creek (EFPC), a point-source contaminated headwater stream in Oak Ridge, Tennessee. Particulate-bound Hg in the water column of EFPC within the Y-12 National Security Complex, was isotopically similar to average metallic Hg(0) used in industry, having a mean δ202Hg value of -0.42 ± 0.09‰ (1SD) and near-zero Δ199Hg. On average, particulate fraction δ202Hg values increased downstream by 0.53‰, while Δ199Hg decreased by -0.10‰, converging with the Hg isotopic composition of the fine fraction of streambed sediment along the 26 km flow path. The dissolved fraction behaved differently. Although initial Δ199Hg values of the dissolved fraction were also near-zero, these values increased transiently along the flow path. Initial δ202Hg values of the dissolved fraction were more variable than in the particulate fraction, ranging from -0.44 to 0.18‰ among three seasonal sampling campaigns, but converged to an average δ202Hg value of 0.01 ± 0.10‰ (1SD) downstream. Dissolved Hg in the hyporheic and riparian pore water had higher and lower δ202Hg values, respectively, compared to dissolved Hg in stream water. Variations in Hg isotopic composition of the dissolved and suspended fractions along the flow path suggest that: (1) physical processes such as dilution and sedimentation do not fully explain decreases in total mercury concentrations along the flow path; (2) in-stream processes include photochemical reduction, but microbial reduction is likely more dominant; and (3) additional sources of dissolved mercury inputs to EFPC at baseflow during this study predominantly arise from the hyporheic zone.

  18. Data base management plan for the remedial investigation/feasibility study at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-11-01

    This Data Base Management (DBM) Plan has been prepared for use by Bechtel National, Inc. (Bechtel) and its subcontractors in the performance of the Oak Ridge National Laboratory (ORNL) Remedial Investigation/Feasibility Study (RI/FS) program activities. The RI/FS program is being performed under subcontract to Martin Marietta Energy Systems, Inc. (Energy Systems), the contractor operating ORNL for the Department of Energy. This DBM Plan defines the procedures and protocol to be followed in developing and maintaining the data base used by Bechtel and its subcontractors for RI/FS activities at ORNL; describes the management controls, policies, and guidelines to be followed; and identifies responsible positions and their Energy Systems functions. The Bechtel RI/FS data base will be compatible with the Oak Ridge Environmental Information System and will include data obtained from field measurements and laboratory and engineering analyses. Personnel health and safety information, document control, and project management data will also be maintained as part of the data base. The computerized data management system is being used to organize the data according to application and is capable of treating data from any given site as a variable entity. The procedures required to implement the DBM Plan are cross-referenced to specific sections of the plan

  19. Knee osteoarthritis in a chestnut farmer – Case Report

    Directory of Open Access Journals (Sweden)

    Stefano Mattioli

    2017-03-01

    Considering the lack of major individual risk factors for knee OA, it is reasonable to suppose that five decades of exposure to biomechanical overload as a chestnut farmer was a relevant risk factor for the onset of the disease.

  20. Resource management plan for the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Parr, P.D. (Oak Ridge National Lab., TN (United States)); Evans, J.W. (Tennessee Wildlife Resources Agency, Knoxville, TN (United States))

    1992-06-01

    A plan for management of the wildlife resources on the US Department of Energy's Oak Ridge Reservation is outlined in this document. Management includes wildlife population control (hunts, trapping, and removal), handling specific problems with wildlife, restoration of species, coordination with researchers on wildlife studies, preservation and management of habitats, and law enforcement. Wildlife resources are divided into five categories, each with a specific set of objectives and procedures for obtaining these objectives. These categories are (1) species-richness management to ensure that all resident wildlife species exist on the Reservation in viable numbers; (2) featured species management to produce selected species in desired numbers on designated land units; (3) management of game species for research, education, recreation, and public safety, (4) endangered species management designed to preserve and protect both the species and habitats critical to the survival of those species; and (5) pest management. Achievement of the objectives is a joint effort between the Tennessee Wildlife Resources Agency and the Oak Ridge National Laboratory's Environmental Sciences Division.

  1. Cleanup operations at the Oak Ridge Gaseous Diffusion Plant contaminated metal scrapyard

    International Nuclear Information System (INIS)

    Williams, L.C.

    1987-01-01

    Cleanup operations at the contaminated metal storage yard located at the Oak Ridge, Tennessee, Gaseous Diffusion Plant have been completed. The storage yard, in existence since the early 1970s, contained an estimated 35,000 tons of mixed-type metals spread over an area of roughly 30 acres. The overall cleanup program required removing the metal from the storage yard, sorting by specific metal types, and size reduction of specific types for future processing. This paper explains the methods and procedures used to accomplish this task

  2. 77 FR 32982 - Notice of Inventory Completion: Tennessee Valley Authority and the University of Tennessee...

    Science.gov (United States)

    2012-06-04

    ..., University of Tennessee Press, Knoxville, TN. Since excavation, the human remains and associated funerary... DEPARTMENT OF THE INTERIOR National Park Service [NPS-WASO-NAGPRA-10270; 2200-1100-665] Notice of Inventory Completion: Tennessee Valley Authority and the University of Tennessee McClung Museum, Knoxville...

  3. Remedial investigation report on waste area grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 4, Appendix C, Risk assessment

    International Nuclear Information System (INIS)

    1995-09-01

    Waste Area Grouping (WAG) 5 is part of Oak Ridge National Laboratory (ORNL) and is located on the United States Department of Energy's Oak Ridge Reservation (DOE-ORR). The site lies southeast of Haw Ridge in Melton Valley and comprises approximately 32 ha (80 ac) [12 ha (30 ac) of forested area and the balance in grassed fields]. Waste Area Grouping 5 consists of several contaminant source areas for the disposal of low-level radioactive, transuranic (TRU), and fissile wastes (1959 to 1973) as well as inorganic and organic chemical wastes. Wastes were buried in trenches and auger holes. Radionuclides from buried wastes are being transported by shallow groundwater to Melton Branch and White Oak Creek. Different chemicals of potential concern (COPCs) were identified (e.g., cesium-137, strontium-90, radium-226, thorium-228, etc.); other constituents and chemicals, such as vinyl chloride, bis(2-ethylhexyl)phthalate, trichloroethene, were also identified as COPCs. Based on the results of this assessment contaminants of concern (COCs) were subsequently identified. The objectives of the WAG 5 Baseline Human Health Risk Assessment (BHHRA) are to document the potential health hazards (i.e., risks) that may result from contaminants on or released from the site and provide information necessary for reaching informed remedial decisions. As part of the DOE-Oak Ridge Operations (ORO), ORNL and its associated waste/contamination sites fall under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as Superfund under the Superfund Amendments and Reauthorization Act (SARA). The results of the BHHRA will (1) document and evaluate risks to human health, (2) help determine the need for remedial action, (3) determine chemical concentrations protective of current and future human receptors, and (4) help select and compare various remedial alternatives.

  4. Management of spent nuclear fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee: Environmental assessment

    International Nuclear Information System (INIS)

    1996-02-01

    On June 1, 1995, DOE issued a Record of Decision [60 Federal Register 28680] for the Department-wide management of spent nuclear fuel (SNF); regionalized storage of SNF by fuel type was selected as the preferred alternative. The proposed action evaluated in this environmental assessment is the management of SNF on the Oak Ridge Reservation (ORR) to implement this preferred alternative of regional storage. SNF would be retrieved from storage, transferred to a hot cell if segregation by fuel type and/or repackaging is required, loaded into casks, and shipped to off-site storage. The proposed action would also include construction and operation of a dry cask SNF storage facility on ORR, in case of inadequate SNF storage. Action is needed to enable DOE to continue operation of the High Flux Isotope Reactor, which generates SNF. This report addresses environmental impacts

  5. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  6. Resource management plan for the Oak Ridge Reservation. Volume 29, Rare plants on the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, M. [Science Applications International Corp., Oak Ridge, TN (United States); Pounds, L. [Tennessee Univ., Knoxville, TN (United States); Oberholster, S. [USDA Forest Service, Montgomery, AL (United States); Parr, P.; Mann, L. [Oak Ridge National Lab., TN (United States); Edwards, L. [Clemson Univ., SC (United States). Dept. of Forestry; Rosensteel, B. [JAYCOR Environmental, Vienna, VA (United States)

    1993-08-01

    Rare plant species listed by state or federal agencies and found on or near the Department of Energy`s Oak Ridge Reservation (ORR) are identified. Seventeen species present on the ORR are listed by the Tennessee Department of Environment and Conservation as either endangered, threatened, or of special concern. Four of these are under review by the US Fish and Wildlife Service for possible listing as threatened or endangered species. Ten species listed by the state occur near and may be present on the ORR; four are endangered in Tennessee, and one is a candidate for federal listing. A range of habitats supports the rare taxa on the ORR: River bluffs, calcareous barrens, wetlands, and deciduous forest. Sites for listed rare species on the ORR have been designated as Research Park Natural Areas. Consideration of rare plant habitats is an important component of resource management and land-use planning; protection of rare species in their natural habitat is the best method of ensuring their long-term survival. In addition, the National Environmental Policy Act requires that federally funded projects avoid or mitigate impacts to listed species. The list of rare plant species and their location on the ORR should be considered provisional because the entire ORR has not been surveyed, and state and federal status of all species continues to be updated.

  7. Final report on the Background Soil Characterization Project at the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-10-01

    The Background Soil Characterization Project (BSCP) will provide background concentration levels of selected metals organic compounds, and radionuclides in soils from uncontaminated on-site areas at the Oak Ridge Reservation (ORR), and off-site in the western part of Roane County and the eastern part of Anderson County. The BSCP will establish a database, recommend how to use the data for contaminated site assessment, and provide estimates of the potential human health and environmental risks associated with the background level concentrations of potentially hazardous constituents. This volume contains the data from the Background Soil Characterization Project. When available, the following validation qualifiers are used in the appendixes. When validation qualifiers are not available, the corresponding contract laboratory data qualifiers appearing on the next page are used

  8. Influence of Soil Type and Drainage on Growth of Swamp Chestnut Oak (Quercus Michauxii Nutt.) Seedlings

    Science.gov (United States)

    Donald D. Hook

    1969-01-01

    Swamp chestnut oak (Quercus michauxii Nutt.) seedlings were grown for 2 years in five soil types in drained and undrained pots. First-year height growth was related to soil type and pot drainage, but second-year height growth was related only to soil type. Results suggest that swamp chestnut oak is site-sensitive. But slow growth, a maximum of 2...

  9. Collection, validation, and description of data for the Oak Ridge nuclear industry mortality study

    International Nuclear Information System (INIS)

    Watkins, J.; Reagan, J.; Cragle, D.; West, C.; Tankersley, W.; Frome, E.; Watson, J.

    1992-01-01

    In response to the continuing controversy over the long-term health effects of protracted occupational exposure to low levels of ionizing radiation, a mortality study was initiated pooling data for all workers hired before December 31, 1982, and employed for at least 30 days by one of the three DOE facilities in Oak Ridge, Tennessee. Topics of discussion will include issues involving the collection and validation of this large, complex data set and characteristics of demographic and exposure data for the study cohort

  10. Data report: Illinois, Indiana, Kentucky, Tennessee, and Ohio. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance

    International Nuclear Information System (INIS)

    Sargent, K.A.; Cook, J.R.; Fay, W.M.

    1982-02-01

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Illinois, Indiana, Kentucky, Tennessee, and Ohio. The following sample types were collected in each state: Illinois - 716 stream sediment, 1046 ground water, 337 stream water; Indiana - 126 stream sediment, 443 ground water, 111 stream water; Kentucky - 4901 stream sediment, 6408 ground water, 3966 stream water; Tennessee - 3309 stream sediment, 3574 ground water, 1584 stream water; Ohio - 1214 stream sediment, 2049 ground water, 1205 stream water. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. Supplementary analyses by other techniques are reported for U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn. These analyses were made on 248 sediment samples from Tennessee. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation

  11. Resource Management plan for the Oak Ridge Reservation. Volume 28, Wetlands on the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, M. [Science Applications International Corp., Oak Ridge, TN (United States); Pounds, Larry [Tennessee Univ., Knoxville, TN (United States)

    1991-12-01

    A survey of wetlands on the Oak Ridge Reservation (ORR) was conducted in 1990. Wetlands occurring on ORR were identified using National Wetlands Inventory (NWI) maps and field surveys. More than 120 sites were visited and 90 wetlands were identified. Wetland types on ORR included emergent communities in shallow embayments on reservoirs, emergent and aquatic communities in ponds, forested wetland on low ground along major creeks, and wet meadows and marshes associated with streams and seeps. Vascular plant species occurring on sites visited were inventoried, and 57 species were added to the checklist of vascular plants on ORR. Three species listed as rare in Tennessee were discovered on ORR during the wetlands survey. The survey provided an intensive ground truth of the wetlands identified by NWI and offered an indication of wetlands that the NWI remote sensing techniques did not detect.

  12. Engineering evaluation/cost analysis for the proposed removal of contaminated materials from Pad 1 at the Elza Gate site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1990-06-01

    This engineering evaluation/cost analysis (EE/CA) has been prepared in support of the proposed removal action for cleanup of radioactively contaminated concrete and soil beneath a building on privately owned commercial property in Oak Ridge, Tennessee. The property, known as the Elza Gate site, became contaminated with uranium-238, radium-226, thorium-232, thorium-230, and decay products as a result of the Manhattan Engineer District storing uranium ore and ore processing residues at the site in the early 1940s. The US Department of Energy (DOE) has responsibility for cleanup of the property under its Formerly Utilized Sites Remedial Action Program (FUSRAP). The DOE plans to remove the cracked and worn concrete pad and contaminated subsoil beneath the pad, after which the property owner/tenant will provide clean backfill and new concrete. Portions of the pad and subsoil are contaminated and, if stored or disposed of improperly, may represent a potential threat to public health or welfare and the environment. The EE/CA report is the appropriate documentation for the proposed removal action, as identified in guidance from the US Environmental Protection Agency. the objective of the EE/CA report, in addition to identifying the planned removal action, is to document the selection of response activities that will mitigate the potential for release of contaminants from the property into the environment and minimize the related threats to public health or welfare and the environment. 7 refs., 2 figs., 3 tabs

  13. Engineering evaluation/cost analysis for the proposed removal of contaminated materials from pad 1 at the Elza Gate site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1990-09-01

    This engineering evaluation/cost analysis (EE/CA) has been prepared in support of the proposed removal action for cleanup of radioactively contaminated concrete and soil beneath a building on privately owned commercial property in Oak Ridge, Tennessee. The property, known as the Elza Gate site, became contaminated with uranium-238, radium-226, thorium-232, thorium-230, and decay products as a result of the Manhattan Engineer District storing uranium ore and ore processing residues at the site in the early 1940s. The US Department of Energy (DOE) has responsibility for cleanup of the property under its Formerly Utilized Sites Remedial Action Program (FUSRAP). The DOE plans to remove the cracked and worn concrete pad and contaminated subsoil beneath the pad, after which the property owner/tenant will provide clean backfill and new concrete. Portions of the pad and subsoil are contaminated and, if stored or disposed of improperly, may represent a potential threat to public health or welfare and the environment. The EE/CA report is the appropriate documentation for the proposed removal action, as identified in guidance from the US Environmental Protection Agency. The objective of the EE/CA report, in addition to identifying the planned removal action, is to document the selection of response activities that will mitigate the potential for release of contaminants from the property into the environment and minimize the related threats to public health or welfare and the environment. 7 refs., 2 figs., 3 tabs

  14. First report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Boston, H.L.; Huston, M.A.; McCarthy, J.F.; Smith, J.G.; Southworth, G.R.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Black, M.C. (Oklahoma State Univ., Stillwater, OK (United States)); Gatz, A.J. Jr. (Ohio Wesleyan Univ., Delaware, OH (United States)); Hinzman, R.L. (Oak Ridge Research Inst., TN (United States)); Jimenez, B.D. (Puerto Rico Univ.,

    1992-07-01

    As stipulated in the National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of the BMAP are (1) to demonstrate that the current effluent limitations established for the Oak Ridge Y-12 Plant protect the uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) [formerly the Tennessee Department of Health and Environment (TDHE)], and (2) to document the ecological effects resulting from implementation of a water pollution control program that includes construction of several large wastewater treatment facilities. The BMAP consists of four major tasks: (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic macroinvertebrates, and fish. This document, the first in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted from May 1985 through September 1986.

  15. Data sharing report characterization of population 7: Personal protective equipment, dry active waste, and miscellaneous debris, surveillance and maintenance project Oak Ridge National Laboratory Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Harpenau, Evan M. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.

  16. RESULTS OBTAINED FROM RESEARCH ON SWEET CHESTNUT FROM THE SEMI-SPONTANEOUS FLORA OF NORTHERN OLTENIA

    Directory of Open Access Journals (Sweden)

    Alecu Anca

    2014-12-01

    Full Text Available Sweet chestnut (Castanea sativa Mill. is present into the semi-spontaneous flora of Northern Oltenia, around old monasteries from Vâlcea County (Horezu, Bistrita, and Turnu and Gorj (Tismana and Polovragi or in the forest fund. Present study was conducted in order to improve knowledge about sweet chestnut present in this area and assess its qualities aimed at preserving indigenous genetic resources, away from genetic erosion and promoting valuable genotypes on local market, which can be used for chestnut crop recovery. 70 biotypes from Horezu, Bistrita and Dăeşti (Valcea County and Polovragi (Gorj County were taken into study. Out of these, 16 biotypes were selected. Selections were carried out based on morphological and quality characteristics of fruits from trees with large fruits (8 selections, on those with medium fruits (5 selections and with small fruits (3 selections.

  17. Environmental Survey preliminary report, Oak Ridge National Laboratory (X-10), Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL), X-10 site, conducted August 17 through September 4, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ORNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ORNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for ORNL. The Interim Report will reflect the final determinations of the ORNL Survey. 120 refs., 68 figs., 71 tabs.

  18. Evaluation of Calendar Year 1996 groundwater and surface water quality data for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-08-01

    This report presents an evaluation of the groundwater monitoring data obtained in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1996. The monitoring data were collected for the multiple programmatic purposes of the Y-12 Plant Groundwater Protection Program (GWPP) and have been reported in Calendar Year 1996 Annual Groundwater Monitoring Report for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee. The Annual Monitoring report presents only the results of the monitoring data evaluations required for waste management sites addressed under the Resource Conservation and Recovery Act (RCRA) post-closure permit for the Bear Creek Regime. The Annual Monitoring Report also serves as a consolidated reference for the groundwater and surface water monitoring data obtained throughout the Bear Creek Regime under the auspices of the Y-12 GWPP. This report provides an evaluation of the CY 1996 monitoring data with an emphasis on regime-wide groundwater and surface water quality and long-term concentration trends of regulated and non-regulated monitoring parameters

  19. Evaluation of Calendar Year 1996 groundwater and surface water quality data for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This report presents an evaluation of the groundwater monitoring data obtained in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1996. The monitoring data were collected for the multiple programmatic purposes of the Y-12 Plant Groundwater Protection Program (GWPP) and have been reported in Calendar Year 1996 Annual Groundwater Monitoring Report for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee. The Annual Monitoring report presents only the results of the monitoring data evaluations required for waste management sites addressed under the Resource Conservation and Recovery Act (RCRA) post-closure permit for the Bear Creek Regime. The Annual Monitoring Report also serves as a consolidated reference for the groundwater and surface water monitoring data obtained throughout the Bear Creek Regime under the auspices of the Y-12 GWPP. This report provides an evaluation of the CY 1996 monitoring data with an emphasis on regime-wide groundwater and surface water quality and long-term concentration trends of regulated and non-regulated monitoring parameters.

  20. Medical screening after a coal fly ash spill in Roane County, Tennessee.

    Science.gov (United States)

    Nichols, Gregory P; Cragle, Donna L; Benitez, John G

    2014-08-01

    To assess the health of community residents following a coal fly ash spill at the Tennessee Valley Authority Kingston Fossil Plant in Harriman, Tennessee, on December 22, 2008. A uniform health assessment was developed by epidemiologists at Oak Ridge Associated Universities and medical toxicologists at Vanderbilt University Medical Center. Residents who believed that their health may have been affected by the coal fly ash spill were invited to participate in the medical screening program. Among the 214 individuals who participated in the screening program, the most commonly reported symptoms were related to upper airway irritation. No evidence of heavy metal toxicity was found. This is the first report, to our knowledge, regarding the comprehensive health evaluation of a community after a coal fly ash spill. Because this evaluation was voluntary, the majority of residents screened represented those with a high percentage of symptoms and concerns about the potential for toxic exposure. Based on known toxicity of the constituents present in the coal fly ash, health complaints did not appear to be related to the fly ash. This screening model could be used to assess immediate or baseline toxicity concerns after other disasters.

  1. A radiological and chemical investigation of the 7500 Area Contamination Site at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Williams, J.K.; Foley, R.D.; Tiner, P.F.; Hatmaker, T.L.; Uziel, M.S.; Swaja, R.E.

    1993-05-01

    A radiological and chemical investigation of the 7500 Area Contamination Site at Oak Ridge National Laboratory (ORNL) was conducted intermittently from February 1992 through May 1992. The investigation was performed by the Measurement Applications and Development Group of the Health and Safety Research Division of ORNL at the request of the US Department of Energy's Oak Ridge Operations Office and the ORNL Environmental Restoration Program. Results of this investigation indicate that the source of radioactive contamination at the point of the contamination incident is from one of the underground abandoned lines. The contamination in soil is likely the result of residual contamination from years of waste transport and maintenance operations (e.g., replacement of degraded joints, upgrading or replacement of entire pipelines, and associated landscaping activities). However, because (1) there is currently an active LLW line positioned in the same subsurface trench with the abandoned lines and (2) the physical condition of the abandoned lines may be brittle, this inquiry could not determine which abandoned line was responsible for the subsurface contamination. Soil sampling at the location of the contamination incident and along the pipeline route was performed in a manner so as not to damage the active LLW line and abandoned lines. Recommendations for corrective actions are included

  2. A probabilistic risk assessment of the effects of methylmercury and PCBs on mink and kingfishers along East Fork Poplar Creek, Oak Ridge, Tennessee, USA

    Energy Technology Data Exchange (ETDEWEB)

    Moore, D.R.J.; Sample, B.E.; Suter, G.W.; Parkhurst, B.R.; Teed, R.S.

    1999-12-01

    Over fifty years of operations, storage, and disposal of wastes from the US Department of Energy (US DOE) Y-12 nuclear weapons facility at Oak Ridge, Tennessee, USA, has resulted in the contamination of water, sediment, biota, and floodplain soils of East Fork Poplar Creek. A preliminary assessment revealed that methylmercury and polychlorinated biphenyls (PCBs) were the contaminants of most concern. Because these contaminants are persistent, accumulate in tissues, and biomagnify up the food chain, piscivorous wildlife are the biota at greatest risk of exposure. The objective of this study was to estimate the risks posed by methylmercury and PCBs to two piscivorous species: mink and belted kingfishers. The authors conducted Monte Carlo simulations to estimate total daily intakes of each contaminant by each species and then integrated the resulting distributions with their respective dose-response curves to estimate risks. The results indicate that methylmercury poses a moderate risk to female mink (24% probability of at least 15% mortality) and kingfishers (50% probability of at least a 12--28% decline in fecundity depending on location). The PCBs pose a very serious risk to mink (52% probability of at least a 50% decline in reproductive fecundity), a species known to be especially sensitive to the effects of organochlorine substances, but little risk to kingfishers (<5% probability of a decline in reproductive fecundity greater than 10% at any location).

  3. Applications of low-cost radio-controlled airplanes to environmental restoration at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Nyquist, J.E.

    1996-01-01

    The US DOE is endeavoring to clean up contamination created by the disposal of chemical and nuclear waste on the Oak Ridge Reservation (ORR), Tennessee, with an emphasis on minimizing off-site migration of contaminated surface and ground water. The task is complicated by inadequate disposal records and by the complexity of the local geology. Remote sensing data, including aerial photography and geophysics, have played an important role in the ORR site characterization. Are there advantages to collecting remote sensing data using Unmanned Aerial Vehicles (UAV's)? In this paper, I will discuss the applications of UAV's being explored at Oak Ridge National Laboratory (ORNL) under the sponsorship of the Department of Energy's Office of Science and technology. These applications are : aerial photography, magnetic mapping, and Very Low Frequency (VLF) electromagnetic mapping

  4. The distribution and biocultural value assessment of sweet chestnut (Castanea sativa Mill. in the cadastral districts of Stredné Plachtince and Horné Plachtince (Slovakia

    Directory of Open Access Journals (Sweden)

    Pástor Michal

    2017-06-01

    Full Text Available The cadastral districts of Stredné Plachtince and Horné Plachtince are situated in the southern part of the Krupinská Planina Mts. in the Carpathian Mts. and about one-third of both the districts is made up of traditional agricultural landscape. Sweet chestnut finds here suitable natural conditions for its growth. The article focuses on the chestnut biocultural value assessment in the given traditional landscape type. Firstly, the field survey concerning chestnuts and old stables identification and positioning was done. Secondly, the data were processed by the geospatial analysis tools in QGIS aiming at the evaluation of chestnuts and old stables spatial distribution in the study area. Thirdly, the chestnut biocultural value was assessed and the modification of current boundary of the given landscape type was proposed. Chestnuts most frequently occurred in the extensively used CLC patches with pastures and heterogeneous agricultural areas - “Land principally occupied by agriculture with significant areas of natural vegetation”, in parallel coinciding with HNV farmlands and habitats of European importance and with local occurrence of the protected bat species. Chestnuts found in the vicinity of old stables partially confirmed their specific function in cattle breading in the past. We can conclude that sweet chestnut supports the value of the traditional landscape type of “pastoral land with meadows” and its current area could be extended correspondingly to our results.

  5. Detailed leak detection test plan and schedule for the Oak Ridge National Laboratory LLLW active tanks

    International Nuclear Information System (INIS)

    Douglas, D.G.; Maresca, J.W. Jr.

    1993-03-01

    This document provides a detailed leak detection test plan and schedule for leak testing many of the tanks that comprise the active portion of the liquid low-level waste (LLLW) system at the Oak Ridge National Laboratory (ORNL). This plan was prepared in response to the requirements of the Federal Facility Agreement (FFA) between the US Department of Energy (DOE) and two other agencies, the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC)

  6. Superfund Record of Decision (EPA Rregion 4): Oak Ridge Reservation (USDOE), (Operable Unit 3), Anderson County, Oak Ridge, TN. (Second remedial action), September 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The Oak Ridge Reservation (ORR) (USDOE) (Operable Unit 3) site is an active nuclear weapons component manufacturing facility located in Oak Ridge, Anderson County, Tennessee. The Y-12 plant, which is addressed as Operable Unit 3, is one of several hundred waste disposal sites or areas of contamination at the ORR site requiring Superfund remedial action. The site occupies the upper reaches of East Fork Poplar Creek (EFPC) in Bear Creek Valley. From 1940 to the present, the Y-12 plant has been used to produce nuclear weapons components. From 1955 to 1963, mercury was used in a column-exchange process to separate lithium isotopes. Testing of the three concrete tanks showed that the tank sediment contained mercury, and that contaminated waste is still being discharged into two of the three tanks. The Record of Decision (ROD) focuses on the contaminated sediment in the sedimentation tanks as an interim action. The primary contaminants of concern affecting the sediment are mercury, a metal and radioactive materials. The selected interim remedial action for the site is included

  7. Antinuclear movement in Middle Tennessee

    International Nuclear Information System (INIS)

    Dwyer, L.E.

    1977-01-01

    This is a social anthropological analysis of the antinuclear movement in Middle Tennessee. This social movement was determined to halt the construction of proposed nuclear power plants in Tennessee, especially one the Tennessee Valley Authority (TVA) intended to build in Middle Tennessee. The data for the study were gathered by participant-observation interviewing, and the examination of documents from February 1973 through March 1975. The treatment of the data is based on transactional analysis and portions of the network model. This social movement was composed of a series of informally organized cells connected by a loose network of people who visited and talked with one another. Individual cells tended to be organized on a geographical basis, as was communication. Activity-initiators, however, often contacted antinuclear personnel in other Middle Tennessee cells. Movement activity for many of the antinuclear activists was short-lived. The strategic maneuvers of the movement utilized all the structurally and legally possible alternatives and the nuclear opponents hoped that the public would pressure public officials to oppose nuclear plants. Although the antinuclear activists worked very hard, they did not succeed in halting the planned construction of the Middle Tennessee nuclear plant. Indeed, they had not succeeded in the summer of 1977

  8. Insolubilization of Chestnut Shell Pigment for Cu(II Adsorption from Water

    Directory of Open Access Journals (Sweden)

    Zeng-Yu Yao

    2016-03-01

    Full Text Available Chestnut shell pigment (CSP is melanin from an agricultural waste. It has potential as an adsorbent for wastewater treatment but cannot be used in its original state because of its solubility in water. We developed a new method to convert CSP to insolubilized chestnut shell pigment (ICSP by heating, and the Cu(II adsorption performance of ICSP was evaluated. The conversion was characterized, and the thermal treatment caused dehydration and loss of carboxyl groups and aliphatic structures in CSP. The kinetic adsorption behavior obeyed the pseudo-second-order rate law, and the equilibrium adsorption data were well described with both the Langmuir and the Freundlich isotherms. ICSP can be used as a renewable, readily-available, easily-producible, environmentally-friendly, inexpensive and effective adsorbent to remove heavy-metal from aquatic environments.

  9. Effect of chestnuts level in the formulation of the commercial feed on carcass characteristics and meat quality of Celta pig breed

    Energy Technology Data Exchange (ETDEWEB)

    Jesús, C. De; Domínguez, R.; Cantalapiedra, J.; Iglesias, A.; Lorenzo, J.M.

    2016-11-01

    The effect of including chestnuts in the formulation of the feed on carcass characteristics and meat quality from 24 castrated males Celta pigs was studied. The inclusion of 15% of chestnut (CH15) improved (p<0.01) the carcass (118 vs. about 104 kg) and live weights (149 vs. 133-139 kg). Killing out percentage was also better for chestnuts groups than for control group. With regards the morphometric parameters, there were no statistically significant (p>0.05) differences except for the carcass length and ham length, for which the CH15 group proved to be the group with the longest sizes. The diet did not affect the physicochemical properties (colour parameters, water holding capacity and shear force) of longissimus dorsi muscle. The composition of some fatty acids of the longissimus dorsi muscle was affected by diet. The total saturated (35-38%) and total polyunsaturated fatty acids (8-10%) did not present differences. However, the increase of chestnut in the diet increased (p<0.05) the monounsaturated fatty acids in intramuscular fat (57% in CH25 vs. 53% in control and CH15). Within monounsaturated fatty acids, the C18:1n9 was the most influenced of the diet. Therefore, the lower content of protein and the higher amounts of C18:1n9 and C18:2n6 in the chestnut could be explaining the greater content of C18:1n9 in muscle of chestnut-fed animals. The main conclusion is that including chestnuts in the diet would allow reduce production costs with no effect or even improving carcass measurements and meat quality. (Author)

  10. Best management practices and work plan for installation of and monitoring at temporary weirs and flumes at NT-3, NT-4, and NT-5 Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-02-01

    This Best Management Practices (BMP) and Work Plan has been developed in order to maintain compliance with applicable regulatory requirements by documenting the practices that are required during the installation and maintenance of temporary weirs and flumes at the NT-3, NT-4, and NT-5 tributaries, subsequent collection of water discharge data, and removal of the weirs and flumes. The practices included in this BMP comply with the Clean Water Act and the intent of Sect. 70-8-104(b) of the Tennessee Code Annotated: Tennessee Wildlife Resources Commission Proclamation 94-16 to prevent the destruction of the habitat of state-listed wildlife species that are designated as open-quotes in need of management.close quotes

  11. Antioxidant potential of chestnut (Castanea sativa L.) and almond (Prunus dulcis L.) by-products.

    Science.gov (United States)

    Barreira, J C M; Ferreira, I C F R; Oliveira, M B P P; Pereira, J A

    2010-06-01

    The antioxidant properties of almond green husks (Cvs. Duro Italiano, Ferraduel, Ferranhês, Ferrastar and Orelha de Mula), chestnut skins and chestnut leaves (Cvs. Aveleira, Boa Ventura, Judia and Longal) were evaluated through several chemical and biochemical assays in order to provide a novel strategy to stimulate the application of waste products as new suppliers of useful bioactive compounds, namely antioxidants. All the assayed by-products revealed good antioxidant properties, with very low EC(50) values (lower than 380 μg/mL), particularly for lipid peroxidation inhibition (lower than 140 μg/mL). The total phenols and flavonoids contents were also determined. The correlation between these bioactive compounds and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, reducing power, inhibition of β-carotene bleaching and inhibition of lipid peroxidation in pig brain tissue through formation of thiobarbituric acid reactive substances, was also obtained. Although, all the assayed by-products proved to have a high potential of application in new antioxidants formulations, chestnut skins and leaves demonstrated better results.

  12. Statement of Roy F. Pruett, Mayor, City of Oak Ridge, TN

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Thank you very much, Mr. Chairman, and Members of the Committee. My name is Roy Pruett, mayor of the city of Oak Ridge, TN, and an executive committee member on the Clinch River MRS task force. It is my pleasure to be here today to testify before this distinguished Committee and present the findings of the Clinch River task force as they relate to subtitle C of the Nuclear Waste Policy Act of 1982, and to the Department of Energy proposal on the Monitored Retrievable Storage facility, the MRS. I represent the city of Oak Ridge, which has been selected for the primary and the first alternative for the siting of an integrated MRS facility for the preparation and packaging of high-level nuclear waste and spent reactor fuel. Of civic and governmental leaders, we concluded that an MRS could safely be built and operated in Oak Ridge. We further concluded, however, that the facility would not be generally perceived as being safe unless the recommendations of the task force were adopted to address concerns and help mitigate impact. Indeed the MRS would not be viewed as a net economic benefit to the site's community, the region, or the State of Tennessee without such appropriate conditions

  13. United States Department of Energy Oak Ridge Facilities environmental-monitoring report

    International Nuclear Information System (INIS)

    1983-01-01

    The Environmental Monitoring Program for the Oak Ridge area includes sampling and analysis of air, water from surface streams, creek sediments, biota, and soil for both radioactive and nonradioactive materials. Surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennessee. Concentrations of radioactivity in the Clinch River and in fish collected from the river wre less than one percent of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards. Surveillance of nonradioactive materials in the Oak Ridge environs shows that established limits were not exceeded for those materials possibly present in the air as a result of plant operations. The chemical water quality data in surface streams obtained from the water sampling program indicated that average concentrations resulting from plant effluents were in compliance with state stream guidelines with the exception of fluoride at monitoring Station E-1 which was 110 percent of the guideline and nitrate at Station B-1 which was 100 percent of the guideline. National Pollutant Discharge Elimination System (NPDES) permit compliance information has been included in this report. During 1982 there were no spills of oil and/or hazardous materials from the Oak Ridge installations reported to the National Response Center

  14. Site-wide remedial alternative development in Bear Creek Valley, Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Anderson, M.

    1995-07-01

    This paper presents a case study of an environmental restoration project at a major mixed waste site that poses unique challenges to remediation efforts. Bear Creek Valley is located immediately west of the Y-12 Plant on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The Y-12 Plant was built in 1943 as part of the Manhattan Project, with its original mission being electromagnetic separation of uranium. Since being completed, the Y-12 Plant has also been used for chemical processing of uranium and lithium compounds as well as precision fabrication of components containing these and other materials. Wastes containing radionuclides, metals, chlorinated solvents, oils, coolants, polychlorinated biphenyis (PCBs), and others were disposed of in large quantities at Bear Creek Valley as a result of manufacturing operations at the Y-12 Plant. The Bear Creek Valley feasibility study is using innovative strategies to efficiently and thoroughly consider the information available regarding Bear Creek Valley and process options that could be combined into its remedial alternatives

  15. Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-12-01

    This document describes the organization, strategy, and procedures to be used to confirm that mercury concentrations in soils in the remediated areas are statistically less than, or equal to, the cleanup standard of 400 ppm. It focuses on confirming the cleanup of the stretch of the Lower East Fork Popular Creed flowing from Lake Reality at the Y-12 Plant, through the City of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation and its associated flood plain

  16. Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This document describes the organization, strategy, and procedures to be used to confirm that mercury concentrations in soils in the remediated areas are statistically less than, or equal to, the cleanup standard of 400 ppm. It focuses on confirming the cleanup of the stretch of the Lower East Fork Popular Creed flowing from Lake Reality at the Y-12 Plant, through the City of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation and its associated flood plain.

  17. Morphometric characteristics of sweet chestnut (Castanea sativa Mill. fruits

    Directory of Open Access Journals (Sweden)

    Oľga Grygorieva

    2017-01-01

    Full Text Available Aim of this study was to determine morphometric differences of fruits between selected sweet chestnuts (Castanea sativa Mill.. The 28 genotypes (referred as CS-01 to CS-28 were introduced by seeds from Czech Republic, Carpathians, Kyrgyzstan. Genotypes of sweet chestnut are grow more than 30 years in Forest-Steppe of Ukraine in the M.M. Gryshko National Botanical Garden of NAS of Ukraine. They are well adapted to the climatic and soil conditions. The fruits were collected at the period of their full maturity (September. The population differs in weight, shape, size and color of fruits. Their morphometric parameters were following: weight from 1.70 g (CS-26 to 18.60 g (CS-20, length from 8.07 mm (CS-28 to 33.39 mm (CS-11, width from 16.34 mm (CS-28 to 40.95 mm (CS-11, thickness from 9.02 mm (CS-26 to 28.70 mm (CS-11 and hilum length from 6.62 mm (CS-26 to 31.30 mm (CS-07, hilum width from 6.50 mm (CS-23 to 19.99 mm (CS-07. The shape index of the fruits was found in the range of 0.81 (CS-20 to 0.98 (CS-12. The shape index of the hilum was found in the range of 1.48 (CS-04 to 2.03 (CS-23. The outcome of the research point to the fact that the genepool Ukrainian sweet chestnut is a rich source of genetic diversity and might be used in selection for creation a new genotypes and cultivars. Normal 0 21 false false false EN-GB X-NONE X-NONE Engineering-scale in situ vitrification tests of simulated Oak Ridge National Laboratory buried wastes

    International Nuclear Information System (INIS)

    1996-12-01

    As part of the Comprehensive Environmental Response, Compensation, and Liability Act process for remediation of Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory, a public meeting was held on the proposed plan. It was recognized that contaminant releases from WAG 6 posed minimal potential risk to the public and environment. The US Department of Energy (DOE) in conjunction with the US Environmental Protection Agency and the Tennessee Department of Environment and Conservation agreed to defer remedial action at WAG 6 until higher risk release sites were first remediated

  18. Implementation of environmental compliance for operating radioactive liquid waste systems at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Hooyman, J.H.; Robinson, S.M.

    1992-01-01

    This paper addresses methods being implemented at the Oak Ridge National Laboratory (ORNL) to continue operating while achieving compliance with new standards for liquid low level waste (LLLW) underground storage tank systems. The Superfund Amendment and Reauthorization Act (SARA) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) required that the Department of Energy (DOE) execute a Federal Facility Agreement (FFA) with the Environmental Protection Agency (EPA) within 6 months of listing of the ORNL on the National Priorities List. An FFA for ORNL became effective January 1, 1992 among the EPA, DOE, and the Tennessee Department of Environment and Conservation (TDEC). The agreement ensures that environmental impacts resulting from operations at the Oak Ridge Reservation are investigated and remediated to protect the public health, welfare, and environment

  19. Performance of container-grown seedlings of American chestnut backcross hybrids BC3 F3 generation in central Louisiana

    Science.gov (United States)

    Shi-Jean Susana Sung; Stacy L. Clark; Scott Schlarbaum; Daniel C. Dey; Daniel J. Leduc

    2016-01-01

    Seedlings from two families of the BC3F3 backcross generation of the American chestnut (Castanea dentata) and Chinese chestnut (C. mollissima) were cultured in 2013 in Missouri using the Root Production Method®, a container-based system used to avoid disease problems associated with...

  1. Reevaluating the age of the Walden Creek Group and the kinematic evolution of the western Blue Ridge, southern Appalachians

    Science.gov (United States)

    Thigpen, J. Ryan; Hatcher, Robert D.; Kah, Linda C.; Repetski, John E.

    2016-01-01

    An integrated synthesis of existing datasets (detailed geologic mapping, geochronologic, paleontologic, geophysical) with new paleontologic and geochemical investigations of rocks previously interpreted as part of the Neoproterozoic Walden Creek Group in southeastern Tennessee suggest a necessary reevaluation of the kinematics and structural architecture of the Blue Ridge Foothills. The western Blue Ridge of Tennessee, North Carolina, and Georgia is composed of numerous northwest-directed early and late Paleozoic thrust sheets, which record pronounced variation in stratigraphic/structural architecture and timing of metamorphism. The detailed spatial, temporal, and kinematic relationships of these rocks have remained controversial. Two fault blocks that are structurally isolated between the Great Smoky and Miller Cove-Greenbrier thrust sheets, here designated the Maggies Mill and Citico thrust sheets, contain Late Ordovician-Devonian conodonts and stable isotope chemostratigraphic signatures consistent with a mid-Paleozoic age. Geochemical and paleontological analyses of Walden Creek Group rocks northwest and southeast of these two thrust sheets, however, are more consistent with a Late Neoproterozoic (550–545 Ma) depositional age. Consequently, the structural juxtaposition of mid-Paleozoic rocks within a demonstrably Neoproterozoic-Cambrian succession between the Great Smoky and Miller Cove-Greenbrier thrust sheets suggests that a simple foreland-propagating thrust sequence model is not applicable in the Blue Ridge Foothills. We propose that these younger rocks were deposited landward of the Ocoee Supergroup, and were subsequently plucked from the Great Smoky fault footwall as a horse, and breached through the Great Smoky thrust sheet during Alleghanian emplacement of that structure.

  2. Oak Ridge Reservation Site Management Plan for the Environmental Restoration Program

    International Nuclear Information System (INIS)

    1991-09-01

    This site management for the Environmental Restoration (ER) Program implements the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA) (EPA 1990), also known as an Interagency Agreement (IAG), hereafter referred to as ''the Agreement.'' The Department of Energy (DOE), the US Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC), hereafter known as ''the Parties,'' entered into this Agreement for the purpose of coordinating remediation activities undertaken on the ORR to comply with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as amended by the Superfund Amendments, the Resource Conservation and Recovery Act (RCRA), and the National Environmental Policy Act (NEPA). 7 refs., 17 figs

  3. Oak Ridge Reservation Public Warning Siren System Annual Test Report

    International Nuclear Information System (INIS)

    R. F. Gee

    2000-01-01

    The full operational test of the Oak Ridge Reservation (ORR) Public Warning Siren System (PWSS) was successfully conducted on September 27, 2000. The annual test is a full-scale sounding of the individual siren systems around each of the three Department of Energy (DOE) sites in Oak Ridge, Tennessee. The purpose of the annual test is to demonstrate and validate the siren systems' ability to alert personnel outdoors in the Immediate Notification Zones (INZ) (approximately two miles) around each site. The success of this test is based on two critical functions of the siren system. The first function is system operability. The system is considered operable if 90% of the sirens are operational. System diagnostics and direct field observations were used to validate the operability of the siren systems. Based on the diagnostic results and field observations, greater than 90% of the sirens were considered operational. The second function is system audibility. The system is considered audible if the siren could be heard in the immediate notification zones around each of the three sites. Direct field observations, along with sound level measurements, were used to validate the audibility of the siren system. Based on the direct field observations and sound level measurements, the siren system was considered audible. The combination of field observations, system diagnostic status reports, and sound level measurements provided a high level of confidence that the system met and would meet operational requirements upon demand. As part of the overall system test, the Tennessee Emergency Management Agency (TEMA) activated the Emergency Alerting System (EAS), which utilized area radio stations to make announcements regarding the test and to remind residents of what to do in the event of an actual emergency

  4. Soil Management Plan for the Oak Ridge Y-12 National Security Complex Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-03-02

    This Soil Management Plan applies to all activities conducted under the auspices of the National Nuclear Security Administration (NNSA) Oak Ridge Y-12 National Security Complex (Y-12) that involve soil disturbance and potential management of waste soil. The plan was prepared under the direction of the Y-12 Environmental Compliance Department of the Environment, Safety, and Health Division. Soil disturbances related to maintenance activities, utility and building construction projects, or demolition projects fall within the purview of the plan. This Soil Management Plan represents an integrated, visually oriented, planning and information resource tool for decision making involving excavation or disturbance of soil at Y-12. This Soil Management Plan addresses three primary elements. (1) Regulatory and programmatic requirements for management of soil based on the location of a soil disturbance project and/or the regulatory classification of any contaminants that may be present (Chap. 2). Five general regulatory or programmatic classifications of soil are recognized to be potentially present at Y-12; soil may fall under one or more these classifications: (a) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) pursuant to the Oak Ridge Reservation (ORR) Federal Facilities Agreement; (b) Resource Conservation and Recovery Act (RCRA); (c) RCRA 3004(u) solid waste managements units pursuant to the RCRA Hazardous and Solid Waste Amendments Act of 1984 permit for the ORR; (d) Toxic Substances and Control Act-regulated soil containing polychlorinated biphenyls; and (e) Radiologically contaminated soil regulated under the Atomic Energy Act review process. (2) Information for project planners on current and future planned remedial actions (RAs), as prescribed by CERCLA decision documents (including the scope of the actions and remedial goals), land use controls implemented to support or maintain RAs, RCRA post-closure regulatory requirements for

  5. Comparative distribution of plutonium in contaminated ecosystems at Oak Ridge, Tennessee, and Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Dahlman, R.C.; Garten, C.T. Jr.; Hakonson, T.E.

    1980-01-01

    The distribution of plutonium was compared in portions of forest ecosystems at Oak Ridge, TN, and Los Alamos, NM, which were contaminated by liquid effluents. Inventories of plutonium in soil at the two sites were generally similar, but a larger fraction of the plutonium was associated with biota at Los Alamos than at Oak Ridge. Most (99.7 to 99.9%) of the plutonium was present in the soil, and very little (0.1 to 0.3%) was in biotic components. Comparative differences in distributions within the two ecosystems appeared to be related to individual contamination histories and greater physical transport of plutonium in soil to biotic surfaces at Los Alamos

  6. Postremediation monitoring program baseline assessment report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Greeley, M.S. Jr.; Ashwood, T.L.; Kszos, L.A.; Peterson, M.J.; Rash, C.D.; Southworth, G.R.; Phipps, T.L.

    1998-04-01

    Lower East Fork Poplar Creek (LEFPC) and its floodplain are contaminated with mercury (Hg) from ongoing and historical releases from the US Department of Energy (DOE) Oak Ridge Y-12 Plant. A remedial investigation and feasibility study of LEFPC resulted in the signing of a Record of Decision (ROD) in August 1995. In response to the ROD, soil contaminated with mercury above 400 mg/kg was removed from two sites in LEFPC and the floodplain during a recently completed remedial action (RA). The Postremediation Monitoring Program (PMP) outlined in the LEFPC Monitoring Plan was envisioned to occur in two phases: (1) a baseline assessment prior to remediation and (2) postremediation monitoring. The current report summarizes the results of the baseline assessment of soil, water, biota, and groundwater usage in LEFPC and its floodplain conducted in 1995 and 1996 by personnel of the Oak Ridge National Laboratory Biological Monitoring and Abatement Program (BMAP). This report also includes some 1997 data from contaminated sites that did not undergo remediation during the RA (i.e., sites where mercury is greater than 200 mg/kg but less than 400 mg/kg). The baseline assessment described in this document is distinct and separate from both the remedial investigation/feasibility study the confirmatory sampling conducted by SAIC during the RA. The purpose of the current assessment was to provide preremediation baseline data for the LEFPC PMP outlined in the LEFPC Monitoring Plan, using common approaches and techniques, as specified in that plan

  7. Postremediation monitoring program baseline assessment report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Greeley, M.S. Jr.; Ashwood, T.L.; Kszos, L.A.; Peterson, M.J.; Rash, C.D.; Southworth, G.R. [Oak Ridge National Lab., TN (United States); Phipps, T.L. [CKY, Inc. (United States)

    1998-04-01

    Lower East Fork Poplar Creek (LEFPC) and its floodplain are contaminated with mercury (Hg) from ongoing and historical releases from the US Department of Energy (DOE) Oak Ridge Y-12 Plant. A remedial investigation and feasibility study of LEFPC resulted in the signing of a Record of Decision (ROD) in August 1995. In response to the ROD, soil contaminated with mercury above 400 mg/kg was removed from two sites in LEFPC and the floodplain during a recently completed remedial action (RA). The Postremediation Monitoring Program (PMP) outlined in the LEFPC Monitoring Plan was envisioned to occur in two phases: (1) a baseline assessment prior to remediation and (2) postremediation monitoring. The current report summarizes the results of the baseline assessment of soil, water, biota, and groundwater usage in LEFPC and its floodplain conducted in 1995 and 1996 by personnel of the Oak Ridge National Laboratory Biological Monitoring and Abatement Program (BMAP). This report also includes some 1997 data from contaminated sites that did not undergo remediation during the RA (i.e., sites where mercury is greater than 200 mg/kg but less than 400 mg/kg). The baseline assessment described in this document is distinct and separate from both the remedial investigation/feasibility study the confirmatory sampling conducted by SAIC during the RA. The purpose of the current assessment was to provide preremediation baseline data for the LEFPC PMP outlined in the LEFPC Monitoring Plan, using common approaches and techniques, as specified in that plan.

  8. Calandar year 1996 annual groundwater monitoring report for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1996. The Bear Creek Regime encompasses a portion of Bear Creek Valley (BCV) west of the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid) that contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring in the Bear Creek Regime is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). This report contains the information and monitoring data required under the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Bear Creek Hydrogeologic Regime (post-closure permit), as modified and issued by the Tennessee Department of Environment and Conservation (TDEC) in September 1995 (permit no. TNHW-087). In addition to the signed certification statement and the RCRA facility information summarized below, permit condition II.C.6 requires the annual monitoring report to address groundwater monitoring activities at the three RCRA Hazardous Waste Disposal Units (HWDUs) in the Bear Creek Regime that are in post-closure corrective action status (the S-3 Site, the Oil Landfarm, and the Bear Creek Burial Grounds/Walk-In Pits).

  9. Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control.

    Science.gov (United States)

    Ventorino, Valeria; Parillo, Rita; Testa, Antonino; Viscardi, Sharon; Espresso, Francesco; Pepe, Olimpia

    2016-01-15

    Making compost from chestnut lignocellulosic waste is a possible sustainable management strategy for forests that employs a high-quality renewable organic resource. Characterization of the microbiota involved in composting is essential to better understand the entire process as well as the properties of the final product. Therefore, this study investigated the microbial communities involved in the composting of chestnut residues obtained from tree cleaning and pruning. The culture-independent approach taken highlighted the fact that the microbiota varied only slightly during the process, with the exception of those of the starting substrate and mature compost. The statistical analysis indicated that most of the bacterial and fungal species in the chestnut compost persisted during composting. The dominant microbial population detected during the process belonged to genera known to degrade recalcitrant lignocellulosic materials. Specifically, we identified fungal genera, such as Penicillium, Fusarium, Cladosporium, Aspergillus and Mucor, and prokaryotic species affiliated with Bacilli, Actinobacteria, Flavobacteria and γ-Proteobacteria. The suppressive properties of compost supplements for the biocontrol of Sclerotinia minor and Rhizoctonia solani were also investigated. Compared to pure substrate, the addition of compost to the peat-based growth substrates resulted in a significant reduction of disease in tomato plants of up to 70 % or 51 % in the presence of Sclerotinia minor or Rhizoctonia solani, respectively. The obtained results were related to the presence of putative bio-control agents and plant growth-promoting rhizobacteria belonging to the genera Azotobacter, Pseudomonas, Stenotrophomonas, Bacillus, Flavobacterium, Streptomyces and Actinomyces in the chestnut compost. The composting of chestnut waste may represent a sustainable agricultural practice for disposing of lignocellulosic waste by transforming it into green waste compost that can be used to

  10. Waste characterization data manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA), Sect. IX.G.1. This manual contains the results of sampling activities that were conducted at the Oak Ridge National Laboratory in 1988. Thirty-three tanks were sampled and analyzed at that time. Sampling of the remaining inactive tanks is currently underway, and data from these tanks will be added to this manual as they become available. Data are presented from analysis of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, radiochemical compounds, and inorganic compounds.

  11. Technical specification for transferring tank construction data to the Oak Ridge Environmental Information System (OREIS)

    International Nuclear Information System (INIS)

    1996-06-01

    The primary goal of this technical specification is to meet the consolidated environmental data requirements defined by the Federal Facility Agreement (FFA) and the Tennessee Oversight Agreement as they pertain to tank construction data maintained in Oak Ridge, Tennessee, by the US Department of Energy's Maintenance and Operations contractor Lockheed Martin Energy Systems, Inc., and prime contractors to the Department of Energy. This technical specification describes the organizational responsibilities for loading tank construction data into OREIS, describes the logical and physical data transfer files, addresses business rules and submission rules, addresses configuration control of this technical specification, and addresses required changes to the current OREIS data base structure based on site requirements. This technical specification addresses the tank construction data maintained by the Y-12, K-25, and ORNL sites that will be sent to OREIS. The initial submission of data will include only inactive Environmental Restoration tanks as specified by the FFA

  12. Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazard areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated.

  13. Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-07-01

    This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazard areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated

  14. Oak Ridge National Laboratory Waste Management Plan. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  15. Soil Investigation of Lower East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, Johnbull O [ORNL; Mayes, Melanie [ORNL; Earles, Jennifer E [ORNL; Mehlhorn, Tonia L [ORNL; Lowe, Kenneth Alan [ORNL; Peterson, Mark J [ORNL; Pierce, Eric M [ORNL

    2017-03-01

    Mercury is regarded by the US Department of Energy (DOE) Oak Ridge Office of Environmental Management as a priority contaminant on the Oak Ridge Reservation because of the environmental risks associated with substantial losses from buildings, soils, and surface waters at the Y-12 National Security Complex (Y-12). As a result of historical releases of mercury from Y-12 primarily in the 1950s and early 1960s, the lower East Fork Poplar Creek (LEFPC) stream channel and bank soil margins are contaminated with mercury (Brooks and Southworth 2011; Tennessee Valley Authority 1985b, a). A Mercury Remediation Technology Development project is underway to evaluate the nature of downstream mercury contamination and to develop targeted site-specific remedial technologies that can mitigate mercury release and biological uptake. It is known that mercury concentration varies longitudinally and with depth in LEFPC bank soils; however, soil types and soil physical properties are not well known, especially relative to the zones of mercury contamination. Moreover, there are no soil maps for the downstream reaches of LEFPC in Roane County (i.e. from the Chestnut Hill Road downstream) and this work represents the first ever soil mapping along this section of LEFPC.

  16. Resource management plan for the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Cunningham, M.; Pounds, L.; Oberholster, S.; Parr, P.; Mann, L.; Edwards, L.

    1993-08-01

    Rare plant species listed by state or federal agencies and found on or near the Department of Energy's Oak Ridge Reservation (ORR) are identified. Seventeen species present on the ORR are listed by the Tennessee Department of Environment and Conservation as either endangered, threatened, or of special concern. Four of these are under review by the US Fish and Wildlife Service for possible listing as threatened or endangered species. Ten species listed by the state occur near and may be present on the ORR; four are endangered in Tennessee, and one is a candidate for federal listing. A range of habitats supports the rare taxa on the ORR: River bluffs, calcareous barrens, wetlands, and deciduous forest. Sites for listed rare species on the ORR have been designated as Research Park Natural Areas. Consideration of rare plant habitats is an important component of resource management and land-use planning; protection of rare species in their natural habitat is the best method of ensuring their long-term survival. In addition, the National Environmental Policy Act requires that federally funded projects avoid or mitigate impacts to listed species. The list of rare plant species and their location on the ORR should be considered provisional because the entire ORR has not been surveyed, and state and federal status of all species continues to be updated

  17. Tennessee Promise: A Response to Organizational Change

    Science.gov (United States)

    Littlepage, Ben; Clark, Teresa; Wilson, Randal; Stout, Logan

    2018-01-01

    Community colleges in Tennessee, either directly or indirectly, experienced unprecedented change as a result of Tennessee Promise. The present study explored how student support service administrators at three community colleges responded to organizational change as a result of the Tennessee Promise legislation. Investigators selected community…

  18. Effect of the amount of chestnuts in the diet of Celta pigs on the fatty acid profile of dry-cured lacon

    Directory of Open Access Journals (Sweden)

    de Jesús, M. C.

    2016-03-01

    Full Text Available The effect of including chestnuts in the formulation of the feed (0, 15 and 25% chestnut on the fatty acids of dry-cured lacon from Celta pigs was studied. The inclusion of chestnuts decreases the saturated fatty acid content (SFA and the monounsaturated fatty acid content (MUFA. With regards to the polyunsaturated fatty acids (PUFA, the lacon from animals fed with chestnuts presented higher values of total PUFA, n6 PUFAs and n3 PUFAs. This is related to the fact that chestnut diets had the highest amounts of essential fatty acids (C18:2n6 and C18:3n3, therefore the lacon from chestnut-fed animals also presented higher amounts of these fatty acids. According to nutritional ratios, lacon obtained from chestnut-fed pigs was healthier than the one obtained from pigs fed on commercial feed. The main conclusion is that including chestnuts in the diet allows us to obtain healthier dry-cured meat products.Se estudió el efecto de la inclusión de la castaña en la formulación del pienso (0, 15 y 25% de castaña sobre el perfil de ácidos grasos del lacón curado de cerdo Celta. La inclusión de castañas produjo una disminución del contenido de ácidos grasos saturados (SFA y monoinsaturados (MUFA. Con respecto a los ácidos grasos poliinsaturados (PUFA los lacones de animales alimentados por castaña presentaron valores más altos de PUFA totales, PUFA n6 y PUFA n3. Esto está relacionado con que las castañas tienen una mayor cantidad de ácidos grasos esenciales (C18:2n6 y C18:3n3, por tanto los lacones de cerdos alimentados con castaña también presentan mayores contenidos de estos ácidos grasos. De acuerdo con los índices nutricionales, los lacones obtenidos de cerdos alimentados con mayor proporción de castañas fueron más saludables. La inclusión de castañas en la dieta nos permite obtener productos cárnicos curados más saludables.

  19. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV

  20. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV.

  1. Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents.

    Science.gov (United States)

    Vella, Filomena Monica; Laratta, Bruna; La Cara, Francesco; Morana, Alessandra

    2018-05-01

    The underutilised forest and industrial biomass of Castanea sativa (Mill.) is generally discarded during post-harvest and food processing, with high impact on environmental quality. The searching on alternative sources of natural antioxidants from low-cost supplies, by methods involving environment-friendly techniques, has become a major goal of numerous researches in recent times. The aim of the present study was the set-up of a biomolecules extraction procedure from chestnut leaves, burs and shells and the assessing of their potential antioxidant activity. Boiling water was the best extraction solvent referring to polyphenols from chestnut shells and burs, whereas the most efficient for leaves resulted 60% ethanol at room temperature. Greatest polyphenol contents were 90.35, 60.01 and 17.68 mg gallic acid equivalents g -1 in leaves, burs and shells, respectively. Moreover, flavonoids, tannins and antioxidant activity were assessed on the best extract obtained from each chestnut by-product.

  2. A MATHEMATICAL MODEL OF THE ROASTING CHESTNUTS PROCESS BY SUPERHEATED STEAM

    Directory of Open Access Journals (Sweden)

    A. N. Ostrikov

    2013-01-01

    Full Text Available The mathematic modeling for chestnuts roasting process by superheated steam is conducted. Diffusion and thermal diffusion coefficients are used for process description. Initial conditions and boundary conditions of the third kind for thermal conductivity and mass transfer equations are set.

  3. Surface radiological investigations at the 0816 Site, Waste Area Grouping 13, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Tiner, P.F.; Uziel, M.S.

    1994-12-01

    A surface radiological investigation was conducted intermittently from July through September 1994 at the 0816 site, located within Waste Area Grouping (WAG) 13. The survey was performed by members of the Measurement Applications and Development Group, Health Sciences Research Division, Oak Ridge National Laboratory (ORNL) at the request of ORNL Site Environmental Restoration Program Facility Management. The purpose of the survey was to ascertain and document the surface radiological condition of the site subsequent to remedial action activities completed in May 1994. The survey was designed to determine whether any residual surface sod contamination in excess of 120 pCi/g 137 Cs (Specified by the Interim Record of Decision) remained at the site

  4. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2, Appendix A: Characterization methods and data summary

    International Nuclear Information System (INIS)

    1995-03-01

    This appendix presents background regulatory and technical information regarding the solid waste management units (SWMUs) at Waste Area Grouping (WAG) 5 to address requirements established by the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). The Department of energy (DOE) agreed to conduct remedial investigations (RIs) under the FFA at various sites at Oak Ridge National Laboratory (ORNL), including SWMUs and other areas of concern on WAG 5. The appendix gives an overview of the regulatory background to provide the context in which the WAG 5 RI was planned and implemented and documents how historical sources of data, many of which are SWMU-specific, were evaluated and used

  5. Hydrolyzable Tannins from Sweet Chestnut Fractions Obtained by a Sustainable and Eco-friendly Industrial Process.

    Science.gov (United States)

    Campo, Margherita; Pinelli, Patrizia; Romani, Annalisa

    2016-03-01

    Sweet Chestnut (Castanea sativa Mill.) wood extracts, rich in Hydrolyzable Tannins (HTs), are traditionally used in the tanning and textile industries, but recent studies suggest additional uses. The aim of this work is the HPLC-DAD-ESI-MS characterization of Sweet Chestnut aqueous extracts and fractions obtained through a membrane separation technology system without using other solvents, and the evaluation of their antioxidant and antiradical activities. Total tannins range between 2.7 and 138.4 mM; gallic acid ranges between 6% and 100%; castalagin and vescalagin range between 0% and 40%. Gallic Acid Equivalents, measured with the Folin-Ciocalteu test, range between 0.067 and 56.99 g/100 g extract weight; ORAC test results for the marketed fractions are 450.4 and 3050 µmol/g Trolox Equivalents/extract weight. EC₅₀ values, measured with the DPPH test, range between 0.444 and 2.399 µM. These results suggest a new ecofriendly and economically sustainable method for obtaining chestnut fractions with differentiated, stable and reproducible chemical compositions. Such fractions can be marketed for innovative uses in several sectors.

  6. North Tank Farm data report for the Gunite and Associated Tanks at Oak Ridge National Laboratory Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Rule, V.A.; Burks, B.L.; Hoesen, S.D. van

    1998-05-01

    The US Department of Energy (DOE) Office of Science and Technology, in cooperation with the Oak Ridge Environmental Management Program, has developed and demonstrated the first full-scale remotely operated system for cleaning radioactive liquid and waste from large underground storage tanks. The remotely operated waste retrieval system developed and demonstrated at Oak Ridge National Laboratory (ORNL) is designed to accomplish both retrieval of bulk waste, including liquids, thick sludge, and scarified concrete, and final tank cleaning. This report provides a summary of the North Tank Farm (NTF) operations data and an assessment of the performance and efficiency of the waste retrieval system during NTF operations data and an assessment of the performance and efficiency of the waste retrieval system during NTF operations. The organization of this report is as follows: Section 1 provides an introduction to the report. Section 2 describes the NTF tank structures (W-3 and W-4 only) and the contents of the tanks. Section 3 outlines the objectives of the NTF testing and explains how these objectives were met. Section 4 provides a description of the various operating systems used in the NTF operations. Sections 5 and 6 present a summary of the data collected during NTF operations. Section 7 summarizes the maintenance activities performed and Section 8 summarizes the on-the-job training performed in the NTF. Section 9 summarizes the capital cost for the waste retrieval and characterization equipment and operating costs for performing the NTF work. Section 10 provides observations and lessons learned, and Section 11 provides a summary and conclusions

  7. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 4: Appendix C, Risk assessment

    International Nuclear Information System (INIS)

    1995-03-01

    Waste Area Grouping (WAG) 5 is part of Oak Ridge National Laboratory (ORNL) and is located on the United States Department of Energy's Oak Ridge Reservation (DOE-ORR). The site lies southeast of Haw Ridge in Melton Valley and comprises approximately 32 ha (80 ac) [12 ha (30 ac) of forested area and the balance in grassed fields]. The western and southern boundaries of WAG are contiguous with the WAG 2 area which includes White Oak Creek and Melton Branch and associated floodplains. Waste Area Grouping 5 consists of several contaminant source areas for the disposal of low-level radioactive, transuranic (TRU), and fissile wastes (1959 to 1973) as well as inorganic and organic chemical wastes. Wastes were buried in trenches and auger holes. Radionuclides from buried wastes are being transported by shallow groundwater to Melton Branch and White Oak Creek. Different chemicals of potential concern (COPCS) were identified (e.g., cesium-137, strontium-90, radium-226, thorium-228, etc.); other constituents and chemicals, such as vinyl chloride, bis(2-ethylhexyl)phthalate, trichloroethene, were also identified as COPCS. Based on the results of this assessment contaminants of concern (COCS) were subsequently identified. The human health risk assessment methodology used in this risk assessment is based on Risk Assessment Guidance for Superfund (RAGS) (EPA 1989). First, the data for the different media are evaluated to determine usability for risk assessment. Second, through the process of selecting COPCS, contaminants to be considered in the BHHRA are identified for each media, and the representative concentrations for these contaminants are determined. Third, an assessment of exposure potential is performed, and exposure pathways are identified. Subsequently, exposure is estimated quantitatively, and the toxicity of each of the COPCs is determined. The results of the exposure and toxicity assessments are combined and summarized in the risk characterization section

  8. Processing mixed-waste compressed-gas cylinders at the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

    1998-05-01

    Until recently, several thousand kilograms of compressed gases were stored at the Oak Ridge Reservation (ORR), in Oak Ridge, Tennessee, because these cylinders could not be taken off-site in their state of configuration for disposal. Restrictions on the storage of old compressed-gas cylinders compelled the Waste Management Organization of Lockheed Martin Energy Systems, Inc. (LMES) to dispose of these materials. Furthermore, a milestone in the ORR Site Treatment Plan required repackaging and shipment off-site of 21 cylinders by September 30, 1997. A pilot project, coordinated by the Chemical Technology Division (CTD) at the Oak Ridge National Laboratory (ORNL), was undertaken to evaluate and recontainerize or neutralize these cylinders, which are mixed waste, to meet that milestone. Because the radiological component was considered to be confined to the exterior of the cylinder, the contents (once removed from the cylinder) could be handled as hazardous waste, and the cylinder could be handled as low-level waste (LLW). This pilot project to process 21 cylinders was important because of its potential impact. The successful completion of the project provides a newly demonstrated technology which can now be used to process the thousands of additional cylinders in inventory across the DOE complex. In this paper, many of the various aspects of implementing this project, including hurdles encountered and the lessons learned in overcoming them, are reported

  9. Standards in chestnut coppice system: cultural heritage or coltural requirement?

    Directory of Open Access Journals (Sweden)

    Manetti MC

    2012-12-01

    Full Text Available Standards in chestnut coppice system: cultural heritage or coltural requirement? This paper aims at evaluating the role of standards in chestnut coppices from a biological and functional perspective. In addition to a detailed analysis of Italian regulations on the issue, the technical definition of the term is analysed: (i as for the functional role of standards; (ii to assess whether the required functions are technically necessary and are being actually performed. In this contex, the results of an experimental trial are reported. The goal of the trial were to assess the shoots’ parameters, the stand productivity, the dynamics of canopy cover in coppices with or without standards. In 2001, at harvesting operations in a coppice aged 30 with standards managed by the local community, two experimental plots 2500 m2 each were established. The two theses being compared were: simple coppice and coppixce with standards (100 standards per hectare. The released standards were qualified immediately after final harvesting. Sprouting ability, growth pattern and stool vitality were surveyed in March 2004 (at age 2, in May 2008 (at age 6 and in April 2010 (at age 8. First results highlighted the evidence of statistically significant differences between the two thesis. The high number of standards effected negatively both vitality and growth pattern of the stools. Simple coppice recorded a lower shoot mortality, a higher diametrical growth and canopy cover degree as well; the heigth growth was, on the opposite, significantly lower. These results, although referred to a limited lifespan (1/3 of the rotation time and to one site only, underline productive, ecological and environmental benefits and as a consequence suggest the widening of the experimental network and the development of new, more relevant and consistent rules, making acceptable the simple coppice as a possible silvicultural choice to be applied to chestnut coppices.

  10. Final report on the Background Soil Characterization Project at the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Hatmaker, T.L.; Hook, L.A.; Jackson, B.L.

    1993-10-01

    The Background Soil Characterization Project (BSCP) will provide background concentration levels of selected metals, organic compounds, and radionuclides in soils from uncontaminated on-site areas at the Oak Ridge Reservation (ORR), and off-site in the western part of Roane County and the eastern part of Anderson County. The BSCP will establish a database, recommend how to use the data for contaminated site assessment, and provide estimates of the potential human health and environmental risks associated with the background level concentrations of potentially hazardous constituents. ORR background soil characterization data will be used for two purposes. The first application will be in differentiating between naturally occurring constituents and site-related contamination. This is a very important step in a risk assessment because if sufficient background data are not available, no constituent known to be a contaminant can be eliminated from the assessment even if the sampled concentration is measured at a minimum level. The second use of the background data will be in calculating baseline risks against which site-specific contamination risks can be compared

  11. Genetic variation patterns of American chestnut populations at EST-SSRs

    Science.gov (United States)

    Oliver Gailing; C. Dana Nelson

    2017-01-01

    The objective of this study is to analyze patterns of genetic variation at genic expressed sequence tag - simple sequence repeats (EST-SSRs) and at chloroplast DNA markers in populations of American chestnut (Castanea dentata Borkh.) to assist in conservation and breeding efforts. Allelic diversity at EST-SSRs decreased significantly from southwest to northeast along...

  12. State Education Finance and Governance Profile: Tennessee

    Science.gov (United States)

    Krause, Mike

    2010-01-01

    This article presents the state education finance and governance profile of Tennessee. The 17th largest state, Tennessee is home to 2.01% of the nation's inhabitants. Funding of K-12 education in Tennessee is accomplished via a formula known as the Basic Educational Program (BEP). This plan primarily utilizes school district enrollment numbers to…

  13. Design assessment for the Melton Valley Storage Tanks capacity increase at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-11-01

    This project was initiated to find ways to increase storage capacity for the liquid low-level waste (LLLW) system at the Oak Ridge National Laboratory and satisfy the Federal Facility Agreement (FFA) requirement for the transfer of LLW from existing tank systems not in full FFA compliance

  14. Oak Ridge Reservation Site Management Plan for the Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This site management for the Environmental Restoration (ER) Program implements the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA) (EPA 1990), also known as an Interagency Agreement (IAG), hereafter referred to as the Agreement.'' The Department of Energy (DOE), the US Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC), hereafter known as the Parties,'' entered into this Agreement for the purpose of coordinating remediation activities undertaken on the ORR to comply with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as amended by the Superfund Amendments, the Resource Conservation and Recovery Act (RCRA), and the National Environmental Policy Act (NEPA). 7 refs., 17 figs.

  15. Site characterization report for Building 3515 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1994-08-01

    Building 3515 at Oak Ridge National Laboratory (ORNL), also known as the Fission Product Pilot Plant, is a surplus facility in the main plant area to the east of the South Tank Farm slated for decontamination and decommissioning (D ampersand D). The building consists of two concrete cells (north and south) on a concrete pad and was used to extract radioisotopes of ruthenium, strontium, cesium, cerium, rhenium and other elements from aqueous fission product waste. Site characterization activities of the building were initiated. The objective of the site characterization was to provide information necessary for engineering evaluation and planning of D ampersand D approaches, planning for personal protection of D ampersand D workers, and estimating waste volumes from D ampersand D activities. This site characterization report documents the investigation with a site description, a summary of characterization methods, chemical and radiological sample analysis results, field measurement results, and waste volume estimates

  16. Health and Safety Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Clark, C. Jr.; Burman, S.N.; Manis, L.W.; Barre, W.L.

    1993-12-01

    The Martin Marietta Energy Systems, Inc. (Energy Systems), policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at Waste Area Grouping (WAG) 6 at the Department of Energy (DOE) Oak Ridge National Laboratory are guided by an overall plan and consistent proactive approach to safety and health (S ampersand H) issues. The plan is written to utilize past experience and best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to air, soil, or surface water This plan explains additional site-specific health and safety requirements such as Site Specific Hazards Evaluation Addendums (SSHEAs) to the Site Safety and Health Plan which should be used in concert with this plan and existing established procedures

  17. Remedial investigation plan for Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee: Responses to regulator comments

    International Nuclear Information System (INIS)

    1991-05-01

    This document, ES/ER-6 ampersand D2, is a companion document to ORNL/RAP/Sub-87/99053/4 ampersand R1, Remedial Investigation Plan for ORNL Waste Area Grouping 1, dated August 1989. This document lists comments received from the Environmental Protection Agency, Region 4 (EPA) and the Tennessee Department of Health and Environment (TDHE) and responses to each of these comments. As requested by EPA, a revised Remedial Investigation (RI) Plan for Waste Area Grouping (WAG) 1 will not be submitted. The document is divided into two Sections and Appendix. Section I contains responses to comments issued on May 22, 1990, by EPA's Region 4 program office responsible for implementing the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Section 2 contains responses to comments issued on April 7, 1989, by EPA's program office responsible for implementing the Resource Conservation and Recovery Act (RCRA); these comments include issues raised by the TDHE. The Appendix contains the attachments referenced in a number of the responses. 35 refs

  18. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m (1000 ft). The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m (660 ft) in radius. Using this process, ORNL has disposed of over 1.5 x 10 6 Ci of activity; the principal nuclides are 90 Sr and 137 Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 l (180,000 gal) of slurry. Disposal cost per liter is approximately $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. The site is in the structurally complex Valley and Ridge Province. The stratigraphy consists of lower Paleozoic rocks. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. 26 refs., 7 figs

  19. Survey of protected terrestrial vertebrates on the Oak Ridge Reservation 1995 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vail, E.R.; Mitchell, J.M.; Webb, J.W.; King, A.L.; Hamlett, P.A.

    1995-11-01

    This progress report discusses surveys of protected terrestrial vertebrates on the Oak Ridge Reservation (ORR) from October 1994 through September 1995. These surveys are important to help avoid or minimize potential impacts of projects on the ORR to species listed as threatened, endangered, or in need of management by the US Fish and Wildlife Service and the Tennessee Wildlife Resources Agency. Currently, there are 69 species of federally or state-listed terrestrial vertebrates that may occur in Tennessee. Not all of these are expected to occur on the ORR, nor do resources permit comprehensive sampling for all of them over the entire ORR. To effectively organize sampling efforts, listed animal species that might be present were targeted using a prioritization system based on historical and recent sightings, species distributions, literature reviews, and personal communications. Sampling was conducted during the time of the year when each targeted species would most likely be encountered. Several trapping and surveying methods were used, including pitfall traps, Sherman traps, seining, artificial covers, and cave and avian surveys.

  20. Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-11-01

    This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site

  1. Wheat-water chestnut flour blends: effect of baking on antioxidant properties of cookies.

    Science.gov (United States)

    Shafi, Musarat; Baba, Waqas N; Masoodi, Farooq Ahmad; Bazaz, Rafiya

    2016-12-01

    Proximate composition, mineral content, functional, pasting and antioxidant properties of water chestnut flour (WCF) were compared with refined wheat flour. WCF showed higher phenolic (4.25 gGAE/1000 g), flavonoid (1.92 g QE/1000 g) and mineral content (K, Mg, Zn, Cu) than wheat flour. WCF showed greater retrogradation tendency but lower peak viscosity than wheat flour. Wheat flour - WCF blends and cookies were evaluated for water activity, physical & textural properties. Water activity of cookies decreased significantly (0.415-0.311) with increase in level of WCF in wheat flour. Total phenolic content, flavonoid content and antioxidant activity (DPPH• scavenging capacity, FRAP) of WCF - wheat flour blends as well as their cookies was also determined. Baking led to a greater increase in DPPH• scavenging capacity of WCF cookies (33.8%) than WF cookies (25%). Baking had a similar effect on FRAP value. Wheat flour cookies showed a decrease of 51%, and 62% while WCF cookies showed a decrease of 36%, and 34% in TPC and TFC values respectively. WCF cookies thus showed better retention of antioxidant activities suggesting greater stability of WC phenolics than wheat phenolics. Sensory analysis showed cookies made from water chestnut (100%) had fair acceptability due to their characteristic flavor. Thus, water chestnut flour serves both as a gluten free as well as antioxidant rich flour for production of cookies.

  2. Resource Management plan for the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Cunningham, M.; Pounds, L.

    1991-12-01

    A survey of wetlands on the Oak Ridge Reservation (ORR) was conducted in 1990. Wetlands occurring on ORR were identified using National Wetlands Inventory (NWI) maps and field surveys. More than 120 sites were visited and 90 wetlands were identified. Wetland types on ORR included emergent communities in shallow embayments on reservoirs, emergent and aquatic communities in ponds, forested wetland on low ground along major creeks, and wet meadows and marshes associated with streams and seeps. Vascular plant species occurring on sites visited were inventoried, and 57 species were added to the checklist of vascular plants on ORR. Three species listed as rare in Tennessee were discovered on ORR during the wetlands survey. The survey provided an intensive ground truth of the wetlands identified by NWI and offered an indication of wetlands that the NWI remote sensing techniques did not detect

  3. A successful environmental remediation program closure and post-closure activities (CAPCA) Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Bowers, M.H.

    1991-01-01

    The Resource Conservation and Recovery Act (RCRA) closure of eleven waste management units at the Department of Energy's (DOE's) Oak Ridge Y-12 Plant is nearing completion. The Oak Ridge Y-12 Plant is managed by Martin Marietta Energy Systems, Inc. for the US Department of Energy under Contract DE-AC05-84OR21400. The Closure and Post Closure Program (CAPCA) has been accomplished on an accelerated schedule through the efforts of a dedicated team from several organizations. This paper relates experience gained from the program that can be of benefit on other DOE environmental remediation projects. Technical design and construction aspects, as well as project management considerations, are discussed

  4. Annual Storm Water Report for the Y-12 National Security Complex Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Environment Compliance Department

    2012-01-01

    The storm water pollution prevention program at the Y-12 National Security Complex (Y-12 Complex) intends to protect the quality of storm water runoff through: (1) reducing the exposure of metal accumulation areas to precipitation, (2) implementation of Best Management Practices, (3) sampling during rain events and subsequent analysis, and (4) routine surveillances. When prescribed, the analytical data is compared to a set of cut-off concentration values to determine how the Y-12 Complex relates to other metal fabrication industries in the state of Tennessee. The quality of the storm water exiting the Y-12 Complex via East Fork Poplar Creek indicated some improvement in 2011. This improvement is attributable to the completion of several construction, demolition and remediation projects which occurred in 2010 and 2011. Emphasis will continue to be placed on site inspections and the timely implementation of improved storm water control measures as deemed necessary.

  5. Annual Storm Water Report for the Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Clean Water Compliance Section of the Environment Compliance Department

    2012-01-01

    The storm water pollution prevention program at the Y-12 National Security Complex (Y-12 Complex) intends to protect the quality of storm water runoff through: (1) reducing the exposure of metal accumulation areas to precipitation, (2) implementation of Best Management Practices, (3) sampling during rain events and subsequent analysis, and (4) routine surveillances. When prescribed, the analytical data is compared to a set of cut-off concentration values to determine how the Y-12 Complex relates to other metal fabrication industries in the state of Tennessee. The quality of the storm water exiting the Y-12 Complex via East Fork Poplar Creek indicated some improvement in 2011. This improvement is attributable to the completion of several construction, demolition and remediation projects which occurred in 2010 and 2011. Emphasis will continue to be placed on site inspections and the timely implementation of improved storm water control measures as deemed necessary.

  6. Assessment of subsidence in karst terranes at selected areas in East Tennessee and comparison with a candidate site at Oak Ridge, Tennessee: Phase 2

    International Nuclear Information System (INIS)

    Newton, J.G.; Tanner, J.M.

    1987-09-01

    Work in the respective areas included assessment of conditions related to sinkhole development. Information collected and assessed involved geology, hydrogeology, land use, lineaments and linear trends, identification of karst features and zones, and inventory of historical sinkhole development and type. Karstification of the candidate, Rhea County, and Morristown study areas, in comparison to other karst areas in Tennessee, can be classified informally as youthful, submature, and mature, respectively. Historical sinkhole development in the more karstified areas is attributed to the greater degree of structural deformation by faulting and fracturing, subsequent solutioning of bedrock, thinness of residuum, and degree of development by man. Sinkhole triggering mechanisms identified are progressive solution of bedrock, water-level fluctuations, piping, and loading. 68 refs., 18 figs., 11 tabs

  7. Comprehensive work plan for the Well Driller's Steam Cleaning Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-02-01

    The purpose of this Comprehensive Work Plan is to address the history of the site as well as the scope, roles and responsibilities, documentation, training, environmental compliance requirements, and field actions needed to close the Oak Ridge National Laboratory (ORNL) Well Driller's Steam Cleaning Facility, hereinafter referred to as the Facility. The Facility was constructed in 1989 to provide a central area suitable to conduct steam cleaning operations associated with cleaning drilling equipment, containment boxes, and related accessories. Three basins were constructed of crushed stone (with multiple plastic and fabric liners) over a soil foundation to collect drill cuttings and wastewater generated by the cleaning activities. The scope of this task will be to demolish the Facility by using a bulldozer and backhoe to recontour and dismantle the area

  8. Oak Ridge Reservation Federal Facility Agreement for the Environmental Restoration Program. Volume 4

    International Nuclear Information System (INIS)

    1993-10-01

    This quarterly progress report satisfies requirements for the Environmental Restoration (ER) Program that are specified in the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA) established between the U.S. Department of Energy (DOE), the U.S. Environmental protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC). The reporting period covered is July through September 1993 (fourth quarter of FY 1993). Sections 1.1 and 1.2 provide respectively the milestones scheduled for completion during the reporting period and a list of documents that have been proposed for transmittal during the following quarter but have not been approved as FY 1994 commitments

  9. Plutonium in biota from an east Tennessee floodplain forest

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Dahlman, R.C.

    1978-01-01

    239 240 Pu concentrations were measured in biota from a 30-year-old contaminated floodplain forest in Tennessee. Concentration ratios relative to soil, for plutonium in litter, invertebrate cryptozoans, herbaceous ground vegetation, orthoptera and small mammals were approximately 10 -1 , 10 -2 , 10 -3 , and 10 -4 , respectively. Concentration ratios (CR) for plutonium in biota from the floodplain forest are less than CR values from other contaminated ecosystems in the USA. Presumably, this is due to humid conditions and greater rainfall which minimize resuspension as a physical transport mechanism to biota. Plutonium and radiocesium concentrations are correlated in biota from the forest at Oak Ridge and also from Mortandad Canyon in New Mexico. The cause of the covariance between concentrations of these elements is unknown. Nevertheless, the existence of these relationships suggests that it is possible to predict plutonium in biota from radiocesium concentrations when both nuclides have a common origin and occur together in a contaminated terrestrial environment. (author)

  10. Removal site evaluation report on Building 7602 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-09-01

    This removal site evaluation report for Building 7602 at Oak Ridge National Laboratory was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the facility pose a substantial risk to human health or the environment (i.e., a high probability of adverse effects) and whether remedial site evaluations or removal actions are, therefore, required. The scope of the project included (1) a search for, and review of, readily available historical records regarding operations and use of the facility (including hazardous substance usage and existing contamination); (2) interviews with facility personnel concerning current and past practices; and (3) a brief walk-through to visually inspect the facility and identify existing hazard areas requiring maintenance actions, removal actions, or remedial evaluation. The results of the removal site evaluation indicate that areas associated with Building 7602 pose no imminent hazards requiring maintenance actions. Adequate engineering and administrative controls are in place and enforced within the facility to ensure worker and environmental protection. Current actions that are being taken to prevent further release of contamination and ensure worker safety within Building 7602 are considered adequate until decontamination and decommissioning activities begin. Given the current status and condition of Building 7602, this removal site evaluation is considered complete and terminated

  11. Final review of the Campbell Creek demonstrations showcased by Tennessee Valley Authority

    Energy Technology Data Exchange (ETDEWEB)

    Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boudreaux, Philip R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); New, Joshua Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khowailed, Giannate [SRA International, Fairfax, VA (United States)

    2015-06-01

    The Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery and Utilization Office funded and managed a showcase demonstration located in the suburbs of west Knox county, Tennessee. Work started March 2008 with the goal of documenting best practices for retrofitting existing homes and for building new high-efficiency homes. The Oak Ridge National Laboratory and the Electric Power Research Institute (EPRI) provided technical support. An analytical base was developed for helping homeowners, homebuyers, builders, practitioners and the TVA make informed economic decisions for the materials and incentives necessary to build a new high-efficiency home or retrofit an existing home. New approaches to more efficiently control active energy subsystems and information for selecting or upgrading to Energy Star appliances, changing all lights to 100% CFL s and upgrading windows to low-E gas filled glazing yields a 40% energy savings with neutral cash flow for the homeowner. Passive designs were reviewed and recommendations made for envelope construction that is durable and energy efficient. The Campbell Creek project complements the DOE Building Technologies Program strategic goal. Results of the project created technologies and design approaches that will yield affordable energy efficient homes. The 2010 DOE retrofit goals are to find retrofit packages that attain 30% whole house energy savings as documented by pre and post Home Energy rating scores (HERS). Campbell Creek met these goals.

  12. Strategic Environmental Research and Development Project FY 1994: Assessing national remote sensing technologies for use in US Department of Energy Environmental Restoration Activities, Oak Ridge Solid Waste Storage Area 4 case study

    International Nuclear Information System (INIS)

    King, A.L.; Smyre, J.L.; Evers, T.K.

    1995-02-01

    During FY 1994, the Oak Ridge Environmental Restoration (ER) Remote Sensing Program teamed with members of the Oak Ridge National Security Program Office (NSPO), the Environmental Research Institute of Michigan (ERIM) under contract to the National Exploitation Laboratory (NEL), the Oak Ridge Waste Area Group 4 (WAG 4) ER Program, and the US Department of Energy (DOE), Offices of Technology Development, Nonproliferation and National Security, and Environmental Restoration, to conduct a test and demonstration of the uses of national remote sensing technologies at DOE hazardous waste sites located in Oak Ridge, Tennessee. Objectives of the Oak Ridge study were to determine if national remote sensing technologies are useful in conducting prescreening, characterization, and/or monitoring activities to expedite the clean-up process at hazardous waste sites and to cut clean-up costs wherever possible. This project was sponsored by the Strategic Environmental Research and Development Project (SERDP)

  13. Groundwater quality monitoring well installation for Waste Area Grouping at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    Mortimore, J.A.; Lee, T.A.

    1994-09-01

    This report documents the drilling and installation of 18 groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 11. WAG 11 (White Wing Scrap Yard) is located on the west end of East Fork Ridge between White Wing Road and the Oak Ridge Turnpike. The scrap yard is approximately 25 acres in size. The wells at WAG 11 were drilled and developed between January 1990 and October 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The wells at WAG 11 were drilled with auger or air rotary rigs. Depending on the hydrogeologic conditions present at each proposed well location, one of four basic installation methods was utilized. Detailed procedures for well construction were specified by the Engineering Division to ensure that the wells would provide water samples representative of the aquifer. To ensure conformance with the specifications, Energy Systems Construction Engineering and ERCE provided continuous oversight of field activities. The purpose of the well installation program was to install GQM wells for groundwater characterization at WAG 11. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents

  14. Saprophytic Activity and Sporulation of Cryphonectria parasitica on Dead Chestnut Wood in Forests with Naturally Established Hypovirulence.

    Science.gov (United States)

    Prospero, S; Conedera, M; Heiniger, U; Rigling, D

    2006-12-01

    ABSTRACT Sustainable biological control of the chestnut blight fungus Crypho-nectria parasitica with hypovirulence depends on the production and dissemination of hypovirus-infected propagules of the pathogen. We investigated the ability of C. parasitica to sporulate and produce hypo-virus-infected spores on recently dead chestnut wood in coppice stands in southern Switzerland where hypovirulence has been naturally established. The number and type (active, inactive, or none) of cankers was assessed on experimentally cut and stacked stems, firewood stacks, and natural dead wood. Hypovirus-free and hypovirus-infected strains readily survived for more than 1 year in the chestnut blight cankers of the stacked stems. Sporulation of C. parasitica was observed on the surface of preexisting inactive and active cankers, as well as on newly colonized bark areas and was significantly more abundant than on comparable cankers on living stems. On all types of dead wood, we observed more stromata with perithecia than with pycnidia; however, a large proportion of the stromata was not differentiated. All perithecia examined yielded only hypovirus-free ascospores. The incidence of pycnidia that produced hypovirus-infected conidia ranged from 5% on natural dead wood to 41% on the experimental stacks. The mean virus transmission rate into conidia was 69%. Our study demonstrates a considerable saprophytic activity of C. parasitica on recently dead chestnut wood and supports the hypothesis of a role of this saprophytic phase in the epidemiology of hypovirulence.

  15. Best management practices plan for installation of and monitoring at temporary Weirs at NT-4, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-06-01

    The purpose of the installation of temporary weirs at NT-4 is to collect empirical surface water discharge data for the tributary during baseflow conditions and following rainfall events, during the spring and summer of 1997 in support of the Department of Energy's (DOE's) Oak Ridge Reservation Waste Management Alternatives Evaluation project. The duration of surface-water monitoring activities is not planned to exceed 6 months. A minimum of four temporary weirs will be installed along the length of NT-4 in the locations indicated on Attachment A. The design specifications and locations for the weirs will be provided by the DOE prime contractor for the Oak Ridge Reservation Waste Management Alternatives Evaluation project. The weirs will be fabricated by the Y-12 labor forces of Lockheed Martin Energy Systems (LMES). The Environmental Compliance Organization (ECO) of LMES will perform data collection in addition to weir installation, inspection, maintenance, and removal. Flow meters that collect data at five minute intervals will be installed on each weir and visual measurements using staff gauges mounted on each weir will also be performed

  16. Fracture toughness testing of core from the Cambro-Ordovician Section on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Lemiszki, P.J.; Landes, J.D.

    1996-01-01

    The modified ring test was used to determine the mode I fracture toughness of bedrock cores from the DOE Oak Ridge Reservation in east Tennessee. Low porosity sandstones, limestones, and dolostones from the lower part of the Paleozoic section in Copper Creek and Whiteoak Mountain thrust sheets were sampled. In general, the average mode I fracture toughness decreases from sandstone, dolostone, and limestone. The fracture toughness of the limestones varies between rock units, which is related to different sedimentologic characteristics. Quality of results was evaluated by testing cores of Berea Sandstone and Indiana Limestone, which produced results similar to published results

  17. Y-12 Groundwater Protection Program Calendar Year 2000 Groundwater Monitoring Data Evaluation Report for the Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-09-01

    This report presents an evaluation of the groundwater and surface water monitoring data obtained during calendar year (CY) 2000 in the Bear Creek Hydrogeologic Regime (Bear Creek Regime). The Bear Creek Regime encompasses many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee (Figure A.1). Prepared by the Y-12 Groundwater Protection Program (GWPP), this report addresses applicable provisions of DOE Order 5400.1 (General Environmental Protection Program) that require: (1) an evaluation of the quantity and quality of groundwater and surface water in areas that are, or could be, affected by Y-12 operations, (2) an evaluation of groundwater and surface water quality in areas where contaminants from Y-12 operations are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) an evaluation of long-term trends in groundwater quality at Y-12. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1 (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). Illustrations (maps and trend graphs) are presented in Appendix A. Brief data summary tables referenced in each section are contained within the sections. Supplemental information and extensive data tables are provided in Appendix B.

  18. Surveillance and maintenance plan for Waste Area Groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee, for FY 1993--2002

    International Nuclear Information System (INIS)

    Ford, M.K.; Holder, L. Jr.; Jones, R.G.

    1992-12-01

    The Oak Ridge National Laboratory (ORNL) Waste Area Grouping (WAG) Surveillance and Maintenance (S ampersand M) program was designed for the management of sites contaminated with radioactive materials and/or hazardous chemicals from the end of their operating life until final facility disposition or site stabilization in accordance with environmental regulations and good management practices. Program objectives include (1) S ampersand M of sites/facilities awaiting final disposition; (2) planning for safe and orderly final closure at each site/facility; and (3) implementing a program to accomplish final disposition in a safe, cost-effective, and timely manner

  19. Hydrologic data summary for the White Oak Creek Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, January--December 1992

    International Nuclear Information System (INIS)

    Borders, D.M.; Watts, J.A.; Clapp, R.B.; Frederick, B.J.; Gregory, S.M.; Moore, T.D.

    1993-06-01

    This report summarizes, for the 12-month period (January through December 1992), the available dynamic hydrologic data collected, primarily, on the White Oak Creek (WOC) watershed along with information collected on the surface flow systems which affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: characterize the quantity and quality of water in the flow system; assist with the planning and assessment of remedial action activities; and provide long-term availability of data and quality assurance

  20. A retrospective study of the chemical analysis cost for the remediation of Lower East Fork Poplar Creek, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Klatt, L.N.

    1998-06-01

    A retrospective study of the remediation of Lower East Fork Poplar Creek (LEFPC) in Oak Ridge, Tennessee was completed. The study was conducted by reviewing the public Comprehensive Environmental Response, Compensation, and Liability Act record documents associated with the remediation of LEFPC and through discussions with the project staff involved or familiar with the project. The remediation took place in two phases. The first phase involved the excavation of about 5,560 yd 3 of soil at the National Oceanic and Atmospheric Administration (NOAA) locations in 1996. The second phase involved the excavation of 39,200 yd 3 at another NOAA location and at the Bruner location in 1997. For the entire project (remedial investigation through cleanup), a total of 7,708 samples (1 sample for each 5.8 yd 3 of soil remediated) were analyzed for mercury. The project obtained special regulatory approval to use two methods for the determination of mercury in soils that are not part of the Resource Conservation and Recovery Act SW-846 methods manual. The mercury analysis cost was $678,000, which represents 9.6% of the cleanup cost. During the cleanup phase of the project, an on-site laboratory was used. The estimated cost savings that the on-site laboratory provided fall into two categories: direct reduction of costs associated with chemical analysis and sample shipment totaling approximately $38,000, which represents a 5.3% savings relative to the estimated cost of using an off-site laboratory, and savings in the amount of $890,000 (12.5% of the $7.1 M cleanup cost), associated with expediting execution of the cleanup work by providing rapid (< 3 hours) sample result turnaround time. The manner in which the analytical services were procured for the LEFPC project suggest that the development of new chemical analysis technology must address deployment, performance, regulatory, robustness, reliability, and business appropriateness factors if the technology is to be used in

  1. Final report on the waste area grouping perimeter groundwater quality monitoring well installation program at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Greene, J.A.

    1991-06-01

    A groundwater quality monitoring well installation program was conducted at Oak Ridge National Laboratory (ORNL) to meet the requirements of environmental regulations, including the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). A total of 173 wells were installed and developed at 11 different waste area groupings (WAGs) between June 1986 and November 1990. A location map of the wells is included

  2. EFFECT of hydrocolloids on the quality evaluation of flour based noodles from Horse Chestnut

    Directory of Open Access Journals (Sweden)

    Rafiq Syed Insha

    2016-01-01

    Full Text Available The present study was focused to investigate the effects of hydrocolloids (guar gum and xanthan gum at additional levels (1%, 2% and 3% on the noodle characteristics prepared from horse chestnut flour. The qualities of noodles prepared from horse chestnut flour were compared with wheat flour based noodles in terms of cooking characteristics, textural and sensory properties. The hydrocolloid addition in noodles resulted in improvement of cooking and textural qualities in consistent to control sample. The incorporation of 3% gum significantly increased cooking properties and the firmness of cooked noodles. The results of the sensory evaluation based on a nine point hedonic scale revealed that apart from the control, noodles with 3% gum were acceptable to the panellists.

  3. Annual report on surveillance and maintenance activities at Oak Ridge National Laboratory, Oak Ridge, Tennessee, fiscal year 1996

    International Nuclear Information System (INIS)

    1996-11-01

    In fiscal year (FY) 1995, the sites and facilities from both the Remedial Action (RA) and Decontamination and Decommissioning (D and D) programs were combined to form the Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Surveillance and Maintenance (S and M) Program. Surveillance and Maintenance activities were conducted throughout FY 1996 at the RA facilities. Overall, the RA S and M Program consists of approximately 650 acres that include 14 waste area groupings with approximately 200 sites. These sites include 46 major facilities, several leak and contaminated soil sites, 38 inactive tanks, approximately 50 environmental study areas and approximately 2,973 wells and boreholes. Site inspections were conducted at established frequencies on appropriate sites in the RA S and M Program in accordance with the established S and M FY 1996 Incentive Task Order (ITO)

  4. Tennessee Comptroller of the Treasury (TN COMP)

    Data.gov (United States)

    Social Security Administration — The Tennessee Comptroller of the Treasury (TN COMP) uses SSA's assistance in administering the Tennessee Property Tax Rebate Program. SSA provides assistance through...

  5. Resource management plan for the Oak Ridge Reservation. Volume 27, Wildlife Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Parr, P.D. [Oak Ridge National Lab., TN (United States); Evans, J.W. [Tennessee Wildlife Resources Agency, Knoxville, TN (United States)

    1992-06-01

    A plan for management of the wildlife resources on the US Department of Energy`s Oak Ridge Reservation is outlined in this document. Management includes wildlife population control (hunts, trapping, and removal), handling specific problems with wildlife, restoration of species, coordination with researchers on wildlife studies, preservation and management of habitats, and law enforcement. Wildlife resources are divided into five categories, each with a specific set of objectives and procedures for obtaining these objectives. These categories are (1) species-richness management to ensure that all resident wildlife species exist on the Reservation in viable numbers; (2) featured species management to produce selected species in desired numbers on designated land units; (3) management of game species for research, education, recreation, and public safety, (4) endangered species management designed to preserve and protect both the species and habitats critical to the survival of those species; and (5) pest management. Achievement of the objectives is a joint effort between the Tennessee Wildlife Resources Agency and the Oak Ridge National Laboratory`s Environmental Sciences Division.

  6. Polymorphic sequence-characterized codominant loci in the chestnut blight fungus, Cryphonectria parasitica

    Science.gov (United States)

    J. E. Davis; Thomas L. Kubisiak; M. G. Milgroom

    2005-01-01

    Studies on the population biology of the chestnut blight fungus, Cryphonectria parasitica, have previously been carried out with dominant restriction fragment length polymorphism (RFLP) fingerprinting markers. In this study, we described the development of 11 condominant markers from randomly amplified polymorphic DNAs (RAPDs). RAPD fragments were...

  7. Environmental, Safety, and Health Plan for the remedial investigation/feasibility study at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-05-01

    This Environmental, Safety, and Health (ES ampersand H) Plan presents the concepts and methodologies to be followed during the remedial investigation/feasibility study (RI/FS) for Oak Ridge National Laboratory (ORNL) to protect the health and safety of employees, the public, and the environment. This ES ampersand H Plan acts as a management extension for ORNL and Martin Marietta Energy Systems, Inc. (Energy Systems) to direct and control implementation of the project ES ampersand H program. The subsections that follow describe the program philosophy, requirements, quality assurance measures, and methods for applying the ES ampersand H program to individual waste area grouping (WAG) remedial investigations. Hazardous work permits (HWPs) will be used to provide task-specific health and safety requirements

  8. 3001 canal radiological characterization and waste removal report, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Ritchie, M.G.

    1996-12-01

    An underground steel reinforced concrete transfer and storage canal was built in 1943 and operated as an integral part of the Oak Ridge Graphite Reactor Building (3001) until 1963 when the reactor was shutdown. During operation, the canal was used for under water transfer of irradiated materials and other metals from the reactor in Building 3001 to the Building 3019 hot cell for further processing. After shutdown of the reactor, the canal was used for storage of irradiated materials and fission products until 1990 when the larger materials were removed and stored in the Department of Energy (DOE) approved solid waste management storage facilities. At that time it was discovered that a considerable amount of sludge had accumulated over the intervening years and subsequent analysis showed that the sludge contained Resource Conservation and Recovery Act (RCRA) materials that violated quantities allowed by the RCRA regulations. It was also recognized in 1990 that the canal was losing water to evaporation and the ground at the rate of approximately 400 gallons per day. To maintain water quality; i.e., radionuclide content at or near DOE derived concentration guidelines (DCG), the water in the canal is constantly demineralized using a demineralizer in the Building 3001 and demineralized make up water is supplied from the Building 3004 demineralizer. This report summarizes the 301 Canal Cleanup Task and the solid waste removed from the 3001 Canal in 1996

  9. Cytotoxic triterpenoids isolated from sweet chestnut heartwood (Castanea sativa) and their health benefits implication.

    Science.gov (United States)

    Pérez, Andy J; Pecio, Łukasz; Kowalczyk, Mariusz; Kontek, Renata; Gajek, Gabriela; Stopinsek, Lidija; Mirt, Ivan; Stochmal, Anna; Oleszek, Wiesław

    2017-11-01

    For centuries wood containers have been used in aging of wines and spirits, due to the pleasant flavors they give to the beverages. Together with oak, sweet chestnut wood (Castanea sativa) have been often used for such purpose. The maturation process involves the transfer of secondary metabolites, mainly phenolics, from the wood to the liquid. At the same time, other metabolites, such as triterpenoids and their glycosides, can also be released. Searching for the extractable triterpenoids from sweet chestnut heartwood (C. sativa), two new ursane-type triterpenoid saponins named chestnoside A (1) and chestnoside B (2), together with two known oleanen-type analogs (3 and 4) were isolated and characterized. The cytotoxicity of isolated compounds was tested against two cancer cell lines (PC3 and MCF-7), and normal lymphocytes. Breast cancer cells (MCF-7) were more affected by tested compounds than prostate cancer cells (PC3). Chestnoside B (2) exhibited the strongest cytotoxicity with an IC 50 of 12.3 μM against MCF-7 cells, lower than those of positive controls, while it was moderately active against normal lymphocytes (IC 50  = 67.2 μM). These results highlight the occurrence of triterpenoid saponins in sweet chestnut heartwood and their potential for the chemoprevention of breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Summary of available waste forecast data for the Environmental Restoration Program at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-08-01

    This report identifies patterns of Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) waste generation that are predicted by the current ER Waste Generation Forecast data base. It compares the waste volumes to be generated with the waste management capabilities of current and proposed treatment, storage, or disposal (TSD) facilities. The scope of this report is limited to wastes generated during activities funded by the Office of the Deputy Assistant Secretary for Environmental Restoration (EM-40) and excludes wastes from the decontamination and decommissioning of facilities. Significant quantities of these wastes are expected to be generated during ER activities. This report has been developed as a management tool supporting communication and coordination of waste management activities at ORNL. It summarizes the available data for waste that will be generated as a result of remediation activities under the direction of the U.S. Department of Energy Oak Ridge Operations Office and identifies areas requiring continued waste management planning and coordination. Based on the available data, it is evident that most remedial action wastes leaving the area of contamination can be managed adequately with existing and planned ORR waste management facilities if attention is given to waste generation scheduling and the physical limitations of particular TSD facilities. Limited use of off-site commercial TSD facilities is anticipated, provided the affected waste streams can be shown to satisfy the requirements of the performance objective for certification of non-radioactive hazardous waste and the waste acceptance criteria of the off-site facilities. Ongoing waste characterization will be required to determine the most appropriate TSD facility for each waste stream

  11. Environmental monitoring report: United States Department of Energy Oak Ridge facilities, calendar year 1984

    International Nuclear Information System (INIS)

    1985-08-01

    The Environmental Monitoring Program for the Oak Ridge area includes sampling and analysis of air, water from surface streams, groundwater, creek sediments, biota, and soil for both radioactive and nonradioactive materials. This report presents a summary of the results of the program for CY 1984. Surveillance of radioactivity in the Oak Ridge environment indicates that atmospheric concentrations at some stations were above background but would result in radiation exposures well within the applicable Environmental Protection Agency guidelines. Levels of radioactivity in rainwater samples collected in the Oak Ridge areas were not significantly different from those collected at remote locations. Concentrations of radioactivity in the Clinch River and in fish collected from the river were similar to those of previous years. For an Oak Ridge resident, the average committed dose equivalent was 1.6 millirem and the average dose commitment to the pulmonary tissues was calculated to be 5.4 millirem. The primary contributor to the dose was attributed to airborne releases of uranium from the Y-12 Plant. The data on chemical water quality in surface streams obtained from the water sampling program indicated that average concentrations resulting from plant effluents during 1984 were in compliance with State Stream Standards for the protection of drinking water, fish and aquatic life, and recreation classification, except for cadmium, lead, mercury, nitrate, and zinc. The average concentrations of all chemicals analyzed in the processed water from the Oak Ridge Gaseous Diffusion Plant sanitary water pumping station were within the Tennessee Water Quality Criteria for domestic water supply, except for mercury. Although no mercury was detected in any of the samples, the detection limit of the analytical procedure exceeded the criteria

  12. Oak Ridge Reservation Environmental Protection Rad Neshaps Radionuclide Inventory Web Database and Rad Neshaps Source and Dose Database.

    Science.gov (United States)

    Scofield, Patricia A; Smith, Linda L; Johnson, David N

    2017-07-01

    The U.S. Environmental Protection Agency promulgated national emission standards for emissions of radionuclides other than radon from US Department of Energy facilities in Chapter 40 of the Code of Federal Regulations (CFR) 61, Subpart H. This regulatory standard limits the annual effective dose that any member of the public can receive from Department of Energy facilities to 0.1 mSv. As defined in the preamble of the final rule, all of the facilities on the Oak Ridge Reservation, i.e., the Y-12 National Security Complex, Oak Ridge National Laboratory, East Tennessee Technology Park, and any other U.S. Department of Energy operations on Oak Ridge Reservation, combined, must meet the annual dose limit of 0.1 mSv. At Oak Ridge National Laboratory, there are monitored sources and numerous unmonitored sources. To maintain radiological source and inventory information for these unmonitored sources, e.g., laboratory hoods, equipment exhausts, and room exhausts not currently venting to monitored stacks on the Oak Ridge National Laboratory campus, the Environmental Protection Rad NESHAPs Inventory Web Database was developed. This database is updated annually and is used to compile emissions data for the annual Radionuclide National Emission Standards for Hazardous Air Pollutants (Rad NESHAPs) report required by 40 CFR 61.94. It also provides supporting documentation for facility compliance audits. In addition, a Rad NESHAPs source and dose database was developed to import the source and dose summary data from Clean Air Act Assessment Package-1988 computer model files. This database provides Oak Ridge Reservation and facility-specific source inventory; doses associated with each source and facility; and total doses for the Oak Ridge Reservation dose.

  13. Oak Ridge Reservation annual site environmental report for 1996

    International Nuclear Information System (INIS)

    1997-10-01

    The US Department of Energy currently oversees activities on the Oak Ridge Reservation (ORR), a government-owned, contractor-operated facility. Three sites compose the reservation: the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory, and East Tennessee Technology Park (formerly the K-25 Site). The ORR was established in the early 1940s as part of the Manhattan Project, a secret undertaking that produced the materials for the first atomic bombs. The reservation's role has evolved over the years, and it continues to adapt to meet the changing defense, energy, and research needs of the US. Both the work carried out for the war effort and subsequent research, development, and production activities have produced (and continue to produce) radiological and hazardous wastes. This document contains a summary of environmental monitoring activities on the ORR and its surroundings. Environmental monitoring on the ORR consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents prior to release into the environment; these measurements allow the quantification and official reporting of contaminants, assessment of radiation exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of the collection and analysis of environmental samples from the site and its environs; this provides direct measurement of contaminants in air, water, groundwater, soil, foods, biota, and other media subsequent to effluent release into the environment. Environmental surveillance data verify ORR's compliance status and, combined with data from effluent monitoring, allow the determination of chemical and radiation dose/exposure assessment of ORR operations and effects, if any, on the local environment

  14. Oak Ridge Reservation annual site environmental report for 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The US Department of Energy currently oversees activities on the Oak Ridge Reservation (ORR), a government-owned, contractor-operated facility. Three sites compose the reservation: the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory, and East Tennessee Technology Park (formerly the K-25 Site). The ORR was established in the early 1940s as part of the Manhattan Project, a secret undertaking that produced the materials for the first atomic bombs. The reservation`s role has evolved over the years, and it continues to adapt to meet the changing defense, energy, and research needs of the US. Both the work carried out for the war effort and subsequent research, development, and production activities have produced (and continue to produce) radiological and hazardous wastes. This document contains a summary of environmental monitoring activities on the ORR and its surroundings. Environmental monitoring on the ORR consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents prior to release into the environment; these measurements allow the quantification and official reporting of contaminants, assessment of radiation exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of the collection and analysis of environmental samples from the site and its environs; this provides direct measurement of contaminants in air, water, groundwater, soil, foods, biota, and other media subsequent to effluent release into the environment. Environmental surveillance data verify ORR`s compliance status and, combined with data from effluent monitoring, allow the determination of chemical and radiation dose/exposure assessment of ORR operations and effects, if any, on the local environment.

  15. Groundwater quality monitoring well installation for Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Mortimore, J.A.; Ebers, M.L.

    1994-09-01

    This report documents the drilling and installation of 22 groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 5. WAG 5 is located south of the Oak Ridge National Laboratory main plant area in Melton Valley and includes 33 solid waste management units. The wells at WAG 5 were drilled and developed between July 1987 and March 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The purpose of the well installation program was to install GQM wells for groundwater characterization at WAG 5. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents

  16. Decontamination Project for Cell G of the Metal Recovery Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Mandry, G.J.; Grisham, R.W.

    1994-02-01

    The goal of the decontamination effort in Cell G at the Metal Recovery Facility, Building 3505, located at the Oak Ridge National Laboratory, was two-fold: to determine the effectiveness of the dry decontamination technique employed and to provide data required to assess whether additional decontamination using this method would be beneficial in the eventual decommissioning of the facility. Allied Technology Group (ATG) was contracted to remove a portion of the concrete surface in Cell G by a technique known as scabbling. Some metallic cell components were also scabbled to remove paint and other surface debris. Generally, the scabbling operation was a success. Levels of contamination were greatly reduced. The depth of contaminant penetration into the concrete surfaces of certain areas was much greater than had been anticipated, necessitating the removal of additional concrete and extending ATG's period of performance. Scabbling and other related techniques will be extremely useful in the decontamination and decommissioning of other nuclear facilities with similar radiological profiles

  17. Technology study of Gunite tank sludge mobilization at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, J.R.; Herrick, T.J.; Lott, K.E.

    1994-12-01

    The Oak Ridge National Laboratory (ORNL) Gunite Tank Sludge Mobilization Technology Study was initiated to support the Gunite Tank Treatability Study effort. The technology study surveyed the methods and technologies available for tank cleaning and sludge mobilization in a radioactive environment. Technologies were identified and considered for applicability to the Gunite and Associated Tanks (GAAT) problems. These were then either accepted for further study or rejected as not applicable. Technologies deemed applicable to the GAAT sludge removal project were grouped for evaluation according to (1) deployment method, (2) types of remotely operated end effector equipment applicable to removal of sludge, (3) methods for removing wastes from the tanks, and (4) methods for concrete removal. There were three major groups of deployment technologies: ``past practice`` technologies, mechanical arm-based technologies, and vehicle-based technologies. The different technologies were then combined into logical sequences of deployment platform, problem, end effector, conveyance, post-removal treatment required (if any), and disposition of the waste. Many waste removal options are available, but the best technology in one set of circumstances at one site might not be the best type to use at a different site. No single technology is capable of treating the entire spectrum of wastes that will be encountered in GAAT. None of the systems used in other industries appears to be suitable, primarily because of the nature of the sludges in the GAAT Operable Unit (OU), their radiation levels, and tank geometries. Other commercial technologies were investigated but rejected because the authors did not believe them to be applicable.

  18. Technology study of Gunite tank sludge mobilization at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    DeVore, J.R.; Herrick, T.J.; Lott, K.E.

    1994-12-01

    The Oak Ridge National Laboratory (ORNL) Gunite Tank Sludge Mobilization Technology Study was initiated to support the Gunite Tank Treatability Study effort. The technology study surveyed the methods and technologies available for tank cleaning and sludge mobilization in a radioactive environment. Technologies were identified and considered for applicability to the Gunite and Associated Tanks (GAAT) problems. These were then either accepted for further study or rejected as not applicable. Technologies deemed applicable to the GAAT sludge removal project were grouped for evaluation according to (1) deployment method, (2) types of remotely operated end effector equipment applicable to removal of sludge, (3) methods for removing wastes from the tanks, and (4) methods for concrete removal. There were three major groups of deployment technologies: ''past practice'' technologies, mechanical arm-based technologies, and vehicle-based technologies. The different technologies were then combined into logical sequences of deployment platform, problem, end effector, conveyance, post-removal treatment required (if any), and disposition of the waste. Many waste removal options are available, but the best technology in one set of circumstances at one site might not be the best type to use at a different site. No single technology is capable of treating the entire spectrum of wastes that will be encountered in GAAT. None of the systems used in other industries appears to be suitable, primarily because of the nature of the sludges in the GAAT Operable Unit (OU), their radiation levels, and tank geometries. Other commercial technologies were investigated but rejected because the authors did not believe them to be applicable

  19. Waste management plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Baron, L.A.

    1994-10-01

    This Project Waste Management Plan defines the criteria and methods to be used for managing waste generated during activities associated with Waste Area Grouping 2 at Oak Ridge National Laboratory. The waste management strategy is based on the generation and management of waste on a systematic basis using the most appropriate combination of waste reduction, segregation, treatment, storage, and disposal practices while protecting the environment and human health, maintaining as low as reasonably achievable limits. This plan contains provisions for safely and effectively managing soils and sediments, sampling water, decontamination fluids, and disposable personal protective equipment consistent with the US Environmental Protection Agency guidance. This plan will be used in conjunction with the ORNL ER Program Waste Management Plan

  20. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    International Nuclear Information System (INIS)

    Hinzman, R.L.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J.

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities