WorldWideScience

Sample records for chest tomosynthesis technical

  1. Chest tomosynthesis: technical and clinical perspectives.

    Science.gov (United States)

    Johnsson, Ase Allansdotter; Vikgren, Jenny; Bath, Magnus

    2014-02-01

    The recent implementation of chest tomosynthesis is built on the availability of large, dose-efficient, high-resolution flat panel detectors, which enable the acquisition of the necessary number of projection radiographs to allow reconstruction of section images of the chest within one breath hold. A chest tomosynthesis examination obtains the increased diagnostic information provided by volumetric imaging at a radiation dose comparable to that of conventional chest radiography. There is evidence that the sensitivity of chest tomosynthesis may be at least three times higher than for conventional chest radiography for detection of pulmonary nodules. The sensitivity increases with increasing nodule size and attenuation and decreases for nodules with subpleural location. Differentiation between pleural and subpleural lesions is a known pitfall due to the limited depth resolution in chest tomosynthesis. Studies on different types of pathology report increased detectability in favor of chest tomosynthesis in comparison to chest radiography. The technique provides improved diagnostic accuracy and confidence in the diagnosis of suspected pulmonary lesions on chest radiography and facilitates the exclusion of pulmonary lesions in a majority of patients, avoiding the need for computed tomography (CT). However, motion artifacts can be a cumbersome limitation and breathing during the tomosynthesis image acquisition may result in severe artifacts significantly affecting the detectability of pathology. In summary, chest tomosynthesis has been shown to be superior to chest conventional radiography for many tasks and to be able to replace CT in selected cases. In our experience chest tomosynthesis is an efficient problem solver in daily clinical work. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Chest Tomosynthesis: Technical Principles and Clinical Update

    Science.gov (United States)

    Dobbins, James T.; McAdams, H. Page

    2009-01-01

    Digital tomosynthesis is a radiographic technique that can produce an arbitrary number of section images of a patient from a single pass of the x-ray tube. It utilizes a conventional x-ray tube, a flat-panel detector, a computer-controlled tube mover, and special reconstruction algorithms to produce section images. While it does not have the depth resolution of computed tomography (CT), tomosynthesis provides some of the tomographic benefits of CT but at lower cost and radiation dose than CT. Compared to conventional chest radiography, chest tomosynthesis results in improved visibility of normal structures such as vessels, airway and spine. By reducing visual clutter from overlying normal anatomy, it also enhances detection of small lung nodules. This review article outlines the components of a tomosynthesis system, discusses results regarding improved lung nodule detection from the recent literature, and presents examples of nodule detection from a clinical trial in human subjects. Possible implementation strategies for use in clinical chest imaging are discussed. PMID:19616909

  3. Investigation of the dosimetry of chest tomosynthesis

    Science.gov (United States)

    Svalkvist, Angelica; Zachrisson, Sara; Månsson, Lars Gunnar; Båth, Magnus

    2009-02-01

    Chest tomosynthesis has recently been introduced to healthcare as a low-dose alternative to CT or as a tool for improved diagnostics in chest radiography with only a modest increase in radiation dose to the patient. However, no detailed description of the dosimetry for this type of examination has been presented. The aim of this work was therefore to investigate the dosimetry of chest tomosynthesis. The chest tomosynthesis examination was assumed to be performed using a stationary detector and a vertically moving x-ray tube, exposing the patient from different angles. The Monte Carlo based computer software PCXMC was used to determine the effective dose delivered to a standard-sized patient from various angles using different assumptions of the distribution of the effective dose over the different projections. The obtained conversion factors between input dose measures and effective dose for chest tomosynthesis for different angular intervals were then compared with the horizontal projection. The results indicate that the error introduced by using conversion factors for the PA projection in chest radiography for estimating the effective dose of chest tomosynthesis is small for normally sized patients, especially if a conversion factor between KAP and effective dose is used.

  4. Pulmonary nodule size evaluation with chest tomosynthesis.

    Science.gov (United States)

    Johnsson, Åse A; Fagman, Erika; Vikgren, Jenny; Fisichella, Valeria A; Boijsen, Marianne; Flinck, Agneta; Kheddache, Susanne; Svalkvist, Angelica; Båth, Magnus

    2012-10-01

    To evaluate intra- and interobserver variability, as well as agreement for nodule size measurements on chest tomosynthesis and computed tomographic (CT) images. The Regional Ethical Review Board approved this study, and all participants gave written informed consent. Thirty-six segmented nodules in 20 patients were included in the study. Eight observers measured the left-to-right, inferior-to-superior, and longest nodule diameters on chest tomosynthesis and CT images. Intra- and interobserver repeatability, as well as agreement between measurements on chest tomosynthesis and CT images, were assessed as recommended by Bland and Altman. The difference between the mean manual and the segmented diameter was -2.2 and -2.3 mm for left-to-right and -2.6 and -2.2 mm for the inferior-to-superior diameter for measurements on chest tomosynthesis and CT images, respectively. Intraobserver 95% limits of agreement (LOA) for the longest diameter ranged from a lower limit of -1.1 mm and an upper limit of 1.0 mm to -1.8 and 1.8 mm for chest tomosynthesis and from -0.6 and 0.9 mm to -3.1 and 2.2 mm for axial CT. Interobserver 95% LOA ranged from -1.3 and 1.5 mm to -2.0 and 2.1 mm for chest tomosynthesis and from -1.8 and 1.1 mm to -2.2 and 3.1 mm for axial CT. The 95% LOA concerning the mean of the observers' measurements of the longest diameter at chest tomosynthesis and axial CT were ±2.1 mm (mean measurement error, 0 mm). For the different observers, the 95% LOA between the modalities ranged from -2.2 and 1.6 mm to -3.2 and 2.8 mm. Measurements on chest tomosynthesis and CT images are comparable, because there is no evident bias between the modalities and the repeatability is similar. The LOA between measurements for the two modalities raise concern if measurements from chest tomosynthesis and CT were to be used interchangeably. © RSNA, 2012.

  5. Digital tomosynthesis of the chest: A literature review

    International Nuclear Information System (INIS)

    Molk, N.; Seeram, E.

    2015-01-01

    Digital tomosynthesis is a relatively novel imaging modality using limited angle tomography to provide 3D imaging. The purpose of this review is to compare the sensitivity of digital tomosynthesis of the chest and plain film chest imaging in accurately identifying pulmonary nodules and to compare the effective dose between standard chest examinations using digital tomosynthesis and CT. A review of current literature has shown that small scale studies found digital tomosynthesis to be three times more effective in identifying pulmonary nodules compared to conventional radiography and at lower doses compared with routine chest CT examinations. This indicates that tomosynthesis could potentially be a beneficial imaging modality and could be used in a number of ways to detect and monitor pulmonary nodules for cancer. However with limited research, large-scale studies would need to be performed to confirm its benefits and identify where it is best used in the clinical setting. - Highlights: • The detection of pulmonary nodules is compared between tomosynthesis and plain film. • The effective dose of digital chest tomosynthesis and chest CT are compared. • The place of digital tomosynthesis of the chest in the clinical setting is explored. • Three times more pulmonary nodules are seen with tomosynthesis. • The effective dose of tomosynthesis is significantly lower than CT

  6. Practical applications of digital tomosynthesis of the chest.

    Science.gov (United States)

    Galea, A; Durran, A; Adlan, T; Gay, D; Riordan, R; Dubbins, P; Williams, M P

    2014-04-01

    Digital tomosynthesis is a radiographic technique that generates a number of coronal raw images of a patient from a single pass of the x-ray tube. Tomosynthesis provides some of the tomographic benefits of computed tomography (CT), but at a much lower dose of radiation and cost when compared to CT. This review illustrates the range of practical applications of digital tomosynthesis of the chest. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  7. Practical applications of digital tomosynthesis of the chest

    International Nuclear Information System (INIS)

    Galea, A.; Durran, A.; Adlan, T.; Gay, D.; Riordan, R.; Dubbins, P.; Williams, M.P.

    2014-01-01

    Digital tomosynthesis is a radiographic technique that generates a number of coronal raw images of a patient from a single pass of the x-ray tube. Tomosynthesis provides some of the tomographic benefits of computed tomography (CT), but at a much lower dose of radiation and cost when compared to CT. This review illustrates the range of practical applications of digital tomosynthesis of the chest

  8. A Monte Carlo estimation of effective dose in chest tomosynthesis

    International Nuclear Information System (INIS)

    Sabol, John M.

    2009-01-01

    Purpose: The recent introduction of digital tomosynthesis imaging into routine clinical use has enabled the acquisition of volumetric patient data within a standard radiographic examination. Tomosynthesis requires the acquisition of multiple projection views, requiring additional dose compared to a standard projection examination. Knowledge of the effective dose is needed to make an appropriate decision between standard projection, tomosynthesis, and CT for thoracic x-ray examinations. In this article, the effective dose to the patient of chest tomosynthesis is calculated and compared to a standard radiographic examination and to values published for thoracic CT. Methods: Radiographic technique data for posterior-anterior (PA) and left lateral (LAT) radiographic chest examinations of medium-sized adults was obtained from clinical sites. From these data, the average incident air kerma for the standard views was determined. A commercially available tomosynthesis system was used to define the acquisition technique and geometry for each projection view. Using Monte Carlo techniques, the effective dose of the PA, LAT, and each tomosynthesis projection view was calculated. The effective dose for all projections of the tomosynthesis sweep was summed and compared to the calculated PA and LAT values and to the published values for thoracic CT. Results: The average incident air kerma for the PA and left lateral clinical radiographic examinations were found to be 0.10 and 0.40 mGy, respectively. The effective dose for the PA view of a patient of the size of an average adult male was determined to be 0.017 mSv (ICRP 60) [0.018 mSv (ICRP 103)]. For the left lateral view of the same sized patient, the effective dose was determined to be 0.039 mSv (ICRP 60) [0.050 mSv (ICRP 103)]. The cumulative mA s for a tomosynthesis examination is recommended to be ten times the mA s of the PA image. With this technique, the effective dose for an average tomosynthesis examination was

  9. Evaluation of chest tomosynthesis for the detection of pulmonary nodules: effect of clinical experience and comparison with chest radiography

    Science.gov (United States)

    Zachrisson, Sara; Vikgren, Jenny; Svalkvist, Angelica; Johnsson, Åse A.; Boijsen, Marianne; Flinck, Agneta; Månsson, Lars Gunnar; Kheddache, Susanne; Båth, Magnus

    2009-02-01

    Chest tomosynthesis refers to the technique of collecting low-dose projections of the chest at different angles and using these projections to reconstruct section images of the chest. In this study, a comparison of chest tomosynthesis and chest radiography in the detection of pulmonary nodules was performed and the effect of clinical experience of chest tomosynthesis was evaluated. Three senior thoracic radiologists, with more than ten years of experience of chest radiology and 6 months of clinical experience of chest tomosynthesis, acted as observers in a jackknife free-response receiver operating characteristics (JAFROC-1) study, performed on 42 patients with and 47 patients without pulmonary nodules examined with both chest tomosynthesis and chest radiography. MDCT was used as reference and the total number of nodules found using MDCT was 131. To investigate the effect of additional clinical experience of chest tomosynthesis, a second reading session of the tomosynthesis images was performed one year after the initial one. The JAFROC-1 figure of merit (FOM) was used as the principal measure of detectability. In comparison with chest radiography, chest tomosynthesis performed significantly better with regard to detectability. The observer-averaged JAFROC-1 FOM was 0.61 for tomosynthesis and 0.40 for radiography, giving a statistically significant difference between the techniques of 0.21 (p<0.0001). The observer-averaged JAFROC-1 FOM of the second reading of the tomosynthesis cases was not significantly higher than that of the first reading, indicating no improvement in detectability due to additional clinical experience of tomosynthesis.

  10. Overview of two years of clinical experience of chest tomo-synthesis at Sahlgrenska university hospital

    International Nuclear Information System (INIS)

    Johnsson, Aa. A.; Vikgren, J.; Svalkvist, A.; Zachrisson, S.; Flinck, A.; Boijsen, M.; Kheddache, S.; Maansson, L. G.; Baath, M.

    2010-01-01

    Since December 2006, ∼ 3800 clinical chest tomo-synthesis examinations have been performed at our department at Sahlgrenska Univ. Hospital. A subset of the examinations has been included in studies of the detectability of pulmonary nodules, using computed tomography (CT) as the gold standard. Visibility studies, in which chest tomo-synthesis and CT have been compared side-by side, have been used to determine the depiction potential of chest tomo-synthesis. Comparisons with conventional chest radiography have been made. In the clinical setting, chest tomo-synthesis has mostly been used as an additional examination. The most frequent indication for chest tomo-synthesis has been suspicion of a nodule or tumour. In visibility studies, tomo-synthesis has depicted over 90% of the nodules seen on the CT scan. The corresponding figure for chest radiography has been <30%. In the detection studies, the lesion-level sensitivity has been ∼ 60% for tomo-synthesis and 20% for chest radiography. In one of the detection studies, an analysis of all false-positive nodules was performed. This analysis showed that all findings had morphological correlates on the CT examinations. The majority of the false-positive nodules were localised in the immediate sub-pleural region. In conclusion, chest tomo-synthesis is an improved chest radiography method, which can be used to optimise the use of CT resources, thereby reducing the radiation dose to the patient population. However, there are some limitations with chest tomo-synthesis. For example, patients undergoing tomo-synthesis have to be able to stand still and hold their breath firmly for 10 s. Also, chest tomo-synthesis has a limited depth resolution, which may explain why pathology in the sub-pleural region is more difficult to interpret and artefacts from medical devices may occur. (authors)

  11. Anatomical decomposition in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Lung cancer is the leading cause of cancer death worldwide and the early diagnosis of lung cancer has recently become more important. For early screening lung cancer, computed tomography (CT) has been used as a gold standard for early diagnosis of lung cancer [1]. The major advantage of CT is that it is not susceptible to the problem of misdiagnosis caused by anatomical overlapping while CT has extremely high radiation dose and cost compared to chest radiography. Chest digital tomosynthesis (CDT) is a recently introduced new modality for lung cancer screening with relatively low radiation dose compared to CT [2] and also showing high sensitivity and specificity to prevent anatomical overlapping occurred in chest radiography. Dual energy material decomposition method has been proposed for better detection of pulmonary nodules as means of reducing the anatomical noise [3]. In this study, possibility of material decomposition in CDT was tested by simulation study and actual experiment using prototype CDT. Furthermore organ absorbed dose and effective dose were compared with single energy CDT. The Gate v6 (Geant4 application for tomographic emission), and TASMIP (Tungsten anode spectral model using the interpolating polynomial) code were used for simulation study and simulated cylinder shape phantom consisted of 4 inner beads which were filled with spine, rib, muscle and lung equivalent materials. The patient dose was estimated by PCXMC 1.5 Monte Carlo simulation tool [4]. The tomosynthesis scan was performed with a linear movement and 21 projection images were obtained over 30 degree of angular range with 1.5° degree of angular interval. The proto type CDT system has same geometry with simulation study and composed of E7869X (Toshiba, Japan) x-ray tube and FDX3543RPW (Toshiba, Japan) detector. The result images showed that reconstructed with dual energy clearly visualize lung filed by removing unnecessary bony structure. Furthermore, dual energy CDT could enhance

  12. Lung cancer detection with digital chest tomosynthesis: first round results from the SOS observational study.

    Science.gov (United States)

    Bertolaccini, Luca; Viti, Andrea; Tavella, Chiara; Priotto, Roberto; Ghirardo, Donatella; Grosso, Maurizio; Terzi, Alberto

    2015-04-01

    Baseline results of the Studio OSservazionale (SOS), observational study, a single-arm observational study of digital chest tomosynthesis for lung cancer detection in an at-risk population demonstrated a detection rate of lung cancer comparable to that of studies that used low dose CT scan (LDCT). We present the results of the first round. Totally 1,703 out of 1,843 (92%) subjects who had a baseline digital chest tomosynthesis underwent a first round reevaluation after 1 year. At first round chest digital tomosynthesis, 13 (0.7%) subjects had an indeterminate nodule larger than 5 mm and underwent low-dose CT scan for nodule confirmation. PET/CT study was obtained in 10 (0.5%) subjects and 2 subjects had a low-dose CT follow up. Surgery, either video-assisted thoracoscopic or open surgery for indeterminate pulmonary nodules was performed in 10 (0.2%) subjects. A lung cancer was diagnosed and resected in five patients. The lung cancer detection rate at first round was 0.3% (5/1,703). The detection rate of lung cancer at first round for tomosynthesis is comparable to rates reported for CT. In addition, results of first round digital chest tomosynthesis confirm chest tomosynthesis as a possible first-line lung cancer-screening tool.

  13. Effect of Clinical Experience of Chest Tomosynthesis on Detection of Pulmonary Nodules

    International Nuclear Information System (INIS)

    Zachrisson, S.; Svalkvist, A.; Maansson, L.G.; Baath, M.; Vikgren, J.; Johnsson, Aa.A.; Boijsen, M.; Flinck, A.; Kheddache, S.

    2009-01-01

    Background: The new technique chest tomosynthesis refers to the principle of collecting low-dose projections of the chest at different angles and using these projections to reconstruct section images of the chest at a radiation dose comparable to that of chest radiography. Purpose: To investigate if, for experienced thoracic radiologists, the detectability of pulmonary nodules obtained after only a short initial learning period of chest tomosynthesis improves with additional clinical experience of the new technique. Material and Methods: Two readings of the same clinical chest tomosynthesis cases, the first performed after 6 months of clinical experience and the second after an additional period of 1 year, were conducted. Three senior thoracic radiologists, with more than 20 years of experience of chest radiography, acted as observers, with the task of detecting pulmonary nodules in a jackknife free-response receiver operating characteristics (JAFROC1) study. The image material consisted of 42 patients with and 47 patients without pulmonary nodules examined with chest tomosynthesis. Multidetector computed tomography (MDCT) was used as a reference. The total number of nodules was 131. The JAFROC1 figure of merit (FOM) was used as the principal measure of detectability. Results: The difference in the observer-averaged JAFROC1 FOM of the two readings was 0.004 (95% confidence interval: -0.11, 0.12; F-statistic: 0.01 on 1 and 2.65 df; P=0.91). Thus, no significant improvement in detectability was found after the additional clinical experience of tomosynthesis. Conclusion: The study indicates that experienced thoracic radiologists already within the first months of clinical use of chest tomosynthesis are able to take advantage of the new technique in the task of detecting pulmonary nodules

  14. Learning aspects and potential pitfalls regarding detection of pulmonary nodules in chest tomosynthesis and proposed related quality criteria

    International Nuclear Information System (INIS)

    Asplund, Sara; Johnsson, Aase A.; Vikgren, Jenny

    2011-01-01

    Background In chest tomosynthesis, low-dose projections collected over a limited angular range are used for reconstruction of an arbitrary number of section images of the chest, resulting in a moderately increased radiation dose compared to chest radiography. Purpose To investigate the effects of learning with feedback on the detection of pulmonary nodules for observers with varying experience of chest tomosynthesis, to identify pitfalls regarding detection of pulmonary nodules, and present suggestions for how to avoid them, and to adapt the European quality criteria for chest radiography and computed tomography (CT) to chest tomosynthesis. Material and Methods Six observers analyzed tomosynthesis cases for presence of nodules in a jackknife alternative free-response receiver-operating characteristics (JAFROC) study. CT was used as reference. The same tomosynthesis cases were analyzed before and after learning with feedback, which included a collective learning session. The difference in performance between the two readings was calculated using the JAFROC figure of merit as principal measure of detectability. Results Significant improvement in performance after learning with feedback was found only for observers inexperienced in tomosynthesis. At the collective learning session, localization of pleural and sub pleural nodules or structures was identified as the main difficulty in analyzing tomosynthesis images. Conclusion The results indicate that inexperienced observers can reach a high level of performance regarding nodule detection in tomosynthesis after learning with feedback and that the main problem with chest tomosynthesis is related to the limited depth resolution

  15. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis.

    Science.gov (United States)

    Asplund, Sara A; Johnsson, Åse A; Vikgren, Jenny; Svalkvist, Angelica; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A; Månsson, Lars Gunnar; Båth, Magnus

    2014-07-01

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70% of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100% dose levels, respectively. The differences in FOM between the 12% dose level and the 32, 70, and 100% dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32%. • A substantial radiation dose reduction in chest tomosynthesis may be possible. • Pulmonary nodule detectability remained unchanged at 32% of the effective dose. • Tomosynthesis might be performed at the dose of a lateral chest radiograph.

  16. Influence of the in-plane artefact in chest tomosynthesis on pulmonary nodule size measurements

    International Nuclear Information System (INIS)

    Soederman, Christina; Allansdotter Johnsson, Aase; Vikgren, Jenny; Rossi Norrlund, Rauni; Molnar, David; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus

    2016-01-01

    The aim of the present study was to investigate how the in-plane artefact present in the scan direction around structures in tomosynthesis images should be managed when measuring the size of nodules in chest tomosynthesis images in order to achieve acceptable measurement accuracy. Data from measurements, performed by radiologists, of the longest diameter of artificial nodules inserted in chest tomosynthesis images were used. The association between the measurement error and the direction of the longest nodule diameter, relative to the scan direction, was evaluated using the Kendall rank correlation coefficient. All of the radiologists had chosen to not include the artefact in the measurements. Significant association between measurement error and the direction of the longest diameter was found for nodules larger than 12 mm, which indicates that, for these nodules, there is a risk of underestimating the nodule size if the in-plane artefact is omitted from manual diameter measurements. (authors)

  17. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, Sara A.; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Gothenburg (Sweden); Johnsson, Aase A.; Vikgren, Jenny; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A. [University of Gothenburg, Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Radiology, Gothenburg (Sweden)

    2014-07-15

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70 % of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100 % dose levels, respectively. The differences in FOM between the 12 % dose level and the 32, 70, and 100 % dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32 %. (orig.)

  18. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis

    International Nuclear Information System (INIS)

    Asplund, Sara A.; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus; Johnsson, Aase A.; Vikgren, Jenny; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A.

    2014-01-01

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70 % of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100 % dose levels, respectively. The differences in FOM between the 12 % dose level and the 32, 70, and 100 % dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32 %. (orig.)

  19. A Monte Carlo-based model for simulation of digital chest tomo-synthesis

    International Nuclear Information System (INIS)

    Ullman, G.; Dance, D. R.; Sandborg, M.; Carlsson, G. A.; Svalkvist, A.; Baath, M.

    2010-01-01

    The aim of this work was to calculate synthetic digital chest tomo-synthesis projections using a computer simulation model based on the Monte Carlo method. An anthropomorphic chest phantom was scanned in a computed tomography scanner, segmented and included in the computer model to allow for simulation of realistic high-resolution X-ray images. The input parameters to the model were adapted to correspond to the VolumeRAD chest tomo-synthesis system from GE Healthcare. Sixty tomo-synthesis projections were calculated with projection angles ranging from + 15 to -15 deg. The images from primary photons were calculated using an analytical model of the anti-scatter grid and a pre-calculated detector response function. The contributions from scattered photons were calculated using an in-house Monte Carlo-based model employing a number of variance reduction techniques such as the collision density estimator. Tomographic section images were reconstructed by transferring the simulated projections into the VolumeRAD system. The reconstruction was performed for three types of images using: (i) noise-free primary projections, (ii) primary projections including contributions from scattered photons and (iii) projections as in (ii) with added correlated noise. The simulated section images were compared with corresponding section images from projections taken with the real, anthropomorphic phantom from which the digital voxel phantom was originally created. The present article describes a work in progress aiming towards developing a model intended for optimisation of chest tomo-synthesis, allowing for simulation of both existing and future chest tomo-synthesis systems. (authors)

  20. Tomosynthesis for the early detection of pulmonary emphysema: diagnostic performance compared with chest radiography, using multidetector computed tomography as reference.

    Science.gov (United States)

    Yamada, Yoshitake; Jinzaki, Masahiro; Hashimoto, Masahiro; Shiomi, Eisuke; Abe, Takayuki; Kuribayashi, Sachio; Ogawa, Kenji

    2013-08-01

    To compare the diagnostic performance of tomosynthesis with that of chest radiography for the detection of pulmonary emphysema, using multidetector computed tomography (MDCT) as reference. Forty-eight patients with and 63 without pulmonary emphysema underwent chest MDCT, tomosynthesis and radiography on the same day. Two blinded radiologists independently evaluated the tomosynthesis images and radiographs for the presence of pulmonary emphysema. Axial and coronal MDCT images served as the reference standard and the percentage lung volume with attenuation values of -950 HU or lower (LAA-950) was evaluated to determine the extent of emphysema. Receiver-operating characteristic (ROC) analysis and generalised estimating equations model were used. ROC analysis revealed significantly better performance (P pulmonary emphysema. The average sensitivity, specificity, positive predictive value and negative predictive value of tomosynthesis were 0.875, 0.968, 0.955 and 0.910, respectively, whereas the values for radiography were 0.479, 0.913, 0.815 and 0.697, respectively. For both tomosynthesis and radiography, the sensitivity increased with increasing LAA-950. The diagnostic performance of tomosynthesis was significantly superior to that of radiography for the detection of pulmonary emphysema. In both tomosynthesis and radiography, the sensitivity was affected by the LAA-950. • Tomosynthesis showed significantly better diagnostic performance for pulmonary emphysema than radiography. • Interobserver agreement for tomosynthesis was significantly higher than that for radiography. • Sensitivity increased with increasing LAA -950 in both tomosynthesis and radiography. • Tomosynthesis imparts a similar radiation dose to two projection chest radiography. • Radiation dose and cost of tomosynthesis are lower than those of MDCT.

  1. Tomosynthesis for the early detection of pulmonary emphysema: diagnostic performance compared with chest radiography, using multidetector computed tomography as reference

    International Nuclear Information System (INIS)

    Yamada, Yoshitake; Jinzaki, Masahiro; Hashimoto, Masahiro; Shiomi, Eisuke; Kuribayashi, Sachio; Abe, Takayuki; Ogawa, Kenji

    2013-01-01

    To compare the diagnostic performance of tomosynthesis with that of chest radiography for the detection of pulmonary emphysema, using multidetector computed tomography (MDCT) as reference. Forty-eight patients with and 63 without pulmonary emphysema underwent chest MDCT, tomosynthesis and radiography on the same day. Two blinded radiologists independently evaluated the tomosynthesis images and radiographs for the presence of pulmonary emphysema. Axial and coronal MDCT images served as the reference standard and the percentage lung volume with attenuation values of -950 HU or lower (LAA -950 ) was evaluated to determine the extent of emphysema. Receiver-operating characteristic (ROC) analysis and generalised estimating equations model were used. ROC analysis revealed significantly better performance (P -950 . The diagnostic performance of tomosynthesis was significantly superior to that of radiography for the detection of pulmonary emphysema. In both tomosynthesis and radiography, the sensitivity was affected by the LAA -950 . (orig.)

  2. Chest imaging with dual-energy substraction digital tomosynthesis

    International Nuclear Information System (INIS)

    Sone, S.; Kasuga, T.; Sakai, F.; Hirano, H.; Kubo, K.; Morimoto, M.; Takemura, K.; Hosoba, M.

    1993-01-01

    Dual-energy subtraction digital tomosynthesis with pulsed X-ray and rapid kV switching was used to examine calcifications in pulmonary lesions. The digital tomosynthesis system used included a conventional fluororadiographic TV unit with linear tomographic capabilities, a high resolution videocamera, and an image processing unit. Low-voltage, high voltage, and soft tissue subtracted or bone subtracted tomograms of any desired layer height were reconstructed from the image data acquired during a single tomographic swing. Calcifications, as well as their characteristics and distribution in pulmonary lesions, were clearly shown. The images also permitted discrimination of calcifications from dense fibrotic lesions. This technique was effective in demonstrating calcifications together with a solitary mass or disseminated nodules. (orig.)

  3. Tomosynthesis for the early detection of pulmonary emphysema: diagnostic performance compared with chest radiography, using multidetector computed tomography as reference

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yoshitake [Keio University School of Medicine, Department of Diagnostic Radiology, Tokyo (Japan); Nippon Koukan Hospital, Department of Radiology, Kawasaki-shi, Kanagawa (Japan); Jinzaki, Masahiro; Hashimoto, Masahiro; Shiomi, Eisuke; Kuribayashi, Sachio [Keio University School of Medicine, Department of Diagnostic Radiology, Tokyo (Japan); Abe, Takayuki [Keio University School of Medicine, Center for Clinical Research, Tokyo (Japan); Ogawa, Kenji [Nippon Koukan Hospital, Department of Radiology, Kawasaki-shi, Kanagawa (Japan)

    2013-08-15

    To compare the diagnostic performance of tomosynthesis with that of chest radiography for the detection of pulmonary emphysema, using multidetector computed tomography (MDCT) as reference. Forty-eight patients with and 63 without pulmonary emphysema underwent chest MDCT, tomosynthesis and radiography on the same day. Two blinded radiologists independently evaluated the tomosynthesis images and radiographs for the presence of pulmonary emphysema. Axial and coronal MDCT images served as the reference standard and the percentage lung volume with attenuation values of -950 HU or lower (LAA{sub -950}) was evaluated to determine the extent of emphysema. Receiver-operating characteristic (ROC) analysis and generalised estimating equations model were used. ROC analysis revealed significantly better performance (P < 0.0001) of tomosynthesis than radiography for the detection of pulmonary emphysema. The average sensitivity, specificity, positive predictive value and negative predictive value of tomosynthesis were 0.875, 0.968, 0.955 and 0.910, respectively, whereas the values for radiography were 0.479, 0.913, 0.815 and 0.697, respectively. For both tomosynthesis and radiography, the sensitivity increased with increasing LAA{sub -950}. The diagnostic performance of tomosynthesis was significantly superior to that of radiography for the detection of pulmonary emphysema. In both tomosynthesis and radiography, the sensitivity was affected by the LAA{sub -950}. (orig.)

  4. A simple method to retrospectively estimate patient dose-area product for chest tomosynthesis examinations performed using VolumeRAD.

    Science.gov (United States)

    Båth, Magnus; Söderman, Christina; Svalkvist, Angelica

    2014-10-01

    The purpose of the present work was to develop and validate a method of retrospectively estimating the dose-area product (DAP) of a chest tomosynthesis examination performed using the VolumeRAD system (GE Healthcare, Chalfont St. Giles, UK) from digital imaging and communications in medicine (DICOM) data available in the scout image. DICOM data were retrieved for 20 patients undergoing chest tomosynthesis using VolumeRAD. Using information about how the exposure parameters for the tomosynthesis examination are determined by the scout image, a correction factor for the adjustment in field size with projection angle was determined. The correction factor was used to estimate the DAP for 20 additional chest tomosynthesis examinations from DICOM data available in the scout images, which was compared with the actual DAP registered for the projection radiographs acquired during the tomosynthesis examination. A field size correction factor of 0.935 was determined. Applying the developed method using this factor, the average difference between the estimated DAP and the actual DAP was 0.2%, with a standard deviation of 0.8%. However, the difference was not normally distributed and the maximum error was only 1.0%. The validity and reliability of the presented method were thus very high. A method to estimate the DAP of a chest tomosynthesis examination performed using the VolumeRAD system from DICOM data in the scout image was developed and validated. As the scout image normally is the only image connected to the tomosynthesis examination stored in the picture archiving and communication system (PACS) containing dose data, the method may be of value for retrospectively estimating patient dose in clinical use of chest tomosynthesis.

  5. A simple method to retrospectively estimate patient dose-area product for chest tomosynthesis examinations performed using VolumeRAD

    Energy Technology Data Exchange (ETDEWEB)

    Båth, Magnus, E-mail: magnus.bath@vgregion.se; Svalkvist, Angelica [Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg SE-413 45, Sweden and Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg SE-413 45 (Sweden); Söderman, Christina [Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg SE-413 45 (Sweden)

    2014-10-15

    Purpose: The purpose of the present work was to develop and validate a method of retrospectively estimating the dose-area product (DAP) of a chest tomosynthesis examination performed using the VolumeRAD system (GE Healthcare, Chalfont St. Giles, UK) from digital imaging and communications in medicine (DICOM) data available in the scout image. Methods: DICOM data were retrieved for 20 patients undergoing chest tomosynthesis using VolumeRAD. Using information about how the exposure parameters for the tomosynthesis examination are determined by the scout image, a correction factor for the adjustment in field size with projection angle was determined. The correction factor was used to estimate the DAP for 20 additional chest tomosynthesis examinations from DICOM data available in the scout images, which was compared with the actual DAP registered for the projection radiographs acquired during the tomosynthesis examination. Results: A field size correction factor of 0.935 was determined. Applying the developed method using this factor, the average difference between the estimated DAP and the actual DAP was 0.2%, with a standard deviation of 0.8%. However, the difference was not normally distributed and the maximum error was only 1.0%. The validity and reliability of the presented method were thus very high. Conclusions: A method to estimate the DAP of a chest tomosynthesis examination performed using the VolumeRAD system from DICOM data in the scout image was developed and validated. As the scout image normally is the only image connected to the tomosynthesis examination stored in the picture archiving and communication system (PACS) containing dose data, the method may be of value for retrospectively estimating patient dose in clinical use of chest tomosynthesis.

  6. A simple method to retrospectively estimate patient dose-area product for chest tomosynthesis examinations performed using VolumeRAD

    International Nuclear Information System (INIS)

    Båth, Magnus; Svalkvist, Angelica; Söderman, Christina

    2014-01-01

    Purpose: The purpose of the present work was to develop and validate a method of retrospectively estimating the dose-area product (DAP) of a chest tomosynthesis examination performed using the VolumeRAD system (GE Healthcare, Chalfont St. Giles, UK) from digital imaging and communications in medicine (DICOM) data available in the scout image. Methods: DICOM data were retrieved for 20 patients undergoing chest tomosynthesis using VolumeRAD. Using information about how the exposure parameters for the tomosynthesis examination are determined by the scout image, a correction factor for the adjustment in field size with projection angle was determined. The correction factor was used to estimate the DAP for 20 additional chest tomosynthesis examinations from DICOM data available in the scout images, which was compared with the actual DAP registered for the projection radiographs acquired during the tomosynthesis examination. Results: A field size correction factor of 0.935 was determined. Applying the developed method using this factor, the average difference between the estimated DAP and the actual DAP was 0.2%, with a standard deviation of 0.8%. However, the difference was not normally distributed and the maximum error was only 1.0%. The validity and reliability of the presented method were thus very high. Conclusions: A method to estimate the DAP of a chest tomosynthesis examination performed using the VolumeRAD system from DICOM data in the scout image was developed and validated. As the scout image normally is the only image connected to the tomosynthesis examination stored in the picture archiving and communication system (PACS) containing dose data, the method may be of value for retrospectively estimating patient dose in clinical use of chest tomosynthesis

  7. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study

    International Nuclear Information System (INIS)

    Shan, Jing; Lee, Yueh Z; Lu, Jianping; Zhou, Otto; Tucker, Andrew W; Heath, Michael D; Wang, Xiaohui; Foos, David H

    2015-01-01

    Chest tomosynthesis is a low-dose, quasi-3D imaging modality that has been demonstrated to improve the detection sensitivity for small lung nodules, compared to 2D chest radiography. The purpose of this study is to investigate the feasibility and system requirements of stationary chest tomosynthesis (s-DCT) using a spatially distributed carbon nanotube (CNT) x-ray source array, where the projection images are collected by electronically activating individual x-ray focal spots in the source array without mechanical motion of the x-ray source, detector, or the patient. A bench-top system was constructed using an existing CNT field emission source array and a flat panel detector. The tube output, beam quality, focal spot size, system in-plane and in-depth resolution were characterized. Tomosynthesis slices of an anthropomorphic chest phantom were reconstructed for image quality assessment. All 75 CNT sources in the source array were shown to operate reliably at 80 kVp and 5 mA tube current. Source-to-source consistency in the tube current and focal spot size was observed. The incident air kerma reading per mAs was measured as 74.47 uGy mAs −1 at 100 cm. The first half value layer of the beam was 3 mm aluminum. An average focal spot size of 2.5  ×  0.5 mm was measured. The system MTF was measured to be 1.7 cycles mm −1 along the scanning direction, and 3.4 cycles mm −1 perpendicular to the scanning direction. As the angular coverage of 11.6°–34°, the full width at half maximum of the artifact spread function improved greatly from 9.5 to 5.2 mm. The reconstructed tomosynthesis slices clearly show airways and pulmonary vascular structures in the anthropomorphic lung phantom. The results show the CNT source array is capable of generating sufficient dose for chest tomosynthesis imaging. The results obtained so far suggest an s-DCT using a distributed CNT x-ray source array is feasible. (paper)

  8. Evaluation of an improved method of simulating lung nodules in chest tomosynthesis

    International Nuclear Information System (INIS)

    Svalkvist, Angelica; Allansdotter Johnsson, Aase; Vikgren, Jenny

    2012-01-01

    Background Simulated pathology is a valuable complement to clinical images in studies aiming at evaluating an imaging technique. In order for a study using simulated pathology to be valid, it is important that the simulated pathology in a realistic way reflect the characteristics of real pathology. Purpose To perform a thorough evaluation of a nodule simulation method for chest tomosynthesis, comparing the detection rate and appearance of the artificial nodules with those of real nodules in an observer performance experiment. Material and Methods A cohort consisting of 64 patients, 38 patients with a total of 129 identified pulmonary nodules and 26 patients without identified pulmonary nodules, was used in the study. Simulated nodules, matching the real clinically found pulmonary nodules by size, attenuation, and location, were created and randomly inserted into the tomosynthesis section images of the patients. Three thoracic radiologists and one radiology resident reviewed the images in an observer performance study divided into two parts. The first part included nodule detection and the second part included rating of the visual appearance of the nodules. The results were evaluated using a modified receiver-operating characteristic (ROC) analysis. Results The sensitivities for real and simulated nodules were comparable, as the area under the modified ROC curve (AUC) was close to 0.5 for all observers (range, 0.43-0.55). Even though the ratings of visual appearance for real and simulated nodules overlapped considerably, the statistical analysis revealed that the observers to were able to separate simulated nodules from real nodules (AUC values range 0.70-0.74). Conclusion The simulation method can be used to create artificial lung nodules that have similar detectability as real nodules in chest tomosynthesis, although experienced thoracic radiologists may be able to distinguish them from real nodules

  9. Digital chest tomosynthesis: the 2017 updated review of an emerging application

    Science.gov (United States)

    Ferrari, Arianna; Bertolaccini, Luca; Solli, Piergiorgio; Di Salvia, Paola Oriana

    2018-01-01

    Lung cancer is the leading cause of cancer death and second most common cancer among both men and women, but most of them are detected when patients become symptomatic and in late-stage. Chest radiography (CR) is a basic technique for the investigation of lung cancer and has the benefit of convenience and low radiation dose, but detection of malignancy is often difficult. The introduction of computed tomography (CT) for screening has increased the proportion of lung cancer detected but with higher exposure dose and higher costs. Digital chest tomosynthesis (DCT), a tomographic technique, may offer an alternative to CT. DCT uses a conventional radiograph tube, a flat-panel detector, a computer-controlled tube mover and reconstruction algorithms to produce section images. It shows promise in the detection of potentially malignant lung nodules, with higher sensibility than CR, and is emerging as a low-dose and low-cost alternative to CT to improve treatment decisions. In fact, an increasing number of researchers are showing that tomosynthesis could have a role in the detection of lung cancer, in addition to its present role in breast screening. However, DCT offers some limitations, such as limited depth resolution, which may explain the difficulty in detecting pathologies in the subpleural region and the occurrence of artefacts from medical devices. Once solved these limitations and once more studies supporting its use will be available, DCT could become the first-line lung cancer screening tool among patients at considerable risk of lung cancer. PMID:29666814

  10. Comparison study of noise reduction algorithms in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, D.; Kim, Y.-S.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2018-04-01

    Dual energy chest digital tomosynthesis (CDT) is a recently developed medical technique that takes advantage of both tomosynthesis and dual energy X-ray images. However, quantum noise, which occurs in dual energy X-ray images, strongly interferes with diagnosis in various clinical situations. Therefore, noise reduction is necessary in dual energy CDT. In this study, noise-compensating algorithms, including a simple smoothing of high-energy images (SSH) and anti-correlated noise reduction (ACNR), were evaluated in a CDT system. We used a newly developed prototype CDT system and anthropomorphic chest phantom for experimental studies. The resulting images demonstrated that dual energy CDT can selectively image anatomical structures, such as bone and soft tissue. Among the resulting images, those acquired with ACNR showed the best image quality. Both coefficient of variation and contrast to noise ratio (CNR) were the highest in ACNR among the three different dual energy techniques, and the CNR of bone was significantly improved compared to the reconstructed images acquired at a single energy. This study demonstrated the clinical value of dual energy CDT and quantitatively showed that ACNR is the most suitable among the three developed dual energy techniques, including standard log subtraction, SSH, and ACNR.

  11. Multi-Institutional Evaluation of Digital Tomosynthesis, Dual-Energy Radiography, and Conventional Chest Radiography for the Detection and Management of Pulmonary Nodules.

    Science.gov (United States)

    Dobbins, James T; McAdams, H Page; Sabol, John M; Chakraborty, Dev P; Kazerooni, Ella A; Reddy, Gautham P; Vikgren, Jenny; Båth, Magnus

    2017-01-01

    Purpose To conduct a multi-institutional, multireader study to compare the performance of digital tomosynthesis, dual-energy (DE) imaging, and conventional chest radiography for pulmonary nodule detection and management. Materials and Methods In this binational, institutional review board-approved, HIPAA-compliant prospective study, 158 subjects (43 subjects with normal findings) were enrolled at four institutions. Informed consent was obtained prior to enrollment. Subjects underwent chest computed tomography (CT) and imaging with conventional chest radiography (posteroanterior and lateral), DE imaging, and tomosynthesis with a flat-panel imaging device. Three experienced thoracic radiologists identified true locations of nodules (n = 516, 3-20-mm diameters) with CT and recommended case management by using Fleischner Society guidelines. Five other radiologists marked nodules and indicated case management by using images from conventional chest radiography, conventional chest radiography plus DE imaging, tomosynthesis, and tomosynthesis plus DE imaging. Sensitivity, specificity, and overall accuracy were measured by using the free-response receiver operating characteristic method and the receiver operating characteristic method for nodule detection and case management, respectively. Results were further analyzed according to nodule diameter categories (3-4 mm, >4 mm to 6 mm, >6 mm to 8 mm, and >8 mm to 20 mm). Results Maximum lesion localization fraction was higher for tomosynthesis than for conventional chest radiography in all nodule size categories (3.55-fold for all nodules, P chest radiography for all nodules (1.49-fold, P chest radiography, as given by the area under the receiver operating characteristic curve (1.23-fold, P chest radiography or tomosynthesis. Conclusion Tomosynthesis outperformed conventional chest radiography for lung nodule detection and determination of case management; DE imaging did not show significant differences over conventional chest

  12. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    International Nuclear Information System (INIS)

    Zhang, Yakun; Li, Xiang; Segars, W. Paul; Samei, Ehsan

    2014-01-01

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI vol and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose metrics

  13. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yakun [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Li, Xiang [Medical Physics Graduate Program, Department of Physics, Cleveland State University, Cleveland, Ohio 44115 (United States); Segars, W. Paul [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan, E-mail: samei@duke.edu [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Departments of Physics, Biomedical Engineering, and Electrical and Computer Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States)

    2014-02-15

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI{sub vol} and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose

  14. Value of a Computer-aided Detection System Based on Chest Tomosynthesis Imaging for the Detection of Pulmonary Nodules.

    Science.gov (United States)

    Yamada, Yoshitake; Shiomi, Eisuke; Hashimoto, Masahiro; Abe, Takayuki; Matsusako, Masaki; Saida, Yukihisa; Ogawa, Kenji

    2018-04-01

    Purpose To assess the value of a computer-aided detection (CAD) system for the detection of pulmonary nodules on chest tomosynthesis images. Materials and Methods Fifty patients with and 50 without pulmonary nodules underwent both chest tomosynthesis and multidetector computed tomography (CT) on the same day. Fifteen observers (five interns and residents, five chest radiologists, and five abdominal radiologists) independently evaluated tomosynthesis images of 100 patients for the presence of pulmonary nodules in a blinded and randomized manner, first without CAD, then with the inclusion of CAD marks. Multidetector CT images served as the reference standard. Free-response receiver operating characteristic analysis was used for the statistical analysis. Results The pooled diagnostic performance of 15 observers was significantly better with CAD than without CAD (figure of merit [FOM], 0.74 vs 0.71, respectively; P = .02). The average true-positive fraction and false-positive rate per all cases with CAD were 0.56 and 0.26, respectively, whereas those without CAD were 0.47 and 0.20, respectively. Subanalysis showed that the diagnostic performance of interns and residents was significantly better with CAD than without CAD (FOM, 0.70 vs 0.62, respectively; P = .001), whereas for chest radiologists and abdominal radiologists, the FOM with CAD values were greater but not significantly: 0.80 versus 0.78 (P = .38) and 0.74 versus 0.73 (P = .65), respectively. Conclusion CAD significantly improved diagnostic performance in the detection of pulmonary nodules on chest tomosynthesis images for interns and residents, but provided minimal benefit for chest radiologists and abdominal radiologists. © RSNA, 2017 Online supplemental material is available for this article.

  15. A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, D.; Kim, Y.-s.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its

  16. A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis

    International Nuclear Information System (INIS)

    Lee, D.; Choi, S.; Kim, H.-J.; Kim, Y.-S.; Choi, S.; Lee, H.

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its

  17. An analysis of the potential role of chest tomosynthesis in optimising imaging resources in thoracic radiology

    International Nuclear Information System (INIS)

    Petersson, Cecilia; Baath, Magnus; Vikgren, Jenny; Allansdotter Johnsson, Aase

    2016-01-01

    The aim of the study was to investigate the potential role of chest tomosynthesis (CTS) at a tertiary referral centre by exploring to what extent CTS could substitute chest radiography (CXR) and computed tomography (CT). The study comprised 1433 CXR, 523 CT and 216 CTS examinations performed 5 years after the introduction of CTS. For each examination, it was decided if CTS would have been appropriate instead of CXR (CXR cases), if CTS could have replaced the performed CT (CT cases) or if CT would have been performed had CTS not been available (CTS cases). It was judged that (a) CTS had been appropriate in 15 % of the CXR examinations, (b) CTS could have replaced additionally 7 % of the CT examinations and (c) CT would have been carried out in 63 % of the performed CTS examinations, had CTS not been available. In conclusion, the potential role for CTS to substitute other modalities during office hours at a tertiary referral centre may be in the order of 20 and 25 % of performed CXR and chest CT, respectively. (authors)

  18. AN ANALYSIS OF THE POTENTIAL ROLE OF CHEST TOMOSYNTHESIS IN OPTIMISING IMAGING RESOURCES IN THORACIC RADIOLOGY.

    Science.gov (United States)

    Petersson, Cecilia; Båth, Magnus; Vikgren, Jenny; Johnsson, Åse Allansdotter

    2016-06-01

    The aim of the study was to investigate the potential role of chest tomosynthesis (CTS) at a tertiary referral centre by exploring to what extent CTS could substitute chest radiography (CXR) and computed tomography (CT). The study comprised 1433 CXR, 523 CT and 216 CTS examinations performed 5 years after the introduction of CTS. For each examination, it was decided if CTS would have been appropriate instead of CXR (CXR cases), if CTS could have replaced the performed CT (CT cases) or if CT would have been performed had CTS not been available (CTS cases). It was judged that (a) CTS had been appropriate in 15 % of the CXR examinations, (b) CTS could have replaced additionally 7 % of the CT examinations and (c) CT would have been carried out in 63 % of the performed CTS examinations, had CTS not been available. In conclusion, the potential role for CTS to substitute other modalities during office hours at a tertiary referral centre may be in the order of 20 and 25 % of performed CXR and chest CT, respectively. © The Author 2016. Published by Oxford University Press.

  19. AN ANALYSIS OF THE POTENTIAL ROLE OF CHEST TOMOSYNTHESIS IN OPTIMISING IMAGING RESOURCES IN THORACIC RADIOLOGY

    Science.gov (United States)

    Petersson, Cecilia; Båth, Magnus; Vikgren, Jenny; Johnsson, Åse Allansdotter

    2016-01-01

    The aim of the study was to investigate the potential role of chest tomosynthesis (CTS) at a tertiary referral centre by exploring to what extent CTS could substitute chest radiography (CXR) and computed tomography (CT). The study comprised 1433 CXR, 523 CT and 216 CTS examinations performed 5 years after the introduction of CTS. For each examination, it was decided if CTS would have been appropriate instead of CXR (CXR cases), if CTS could have replaced the performed CT (CT cases) or if CT would have been performed had CTS not been available (CTS cases). It was judged that (a) CTS had been appropriate in 15 % of the CXR examinations, (b) CTS could have replaced additionally 7 % of the CT examinations and (c) CT would have been carried out in 63 % of the performed CTS examinations, had CTS not been available. In conclusion, the potential role for CTS to substitute other modalities during office hours at a tertiary referral centre may be in the order of 20 and 25 % of performed CXR and chest CT, respectively. PMID:26979807

  20. A comparison of digital tomosynthesis and chest radiography in evaluating airway lesions using computed tomography as a reference.

    Science.gov (United States)

    Choo, Ji Yung; Lee, Ki Yeol; Yu, Ami; Kim, Je-Hyeong; Lee, Seung Heon; Choi, Jung Won; Kang, Eun-Young; Oh, Yu Whan

    2016-09-01

    To compare the diagnostic performance of digital tomosynthesis (DTS) and chest radiography for detecting airway abnormalities, using computed tomography (CT) as a reference. We evaluated 161 data sets from 149 patients (91 with and 70 without airway abnormalities) who had undergone radiography, DTS, and CT to detect airway problems. Radiographs and DTS were evaluated to localize and score the severity of the airway abnormalities, and to score the image quality using CT as a reference. Receiver operating characteristics (ROC), McNemar's test, weighted kappa, and the paired t-test were used for statistical analysis. The sensitivity of DTS was higher (reader 1, 93.51 %; reader 2, 94.29 %) than chest radiography (68.83 %; 71.43 %) in detecting airway lesions. The diagnostic accuracy of DTS (90.91 %; 94.70 %) was also significantly better than that of radiography (78.03 %; 82.58 %, all p chest radiography (1.83, 2.74; p < 0.05) in the results of both readers. The inter-observer agreement with respect to DTS findings was moderate and superior when compared to radiography findings. DTS is a more accurate and sensitive modality than radiography for detecting airway lesions that are easily obscured by soft tissue structures in the mediastinum. • Digital tomosynthesis offers new diagnostic options for airway lesions. • Digital tomosynthesis is more sensitive and accurate than radiography for airway lesions. • Digital tomosynthesis shows better image quality than radiography. • Assessment of lesion severity, via tomosynthesis is comparable to computed tomography.

  1. Comparison of chest radiography, chest digital tomosynthesis and low dose MDCT to detect small ground-glass opacity nodules: an anthropomorphic chest phantom study

    International Nuclear Information System (INIS)

    Doo, Kyung Won; Kang, Eun-Young; Yong, Hwan Seok; Ham, Soo-Youn; Lee, Ki Yeol; Choo, Ji Yung

    2014-01-01

    The purpose of this study was to evaluate the diagnostic performance of chest radiography (CXR), chest digital tomosynthesis (DT) and low dose multidetector computed tomography (LDCT) for the detection of small pulmonary ground-glass opacity (GGO) nodules, using an anthropomorphic chest phantom. Artificial pulmonary nodules were placed in a phantom and a total of 40 samples of different nodule settings underwent CXR, DT and LDCT. The images were randomly read by three experienced chest radiologists. Free-response receiver-operating characteristics (FROC) were used. The figures of merit for the FROC curves averaged for the three observers were 0.41, 0.37 and 0.76 for CXR, DT and LDCT, respectively. FROC analyses revealed significantly better performance of LDCT over CXR or DT for the detection of GGO nodules (P < 0.05). The difference in detectability between CXR and DT was not statistically significant (P = 0.73). The diagnostic performance of DT for the detection of pulmonary small GGO nodules was not significantly different from that of CXR, but LDCT performed significantly better than both CXR and DT. DT is not a suitable alternative to CT for small GGO nodule detection, and LDCT remains the method of choice for this purpose. (orig.)

  2. Comparison of chest radiography, chest digital tomosynthesis and low dose MDCT to detect small ground-glass opacity nodules: an anthropomorphic chest phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Doo, Kyung Won; Kang, Eun-Young; Yong, Hwan Seok [Korea University Guro Hospital, Korea University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Ham, Soo-Youn [Korea University Anam Hospital, Korea University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Lee, Ki Yeol; Choo, Ji Yung [Korea University Ansan Hospital, Korea University College of Medicine, Department of Radiology, Ansan (Korea, Republic of)

    2014-12-15

    The purpose of this study was to evaluate the diagnostic performance of chest radiography (CXR), chest digital tomosynthesis (DT) and low dose multidetector computed tomography (LDCT) for the detection of small pulmonary ground-glass opacity (GGO) nodules, using an anthropomorphic chest phantom. Artificial pulmonary nodules were placed in a phantom and a total of 40 samples of different nodule settings underwent CXR, DT and LDCT. The images were randomly read by three experienced chest radiologists. Free-response receiver-operating characteristics (FROC) were used. The figures of merit for the FROC curves averaged for the three observers were 0.41, 0.37 and 0.76 for CXR, DT and LDCT, respectively. FROC analyses revealed significantly better performance of LDCT over CXR or DT for the detection of GGO nodules (P < 0.05). The difference in detectability between CXR and DT was not statistically significant (P = 0.73). The diagnostic performance of DT for the detection of pulmonary small GGO nodules was not significantly different from that of CXR, but LDCT performed significantly better than both CXR and DT. DT is not a suitable alternative to CT for small GGO nodule detection, and LDCT remains the method of choice for this purpose. (orig.)

  3. Diagnostic impact of digital tomosynthesis in oncologic patients with suspected pulmonary lesions on chest radiography.

    Science.gov (United States)

    Quaia, Emilio; Baratella, Elisa; Poillucci, Gabriele; Gennari, Antonio Giulio; Cova, Maria Assunta

    2016-08-01

    To assess the actual diagnostic impact of digital tomosynthesis (DTS) in oncologic patients with suspected pulmonary lesions on chest radiography (CXR). A total of 237 patients (135 male, 102 female; age, 70.8 ± 10.4 years) with a known primary malignancy and suspected pulmonary lesion(s) on CXR and who underwent DTS were retrospectively identified. Two radiologists (experience, 10 and 15 years) analysed in consensus CXR and DTS images and proposed a diagnosis according to a confidence score: 1 or 2 = definitely or probably benign pulmonary or extrapulmonary lesion, or pseudolesion; 3 = indeterminate; 4 or 5 = probably or definitely pulmonary lesion. DTS findings were proven by CT (n = 114 patients), CXR during follow-up (n = 105) or histology (n = 18). Final diagnoses included 77 pulmonary opacities, 26 pulmonary scars, 12 pleural lesions and 122 pulmonary pseudolesions. DTS vs CXR presented a higher (P chest radiography (CXR) in oncologic patients. • DTS improves confidence of CXR in oncologic patients. • DTS allowed avoidance of CT in about 50 % of oncologic patients.

  4. Quantitative evaluation of anatomical noise in chest digital tomosynthesis, digital radiography, and computed tomography

    International Nuclear Information System (INIS)

    Lee, D.; Kim, D.; Choi, S.; Kim, H.-J.; Choi, S.; Lee, H.

    2017-01-01

    Lung cancer is currently the worldwide leading cause of death from cancer. Thus, detection of lung cancer at its early stages is critical for improving the survival rate of patients. Chest digital tomosynthesis (CDT) is a recently developed imaging modality, combining many advantages of digital radiography (DR) and computed tomography (CT). This method has the potential to be widely used in the clinical setting. In this study, we introduce a developed CDT R/F system and compare its image quality with those of DR and CT, especially with respect to anatomical noise and lung nodule conspicuity, for LUNGMAN phantoms. The developed CDT R/F system consists of a CsI scintillator flat panel detector, X-ray tube, and tomosynthesis data acquisition geometry. For CDT R/F imaging, 41 projections were acquired at different angles, over the ± 20° angular range, in a linear translation geometry. To evaluate the clinical effectiveness of the CDT R/F system, the acquired images were compared with CT (Philips brilliance CT 64, Philips healthcare, U.S.) and DR (ADR-M, LISTEM, Korea) phantom images in terms of the anatomical noise power spectrum (aNPS). DR images exhibited low conspicuity for a small-size lung nodule, while CDT R/F and CT exhibited relatively high sensitivity for all lung nodule sizes. The aNPS of the CDT R/F system was better than that of DR, by resolving anatomical overlapping problems. In conclusion, the developed CDT R/F system is likely to contribute to early diagnosis of lung cancer, while requiring a relatively low patient dose, compared with CT.

  5. Quantitative evaluation of anatomical noise in chest digital tomosynthesis, digital radiography, and computed tomography

    Science.gov (United States)

    Lee, D.; Choi, S.; Lee, H.; Kim, D.; Choi, S.; Kim, H.-J.

    2017-04-01

    Lung cancer is currently the worldwide leading cause of death from cancer. Thus, detection of lung cancer at its early stages is critical for improving the survival rate of patients. Chest digital tomosynthesis (CDT) is a recently developed imaging modality, combining many advantages of digital radiography (DR) and computed tomography (CT). This method has the potential to be widely used in the clinical setting. In this study, we introduce a developed CDT R/F system and compare its image quality with those of DR and CT, especially with respect to anatomical noise and lung nodule conspicuity, for LUNGMAN phantoms. The developed CDT R/F system consists of a CsI scintillator flat panel detector, X-ray tube, and tomosynthesis data acquisition geometry. For CDT R/F imaging, 41 projections were acquired at different angles, over the ± 20° angular range, in a linear translation geometry. To evaluate the clinical effectiveness of the CDT R/F system, the acquired images were compared with CT (Philips brilliance CT 64, Philips healthcare, U.S.) and DR (ADR-M, LISTEM, Korea) phantom images in terms of the anatomical noise power spectrum (aNPS). DR images exhibited low conspicuity for a small-size lung nodule, while CDT R/F and CT exhibited relatively high sensitivity for all lung nodule sizes. The aNPS of the CDT R/F system was better than that of DR, by resolving anatomical overlapping problems. In conclusion, the developed CDT R/F system is likely to contribute to early diagnosis of lung cancer, while requiring a relatively low patient dose, compared with CT.

  6. Comparison of image quality and effective dose by additional filtration on digital chest tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kye Sun [Dept. of Dignostic Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Sung Chul [Dept. of Radiological Science, Gachon University, Sungnam (Korea, Republic of)

    2015-12-15

    The purpose of this study is to suggest proper additional filtration by comparisons patient dose and image quality among additional filters in digital chest tomosynthesis (DTS). We measured the effective dose, dose area product (DAP) by changing thickness of Cu, Al and Ni filter to compare image quality by CD curve and SNR, CNR. Cu, Al and Ni exposure dose were similar thickness 0.3 mm, 3 mm and 0.3 mm respectively. The exposure dose using filter was decreased average about 33.1% than non filter. The DAP value of 0.3 mm Ni were decreased 72.9% compared to non filter and the lowest dose among 3 filter. The effective dose of 0.3 mm Ni were decreased 48% compared to 0.102 mSv effective dose of non filter. At the result of comparison of image quality through CD curve there were similar aspect graph among Cu, Al and Ni. SNR was decreased average 19.07%, CNR was average decreased 18.17% using 3 filters. In conclusion, Ni filtration was considered to be most suitable when considered comprehensive thickness, character, sort of filter, dose reduction and image quality evaluation in DTS.

  7. Comparison of Digital Tomosynthesis and Chest Radiography for the Detection of Noncalcified Pulmonary and Hilar Lesions.

    Science.gov (United States)

    Galea, Angela; Adlan, Tarig; Gay, David; Roobottom, Carl; Dubbins, Paul; Riordan, Richard

    2015-09-01

    The aim of this study was to compare the sensitivity and specificity of chest digital tomosynthesis (DTS) with chest radiography (CXR) for the detection of noncalcified pulmonary nodules and hilar lesions using computed tomography (CT) as the reference standard. A total of 78 patients with suspected noncalcified pulmonary lesions on CXR were included in the study. Two radiologists, blinded to the history and CT, analyzed the CXR and the DTS images (separately), whereas a third radiologist analyzed the CXR and DTS images together. Noncalcified intrapulmonary nodules and hilar lesions were recorded for analysis. The interobserver agreement for CXR and DTS was assessed, and the time taken to report the images was recorded. A total of 202 lesions were recorded in 78 patients. There were 111 true lesions confirmed on CT in 53 patients; in 25 patients subsequent CT excluded a lesion. The overall sensitivity was 32% for CXR and 49% for DTS. This improved to 54% when the posteroanterior CXR and DTS were reviewed together (CXR-DTS). The overall specificities for CXR, DTS, and CXR-DTS were 49%, 96%, and 98%, respectively. There were 56 suspected hilar lesions with subgroup sensitivities of 76% for CXR, 65% for DTS, and 76% for CXR-DTS. The specificity for hilar lesions was 59%, 92%, and 97% for CXR, DTS, and CXR-DTS, respectively. DTS significantly improves the detectability of noncalcified nodules when compared with and when used in combination with CXR. The specificity and interobserver agreement of DTS in the diagnosis of suspected noncalcified pulmonary nodules and hilar lesions are significantly better than those of CXR and approaches those of CT.

  8. Investigation of various reconstruction parameters for algebraic reconstruction technique in a newly developed chest digital tomosynthesis

    International Nuclear Information System (INIS)

    Lee, H.; Choi, S.; Kim, Y.-S.; Park, H.-S.; Seo, C.-W.; Kim, H.-J.; Lee, D.; Lee, Y.

    2017-01-01

    Chest digital tomosynthesis (CDT) is a promising new modality that provides 3D information by reconstructing limited projection views. CDT systems have been developed to improve the limitations of conventional radiography such as image degradation and low sensitivity. However, the development of reconstruction methods is challenging because of the limited projection views within various angular ranges. Optimization of reconstruction parameters for various reconsturction methods in CDT system also is needed. The purpose of this study was to investigate the feasibility of algebraic reconstruction technique (ART) method, and to evaluate the effect of the reconstruction parameters for our newly developed CDT system. We designed ART method with 41 projection views over an angular range of ±20°. To investigate the effect of reconstruction parameters, we measured the contrast-to-noise ratio (CNR), artifact spread function (ASF), and quality factor (QF) using LUNGMAN phantom included tumors. We found that the proper choice of reconstruction parameters such as relaxation parameter, initial guess, and number of iterations improved the quality of reconstructed images from the same projection views. Optimal values of ART relaxation parameter with uniform (UI) and back-projection (BP) initial guesses were 0.4 and 0.6, respectively. BP initial guess improved image quality in comparison with UI initial guess, in terms of providing a higher CNR and QF values with a faster speed. CNR and QF values improved with increasing number of iteration. Particularly, ART method with BP initial guess (when β = 0.6) after 3-terations provide satisfactory reconstructed image. In conclusion, the use of ART method with proper reconstruction parameters provided better image quality than FBP method as well as conventional radiography. These results indicated that the ART method with optimal reconstruction parameters could improve image quality for nodule detection using the CDT system.

  9. Investigation of various reconstruction parameters for algebraic reconstruction technique in a newly developed chest digital tomosynthesis

    Science.gov (United States)

    Lee, H.; Choi, S.; Lee, D.; Kim, Y.-s.; Park, H.-S.; Lee, Y.; Seo, C.-W.; Kim, H.-J.

    2017-08-01

    Chest digital tomosynthesis (CDT) is a promising new modality that provides 3D information by reconstructing limited projection views. CDT systems have been developed to improve the limitations of conventional radiography such as image degradation and low sensitivity. However, the development of reconstruction methods is challenging because of the limited projection views within various angular ranges. Optimization of reconstruction parameters for various reconsturction methods in CDT system also is needed. The purpose of this study was to investigate the feasibility of algebraic reconstruction technique (ART) method, and to evaluate the effect of the reconstruction parameters for our newly developed CDT system. We designed ART method with 41 projection views over an angular range of ±20°. To investigate the effect of reconstruction parameters, we measured the contrast-to-noise ratio (CNR), artifact spread function (ASF), and quality factor (QF) using LUNGMAN phantom included tumors. We found that the proper choice of reconstruction parameters such as relaxation parameter, initial guess, and number of iterations improved the quality of reconstructed images from the same projection views. Optimal values of ART relaxation parameter with uniform (UI) and back-projection (BP) initial guesses were 0.4 and 0.6, respectively. BP initial guess improved image quality in comparison with UI initial guess, in terms of providing a higher CNR and QF values with a faster speed. CNR and QF values improved with increasing number of iteration. Particularly, ART method with BP initial guess (when β = 0.6) after 3-terations provide satisfactory reconstructed image. In conclusion, the use of ART method with proper reconstruction parameters provided better image quality than FBP method as well as conventional radiography. These results indicated that the ART method with optimal reconstruction parameters could improve image quality for nodule detection using the CDT system.

  10. A dual-view digital tomosynthesis imaging technique for improved chest imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C., E-mail: cshaw@mdanderson.org [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054 (United States)

    2015-09-15

    Purpose: Digital tomosynthesis (DTS) has been shown to be useful for reducing the overlapping of abnormalities with anatomical structures at various depth levels along the posterior–anterior (PA) direction in chest radiography. However, DTS provides crude three-dimensional (3D) images that have poor resolution in the lateral view and can only be displayed with reasonable quality in the PA view. Furthermore, the spillover of high-contrast objects from off-fulcrum planes generates artifacts that may impede the diagnostic use of the DTS images. In this paper, the authors describe and demonstrate the use of a dual-view DTS technique to improve the accuracy of the reconstructed volume image data for more accurate rendition of the anatomy and slice images with improved resolution and reduced artifacts, thus allowing the 3D image data to be viewed in views other than the PA view. Methods: With the dual-view DTS technique, limited angle scans are performed and projection images are acquired in two orthogonal views: PA and lateral. The dual-view projection data are used together to reconstruct 3D images using the maximum likelihood expectation maximization iterative algorithm. In this study, projection images were simulated or experimentally acquired over 360° using the scanning geometry for cone beam computed tomography (CBCT). While all projections were used to reconstruct CBCT images, selected projections were extracted and used to reconstruct single- and dual-view DTS images for comparison with the CBCT images. For realistic demonstration and comparison, a digital chest phantom derived from clinical CT images was used for the simulation study. An anthropomorphic chest phantom was imaged for the experimental study. The resultant dual-view DTS images were visually compared with the single-view DTS images and CBCT images for the presence of image artifacts and accuracy of CT numbers and anatomy and quantitatively compared with root-mean-square-deviation (RMSD) values

  11. Comparison of digital tomosynthesis and chest radiography for the detection of pulmonary nodules: systematic review and meta-analysis.

    Science.gov (United States)

    Kim, Jun H; Lee, Kyung H; Kim, Kyoung-Tae; Kim, Hyun J; Ahn, Hyeong S; Kim, Yeo J; Lee, Ha Y; Jeon, Yong S

    2016-12-01

    To compare the diagnostic accuracy of digital tomosynthesis (DTS) with that of chest radiography for the detection of pulmonary nodules by meta-analysis. A systematic literature search was performed to identify relevant original studies from 1 January 1 1976 to 31 August 31 2016. The quality of included studies was assessed by quality assessment of diagnostic accuracy studies-2. Per-patient data were used to calculate the sensitivity and specificity and per-lesion data were used to calculate the detection rate. Summary receiver-operating characteristic curves were drawn for pulmonary nodule detection. 16 studies met the inclusion criteria. 1017 patients on a per-patient basis and 2159 lesions on a per-lesion basis from 16 eligible studies were evaluated. The pooled patient-based sensitivity of DTS was 0.85 [95% confidence interval (CI) 0.83-0.88] and the specificity was 0.95 (0.93-0.96). The pooled sensitivity and specificity of chest radiography were 0.47 (0.44-0.51) and 0.37 (0.34-0.40), respectively. The per-lesion detection rate was 2.90 (95% CI 2.63-3.19). DTS has higher diagnostic accuracy than chest radiography for detection of pulmonary nodules. Chest radiography has low sensitivity but similar specificity, comparable with that of DTS. Advances in knowledge: DTS has higher diagnostic accuracy than chest radiography for the detection of pulmonary nodules.

  12. Effect of radiation dose level on accuracy and precision of manual size measurements in chest tomosynthesis evaluated using simulated pulmonary nodules

    International Nuclear Information System (INIS)

    Soederman, Christina; Allansdotter Johnsson, Aase; Vikgren, Jenny; Rossi Norrlund, Rauni; Molnar, David; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus

    2016-01-01

    The aim of the present study was to investigate the dependency of the accuracy and precision of nodule diameter measurements on the radiation dose level in chest tomosynthesis. Artificial ellipsoid-shaped nodules with known dimensions were inserted in clinical chest tomosynthesis images. Noise was added to the images in order to simulate radiation dose levels corresponding to effective doses for a standard-sized patient of 0.06 and 0.04 mSv. These levels were compared with the original dose level, corresponding to an effective dose of 0.12 mSv for a standard-sized patient. Four thoracic radiologists measured the longest diameter of the nodules. The study was restricted to nodules located in high-dose areas of the tomosynthesis projection radiographs. A significant decrease of the measurement accuracy and intra-observer variability was seen for the lowest dose level for a subset of the observers. No significant effect of dose level on the interobserver variability was found. The number of non-measurable small nodules (≤5 mm) was higher for the two lowest dose levels compared with the original dose level. In conclusion, for pulmonary nodules at positions in the lung corresponding to locations in high-dose areas of the projection radiographs, using a radiation dose level resulting in an effective dose of 0.06 mSv to a standard-sized patient may be possible in chest tomosynthesis without affecting the accuracy and precision of nodule diameter measurements to any large extent. However, an increasing number of non-measurable small nodules (≤5 mm) with decreasing radiation dose may raise some concerns regarding an applied general dose reduction for chest tomosynthesis examinations in the clinical praxis. (authors)

  13. A comparison of digital tomosynthesis and chest radiography in evaluating airway lesions using computed tomography as a reference

    International Nuclear Information System (INIS)

    Choo, Ji Yung; Lee, Ki Yeol; Choi, Jung Won; Yu, Ami; Kim, Je-Hyeong; Lee, Seung Heon; Kang, Eun-Young; Oh, Yu Whan

    2016-01-01

    To compare the diagnostic performance of digital tomosynthesis (DTS) and chest radiography for detecting airway abnormalities, using computed tomography (CT) as a reference. We evaluated 161 data sets from 149 patients (91 with and 70 without airway abnormalities) who had undergone radiography, DTS, and CT to detect airway problems. Radiographs and DTS were evaluated to localize and score the severity of the airway abnormalities, and to score the image quality using CT as a reference. Receiver operating characteristics (ROC), McNemar's test, weighted kappa, and the paired t-test were used for statistical analysis. The sensitivity of DTS was higher (reader 1, 93.51 %; reader 2, 94.29 %) than chest radiography (68.83 %; 71.43 %) in detecting airway lesions. The diagnostic accuracy of DTS (90.91 %; 94.70 %) was also significantly better than that of radiography (78.03 %; 82.58 %, all p < 0.05). DTS image quality was significantly better than chest radiography (1.83, 2.74; p < 0.05) in the results of both readers. The inter-observer agreement with respect to DTS findings was moderate and superior when compared to radiography findings. DTS is a more accurate and sensitive modality than radiography for detecting airway lesions that are easily obscured by soft tissue structures in the mediastinum. (orig.)

  14. Development of a prototype chest digital tomosynthesis (CDT) R/F system with fast image reconstruction using graphics processing unit (GPU) programming

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sunghoon, E-mail: choi.sh@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Lee, Seungwan [Department of Radiological Science, College of Medical Science, Konyang University, 158 Gwanjeodong-ro, Daejeon, 308-812 (Korea, Republic of); Lee, Haenghwa [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Lee, Donghoon; Choi, Seungyeon [Department of Radiation Convergence Engineering, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Shin, Jungwook [LISTEM Corporation, 94 Donghwagongdan-ro, Munmak-eup, Wonju (Korea, Republic of); Seo, Chang-Woo [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Department of Radiation Convergence Engineering, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of)

    2017-03-11

    Digital tomosynthesis offers the advantage of low radiation doses compared to conventional computed tomography (CT) by utilizing small numbers of projections (~80) acquired over a limited angular range. It produces 3D volumetric data, although there are artifacts due to incomplete sampling. Based upon these characteristics, we developed a prototype digital tomosynthesis R/F system for applications in chest imaging. Our prototype chest digital tomosynthesis (CDT) R/F system contains an X-ray tube with high power R/F pulse generator, flat-panel detector, R/F table, electromechanical radiographic subsystems including a precise motor controller, and a reconstruction server. For image reconstruction, users select between analytic and iterative reconstruction methods. Our reconstructed images of Catphan700 and LUNGMAN phantoms clearly and rapidly described the internal structures of phantoms using graphics processing unit (GPU) programming. Contrast-to-noise ratio (CNR) values of the CTP682 module of Catphan700 were higher in images using a simultaneous algebraic reconstruction technique (SART) than in those using filtered back-projection (FBP) for all materials by factors of 2.60, 3.78, 5.50, 2.30, 3.70, and 2.52 for air, lung foam, low density polyethylene (LDPE), Delrin{sup ®} (acetal homopolymer resin), bone 50% (hydroxyapatite), and Teflon, respectively. Total elapsed times for producing 3D volume were 2.92 s and 86.29 s on average for FBP and SART (20 iterations), respectively. The times required for reconstruction were clinically feasible. Moreover, the total radiation dose from our system (5.68 mGy) was lower than that of conventional chest CT scan. Consequently, our prototype tomosynthesis R/F system represents an important advance in digital tomosynthesis applications.

  15. Evaluation of a new system for chest tomosynthesis: aspects of image quality of different protocols determined using an anthropomorphic phantom

    Science.gov (United States)

    Sundin, A; Aspelin, P; Båth, M; Nyrén, S

    2015-01-01

    Objective: To compare the image quality obtained with the different protocols in a new chest digital tomosynthesis (DTS) system. Methods: A chest phantom was imaged with chest X-ray equipment with DTS. 10 protocols were used, and for each protocol, nine acquisitions were performed. Four observers visually rated the quality of the reconstructed section images according to pre-defined quality criteria in four different classes. The data were analysed with visual grading characteristics (VGC) analysis, using the vendor-recommended protocol [12-s acquisition time, source-to-image distance (SID) 180 cm] as reference, and the area under the VGC curve (AUCVGC) was determined for each protocol and class of criteria. Results: Protocols with a smaller swing angle resulted in a lower image quality for the classes of criteria “disturbance” and “homogeneity in nodule” but a higher image quality for the class “structure”. The class “demarcation” showed little dependency on the swing angle. All protocols but one (6.3 s, SID 130 cm) obtained an AUCVGC significantly <0.5 (indicating lower quality than reference) for at least one class of criteria. Conclusion: The study indicates that the DTS protocol with 6.3 s yields image quality similar to that obtained with the vendor-recommended protocol (12 s) but with the clinically important advantage for patients with respiratory impairment of a shorter acquisition time. Advances in knowledge: The study demonstrates that the image quality may be strongly affected by the choice of protocol and that the vendor-recommended protocol may not be optimal. PMID:26118300

  16. Diagnostic imaging costs before and after digital tomosynthesis implementation in patient management after detection of suspected thoracic lesions on chest radiography.

    Science.gov (United States)

    Quaia, Emilio; Grisi, Guido; Baratella, Elisa; Cuttin, Roberto; Poillucci, Gabriele; Kus, Sara; Cova, Maria Assunta

    2014-02-01

    To evaluate diagnostic imaging costs before and after DTS implementation in patients with suspected thoracic lesions on CXR. Four hundred sixty-five patients (263 male, 202 female; age, 72.47 ± 11.33 years) with suspected thoracic lesion(s) after CXR underwent DTS. Each patient underwent CT when a pulmonary non-calcified lesion was identified by DTS while CT was not performed when a benign pulmonary or extrapulmonary lesion or pseudolesion was identified. The average per-patient imaging cost was calculated by normalising the costs before and after DTS implementation. In 229/465 patients who underwent DTS after suspicious CXR, DTS showed 193 pulmonary lesions and 36 pleural lesions, while in the remaining 236/465 patients, lesions were ruled out as pseudolesions of CXR. Chest CT examination was performed in 127/465 (27 %) patients while in the remaining 338/465 patients (73 %) CXR doubtful findings were resolved by DTS. The average per-patient costs of CXR, DTS and CT were 15.15, 41.55 and 113.66. DTS allowed an annual cost saving of 8,090.2 considering unenhanced CT and 19,298.12 considering contrast-enhanced CT. Considering a DTS reimbursement rate of 62.7 the break even point corresponds to 479 DTS examinations. Per-patient diagnostic imaging costs decreased after DTS implementation in patients with suspected thoracic lesions. • Digital tomosynthesis improves the diagnostic accuracy and confidence in chest radiography • Digital tomosynthesis reduces the need for CT for a suspected pulmonary lesion • Digital tomosynthesis requires a dose level equivalent to that of around two chest radiographies • Digital tomosynthesis produces a significant per-patient saving in diagnostic imaging costs.

  17. Analysis of the impact of digital tomosynthesis on the radiological investigation of patients with suspected pulmonary lesions on chest radiography

    Energy Technology Data Exchange (ETDEWEB)

    Quaia, Emilio; Baratella, Elisa; Cernic, Stefano; Lorusso, Arianna; Casagrande, Federica; Cioffi, Vincenzo; Cova, Maria Assunta [University of Trieste (Italy), Department of Radiology, Cattinara Hospital, Trieste (Italy)

    2012-09-15

    To assess the impact of digital tomosynthesis (DTS) on the radiological investigation of patients with suspected pulmonary lesions on chest radiography (CXR). Three hundred thirty-nine patients (200 male; age, 71.19 {+-} 11.9 years) with suspected pulmonary lesion(s) on CXR underwent DTS. Two readers prospectively analysed CXR and DTS images, and recorded their diagnostic confidence: 1 or 2 = definite or probable benign lesion or pseudolesion deserving no further diagnostic workup; 3 = indeterminate; 4 or 5 = probable or definite pulmonary lesion deserving further diagnostic workup by computed tomography (CT). Imaging follow-up by CT (n = 76 patients), CXR (n = 256) or histology (n = 7) was the reference standard. DTS resolved doubtful CXR findings in 256/339 (76 %) patients, while 83/339 (24 %) patients proceeded to CT. The mean interpretation time for DTS (mean {+-} SD, 220 {+-} 40 s) was higher (P < 0.05; Wilcoxon test) than for CXR (110 {+-} 30 s), but lower than CT (600 {+-} 150 s). Mean effective dose was 0.06 mSv (range 0.03-0.1 mSv) for CXR, 0.107 mSv (range 0.094-0.12 mSv) for DTS, and 3 mSv (range 2-4 mSv) for CT. DTS avoided the need for CT in about three-quarters of patients with a slight increase in the interpretation time and effective dose compared to CXR. (orig.)

  18. The value of digital tomosynthesis of the chest as a problem-solving tool for suspected pulmonary nodules and hilar lesions detected on chest radiography.

    Science.gov (United States)

    Galea, Angela; Dubbins, Paul; Riordan, Richard; Adlan, Tarig; Roobottom, Carl; Gay, David

    2015-05-01

    To assess the capability of digital tomosynthesis (DTS) of the chest compared to a postero-anterior (PA) and lateral chest radiograph (CXR) in the diagnosis of suspected but unconfirmed pulmonary nodules and hilar lesions detected on a CXR. Computed tomography (CT) was used as the reference standard. 78 patients with suspected non-calcified pulmonary nodules or hilar lesions on their CXR were included in the study. Two radiologists, blinded to the history and CT, prospectively analysed the CXR (PA and lateral) and the DTS images using a picture archiving and communication workstation and were asked to designate one of two outcomes: true intrapulmonary lesion or false intrapulmonary lesion. A CT of the chest performed within 4 weeks of the CXR was used as the reference standard. Inter-observer agreement and time to report the modalities were calculated for CXR and DTS. There were 34 true lesions confirmed on CT, 12 were hilar lesions and 22 were peripheral nodules. Of the 44 false lesions, 37 lesions were artefactual or due to composite shadow and 7 lesions were real but extrapulmonary simulating non-calcified intrapulmonary lesions. The PA and lateral CXR correctly classified 39/78 (50%) of the lesions, this improved to 75/78 (96%) with DTS. The sensitivity and specificity was 0.65 and 0.39 for CXR and 0.91 and 1 for DTS. Based on the DTS images, readers correctly classified all the false lesions but missed 3/34 true lesions. Two of the missed lesions were hilar in location and one was a peripheral nodule. All three missed lesions were incorrectly classified on DTS as composite shadow. DTS improves diagnostic confidence when compared to a repeat PA and lateral CXR in the diagnosis of both suspected hilar lesions and pulmonary nodules detected on CXR. DTS is able to exclude most peripheral pulmonary nodules but caution and further studies are needed to assess its ability to exclude hilar lesions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. The value of digital tomosynthesis of the chest as a problem-solving tool for suspected pulmonary nodules and hilar lesions detected on chest radiography

    Energy Technology Data Exchange (ETDEWEB)

    Galea, Angela, E-mail: galeaangie@gmail.com [Peninsula Radiology Academy, William Prance Road, Plymouth PL65WR (United Kingdom); Dubbins, Paul, E-mail: Paul.dubbins@nhs.net [Plymouth Hospital NHS Trust, Plymouth PL68DH (United Kingdom); Riordan, Richard, E-mail: richardriordan@nhs.net [Plymouth Hospital NHS Trust, Plymouth PL68DH (United Kingdom); Adlan, Tarig, E-mail: tarig.adlan@nhs.net [Plymouth Hospital NHS Trust, Plymouth PL68DH (United Kingdom); Roobottom, Carl, E-mail: carl.roobotoom@nhs.net [Plymouth Hospital NHS Trust, Plymouth PL68DH (United Kingdom); Gay, David, E-mail: davegay@nhs.net [Plymouth Hospital NHS Trust, Plymouth PL68DH (United Kingdom)

    2015-05-15

    Graphical abstract: When compared to CXR, DTS has: • Superior resolution • Better assessment of location in the AP dimension (better at locating a pleural or intrapulmonary lesion) • Better characterisation (better at distinguishing between calcified plaque and soft tissue) • Removes composite artefact caused by overlying anatomical structures (such as the ribs or pulmonary vessels) DTS has improved sensitivity, specificity and accuracy when compared to CXR. - Highlights: • DTS is a type of limited angle tomography. Sixty coronal reconstructed images of the chest are produced that combine the superior resolution of radiography with the tomographic benefits of computed tomography. • The sensitivity for detecting a suspected lung lesions is 0.65 with CXR and 0.91 for DTS. • The high specificity of DTS (1) and the high negative predictive value (0.94) are similar to CT and suggest that if the DTS is normal patients do not need further assessment with CT with significant potential dose savings. • 50% of suspected lesions were resolved with CXR, this improved to 96% with DTS. - Abstract: Objectives: To assess the capability of digital tomosynthesis (DTS) of the chest compared to a postero-anterior (PA) and lateral chest radiograph (CXR) in the diagnosis of suspected but unconfirmed pulmonary nodules and hilar lesions detected on a CXR. Computed tomography (CT) was used as the reference standard. Materials and method: 78 patients with suspected non-calcified pulmonary nodules or hilar lesions on their CXR were included in the study. Two radiologists, blinded to the history and CT, prospectively analysed the CXR (PA and lateral) and the DTS images using a picture archiving and communication workstation and were asked to designate one of two outcomes: true intrapulmonary lesion or false intrapulmonary lesion. A CT of the chest performed within 4 weeks of the CXR was used as the reference standard. Inter-observer agreement and time to report the modalities

  20. The value of digital tomosynthesis of the chest as a problem-solving tool for suspected pulmonary nodules and hilar lesions detected on chest radiography

    International Nuclear Information System (INIS)

    Galea, Angela; Dubbins, Paul; Riordan, Richard; Adlan, Tarig; Roobottom, Carl; Gay, David

    2015-01-01

    Graphical abstract: When compared to CXR, DTS has: • Superior resolution • Better assessment of location in the AP dimension (better at locating a pleural or intrapulmonary lesion) • Better characterisation (better at distinguishing between calcified plaque and soft tissue) • Removes composite artefact caused by overlying anatomical structures (such as the ribs or pulmonary vessels) DTS has improved sensitivity, specificity and accuracy when compared to CXR. - Highlights: • DTS is a type of limited angle tomography. Sixty coronal reconstructed images of the chest are produced that combine the superior resolution of radiography with the tomographic benefits of computed tomography. • The sensitivity for detecting a suspected lung lesions is 0.65 with CXR and 0.91 for DTS. • The high specificity of DTS (1) and the high negative predictive value (0.94) are similar to CT and suggest that if the DTS is normal patients do not need further assessment with CT with significant potential dose savings. • 50% of suspected lesions were resolved with CXR, this improved to 96% with DTS. - Abstract: Objectives: To assess the capability of digital tomosynthesis (DTS) of the chest compared to a postero-anterior (PA) and lateral chest radiograph (CXR) in the diagnosis of suspected but unconfirmed pulmonary nodules and hilar lesions detected on a CXR. Computed tomography (CT) was used as the reference standard. Materials and method: 78 patients with suspected non-calcified pulmonary nodules or hilar lesions on their CXR were included in the study. Two radiologists, blinded to the history and CT, prospectively analysed the CXR (PA and lateral) and the DTS images using a picture archiving and communication workstation and were asked to designate one of two outcomes: true intrapulmonary lesion or false intrapulmonary lesion. A CT of the chest performed within 4 weeks of the CXR was used as the reference standard. Inter-observer agreement and time to report the modalities

  1. Digital Mammography Tomosynthesis

    International Nuclear Information System (INIS)

    Gergov, I.; Alexov, G.; Rusonov, K.

    2017-01-01

    Siemens MAMMOMAT Inspiration with Tomosynthesis enhances the diagnostic precision in mammographic screening. The apparatus has a wide-angle tomosynthesis up to 50 degrees. The Siemens breast augmentation algorithm reconstructs multiple two-dimensional breast images into three-dimensional images at the lowest doses to help detect tumors hidden from the overlapping chest tissue, allowing for a more accurate diagnosis than standard 2-dimensional digital mammography, and reducing the number of false positive results. 3D digital tomosynthesis improves the precision of detecting and diagnosing a larger number of expansive lesions, ensures better morphological mass analysis and architectural distortion, and detecting calcifications by adding digital breast tomosynthesis to the traditional two-dimensional digital mammogram of the patient. In this way, it solves the problem of overlapping parenchyma, reduces the number of unnecessary biopsies from questionable sonomammographic findings, and the need for stressful repeating procedures, which usually contributes to both better patient outcomes and cost saving. [bg

  2. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.

    Science.gov (United States)

    Choi, Sunghoon; Lee, Haenghwa; Lee, Donghoon; Choi, Seungyeon; Lee, Chang-Lae; Kwon, Woocheol; Shin, Jungwook; Seo, Chang-Woo; Kim, Hee-Joung

    2018-05-01

    This work describes the hardware and software developments of a prototype chest digital tomosynthesis (CDT) R/F system. The purpose of this study was to validate the developed system for its possible clinical application on low-dose chest tomosynthesis imaging. The prototype CDT R/F system was operated by carefully controlling the electromechanical subsystems through a synchronized interface. Once a command signal was delivered by the user, a tomosynthesis sweep started to acquire 81 projection views (PVs) in a limited angular range of ±20°. Among the full projection dataset of 81 images, several sets of 21 (quarter view) and 41 (half view) images with equally spaced angle steps were selected to represent a sparse view condition. GPU-accelerated and total-variation (TV) regularization strategy-based compressed sensing (CS) image reconstruction was implemented. The imaged objects were a flat-field using a copper filter to measure the noise power spectrum (NPS), a Catphan ® CTP682 quality assurance (QA) phantom to measure a task-based modulation transfer function (MTF T ask ) of three different cylinders' edge, and an anthropomorphic chest phantom with inserted lung nodules. The authors also verified the accelerated computing power over CPU programming by checking the elapsed time required for the CS method. The resultant absorbed and effective doses that were delivered to the chest phantom from two-view digital radiographic projections, helical computed tomography (CT), and the prototype CDT system were compared. The prototype CDT system was successfully operated, showing little geometric error with fast rise and fall times of R/F x-ray pulse less than 2 and 10 ms, respectively. The in-plane NPS presented essential symmetric patterns as predicted by the central slice theorem. The NPS images from 21 PVs were provided quite different pattern against 41 and 81 PVs due to aliased noise. The voxel variance values which summed all NPS intensities were inversely

  3. Technical innovation: digital tomosynthesis of the hip following intra-articular administration of contrast

    International Nuclear Information System (INIS)

    Gazaille, Roland E.; Flynn, Michael J.; Page, Walter; Finley, Sonia; Holsbeeck, Marnix van

    2011-01-01

    To demonstrate the clinical use of digital tomosynthesis in the depiction of labral and chondral pathology in the setting of post-operative CAM-type impingement of the hip following intra-articular administration of dilute iodinated contrast. We present images from a 46 year-old African American female with suspected CAM-type femoroacetabular impingement (FAI) following percutaneous pinning of the right hip for slipped capital femoral epiphysis (SCFE). A partial tear of the labrum and clinically significant acetabular chondral abnormalities were demonstrated with the use of digital tomosynthesis with superb anatomic detail. Digital tomosynthesis can be of great clinical utility and can depict pathology in superb anatomic detail, particularly in situations in which MRI is not available as well as under circumstances in which artifact due to orthopedic hardware is of concern as shown in this case. (orig.)

  4. Technical Note: Robust measurement of the slice-sensitivity profile in breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Aili K., E-mail: aili.maki@sri.utoronto.ca; Mainprize, James G. [Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Yaffe, Martin J. [Departments of Medical Imaging and Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada and Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2016-08-15

    Purpose: The purpose of this work is to improve the repeatability of the measurement of the slice-sensitivity profile (SSP) in reconstructed breast tomosynthesis volumes. Methods: A grid of aluminum ball-bearings (BBs) within a PMMA phantom was imaged on breast tomosynthesis systems from three different manufacturers. The full-width half-maximum (FWHM) values were measured for the SSPs of the BBs in the reconstructed volumes. The effect of transforming the volumes from a Cartesian coordinate system (CCS) to a cone-beam coordinate system (CBCS) on the variability in the FWHM values was assessed. Results: Transforming the volumes from a CCS to a CBCS before measuring the SSPs reduced the coefficient of variation (COV) in the measurements of FWHM in repeated measurements by 56% and reduced the dependence of the FWHM values on the location of the BBs within the reconstructed volume by 76%. Conclusions: Measuring the SSP in the volumes in a CBCS improves the robustness of the measurement.

  5. Technical Note: Comparison of first- and second-generation photon-counting slit-scanning tomosynthesis systems.

    Science.gov (United States)

    Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik

    2018-02-01

    Digital breast tomosynthesis (DBT) is an emerging tool for breast-cancer screening and diagnostics. The purpose of this study is to present a second-generation photon-counting slit-scanning DBT system and compare it to the first-generation system in terms of geometry and image quality. The study presents the first image-quality measurements on the second-generation system. The geometry of the new system is based on a combined rotational and linear motion, in contrast to a purely rotational scan motion in the first generation. In addition, the calibration routines have been updated. Image quality was measured in the center of the image field in terms of in-slice modulation transfer function (MTF), artifact spread function (ASF), and in-slice detective quantum efficiency (DQE). Images were acquired using a W/Al 29 kVp spectrum at 13 mAs with 2 mm Al additional filtration and reconstructed using simple back-projection. The in-slice 50% MTF was improved in the chest-mammilla direction, going from 3.2 to 3.5 lp/mm, and the zero-frequency DQE increased from 0.71 to 0.77. The MTF and ASF were otherwise found to be on par for the two systems. The new system has reduced in-slice variation of the tomographic angle. The new geometry is less curved, which reduces in-slice tomographic-angle variation, and increases the maximum compression height, making the system accessible for a larger population. The improvements in MTF and DQE were attributed to the updated calibration procedures. We conclude that the second-generation system maintains the key features of the photon-counting system while maintaining or improving image quality and improving the maximum compression height. © 2017 American Association of Physicists in Medicine.

  6. Tomosynthesis imaging: At a translational crossroads

    International Nuclear Information System (INIS)

    Dobbins, James T. III

    2009-01-01

    Tomosynthesis is a decades-old technique for section imaging that has seen a recent upsurge in interest due to its promise to provide three-dimensional information at lower dose and potentially lower cost than CT in certain clinical imaging situations. This renewed interest in tomosynthesis began in the late 1990s as a new generation of flat-panel detectors became available; these detectors were the one missing piece of the picture that had kept tomosynthesis from enjoying significant utilization earlier. In the past decade, tomosynthesis imaging has been investigated in a variety of clinical imaging situations, but the two most prominent have been in breast and chest imaging. Tomosynthesis has the potential to substantially change the way in which breast cancer and pulmonary nodules are detected and managed. Commercial tomosynthesis devices are now available or on the horizon. Many of the remaining research activities with tomosynthesis will be translational in nature and will involve physicist and clinician alike. This overview article provides a forward-looking assessment of the translational questions facing tomosynthesis imaging and anticipates some of the likely research and clinical activities in the next five years.

  7. Tomosynthesis imaging: At a translational crossroads

    Science.gov (United States)

    Dobbins, James T.

    2009-01-01

    Tomosynthesis is a decades-old technique for section imaging that has seen a recent upsurge in interest due to its promise to provide three-dimensional information at lower dose and potentially lower cost than CT in certain clinical imaging situations. This renewed interest in tomosynthesis began in the late 1990s as a new generation of flat-panel detectors became available; these detectors were the one missing piece of the picture that had kept tomosynthesis from enjoying significant utilization earlier. In the past decade, tomosynthesis imaging has been investigated in a variety of clinical imaging situations, but the two most prominent have been in breast and chest imaging. Tomosynthesis has the potential to substantially change the way in which breast cancer and pulmonary nodules are detected and managed. Commercial tomosynthesis devices are now available or on the horizon. Many of the remaining research activities with tomosynthesis will be translational in nature and will involve physicist and clinician alike. This overview article provides a forward-looking assessment of the translational questions facing tomosynthesis imaging and anticipates some of the likely research and clinical activities in the next five years. PMID:19610284

  8. Description and validation of a scoring system for tomosynthesis in pulmonary cystic fibrosis.

    Science.gov (United States)

    Vult von Steyern, Kristina; Björkman-Burtscher, Isabella M; Höglund, Peter; Bozovic, Gracijela; Wiklund, Marie; Geijer, Mats

    2012-12-01

    To design and validate a scoring system for tomosynthesis (digital tomography) in pulmonary cystic fibrosis. A scoring system dedicated to tomosynthesis in pulmonary cystic fibrosis was designed. Three radiologists independently scored 88 pairs of radiographs and tomosynthesis examinations of the chest in 60 patients with cystic fibrosis and 7 oncology patients. Radiographs were scored according to the Brasfield scoring system and tomosynthesis examinations were scored using the new scoring system. Observer agreements for the tomosynthesis score were almost perfect for the total score with square-weighted kappa >0.90, and generally substantial to almost perfect for subscores. Correlation between the tomosynthesis score and the Brasfield score was good for the three observers (Kendall's rank correlation tau 0.68, 0.77 and 0.78). Tomosynthesis was generally scored higher as a percentage of the maximum score. Observer agreements for the total score for Brasfield score were almost perfect (square-weighted kappa 0.80, 0.81 and 0.85). The tomosynthesis scoring system seems robust and correlates well with the Brasfield score. Compared with radiography, tomosynthesis is more sensitive to cystic fibrosis changes, especially bronchiectasis and mucus plugging, and the new tomosynthesis scoring system offers the possibility of more detailed and accurate scoring of disease severity. Tomosynthesis is more sensitive than conventional radiography for pulmonary cystic fibrosis changes. The radiation dose from chest tomosynthesis is low compared with computed tomography. Tomosynthesis may become useful in the regular follow-up of patients with cystic fibrosis.

  9. Evaluation of the technical performance of three different commercial digital breast tomosynthesis systems in the clinical environment

    NARCIS (Netherlands)

    Rodriguez Ruiz, A.; Castillo, M.; Garayoa, J.; Chevalier, M.

    2016-01-01

    The aim of this work was to research and evaluate the performance of three different digital breast tomosynthesis (DBT) systems in the clinical environment (Siemens Mammomat Inspiration, Hologic Selenia Dimensions, and Fujifilm Amulet Innovality). The characterization included the study of the

  10. Initial application of digital tomosynthesis for detection of pulmonary nodules

    International Nuclear Information System (INIS)

    Sun Zhiyuan; Su Hong; Zhao Yane; Ju Bing; Chang Shuanghui; Hu Qiuju; Lu Guangming

    2010-01-01

    Objective: To discuss the value of digital tomosynthesis for detection of pulmonary nodules. Methods: Thirty patients suspected of having pulmonary nodules underwent chest radiography, digital tomosynthesis and CT examination. Above image data were transferred to postprocessing work station and were reviewed by 2 radiologists with 3 years of chest-radiology diagnosis experience in a double-blind method. The number, location and size of nodules were recorded. Then, 2 radiologists reviewed the all images once more, and discuss in consensus. The sensitivities of chest radiography and digital tomosynthesis for detection of pulmonary nodules were respectively calculated according to the CT results. Chi-square test was used for radiography, digital tomosynthesis and CT examination. Results: Of 30 patients, 21 were detected having pulmonary nodules by X-ray radiography and 9 were negative, the total number of 40 nodules was detected, while 89 nodules in 26 patients were detected by digital tomosynthesis, and only 4 patients were negative. CT demonstrated 102 nodules in 27 patients, and 3 patients were negative. Taking CT as 'gold standard', the sensitivities of X-ray radiography and digital tomosynthesis were 27.4%(28/102)and 87.2%(89/102), X 2 =4.35, P<0.05, respectively. Conclusion: Digital tomosynthesis has a high sensitivity for detection of pulmonary nodules compared with X-ray radiography, and could be an excellent and necessary supplementary technique of X-ray radiography. (authors)

  11. Improvement image in tomosynthesis

    International Nuclear Information System (INIS)

    Gomi, Tsutomu; Umeda, Tokuo; Takeda, Tohoru; Saito, Kyouko; Sakaguchi, Kazuya; Nakajima, Masahiro; Koshida, Kichirou

    2012-01-01

    We evaluated the X-ray digital tomosynthesis (DT) reconstruction processing method for metal artifact reduction and the application of wavelet denoising to selectively remove quantum noise and suggest the possibility of image quality improvement using a novel application for chest. In orthopedic DT imaging, we developed artifact reduction methods based on a modified Shepp and Logan reconstruction filter kernel realized by taking into account additional weighing by direct current (DC) components in frequency domain space. Processing leads to an increase in the ratio of low-frequency components in an image. The effectiveness of the method in enhancing the visibility of a prosthetic case was quantified in terms of removal of ghosting artifacts. In chest DT imaging, the technique was implemented on a DT system and experimentally evaluated through chest phantom measurements, spatial resolution and compared with an existing post-reconstruction wavelet denoise algorithm by Badea et al. Our wavelet technique with balance sparsity-norm contrast-to-noise ratio (CNR) effectively decreased quantum noise in the reconstructed images with and improvement when applied to pre-reconstruction image for post-reconstruction. The results of our technique showed that although modulation transfer function (MTF) did not vary (preserving spatial resolution), the existing wavelet denoise algorithm caused MTF deterioration. (author)

  12. Fast tomosynthesis

    International Nuclear Information System (INIS)

    Klotz, E.; Linde, R.; Tiemens, U.; Weiss, H.

    1978-01-01

    A system has been constructed for fast tomosynthesis, whereby X-ray photographs are made of a single layer of an object. Twenty five X-ray tubes illuminate the object simultaneously at different angles. The resulting coded image is decoded by projecting it with a pattern of lenses that have the same form as the pattern of X-ray tubes. The coded image is optically correlated with the pattern of the sources. The scale of this can be adjusted so that the desired layer of the object is portrayed. Experimental results of its use in a hospital are presented. (C.F.)

  13. Evaluation of anterior chest wall implanted port: technical aspects, results, and complications

    International Nuclear Information System (INIS)

    Jeon, Young Hwan; Oh, Joo Hyeong; Yoon, Yup; Kim, Si Young

    2000-01-01

    To evaluate the technical aspects, results and complications of patients with implanted anterior chest wall port. Between April 1997 and June 1999, a total of 63 implanted ports were placed at the anterior chest wall of 63 consecutive patients by interventional radiologists. The indications were chemotherapy in 61 patients and total parenteral nutrition in two. The peripheral portion of the subclavian vein was punctured under fluoroscopic guidance via ipsilateral peripheral vein during venography. A central venous catheter was placed in the superior vena cava, and using the subcutaneous tunneling method, a connected infusion port was implanted at the anterior chest wall. Results and complications were reviewed, and by means of Kaplan-Meier survival analysis, the expected patency of the port was determined. The technical success rate for implanted port at the anterior chest wall was 100% (63/63 patients). In two patients, hematoma and oozing were treated by compression. The duration of port implantation ranged from 12 to 855 (mean, 187) days, and the port patency rate was 305.7±47.6 days. In seven patients (completed chemotherapy (n=3D3), central venous thrombosis (n=3D3) catheter-related infection (n=3D1)), the port was removed. Catheter obstruction occurred in two patients, and in one, the use of urokinase led to successful recanalization. Sixteen patients died of an underlying malignancy, but no catheter-related death was noted. Implantation of an anterior chest wall port is a safe and useful procedure, with long patency, for patients requiring chemotherapy and long-term venous access. (author)

  14. Evaluation of anterior chest wall implanted port: technical aspects, results, and complications

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Young Hwan; Oh, Joo Hyeong; Yoon, Yup; Kim, Si Young [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    2000-07-01

    To evaluate the technical aspects, results and complications of patients with implanted anterior chest wall port. Between April 1997 and June 1999, a total of 63 implanted ports were placed at the anterior chest wall of 63 consecutive patients by interventional radiologists. The indications were chemotherapy in 61 patients and total parenteral nutrition in two. The peripheral portion of the subclavian vein was punctured under fluoroscopic guidance via ipsilateral peripheral vein during venography. A central venous catheter was placed in the superior vena cava, and using the subcutaneous tunneling method, a connected infusion port was implanted at the anterior chest wall. Results and complications were reviewed, and by means of Kaplan-Meier survival analysis, the expected patency of the port was determined. The technical success rate for implanted port at the anterior chest wall was 100% (63/63 patients). In two patients, hematoma and oozing were treated by compression. The duration of port implantation ranged from 12 to 855 (mean, 187) days, and the port patency rate was 305.7{+-}47.6 days. In seven patients (completed chemotherapy (n=3D3), central venous thrombosis (n=3D3) catheter-related infection (n=3D1)), the port was removed. Catheter obstruction occurred in two patients, and in one, the use of urokinase led to successful recanalization. Sixteen patients died of an underlying malignancy, but no catheter-related death was noted. Implantation of an anterior chest wall port is a safe and useful procedure, with long patency, for patients requiring chemotherapy and long-term venous access. (author)

  15. Digital tomosynthesis parallel imaging computational analysis with shift and add and back projection reconstruction algorithms.

    Science.gov (United States)

    Chen, Ying; Balla, Apuroop; Rayford II, Cleveland E; Zhou, Weihua; Fang, Jian; Cong, Linlin

    2010-01-01

    Digital tomosynthesis is a novel technology that has been developed for various clinical applications. Parallel imaging configuration is utilised in a few tomosynthesis imaging areas such as digital chest tomosynthesis. Recently, parallel imaging configuration for breast tomosynthesis began to appear too. In this paper, we present the investigation on computational analysis of impulse response characterisation as the start point of our important research efforts to optimise the parallel imaging configurations. Results suggest that impulse response computational analysis is an effective method to compare and optimise imaging configurations.

  16. Description and validation of a scoring system for tomosynthesis in pulmonary cystic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Vult von Steyern, Kristina; Bjoerkman-Burtscher, Isabella M.; Bozovic, Gracijela; Wiklund, Marie; Geijer, Mats [Skaane University Hospital, Lund University, Centre for Medical Imaging and Physiology, Lund (Sweden); Hoeglund, Peter [Skaane University Hospital, Competence Centre for Clinical Research, Lund (Sweden)

    2012-12-15

    To design and validate a scoring system for tomosynthesis (digital tomography) in pulmonary cystic fibrosis. A scoring system dedicated to tomosynthesis in pulmonary cystic fibrosis was designed. Three radiologists independently scored 88 pairs of radiographs and tomosynthesis examinations of the chest in 60 patients with cystic fibrosis and 7 oncology patients. Radiographs were scored according to the Brasfield scoring system and tomosynthesis examinations were scored using the new scoring system. Observer agreements for the tomosynthesis score were almost perfect for the total score with square-weighted kappa >0.90, and generally substantial to almost perfect for subscores. Correlation between the tomosynthesis score and the Brasfield score was good for the three observers (Kendall's rank correlation tau 0.68, 0.77 and 0.78). Tomosynthesis was generally scored higher as a percentage of the maximum score. Observer agreements for the total score for Brasfield score were almost perfect (square-weighted kappa 0.80, 0.81 and 0.85). The tomosynthesis scoring system seems robust and correlates well with the Brasfield score. Compared with radiography, tomosynthesis is more sensitive to cystic fibrosis changes, especially bronchiectasis and mucus plugging, and the new tomosynthesis scoring system offers the possibility of more detailed and accurate scoring of disease severity. (orig.)

  17. Description and validation of a scoring system for tomosynthesis in pulmonary cystic fibrosis

    International Nuclear Information System (INIS)

    Vult von Steyern, Kristina; Bjoerkman-Burtscher, Isabella M.; Bozovic, Gracijela; Wiklund, Marie; Geijer, Mats; Hoeglund, Peter

    2012-01-01

    To design and validate a scoring system for tomosynthesis (digital tomography) in pulmonary cystic fibrosis. A scoring system dedicated to tomosynthesis in pulmonary cystic fibrosis was designed. Three radiologists independently scored 88 pairs of radiographs and tomosynthesis examinations of the chest in 60 patients with cystic fibrosis and 7 oncology patients. Radiographs were scored according to the Brasfield scoring system and tomosynthesis examinations were scored using the new scoring system. Observer agreements for the tomosynthesis score were almost perfect for the total score with square-weighted kappa >0.90, and generally substantial to almost perfect for subscores. Correlation between the tomosynthesis score and the Brasfield score was good for the three observers (Kendall's rank correlation tau 0.68, 0.77 and 0.78). Tomosynthesis was generally scored higher as a percentage of the maximum score. Observer agreements for the total score for Brasfield score were almost perfect (square-weighted kappa 0.80, 0.81 and 0.85). The tomosynthesis scoring system seems robust and correlates well with the Brasfield score. Compared with radiography, tomosynthesis is more sensitive to cystic fibrosis changes, especially bronchiectasis and mucus plugging, and the new tomosynthesis scoring system offers the possibility of more detailed and accurate scoring of disease severity. (orig.)

  18. Digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Haegele, Julian; Barkhausen, Joerg; Pursche, Telja; Schaefer, Fritz K.W.

    2015-01-01

    In digital breast tomosynthesis a digital tomographic data set with a very high spatial resolution is reconstructed from low-dose projections collected over a limited rotation angle. This allows a very detailed assessment of e. g. masses and architectural distortions. The average glandular dose is comparable to 2 D mammography. First clinical studies demonstrated that tomosynthesis is able to supply important additional information in suspicious mammographic findings. In comparison to projection mammography, tomosynthesis shows an at least comparable diagnostic accuracy. In everyday practice, tomosynthesis is currently mostly used for further evaluation of suspicious findings in mammography.

  19. Digital tomosynthesis of the breast

    International Nuclear Information System (INIS)

    Barkhausen, Joerg; Rody, Achim; Schaefer, Fritz K.W.

    2015-01-01

    The digital tomosynthesis applies the digital image analysis and 3D technology for improves diagnostic uses. The text book on the digital tomosynthesis of the breast covers the following issues: technique of tomosynthesis, clinical significance of digital breast tomosynthesis, innovations and future developments, case studies.

  20. Simulation of dose reduction in tomosynthesis

    International Nuclear Information System (INIS)

    Svalkvist, Angelica; Baath, Magnus

    2010-01-01

    Purpose: Methods for simulating dose reduction are valuable tools in the work of optimizing radiographic examinations. Using such methods, clinical images can be simulated to have been collected at other, lower, dose levels without the need of additional patient exposure. A recent technology introduced to healthcare that needs optimization is tomosynthesis, where a number of low-dose projection images collected at different angles is used to reconstruct section images of an imaged object. The aim of the present work was to develop a method of simulating dose reduction for digital radiographic systems, suitable for tomosynthesis. Methods: The developed method uses information about the noise power spectrum (NPS) at the original dose level and the simulated dose level to create a noise image that is added to the original image to produce an image that has the same noise properties as an image actually collected at the simulated dose level. As the detective quantum efficiency (DQE) of digital detectors operating at the low dose levels used for tomosynthesis may show a strong dependency on the dose level, it is important that a method for simulating dose reduction for tomosynthesis takes this dependency into account. By applying an experimentally determined relationship between pixel mean and pixel variance, variations in both dose and DQE in relevant dose ranges are taken into account. Results: The developed method was tested on a chest tomosynthesis system and was shown to produce NPS of simulated dose-reduced projection images that agreed well with the NPS of images actually collected at the simulated dose level. The simulated dose reduction method was also applied to tomosynthesis examinations of an anthropomorphic chest phantom, and the obtained noise in the reconstructed section images was very similar to that of an examination actually performed at the simulated dose level. Conclusions: In conclusion, the present article describes a method for simulating dose

  1. Technical Aspects of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration: CHEST Guideline and Expert Panel Report.

    Science.gov (United States)

    Wahidi, Momen M; Herth, Felix; Yasufuku, Kazuhiro; Shepherd, Ray Wesley; Yarmus, Lonny; Chawla, Mohit; Lamb, Carla; Casey, Kenneth R; Patel, Sheena; Silvestri, Gerard A; Feller-Kopman, David J

    2016-03-01

    Endobronchial ultrasound (EBUS) was introduced in the last decade, enabling real-time guidance of transbronchial needle aspiration (TBNA) of mediastinal and hilar structures and parabronchial lung masses. The many publications produced about EBUS-TBNA have led to a better understanding of the performance characteristics of this procedure. The goal of this document was to examine the current literature on the technical aspects of EBUS-TBNA as they relate to patient, technology, and proceduralist factors to provide evidence-based and expert guidance to clinicians. Rigorous methodology has been applied to provide a trustworthy evidence-based guideline and expert panel report. A group of approved panelists developed key clinical questions by using the PICO (population, intervention, comparator, and outcome) format that addressed specific topics on the technical aspects of EBUS-TBNA. MEDLINE (via PubMed) and the Cochrane Library were systematically searched for relevant literature, which was supplemented by manual searches. References were screened for inclusion, and well-recognized document evaluation tools were used to assess the quality of included studies, to extract meaningful data, and to grade the level of evidence to support each recommendation or suggestion. Our systematic review and critical analysis of the literature on 15 PICO questions related to the technical aspects of EBUS-TBNA resulted in 12 statements: 7 evidence-based graded recommendations and 5 ungraded consensus-based statements. Three questions did not have sufficient evidence to generate a statement. Evidence on the technical aspects of EBUS-TBNA varies in strength but is satisfactory in certain areas to guide clinicians on the best conditions to perform EBUS-guided tissue sampling. Additional research is needed to enhance our knowledge regarding the optimal performance of this effective procedure. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights

  2. Tomo-synthesis. Bibliographic study report

    International Nuclear Information System (INIS)

    2016-01-01

    Tomo-synthesis is a recent technique for breast imaging. This technique, qualified as 'pseudo-3D', draws the attention of health professionals. Indeed, this technique could offer a gain in sensibility and in specificity in the detection of breast cancers compared to 2D mammography, thanks to the reduction of the tissues' overlapping in particular. Although its place and its clinical indication are not still clearly defined, tomo-synthesis is already used in France. The introduction of this technique within the national breast cancer screening program, seems to be foreseen by the authorities in the coming years. IRSN, in the scope of its mission of evaluation of the dose impact of innovative techniques, is closely interested in this technique and has proceeded in 2015 to a bibliographical review of the state of the art in tomo-synthesis. This review paid specific attention to the following points: conception of the installations, dose, image quality and quality control. it has highlighted several points of attention, which incite IRSN to formulate certain recommendations to accompany the spreading of this new technique in France. Most of the clinical trials validating the use of tomo-synthesis were realized on systems of a single manufacturer. However, manufacturers' strategies of design are heterogeneous. There is no unique technique of tomo-synthesis but several, of which equivalence in terms of technical and clinical performances is not demonstrated. Due to the heterogeneity of the different models available on the French market, IRSN recommends not to extrapolate the results of clinical studies obtained on a specific system but to consolidate them for all the available systems. In many imaging departments, tomo-synthesis is already implemented in addition or in substitution of 2D mammography without any regulatory quality control and periodic technical checks. The European reference standard for quality control of these devices is not yet

  3. Motion compensated digital tomosynthesis

    NARCIS (Netherlands)

    van der Reijden, Anneke; van Herk, Marcel; Sonke, Jan-Jakob

    2013-01-01

    Digital tomosynthesis (DTS) is a limited angle image reconstruction method for cone beam projections that offers patient surveillance capabilities during VMAT based SBRT delivery. Motion compensation (MC) has the potential to mitigate motion artifacts caused by respiratory motion, such as blur. The

  4. Dose to patient in tomosynthesis

    International Nuclear Information System (INIS)

    Minambres Moro, A.; Fernandez Leton, P.; Garcia Rui-Zorrilla, J.; Perez Moreno, J. M.; Zucca Aparicio, D.

    2013-01-01

    They are beginning to implement digital mammography with the possibility of acquiring in tomosynthesis, whose biggest advantage is to distinguish structures without overlapping through of pseudotridimensionals images. With these modified mammograms can acquire a planar mammography, with fixed x-ray tube, or a tomosynthesis with tube by turning. For acquire tomosynthesis is necessary a detector of high efficiency together with tungsten white tubes. The objective of this study is to know the dose received by the patient with this new imaging. (Author)

  5. The compressed breast during mammography and breast tomosynthesis: in vivo shape characterization and modeling

    Science.gov (United States)

    Rodríguez-Ruiz, Alejandro; Agasthya, Greeshma A.; Sechopoulos, Ioannis

    2017-09-01

    To characterize and develop a patient-based 3D model of the compressed breast undergoing mammography and breast tomosynthesis. During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3D breast surface imaging with structured light (SL) during breast compression, along with simultaneous acquisition of a tomosynthesis image. A pair of SL systems were used to acquire 3D surface images by projecting 24 different patterns onto the compressed breast and capturing their reflection off the breast surface in approximately 12-16 s. The 3D surface was characterized and modeled via principal component analysis. The resulting surface model was combined with a previously developed 2D model of projected compressed breast shapes to generate a full 3D model. Data from ten patients were discarded due to technical problems during image acquisition. The maximum breast thickness (found at the chest-wall) had an average value of 56 mm, and decreased 13% towards the nipple (breast tilt angle of 5.2°). The portion of the breast not in contact with the compression paddle or the support table extended on average 17 mm, 18% of the chest-wall to nipple distance. The outermost point along the breast surface lies below the midline of the total thickness. A complete 3D model of compressed breast shapes was created and implemented as a software application available for download, capable of generating new random realistic 3D shapes of breasts undergoing compression. Accurate characterization and modeling of the breast curvature and shape was achieved and will be used for various image processing and clinical tasks.

  6. Retrospective estimation of patient dose-area product in thoracic spine tomosynthesis performed using VolumeRAD

    International Nuclear Information System (INIS)

    Baath, Magnus; Svalkvist, Angelica; Soederman, Christina

    2016-01-01

    The aim of this study was to evaluate the use of a recently developed method of retrospectively estimating the patient dose-area product (DAP) of a chest tomosynthesis examination, performed using VolumeRAD, in thoracic spine tomosynthesis and to determine the necessary field-size correction factor. Digital imaging and communications in medicine (DICOM) data for the projection radiographs acquired during a thoracic spine tomosynthesis examination were retrieved directly from the modality for 17 patients. Using the previously developed method, an estimated DAP for the tomosynthesis examination was determined from DICOM data in the scout image. By comparing the estimated DAP with the actual DAP registered for the projection radiographs, a field-size correction factor was determined. The field-size correction factor for thoracic spine tomosynthesis was determined to 0.92. Applying this factor to the DAP estimated retrospectively, the maximum difference between the estimated DAP and the actual DAP was <3 %. In conclusion, the previously developed method of retrospectively estimating the DAP in chest tomosynthesis can be applied to thoracic spine tomosynthesis. (authors)

  7. [Breast tomosynthesis: a new tool for diagnosing breast cancer].

    Science.gov (United States)

    Martínez Miravete, P; Etxano, J

    2015-01-01

    Breast cancer continues to be the most common malignant tumor in women in occidental countries. Mammography is currently the technique of choice for screening programs; however, although it has been widely validated, mammography has its limitations, especially in dense breasts. Breast tomosynthesis is a revolutionary advance in the diagnosis of breast cancer. It makes it possible to define lesions that are occult in the glandular tissue and therefore to detect breast tumors that are impossible to see on conventional mammograms. In considering the combined use of mammography and tomosynthesis, many factors must be taken into account apart from cancer detection; these include additional radiation, the recall rate, and the time necessary to carry out and interpret the two tests. In this article, we review the technical principles of tomosynthesis, it main uses, and the future perspective for this imaging technique. Copyright © 2013 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  8. Dose and perceived image quality in chest radiography

    International Nuclear Information System (INIS)

    Veldkamp, Wouter J.H.; Kroft, Lucia J.M.; Geleijns, Jacob

    2009-01-01

    Chest radiography is the most commonly performed diagnostic X-ray examination. The radiation dose to the patient for this examination is relatively low but because of its frequent use, the contribution to the collective dose is considerable. Consequently, optimization of dose and image quality offers a challenging area of research. In this article studies on dose reduction, different detector technologies, optimization of image acquisition and new technical developments in image acquisition and post processing will be reviewed. Studies indicate that dose reduction in PA chest images to at least 50% of commonly applied dose levels does not affect diagnosis in the lung fields; however, dose reduction in the mediastinum, upper abdomen and retrocardiac areas appears to directly deteriorate diagnosis. In addition to patient dose, also the design of the various digital detectors seems to have an effect on image quality. With respect to image acquisition, studies showed that using a lower tube voltage improves visibility of anatomical structures and lesions in digital chest radiographs but also increases the disturbing appearance of ribs. New techniques that are currently being evaluated are dual energy, tomosynthesis, temporal subtraction and rib suppression. These technologies may improve diagnostic chest X-ray further. They may for example reduce the negative influence of over projection of ribs, referred to as anatomic noise. In chest X-ray this type of noise may be the dominating factor in the detection of nodules. In conclusion, optimization and new developments will enlarge the value of chest X-ray as a mainstay in the diagnosis of chest diseases.

  9. Dual-Modality Breast Tomosynthesis1

    OpenAIRE

    Williams, Mark B.; Judy, Patricia G.; Gunn, Spencer; Majewski, Stanislaw

    2010-01-01

    Pilot clinical evaluation of this dual-modality tomosynthesis system suggests that it is a feasible and accurate method with which to detect and diagnose breast cancer and that specificity and positive predictive value can be improved by adding molecular breast imaging tomosynthesis to x-ray tomosynthesis.

  10. Characterization of the relation between CT technical parameters and accuracy of quantification of lung attenuation on quantitative chest CT.

    Science.gov (United States)

    Trotta, Brian M; Stolin, Alexander V; Williams, Mark B; Gay, Spencer B; Brody, Alan S; Altes, Talissa A

    2007-06-01

    The purpose of this study was to assess the compromise between CT technical parameters and the accuracy of CT quantification of lung attenuation. Materials that simulate water (0 H), healthy lung (-650 H), borderline emphysematous lung (-820 H), and severely emphysematous lung (-1,000 H) were placed at both the base and the apex of the lung of an anthropomorphic phantom and outside the phantom. Transaxial CT images through the samples were obtained while the effective tube current was varied from 440 to 10 mAs, kilovoltage from 140 to 80 kVp, and slice thickness from 0.625 to 10 mm. Mean +/- SD attenuation within the samples and the standard quantitative chest CT measurements, the percentage of pixels with attenuation less than -910 H and 15th percentile of attenuation, were computed. Outside the phantom, variations in CT parameters produced less than 2.0% error in all measurements. Within the anthropomorphic phantom at 30 mAs, error in measurements was much larger, ranging from zero to 200%. Below approximately 80 mAs, mean attenuation became increasingly biased. The effects were most pronounced at the apex of the lungs. Mean attenuation of the borderline emphysematous sample of apex decreased 55 H as the tube current was decreased from 300 to 30 mAs. Both the 15th percentile of attenuation and percentage of pixels with less than -910 H attenuation were more sensitive to variations in effective tube current than was mean attenuation. For example, the -820 H sample should have 0% of pixels less than -910 H, which was true at 400 mA. At 30 mA in the lung apex, however, the measurement was highly inaccurate, 51% of pixels being below this value. Decreased kilovoltage and slice thickness had analogous, but lesser, effects. The accuracy of quantitative chest CT is determined by the CT acquisition parameters. There can be significant decreases in accuracy at less than 80 mAs for thin slices in an anthropomorphic phantom, the most pronounced effects occurring in the lung

  11. Self-masking subtraction tomosynthesis

    International Nuclear Information System (INIS)

    Chakraborty, D.P.; Yester, M.V.; Barnes, G.T.; Lakshminarayanan, A.V.

    1984-01-01

    The authors tested the image quality and dose savings of self-masking subtraction tomosynthesis (SST), which combines digital tomosynthesis with subtraction of a blurred self-mask. High-quality images of the inner ear of a head phantom were obtained at moderate dose savings. Although they were taken with linear motion, they did not exhibit the streaking due to off-fulcrum objects that is characteristic of conventional linear tomography. SST could reduce patient dose by a factor of at least 12 in examinations of the inner ear, and the mechanical aspects can be implemented with moderate modifications of existing instrumentation

  12. With the Advent of Tomosynthesis in the Workup of Mammographic Abnormality, is Spot Compression Mammography Now Obsolete? An Initial Clinical Experience.

    Science.gov (United States)

    Ni Mhuircheartaigh, Neasa; Coffey, Louise; Fleming, Hannah; O' Doherty, Ann; McNally, Sorcha

    2017-09-01

    To determine if the routine use of spot compression mammography is now obsolete in the assessment of screen detected masses, asymmetries and architectural distortion since the availability of digital breast tomosynthesis. We introduced breast tomosynthesis in the workup of screen detected abnormalities in our screening center in January 2015. During an initial learning period with tomosynthesis standard spot compression views were also performed. Three consultant breast radiologists retrospectively reviewed all screening mammograms recalled for assessment over the first 6-month period. We assessed retrospectively whether there was any additional diagnostic information obtained from spot compression views not already apparent on tomography. All cases were also reviewed for any additional lesions detected by tomosynthesis, not detected on routine 2-view screening mammography. 548 women screened with standard 2-view digital screening mammography were recalled for assessment in the selected period and a total of 565 lesions were assessed. 341 lesions were assessed by both tomosynthesis and routine spot compression mammography. The spot compression view was considered more helpful than tomosynthesis in only one patient. This was because the breast was inadequately positioned for tomosynthesis and the area in question was not adequately imaged. Apart from this technical error there was no asymmetry, distortion or mass where spot compression provided more diagnostic information than tomosynthesis alone. We detected three additional cancers on tomosynthesis, not detected by routine screening mammography. From our initial experience with tomosynthesis we conclude that spot compression mammography is now obsolete in the assessment of screen detected masses, asymmetries and distortions where tomosynthesis is available. © 2017 Wiley Periodicals, Inc.

  13. Breast tomosynthesis in clinical practice: initial results

    International Nuclear Information System (INIS)

    Teertstra, Hendrik J.; Loo, Claudette E.; Bosch, Maurice A.A.J. van den; Muller, Sara H.; Gilhuijs, Kenneth G.A.; Tinteren, Harm van; Rutgers, Emiel J.T.

    2010-01-01

    The purpose of this study was to assess the potential value of tomosynthesis in women with an abnormal screening mammogram or with clinical symptoms. Mammography and tomosynthesis investigations of 513 woman with an abnormal screening mammogram or with clinical symptoms were prospectively classified according to the ACR BI-RADS criteria. Sensitivity and specificity of both techniques for the detection of cancer were calculated. In 112 newly detected cancers, tomosynthesis and mammography were each false-negative in 8 cases (7%). In the false-negative mammography cases, the tumor was detected with ultrasound (n=4), MRI (n=2), by recall after breast tomosynthesis interpretation (n=1), and after prophylactic mastectomy (n=1). Combining the results of mammography and tomosynthesis detected 109 cancers. Therefore in three patients, both mammography and tomosynthesis missed the carcinoma. The sensitivity of both techniques for the detection of breast cancer was 92.9%, and the specificity of mammography and tomosynthesis was 86.1 and 84.4%, respectively. Tomosynthesis can be used as an additional technique to mammography in patients referred with an abnormal screening mammogram or with clinical symptoms. Additional lesions detected by tomosynthesis, however, are also likely to be detected by other techniques used in the clinical work-up of these patients. (orig.)

  14. Digital breast tomosynthesis; Digitale Tomosynthese der Brust

    Energy Technology Data Exchange (ETDEWEB)

    Haegele, Julian; Barkhausen, Joerg [Universtiaetsklinikum Schleswig-Holstein, Luebeck (Germany). Klinik fuer Radiologie und Nuklearmedizin; Pursche, Telja [Universtiaetsklinikum Schleswig-Holstein, Luebeck (Germany). Brustzentrum; Schaefer, Fritz K.W. [Universtiaetsklinikum Schleswig-Holstein, Kiel (Germany). Bereich Mammadiagnostik und Intervention

    2015-09-15

    In digital breast tomosynthesis a digital tomographic data set with a very high spatial resolution is reconstructed from low-dose projections collected over a limited rotation angle. This allows a very detailed assessment of e. g. masses and architectural distortions. The average glandular dose is comparable to 2 D mammography. First clinical studies demonstrated that tomosynthesis is able to supply important additional information in suspicious mammographic findings. In comparison to projection mammography, tomosynthesis shows an at least comparable diagnostic accuracy. In everyday practice, tomosynthesis is currently mostly used for further evaluation of suspicious findings in mammography.

  15. Digital tomosynthesis of the breast; Digitale Tomosynthese der Brust

    Energy Technology Data Exchange (ETDEWEB)

    Barkhausen, Joerg [Luebeck Univ. (Germany). Klinik fuer Radiologie und Nuklearmedizin; Rody, Achim [Luebeck Univ. (Germany). Klinik fuer Gynaekologie und Geburtshilfe; Schaefer, Fritz K.W. (ed.) [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Bereich Mammadiagnostik und Interventionen

    2015-07-01

    The digital tomosynthesis applies the digital image analysis and 3D technology for improves diagnostic uses. The text book on the digital tomosynthesis of the breast covers the following issues: technique of tomosynthesis, clinical significance of digital breast tomosynthesis, innovations and future developments, case studies.

  16. Initial results of the FUSION-X-US prototype combining 3D automated breast ultrasound and digital breast tomosynthesis.

    Science.gov (United States)

    Schaefgen, Benedikt; Heil, Joerg; Barr, Richard G; Radicke, Marcus; Harcos, Aba; Gomez, Christina; Stieber, Anne; Hennigs, André; von Au, Alexandra; Spratte, Julia; Rauch, Geraldine; Rom, Joachim; Schütz, Florian; Sohn, Christof; Golatta, Michael

    2018-06-01

    To determine the feasibility of a prototype device combining 3D-automated breast ultrasound (ABVS) and digital breast tomosynthesis in a single device to detect and characterize breast lesions. In this prospective feasibility study, the FUSION-X-US prototype was used to perform digital breast tomosynthesis and ABVS in 23 patients with an indication for tomosynthesis based on current guidelines after clinical examination and standard imaging. The ABVS and tomosynthesis images of the prototype were interpreted separately by two blinded experts. The study compares the detection and BI-RADS® scores of breast lesions using only the tomosynthesis and ABVS data from the FUSION-X-US prototype to the results of the complete diagnostic workup. Image acquisition and processing by the prototype was fast and accurate, with some limitations in ultrasound coverage and image quality. In the diagnostic workup, 29 solid lesions (23 benign, including three cases with microcalcifications, and six malignant lesions) were identified. Using the prototype, all malignant lesions were detected and classified as malignant or suspicious by both investigators. Solid breast lesions can be localized accurately and fast by the Fusion-X-US system. Technical improvements of the ultrasound image quality and ultrasound coverage are needed to further study this new device. The prototype combines tomosynthesis and automated 3D-ultrasound (ABVS) in one device. It allows accurate detection of malignant lesions, directly correlating tomosynthesis and ABVS data. The diagnostic evaluation of the prototype-acquired data was interpreter-independent. The prototype provides a time-efficient and technically reliable diagnostic procedure. The combination of tomosynthesis and ABVS is a promising diagnostic approach.

  17. The Utility of Digital Linear Tomosynthesis Imaging of Total Hip Joint Arthroplasty with Suspicion of Loosening: A Prospective Study in 40 Patients

    Science.gov (United States)

    Göthlin, Jan H.

    2013-01-01

    Aim. The clinical utility of digital linear tomosynthesis in musculoskeletal applications has been validated in only a few reports. Technical performance and utility in hip prosthesis imaging have been discussed in technical reports, but no clinical evaluation has been reported. The purpose of the current study was to assess the added clinical utility of digital linear tomosynthesis compared to radiography in loosening of total hip joint arthroplasty. Materials and Methods. In a prospective study, radiography and digital tomosynthesis were performed in 40 consecutive patients with total hip arthroplasty referred for suspect prosthesis loosening. Tomosynthesis images were compared to anterior-posterior (AP) and cross-table lateral radiographs regarding demarcation and extent of demineralization and osteolysis. Further noted were skeletal fractures, cement fractures, fragmentation, and artifacts interfering with the diagnosis. Results. Tomosynthesis was superior to radiography with sharper delineation of demineralization and osteolysis in the AP projection. A limitation was the inability to generate lateral tomosynthesis images, with inferior assessment of the area anterior and posterior to the acetabular cup compared to cross-table radiographs. Artifacts interfering with diagnosis were found in one hip. Conclusion. Tomosynthesis improved evaluation of total hip arthroplasty in the AP projection but was limited by the lack of lateral projections. PMID:24078921

  18. The Utility of Digital Linear Tomosynthesis Imaging of Total Hip Joint Arthroplasty with Suspicion of Loosening: A Prospective Study in 40 Patients

    Directory of Open Access Journals (Sweden)

    Jan H. Göthlin

    2013-01-01

    Full Text Available Aim. The clinical utility of digital linear tomosynthesis in musculoskeletal applications has been validated in only a few reports. Technical performance and utility in hip prosthesis imaging have been discussed in technical reports, but no clinical evaluation has been reported. The purpose of the current study was to assess the added clinical utility of digital linear tomosynthesis compared to radiography in loosening of total hip joint arthroplasty. Materials and Methods. In a prospective study, radiography and digital tomosynthesis were performed in 40 consecutive patients with total hip arthroplasty referred for suspect prosthesis loosening. Tomosynthesis images were compared to anterior-posterior (AP and cross-table lateral radiographs regarding demarcation and extent of demineralization and osteolysis. Further noted were skeletal fractures, cement fractures, fragmentation, and artifacts interfering with the diagnosis. Results. Tomosynthesis was superior to radiography with sharper delineation of demineralization and osteolysis in the AP projection. A limitation was the inability to generate lateral tomosynthesis images, with inferior assessment of the area anterior and posterior to the acetabular cup compared to cross-table radiographs. Artifacts interfering with diagnosis were found in one hip. Conclusion. Tomosynthesis improved evaluation of total hip arthroplasty in the AP projection but was limited by the lack of lateral projections.

  19. Chest MRI

    Science.gov (United States)

    ... resonance imaging - chest; NMR - chest; MRI of the thorax; Thoracic MRI Patient Instructions ... Gotway MB, Panse PM, Gruden JF, Elicker BM. Thoracic radiology. In: Broaddus VC, Mason RJ, Ernst JD, et ...

  20. Breast cancer screening with digital breast tomosynthesis.

    Science.gov (United States)

    Skaane, Per

    2017-01-01

    To give an overview of studies comparing full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) in breast cancer screening. The implementation of tomosynthesis in breast imaging is rapidly increasing world-wide. Experimental clinical studies of relevance for DBT screening have shown that tomosynthesis might have a great potential in breast cancer screening, although most of these retrospective reading studies are based on small populations, so that final conclusions are difficult to draw from individual reports. Several retrospective studies and three prospective trials on tomosynthesis in breast cancer screening have been published so far, confirming the great potential of DBT in mammography screening. The main results of these screening studies are presented. The retrospective screening studies from USA have all shown a significant decrease in the recall rate using DBT as adjunct to mammography. Most of these studies have also shown an increase in the cancer detection rate, and the non-significant results in some studies might be explained by a lack of statistical power. All the three prospective European trials have shown a significant increase in the cancer detection rate. The retrospective and the prospective screening studies comparing FFDM and DBT have all demonstrated that tomosynthesis has a great potential for improving breast cancer screening. DBT should be regarded as a better mammogram that could improve or overcome limitations of the conventional mammography, and tomosynthesis might be considered as the new technique in the next future of breast cancer screening.

  1. Quality control in breast tomosynthesis

    International Nuclear Information System (INIS)

    Jakubiak, Rosangela Requi; Messias, Pricila Cordeiro; Santos, Marilia Fernanda; Urban, Linei Augusta B.D.

    2014-01-01

    In Brazil breast cancer is the most common and the leading cause of death among women, with estimated 57,000 new cases in 2014. The mammography (2D) plays an important role in the early detection of breast cancer, but in some cases can be difficult to detect malignant lesions due overlap of breast tissues. The Breast Digital Tomosynthesis (BDT: 3D) reduces the effects of overlap, providing improved characterization of mammographic findings. However, the dose may double as compared to the mammography. This study presents results of Contrast Ratio Noise tests (CRN) and quality image on a Siemens mammography equipment Mammomat Inspiration with tomosynthesis. The CRN was determined with plates Polymethylmethacrylate (PMMA) of 20 to 70 mm thickness and an aluminum plate of 10 mm 2 and 0.2 mm thickness. Image quality was assessed with the ACR Breast Simulator. In assessment of image quality, the detectability of fibers and masses was identical in 2D and 3D systems. Were visualized 4.5 fibers and 4 mass in both modes. In 2D mode groups have been identified 3.5 microcalcifications, and 3D were 3 groups. The Mean Glandular Dose for the simulator in 2D mode was 1.17 mGy and 2.35 mGy for the 3D mode. The result reinforces the importance of quality control in the process of obtaining the images and obtained in accordance CRN values, ensuring image quality and dose compatible in 2D and 3D processes

  2. Quality control in breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jakubiak, R.R.; Messias, P.C.; Santos, M.F., E-mail: requi@utfpr.edu.br [Universidade Tecnologia Federal do Parana (UTFPR), Curitiba, PR (Brazil). Departamento Academico de Fisica; Urban, L.A.B.D., E-mail: lineiurban@hotmail.com [Diagnostico Avancado por Imagem, Curitiba, PR (Brazil)

    2015-07-01

    In Brazil, breast cancer is the most common and the leading cause of death among women, with estimated 57,000 new cases in 2014. The mammography (2D) plays an important role in the early detection of breast cancer, but in some cases can be difficult to detect malignant lesions due overlap of breast tissues. The Digital Breasts Tomosynthesis (DBT: 3D) reduces the effects of overlap, providing improved characterization of mammographic findings. However, the dose may double as compared with mammography. This study presents results of Contrast to Noise Ratio (CNR) and image quality evaluation on Siemens mammography equipment Mammomat Inspiration with tomosynthesis. The CNR was determined with Polymethylmethacrylate (PMMA) layers of 20 to 70 mm thick and an aluminum foils of 0,2 mm thickness and area of 10 mm². Image quality was assessed with the ACR Breast Simulator. In the evaluation of image quality, the detectability of fibers and masses was identical in 2D and 3D systems. Displaying fibers were 4,5 and 4 mass in both modes. In 2D mode were identified 3,5 microcalcifications groups, and 3D showed 3 groups. The Mean Glandular Dose (MGD) for the simulator in 2D mode was 1,17 mGy and 2,35 mGy for the 3D mode. The result reinforces the importance of quality control in the process of obtaining the images and obtained in accordance CNR values, ensuring image quality and compatible dose in 2D and 3D processes. (author)

  3. Quality control in breast tomosynthesis

    International Nuclear Information System (INIS)

    Jakubiak, R.R.; Messias, P.C.; Santos, M.F.

    2015-01-01

    In Brazil, breast cancer is the most common and the leading cause of death among women, with estimated 57,000 new cases in 2014. The mammography (2D) plays an important role in the early detection of breast cancer, but in some cases can be difficult to detect malignant lesions due overlap of breast tissues. The Digital Breasts Tomosynthesis (DBT: 3D) reduces the effects of overlap, providing improved characterization of mammographic findings. However, the dose may double as compared with mammography. This study presents results of Contrast to Noise Ratio (CNR) and image quality evaluation on Siemens mammography equipment Mammomat Inspiration with tomosynthesis. The CNR was determined with Polymethylmethacrylate (PMMA) layers of 20 to 70 mm thick and an aluminum foils of 0,2 mm thickness and area of 10 mm². Image quality was assessed with the ACR Breast Simulator. In the evaluation of image quality, the detectability of fibers and masses was identical in 2D and 3D systems. Displaying fibers were 4,5 and 4 mass in both modes. In 2D mode were identified 3,5 microcalcifications groups, and 3D showed 3 groups. The Mean Glandular Dose (MGD) for the simulator in 2D mode was 1,17 mGy and 2,35 mGy for the 3D mode. The result reinforces the importance of quality control in the process of obtaining the images and obtained in accordance CNR values, ensuring image quality and compatible dose in 2D and 3D processes. (author)

  4. FLAIL CHEST

    Directory of Open Access Journals (Sweden)

    Anton Crnjac

    2003-12-01

    Full Text Available Background. Major thoracic trauma is consistent with high mortality rate because of associated injuries of vital thoracic organs and dangerous complications. The flail chest occurs after disruption of the skeletal continuity of chest wall and demands because of its pathophysiological complexity rapid and accurate diagnosis and treatment.Conclusions. Basic pathophysiological mechanism of the flail chest is respiratory distress, which is provoked by pulmonary contusions and paradoxical chest wall motion. The treatment should be pointed to improvement and support of respiratory functions and include aggressive pain control, pulmonary physiotherapy and selective mechanical ventilation. Views about operative fixation of the flail chest are still controversial. Neither mortality rate neither long-term disability are improved after operative fixation.

  5. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU.

    Science.gov (United States)

    Arefan, D; Talebpour, A; Ahmadinejhad, N; Kamali Asl, A

    2015-06-01

    Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU). At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU) card and the Graphics Processing Unit (GPU). It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU).

  6. Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems

    Science.gov (United States)

    Lee, Changwoo; Han, Minah; Baek, Jongduk

    2017-03-01

    Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.

  7. SU-E-P-31: Quantifying the Amount of Missing Tissue in a Digital Breast Tomosynthesis

    International Nuclear Information System (INIS)

    Goodenough, D; Olafsdottir, H; Olafsson, I; Fredriksson, J; Kristinsson, S; Oskarsdottir, G; Kristbjornsson, A; Mallozzi, R; Healy, A; Levy, J

    2015-01-01

    Purpose: To automatically quantify the amount of missing tissue in a digital breast tomosynthesis system using four stair-stepped chest wall missing tissue gauges in the Tomophan™ from the Phantom Laboratory and image processing from Image Owl. Methods: The Tomophan™ phantom incorporates four stair-stepped missing tissue gauges by the chest wall, allowing measurement of missing chest wall in two different locations along the chest wall at two different heights. Each of the four gauges has 12 steps in 0.5 mm increments rising from the chest wall. An image processing algorithm was developed by Image Owl that first finds the two slices containing the steps then finds the signal through the highest step in all four gauges. Using the signal drop at the beginning of each gauge the distance to the end of the image gives the length of the missing tissue gauge in millimeters. Results: The Tomophan™ was imaged in digital breast tomosynthesis (DBT) systems from various vendors resulting in 46 cases used for testing. The results showed that on average 1.9 mm of 6 mm of the gauges are visible. A small focus group was asked to count the number of visible steps for each case which resulted in a good agreement between observer counts and computed data. Conclusion: First, the results indicate that the amount of missing chest wall can differ between vendors. Secondly it was shown that an automated method to estimate the amount of missing chest wall gauges agreed well with observer assessments. This finding indicates that consistency testing may be simplified using the Tomophan™ phantom and analysis by an automated image processing named Tomo QA. In general the reason for missing chest wall may be due to a function of the beam profile at the chest wall as DBT projects through the angular sampling. Research supported by Image Owl, Inc., The Phantom Laboratory, Inc. and Raforninn ehf; Mallozzi and Healy employed by The Phantom Laboratory, Inc.; Goodenough is a consultant to The

  8. SU-E-P-31: Quantifying the Amount of Missing Tissue in a Digital Breast Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, D [George Washington University, Washington, DC (United States); Olafsdottir, H; Olafsson, I; Fredriksson, J; Kristinsson, S; Oskarsdottir, G; Kristbjornsson, A [Raforninn Ehf., Reykjavik, Gullbringusysla (Iceland); Mallozzi, R; Healy, A; Levy, J [The Phantom Laboratory, Salem, NY (United States)

    2015-06-15

    Purpose: To automatically quantify the amount of missing tissue in a digital breast tomosynthesis system using four stair-stepped chest wall missing tissue gauges in the Tomophan™ from the Phantom Laboratory and image processing from Image Owl. Methods: The Tomophan™ phantom incorporates four stair-stepped missing tissue gauges by the chest wall, allowing measurement of missing chest wall in two different locations along the chest wall at two different heights. Each of the four gauges has 12 steps in 0.5 mm increments rising from the chest wall. An image processing algorithm was developed by Image Owl that first finds the two slices containing the steps then finds the signal through the highest step in all four gauges. Using the signal drop at the beginning of each gauge the distance to the end of the image gives the length of the missing tissue gauge in millimeters. Results: The Tomophan™ was imaged in digital breast tomosynthesis (DBT) systems from various vendors resulting in 46 cases used for testing. The results showed that on average 1.9 mm of 6 mm of the gauges are visible. A small focus group was asked to count the number of visible steps for each case which resulted in a good agreement between observer counts and computed data. Conclusion: First, the results indicate that the amount of missing chest wall can differ between vendors. Secondly it was shown that an automated method to estimate the amount of missing chest wall gauges agreed well with observer assessments. This finding indicates that consistency testing may be simplified using the Tomophan™ phantom and analysis by an automated image processing named Tomo QA. In general the reason for missing chest wall may be due to a function of the beam profile at the chest wall as DBT projects through the angular sampling. Research supported by Image Owl, Inc., The Phantom Laboratory, Inc. and Raforninn ehf; Mallozzi and Healy employed by The Phantom Laboratory, Inc.; Goodenough is a consultant to The

  9. Chest radiology

    International Nuclear Information System (INIS)

    Reed, J.C.

    1990-01-01

    This book is a reference in plain chest film diagnosis provides a thorough background in the differential diagnosis of 22 of the most common radiologic patterns of chest disease. Each chapter is introduced with problem cases and a set of questions, followed by a tabular listing of the appropriate differential considerations. The book emphasizes plain films, CT and some MR scans are integrated to demonstrate how these modalities enhance the work of a case

  10. Dose to patient in tomosynthesis; Dosis a paciente en tomosintesis

    Energy Technology Data Exchange (ETDEWEB)

    Minambres Moro, A.; Fernandez Leton, P.; Garcia Rui-Zorrilla, J.; Perez Moreno, J. M.; Zucca Aparicio, D.

    2013-07-01

    They are beginning to implement digital mammography with the possibility of acquiring in tomosynthesis, whose biggest advantage is to distinguish structures without overlapping through of pseudotridimensionals images. With these modified mammograms can acquire a planar mammography, with fixed x-ray tube, or a tomosynthesis with tube by turning. For acquire tomosynthesis is necessary a detector of high efficiency together with tungsten white tubes. The objective of this study is to know the dose received by the patient with this new imaging. (Author)

  11. [Chest trauma].

    Science.gov (United States)

    Freixinet Gilart, Jorge; Ramírez Gil, María Elena; Gallardo Valera, Gregorio; Moreno Casado, Paula

    2011-01-01

    Chest trauma is a frequent problem arising from lesions caused by domestic and occupational activities and especially road traffic accidents. These injuries can be analyzed from distinct points of view, ranging from consideration of the most severe injuries, especially in the context of multiple trauma, to the specific characteristics of blunt and open trauma. In the present article, these injuries are discussed according to the involvement of the various thoracic structures. Rib fractures are the most frequent chest injuries and their diagnosis and treatment is straightforward, although these injuries can be severe if more than three ribs are affected and when there is major associated morbidity. Lung contusion is the most common visceral lesion. These injuries are usually found in severe chest trauma and are often associated with other thoracic and intrathoracic lesions. Treatment is based on general support measures. Pleural complications, such as hemothorax and pneumothorax, are also frequent. Their diagnosis is also straightforward and treatment is based on pleural drainage. This article also analyzes other complex situations, notably airway trauma, which is usually very severe in blunt chest trauma and less severe and even suitable for conservative treatment in iatrogenic injury due to tracheal intubation. Rupture of the diaphragm usually causes a diaphragmatic hernia. Treatment is always surgical. Myocardial contusions should be suspected in anterior chest trauma and in sternal fractures. Treatment is conservative. Other chest injuries, such as those of the great thoracic and esophageal vessels, are less frequent but are especially severe. Copyright © 2011 Sociedad Española de Neumología y Cirugía Torácica. Published by Elsevier Espana. All rights reserved.

  12. Chest X-Ray (Chest Radiography)

    Science.gov (United States)

    ... Resources Professions Site Index A-Z X-ray (Radiography) - Chest Chest x-ray uses a very small dose ... Radiography? What is a Chest X-ray (Chest Radiography)? The chest x-ray is the most commonly performed diagnostic ...

  13. Chest pain

    International Nuclear Information System (INIS)

    Martinez A, Juan Carlos; Saenz M, Oscar; Martinez M, Camilo; Gonzales A Francisco; Nicolas R, Jose; Vergara V, Erika P; Pereira G, Alberto M

    2010-01-01

    In emergency departments, chest pain is one of the leading motives of consultation. We thus consider it important to review aspects such as its classification, causes, and clinical profiles. Initial assessment should include a full clinical history comprising thorough anamnesis and physical examination. Adequate interpretation of auxiliary tests, ordered in accordance with suspected clinical conditions, should lead to accurate diagnosis. We highlight certain symptoms and clinical signs, ECG and X-ray findings, cardiac bio markers, arterial blood gases, and CT-scanning. Scores of severity and prognosis such as TIMI are assessed. Optimal treatment of the clinical conditions leading to chest pain depends on adequate initial approach and assessment.

  14. Anatomical background and generalized detectability in tomosynthesis and cone-beam CT

    International Nuclear Information System (INIS)

    Gang, G. J.; Tward, D. J.; Lee, J.; Siewerdsen, J. H.

    2010-01-01

    Purpose: Anatomical background presents a major impediment to detectability in 2D radiography as well as 3D tomosynthesis and cone-beam CT (CBCT). This article incorporates theoretical and experimental analysis of anatomical background ''noise'' in cascaded systems analysis of 2D and 3D imaging performance to yield ''generalized'' metrics of noise-equivalent quanta (NEQ) and detectability index as a function of the orbital extent of the (circular arc) source-detector orbit. Methods: A physical phantom was designed based on principles of fractal self-similarity to exhibit power-law spectral density (κ/f β ) comparable to various anatomical sites (e.g., breast and lung). Background power spectra [S B (f)] were computed as a function of source-detector orbital extent, including tomosynthesis (∼10 deg. - 180 deg.) and CBCT (180 deg. +fan to 360 deg.) under two acquisition schemes: (1) Constant angular separation between projections (variable dose) and (2) constant total number of projections (constant dose). The resulting S B was incorporated in the generalized NEQ, and detectability index was computed from 3D cascaded systems analysis for a variety of imaging tasks. Results: The phantom yielded power-law spectra within the expected spatial frequency range, quantifying the dependence of clutter magnitude (κ) and correlation (β) with increasing tomosynthesis angle. Incorporation of S B in the 3D NEQ provided a useful framework for analyzing the tradeoffs among anatomical, quantum, and electronic noise with dose and orbital extent. Distinct implications are posed for breast and chest tomosynthesis imaging system design--applications varying significantly in κ and β, and imaging task and, therefore, in optimal selection of orbital extent, number of projections, and dose. For example, low-frequency tasks (e.g., soft-tissue masses or nodules) tend to benefit from larger orbital extent and more fully 3D tomographic imaging, whereas high-frequency tasks (e

  15. Implementation of Upright Digital Breast Tomosynthesis-guided Stereotactic Biopsy.

    Science.gov (United States)

    Omofoye, Toma S; Martaindale, Sarah; Teichgraeber, Davis C; Parikh, Jay R

    2017-11-01

    With growing adoption of digital breast tomosynthesis, an increasing number of imaging abnormalities are being identified only by tomosynthesis. Upright digital breast tomosynthesis-guided stereotactic biopsy is a proven method for sampling these abnormalities as well as abnormalities traditionally evaluated using conventional stereotactic biopsy. In this article, we describe the technique of upright digital breast tomosynthesis-guided stereotactic biopsy and outline a systematic operational approach to implementation of this technique in clinical radiology practices. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  16. Digital Breast Tomosynthesis guided Near Infrared Spectroscopy: Volumetric estimates of fibroglandular fraction and breast density from tomosynthesis reconstructions.

    Science.gov (United States)

    Vedantham, Srinivasan; Shi, Linxi; Michaelsen, Kelly E; Krishnaswamy, Venkataramanan; Pogue, Brian W; Poplack, Steven P; Karellas, Andrew; Paulsen, Keith D

    A multimodality system combining a clinical prototype digital breast tomosynthesis with its imaging geometry modified to facilitate near-infrared spectroscopic imaging has been developed. The accuracy of parameters recovered from near-infrared spectroscopy is dependent on fibroglandular tissue content. Hence, in this study, volumetric estimates of fibroglandular tissue from tomosynthesis reconstructions were determined. A kernel-based fuzzy c-means algorithm was implemented to segment tomosynthesis reconstructed slices in order to estimate fibroglandular content and to provide anatomic priors for near-infrared spectroscopy. This algorithm was used to determine volumetric breast density (VBD), defined as the ratio of fibroglandular tissue volume to the total breast volume, expressed as percentage, from 62 tomosynthesis reconstructions of 34 study participants. For a subset of study participants who subsequently underwent mammography, VBD from mammography matched for subject, breast laterality and mammographic view was quantified using commercial software and statistically analyzed to determine if it differed from tomosynthesis. Summary statistics of the VBD from all study participants were compared with prior independent studies. The fibroglandular volume from tomosynthesis and mammography were not statistically different ( p =0.211, paired t-test). After accounting for the compressed breast thickness, which were different between tomosynthesis and mammography, the VBD from tomosynthesis was correlated with ( r =0.809, p 0.99, paired t-test), and was linearly related to, the VBD from mammography. Summary statistics of the VBD from tomosynthesis were not statistically different from prior studies using high-resolution dedicated breast computed tomography. The observation of correlation and linear association in VBD between mammography and tomosynthesis suggests that breast density associated risk measures determined for mammography are translatable to tomosynthesis

  17. Digital breast tomosynthesis (3D-mammography) screening: A pictorial review of screen-detected cancers and false recalls attributed to tomosynthesis in prospective screening trials.

    Science.gov (United States)

    Houssami, Nehmat; Lång, Kristina; Bernardi, Daniela; Tagliafico, Alberto; Zackrisson, Sophia; Skaane, Per

    2016-04-01

    This pictorial review highlights cancers detected only at tomosynthesis screening and screens falsely recalled in the course of breast tomosynthesis screening, illustrating both true-positive (TP) and false-positive (FP) detection attributed to tomosynthesis. Images and descriptive data were used to characterise cases of screen-detection with tomosynthesis, sourced from prospective screening trials that performed standard (2D) digital mammography (DM) and tomosynthesis (3D-mammography) in the same screening participants. Exemplar cases from four trials highlight common themes of relevance to screening practice including: the type of lesions frequently made more conspicuous or perceptible by tomosynthesis (spiculated masses, and architectural distortions); the histologic findings (both TP and FP) of tomosynthesis-only detection; and the need to extend breast work-up protocols (additional imaging including ultrasound and MRI, and tomosynthesis-guided biopsy) if tomosynthesis is adopted for primary screening. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... talk with you about chest radiography also known as chest x-rays. Chest x-rays are the ... treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray ...

  19. Breast cancer screening using tomosynthesis in combination with digital mammography.

    Science.gov (United States)

    Friedewald, Sarah M; Rafferty, Elizabeth A; Rose, Stephen L; Durand, Melissa A; Plecha, Donna M; Greenberg, Julianne S; Hayes, Mary K; Copit, Debra S; Carlson, Kara L; Cink, Thomas M; Barke, Lora D; Greer, Linda N; Miller, Dave P; Conant, Emily F

    2014-06-25

    Mammography plays a key role in early breast cancer detection. Single-institution studies have shown that adding tomosynthesis to mammography increases cancer detection and reduces false-positive results. To determine if mammography combined with tomosynthesis is associated with better performance of breast screening programs in the United States. Retrospective analysis of screening performance metrics from 13 academic and nonacademic breast centers using mixed models adjusting for site as a random effect. Period 1: digital mammography screening examinations 1 year before tomosynthesis implementation (start dates ranged from March 2010 to October 2011 through the date of tomosynthesis implementation); period 2: digital mammography plus tomosynthesis examinations from initiation of tomosynthesis screening (March 2011 to October 2012) through December 31, 2012. Recall rate for additional imaging, cancer detection rate, and positive predictive values for recall and for biopsy. A total of 454,850 examinations (n=281,187 digital mammography; n=173,663 digital mammography + tomosynthesis) were evaluated. With digital mammography, 29,726 patients were recalled and 5056 biopsies resulted in cancer diagnosis in 1207 patients (n=815 invasive; n=392 in situ). With digital mammography + tomosynthesis, 15,541 patients were recalled and 3285 biopsies resulted in cancer diagnosis in 950 patients (n=707 invasive; n=243 in situ). Model-adjusted rates per 1000 screens were as follows: for recall rate, 107 (95% CI, 89-124) with digital mammography vs 91 (95% CI, 73-108) with digital mammography + tomosynthesis; difference, -16 (95% CI, -18 to -14; P tomosynthesis; difference, 1.3 (95% CI, 0.4-2.1; P = .004); for cancer detection, 4.2 (95% CI, 3.8-4.7) with digital mammography vs 5.4 (95% CI, 4.9-6.0) with digital mammography + tomosynthesis; difference, 1.2 (95% CI, 0.8-1.6; P tomosynthesis; difference, 1.2 (95% CI, 0.8-1.6; P tomosynthesis was associated with an increase

  20. Dual Energy Tomosynthesis breast phantom imaging

    Science.gov (United States)

    Koukou, V.; Martini, N.; Fountos, G.; Messaris, G.; Michail, C.; Kandarakis, I.; Nikiforidis, G.

    2017-12-01

    Dual energy (DE) imaging technique has been applied to many theoretical and experimental studies. The aim of the current study is to evaluate dual energy in breast tomosynthesis using commercial tomosynthesis system in terms of its potential to better visualize microcalcifications (μCs). The system uses a tungsten target X-ray tube and a selenium direct conversion detector. Low-energy (LE) images were acquired at different tube voltages (28, 30, 32 kV), while high-energy images at 49 kV. Fifteen projections, for the low- and high-energy respectively, were acquired without grid while tube scanned continuously. Log-subtraction algorithm was used in order to obtain the DE images with the weighting factor, w, derived empirically. The subtraction was applied to each pair of LE and HE slices after reconstruction. The TORMAM phantom was imaged with the different settings. Four regions-of-interest including μCs were identified in the inhomogeneous part of the phantom. The μCs in DE images were more clearly visible compared to the low-energy images. Initial results showed that DE tomosynthesis imaging is a promising modality, however more work is required.

  1. Chest radiography after minor chest trauma

    Energy Technology Data Exchange (ETDEWEB)

    Rossen, B.; Laursen, N.O.; Just, S.

    The results of chest radiography in 581 patients with blunt minor thoracic trauma were reviewed. Frontal and lateral views of the chest indicated pathology in 72 patients (12.4%). Pneumothorax was present in 16 patients; 4 had hemothorax. The physical examination and the results of chest radiography were not in accordance because in 6(30%) of the 20 patients with hemo/-pneumothorax the physical examination was normal. Consequently there is wide indication for chest radiography after minor blunt chest trauma.

  2. Radiation dosimetry in digital breast tomosynthesis: Report of AAPM Tomosynthesis Subcommittee Task Group 223

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, Ioannis, E-mail: isechop@emory.edu [Departments of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Sabol, John M. [GE Healthcare, Global Diagnostic X-Ray, Mailstop W-701, 3000 North Grandview Boulevard, Waukesha, Wisconsin 53188 (United States); Berglund, Johan [Research and Development, Philips Women' s Healthcare, Solna (Sweden); Bolch, Wesley E. [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Brateman, Libby [University of Florida, Gainesville, Florida 32611 (United States); Christodoulou, Emmanuel; Goodsitt, Mitchell [Department of Radiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109 (United States); Flynn, Michael [Department of Radiology, Henry Ford Health System, Radiology Research 2F, 1 Ford Place, Detroit, Michigan 48202 (United States); Geiser, William [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Kyle Jones, A. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Lo, Joseph Y.; Paul Segars, W. [Department of Radiology, Medical Physics Graduate Program, and Department of Biomedical Engineering, Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Maidment, Andrew D. A. [Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-4206 (United States); Nishino, Kazuyoshi [R and D X-ray Products Group, Shimadzu Corporation, Tokyo (Japan); Nosratieh, Anita [Biomedical Engineering Graduate Group, Department of Radiology, University of California, Davis, California 95817 (United States); and others

    2014-09-15

    The radiation dose involved in any medical imaging modality that uses ionizing radiation needs to be well understood by the medical physics and clinical community. This is especially true of screening modalities. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Therefore, it is important that the medical physics community have the required information to be able to understand, estimate, and communicate the radiation dose levels involved in breast tomosynthesis imaging. For this purpose, the American Association of Physicists in Medicine Task Group 223 on Dosimetry in Tomosynthesis Imaging has prepared this report that discusses dosimetry in breast imaging in general, and describes a methodology and provides the data necessary to estimate mean breast glandular dose from a tomosynthesis acquisition. In an effort to maximize familiarity with the procedures and data provided in this Report, the methodology to perform the dose estimation in DBT is based as much as possible on that used in mammography dose estimation.

  3. Radiation dosimetry in digital breast tomosynthesis: Report of AAPM Tomosynthesis Subcommittee Task Group 223

    International Nuclear Information System (INIS)

    Sechopoulos, Ioannis; Sabol, John M.; Berglund, Johan; Bolch, Wesley E.; Brateman, Libby; Christodoulou, Emmanuel; Goodsitt, Mitchell; Flynn, Michael; Geiser, William; Kyle Jones, A.; Lo, Joseph Y.; Paul Segars, W.; Maidment, Andrew D. A.; Nishino, Kazuyoshi; Nosratieh, Anita

    2014-01-01

    The radiation dose involved in any medical imaging modality that uses ionizing radiation needs to be well understood by the medical physics and clinical community. This is especially true of screening modalities. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Therefore, it is important that the medical physics community have the required information to be able to understand, estimate, and communicate the radiation dose levels involved in breast tomosynthesis imaging. For this purpose, the American Association of Physicists in Medicine Task Group 223 on Dosimetry in Tomosynthesis Imaging has prepared this report that discusses dosimetry in breast imaging in general, and describes a methodology and provides the data necessary to estimate mean breast glandular dose from a tomosynthesis acquisition. In an effort to maximize familiarity with the procedures and data provided in this Report, the methodology to perform the dose estimation in DBT is based as much as possible on that used in mammography dose estimation

  4. Chest X-Ray

    Medline Plus

    Full Text Available ... about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed x-ray exams and use a very small dose of ... of the inside of the chest. A chest x-ray is used to evaluate the lungs, heart and ...

  5. Design and development of a phantom for tomosynthesis with potential for automated analysis via the cloud.

    Science.gov (United States)

    Goodenough, David; Levy, Josh; Olafsdottir, Hildur; Olafsson, Ingvi

    2018-03-06

    This paper describes Development of a Phantom for Tomosynthesis with Potential for Automated Analysis via the Cloud. Several studies are underway to investigate the effectiveness of Tomosynthesis Mammographic Image Screening, including the large TMIST project as funded by the National Cancer Institute https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/tmist. The development of the phantom described in this paper follows initiatives from the FDA, the AAPM TG245 task group, and European Reference Organization (EUREF) for Quality Assured Breast Screening and Diagnostic Services Committee report noting, that no formal endorsement nor recommendation for use has been sought, or granted by any of these groups. This paper reports on the possibility of using this newly developed Tomosynthesis Phantom for Quality Assurance, field testing of image performance, including remote monitoring of DBT system performance, e.g., via transmission over the cloud. The phantom includes tests for: phantom positioning and alignment (important for remote analysis), scan geometry (x and y), chest wall offset, scan slice width and Slice Sensitivity Profile (SSP(z)) slice geometry (slice width), scan slice incrementation (z), z axis geometry bead, low contrast detectability using low contrast spheres, spatial resolution via Point Spread Function (PSF), Image uniformity, Signal to Noise Ratio (SNR), and Contrast to Noise Ratio (CNR) via readings over an Aluminum square. The phantom is designed for use with automated analysis via transmission of images over the cloud and the analysis package includes test of positioning accuracy (roll, pitch, and yaw). Data are shown from several commercial Tomosynthesis Scanners including Fuji, GE, Hologic, IMS-Giotti, and Siemens; however, the focus of this paper is on phantom design, and not in general aimed at direct commercial comparisons, and wherever possible the identity of the data is anonymized. Results of automated analysis of

  6. Digital tomosynthesis in breast cancer: A systematic review.

    Science.gov (United States)

    García-León, F J; Llanos-Méndez, A; Isabel-Gómez, R

    2015-01-01

    To estimate and compare the diagnostic validity of tomosynthesis and digital mammography for screening and diagnosing breast cancer. We systematically searched MedLine, EMBASE, and Web of Science for the terms breast cancer, screening, tomosynthesis, mammography, sensitivity, and specificity in publications in the period comprising June 2010 through February 2013. We included studies on diagnostic tests and systematic reviews. Two reviewers selected and evaluated the articles. We used QUADAS 2 to evaluate the risk of bias and the NICE criteria to determine the level of evidence. We compiled a narrative synthesis. Of the 151 original studies identified, we selected 11 that included a total of 2475 women. The overall quality was low, with a risk of bias and follow-up and limitations regarding the applicability of the results. The level of evidence was not greater than level II. The sensitivity of tomosynthesis ranged from 69% to 100% and the specificity ranged from 54% to 100%. The negative likelihood ratio was good, and this makes tomosynthesis useful as a test to confirm a diagnosis. One-view tomosynthesis was no better than two-view digital mammography, and the evidence for the superiority of two-view tomosynthesis was inconclusive. The results for the diagnostic validity of tomosynthesis in the diagnosis of breast cancer were inconclusive and there were no results for its use in screening. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  7. TU-AB-207-01: Introduction to Tomosynthesis

    International Nuclear Information System (INIS)

    Sechopoulos, I.

    2015-01-01

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis

  8. TU-AB-207-03: Tomosynthesis: Clinical Applications

    International Nuclear Information System (INIS)

    Maidment, A.

    2015-01-01

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis

  9. TU-AB-207-00: Digital Tomosynthesis

    International Nuclear Information System (INIS)

    2015-01-01

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis

  10. TU-AB-207-03: Tomosynthesis: Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Maidment, A. [Univ Pennsylvania (United States)

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.

  11. TU-AB-207-00: Digital Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.

  12. TU-AB-207-01: Introduction to Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, I. [Emory University (United States)

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.

  13. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

    Directory of Open Access Journals (Sweden)

    Arefan D

    2015-06-01

    Full Text Available Digital Breast Tomosynthesis (DBT is a technology that creates three dimensional (3D images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU. At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU card and the Graphics Processing Unit (GPU. It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU.

  14. Automatic correspondence detection in mammogram and breast tomosynthesis images

    Science.gov (United States)

    Ehrhardt, Jan; Krüger, Julia; Bischof, Arpad; Barkhausen, Jörg; Handels, Heinz

    2012-02-01

    Two-dimensional mammography is the major imaging modality in breast cancer detection. A disadvantage of mammography is the projective nature of this imaging technique. Tomosynthesis is an attractive modality with the potential to combine the high contrast and high resolution of digital mammography with the advantages of 3D imaging. In order to facilitate diagnostics and treatment in the current clinical work-flow, correspondences between tomosynthesis images and previous mammographic exams of the same women have to be determined. In this paper, we propose a method to detect correspondences in 2D mammograms and 3D tomosynthesis images automatically. In general, this 2D/3D correspondence problem is ill-posed, because a point in the 2D mammogram corresponds to a line in the 3D tomosynthesis image. The goal of our method is to detect the "most probable" 3D position in the tomosynthesis images corresponding to a selected point in the 2D mammogram. We present two alternative approaches to solve this 2D/3D correspondence problem: a 2D/3D registration method and a 2D/2D mapping between mammogram and tomosynthesis projection images with a following back projection. The advantages and limitations of both approaches are discussed and the performance of the methods is evaluated qualitatively and quantitatively using a software phantom and clinical breast image data. Although the proposed 2D/3D registration method can compensate for moderate breast deformations caused by different breast compressions, this approach is not suitable for clinical tomosynthesis data due to the limited resolution and blurring effects perpendicular to the direction of projection. The quantitative results show that the proposed 2D/2D mapping method is capable of detecting corresponding positions in mammograms and tomosynthesis images automatically for 61 out of 65 landmarks. The proposed method can facilitate diagnosis, visual inspection and comparison of 2D mammograms and 3D tomosynthesis images for

  15. Filtered backprojection for modifying the impulse response of circular tomosynthesis

    International Nuclear Information System (INIS)

    Stevens, Grant M.; Fahrig, Rebecca; Pelc, Norbert J.

    2001-01-01

    A filtering technique has been developed to modify the three-dimensional impulse response of circular motion tomosynthesis to allow the generation of images whose appearance is like those of some other imaging geometries. In particular, this technique can reconstruct images with a blurring function which is more homogeneous for off-focal plane objects than that from circular tomosynthesis. In this paper, we describe the filtering process, and demonstrate the ability to alter the impulse response in circular motion tomosynthesis from a ring to a disk. This filtering may be desirable because the blurred out-of-plane objects appear less structured

  16. MRI of the Chest

    Medline Plus

    Full Text Available ... gives detailed pictures of structures within the chest cavity, including the mediastinum , chest wall, pleura, heart and ... helpful to assess the vessels of the chest cavity (arteries and veins). MRA can also demonstrate an ...

  17. MRI of the Chest

    Medline Plus

    Full Text Available ... to produce detailed pictures of organs, soft tissues, bone and virtually all other internal body structures. MRI ... of the chest. assess disorders of the chest bones (vertebrae, ribs and sternum) and chest wall soft ...

  18. Computed tomography of chest trauma

    International Nuclear Information System (INIS)

    Dinkel, E.; Uhl, H.; Reinbold, W.D.; Wimmer, B.; Wenz, W.

    1987-01-01

    Chest CT scans were obtained in 86 patients suffering from serious blunt or penetrating chest trauma. The finding of mediastinal widening was by far the most common CT indication. CT proved to be a more sensitive method for detection of parenchymal lung lesions and occult pneumothorax than bedside radiographs. CT contributed substantially in differentiation of lung abscess and empyema, exclusion of mediastinal pathology and spinal injuries. Aortography is still indicated, even when CT findings are normal, if aortic laceration is clinically suspected. Despite all technical problems combined with CT examinations in the critically ill patient, we consider CT a valuable diagnostic tool for selected problems in the traumatized patient. (orig.) [de

  19. Computed tomography of chest trauma

    Energy Technology Data Exchange (ETDEWEB)

    Dinkel, E.; Uhl, H.; Reinbold, W.D.; Wimmer, B.; Wenz, W.

    1987-09-01

    Chest CT scans were obtained in 86 patients suffering from serious blunt or penetrating chest trauma. The finding of mediastinal widening was by far the most common CT indication. CT proved to be a more sensitive method for detection of parenchymal lung lesions and occult pneumothorax than bedside radiographs. CT contributed substantially in differentiation of lung abscess and empyema, exclusion of mediastinal pathology and spinal injuries. Aortography is still indicated, even when CT findings are normal, if aortic laceration is clinically suspected. Despite all technical problems combined with CT examinations in the critically ill patient, we consider CT a valuable diagnostic tool for selected problems in the traumatized patient.

  20. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis

    Science.gov (United States)

    Godfrey, Devon J.; Page McAdams, H.; Dobbins, James T.

    2013-01-01

    Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20° and 5 mm plane separation, seven MITS planes must be

  1. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, Devon J. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Page McAdams, H. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Dobbins, James T. III [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Department of Biomedical Engineering, Department of Physics, and Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States)

    2013-02-15

    Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20 Degree-Sign and 5 mm plane separation, seven MITS

  2. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis.

    Science.gov (United States)

    Godfrey, Devon J; McAdams, H Page; Dobbins, James T

    2013-02-01

    Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. For scan angles of 20° and 5 mm plane separation, seven MITS planes must be averaged to sufficiently

  3. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis

    International Nuclear Information System (INIS)

    Godfrey, Devon J.; Page McAdams, H.; Dobbins, James T. III

    2013-01-01

    Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20° and 5 mm plane separation, seven MITS planes must be

  4. Digital Breast Tomosynthesis: State of the Art

    Science.gov (United States)

    Vedantham, Srinivasan; Vijayaraghavan, Gopal R.; Kopans, Daniel B.

    2015-01-01

    This topical review on digital breast tomosynthesis (DBT) is provided with the intent of describing the state of the art in terms of technology, results from recent clinical studies, advanced applications, and ongoing efforts to develop multimodality imaging systems that include DBT. Particular emphasis is placed on clinical studies. The observations of increase in cancer detection rates, particularly for invasive cancers, and the reduction in false-positive rates with DBT in prospective trials indicate its benefit for breast cancer screening. Retrospective multireader multicase studies show either noninferiority or superiority of DBT compared with mammography. Methods to curtail radiation dose are of importance. © RSNA, 2015 PMID:26599926

  5. Tomosynthesis Breast Imaging Early Detection and Characterization of Breast Cancer

    National Research Council Canada - National Science Library

    Hamberg, Leena

    2000-01-01

    A digital tomosynthesis mammography method was developed with which to obtain tomographic images of the breast by acquiring a series of low radiation dose images as the x-ray tube moves in an arc above the breast...

  6. Computer Aided Detection of Breast Masses in Digital Tomosynthesis

    National Research Council Canada - National Science Library

    Singh, Swatee; Lo, Joseph

    2008-01-01

    The purpose of this study was to investigate feasibility of computer-aided detection of masses and calcification clusters in breast tomosynthesis images and obtain reliable estimates of sensitivity...

  7. Tomosynthesis Breast Imaging: Early Detection and Characterization of Breast Cancer

    National Research Council Canada - National Science Library

    Hamberg, Leena

    1999-01-01

    Our aim for the second year of this grant was to investigate the tomosynthetic image quality by performing experimental studies using the specially developed phantoms and to quantitate tomosynthesis...

  8. Chest radiography after minor chest trauma

    International Nuclear Information System (INIS)

    Rossen, B.; Laursen, N.O.; Just, S.

    1987-01-01

    The results of chest radiography in 581 patients with blunt minor thoracic trauma were reviewed. Frontal and lateral views of the chest indicated pathology in 72 patients (12.4%). Pneumothorax was present in 16 patients; 4 had hemothorax. The physical examination and the results of chest radiography were not in accordance because in 6(30%) of the 20 patients with hemo/-pneumothorax the physical examination was normal. Consequently there is wide indication for chest radiography after minor blunt chest trauma. (orig.)

  9. An adaptive toolkit for image quality evaluation in system performance test of digital breast tomosynthesis

    Science.gov (United States)

    Zhang, Guozhi; Petrov, Dimitar; Marshall, Nicholas; Bosmans, Hilde

    2017-03-01

    Digital breast tomosynthesis (DBT) is a relatively new diagnostic imaging modality for women. Currently, various models of DBT systems are available on the market and the number of installations is rapidly increasing. EUREF, the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services, has proposed a preliminary Guideline - protocol for the quality control of the physical and technical aspects of digital breast tomosynthesis systems, with an ultimate aim of providing limiting values guaranteeing proper performance for different applications of DBT. In this work, we introduce an adaptive toolkit developed in accordance with this guideline to facilitate the process of image quality evaluation in DBT performance test. This toolkit implements robust algorithms to quantify various technical parameters of DBT images and provides a convenient user interface in practice. Each test is built into a separate module with configurations set corresponding to the European guideline, which can be easily adapted to different settings and extended with additional tests. This toolkit largely improves the efficiency for image quality evaluation of DBT. It is also going to evolve with the development of protocols in quality control of DBT systems.

  10. A software-based x-ray scatter correction method for breast tomosynthesis

    OpenAIRE

    Jia Feng, Steve Si; Sechopoulos, Ioannis

    2011-01-01

    Purpose: To develop a software-based scatter correction method for digital breast tomosynthesis (DBT) imaging and investigate its impact on the image quality of tomosynthesis reconstructions of both phantoms and patients.

  11. TOMOGRAPHIC MAMMOGRAPHY AND TOMOSYNTHESIS USING OPENGL

    Directory of Open Access Journals (Sweden)

    S. A. Zolotarev

    2016-01-01

    Full Text Available Computed tomography is still being intensively studied and widely used to solve a number of industrial and medical applications. The simultaneous algebraic reconstruction technique (SART and Bayesian inference reconstruction (BIR are considered as advantageous iteration methods that are most suitable for improving the quality of the reconstructed 3D-images. The paper deals with the parallel iterative algorithms to ensure the reconstruction of threedimensional images of the breast, recovered from a limited set of noisy X-ray projections. Algebraic method of reconstruction with simultaneous iterations – SART and iterative method for statistical reconstruction of BIR are deemed to be the most preferred iterative methods. We believe that these methods are particularly useful for improving the quality of breast reconstructed image. We use the graphics processor (GPU to accelerate the process of reconstruction. Preliminary results show that all investigated methods are useful in breast reconstruction layered images. However, it was found that the method of classical tomosynthesis SAA is less efficient than iterative methods SART and BIR as the worst suppress the anatomical noise. Despite the fact that the estimated ratio of the contrast / noise ratio in the presence of internal structures with low contrast is higher for classical tomosynthesis method the SAA, its effectiveness in the presence of highly structured background is low. In our opinion the best results can be achieved using statistical iterative reconstruction BIR.

  12. Subtalar joint stress imaging with tomosynthesis.

    Science.gov (United States)

    Teramoto, Atsushi; Watanabe, Kota; Takashima, Hiroyuki; Yamashita, Toshihiko

    2014-06-01

    The purpose of this study was to perform stress imaging of hindfoot inversion and eversion using tomosynthesis and to assess the subtalar joint range of motion (ROM) of healthy subjects. The subjects were 15 healthy volunteers with a mean age of 29.1 years. Coronal tomosynthesis stress imaging of the subtalar joint was performed in a total of 30 left and right ankles. A Telos stress device was used for the stress load, and the load was 150 N for both inversion and eversion. Tomographic images in which the posterior talocalcaneal joint could be confirmed on the neutral position images were used in measurements. The angle of the intersection formed by a line through the lateral articular facet of the posterior talocalcaneal joint and a line through the surface of the trochlea of the talus was measured. The mean change in the angle of the calcaneus with respect to the talus was 10.3 ± 4.8° with inversion stress and 5.0 ± 3.8° with eversion stress from the neutral position. The result was a clearer depiction of the subtalar joint, and inversion and eversion ROM of the subtalar joint was shown to be about 15° in healthy subjects. Diagnostic, Level IV.

  13. Task-based assessment of breast tomosynthesis: Effect of acquisition parameters and quantum noise1

    OpenAIRE

    Reiser, I.; Nishikawa, R. M.

    2010-01-01

    Purpose: Tomosynthesis is a promising modality for breast imaging. The appearance of the tomosynthesis reconstructed image is greatly affected by the choice of acquisition and reconstruction parameters. The purpose of this study was to investigate the limitations of tomosynthesis breast imaging due to scan parameters and quantum noise. Tomosynthesis image quality was assessed based on performance of a mathematical observer model in a signal-known exactly (SKE) detection task.

  14. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space

    OpenAIRE

    Chawla, Amarpreet S.; Lo, Joseph Y.; Baker, Jay A.; Samei, Ehsan

    2009-01-01

    Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigat...

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... I’d like to talk with you about chest radiography also known as chest x-rays. Chest x-rays are the most ... far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! ...

  16. Chest Pain: First Aid

    Science.gov (United States)

    First aid Chest pain: First aid Chest pain: First aid By Mayo Clinic Staff Causes of chest pain can vary from minor problems, such as indigestion ... 26, 2018 Original article: http://www.mayoclinic.org/first-aid/first-aid-chest-pain/basics/ART-20056705 . Mayo ...

  17. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... d like to talk with you about chest radiography also known as chest x-rays. Chest x- ...

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  19. The chest

    International Nuclear Information System (INIS)

    Berdon, W.E.

    1985-01-01

    Radiographic interpretation of chest films of newborns in respiratory distress remains one of the most difficult aspects of pediatric radiology. Complex pulmonary and cardiac adjustments to extrauterine life are rapidly taking place. The small, fluid-filled fetal lung must rid itself of fluid and fill with air. The high vascular resistance of the fetal pulmonary bed and the open ductus arteriosus allow shunting of blood in both directions. Films taken in this period of time may show lungs that resemble those seen in congestive heart failure or fluid overload. When these findings are observed in infants who may appear dusky or even cyanotic, the result may be the diagnosis of disease in normal infants passing through a stormy transition period. To make things worse, the films are taken as portable surpine films, usually in an isolette in the intensive care unit (ICU). The phase of respiration is difficult, if not impossible, to control, and lateral films are usually not obtained. Many of the infants are on assisted ventilation either by tube or nasal prongs-nasal continuous positive airway pressure (CPAP)-and lungs can appear over-inflated or whited out, depending on the pressures used and the phase of the respiratory cycle. Prolonged crying itself can make lungs appear semiopaque; the next breath may show such a dramatic reinflation that it is hard to believe the two films are of the same infant, made only seconds apart. Is the heart large? Or is it the thymus? Are the lungs ''wet''? Is there infection? Is there pulmonary vascular engorgement? Why are these films so hard to interpret? They have no easy answers. The radiologist must realize that the neonatal intensive care personnel, armed though they may be with blood gas values, are no better at interpreting films. If anything, they read into them what they wish to see

  20. A Software Phantom : Application in Digital Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lazos, D; Kolitsi, Z; Badea, C; Pallikarakis, N [Medical Physics Laboratory, School of Medicine, Univercity of Patras (Greece)

    1999-12-31

    A software phantom intended to be used in radiographic applications has been developed. The application was used for research in the field of Digital Tomosynthesis and specifically for studying tomographic noise removal methods. The application consists of a phantom design and a phantom imaging module. The radiation-matter interaction is based on the exponential relation of attenuation. Projections are formed by simulated irradiation with selectable geometrical parameters, source spectrum and detector response. Phantoms are defined either as sets containing certain geometrical objects or as groups of voxels. Comparison with real projections taken from a physical phantom with identical geometry and composition with the simulated one, showed good approximation with improved contrast due to the absence of scatter in the simulated projections. The software phantom proved to be a very useful tool for DTS investigations. Further development to include scatter is expected to expand the use of the application to more areas in radiological imaging research. (author) 4 refs., 3 figs

  1. Physical aspects of different tomosynthesis systems

    International Nuclear Information System (INIS)

    Semturs, F.; Sturm, E.; Gruber, R.; Helbich, T.H.

    2010-01-01

    Digital breast tomosynthesis (DBT) is a new image processing technique based on digital mammography technology. Image slices of the stationary compressed breast are reconstructed from multiple images taken at different angles of the X-ray tube at the same time. The main goal is to achieve a similar radiation dose exposure as common encountered in traditional digital mammography. One of the key advantages of DBT is that lesions are less likely to be hidden amongst normal tissues as they are in traditional digital mammography. This way the quality of diagnosis can be improved, especially for dense breasts. Current DBT implementations from several manufacturers differ in certain features such as scanning angle, number of projections, scanning time, pixel size, reconstruction methods and type of tube movement. A comparison and description of these different characteristics as well as a discussion on the proposed number of imaging planes and related radiation dose requirements are given. (orig.) [de

  2. A Software Phantom : Application in Digital Tomosynthesis

    International Nuclear Information System (INIS)

    Lazos, D.; Kolitsi, Z.; Badea, C.; Pallikarakis, N.

    1998-01-01

    A software phantom intended to be used in radiographic applications has been developed. The application was used for research in the field of Digital Tomosynthesis and specifically for studying tomographic noise removal methods. The application consists of a phantom design and a phantom imaging module. The radiation-matter interaction is based on the exponential relation of attenuation. Projections are formed by simulated irradiation with selectable geometrical parameters, source spectrum and detector response. Phantoms are defined either as sets containing certain geometrical objects or as groups of voxels. Comparison with real projections taken from a physical phantom with identical geometry and composition with the simulated one, showed good approximation with improved contrast due to the absence of scatter in the simulated projections. The software phantom proved to be a very useful tool for DTS investigations. Further development to include scatter is expected to expand the use of the application to more areas in radiological imaging research. (author)

  3. Radiological diagnostic in acute chest pain

    International Nuclear Information System (INIS)

    Kawel, Nadine; Bremerich, Jens

    2010-01-01

    Acute chest pain is one of the main symptoms leading to a consultation of the emergency department. Main task of the initial diagnostic is the confirmation or exclusion of a potentially life threatening cause. Conventional chest X-ray and computed tomography are the most significant techniques. Due to limited availability and long examination times magnetic resonance tomography rather plays a limited role in routine clinical workup. In the following paper we will systematically review the radiological diagnostic of the acute life threatening causes of chest pain. Imaging modalities, technical aspects and image interpretation will be discussed. (orig.)

  4. Development of low-dose photon-counting contrast-enhanced tomosynthesis with spectral imaging.

    Science.gov (United States)

    Schmitzberger, Florian F; Fallenberg, Eva Maria; Lawaczeck, Rüdiger; Hemmendorff, Magnus; Moa, Elin; Danielsson, Mats; Bick, Ulrich; Diekmann, Susanne; Pöllinger, Alexander; Engelken, Florian J; Diekmann, Felix

    2011-05-01

    To demonstrate the feasibility of low-dose photon-counting tomosynthesis in combination with a contrast agent (contrast material-enhanced tomographic mammography) for the differentiation of breast cancer. All studies were approved by the institutional review board, and all patients provided written informed consent. A phantom model with wells of iodinated contrast material (3 mg of iodine per milliliter) 1, 2, 5, 10, and 15 mm in diameter was assessed. Nine patients with malignant lesions and one with a high-risk lesion (atypical papilloma) were included (all women; mean age, 60.7 years). A multislit photon-counting tomosynthesis system was utilized (spectral imaging) to produce both low- and high-energy tomographic data (below and above the k edge of iodine, respectively) in a single scan, which allowed for dual-energy visualization of iodine. Images were obtained prior to contrast material administration and 120 and 480 seconds after contrast material administration. Four readers independently assessed the images along with conventional mammograms, ultrasonographic images, and magnetic resonance images. Glandular dose was estimated. Contrast agent was visible in the phantom model with simulated spherical tumor diameters as small as 5 mm. The average glandular dose was measured as 0.42 mGy per complete spectral imaging tomosynthesis scan of one breast. Because there were three time points (prior to contrast medium administration and 120 and 480 seconds after contrast medium administration), this resulted in a total dose of 1.26 mGy for the whole procedure in the breast with the abnormality. Seven of 10 cases were categorized as Breast Imaging Reporting and Data System score of 4 or higher by all four readers when reviewing spectral images in combination with mammograms. One lesion near the chest wall was not captured on the spectral image because of a positioning problem. The use of contrast-enhanced tomographic mammography has been demonstrated successfully in

  5. Role of digital tomosynthesis and dual energy subtraction digital radiography in detecting pulmonary nodules

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvana G. [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Garg, Mandeep Kumar, E-mail: gargmandeep01@gmail.com [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Khandelwal, Niranjan; Gupta, Pankaj [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Gupta, Dheeraj; Aggarwal, Ashutosh Nath [Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Bansal, Subash Chand [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India)

    2015-07-15

    Highlights: • Accuracy of digital tomosynthesis for nodule detection is substantially higher. • Improvement in diagnostic accuracy is most pronounced for nodules <10 mm. • There is five times increase in radiation dose compared to DR. - Abstract: Objective: Digital tomosynthesis (DT) and dual-energy subtraction digital radiography (DES-DR) are known to perform better than conventional radiography in the detection of pulmonary nodules. Yet the comparative diagnostic performances of DT, DES-DR and digital radiography (DR) is not known. The present study compares the diagnostic performances of DT, DES-DR and DR in detecting pulmonary nodules. Subjects and methods: The institutional Review Board approved the study and informed written consent was obtained. Fifty-five patients (30 with pulmonary nodules, 25 with non-nodular focal chest pathology) were included in the study. DT and DES-DR were performed within14 days of MDCT. Composite images acquired at high kVp as part of DES-DR were used as DR images. Images were analyzed for presence of nodules and calcification in nodules. Interpretations were assigned confidence levels from 1 to 5 according to Five-Point rating scale. Areas under the receiver operating characteristic curves were compared using Z test. Results: A total of 110 (88 non-calcified, 22 calcified) nodules were identified on MDCT. For detection of nodules, DR showed cumulative sensitivity and specificity of 25.45% and 67.97%, respectively. DT showed a cumulative sensitivity and specificity of 60.9% and 85.07%, respectively. The performance was significantly better than DR (p < 0.003). DES-DR showed sensitivity and specificity of 27.75% and 82.64%, not statistically different from those of DR (p—0.92). In detection of calcification, there was no statistically significant difference between DT, DES-DR and DR. Conclusions: DT performs significantly better than DES-DR and DR at the cost of moderate increase in radiation dose.

  6. Organ dose variability and trends in tomosynthesis and radiography.

    Science.gov (United States)

    Hoye, Jocelyn; Zhang, Yakun; Agasthya, Greeshma; Sturgeon, Greg; Kapadia, Anuj; Segars, W Paul; Samei, Ehsan

    2017-07-01

    The purpose of this study was to investigate relationships between patient attributes and organ dose for a population of computational phantoms for 20 tomosynthesis and radiography protocols. Organ dose was estimated from 54 adult computational phantoms (age: 18 to 78 years, weight 52 to 117 kg) using a validated Monte-Carlo simulation (PENELOPE) of a system capable of performing tomosynthesis and radiography. The geometry and field of view for each exam were modeled to match clinical protocols. For each protocol, the energy deposited in each organ was estimated by the simulations, converted to dose units, and then normalized by exposure in air. Dose to radiosensitive organs was studied as a function of average patient thickness in the region of interest and as a function of body mass index. For tomosynthesis, organ doses were also studied as a function of x-ray tube position. This work developed comprehensive information for organ dose dependencies across a range of tomosynthesis and radiography protocols. The results showed a protocol-dependent exponential decrease with an increasing patient size. There was a variability in organ dose across the patient population, which should be incorporated in the metrology of organ dose. The results can be used to prospectively and retrospectively estimate organ dose for tomosynthesis and radiography.

  7. Effective dose to patients from thoracic spine examinations with tomosynthesis

    International Nuclear Information System (INIS)

    Svalkvist, Angelica; Baath, Magnus; Soederman, Christina

    2016-01-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm -2 was obtained. (authors)

  8. EFFECTIVE DOSE TO PATIENTS FROM THORACIC SPINE EXAMINATIONS WITH TOMOSYNTHESIS.

    Science.gov (United States)

    Svalkvist, Angelica; Söderman, Christina; Båth, Magnus

    2016-06-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm(-2) was obtained. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Ray tracing reconstruction investigation for C-arm tomosynthesis

    Science.gov (United States)

    Malalla, Nuhad A. Y.; Chen, Ying

    2016-04-01

    C-arm tomosynthesis is a three dimensional imaging technique. Both x-ray source and the detector are mounted on a C-arm wheeled structure to provide wide variety of movement around the object. In this paper, C-arm tomosynthesis was introduced to provide three dimensional information over a limited view angle (less than 180o) to reduce radiation exposure and examination time. Reconstruction algorithms based on ray tracing method such as ray tracing back projection (BP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were developed for C-arm tomosynthesis. C-arm tomosynthesis projection images of simulated spherical object were simulated with a virtual geometric configuration with a total view angle of 40 degrees. This study demonstrated the sharpness of in-plane reconstructed structure and effectiveness of removing out-of-plane blur for each reconstruction algorithms. Results showed the ability of ray tracing based reconstruction algorithms to provide three dimensional information with limited angle C-arm tomosynthesis.

  10. Lesion characterization in spectral photon-counting tomosynthesis

    Science.gov (United States)

    Cederström, Björn; Fredenberg, Erik; Berggren, Karl; Erhard, Klaus; Danielsson, Mats; Wallis, Matthew

    2017-03-01

    It has previously been shown that 2D spectral mammography can be used to discriminate between (likely benign) cystic and (potentially malignant) solid lesions in order to reduce unnecessary recalls in mammography. One limitation of the technique is, however, that the composition of overlapping tissue needs to be interpolated from a region surrounding the lesion. The purpose of this investigation was to demonstrate that lesion characterization can be done with spectral tomosynthesis, and to investigate whether the 3D information available in tomosynthesis can reduce the uncertainty from the interpolation of surrounding tissue. A phantom experiment was designed to simulate a cyst and a tumor, where the tumor was overlaid with a structure that made it mimic a cyst. In 2D, the two targets appeared similar in composition, whereas spectral tomosynthesis revealed the exact compositional difference. However, the loss of discrimination signal due to spread from the plane of interest was of the same strength as the reduction of anatomical noise. Results from a preliminary investigation on clinical tomosynthesis images of solid lesions yielded results that were consistent with the phantom experiments, but were still to some extent inconclusive. We conclude that lesion characterization is feasible in spectral tomosynthesis, but more data, as well as refinement of the calibration and discrimination algorithms, are needed to draw final conclusions about the benefit compared to 2D.

  11. Chest X-Ray

    Medline Plus

    Full Text Available ... some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a ... posted: How to Obtain and Share ...

  12. Chest X-Ray

    Medline Plus

    Full Text Available ... and chest wall and may be used to help evaluate shortness of breath, persistent cough, fever, chest ... or injury. It may also be useful to help diagnose and monitor treatment for a variety of ...

  13. MRI of the Chest

    Medline Plus

    Full Text Available ... are the limitations of MRI of the Chest? What is MRI of the Chest? Magnetic resonance imaging ( ... heart, valves, great vessels, etc.). top of page What are some common uses of the procedure? MR ...

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  15. MRI of the Chest

    Medline Plus

    Full Text Available ... to assess the anatomy and function of the heart and its blood flow. Tell your doctor about ... chest cavity, including the mediastinum , chest wall, pleura, heart and vessels, from almost any angle. MRI also ...

  16. Chest tube insertion

    Science.gov (United States)

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... Be careful there are no kinks in your tube. The drainage system should always sit upright and be placed ...

  17. Chest computed tomography

    DEFF Research Database (Denmark)

    Loeve, Martine; Krestin, Gabriel P.; Rosenfeld, Margaret

    2013-01-01

    are not suitable to study CF lung disease in young children. Chest computed tomography (CT) holds great promise for use as a sensitive surrogate endpoint in CF. A large body of evidence has been produced to validate the use of chest CT as primary endpoint to study CF lung disease. However, before chest CT can...

  18. Preliminary attempt on maximum likelihood tomosynthesis reconstruction of DEI data

    International Nuclear Information System (INIS)

    Wang Zhentian; Huang Zhifeng; Zhang Li; Kang Kejun; Chen Zhiqiang; Zhu Peiping

    2009-01-01

    Tomosynthesis is a three-dimension reconstruction method that can remove the effect of superimposition with limited angle projections. It is especially promising in mammography where radiation dose is concerned. In this paper, we propose a maximum likelihood tomosynthesis reconstruction algorithm (ML-TS) on the apparent absorption data of diffraction enhanced imaging (DEI). The motivation of this contribution is to develop a tomosynthesis algorithm in low-dose or noisy circumstances and make DEI get closer to clinic application. The theoretical statistical models of DEI data in physics are analyzed and the proposed algorithm is validated with the experimental data at the Beijing Synchrotron Radiation Facility (BSRF). The results of ML-TS have better contrast compared with the well known 'shift-and-add' algorithm and FBP algorithm. (authors)

  19. Characterization of lesions in dense breasts: Does tomosynthesis help?

    Directory of Open Access Journals (Sweden)

    Krithika Rangarajan

    2016-01-01

    Full Text Available Context: Mammography in dense breasts is challenging due to lesion obscuration by tissue overlap. Does tomosynthesis offers a solution? Aims: To study the impact of digital breast tomosynthesis (DBT in characterizing lesions in breasts of different mammographic densities. Settings and Design: Prospective blinded study comparing mammography in two views with Mammography + Tomosynthesis. Methods and Material: Tomosynthesis was performed in 199 patients who were assigned Breast imaging reporting and data system (BIRADS categories 0, 3, 4, or 5 on two-dimensional (2D mammogram. Mammograms were first categorized into one of 4 mammographic breast densities in accordance with the American College of Radiology (ACR. Three radiologists independently analyzed these images and assigned a BIRADS category first based on 2D mammogram alone, and then assigned a fresh BIRADS category after taking mammography and tomosynthesis into consideration. A composite gold-standard was used in the study (histopathology, ultrasound, follow-up mammogram, magnetic resonance imaging. Each lesion was categorized into 3 groups—superior categorization with DBT, no change in BIRADS, or inferior BIRADS category based on comparison with the gold-standard. The percentage of lesions in each group was calculated for different breast densities. Results: There were 260 lesions (ages 28–85. Overall, superior categorization was seen in 21.2% of our readings on addition of DBT to mammography. DBT was most useful in ACR Densities 3 and 4 breasts where it led to more appropriate categorization in 27 and 42% of lesions, respectively. DBT also increased diagnostic confidence in 54.5 and 63.6% of lesions in ACR Densities 3 and 4, respectively. Conclusions: In a diagnostic setting, the utility of tomosynthesis increases with increasing breast density. This helps in identifying the sub category of patients where DBT can actually change management.

  20. Characterization of lesions in dense breasts: Does tomosynthesis help?

    Science.gov (United States)

    Rangarajan, Krithika; Hari, Smriti; Thulkar, Sanjay; Sharma, Sanjay; Srivastava, Anurag; Parshad, Rajinder

    2016-01-01

    Mammography in dense breasts is challenging due to lesion obscuration by tissue overlap. Does tomosynthesis offers a solution? To study the impact of digital breast tomosynthesis (DBT) in characterizing lesions in breasts of different mammographic densities. Prospective blinded study comparing mammography in two views with Mammography + Tomosynthesis. Tomosynthesis was performed in 199 patients who were assigned Breast imaging reporting and data system (BIRADS) categories 0, 3, 4, or 5 on two-dimensional (2D) mammogram. Mammograms were first categorized into one of 4 mammographic breast densities in accordance with the American College of Radiology (ACR). Three radiologists independently analyzed these images and assigned a BIRADS category first based on 2D mammogram alone, and then assigned a fresh BIRADS category after taking mammography and tomosynthesis into consideration. A composite gold-standard was used in the study (histopathology, ultrasound, follow-up mammogram, magnetic resonance imaging). Each lesion was categorized into 3 groups-superior categorization with DBT, no change in BIRADS, or inferior BIRADS category based on comparison with the gold-standard. The percentage of lesions in each group was calculated for different breast densities. There were 260 lesions (ages 28-85). Overall, superior categorization was seen in 21.2% of our readings on addition of DBT to mammography. DBT was most useful in ACR Densities 3 and 4 breasts where it led to more appropriate categorization in 27 and 42% of lesions, respectively. DBT also increased diagnostic confidence in 54.5 and 63.6% of lesions in ACR Densities 3 and 4, respectively. In a diagnostic setting, the utility of tomosynthesis increases with increasing breast density. This helps in identifying the sub category of patients where DBT can actually change management.

  1. American College of Chest Physicians

    Science.gov (United States)

    ... Foundation Participate in the e-Community Get Social Career Connection Publications CHEST Journal CHEST SEEK Guidelines & Consensus Statements CHEST Physician CHEST NewsBrief Coding for Chest Medicine Tobacco Dependence Toolkit (3rd Ed.) Mobile Websites and Apps CHEST Journal ...

  2. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system

    International Nuclear Information System (INIS)

    Rodrigues, Leonardo; Braz, Delson; Goncalves Magalhaes, Luis Alexandre

    2015-01-01

    Digital breast tomosynthesis (DBT) is a screening and diagnostic modality that acquires images of the breast at multiple angles during a short scan. The Selenia Dimensions (Hologic, Bedford, Mass) DBT system can perform both full-field digital mammography and DBT. The system acquires 15 projections over a 15 deg. angular range (from -7.5 deg. to +7.5 deg.). An important factor in determining the optimal imaging technique for breast tomosynthesis is the radiation dose. In breast imaging, the radiation dose of concern is that deposited in the glandular tissue of the breast because this is the tissue that has a risk of developing cancer. The concept of the normalised mean glandular dose (DgN) has been introduced as the metric for the dose in breast imaging. The DgN is difficult to measure. The Monte Carlo techniques offer an alternative method for a realistic estimation of the radiation dose. The purpose of this work was to use the Monte Carlo code MCNPX technique to generate monoenergetic glandular dose data for estimating the breast tissue dose in tomosynthesis for arbitrary spectra as well as to observe the deposited radiation dose by projection on the glandular portion of the breast in a Selenia Dimensions DBT system. A Monte Carlo simulation of the system was developed to compute the DgN in a craniocaudal view. Monoenergetic X-ray beams from 10 to 49 keV in 1-keV increments were used. The simulation utilised the assumption of a homogeneous breast composition and three compositions (0 % glandular, 50 % glandular and 100 % glandular). The glandular and adipose tissue compositions were specified according ICRU Report 44. A skin layer of 4 mm was assumed to encapsulate the breast on all surfaces. The breast size was varied using the chest wall-to-nipple distance (CND) and compressed breast thickness (t). In this work, the authors assumed a CND of 5 cm and the thicknesses ranged from 2 to 8 cm, in steps of 2 cm. The fractional energy absorption increases (up to 44

  3. Scatter radiation in digital tomosynthesis of the breast

    International Nuclear Information System (INIS)

    Sechopoulos, Ioannis; Suryanarayanan, Sankararaman; Vedantham, Srinivasan; D'Orsi, Carl J.; Karellas, Andrew

    2007-01-01

    Digital tomosynthesis of the breast is being investigated as one possible solution to the problem of tissue superposition present in planar mammography. This imaging technique presents various advantages that would make it a feasible replacement for planar mammography, among them similar, if not lower, radiation glandular dose to the breast; implementation on conventional digital mammography technology via relatively simple modifications; and fast acquisition time. One significant problem that tomosynthesis of the breast must overcome, however, is the reduction of x-ray scatter inclusion in the projection images. In tomosynthesis, due to the projection geometry and radiation dose considerations, the use of an antiscatter grid presents several challenges. Therefore, the use of postacquisition software-based scatter reduction algorithms seems well justified, requiring a comprehensive evaluation of x-ray scatter content in the tomosynthesis projections. This study aims to gain insight into the behavior of x-ray scatter in tomosynthesis by characterizing the scatter point spread functions (PSFs) and the scatter to primary ratio (SPR) maps found in tomosynthesis of the breast. This characterization was performed using Monte Carlo simulations, based on the Geant4 toolkit, that simulate the conditions present in a digital tomosynthesis system, including the simulation of the compressed breast in both the cranio-caudal (CC) and the medio-lateral oblique (MLO) views. The variation of the scatter PSF with varying tomosynthesis projection angle, as well as the effects of varying breast glandular fraction and x-ray spectrum, was analyzed. The behavior of the SPR for different projection angle, breast size, thickness, glandular fraction, and x-ray spectrum was also analyzed, and computer fit equations for the magnitude of the SPR at the center of mass for both the CC and the MLO views were found. Within mammographic energies, the x-ray spectrum was found to have no appreciable

  4. Digital radiography of the chest

    International Nuclear Information System (INIS)

    Sakurai, Kenji; Hachiya, Junichi; Korenaga, Tateo; Nitatori, Toshiaki; Miyasaka, Yasuo; Furuya, Yoshiro

    1984-01-01

    Initial clinical experience in digital chest radiography utilizing photostimulable phosphor and scanning laser stimulated luminescence was reported. Image quality of conventional film/screen radiography and digital radiography was compared in 30 normal cases. Reflecting wide dynamic range of the system, improved image quality was confirmed in all 30 cases, particularly in visibility of various mediastinal structures and pulmonary vessels. High sensor sensitivity of the system enabled digital radiography to reduce radiation dose requirement significantly. Diagnostically acceptable chest images were obtained with approximately 1/5 of routine dose for conventional radiography without significant image quality degradation. Some artifact created by digital processing were mostly overcome by a routine use of simultaneous display of two different types of image processing and therefore was not an actual drawback from diagnostic standpoint. Further technical advancement of the system to be seen for digital storage, retrieval and tranceference of images. (author)

  5. Tomosynthesis-detected Architectural Distortion: Management Algorithm with Radiologic-Pathologic Correlation.

    Science.gov (United States)

    Durand, Melissa A; Wang, Steven; Hooley, Regina J; Raghu, Madhavi; Philpotts, Liane E

    2016-01-01

    As use of digital breast tomosynthesis becomes increasingly widespread, new management challenges are inevitable because tomosynthesis may reveal suspicious lesions not visible at conventional two-dimensional (2D) full-field digital mammography. Architectural distortion is a mammographic finding associated with a high positive predictive value for malignancy. It is detected more frequently at tomosynthesis than at 2D digital mammography and may even be occult at conventional 2D imaging. Few studies have focused on tomosynthesis-detected architectural distortions to date, and optimal management of these distortions has yet to be well defined. Since implementing tomosynthesis at our institution in 2011, we have learned some practical ways to assess architectural distortion. Because distortions may be subtle, tomosynthesis localization tools plus improved visualization of adjacent landmarks are crucial elements in guiding mammographic identification of elusive distortions. These same tools can guide more focused ultrasonography (US) of the breast, which facilitates detection and permits US-guided tissue sampling. Some distortions may be sonographically occult, in which case magnetic resonance imaging may be a reasonable option, both to increase diagnostic confidence and to provide a means for image-guided biopsy. As an alternative, tomosynthesis-guided biopsy, conventional stereotactic biopsy (when possible), or tomosynthesis-guided needle localization may be used to achieve tissue diagnosis. Practical uses for tomosynthesis in evaluation of architectural distortion are highlighted, potential complications are identified, and a working algorithm for management of tomosynthesis-detected architectural distortion is proposed. (©)RSNA, 2016.

  6. Tomosynthesis as a screening tool for breast cancer: A systematic review

    International Nuclear Information System (INIS)

    Coop, P.; Cowling, C.; Lawson, C.

    2016-01-01

    Background: Mammography is an important screening tool for reducing breast cancer mortality. Digital breast tomosynthesis (DBT) can potentially be integrated with mammography to aid in cancer detection. Method: Using the PRISMA guidelines, a systematic review of current literature was conducted to identify issues relating to the use of tomosynthesis as a screening tool together with mammography. Findings: Using tomosynthesis with digital mammography (DM) increases breast cancer detection, reduces recall rates and increases the positive predictive value of those cases recalled. Invasive cancer detection is significantly improved in tomosynthesis compared to mammography, and has improved success for women with heterogeneous or extremely dense breasts. Conclusion: Tomosynthesis reduces some limitations of mammography at the time of screening that until recently were most often addressed by ultrasound at later work-up. Tomosynthesis can potentially be adopted alongside mammography as a screening tool. - Highlights: • Using tomosynthesis with digital mammography increases breast cancer detection. • Tomosynthesis has improved detection for women with extremely dense breasts. • Tomosynthesis reduces the need for ultrasound to address mammography limitations. • When Tomosynthesis is combined with mammography, recall rates are reduced.

  7. The role of tomosynthesis in breast cancer staging in 75 patients.

    Science.gov (United States)

    Mercier, J; Kwiatkowski, F; Abrial, C; Boussion, V; Dieu-de Fraissinette, V; Marraoui, W; Petitcolin-Bidet, V; Lemery, S

    2015-01-01

    Compare tomosynthesis to mammography, ultrasound, MRI, and histology for the detection and staging of BI-RADS 4-5 anomalies, as a function of breast composition, lesion location, size, and histology. Seventy-five patients underwent mammography, tomosynthesis, ultrasound, and MRI. The diagnostic accuracy of the different examinations was compared. The sensitivities for detection were as follows: 92.5% with MRI, 79% for ultrasound, 75% for tomosynthesis, and 59.5% for mammography. Tomosynthesis improves the sensitivity of mammography (P=0.00013), but not the specificity. The detection of multifocality and multicentricity was improved, but not significantly. Tomosynthesis identified more lesions than mammography in 10% of cases and improved lesion staging irrespective of the density, but was still inferior to MRI. The detection of ductal neoplasia was superior with tomosynthesis than with mammography (P=0.016), but this was not the case with lobular cancer. The visualization of masses was improved with tomosynthesis (P=0.00012), but not microcalcifications. Tomosynthesis was capable of differentiating lesions of all sizes, but the smaller lesions were easier to see. Lesion sizes measured with tomosynthesis, excluding the spicules, concurred with histological dimensions. Spicules lead to an overestimation of the size. In our series, tomosynthesis found more lesions than mammography in 10% of patients, resulting in an adaption of the surgical plan. Copyright © 2014 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  8. Tomosynthesis of the thoracic spine: added value in diagnosing vertebral fractures in the elderly.

    Science.gov (United States)

    Geijer, Mats; Gunnlaugsson, Eirikur; Götestrand, Simon; Weber, Lars; Geijer, Håkan

    2017-02-01

    Thoracic spine radiography becomes more difficult with age. Tomosynthesis is a low-dose tomographic extension of radiography which may facilitate thoracic spine evaluation. This study assessed the added value of tomosynthesis in imaging of the thoracic spine in the elderly. Four observers compared the image quality of 50 consecutive thoracic spine radiography and tomosynthesis data sets from 48 patients (median age 67 years, range 55-92 years) on a number of image quality criteria. Observer variation was determined by free-marginal multirater kappa. The conversion factor and effective dose were determined from the dose-area product values. For all observers significantly more vertebrae were seen with tomosynthesis than with radiography (mean 12.4/9.3, P tomosynthesis was significantly higher than for radiography, for all evaluated structures. Tomosynthesis took longer to evaluate than radiography. Despite this, all observers scored a clear preference for tomosynthesis. Observer agreement was substantial (mean κ = 0.73, range 0.51-0.94). The calibration or conversion factor was 0.11 mSv/(Gy cm 2 ) for the combined examination. The resulting effective dose was 0.87 mSv. Tomosynthesis can increase the detection rate of thoracic vertebral fractures in the elderly, at low added radiation dose. • Tomosynthesis helps evaluate the thoracic spine in the elderly. • Observer agreement for thoracic spine tomosynthesis was substantial (mean κ = 0.73). • Significantly more vertebrae and significantly more fractures were seen with tomosynthesis. • Tomosynthesis took longer to evaluate than radiography. • There was a clear preference among all observers for tomosynthesis over radiography.

  9. Stationary intraoral tomosynthesis for dental imaging

    Science.gov (United States)

    Inscoe, Christina R.; Wu, Gongting; Soulioti, Danai E.; Platin, Enrique; Mol, Andre; Gaalaas, Laurence R.; Anderson, Michael R.; Tucker, Andrew W.; Boyce, Sarah; Shan, Jing; Gonzales, Brian; Lu, Jianping; Zhou, Otto

    2017-03-01

    Despite recent advances in dental radiography, the diagnostic accuracies for some of the most common dental diseases have not improved significantly, and in some cases remain low. Intraoral x-ray is the most commonly used x-ray diagnostic tool in dental clinics. It however suffers from the typical limitations of a 2D imaging modality including structure overlap. Cone-beam computed tomography (CBCT) uses high radiation dose and suffers from image artifacts and relatively low resolution. The purpose of this study is to investigate the feasibility of developing a stationary intraoral tomosynthesis (s-IOT) using spatially distributed carbon nanotube (CNT) x-ray array technology, and to evaluate its diagnostic accuracy compared to conventional 2D intraoral x-ray. A bench-top s-IOT device was constructed using a linear CNT based X-ray source array and a digital intraoral detector. Image reconstruction was performed using an iterative reconstruction algorithm. Studies were performed to optimize the imaging configuration. For evaluation of s-IOT's diagnostic accuracy, images of a dental quality assurance phantom, and extracted human tooth specimens were acquired. Results show s-IOT increases the diagnostic sensitivity for caries compared to intraoral x-ray at a comparable dose level.

  10. Pediatric chest imaging. Chest imaging in infants and children. 2. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Lucaya, Javier [Vall d' Hebron Hospitals, Barcelona (Spain). Dept. of Pediatric Radiology and Inst. of Diagnostic Imaging; Hospital Quiron, Barcelona (Spain). Dept. of Radiology; Strife, Janet L. (eds.) [Cincinnati Univ. Coll. of Medicine, Cincinnati, OH (United States). Dept. of Radiology Cincinnati Children' s Hospital Medical Center

    2008-07-01

    Imaging of the pediatric chest continues to evolve rapidly. All chapters in this 2nd edition of Pediatric Chest Imaging have been extensively updated, with additional disease-specific information and numerous new illustrations. The book thus presents the state of the art in the diagnosis of pediatric chest disorders, highlighting the role played by advanced technology. As the conventional features of most of these disorders are extremely well known, special attention is devoted to the technical aspects of the modern imaging modalities, their indications, and the diagnostic information that they supply. Individual chapters focus on chest ultrasound, nuclear medicine imaging, high-resolution chest CT, helical CT, and pediatric cardiac CT and pediatric cardiacMRI. Others are directed towards specific disorders, including congenital malformations of the chest, chest tumors, pulmonary infection, trauma, the lung in systemic diseases, the pediatric airway, foreign bodies, the thymus, and the chest wall. Without exception, the authors of this book are internationally known specialists with great expertise in the field. This book will serve as a handy, superbly illustrated reference for all who routinely image children, as well as for those who need access to information on how best to image them. (orig.)

  11. Overview of digital breast tomosynthesis: Clinical cases, benefits and disadvantages.

    Science.gov (United States)

    Nguyen, T; Levy, G; Poncelet, E; Le Thanh, T; Prolongeau, J F; Phalippou, J; Massoni, F; Laurent, N

    2015-09-01

    In France, the national breast cancer-screening program is based on mammography combined with clinical breast examination, and sometimes breast ultrasound for patients with high breast density. Digital breast tomosynthesis is a currently assessed 3D imaging technique in which angular projections of the stationary compressed breast are acquired automatically. When combined with mammography, clinicians can review both conventional (2D) as well as three-dimensional (3D) data. The purpose of this article is to review recent reports on this new breast imaging technique and complements this information with our personal experience. The main advantages of tomosynthesis are that it facilitates the detection and characterization of breast lesions, as well as the diagnosis of occult lesions in dense breasts. However, to do this, patients are exposed to higher levels of radiation than with 2D mammography. In France, the indications for tomosynthesis and its use in breast cancer-screening (individual and organized) are yet to be defined, as is its role in the diagnosis and staging of breast cancer (multiple lesions). Further studies assessing in particular the combined reconstruction of the 2D view using 3D tomosynthesis data acquired during a single breast compression event, and therefore reducing patient exposure to radiation, are expected to provide valuable insight. Copyright © 2015 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  12. Generalized Filtered Back-Projection for Digital Breast Tomosynthesis Reconstruction

    NARCIS (Netherlands)

    Erhard, K.; Grass, M.; Hitziger, S.; Iske, A.; Nielsen, T.

    2012-01-01

    Filtered back-projection (FBP) has been commonly used as an efficient and robust reconstruction technique in tomographic X-ray imagingduring the last decades. For limited angle tomography acquisitions such as digital breast tomosynthesis, however, standard FBP reconstruction algorithms provide poor

  13. Blunt chest trauma.

    Science.gov (United States)

    Stewart, Daphne J

    2014-01-01

    Blunt chest trauma is associated with a wide range of injuries, many of which are life threatening. This article is a case study demonstrating a variety of traumatic chest injuries, including pathophysiology, diagnosis, and treatment. Literature on the diagnosis and treatment was reviewed, including both theoretical and research literature, from a variety of disciplines. The role of the advance practice nurse in trauma is also discussed as it relates to assessment, diagnosis, and treatment of patients with traumatic chest injuries.

  14. CT of chest trauma

    International Nuclear Information System (INIS)

    Goodman, P.C.

    1986-01-01

    There appears to be a limited role for computed tomography in the evaluation of chest trauma. The literature contains few papers specifically addressing the use of CT in the setting of chest trauma. Another series of articles relates anecdotal experiences in this regard. This paucity of reports attests to the remarkable amount of information present on conventional chest radiographs as well as the lack of clear indications for CT in the setting of chest trauma. In this chapter traumatic lesions of various areas of the thorax are discussed. The conventional radiographic findings are briefly described and the potential or proven application of CT is addressed

  15. Evaluation of tomosynthesis elastography in a breast-mimicking phantom

    International Nuclear Information System (INIS)

    Engelken, Florian Jan; Sack, Ingolf; Klatt, Dieter; Fischer, Thomas; Fallenberg, Eva Maria; Bick, Ulrich; Diekmann, Felix

    2012-01-01

    Objective: To evaluate whether measurement of strain under static compression in tomosynthesis of a breast-mimicking phantom can be used to distinguish tumor-simulating lesions of different elasticities and to compare the results to values predicted by rheometric analysis as well as results of ultrasound elastography. Materials and methods: We prepared three soft breast-mimicking phantoms containing simulated tumors of different elasticities. The phantoms were imaged using a wide angle tomosynthesis system with increasing compression settings ranging from 0 N to 105 N in steps of 15 N. Strain of the inclusions was measured in two planes using a commercially available mammography workstation. The elasticity of the phantom matrix and inclusion material was determined by rheometric analysis. Ultrasound elastography of the inclusions was performed using two different ultrasound elastography algorithms. Results: Strain at maximal compression was 24.4%/24.5% in plane 1/plane 2, respectively, for the soft inclusion, 19.6%/16.9% for the intermediate inclusion, and 6.0%/10.2% for the firm inclusion. The strain ratios predicted by rheometrical testing were 0.41, 0.83 and 1.26 for the soft, intermediate, and firm inclusions, respectively. The strain ratios obtained for the soft, intermediate, and firm inclusions were 0.72 ± 0.13, 1.02 ± 0.21 and 2.67 ± 1.70, respectively for tomosynthesis elastography, 0.91, 1.64 and 2.07, respectively, for ultrasound tissue strain imaging, and 0.97, 2.06 and 2.37, respectively, for ultrasound real-time elastography. Conclusions: Differentiation of tumor-simulating inclusions by elasticity in a breast mimicking phantom may be possible by measuring strain in tomosynthesis. This method may be useful for assessing elasticity of breast lesions tomosynthesis of the breast

  16. Baseline Screening Mammography: Performance of Full-Field Digital Mammography Versus Digital Breast Tomosynthesis.

    Science.gov (United States)

    McDonald, Elizabeth S; McCarthy, Anne Marie; Akhtar, Amana L; Synnestvedt, Marie B; Schnall, Mitchell; Conant, Emily F

    2015-11-01

    Baseline mammography studies have significantly higher recall rates than mammography studies with available comparison examinations. Digital breast tomosynthesis reduces recalls when compared with digital mammographic screening alone, but many sites operate in a hybrid environment. To maximize the effect of screening digital breast tomosynthesis with limited resources, choosing which patient populations will benefit most is critical. This study evaluates digital breast tomosynthesis in the baseline screening population. Outcomes were compared for 10,728 women who underwent digital mammography screening, including 1204 (11.2%) baseline studies, and 15,571 women who underwent digital breast tomosynthesis screening, including 1859 (11.9%) baseline studies. Recall rates, cancer detection rates, and positive predictive values were calculated. Logistic regression estimated the odds ratios of recall for digital mammography versus digital breast tomosynthesis for patients undergoing baseline screening and previously screened patients, adjusted for age, race, and breast density. In the baseline subgroup, recall rates for digital mammography and digital breast tomosynthesis screening were 20.5% and 16.0%, respectively (p = 0.002); digital breast tomosynthesis screening in the baseline subgroup resulted in a 22% reduction in recall compared with digital mammography, or 45 fewer patients recalled per 1000 patients screened. Digital breast tomosynthesis screening in the previously screened patients resulted in recall reduction of 14.3% (p tomosynthesis than from digital mammography alone.

  17. MRI of the Chest

    Medline Plus

    Full Text Available ... chest is performed to: assess abnormal masses, including cancer of the lungs or other tissues, which either cannot be assessed ... in diagnosing a broad range of conditions, including cancer, heart and ... tissues, except for lung abnormalities where Chest CT is a preferred imaging ...

  18. Digital chest radiography

    DEFF Research Database (Denmark)

    Debess, Jeanne Elisabeth; Johnsen, Karen Kirstine; Thomsen, Henrik

    on collimation and dose reduction in digital chest radiography Methods and Materials A retrospective study of digital chest radiography is performed to evaluate the primary x-ray tube collimation of the PA and lateral radiographs. Data from one hundred fifty self-reliant female patients between 15 and 55 years...

  19. Modeling digital breast tomosynthesis imaging systems for optimization studies

    Science.gov (United States)

    Lau, Beverly Amy

    Digital breast tomosynthesis (DBT) is a new imaging modality for breast imaging. In tomosynthesis, multiple images of the compressed breast are acquired at different angles, and the projection view images are reconstructed to yield images of slices through the breast. One of the main problems to be addressed in the development of DBT is the optimal parameter settings to obtain images ideal for detection of cancer. Since it would be unethical to irradiate women multiple times to explore potentially optimum geometries for tomosynthesis, it is ideal to use a computer simulation to generate projection images. Existing tomosynthesis models have modeled scatter and detector without accounting for oblique angles of incidence that tomosynthesis introduces. Moreover, these models frequently use geometry-specific physical factors measured from real systems, which severely limits the robustness of their algorithms for optimization. The goal of this dissertation was to design the framework for a computer simulation of tomosynthesis that would produce images that are sensitive to changes in acquisition parameters, so an optimization study would be feasible. A computer physics simulation of the tomosynthesis system was developed. The x-ray source was modeled as a polychromatic spectrum based on published spectral data, and inverse-square law was applied. Scatter was applied using a convolution method with angle-dependent scatter point spread functions (sPSFs), followed by scaling using an angle-dependent scatter-to-primary ratio (SPR). Monte Carlo simulations were used to generate sPSFs for a 5-cm breast with a 1-cm air gap. Detector effects were included through geometric propagation of the image onto layers of the detector, which were blurred using depth-dependent detector point-spread functions (PRFs). Depth-dependent PRFs were calculated every 5-microns through a 200-micron thick CsI detector using Monte Carlo simulations. Electronic noise was added as Gaussian noise as a

  20. Balancing dose and image registration accuracy for cone beam tomosynthesis (CBTS) for breast patient setup

    International Nuclear Information System (INIS)

    Winey, B. A.; Zygmanski, P.; Cormack, R. A.; Lyatskaya, Y.

    2010-01-01

    Purpose: To balance dose reduction and image registration accuracy in breast setup imaging. In particular, the authors demonstrate the relationship between scan angle and dose delivery for cone beam tomosynthesis (CBTS) when employed for setup verification of breast cancer patients with surgical clips. Methods: The dose measurements were performed in a female torso phantom for varying scan angles of CBTS. Setup accuracy was measured using three registration methods: Clip centroid localization accuracy and the accuracy of two semiautomatic registration algorithms. The dose to the organs outside of the ipsilateral breast and registration accuracy information were compared to determine the optimal scan angle for CBTS for breast patient setup verification. Isocenter positions at the center of the patient and at the breast-chest wall interface were considered. Results: Image registration accuracy was within 1 mm for the CBTS scan angles θ above 20 deg. for some scenarios and as large as 80 deg. for the worst case, depending on the imaged breast and registration algorithm. Registration accuracy was highest based on clip centroid localization. For left and right breast imaging with the isocenter at the chest wall, the dose to the contralateral side of the patient was very low (<0.5 cGy) for all scan angles considered. For central isocenter location, the optimal scan angles were 30 deg. - 50 deg. for the left breast imaging and 40 deg. - 50 deg. for the right breast imaging, with the difference due to the geometric asymmetry of the current clinical imaging system. Conclusions: The optimal scan angles for CBTS imaging were found to be between 10 deg. and 50 deg., depending on the isocenter location and ipsilateral breast. Use of the isocenter at the breast-chest wall locations always resulted in greater accuracy of image registration (<1 mm) at smaller angles (10 deg. - 20 deg.) and at lower doses (<0.1 cGy) to the contralateral organs. For chest wall isocenters, doses

  1. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination

    International Nuclear Information System (INIS)

    Schleede, Simone; Bech, Martin; Grandl, Susanne; Sztrókay, Aniko; Herzen, Julia; Mayr, Doris; Stockmar, Marco; Potdevin, Guillaume

    2014-01-01

    Purpose: Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. Material and methods: A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Results: Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase

  2. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination.

    Science.gov (United States)

    Schleede, Simone; Bech, Martin; Grandl, Susanne; Sztrókay, Aniko; Herzen, Julia; Mayr, Doris; Stockmar, Marco; Potdevin, Guillaume; Zanette, Irene; Rack, Alexander; Weitkamp, Timm; Pfeiffer, Franz

    2014-03-01

    Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase-contrast tomosynthesis views, where fibrous structures

  3. SU-E-J-63: Feasibility Study of Proton Digital Tomosynthesis in Proton Beam Therapy.

    Science.gov (United States)

    Min, B; Kwak, J; Lee, J; Cho, S; Park, S; Yoo, S; Chung, K; Cho, S; Lim, Y; Shin, D; Lee, S; Kim, J

    2012-06-01

    We investigated the feasibility of proton tomosynthesis as daily positioning of patients and compared the results with photon tomosynthesis as an alternative to conventional portal imaging or on-board cone-beam computed tomography. Dedicated photon-like proton beam using the passively scattered proton beams by the cyclotron was generated for proton imaging. The eleven projections were acquired over 30 degree with 3 degree increment in order to investigate the performance of proton tomosynthesis. The cylinder blocks and resolution phantom were used to evaluate imaging performance. Resolution phantom of a cylinder of diameter 12 cm was used to investigate the reconstructed imaging characteristics. Electron density cylinder blocks with diameter of 28 mm and height of 70 mm were employed to assess the imaging quality. The solid water, breast, bone, adipose, lung, muscle, and liver, which were tissue equivalent inserts, were positioned around the resolution phantom. The images were reconstructed by projection onto convex sets (POCS) algorithm and total variation minimization (TVM) methods. The Gafchromic EBT films were utilized for measuring the photon-like proton beams as a proton detector. In addition, the photon tomosynthesis images were obtained for a comparison with proton tomosynthesis images. The same angular sampling data were acquired for both proton and photon tomosynthesis. In the resolution phantom image obtained proton tomosynthesis, down to 1.6 mm diameter rods were resolved visually, although the separation between adjacent rods was less distinct. In contrast, down to 1.2 mm diameter rods were resolved visually in the reconstructed image obtained photon tomosynthesis. Both proton and photon tomosynthesis images were similar in intensities of different density blocks. Our results demonstrated that proton tomosynthesis could make it possible to provide comparable tomography imaging to photon tomosynthesis for positioning as determined by manual registration

  4. Characterization of photon-counting multislit breast tomosynthesis.

    Science.gov (United States)

    Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik

    2018-02-01

    It has been shown that breast tomosynthesis may improve sensitivity and specificity compared to two-dimensional mammography, resulting in increased detection-rate of cancers or lowered call-back rates. The purpose of this study is to characterize a spectral photon-counting multislit breast tomosynthesis system that is able to do single-scan spectral imaging with multiple collimated x-ray beams. The system differs in many aspects compared to conventional tomosynthesis using energy-integrating flat-panel detectors. The investigated system was a prototype consisting of a dual-threshold photon-counting detector with 21 collimated line detectors scanning across the compressed breast. A review of the system is done in terms of detector, acquisition geometry, and reconstruction methods. Three reconstruction methods were used, simple back-projection, filtered back-projection and an iterative algebraic reconstruction technique. The image quality was evaluated by measuring the modulation transfer-function (MTF), normalized noise-power spectrum, detective quantum-efficiency (DQE), and artifact spread-function (ASF) on reconstructed spectral tomosynthesis images for a total-energy bin (defined by a low-energy threshold calibrated to remove electronic noise) and for a high-energy bin (with a threshold calibrated to split the spectrum in roughly equal parts). Acquisition was performed using a 29 kVp W/Al x-ray spectrum at a 0.24 mGy exposure. The difference in MTF between the two energy bins was negligible, that is, there was no energy dependence on resolution. The MTF dropped to 50% at 1.5 lp/mm to 2.3 lp/mm in the scan direction and 2.4 lp/mm to 3.3 lp/mm in the slit direction, depending on the reconstruction method. The full width at half maximum of the ASF was found to range from 13.8 mm to 18.0 mm for the different reconstruction methods. The zero-frequency DQE of the system was found to be 0.72. The fraction of counts in the high-energy bin was measured to be 59% of the

  5. Tubular Carcinoma of the Breast: Advantages and Limitations of Breast Tomosynthesis

    Directory of Open Access Journals (Sweden)

    Filipa Vilaverde

    2016-01-01

    Full Text Available Tubular carcinoma of the breast is a rare variant of invasive ductal carcinoma. We report a case of 42-year-old asymptomatic female with a histopathological proven multifocal tubular carcinoma, studied by mammography, Tomosynthesis, Ultrasound, and Magnetic Resonance. Herein, we discuss the advantages and limitations of Tomosynthesis, an emerging imaging technique, in this particular case.

  6. Semi-Automated Quantification of Finger Joint Space Narrowing Using Tomosynthesis in Patients with Rheumatoid Arthritis.

    Science.gov (United States)

    Ichikawa, Shota; Kamishima, Tamotsu; Sutherland, Kenneth; Kasahara, Hideki; Shimizu, Yuka; Fujimori, Motoshi; Yasojima, Nobutoshi; Ono, Yohei; Kaneda, Takahiko; Koike, Takao

    2017-06-01

    The purpose of the study is to validate the semi-automated method using tomosynthesis images for the assessment of finger joint space narrowing (JSN) in patients with rheumatoid arthritis (RA), by using the semi-quantitative scoring method as the reference standard. Twenty patients (14 females and 6 males) with RA were included in this retrospective study. All patients underwent radiography and tomosynthesis of the bilateral hand and wrist. Two rheumatologists and a radiologist independently scored JSN with two modalities according to the Sharp/van der Heijde score. Two observers independently measured joint space width on tomosynthesis images using an in-house semi-automated method. More joints with JSN were revealed with tomosynthesis score (243 joints) and the semi-automated method (215 joints) than with radiography (120 joints), and the associations between tomosynthesis scores and radiography scores were demonstrated (P tomosynthesis scores with r = -0.606 (P tomosynthesis images was in almost perfect agreement with intra-class correlation coefficient (ICC) values of 0.964 and 0.963, respectively. The semi-automated method using tomosynthesis images provided sensitive, quantitative, and reproducible measurement of finger joint space in patients with RA.

  7. Tomosynthesis of the thoracic spine: added value in diagnosing vertebral fractures in the elderly

    International Nuclear Information System (INIS)

    Geijer, Mats; Gunnlaugsson, Eirikur; Goetestrand, Simon; Weber, Lars; Geijer, Haakan

    2017-01-01

    Thoracic spine radiography becomes more difficult with age. Tomosynthesis is a low-dose tomographic extension of radiography which may facilitate thoracic spine evaluation. This study assessed the added value of tomosynthesis in imaging of the thoracic spine in the elderly. Four observers compared the image quality of 50 consecutive thoracic spine radiography and tomosynthesis data sets from 48 patients (median age 67 years, range 55-92 years) on a number of image quality criteria. Observer variation was determined by free-marginal multirater kappa. The conversion factor and effective dose were determined from the dose-area product values. For all observers significantly more vertebrae were seen with tomosynthesis than with radiography (mean 12.4/9.3, P < 0.001) as well as significantly more fractures (mean 0.9/0.7, P = 0.017). The image quality score for tomosynthesis was significantly higher than for radiography, for all evaluated structures. Tomosynthesis took longer to evaluate than radiography. Despite this, all observers scored a clear preference for tomosynthesis. Observer agreement was substantial (mean κ = 0.73, range 0.51-0.94). The calibration or conversion factor was 0.11 mSv/(Gy cm 2 ) for the combined examination. The resulting effective dose was 0.87 mSv. Tomosynthesis can increase the detection rate of thoracic vertebral fractures in the elderly, at low added radiation dose. (orig.)

  8. Tomosynthesis of the wrist and hand in patients with rheumatoid arthritis: comparison with radiography and MRI.

    Science.gov (United States)

    Aoki, Takatoshi; Fujii, Masami; Yamashita, Yoshiko; Takahashi, Hiroyuki; Oki, Hodaka; Hayashida, Yoshiko; Saito, Kazuyoshi; Tanaka, Yoshiya; Korogi, Yukunori

    2014-02-01

    The purpose of this article is to compare tomosynthesis with radiography and MRI of the wrist and hand for evaluating bone erosion in patients with rheumatoid arthritis (RA). Twenty consecutive patients with an established diagnosis of RA and five control patients were included in this study. They underwent radiography, tomosynthesis, and MRI of the bilateral hand and wrist within a week. The mean total dose of radiography and tomosynthesis was 0.13 and 0.25 mGy, respectively. MRI evaluation was performed according to the Outcome Measures in Rheumatology Clinical Trials recommendations. Bone erosion on images from the three modalities was independently reviewed by two certificated radiologists with a 4-point scale (0, normal; 1, discrete erosion; 2, tomosynthesis, and MRI were 26.5%, 36.1%, and 36.7%, respectively. Significantly more bone erosions were revealed with tomosynthesis and MRI than with radiography (p tomosynthesis. Interobserver agreement (kappa value) for bone erosion was good to excellent on tomosynthesis and MRI for all joints (0.65-1.00 and 0.68-1.00, respectively), whereas it was slight to fair on radiography for some carpal bones and bases of metacarpal bones (0.22-0.56). Tomosynthesis is superior to radiography and almost comparable to MRI for the detection of bone erosion in patients with RA.

  9. Tomosynthesis of the thoracic spine: added value in diagnosing vertebral fractures in the elderly

    Energy Technology Data Exchange (ETDEWEB)

    Geijer, Mats [Oerebro University, Department of Radiology, Oerebro (Sweden); Lund University, Department of Clinical Sciences, Lund (Sweden); Gunnlaugsson, Eirikur; Goetestrand, Simon [Lund University and Skaane University Hospital, Department of Medical Imaging and Physiology, Lund (Sweden); Weber, Lars [Lund University, Department of Clinical Sciences, Lund (Sweden); Skaane University Hospital, Department of Radiation Physics, Lund (Sweden); Geijer, Haakan [Oerebro University, Department of Radiology, Faculty of Medicine and Health, Oerebro (Sweden)

    2017-02-15

    Thoracic spine radiography becomes more difficult with age. Tomosynthesis is a low-dose tomographic extension of radiography which may facilitate thoracic spine evaluation. This study assessed the added value of tomosynthesis in imaging of the thoracic spine in the elderly. Four observers compared the image quality of 50 consecutive thoracic spine radiography and tomosynthesis data sets from 48 patients (median age 67 years, range 55-92 years) on a number of image quality criteria. Observer variation was determined by free-marginal multirater kappa. The conversion factor and effective dose were determined from the dose-area product values. For all observers significantly more vertebrae were seen with tomosynthesis than with radiography (mean 12.4/9.3, P < 0.001) as well as significantly more fractures (mean 0.9/0.7, P = 0.017). The image quality score for tomosynthesis was significantly higher than for radiography, for all evaluated structures. Tomosynthesis took longer to evaluate than radiography. Despite this, all observers scored a clear preference for tomosynthesis. Observer agreement was substantial (mean κ = 0.73, range 0.51-0.94). The calibration or conversion factor was 0.11 mSv/(Gy cm{sup 2}) for the combined examination. The resulting effective dose was 0.87 mSv. Tomosynthesis can increase the detection rate of thoracic vertebral fractures in the elderly, at low added radiation dose. (orig.)

  10. Tubular Carcinoma of the Breast: Advantages and Limitations of Breast Tomosynthesis

    Science.gov (United States)

    Rocha, Ana; Reis, Alcinda

    2016-01-01

    Tubular carcinoma of the breast is a rare variant of invasive ductal carcinoma. We report a case of 42-year-old asymptomatic female with a histopathological proven multifocal tubular carcinoma, studied by mammography, Tomosynthesis, Ultrasound, and Magnetic Resonance. Herein, we discuss the advantages and limitations of Tomosynthesis, an emerging imaging technique, in this particular case. PMID:28116205

  11. Deblurring in digital tomosynthesis by iterative self-layer subtraction

    Science.gov (United States)

    Youn, Hanbean; Kim, Jee Young; Jang, SunYoung; Cho, Min Kook; Cho, Seungryong; Kim, Ho Kyung

    2010-04-01

    Recent developments in large-area flat-panel detectors have made tomosynthesis technology revisited in multiplanar xray imaging. However, the typical shift-and-add (SAA) or backprojection reconstruction method is notably claimed by a lack of sharpness in the reconstructed images because of blur artifact which is the superposition of objects which are out of planes. In this study, we have devised an intuitive simple method to reduce the blur artifact based on an iterative approach. This method repeats a forward and backward projection procedure to determine the blur artifact affecting on the plane-of-interest (POI), and then subtracts it from the POI. The proposed method does not include any Fourierdomain operations hence excluding the Fourier-domain-originated artifacts. We describe the concept of the self-layer subtractive tomosynthesis and demonstrate its performance with numerical simulation and experiments. Comparative analysis with the conventional methods, such as the SAA and filtered backprojection methods, is addressed.

  12. Selective photon counter for digital x-ray mammography tomosynthesis

    Science.gov (United States)

    Goldan, Amir H.; Karim, Karim S.; Rowlands, J. A.

    2006-03-01

    Photon counting is an emerging detection technique that is promising for mammography tomosynthesis imagers. In photon counting systems, the value of each image pixel is equal to the number of photons that interact with the detector. In this research, we introduce the design and implementation of a low noise, novel selective photon counting pixel for digital mammography tomosynthesis in crystalline silicon CMOS (complementary metal oxide semiconductor) 0.18 micron technology. The design comprises of a low noise charge amplifier (CA), two low offset voltage comparators, a decision-making unit (DMU), a mode selector, and a pseudo-random counter. Theoretical calculations and simulation results of linearity, gain, and noise of the photon counting pixel are presented.

  13. Prospective study aiming to compare 2D mammography and tomosynthesis + synthesized mammography in terms of cancer detection and recall. From double reading of 2D mammography to single reading of tomosynthesis.

    Science.gov (United States)

    Romero Martín, Sara; Raya Povedano, Jose Luis; Cara García, María; Santos Romero, Ana Luz; Pedrosa Garriguet, Margarita; Álvarez Benito, Marina

    2018-06-01

    To evaluate tomosynthesis compared with 2D-mammography in cancer detection and recalls in a screening-programme, and assess performing synthesized instead of 2D, and compare double reading of 2D with single reading of tomosynthesis. Women (age 50-69 years) participating in the screening-programme were included. 2D-mammography and tomosynthesis were performed. There were four reading models: 2D-mammography (first); 2D-mammography (second); tomosynthesis + synthesized (third); tomosynthesis + synthesized + 2D (fourth reading). Paired double reading of 2D (first+second) and tomosynthesis (third+fourth) were analysed. In 16,067 participants, there were 98 cancers and 1,196 recalls. Comparing double reading of 2D with single reading of tomosynthesis, there was an increase of 12.6 % in cancer detection with the third reading (p= 0.043) and 6.9 % with the fourth reading (p=0.210), and a decrease in recalls of 40.5 % (ptomosynthesis. Single reading of tomosynthesis plus synthesized increased cancer detection and decreased recalls compared with double reading 2D. 2D did not improve results when added to tomosynthesis. • Tomosynthesis increases cancer detection and decreases recall rates versus 2D mammography. • Synthesized-mammography avoids performing 2D, showing higher cancer detection. • Single reading of tomosynthesis + synthesized is feasible as a new practice.

  14. Stationary Digital Tomosynthesis System for Early Detection of Breast Tumors

    Science.gov (United States)

    2012-05-01

    Vol. 5745. 2005. 14. Y. Zhang, et al., A comparative study of limited-angle cone-beam reconstruction methods 505 for breast tomosynthesis. Med...opening angl em integratio designed line nia Dimension determine the try calibration th the detector ain is sent fro between XC urce not fou here...screening mammography. AJR, 2007. 189: p. 616. 12. P. Baldelli, et al., A prototype of a quasi-monochromatic system for mammography applications . Phys

  15. Radiological diagnosis of chest wall tuberculosis: CT versus chest radiograph

    International Nuclear Information System (INIS)

    Liu Fugeng; Pan Jishu; Chen Qihang; Zhou Cheng; Yu Jingying; Tang Dairong

    2006-01-01

    Objective: To evaluate the role of CT or Chest radiograph in diagnosis of chest wall tuberculosis. Methods: The study population included 21 patients with chest wall tuberculosis confirmed by operation or biopsy. Chest radiograph and plain CT were performed in all eases, while enhanced CT in 9 cases, and all images were reviewed by 2 radiologists. Results: Single soft tissue mass of the chest wall was detected in all cases on CT, but not on chest radiograph(χ 2 =42.000, P 2 =4.421, P<0.05). Conclusion: CT, especially enhanced CT scan is the first choice in the diagnosis of chest wall tuberculosis. (authors)

  16. Digital breast tomosynthesis versus digital mammography: a clinical performance study

    International Nuclear Information System (INIS)

    Gennaro, Gisella; Baldan, Enrica; Bezzon, Elisabetta; Polico, Ilaria; Proietti, Alessandro; Toffoli, Aida; Toledano, Alicia; Di Maggio, Cosimo; La Grassa, Manuela; Pescarini, Luigi; Muzzio, Pier Carlo

    2010-01-01

    To compare the clinical performance of digital breast tomosynthesis (DBT) with that of full-field digital mammography (FFDM) in a diagnostic population. The study enrolled 200 consenting women who had at least one breast lesion discovered by mammography and/or ultrasound classified as doubtful or suspicious or probably malignant. They underwent tomosynthesis in one view [mediolateral oblique (MLO)] of both breasts at a dose comparable to that of standard screen-film mammography in two views [craniocaudal (CC) and MLO]. Images were rated by six breast radiologists using the BIRADS score. Ratings were compared with the truth established according to the standard of care and a multiple-reader multiple-case (MRMC) receiver-operating characteristic (ROC) analysis was performed. Clinical performance of DBT compared with that of FFDM was evaluated in terms of the difference between areas under ROC curves (AUCs) for BIRADS scores. Overall clinical performance with DBT and FFDM for malignant versus all other cases was not significantly different (AUCs 0.851 vs 0.836, p = 0.645). The lower limit of the 95% CI or the difference between DBT and FFDM AUCs was -4.9%. Clinical performance of tomosynthesis in one view at the same total dose as standard screen-film mammography is not inferior to digital mammography in two views. (orig.)

  17. A novel solid-angle tomosynthesis (SAT) scanning scheme

    International Nuclear Information System (INIS)

    Zhang Jin; Yu, Cedric

    2010-01-01

    Purpose: Digital tomosynthesis (DTS) recently gained extensive research interests in both diagnostic and radiation therapy fields. Conventional DTS images are generated by scanning an x-ray source and flat-panel detector pair on opposite sides of an object, with the scanning trajectory on a one-dimensional curve. A novel tomosynthesis method named solid-angle tomosynthesis (SAT) is proposed, where the x-ray source scans on an arbitrary shaped two-dimensional surface. Methods: An iterative algorithm in the form of total variation regulated expectation maximization is developed for SAT image reconstruction. The feasibility and effectiveness of SAT is corroborated by computer simulation studies using three-dimensional (3D) numerical phantoms including a 3D Shepp-Logan phantom and a volumetric CT image set of a human breast. Results: SAT is able to cover more space in Fourier domain more uniformly than conventional DTS. Greater coverage and more isotropy in the frequency domain translate to fewer artifacts and more accurately restored features in the in-plane reconstruction. Conclusions: Comparing with conventional DTS, SAT allows cone-shaped x-ray beams to project from more solid angles, thus provides more coverage in the spatial-frequency domain, resulting in better quality of reconstructed image.

  18. High-speed large angle mammography tomosynthesis system

    Science.gov (United States)

    Eberhard, Jeffrey W.; Staudinger, Paul; Smolenski, Joe; Ding, Jason; Schmitz, Andrea; McCoy, Julie; Rumsey, Michael; Al-Khalidy, Abdulrahman; Ross, William; Landberg, Cynthia E.; Claus, Bernhard E. H.; Carson, Paul; Goodsitt, Mitchell; Chan, Heang-Ping; Roubidoux, Marilyn; Thomas, Jerry A.; Osland, Jacqueline

    2006-03-01

    A new mammography tomosynthesis prototype system that acquires 21 projection images over a 60 degree angular range in approximately 8 seconds has been developed and characterized. Fast imaging sequences are facilitated by a high power tube and generator for faster delivery of the x-ray exposure and a high speed detector read-out. An enhanced a-Si/CsI flat panel digital detector provides greater DQE at low exposure, enabling tomo image sequence acquisitions at total patient dose levels between 150% and 200% of the dose of a standard mammographic view. For clinical scenarios where a single MLO tomographic acquisition per breast may replace the standard CC and MLO views, total tomosynthesis breast dose is comparable to or below the dose in standard mammography. The system supports co-registered acquisition of x-ray tomosynthesis and 3-D ultrasound data sets by incorporating an ultrasound transducer scanning system that flips into position above the compression paddle for the ultrasound exam. Initial images acquired with the system are presented.

  19. Quantification of resolution in multiplanar reconstructions for digital breast tomosynthesis

    Science.gov (United States)

    Vent, Trevor L.; Acciavatti, Raymond J.; Kwon, Young Joon; Maidment, Andrew D. A.

    2016-03-01

    Multiplanar reconstruction (MPR) in digital breast tomosynthesis (DBT) allows tomographic images to be portrayed in various orientations. We have conducted research to determine the resolution of tomosynthesis MPR. We built a phantom that houses a star test pattern to measure resolution. This phantom provides three rotational degrees of freedom. The design consists of two hemispheres with longitudinal and latitudinal grooves that reference angular increments. When joined together, the hemispheres form a dome that sits inside a cylindrical encasement. The cylindrical encasement contains reference notches to match the longitudinal and latitudinal grooves that guide the phantom's rotations. With this design, any orientation of the star-pattern can be analyzed. Images of the star-pattern were acquired using a DBT mammography system at the Hospital of the University of Pennsylvania. Images taken were reconstructed and analyzed by two different methods. First, the maximum visible frequency (in line pairs per millimeter) of the star test pattern was measured. Then, the contrast was calculated at a fixed spatial frequency. These analyses confirm that resolution decreases with tilt relative to the breast support. They also confirm that resolution in tomosynthesis MPR is dependent on object orientation. Current results verify that the existence of super-resolution depends on the orientation of the frequency; the direction parallel to x-ray tube motion shows super-resolution. In conclusion, this study demonstrates that the direction of the spatial frequency relative to the motion of the x-ray tube is a determinant of resolution in MPR for DBT.

  20. MRI of the Chest

    Medline Plus

    Full Text Available ... a risk, depending on their nature and the strength of the MRI magnet. Many implanted devices will ... abnormalities where Chest CT is a preferred imaging test. MR imaging can assess blood flow without risking ...

  1. Chest X-Ray

    Medline Plus

    Full Text Available ... Disorders Video: The Basketball Game: An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  2. Learning chest imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pedrozo Pupo, John C. (ed.) [Magdalena Univ., Santa Maria (Colombia). Respire - Inst. for Respiratory Care

    2013-03-01

    Useful learning tool for practitioners and students. Overview of the imaging techniques used in chest radiology. Aid to the correct interpretation of chest X-ray images. Radiology of the thorax forms an indispensable element of the basic diagnostic process for many conditions and is of key importance in a variety of medical disciplines. This user-friendly book provides an overview of the imaging techniques used in chest radiology and presents numerous instructive case-based images with accompanying explanatory text. A wide range of clinical conditions and circumstances are covered with the aim of enabling the reader to confidently interpret chest images by correctly identifying structures of interest and the causes of abnormalities. This book, which will be an invaluable learning tool, forms part of the Learning Imaging series for medical students, residents, less experienced radiologists, and other medical staff. Learning Imaging is a unique case-based series for those in professional education in general and for physicians in prarticular.

  3. MRI of the Chest

    Medline Plus

    Full Text Available ... to a CD or uploaded to a digital cloud server. MRI of the chest gives detailed pictures ... over time. top of page What are the benefits vs. risks? Benefits MRI is a noninvasive imaging ...

  4. Chest x-ray

    Science.gov (United States)

    ... pain from a chest injury (with a possible rib fracture or lung complication) or from heart problems Coughing ... arteries Evidence of heart failure In the bones: Fractures or other problems of the ribs and spine Osteoporosis

  5. Chest X-Ray

    Medline Plus

    Full Text Available ... evaluate shortness of breath, persistent cough, fever, chest pain or injury. It may also be useful to ... of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about ...

  6. MRI of the Chest

    Medline Plus

    Full Text Available ... to a CD or uploaded to a digital cloud server. MRI of the chest gives detailed pictures ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... also be useful to help diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  8. MRI of the Chest

    Medline Plus

    Full Text Available ... is not harmful, but it may cause some medical devices to malfunction. Most orthopedic implants pose no ... Chest? Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. ...

  9. MRI of the Chest

    Medline Plus

    Full Text Available ... a CD or uploaded to a digital cloud server. MRI of the chest gives detailed pictures of ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, a radiologist ... about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  11. MRI of the Chest

    Medline Plus

    Full Text Available ... sternum) and chest wall soft tissue (muscles and fat). assess for pericardial (thin sac around the heart) ... prior to your scheduled examination. Infants and young children usually require sedation or anesthesia to complete an ...

  12. MRI of the Chest

    Medline Plus

    Full Text Available ... sternum) and chest wall soft tissue (muscles and fat). assess for pericardial (thin sac around the heart) ... on the child's age, intellectual development and the type of exam. Moderate and conscious sedation can be ...

  13. MRI of the Chest

    Medline Plus

    Full Text Available ... or headphones during the exam. MRI scanners are air-conditioned and well-lit. Music may be played ... the limitations of MRI of the Chest? High-quality images are assured only if you are able ...

  14. MRI of the Chest

    Medline Plus

    Full Text Available ... detailed pictures of the structures within the chest. It is primarily used to assess abnormal masses such ... and determine the size, extent and degree of its spread to adjacent structures. It’s also used to ...

  15. MRI of the Chest

    Medline Plus

    Full Text Available ... etc.). top of page What are some common uses of the procedure? MR imaging of the chest ... is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. ...

  16. Chest X-Ray

    Medline Plus

    Full Text Available ... An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray ... posted: How to Obtain and Share Your Medical Images Movement Disorders Video: The Basketball Game: An MRI ...

  17. MRI of the Chest

    Medline Plus

    Full Text Available ... determine the presence of certain diseases. The images can then be examined on a computer monitor, transmitted ... of the chest cavity (arteries and veins). MRA can also demonstrate an abnormal ballooning out of the ...

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ... Inc. (RSNA). To help ensure current and accurate information, we do not permit copying but encourage linking ...

  19. MRI of the Chest

    Medline Plus

    Full Text Available ... MRI) of the chest uses a powerful magnetic field, radio waves and a computer to produce detailed ... there’s a possibility you are pregnant. The magnetic field is not harmful, but it may cause some ...

  20. MRI of the Chest

    Medline Plus

    Full Text Available ... primarily used to assess abnormal masses such as cancer and determine the size, extent and degree of ... chest is performed to: assess abnormal masses, including cancer of the lungs or other tissues, which either ...

  1. Chest X-Ray

    Medline Plus

    Full Text Available ... Site Index A-Z Spotlight Recently posted: Pancreatic Cancer The Limitations of Online Dose Calculators Video: The ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  2. MRI of the Chest

    Medline Plus

    Full Text Available ... etc.). top of page What are some common uses of the procedure? MR imaging of the chest ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  3. MRI of the Chest

    Medline Plus

    Full Text Available ... a computer to produce detailed pictures of the structures within the chest. It is primarily used to ... extent and degree of its spread to adjacent structures. It’s also used to assess the anatomy and ...

  4. MRI of the Chest

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Chest Magnetic resonance imaging (MRI) ... clearer and more detailed than with other imaging methods. This detail makes MRI an invaluable tool in ...

  5. MRI of the Chest

    Medline Plus

    Full Text Available ... copied to a CD or uploaded to a digital cloud server. MRI of the chest gives detailed ... sedative prior to your scheduled examination. Infants and young children usually require sedation or anesthesia to complete ...

  6. Chest X-Ray

    Medline Plus

    Full Text Available ... exams and use a very small dose of ionizing radiation to produce pictures of the inside of the ... chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. ...

  8. MRI of the Chest

    Medline Plus

    Full Text Available ... heart) and myocardial infarct (scar in the heart muscle due to prior obstruction of blood flow). determine ... ribs and sternum) and chest wall soft tissue (muscles and fat). assess for pericardial (thin sac around ...

  9. MRI of the Chest

    Medline Plus

    Full Text Available ... have a history of kidney disease or liver transplant, it will be necessary to perform a blood ... cancer, heart and vascular disease, heart valve abnormalities, bone and other soft tissue abnormalities of the chest. ...

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... June is Men's Health Month Recently posted: Pancreatic Cancer The Limitations of Online Dose Calculators Video: The ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  11. MRI of the Chest

    Medline Plus

    Full Text Available ... around the heart) disease. characterize mediastinal or pleural lesions seen by other imaging modalities, such as chest ... ports artificial limbs or metallic joint prostheses implanted nerve stimulators metal pins, screws, plates, stents or surgical ...

  12. Digital chest radiography

    DEFF Research Database (Denmark)

    Debess, Jeanne Elisabeth; Vejle-Sørensen, Jens Kristian; Thomsen, Henrik

    ,3 mAs and SID SID of 180 centimetres using a phantom and lithium fluoride thermo luminescence dosimeter (TLD). Dose to risk organs mamma, thyroid and colon are measured at different collimations with one-centimetre steps. TLD results are used to estimate dose reduction for different collimations...... at the conference. Conclusion: Collimation improvement in basic chest radiography can reduce the radiation to female patients at chest x-ray examinations....

  13. Compton radiography, 2. Clinical significance of Compton radiography of a chest phantom

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, S; Sera, K; Fukuda, H; Shishido, F [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer; Mishina, H

    1977-09-01

    Compton radiography, a tomographic technic with Compton-scattered rays of a monochromatic gamma ray beam, was feasible of tomographing a chest phantom. The result suggested that the technic could be extended to imaging of the lung and the surrounding structures of the chest wall, mediastinum and liver in Compton tomographic mode.

  14. Clinical experience of photon counting breast tomosynthesis: comparison with traditional mammography

    International Nuclear Information System (INIS)

    Svane, Gunilla; Azavedo, Edward; Lindman, Karin; Urech, Mattias; Nilsson, Jonas; Weber, Niclas; Lindqvist, Lars; Ullberg, Christer

    2011-01-01

    Background: In two-dimensional mammography, a well-known problem is over- and underlying tissue which can either obstruct a lesion or create a false-positive result. Tomosynthesis, with an ability to layer the tissue in the image, has the potential to resolve these issues. Purpose: To compare the diagnostic quality, sensitivity and specificity of a single tomosynthesis mammography image and a traditional two-view set of two-dimensional mammograms and to assess the comfort of the two techniques. Material and Methods: One hundred and forty-four women, mainly chosen because of suspicious features on standard mammograms (76 malignant), had a single tomosynthesis image taken of one breast using a novel photon counting system. On average, the dose of the tomosynthesis images was 0.63 times that of the two-view images and the compression force during the procedure was halved. The resulting images were viewed by two radiologists and assessed both individually and comparing the two techniques. Results: In 56% of the cases the radiologists rated the diagnostic quality of the lesion details higher in the tomosynthesis images than in the conventional images (and in 91% equal or higher), which means there is a statistically significant preference for the tomosynthesis technique. This included the calcifications which were rated as having better quality in 41% of the cases. While sensitivity was slightly higher for traditional mammography the specificity was higher for tomosynthesis. However, neither of these two differences was large enough to be statistically significant. Conclusion: The overall accuracy of the two techniques was virtually equal despite the radiologist's very limited experience with tomosynthesis images and vast experience with two-dimensional mammography. As the diagnostic quality of the lesion details in the tomosynthesis images was valued considerably higher this factor should improve with experience. The patients also favored the tomosynthesis examination

  15. Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening.

    Science.gov (United States)

    Haas, Brian M; Kalra, Vivek; Geisel, Jaime; Raghu, Madhavi; Durand, Melissa; Philpotts, Liane E

    2013-12-01

    To compare screening recall rates and cancer detection rates of tomosynthesis plus conventional digital mammography to those of conventional digital mammography alone. All patients presenting for screening mammography between October 1, 2011, and September 30, 2012, at four clinical sites were reviewed in this HIPAA-compliant retrospective study, for which the institutional review board granted approval and waived the requirement for informed consent. Patients at sites with digital tomosynthesis were offered screening with digital mammography plus tomosynthesis. Patients at sites without tomosynthesis underwent conventional digital mammography. Recall rates were calculated and stratified according to breast density and patient age. Cancer detection rates were calculated and stratified according to the presence of a risk factor for breast cancer. The Fisher exact test was used to compare the two groups. Multivariate logistic regression was used to assess the effect of screening method, breast density, patient age, and cancer risk on the odds of recall from screening. A total of 13 158 patients presented for screening mammography; 6100 received tomosynthesis. The overall recall rate was 8.4% for patients in the tomosynthesis group and 12.0% for those in the conventional mammography group (P tomosynthesis reduced recall rates for all breast density and patient age groups, with significant differences (P tomosynthesis versus 5.2 per 1000 in patients receiving conventional mammography alone (P = .70). Patients undergoing tomosynthesis plus digital mammography had significantly lower screening recall rates. The greatest reductions were for those younger than 50 years and those with dense breasts. A nonsignificant 9.5% increase in cancer detection was observed in the tomosynthesis group. © RSNA, 2013.

  16. Digital tomosynthesis of hand joints for arthritis assessment

    International Nuclear Information System (INIS)

    Duryea, J.; Dobbins, J.T. III; Lynch, J.A.

    2003-01-01

    The two principal forms of hand arthritis, rheumatoid arthritis (RA) and osteoarthritis (OA) have large clinical and economic costs. Radiography has been shown to be a useful tool to assess the condition of the disease. A hand radiograph, however, is a two-dimensional projection of a three-dimensional object. In this report we present the results of a study that applied digital tomosynthesis to hand radiography in order to extract three-dimensional outcome measures that should be more sensitive to arthritis progression. The study was performed using simulated projection radiographs created using micro computed tomography (μCT) and a set of five dry-bone hand skeletons. These simulated projection images were then reconstructed into tomographic slices using the matrix inversion tomosynthesis (MITS) algorithm. The accuracy of the tomosynthesis reconstruction was evaluated by comparing the reconstructed images to a gold standard created using the μCT data. A parameter from image registration science, normalized mutual information, provided a quantifiable figure of merit. This study examined the effects of source displacement, number of reconstructed planes, number of acquisitions, noise added to the gray scale images, and errors in the location of a fiducial marker. We also optimized the reconstruction as a function of two variables k and α, that controlled the mixing of MITS with conventional shift-and-add tomosynthesis. A study using hand delineated joint margins demonstrated that MITS images provided a better measurement of average joint space width. We found good agreement between the MITS slices and the true planes. Both joint margins and trabecular structure were visible and the reconstructed slices showed additional structures not visible with the standard projection image. Using hand-delineated joint margins we compared the average joint space width of the gold standard slices to the MITS and projection images. A root-mean square deviation (RMSD), calculated

  17. MO-DE-209-02: Tomosynthesis Reconstruction Methods

    International Nuclear Information System (INIS)

    Mainprize, J.

    2016-01-01

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  18. MO-DE-209-01: Primer On Tomosynthesis

    International Nuclear Information System (INIS)

    Maidment, A.

    2016-01-01

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  19. Digital breast tomosynthesis (DBT): initial experience in a clinical setting

    International Nuclear Information System (INIS)

    Skaane, Per; Gullien, Randi; Eben, Ellen B.; Haakenaasen, Unni; Naess Jebsen, Ingvild; Krager, Mona; Bjoerndal, Hilde; Ekseth, Ulrika; Jahr, Gunnar

    2012-01-01

    Background: Digital breast tomosynthesis (DBT) is a promising new technology. Some experimental clinical studies have shown positive results, but the future role and indications of this new technique, whether in a screening or clinical setting, need to be evaluated. Purpose: To compare digital mammography and DBT in a side-by-side feature analysis for cancer conspicuity, and to assess whether there is a potential additional value of DBT to standard state-of-the-art conventional imaging work-up with respect to detection of additional malignancies. Material and Methods: The study had ethics committee approval. A total of 129 women underwent 2D digital mammography including supplementary cone-down and magnification views and breast ultrasonography if indicated, as well as digital breast tomosynthesis. The indication for conventional imaging in the clinical setting included a palpable lump in 30 (23%), abnormal mammographic screening findings in 54 (42%), and surveillance in 45 (35%) of the women. The women were examined according to present guidelines, including spot-magnification views, ultrasonography, and needle biopsies, if indicated. The DBT examinations were interpreted several weeks after the conventional imaging without knowledge of the conventional imaging findings. In a later session, three radiologists performed a side-by-side feature analysis for cancer conspicuity in a sample of 50 cases. Results: State-of-the-art conventional imaging resulted in needle biopsy of 45 breasts, of which 20 lesions were benign and a total of 25 cancers were diagnosed. The remaining 84 women were dismissed with a normal/definitely benign finding and without indication for needle biopsy. The subsequent DBT interpretation found suspicious findings in four of these 84 women, and these four women had to be called back for repeated work-up with knowledge of the tomosynthesis findings. These delayed work-ups resulted in two cancers (increasing the cancer detection by 8%) and two

  20. MO-DE-209-02: Tomosynthesis Reconstruction Methods

    Energy Technology Data Exchange (ETDEWEB)

    Mainprize, J. [Sunnybrook Health Sciences Centre, Toronto, ON (Canada)

    2016-06-15

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  1. MO-DE-209-01: Primer On Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Maidment, A. [Univ Pennsylvania (United States)

    2016-06-15

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  2. Clinical Databases for Chest Physicians.

    Science.gov (United States)

    Courtwright, Andrew M; Gabriel, Peter E

    2018-04-01

    A clinical database is a repository of patient medical and sociodemographic information focused on one or more specific health condition or exposure. Although clinical databases may be used for research purposes, their primary goal is to collect and track patient data for quality improvement, quality assurance, and/or actual clinical management. This article aims to provide an introduction and practical advice on the development of small-scale clinical databases for chest physicians and practice groups. Through example projects, we discuss the pros and cons of available technical platforms, including Microsoft Excel and Access, relational database management systems such as Oracle and PostgreSQL, and Research Electronic Data Capture. We consider approaches to deciding the base unit of data collection, creating consensus around variable definitions, and structuring routine clinical care to complement database aims. We conclude with an overview of regulatory and security considerations for clinical databases. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  3. Tomosynthesis in the Diagnostic Setting: Changing Rates of BI-RADS Final Assessment over Time.

    Science.gov (United States)

    Raghu, Madhavi; Durand, Melissa A; Andrejeva, Liva; Goehler, Alexander; Michalski, Mark H; Geisel, Jaime L; Hooley, Regina J; Horvath, Laura J; Butler, Reni; Forman, Howard P; Philpotts, Liane E

    2016-10-01

    Purpose To evaluate the effect of tomosynthesis in diagnostic mammography on the Breast Imaging Reporting and Data System (BI-RADS) final assessment categories over time. Materials and Methods This retrospective study was approved by the institutional review board. The authors reviewed all diagnostic mammograms obtained during a 12-month interval before (two-dimensional [2D] mammography [June 2, 2010, to June 1, 2011]) and for 3 consecutive years after (tomosynthesis year 1 [2012], tomosynthesis year 2 [2013], and tomosynthesis year 3 [2014]) the implementation of tomosynthesis. The requirement to obtain informed consent was waived. The rates of BI-RADS final assessment categories 1-5 were compared between the 2D and tomosynthesis groups. The positive predictive values after biopsy (PPV3) for BI-RADS category 4 and 5 cases were compared. The mammographic features (masses, architectural distortions, calcifications, focal asymmetries) of lesions categorized as probably benign (BI-RADS category 3) and those for which biopsy was recommended (BI-RADS category 4 or 5) were reviewed. The χ(2) test was used to compare the rates of BI-RADS final assessment categories 1-5 between the two groups, and multivariate logistic regression analysis was performed to compare all diagnostic studies categorized as BI-RADS 3-5. Results There was an increase in the percentage of cases reported as negative or benign (BI-RADS category 1 or 2) with tomosynthesis (58.7% with 2D mammography vs 75.8% with tomosynthesis at year 3, P tomosynthesis at year 3, P tomosynthesis (8.0% with 2D mammography vs 7.8% with tomosynthesis at year 3, P = .2), there was a significant increase in the PPV3 (29.6% vs 50%, respectively; P tomosynthesis use. Conclusion Tomosynthesis in the diagnostic setting resulted in progressive shifts in the BI-RADS final assessment categories over time, with a significant increase in the proportion of studies classified as normal, a continued decrease in the rate of studies

  4. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Directory of Open Access Journals (Sweden)

    Kim Jae G

    2011-12-01

    Full Text Available Abstract Background Despite its superb lateral resolution, flat-panel-detector (FPD based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis

  5. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Science.gov (United States)

    2011-01-01

    Background Despite its superb lateral resolution, flat-panel-detector (FPD) based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI) are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR) from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis images reconstructed by

  6. TU-AB-207-02: Testing of Body and Breast Tomosynthesis Sytems

    International Nuclear Information System (INIS)

    Jones, A.

    2015-01-01

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis

  7. TU-AB-207-02: Testing of Body and Breast Tomosynthesis Sytems

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A. [UT MD Anderson Cancer Center (United States)

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.

  8. The added value of tomosynthesis in endoscopic retrograde cholangiography with radiography for the detection of choledocholithiasis.

    Science.gov (United States)

    Suyama, Yohsuke; Yamada, Yoshitake; Yamaguchi, Hideki; Someya, Gou; Otsuka, Seiji; Murayama, Yoshitami; Shinmoto, Hiroshi; Jinzaki, Masahiro; Ogawa, Kenji

    2018-04-16

    The diagnostic performance of endoscopic retrograde cholangiography (ERC) with radiography is imperfect. We assessed the value of adding tomosynthesis to ERC with radiography for the detection of choledocholithiasis. This study included 102 consecutive patients (choledocholithiasis/non-choledocholithiasis, n = 57/45), who underwent both radiography and tomosynthesis for ERC in the same examination and were not diagnosed with malignancy. The reference standard for the existence of choledocholithiasis was confirmed by endoscopic stone extraction during ERC, intraoperative cholangiography, or follow up with magnetic resonance cholangiopancreatography (n = 78, 11, and 13, respectively). A gastroenterologist and a radiologist independently evaluated the radiographs and the combination of tomosynthesis and radiographic images in a blinded and randomised manner. Receiver operating characteristic analysis was used for statistical analysis. The areas under the receiver operating characteristic curve for combined tomosynthesis and radiography were significantly higher than those for radiography alone for both readers: Reader 1/Reader 2, 0.929/0.956 [95% confidence interval (CI), 0.861-0.965/0.890-0.983) vs 0.803/0.769 (95% confidence interval, 0.707-0.873/0.668-0.846), respectively (p = 0.0047/tomosynthesis to radiography improved the diagnostic performance of ERC for detection of choledocholithiasis. Advances in knowledge: Adding tomosynthesis to radiography improves detection of choledocholithiasis and tomosynthesis images can be obtained easily after radiographs and repeated immediately.

  9. Radiology in chest trauma

    International Nuclear Information System (INIS)

    Wenz, W.; Kloehn, I.; Wolfart, W.; Freiburg Univ.

    1979-01-01

    In chest trauma, a routine chest film, preferably in the lateral as well as the frontal projection, is the basic part of the work-up. Occasionally valuable additional methods are fluoroscopy, tomography, bronchography, contrast studies of the GI Tract and angiography and angiocardiography. In 679 chest trauma patients, traffic accidents and falls were the main reason for the trauma. There were 248 fractures; then - in order of frequency - hemopneumothorax (76), lung contusion (58), subcutaneous emphysema (33) cardiac (16) and vascular trauma (12) and damage to other organs. While 20-30% mistakes are made in diagnosing rib fractures in acute trauma, there is high accuracy in the diagnosis of the other injuries. Many cases are shown to demonstrate the value of diagnostic radiology. (orig.) [de

  10. Digital Tomosynthesis to Evaluate Fracture Healing: Prospective Comparison With Radiography and CT.

    Science.gov (United States)

    Ha, Alice S; Lee, Amie Y; Hippe, Daniel S; Chou, Shinn-Huey S; Chew, Felix S

    2015-07-01

    Radiography, currently the standard for postoperative fracture imaging, is limited by overlapping bone and hardware. Tomosynthesis has the benefit of level-by-level imaging without the disadvantages of metal artifacts, increased radiation, and higher costs of CT, the current problem-solving tool. The purpose of this study was to compare tomosynthesis with radiography for evaluating fracture healing. In a prospective study, patients within 1 year of wrist hardware fixation underwent radiography, tomosynthesis, and CT, and the images were interpreted by three readers. The diagnostic accuracy of radiology and tomosynthesis was assessed with ROC curves, and interreader agreement was assessed with Cohen kappa. Fracture scores were correlated with Disabilities of the Arm, Shoulder, and Hand (DASH) and pain scores. The study participants were 49 patients with 51 fractures. The most common fracture sites were distal radius (43%), scaphoid (18%), and metacarpals (18%). Rates of cortex obscuration by hardware were 2% for CT, 8% for tomosynthesis, and 15% for radiography (p tomosynthesis than with radiography (AUC, 0.84 vs 0.76, p = 0.01). Inter-reader agreement was moderate for both radiography and tomosynthesis (κ = 0.44 vs 0.55, p = 0.051). There was no significant correlation between fracture scores and DASH scores. There was significant correlation between reported pain levels and both tomosynthesis (r = 0.28, p = 0.03) and CT (r = 0.29, p = 0.04) fracture scores. Tomosynthesis provides diagnostic information superior to that of ra diography in postoperative evaluation of wrist fractures with lower cost and radiation than CT and should be considered in fracture follow-up imaging of other bones.

  11. Addition of tomosynthesis to conventional digital mammography: effect on image interpretation time of screening examinations.

    Science.gov (United States)

    Dang, Pragya A; Freer, Phoebe E; Humphrey, Kathryn L; Halpern, Elkan F; Rafferty, Elizabeth A

    2014-01-01

    To determine the effect of implementing a screening tomosynthesis program on real-world clinical performance by quantifying differences between interpretation times for conventional screening mammography and combined tomosynthesis and mammography for multiple participating radiologists with a wide range of experience in a large academic center. In this HIPAA-compliant, institutional review board-approved study, 10 radiologists prospectively read images from screening digital mammography or screening combined tomosynthesis and mammography examinations for 1-hour-long uninterrupted sessions. Images from 3665 examinations (1502 combined and 2163 digital mammography) from July 2012 to January 2013 were interpreted in at least five sessions per radiologist per modality. The number of cases reported during each session was recorded for each reader. The experience level for each radiologist was also correlated to the average number of cases reported per hour. Analysis of variance was used to assess the number of studies interpreted per hour. A linear regression model was used to evaluate correlation between breast imaging experience and time taken to interpret images from both modalities. The mean number of studies interpreted in hour was 23.8 ± 0.55 (standard deviation) (range, 14.4-40.4) for combined tomosynthesis and mammography and 34.0 ± 0.55 (range, 20.4-54.3) for digital mammography alone. A mean of 10.2 fewer studies were interpreted per hour during combined tomosynthesis and mammography compared with digital mammography sessions (P tomosynthesis and mammography and 1.9 minutes ± 0.6 (range, 1.1-3.0) for digital mammography; interpretation time with combined tomosynthesis and mammography was 0.9 minute longer (47% longer) compared with digital mammography alone (P tomosynthesis and mammography examinations decreased (R(2) = 0.52, P = .03). Addition of tomosynthesis to mammography results in increased time to interpret images from screening examinations compared

  12. Detection of osteophytes and subchondral cysts in the knee with use of tomosynthesis.

    Science.gov (United States)

    Hayashi, Daichi; Xu, Li; Roemer, Frank W; Hunter, David J; Li, Ling; Katur, Avinash M; Guermazi, Ali

    2012-04-01

    To evaluate the diagnostic performance of tomosynthesis in depicting osteophytes and subchondral cysts, with use of magnetic resonance (MR) imaging as the reference, and to test whether the lesions detected at radiography and tomosynthesis are associated with pain. The study was approved by local institutional review board, and all subjects gave written informed consent. Forty subjects (80 knees) older than 40 years were recruited irrespective of knee pain or radiographic osteoarthritis. Knees were imaged with radiography, tomosynthesis, and MR imaging. Presence of osteophytes and subchondral cysts in four locations of tibiofemoral joint (medial and lateral femur and tibia) was recorded. Knee pain was assessed by using the Western Ontario and McMaster University pain subscale. MR imaging depicted 171 osteophytes and 51 subchondral cysts. Tomosynthesis had a higher sensitivity for osteophyte detection in left and right lateral femur (0.96 vs 0.75, P = .025, and 1.00 vs 0.71, P = .008, respectively), right medial femur (0.94 vs 0.72, P = .046), and right lateral tibia (1.00 vs 0.83, P = .046). For subchondral cyst detection, the sensitivity of tomosynthesis was 0.14-1.00 and that of radiography was 0.00-0.56. Both modalities had similar specificity for both lesions. Subjects with tomosynthesis-depicted osteophytes (odds ratio, 4.2-6.4; P = .001-.011) and medially located subchondral cysts (odds ratio, 6.7-17.8; P = .004-.03) were more likely to feel pain than those without. However, radiography-depicted osteophytes were more strongly associated with pain than were tomosynthesis-depicted osteophytes. Tomosynthesis depicted more osteophytes and subchondral cysts than did radiography. Subjects with tomosynthesis-depicted osteophytes and subchondral cysts were more likely to feel pain than those without such lesions. © RSNA, 2012.

  13. Effect of age on breast cancer screening using tomosynthesis in combination with digital mammography.

    Science.gov (United States)

    Rafferty, Elizabeth A; Rose, Stephen L; Miller, Dave P; Durand, Melissa A; Conant, Emily F; Copit, Debra S; Friedewald, Sarah M; Plecha, Donna M; Ott, Ingrid L; Hayes, Mary K; Carlson, Kara L; Cink, Thomas M; Barke, Lora D; Greer, Linda N; Niklason, Loren T

    2017-08-01

    To determine the effect of tomosynthesis imaging as a function of age for breast cancer screening. Screening performance metrics from 13 institutions were examined for 12 months prior to introduction of tomosynthesis (period 1) and compared to those after introduction of tomosynthesis (period 2, range 3-22 months). Screening metrics for women ages 40-49, 50-59, 60-69, and 70+ , included rates per 1000 screens for recalls, biopsies, cancers, and invasive cancers detected. Performance parameters were compared for women screened with digital mammography alone (n = 278,908) and digital mammography + tomosynthesis (n = 173,414). Addition of tomosynthesis to digital mammography produced significant reductions in recall rates for all age groups and significant increases in cancer detection rates for women 40-69. Largest recall rate reduction with tomosynthesis was for women 40-49, decreasing from 137 (95% CI 117-156) to 115 (95% CI 95-135); difference, -22 (95% CI -26 to -18; P cancer detection rate for women 40-49 from 1.6 (95% CI 1.2-1.9) to 2.7 (95% CI 2.2-3.1) with tomosynthesis (difference, 1.1; 95% CI 0.6-1.6; P cancer detection rates for women 40-69 and decreased recall rates for all age groups with largest performance gains seen in women 40-49. The similar performance seen with tomosynthesis screening for women in their 40s compared to digital mammography for women in their 50s argues strongly for commencement of mammography screening at age 40 using tomosynthesis.

  14. Chest sonography. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Mathis, Gebhard (ed.)

    2008-07-01

    Chest sonography is an established procedure in the stepwise imaging diagnosis of pulmonary and pleural disease. It is the method of choice to distinguish between solid and liquid lesions and allows the investigator to make an unequivocal diagnosis without exposing the patient to costly and stressful procedures. This book presents the state of the art in chest investigation by means of ultrasonography. A number of excellent illustrations and the compact text provide concise and easy-to-assimilate information about the diagnostic procedure. Basic elements such as indications, investigation techniques and image artifacts are detailed in separate chapters. (orig.)

  15. Chest sonography. 2. ed.

    International Nuclear Information System (INIS)

    Mathis, Gebhard

    2008-01-01

    Chest sonography is an established procedure in the stepwise imaging diagnosis of pulmonary and pleural disease. It is the method of choice to distinguish between solid and liquid lesions and allows the investigator to make an unequivocal diagnosis without exposing the patient to costly and stressful procedures. This book presents the state of the art in chest investigation by means of ultrasonography. A number of excellent illustrations and the compact text provide concise and easy-to-assimilate information about the diagnostic procedure. Basic elements such as indications, investigation techniques and image artifacts are detailed in separate chapters. (orig.)

  16. Use of chest sonography in acute-care radiology☆

    Science.gov (United States)

    De Luca, C.; Valentino, M.; Rimondi, M.R.; Branchini, M.; Baleni, M. Casadio; Barozzi, L.

    2008-01-01

    Diagnosis of acute lung disease is a daily challenge for radiologists working in acute-care areas. It is generally based on the results of chest radiography performed under technically unfavorable conditions. Computed tomography (CT) is undoubtedly more accurate in these cases, but it cannot always be performed on critically ill patients who need continuous care. The use of thoracic ultrasonography (US) has recently been proposed for the study of acute lung disease. It can be carried out rapidly at the bedside and does not require any particularly sophisticated equipment. This report analyzes our experience with chest sonography as a supplement to chest radiography in an Emergency Radiology Unit. We performed chest sonography – as an adjunct to chest radiography – on 168 patients with acute chest pathology. Static and dynamic US signs were analyzed in light of radiographic findings and, when possible, CT. The use of chest US improved the authors' ability to provide confident diagnoses of acute disease of the chest and lungs. PMID:23397048

  17. Digital tomosynthesis for evaluating metastatic lung nodules: nodule visibility, learning curves, and reading times.

    Science.gov (United States)

    Lee, Kyung Hee; Goo, Jin Mo; Lee, Sang Min; Park, Chang Min; Bahn, Young Eun; Kim, Hyungjin; Song, Yong Sub; Hwang, Eui Jin

    2015-01-01

    To evaluate nodule visibility, learning curves, and reading times for digital tomosynthesis (DT). We included 80 patients who underwent computed tomography (CT) and DT before pulmonary metastasectomy. One experienced chest radiologist annotated all visible nodules on thin-section CT scans using computer-aided detection software. Two radiologists used CT as the reference standard and retrospectively graded the visibility of nodules on DT. Nodule detection performance was evaluated in four sessions of 20 cases each by six readers. After each session, readers were unblinded to the DT images by revealing the true-positive markings and were instructed to self-analyze their own misreads. Receiver-operating-characteristic curves were determined. Among 414 nodules on CT, 53.3% (221/414) were visible on DT. The main reason for not seeing a nodule on DT was small size (93.3%, ≤ 5 mm). DT revealed a substantial number of malignant nodules (84.1%, 143/170). The proportion of malignant nodules among visible nodules on DT was significantly higher (64.7%, 143/221) than that on CT (41.1%, 170/414) (p 0.8, and the average detection rate for malignant nodules was 85% (210/246). The inter-session analysis of the AUC showed no significant differences among the readers, and the detection rate for malignant nodules did not differ across sessions. A slight improvement in reading times was observed. Most malignant nodules > 5 mm were visible on DT. As nodule detection performance was high from the initial session, DT may be readily applicable for radiology residents and board-certified radiologists.

  18. Digital tomosynthesis for evaluating metastatic lung nodules: Nodule visibility, learning curves, and reading times

    International Nuclear Information System (INIS)

    Lee, Kyung Hee; Goo, Jin Mo; Lee, Sang Min; Park, Chang Min; Bahn, Young Eun; Kim, Hyung Jin; Song, Yong Sub; Hwang, Eui Jin

    2015-01-01

    To evaluate nodule visibility, learning curves, and reading times for digital tomosynthesis (DT). We included 80 patients who underwent computed tomography (CT) and DT before pulmonary metastasectomy. One experienced chest radiologist annotated all visible nodules on thin-section CT scans using computer-aided detection software. Two radiologists used CT as the reference standard and retrospectively graded the visibility of nodules on DT. Nodule detection performance was evaluated in four sessions of 20 cases each by six readers. After each session, readers were unblinded to the DT images by revealing the true-positive markings and were instructed to self-analyze their own misreads. Receiver-operating-characteristic curves were determined. Among 414 nodules on CT, 53.3% (221/414) were visible on DT. The main reason for not seeing a nodule on DT was small size (93.3%, < or = 5 mm). DT revealed a substantial number of malignant nodules (84.1%, 143/170). The proportion of malignant nodules among visible nodules on DT was significantly higher (64.7%, 143/221) than that on CT (41.1%, 170/414) (p < 0.001). Area under the curve (AUC) values at the initial session were > 0.8, and the average detection rate for malignant nodules was 85% (210/246). The inter-session analysis of the AUC showed no significant differences among the readers, and the detection rate for malignant nodules did not differ across sessions. A slight improvement in reading times was observed. Most malignant nodules > 5 mm were visible on DT. As nodule detection performance was high from the initial session, DT may be readily applicable for radiology residents and board-certified radiologists.

  19. Digital tomosynthesis for evaluating metastatic lung nodules: Nodule visibility, learning curves, and reading times

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hee; Goo, Jin Mo; Lee, Sang Min; Park, Chang Min; Bahn, Young Eun; Kim, Hyung Jin; Song, Yong Sub; Hwang, Eui Jin [Dept. of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of)

    2015-04-15

    To evaluate nodule visibility, learning curves, and reading times for digital tomosynthesis (DT). We included 80 patients who underwent computed tomography (CT) and DT before pulmonary metastasectomy. One experienced chest radiologist annotated all visible nodules on thin-section CT scans using computer-aided detection software. Two radiologists used CT as the reference standard and retrospectively graded the visibility of nodules on DT. Nodule detection performance was evaluated in four sessions of 20 cases each by six readers. After each session, readers were unblinded to the DT images by revealing the true-positive markings and were instructed to self-analyze their own misreads. Receiver-operating-characteristic curves were determined. Among 414 nodules on CT, 53.3% (221/414) were visible on DT. The main reason for not seeing a nodule on DT was small size (93.3%, < or = 5 mm). DT revealed a substantial number of malignant nodules (84.1%, 143/170). The proportion of malignant nodules among visible nodules on DT was significantly higher (64.7%, 143/221) than that on CT (41.1%, 170/414) (p < 0.001). Area under the curve (AUC) values at the initial session were > 0.8, and the average detection rate for malignant nodules was 85% (210/246). The inter-session analysis of the AUC showed no significant differences among the readers, and the detection rate for malignant nodules did not differ across sessions. A slight improvement in reading times was observed. Most malignant nodules > 5 mm were visible on DT. As nodule detection performance was high from the initial session, DT may be readily applicable for radiology residents and board-certified radiologists.

  20. Comparison of power spectra for tomosynthesis projections and reconstructed images

    International Nuclear Information System (INIS)

    Engstrom, Emma; Reiser, Ingrid; Nishikawa, Robert

    2009-01-01

    Burgess et al. [Med. Phys. 28, 419-437 (2001)] showed that the power spectrum of mammographic breast background follows a power law and that lesion detectability is affected by the power-law exponent β which measures the amount of structure in the background. Following the study of Burgess et al., the authors measured and compared the power-law exponent of mammographic backgrounds in tomosynthesis projections and reconstructed slices to investigate the effect of tomosynthesis imaging on background structure. Our data set consisted of 55 patient cases. For each case, regions of interest (ROIs) were extracted from both projection images and reconstructed slices. The periodogram of each ROI was computed by taking the squared modulus of the Fourier transform of the ROI. The power-law exponent was determined for each periodogram and averaged across all ROIs extracted from all projections or reconstructed slices for each patient data set. For the projections, the mean β averaged across the 55 cases was 3.06 (standard deviation of 0.21), while it was 2.87 (0.24) for the corresponding reconstructions. The difference in β for a given patient between the projection ROIs and the reconstructed ROIs averaged across the 55 cases was 0.194, which was statistically significant (p<0.001). The 95% CI for the difference between the mean value of β for the projections and reconstructions was [0.170, 0.218]. The results are consistent with the observation that the amount of breast structure in the tomosynthesis slice is reduced compared to projection mammography and that this may lead to improved lesion detectability.

  1. Real-time tomosynthesis for radiation therapy guidance.

    Science.gov (United States)

    Hsieh, Scott S; Ng, Lydia W

    2017-11-01

    Fluoroscopy has been a tool of choice for monitoring treatments or interventions because of its extremely fast imaging times. However, the contrast obtained in fluoroscopy may be insufficient for certain clinical applications. In stereotactic ablative radiation therapy of the lung, fluoroscopy often lacks sufficient contrast for gating treatment. The purpose of this work is to describe and assess a real-time tomosynthesis design that can produce sufficient contrast for guidance of lung tumor treatment within a small field of view. Previous tomosynthesis designs in radiation oncology have temporal resolution on the order of seconds. The proposed system design uses parallel acquisition of multiple frames by simultaneously illuminating the field of view with multiple sources, enabling a temporal resolution of up to 30 frames per second. For a small field of view, a single flat-panel detector could be used if different sectors of the detector are assigned to specific sources. Simulated images were generated by forward projection of existing clinical datasets. The authors varied the number of tubes and the power of each tube in order to determine the impact on tumor visualization. Visualization of the tumor was much clearer in tomosynthesis than in fluoroscopy. Contrast generally improved with the number of sources used, and a minimum of four sources should be used. The high contrast of the lung allows very low system power, and in most cases, less than 1 mA was needed. More power is required in the lateral direction than the AP direction. The proposed system produces images adequate for real-time guidance of radiation therapy. The additional hardware requirements are modest, and the system is capable of imaging at high frame rates and low dose. Further development, including a prototype system and a dosimetry study, is needed to further evaluate the feasibility of this device for radiation therapy guidance. © 2017 American Association of Physicists in Medicine.

  2. Digital tomosynthesis rendering of joint margins for arthritis assessment

    Science.gov (United States)

    Duryea, Jeffrey W.; Neumann, Gesa; Yoshioka, Hiroshi; Dobbins, James T., III

    2004-05-01

    PURPOSE: Rheumatoid arthritis (RA) of the hand is a significant healthcare problem. Techniques to accurately quantity the structural changes from RA are crucial for the development and prescription of therapies. Analysis of radiographic joint space width (JSW) is widely used and has demonstrated promise. However, radiography presents a 2D view of the joint. In this study we performed tomosynthesis reconstructions of proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints to measure the 3D joint structure. METHODS: We performed a reader study using simulated radiographs of 12 MCP and 12 PIP joints from skeletal specimens imaged with micro-CT. The tomosynthesis technique provided images of reconstructed planes with 0.75 mm spacing, which were presented to 2 readers with a computer tool. The readers were instructed to delineate the joint surfaces on tomosynthetic slices where they could visualize the margins. We performed a quantitative analysis of 5 slices surrounding the central portion of each joint. Reader-determined JSW was compared to a gold standard. As a figure of merit we calculated the average root-mean square deviation (RMSD). RESULTS: RMSD was 0.22 mm for both joints. For the individual joints, RMSD was 0.18 mm (MCP), and 0.26 mm (PIP). The reduced performance for the smaller PIP joints suggests that a slice spacing less than 0.75 mm may be more appropriate. CONCLUSIONS: We have demonstrated the capability of limited 3D rendering of joint surfaces using digital tomosynthesis. This technique promises to provide an improved method to visualize the structural changes of RA.

  3. Oblique reconstructions in tomosynthesis. II. Super-resolution

    International Nuclear Information System (INIS)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes.Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system.Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  4. Oblique reconstructions in tomosynthesis. II. Super-resolution

    Science.gov (United States)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes. Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system. Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  5. Characteristics of megavoltage cone-beam digital tomosynthesis

    International Nuclear Information System (INIS)

    Descovich, M.; Morin, O.; Aubry, J. F.; Aubin, M.; Chen, J.; Bani-Hashemi, A; Pouliot, J.

    2008-01-01

    This article reports on the image characteristics of megavoltage cone-beam digital tomosynthesis (MVCB DT). MVCB DT is an in-room imaging technique, which enables the reconstruction of several two-dimensional slices from a set of projection images acquired over an arc of 20 deg. - 40 deg. The limited angular range reduces the acquisition time and the dose delivered to the patient, but affects the image quality of the reconstructed tomograms. Image characteristics (slice thickness, shape distortion, and contrast-to-noise ratio) are studied as a function of the angular range. Potential clinical applications include patient setup and the development of breath holding techniques for gated imaging

  6. UWB tomosynthesis of objects in mediums with metal inclusions

    Science.gov (United States)

    Yakubov, V. P.; Shipilov, S. E.; Sukhanov, D. Ya; Minin, I. V.; Minin, O. V.

    2017-08-01

    Radiowave tomography of dielectric objects containing metal inclusions is a rather complex problem, since the scattering of waves by dielectric inhomogeneities occurs against the background of substantially stronger reflections from metal parts, even if they are geometrically small. The arising features of obtaining a tomogram in such conditions, including overcoming of disguising by reinforcing ribbons and the appearance of locational shadows at different depths, are discussed in the paper. Herewith principled importance to achieve high focusing of UWB radiation by tomosynthesis is noted on the basis of direct experimental data.

  7. MRI of the Chest

    Medline Plus

    Full Text Available ... Imaging (MRI) - Chest Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ... links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo.org , ACR ...

  8. MRI of the Chest

    Medline Plus

    Full Text Available ... transplant, it will be necessary to perform a blood test to determine whether the kidneys are functioning adequately. ... abnormalities where Chest CT is a preferred imaging test. MR imaging can assess blood flow without risking the side effects of conventional ( ...

  9. MRI of the Chest

    Medline Plus

    Full Text Available ... internal body structures. MRI does not use ionizing radiation (x-rays). Detailed MR images allow physicians to evaluate various ... seen by other imaging modalities, such as chest x-ray or CT. A special form of MRI called ...

  10. Chest X-Ray

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos ... x-ray is used to evaluate the lungs, heart and chest wall and may be used to ...

  11. MRI of the Chest

    Medline Plus

    Full Text Available ... of which shows a thin slice of the body. The images can then be studied from different angles by ... bear denotes child-specific content. Related Articles and Media MR ... Images related to Magnetic Resonance Imaging (MRI) - Chest Sponsored ...

  12. MRI of the Chest

    Medline Plus

    Full Text Available ... body structures. MRI does not use ionizing radiation (x-rays). Detailed MR images allow physicians to evaluate various ... seen by other imaging modalities, such as chest x-ray or CT. A special form of MRI called ...

  13. MRI of the Chest

    Medline Plus

    Full Text Available ... computer to produce detailed pictures of organs, soft tissues, bone and virtually all other internal body structures. MRI ... cancer, heart and vascular disease, heart valve abnormalities, bone and other soft tissue abnormalities of the chest. MRI is also useful ...

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... change into a gown. You may have some concerns about chest x-rays. However, it’s important to ... You Sponsored by About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 ...

  15. Diagnostic accuracy and recall rates for digital mammography and digital mammography combined with one-view and two-view tomosynthesis: results of an enriched reader study.

    Science.gov (United States)

    Rafferty, Elizabeth A; Park, Jeong Mi; Philpotts, Liane E; Poplack, Steven P; Sumkin, Jules H; Halpern, Elkan F; Niklason, Loren T

    2014-02-01

    The purpose of this study was to compare two methods of combining tomosynthesis with digital mammography by assessing diagnostic accuracy and recall rates for digital mammography alone and digital mammography combined with one-view tomosynthesis and two-view tomosynthesis. Three hundred ten cases including biopsy-proven malignancies (51), biopsy-proven benign findings (47), recalled screening cases (138), and negative screening cases (74) were reviewed by 15 radiologists sequentially using digital mammography, adding one-view tomosynthesis, and then two-view tomosynthesis. Cases were assessed for recall and assigned a BI-RADS score and probability of malignancy for each imaging method. Diagnostic accuracy was assessed using receiver operating characteristic (ROC) analysis. Screening recall rates were compared using pooled logistical regression analysis. A p value of tomosynthesis, and DM plus two-view tomosynthesis was 0.828, 0.864, and 0.895, respectively. Both one-view and two-view tomosynthesis plus DM were significantly better than DM alone (Δ AUCs 0.036 [p = 0.009] and 0.068 [p tomosynthesis, and DM plus two-view tomosynthesis were 44.2%, 27.2%, and 24.0%, respectively. Combined with DM, one-view and two-view tomosynthesis both showed significantly lower noncancer recall rates than digital mammography alone (p tomosynthesis showed a significantly lower recall rate than digital mammography with one-view tomosynthesis (p tomosynthesis compared with digital mammography alone. Compared with digital mammography, diagnostic sensitivity for invasive cancers increased with the addition of both one-view (Δ12.0%, p tomosynthesis. The addition of one-view tomosynthesis to conventional digital mammography improved diagnostic accuracy and reduced the recall rate; however, the addition of two-view tomosynthesis provided twice the performance gain in diagnostic accuracy while further reducing the recall rate.

  16. Editor's Choice-The organization of chest pain units: Position statement of the Acute Cardiovascular Care Association.

    Science.gov (United States)

    Claeys, Marc J; Ahrens, Ingo; Sinnaeve, Peter; Diletti, Roberto; Rossini, Roberta; Goldstein, Patrick; Czerwińska, Kasia; Bueno, Héctor; Lettino, Maddalena; Münzel, Thomas; Zeymer, Uwe

    2017-04-01

    Chest pain units are defined as organizational short stay units with specific management protocols designed to facilitate and optimize the diagnosis of patients presenting with chest pain in the emergency department. The present document is intended to standardize and facilitate the installation of chest pain units nearby to the emergency department or as an integral part of the emergency department. Recommendations on organizational structure, physical and technical requirements and on disease management are presented. More standardized installation and implementation of chest pain units will enhance the quality of chest pain units and improve the quality of care of our chest pain patients.

  17. Boundary-enhancement in propagation-based x-ray phase-contrast tomosynthesis improves depth position characterization.

    Science.gov (United States)

    Guan, Huifeng; Xu, Qiaofeng; Garson, Alfred B; Anastasio, Mark A

    2015-04-21

    Propagation-based x-ray phase-contrast (PB XPC) tomosynthesis combines the concepts of tomosynthesis and XPC imaging to realize the advantages of both for biological imaging applications. Tomosynthesis permits reductions in acquisition times compared with full-view tomography, while XPC imaging provides the opportunity to resolve weakly absorbing structures. In this note, an investigation of the depth resolving properties of PB XPC tomosynthesis is conducted. The results demonstrate that in-plane structures display strong boundary-enhancement while out-of-plane structures do not. This effect can facilitate the identification of in-plane structures in PB XPC tomosynthesis that could normally not be distinguished from out-of-plane structures in absorption-based tomosynthesis.

  18. Boundary-enhancement in propagation-based x-ray phase-contrast tomosynthesis improves depth position characterization

    International Nuclear Information System (INIS)

    Guan, Huifeng; Xu, Qiaofeng; Garson, Alfred B III; Anastasio, Mark A

    2015-01-01

    Propagation-based x-ray phase-contrast (PB XPC) tomosynthesis combines the concepts of tomosynthesis and XPC imaging to realize the advantages of both for biological imaging applications. Tomosynthesis permits reductions in acquisition times compared with full-view tomography, while XPC imaging provides the opportunity to resolve weakly absorbing structures. In this note, an investigation of the depth resolving properties of PB XPC tomosynthesis is conducted. The results demonstrate that in-plane structures display strong boundary-enhancement while out-of-plane structures do not. This effect can facilitate the identification of in-plane structures in PB XPC tomosynthesis that could normally not be distinguished from out-of-plane structures in absorption-based tomosynthesis. (note)

  19. Digital tomosynthesis using a 35 mm X-ray cinematogram during an isocentric rotational motion

    International Nuclear Information System (INIS)

    Maeda, Hirofumi; Aikawa, Hisayuki; Maeda, Tohru; Miyake, Hidetoshi; Sugahara, Tetsuo.

    1988-01-01

    Digital tomosynthesis is performed using a 35 mm X-ray cinematogram obtained during an isocentric rotational motion of the cineangiographic apparatus. Formula of image shift for digital tomosynthesis using an isocentric rotational motion is induced by perspective projection and affine transformation. Images of desired layer are aligned at the same point in the image processor and summed. Resultant final image is displayed in sharp focus. We can set tomosynthetic factors on any desired projection, sweep angle and depth as concerns digital tomosynthesis using an isocentric rotational motion. Especially we emphasize that tomosynthesis tilted for central axis of isocentric rotational motion can be obtained, using shear transformation of image in the image processor. (author)

  20. Optimization of Tomosynthesis Imaging for Improved Mass and Microcalcification Detection in the Breast

    National Research Council Canada - National Science Library

    Xia, Dan

    2008-01-01

    The goal of this research is to obtain systematic understandings of the effects of various physical factors that are important in breast tomosynthesis imaging and to develop techniques for effectively...

  1. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    National Research Council Canada - National Science Library

    Li, Christina M

    2007-01-01

    Digital breast tomosynthesis (DBT) strives to overcome the obstacles presented in conventional 2D mammography by taking multiple projections over a fixed angle and reconstructing volumetric data isolates overlying anatomy...

  2. Comparative study between breast tomosynthesis and classic digital mammography in the evaluation of different breast lesions

    Directory of Open Access Journals (Sweden)

    Sahar Mansour

    2014-09-01

    Conclusion: Three-dimensional tomosynthesis significantly enhanced the detection and characterization of breast lesions on digital mammography especially in the context of dense breast parenchyma (ACR 3&4.

  3. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications

    Science.gov (United States)

    Sechopoulos, Ioannis

    2013-01-01

    Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127

  4. Potential impact of tomosynthesis on the detection and diagnosis of breast lesi

    Directory of Open Access Journals (Sweden)

    Tamer F. Taha Ali

    2016-03-01

    Conclusion: Breast tomosynthesis is a promising technology that offers improved diagnostic and screening accuracy, fewer recalls as well as 3D lesion localization. Lesion conspicuity is improved using DBT compared with FFDM with a more confidence in making clinical decisions.

  5. Added value of one-view breast tomosynthesis combined with digital mammography according to reader experience

    International Nuclear Information System (INIS)

    Thomassin-Naggara, Isabelle; Perrot, Nicolas; Dechoux, Sophie; Ribeiro, Carine; Chopier, Jocelyne; Bazelaire, Cedric de

    2015-01-01

    Highlights: • Breast tomosynthesis improves diagnostic performance especially for radiologists with lower experience in mammography. • Adding only one-view digital breast tomosynthesis to mammography improves the cancer detection rate. • Breast tomosynthesis is mainly useful for helping radiologists to detect architectural distortion. - Abstract: Purpose: To retrospectively evaluate the added value of one-view breast tomosynthesis in adjunct with mammography to characterize breast lesions. Materials and methods: Our institutional ethics committees approved the study and granted a waiver of informed consent. One hundred fifty-five women (mean age, 51.3 years, range: 24–92 years) who systematically underwent mammography and breast tomosynthesis with subsequent percutaneous biopsy were analyzed. Four radiologists (two seniors, R1 and R2, and two juniors, R3 and R4 with 30, 10, 3 and 1 years of experience in breast imaging, respectively) independently reviewed exams in two steps: mammography alone and tomosynthesis in adjunct with mammography. The lesions in the cohort included 39.3% (61/155) cancers, 2.5% (4/155) high-risk lesions and 58.1% (90/155) benign lesions. A receiver operating characteristic (ROC) curve analysis was performed to compare the results of the two readings. Results: There was almost perfect agreement irrespective of reader experience for the reading of the mammography in adjunct with tomosynthesis, whereas agreement was poor between junior and senior readers for the reading of mammography alone. Area under the ROC (Az) values for the tomosynthesis in adjunct with mammography were significantly better than Az values for mammography alone for all readers except the most experienced, for whom only a tendency was noted. The proportion of cancers undiagnosed by mammography alone that were well diagnosed by tomosynthesis in adjunct with mammography was 6.5% (4/61), 13.1% (8/61), 27.8% (17/61) and 26.2% (16/61) for Readers 1, 2, 3 and 4

  6. Added value of one-view breast tomosynthesis combined with digital mammography according to reader experience

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin-Naggara, Isabelle, E-mail: isabelle.thomassin@tnn.aphp.fr [Sorbonne Universités, UPMC Univ Paris 06, IUC, 75005 Paris (France); INSERM, UMR970, Equipe 2, Imagerie de l’angiogenèse, 75005 Paris (France); AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Perrot, Nicolas [AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Centre Pyramides, Paris (France); Dechoux, Sophie [Sorbonne Universités, UPMC Univ Paris 06, IUC, 75005 Paris (France); AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Ribeiro, Carine [Centre Pyramides, Paris (France); Chopier, Jocelyne [AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Bazelaire, Cedric de [APHP, Department of Radiology, Hôpital Saint Louis, 75010 Paris (France)

    2015-02-15

    Highlights: • Breast tomosynthesis improves diagnostic performance especially for radiologists with lower experience in mammography. • Adding only one-view digital breast tomosynthesis to mammography improves the cancer detection rate. • Breast tomosynthesis is mainly useful for helping radiologists to detect architectural distortion. - Abstract: Purpose: To retrospectively evaluate the added value of one-view breast tomosynthesis in adjunct with mammography to characterize breast lesions. Materials and methods: Our institutional ethics committees approved the study and granted a waiver of informed consent. One hundred fifty-five women (mean age, 51.3 years, range: 24–92 years) who systematically underwent mammography and breast tomosynthesis with subsequent percutaneous biopsy were analyzed. Four radiologists (two seniors, R1 and R2, and two juniors, R3 and R4 with 30, 10, 3 and 1 years of experience in breast imaging, respectively) independently reviewed exams in two steps: mammography alone and tomosynthesis in adjunct with mammography. The lesions in the cohort included 39.3% (61/155) cancers, 2.5% (4/155) high-risk lesions and 58.1% (90/155) benign lesions. A receiver operating characteristic (ROC) curve analysis was performed to compare the results of the two readings. Results: There was almost perfect agreement irrespective of reader experience for the reading of the mammography in adjunct with tomosynthesis, whereas agreement was poor between junior and senior readers for the reading of mammography alone. Area under the ROC (Az) values for the tomosynthesis in adjunct with mammography were significantly better than Az values for mammography alone for all readers except the most experienced, for whom only a tendency was noted. The proportion of cancers undiagnosed by mammography alone that were well diagnosed by tomosynthesis in adjunct with mammography was 6.5% (4/61), 13.1% (8/61), 27.8% (17/61) and 26.2% (16/61) for Readers 1, 2, 3 and 4

  7. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

    Science.gov (United States)

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-04-01

    The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection

  8. Computation of the glandular radiation dose in digital tomosynthesis of the breast

    International Nuclear Information System (INIS)

    Sechopoulos, Ioannis; Suryanarayanan, Sankararaman; Vedantham, Srinivasan; D'Orsi, Carl; Karellas, Andrew

    2007-01-01

    Tomosynthesis of the breast is currently a topic of intense interest as a logical next step in the evolution of digital mammography. This study reports on the computation of glandular radiation dose in digital tomosynthesis of the breast. Previously, glandular dose estimations in tomosynthesis have been performed using data from studies of radiation dose in conventional planar mammography. This study evaluates, using Monte Carlo methods, the normalized glandular dose (D g N) to the breast during a tomosynthesis study, and characterizes its dependence on breast size, tissue composition, and x-ray spectrum. The conditions during digital tomosynthesis imaging of the breast were simulated using a computer program based on the Geant4 toolkit. With the use of simulated breasts of varying size, thickness and tissue composition, the D g N to the breast tissue was computed for varying x-ray spectra and tomosynthesis projection angle. Tomosynthesis projections centered about both the cranio-caudal (CC) and medio-lateral oblique (MLO) views were simulated. For each projection angle, the ratio of the glandular dose for that projection to the glandular dose for the zero degree projection was computed. This ratio was denoted the relative glandular dose (RGD) coefficient, and its variation under different imaging parameters was analyzed. Within mammographic energies, the RGD was found to have a weak dependence on glandular fraction and x-ray spectrum for both views. A substantial dependence on breast size and thickness was found for the MLO view, and to a lesser extent for the CC view. Although RGD values deviate substantially from unity as a function of projection angle, the RGD averaged over all projections in a complete tomosynthesis study varies from 0.91 to 1.01. The RGD results were fit to mathematical functions and the resulting equations are provided

  9. Digital tomosynthesis with an on-board kilovoltage imaging device

    International Nuclear Information System (INIS)

    Godfrey, Devon J.; Yin, F.-F.; Oldham, Mark; Yoo, Sua; Willett, Christopher

    2006-01-01

    Purpose: To generate on-board digital tomosynthesis (DTS) and reference DTS images for three-dimensional image-guided radiation therapy (IGRT) as an alternative to conventional portal imaging or on-board cone-beam computed tomography (CBCT). Methods and Materials: Three clinical cases (prostate, head-and-neck, and liver) were selected to illustrate the capabilities of on-board DTS for IGRT. Corresponding reference DTS images were reconstructed from digitally reconstructed radiographs computed from planning CT image sets. The effect of scan angle on DTS slice thickness was examined by computing the mutual information between coincident CBCT and DTS images, as the DTS scan angle was varied from 0 o to 165 o . A breath-hold DTS acquisition strategy was implemented to remove respiratory motion artifacts. Results: Digital tomosynthesis slices appeared similar to coincident CBCT planes and yielded substantially more anatomic information than either kilovoltage or megavoltage radiographs. Breath-hold DTS acquisition improved soft-tissue visibility by suppressing respiratory motion. Conclusions: Improved bony and soft-tissue visibility in DTS images is likely to improve target localization compared with radiographic verification techniques and might allow for daily localization of a soft-tissue target. Breath-hold DTS is a potential alternative to on-board CBCT for sites prone to respiratory motion

  10. Metal and calcification artifact reduction for digital breast tomosynthesis

    Science.gov (United States)

    Wicklein, Julia; Jerebko, Anna; Ritschl, Ludwig; Mertelmeier, Thomas

    2017-03-01

    Tomosynthesis images of the breast suffer from artifacts caused by the presence of highly absorbing materials. These can be either induced by metal objects like needles or clips inserted during biopsy devices, or larger calcifications inside the examined breast. Mainly two different kinds of artifacts appear after the filtered backprojection procedure. The first type is undershooting artifacts near edges of high-contrast objects caused by the filtering step. The second type is out-of-plane (ripple) artifacts that appear even in slices where the metal object or macrocalcifications does not exist. Due to the limited angular range of tomosynthesis systems, overlapping structures have high influence on neighboring regions. To overcome these problems, a segmentation of artifact introducing objects is performed on the projection images. Both projection versions, with and without high-contrast objects are filtered independently to avoid undershootings. During backprojection a decision is made for each reconstructed voxel, if it is artifact or high-contrast object. This is based on a mask image, gained from the segmentation of high-contrast objects. This procedure avoids undershooting artifacts and additionally reduces out-of-plane ripple. Results are demonstrated for different kinds of artifact inducing objects and calcifications.

  11. Voting strategy for artifact reduction in digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Wu Tao; Moore, Richard H.; Kopans, Daniel B.

    2006-01-01

    Artifacts are observed in digital breast tomosynthesis (DBT) reconstructions due to the small number of projections and the narrow angular range that are typically employed in tomosynthesis imaging. In this work, we investigate the reconstruction artifacts that are caused by high-attenuation features in breast and develop several artifact reduction methods based on a 'voting strategy'. The voting strategy identifies the projection(s) that would introduce artifacts to a voxel and rejects the projection(s) when reconstructing the voxel. Four approaches to the voting strategy were compared, including projection segmentation, maximum contribution deduction, one-step classification, and iterative classification. The projection segmentation method, based on segmentation of high-attenuation features from the projections, effectively reduces artifacts caused by metal and large calcifications that can be reliably detected and segmented from projections. The other three methods are based on the observation that contributions from artifact-inducing projections have higher value than those from normal projections. These methods attempt to identify the projection(s) that would cause artifacts by comparing contributions from different projections. Among the three methods, the iterative classification method provides the best artifact reduction; however, it can generate many false positive classifications that degrade the image quality. The maximum contribution deduction method and one-step classification method both reduce artifacts well from small calcifications, although the performance of artifact reduction is slightly better with the one-step classification. The combination of one-step classification and projection segmentation removes artifacts from both large and small calcifications

  12. Interventional C-arm tomosynthesis for vascular imaging: initial results

    Science.gov (United States)

    Langan, David A.; Claus, Bernhard E. H.; Al Assad, Omar; Trousset, Yves; Riddell, Cyril; Avignon, Gregoire; Solomon, Stephen B.; Lai, Hao; Wang, Xin

    2015-03-01

    As percutaneous endovascular procedures address more complex and broader disease states, there is an increasing need for intra-procedure 3D vascular imaging. In this paper, we investigate C-Arm 2-axis tomosynthesis ("Tomo") as an alternative to C-Arm Cone Beam Computed Tomography (CBCT) for workflow situations in which the CBCT acquisition may be inconvenient or prohibited. We report on our experience in performing tomosynthesis acquisitions with a digital angiographic imaging system (GE Healthcare Innova 4100 Angiographic Imaging System, Milwaukee, WI). During a tomo acquisition the detector and tube each orbit on a plane above and below the table respectively. The tomo orbit may be circular or elliptical, and the tomographic half-angle in our studies varied from approximately 16 to 28 degrees as a function of orbit period. The trajectory, geometric calibration, and gantry performance are presented. We overview a multi-resolution iterative reconstruction employing compressed sensing techniques to mitigate artifacts associated with incomplete data reconstructions. In this work, we focus on the reconstruction of small high contrast objects such as iodinated vasculature and interventional devices. We evaluate the overall performance of the acquisition and reconstruction through phantom acquisitions and a swine study. Both tomo and comparable CBCT acquisitions were performed during the swine study thereby enabling the use of CBCT as a reference in the evaluation of tomo vascular imaging. We close with a discussion of potential clinical applications for tomo, reflecting on the imaging and workflow results achieved.

  13. Application of digital tomosynthesis in diagnosing the fractures or dislocations in irregular bones and regions with complex structures.

    Science.gov (United States)

    Tuerdi, Batuer; Wang, Hui; Zhang, Ying; Zhou, Hao; Zhang, Hao

    2015-01-01

    The application potential of digital tomosynthesis in diagnosing fractures or dislocations in irregular bones and regions with complex structures was evaluated. Digital radiography and tomosynthesis were performed in 121 patients, and the image quality, accuracy, sensitivity, and specificity were compared. The number of participants with a definite diagnosis of fracture and/or dislocation was 98. The ratio of excellent images, accuracy, sensitivity, and specificity of digital tomosynthesis were higher than that of direct radiography. Digital tomosynthesis could be applied in the diagnosis of fractures or dislocations in irregular bones and regions with complex structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Accuracy and reading time for six strategies using digital breast tomosynthesis in women with mammographically negative dense breasts.

    Science.gov (United States)

    Tagliafico, Alberto Stefano; Calabrese, Massimo; Bignotti, Bianca; Signori, Alessio; Fisci, Erica; Rossi, Federica; Valdora, Francesca; Houssami, Nehmat

    2017-12-01

    To compare six strategies using digital breast tomosynthesis in women with mammographically negative dense breasts. This is a substudy of the 'ASTOUND' trial. 163 women who underwent tomosynthesis with synthetically reconstructed projection images (S-2D) inclusive of 13 (7.9%) cases diagnosed with breast cancer at histopathology after surgery were evaluated. Accuracy measures and screen-reading time of six reading strategies were assessed: (A) Single reading of S-2D alone, (B) single reading of tomosynthesis alone, (C) single reading of joint interpretation of tomosynthesis + S-2D, (D) double-reading of S-2D alone, (E) double reading of tomosynthesis alone, (F) double reading of joint interpretation of tomosynthesis + S-2D. The median age of the patients was 53 years (range, 36-88 years). The highest global accuracy was obtained with double reading of tomosynthesis + S2D (F) with an AUC of 0.979 (ptomosynthesis+ S2D had the best accuracy of six screen-reading strategies although it had the longest reading time. • Tomosynthesis acquisitions are progressively implemented with reconstructed synthesized 2D images • Double reading using S-2D plus tomosynthesis had the highest global accuracy (ptomosynthesis increased reading time.

  15. Real time radial and tangential tomosynthesis system dedicated to on line x-ray examination of moving objects

    International Nuclear Information System (INIS)

    Antonakios, M.; Rizo, Ph.; Lamarque, P.

    2000-01-01

    This presentation describes a system able to compute and display in real time a reconstructed image of a moving object using tomosynthesis methods. The object being moved on a known trajectory between the x-ray source and a detector, the tomosynthesis is focused on a given surface of the object and allows to reconstruct a sharp image of the structure on the surface superimposed to a blurred image of the surrounding plane. The developed tomosynthesis algorithm is based on a set of look up tables which provide for each position of the object on the trajectory, the projection of a given point of the imaged surface of the object on the detector. Several hundreds of frames can be combined to compute the tomosynthesis image. The signal-to-noise ratio obtained on processed images is equivalent to the one obtained by averaging images with a static object. In order to speed up the tomosynthesis reconstruction and to reach the video frame rate, we integrated a DSP based hardware in a PC host. The geometric calibration parameters and the look up tables are pre-computed on the PC. The on-line tomosynthesis calculation is carried out by the multi DSP architecture which manages in real time, frame acquisition, parallel tomosynthesis calculation and output image display. On this particular implementation of tomosynthesis, up to hundred video frames can be combined. We illustrate the potential of this system on an application of the tomosynthesis to solid rocket motor examination

  16. Segmentation of lung fields using Chan-Vese active contour model in chest radiographs

    Science.gov (United States)

    Sohn, Kiwon

    2011-03-01

    A CAD tool for chest radiographs consists of several procedures and the very first step is segmentation of lung fields. We develop a novel methodology for segmentation of lung fields in chest radiographs that can satisfy the following two requirements. First, we aim to develop a segmentation method that does not need a training stage with manual estimation of anatomical features in a large training dataset of images. Secondly, for the ease of implementation, it is desirable to apply a well established model that is widely used for various image-partitioning practices. The Chan-Vese active contour model, which is based on Mumford-Shah functional in the level set framework, is applied for segmentation of lung fields. With the use of this model, segmentation of lung fields can be carried out without detailed prior knowledge on the radiographic anatomy of the chest, yet in some chest radiographs, the trachea regions are unfavorably segmented out in addition to the lung field contours. To eliminate artifacts from the trachea, we locate the upper end of the trachea, find a vertical center line of the trachea and delineate it, and then brighten the trachea region to make it less distinctive. The segmentation process is finalized by subsequent morphological operations. We randomly select 30 images from the Japanese Society of Radiological Technology image database to test the proposed methodology and the results are shown. We hope our segmentation technique can help to promote of CAD tools, especially for emerging chest radiographic imaging techniques such as dual energy radiography and chest tomosynthesis.

  17. Quantifying the tibiofemoral joint space using x-ray tomosynthesis.

    Science.gov (United States)

    Kalinosky, Benjamin; Sabol, John M; Piacsek, Kelly; Heckel, Beth; Gilat Schmidt, Taly

    2011-12-01

    Digital x-ray tomosynthesis (DTS) has the potential to provide 3D information about the knee joint in a load-bearing posture, which may improve diagnosis and monitoring of knee osteoarthritis compared with projection radiography, the current standard of care. Manually quantifying and visualizing the joint space width (JSW) from 3D tomosynthesis datasets may be challenging. This work developed a semiautomated algorithm for quantifying the 3D tibiofemoral JSW from reconstructed DTS images. The algorithm was validated through anthropomorphic phantom experiments and applied to three clinical datasets. A user-selected volume of interest within the reconstructed DTS volume was enhanced with 1D multiscale gradient kernels. The edge-enhanced volumes were divided by polarity into tibial and femoral edge maps and combined across kernel scales. A 2D connected components algorithm was performed to determine candidate tibial and femoral edges. A 2D joint space width map (JSW) was constructed to represent the 3D tibiofemoral joint space. To quantify the algorithm accuracy, an adjustable knee phantom was constructed, and eleven posterior-anterior (PA) and lateral DTS scans were acquired with the medial minimum JSW of the phantom set to 0-5 mm in 0.5 mm increments (VolumeRad™, GE Healthcare, Chalfont St. Giles, United Kingdom). The accuracy of the algorithm was quantified by comparing the minimum JSW in a region of interest in the medial compartment of the JSW map to the measured phantom setting for each trial. In addition, the algorithm was applied to DTS scans of a static knee phantom and the JSW map compared to values estimated from a manually segmented computed tomography (CT) dataset. The algorithm was also applied to three clinical DTS datasets of osteoarthritic patients. The algorithm segmented the JSW and generated a JSW map for all phantom and clinical datasets. For the adjustable phantom, the estimated minimum JSW values were plotted against the measured values for all

  18. The application of digital tomosynthesis to the diagnosis of the styloid process syndrome

    International Nuclear Information System (INIS)

    Ge Hequan; Zheng Kuihong; Wang Zijun; Huang Minhua; Ying Ligang

    2011-01-01

    Objective: To investigate the clinical value of digital tomosynthesis in the diagnosis of the styloid process syndrome. Methods: The thirty patients suspected of the styloid process syndrome underwent both multi-slice spiral CT scanning and digital tomosynthesis scanning. Two kinds of imaging were analyzed, and the length and angle of styloid on lateral and AP views were measured. Results: Both images could clearly show the styloid length, size, shape, direction and the relationship with surrounding structures. There was no significant difference in the length, medial angle in the AP position and anterior angle in the lateral position between multi-slice spiral CT scanning and digital tomosynthesis scanning (P>0.1). The styloid length on lateral digital tomosynthesis was significant smaller than that on multi-slice spiral CT scanning (P<0.01). Conclusions: The length of styloid measured should take the AP position as the standard using the digital tomosynthesis technique, which improve the image quality during the diagnosis of the styloid process syndrome and is less coitly and at a lower dose of radiation. Digital tomosynthesis could provide extensive clinical information and preoperative preparation of the very high referential value as CT canning. (authors)

  19. Radiation dose with digital breast tomosynthesis compared to digital mammography: per-view analysis.

    Science.gov (United States)

    Gennaro, Gisella; Bernardi, D; Houssami, N

    2018-02-01

    To compare radiation dose delivered by digital mammography (FFDM) and breast tomosynthesis (DBT) for a single view. 4,780 FFDM and 4,798 DBT images from 1,208 women enrolled in a screening trial were used to ground dose comparison. Raw images were processed by an automatic software to determine volumetric breast density (VBD) and were used together with exposure data to compute the mean glandular dose (MGD) according to Dance's model. DBT and FFDM were compared in terms of operation of the automatic exposure control (AEC) and MGD level. Statistically significant differences were found between FFDM and DBT MGDs for all views (CC: MGD FFDM =1.366 mGy, MGD DBT =1.858 mGy; ptomosynthesis compared to FFDM. Given the emerging role of DBT, its use in conjunction with synthetic 2D images should not be deterred by concerns regarding radiation burden, and should draw on evidence of potential clinical benefit. • Most studies compared tomosynthesis in combination with mammography vs. mammography alone. • There is some concern about the dose increase with tomosynthesis. • Clinical data show a small increase in radiation dose with tomosynthesis. • Synthetic 2D images from tomosynthesis at zero dose reduce potential harm. • The small dose increase should not be a barrier to use of tomosynthesis.

  20. Development and experience of quality control methods for digital breast tomosynthesis systems.

    Science.gov (United States)

    Strudley, Cecilia J; Young, Kenneth C; Looney, Padraig; Gilbert, Fiona J

    2015-01-01

    To develop tomosynthesis quality control (QC) test methods and use them alongside established two-dimensional (2D) QC tests to measure the performance of digital breast tomosynthesis (DBT) systems used in a comparative trial with 2D mammography. DBT QC protocols and associated analysis were developed, incorporating adaptions of some 2D tests as well as some novel tests. The tomosynthesis tests were: mean glandular dose to the standard breast model; contrast-to-noise ratio in reconstructed focal planes; geometric distortion; artefact spread; threshold contrast detail detection in reconstructed focal planes, alignment of the X-ray beam to the reconstructed image and missed tissue; reproducibility of the tomosynthesis exposure; and homogeneity of the reconstructed focal planes. Summaries of results from the tomosynthesis QC tests are presented together with some 2D results for comparison. The tomosynthesis QC tests and analysis methods developed were successfully applied. The lessons learnt, which are detailed in the Discussion section, may be helpful to others embarking on DBT QC programmes. DBT performance test equipment and analysis methods have been developed. The experience gained has contributed to the subsequent drafting of DBT QC protocols in the UK and Europe.

  1. Experimental phantom lesion detectability study using a digital breast tomosynthesis prototype system

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Wenkel, E.; Lell, M.; Boehner, C.; Bautz, W.A.; Mertelmeier, T.

    2006-01-01

    Purpose: To compare the sensitivity of conventional two-dimensional (2D) projection imaging with tomosynthesis with respect to the detectability of mammographic phantom lesions. Materials and Methods: Using a breast tomosynthesis prototype based on a commercial FFDM system (Siemens MAMMOMAT Novation DR ), but modified for a wide angle tube motion and equipped with a fast read-out amorphous selenium detector, we acquired standard 2D images and tomosynthesis series of projection views. We used the Wisconsin mammographic random phantom, model RMI 152A. The anode filter combinations Mo/Mo and W/Rh at two different doses were used as typical radiographic techniques. Slice images through the phantom parallel to the detector were reconstructed with a distance of 1 mm employing a filtered back-projection algorithm. The image data sets were read by five radiologists and evaluated with respect to the detectability of the phantom details. Results: For all studied radiographic techniques, the detection rate in the tomosynthesis mode was 100%, i.e. 75 true positive findings out of 75 possible hits. In contrast, the conventional projection mode yielded a detection rate between 80 and 93% (corresponding to 60 and 70 detected details) depending on the dose and X-ray spectrum. Conclusion: Tomosynthesis has the potential to increase the sensitivity of digital mammography. Overlapping structures from out-of-plane tissue can be removed in the tomosynthesis reconstruction process, thereby enhancing the diagnostic accuracy. (orig.)

  2. Stationary intraoral digital tomosynthesis using a carbon nanotube X-ray source array.

    Science.gov (United States)

    Shan, J; Tucker, A W; Gaalaas, L R; Wu, G; Platin, E; Mol, A; Lu, J; Zhou, O

    2015-01-01

    Intraoral dental tomosynthesis and closely related tuned-aperture CT (TACT) are low-dose three-dimensional (3D) imaging modalities that have shown improved detection of multiple dental diseases. Clinical interest in implementing these technologies waned owing to their time-consuming nature. Recently developed carbon nanotube (CNT) X-ray sources allow rapid multi-image acquisition without mechanical motion, making tomosynthesis a clinically viable technique. The objective of this investigation was to evaluate the feasibility of and produce high-quality images from a digital tomosynthesis system employing CNT X-ray technology. A test-bed stationary intraoral tomosynthesis unit was constructed using a CNT X-ray source array and a digital intraoral sensor. The source-to-image distance was modified to make the system comparable in image resolution to current two-dimensional intraoral radiography imaging systems. Anthropomorphic phantoms containing teeth with simulated and real caries lesions were imaged using a dose comparable to D-speed film dose with a rectangular collimation. Images were reconstructed and analysed. Tomosynthesis images of the phantom and teeth specimen demonstrated perceived image quality equivalent or superior to standard digital images with the added benefit of 3D information. The ability to "scroll" through slices in a buccal-lingual direction significantly improved visualization of anatomical details. In addition, the subjective visibility of dental caries was increased. Feasibility of the stationary intraoral tomosynthesis is demonstrated. The results show clinical promise and suitability for more robust observer and clinical studies.

  3. Digital Tomosynthesis System Geometry Analysis Using Convolution-Based Blur-and-Add (BAA) Model.

    Science.gov (United States)

    Wu, Meng; Yoon, Sungwon; Solomon, Edward G; Star-Lack, Josh; Pelc, Norbert; Fahrig, Rebecca

    2016-01-01

    Digital tomosynthesis is a three-dimensional imaging technique with a lower radiation dose than computed tomography (CT). Due to the missing data in tomosynthesis systems, out-of-plane structures in the depth direction cannot be completely removed by the reconstruction algorithms. In this work, we analyzed the impulse responses of common tomosynthesis systems on a plane-to-plane basis and proposed a fast and accurate convolution-based blur-and-add (BAA) model to simulate the backprojected images. In addition, the analysis formalism describing the impulse response of out-of-plane structures can be generalized to both rotating and parallel gantries. We implemented a ray tracing forward projection and backprojection (ray-based model) algorithm and the convolution-based BAA model to simulate the shift-and-add (backproject) tomosynthesis reconstructions. The convolution-based BAA model with proper geometry distortion correction provides reasonably accurate estimates of the tomosynthesis reconstruction. A numerical comparison indicates that the simulated images using the two models differ by less than 6% in terms of the root-mean-squared error. This convolution-based BAA model can be used in efficient system geometry analysis, reconstruction algorithm design, out-of-plane artifacts suppression, and CT-tomosynthesis registration.

  4. Sandstorm in the chest?

    Directory of Open Access Journals (Sweden)

    Talluri MR

    2011-07-01

    Full Text Available A 32 year old female presented with dry cough and progressive breathlessness of one year duration. There was no history suggestive of collagen vascular disease, lung parenchymal infection or allergic airway disease. Clinical evaluation showed basal fine inspiratory crepitations. Radiographic examination of the chest revealed a black pleura line and lung parenchymal calcification. CT scan of the chest demonstrated nodular calcification of lung parenchyma with a “crazy pavement” pattern, which is suggestive of alveolar calcification. Pulmonary function test showed a severe restrictive defect. On transbronchial lung biopsy calcific spherules suggestive of the alveolar microlithiasis were seen. Diagnosis of pulmonary alveolar microlithiasis was made and symptomatic treatment was given, as there is no specific therapy available. The case illustrates an unusual cause of shortness of breath in a young female with striking radiographic features.

  5. Pediatric digital chest imaging.

    Science.gov (United States)

    Tarver, R D; Cohen, M; Broderick, N J; Conces, D J

    1990-01-01

    The Philips Computed Radiography system performs well with pediatric portable chest radiographs, handling the throughout of a busy intensive care service 24 hours a day. Images are excellent and routinely provide a conventional (unenhanced) image and an edge-enhanced image. Radiation dose is decreased by the lowered frequency of repeat examinations and the ability of the plates to respond to a much lower dose and still provide an adequate image. The high quality and uniform density of serial PCR portable radiographs greatly enhances diagnostic content of the films. Decreased resolution has not been a problem clinically. Image manipulation and electronic transfer to remote viewing stations appear to be helpful and are currently being evaluated further. The PCR system provides a marked improvement in pediatric portable chest radiology.

  6. Pediatric digital chest imaging

    International Nuclear Information System (INIS)

    Tarver, R.D.; Cohen, M.; Broderick, N.J.; Conces, D.J. Jr.

    1990-01-01

    The Philips Computed Radiography system performs well with pediatric portable chest radiographs, handling the throughout of a busy intensive care service 24 hours a day. Images are excellent and routinely provide a conventional (unenhanced) image and an edge-enhanced image. Radiation dose is decreased by the lowered frequency of repeat examinations and the ability of the plates to respond to a much lower dose and still provide an adequate image. The high quality and uniform density of serial PCR portable radiographs greatly enhances diagnostic content of the films. Decreased resolution has not been a problem clinically. Image manipulation and electronic transfer to remote viewing stations appear to be helpful and are currently being evaluated further. The PCR system provides a marked improvement in pediatric portable chest radiology

  7. Trauma of the chest

    International Nuclear Information System (INIS)

    Reuter, M.

    1996-01-01

    This paper describes the typical radiologic findings in chest trauma, and the value of conventional radiography, CT, MRI, and aortography is discussed. Conventional radiography rather than cross-sectional imaging is the mainstay in diagnosing thoracic trauma. During the critical phase with often concomitant shock, pelvic and spinal injuries tailored raiographic views or even upright chest radiographs are impractical. The severely traumatized patient is usually radiographed in the supine position and suboptimal roentgenograms may have to be accepted for several reasons. It is well documented that many abnormalities detected on CT were not apparent on conventional radiographs, but CT is reserved for hemodynamical stable patients. Nevertheless certain situations like aortic rupture require further evaluation by CT and aortography. (orig./MG)

  8. Diagnostic problems in chest injuries (angiography)

    International Nuclear Information System (INIS)

    Wenz, W.; Strecker, E.P.; Kloehn, I.

    1979-01-01

    Roentgenography is the simplest and most reliable means to arrive at the diagnosis of chest injury. General roentgenograms are difficult to interpret as they tend to be technically imperfect. Fractures, emphysema, pneumothorax, accumulation of fluid can usually be ascertained directly; but the traumatic origin of changes in the pulmonary parenchyma or of an enlarged heart shadow cannot be reliably deduced from the X-ray appearance. It may provide some differential-diagnostic information but the correct interpretation of the findings depends on further observation. In 6-7% of severe chest trauma with vascular injuries and rupture of the diaphragm angiography is indicated. The evidence to be obtained from chest radiography should not be overestimated: fractures of ribs are sometimes overlocked, even by the expert; parenchymatous lesions may manifest themselves as shadows but their nature remains obscure until they have been related to the clinical and subsequent radiological findings. The same applies to rupture of the diaphragm, bronchi or vessels, if only the immediate posttraumatic roentgenographs are examined. A tent-shaped heart shadow is considered characteristic of the presence of fluid in the pericardium; this is valid only for chronic hydropericardium, but not for the potentially fatal cardiac tamponade; if the pericardium has lost its elasticity a haemorrhage of not more than 150 ml may prove fatal. Nor does the roentgenogram provide information about pulmonary function. Especially in cases of pulmonary shock minor changes in the chest roentgenogram may give a false sense of security when, in fact, blood gas analyses show that a life-endangering situation has developed. The radiologist who is aware of the limitations of the method will derive maximum diagnostic benefit from a chest angiography. No other method is capable of supplying information of such great importance in such a short time. (orig.) [de

  9. COMPARATIVE ASSESSMENT OF CHEMOTHERAPY EFFICIENCY MONITORING IN PULMONARY TUBERCULOSIS PATIENTS BY X-RAY EXAMINATION AND DIGITAL TOMOSYNTHESIS

    Directory of Open Access Journals (Sweden)

    M. M. Nikitin

    2016-01-01

    Full Text Available Goal of the study: to investigate the capabilities of digital tomosynthesis for monitoring of tuberculous changes in the lungs against the background of chemotherapy.Materials and methods. Results of chemotherapy efficiency monitored by X-ray in 55 respiratory tuberculosis patients were analyzed. Before treatment and in 2 months after chemotherapy start all patients had X-ray and DT with consequent analysis of the obtained data.Results. When monitoring the efficiency of drug therapy for pulmonary tuberculosis by DT some additional diagnostic data were obtained in 36,4% of cases compared to X-ray. The article describes specific features of tuberculous changes visualization of the chest with the follow-up of changes by DT; opportunities for X-ray monitoring efficiency enhancement in these patients are presented.Conclusions. DT provides more accurate evaluation of tuberculous changes in the lungs compared to X-ray, which greatly enhances understanding of the course of the disease and registration of the pulmonary disease cure. 

  10. Comparing search patterns in digital breast tomosynthesis and full-field digital mammography: an eye tracking study.

    Science.gov (United States)

    Aizenman, Avi; Drew, Trafton; Ehinger, Krista A; Georgian-Smith, Dianne; Wolfe, Jeremy M

    2017-10-01

    As a promising imaging modality, digital breast tomosynthesis (DBT) leads to better diagnostic performance than traditional full-field digital mammograms (FFDM) alone. DBT allows different planes of the breast to be visualized, reducing occlusion from overlapping tissue. Although DBT is gaining popularity, best practices for search strategies in this medium are unclear. Eye tracking allowed us to describe search patterns adopted by radiologists searching DBT and FFDM images. Eleven radiologists examined eight DBT and FFDM cases. Observers marked suspicious masses with mouse clicks. Eye position was recorded at 1000 Hz and was coregistered with slice/depth plane as the radiologist scrolled through the DBT images, allowing a 3-D representation of eye position. Hit rate for masses was higher for tomography cases than 2-D cases and DBT led to lower false positive rates. However, search duration was much longer for DBT cases than FFDM. DBT was associated with longer fixations but similar saccadic amplitude compared with FFDM. When comparing radiologists' eye movements to a previous study, which tracked eye movements as radiologists read chest CT, we found DBT viewers did not align with previously identified "driller" or "scanner" strategies, although their search strategy most closely aligns with a type of vigorous drilling strategy.

  11. Possible Laminographic and Tomosynthesis Applications for Wolter Microscope Scan Geometries

    International Nuclear Information System (INIS)

    Schneberk, D; Jackson, J; Martz, H

    2004-01-01

    The Wolter microscope includes a number of attractive features for x-ray imaging, and possible connections to laminographic and tomosynthesis 3D object recovery algorithms. This type of instrument employs x-ray optics to sift out single energy x-rays from a broader spectral energy source, and direct those x-rays to a ''focus plane'' similar to the operation of a optical microscope (see Figure 1 for schematic of a Wolter instrument). Unlike optical microscopes the 3D object can be thick in the direction of the x-rays and in this case more of the intensity of the image is affected by the out-of-focus planes, since the ray-paths span the entire depth of the object. It is clear that the ''in-focus'' plane of a Wolter contain more 3D information than a simple ''point-projection'' radiograph. However, it is not clear just how the impact of the out-of-focus planes obscures or distorts features of interest for the in-focus planes. Further, it is not clear just how object positioning can be combined with multiple acquisitions to enable recovery of other planes within the object function or the entire object function. Of particular interest here are Wolter microscopes configured for mesoscale objects (mm extent with um features). Laminographic and tomosynthesis scanning methods can be strategic for this type of inspection instrument. First, photon output for inspection purposes can be meager in this type of ''small field of view'' system. With laboratory x-ray sources a single image can require up to 10 minutes to accumulate adequate signal. Techniques that can obtain 3D object information from small numbers of views, rotational or translational, are consequently at a premium. Laminographic and tomosynthesis scanning methods require relatively small numbers of views (2-30). Secondly, the Wolter microscope scan geometry in a single view is a fit with the type of source-detector geometry achieved through source-object-detector re-positioning in laminographic and tomosynthesis

  12. Comparative effectiveness of combined digital mammography and tomosynthesis screening for women with dense breasts.

    Science.gov (United States)

    Lee, Christoph I; Cevik, Mucahit; Alagoz, Oguzhan; Sprague, Brian L; Tosteson, Anna N A; Miglioretti, Diana L; Kerlikowske, Karla; Stout, Natasha K; Jarvik, Jeffrey G; Ramsey, Scott D; Lehman, Constance D

    2015-03-01

    To evaluate the effectiveness of combined biennial digital mammography and tomosynthesis screening, compared with biennial digital mammography screening alone, among women with dense breasts. An established, discrete-event breast cancer simulation model was used to estimate the comparative clinical effectiveness and cost-effectiveness of biennial screening with both digital mammography and tomosynthesis versus digital mammography alone among U.S. women aged 50-74 years with dense breasts from a federal payer perspective and a lifetime horizon. Input values were estimated for test performance, costs, and health state utilities from the National Cancer Institute Breast Cancer Surveillance Consortium, Medicare reimbursement rates, and medical literature. Sensitivity analyses were performed to determine the implications of varying key model parameters, including combined screening sensitivity and specificity, transient utility decrement of diagnostic work-up, and additional cost of tomosynthesis. For the base-case analysis, the incremental cost per quality-adjusted life year gained by adding tomosynthesis to digital mammography screening was $53 893. An additional 0.5 deaths were averted and 405 false-positive findings avoided per 1000 women after 12 rounds of screening. Combined screening remained cost-effective (less than $100 000 per quality-adjusted life year gained) over a wide range of incremental improvements in test performance. Overall, cost-effectiveness was most sensitive to the additional cost of tomosynthesis. Biennial combined digital mammography and tomosynthesis screening for U.S. women aged 50-74 years with dense breasts is likely to be cost-effective if priced appropriately (up to $226 for combined examinations vs $139 for digital mammography alone) and if reported interpretive performance metrics of improved specificity with tomosynthesis are met in routine practice.

  13. Quantitative breast density analysis using tomosynthesis and comparison with MRI and digital mammography.

    Science.gov (United States)

    Moon, Woo Kyung; Chang, Jie-Fan; Lo, Chung-Ming; Chang, Jung Min; Lee, Su Hyun; Shin, Sung Ui; Huang, Chiun-Sheng; Chang, Ruey-Feng

    2018-02-01

    Breast density at mammography has been used as markers of breast cancer risk. However, newly introduced tomosynthesis and computer-aided quantitative method could provide more reliable breast density evaluation. In the experiment, 98 tomosynthesis image volumes were obtained from 98 women. For each case, an automatic skin removal was used and followed by a fuzzy c-mean (FCM) classifier which separated the fibroglandular tissues from other tissues in breast area. Finally, percent of breast density and breast volume were calculated and the results were compared with MRI. In addition, the percent of breast density and breast area of digital mammography calculated using the software Cumulus (University of Toronto, Toronto, ON, Canada.) were also compared with 3-D modalities. Percent of breast density and breast volume, which were computed from tomosynthesis, MRI and digital mammography were 17.37% ± 4.39% and 607.12 cm 3  ± 323.01 cm 3 , 20.3% ± 8.6% and 537.59 cm 3  ± 287.74 cm 3 , and 12.03% ± 4.08%, respectively. There were significant correlations on breast density as well as volume between tomosynthesis and MRI (R = 0.482 and R = 0.805), tomosynthesis and breast density with breast area of digital mammography (R = 0.789 and R = 0.877), and MRI and breast density with breast area of digital mammography (R = 0.482 and R = 0.857) (all P values density and breast volume evaluated from tomosynthesis, MRI and breast density and breast area of digital mammographic images have significant correlations and indicate that tomosynthesis could provide useful 3-D information on breast density through proposed method. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Surgical treatment of chest instability

    International Nuclear Information System (INIS)

    Kitka, M.; Masek, M.

    2015-01-01

    Fractures of the ribs is the most common thoracic injury after blunt trauma. Chest wall instability (flail chest) is a common occurrence in the presence of multiple ribs fracture. Unilateral or bilateral fractures more ribs anteriorly or posteriorly will produce enough instability that paradoxical respiratory motion results in hypoventilation of an unacceptable degree. Open approach and surgical stabilisation of the chest preserved pulmonary function, improved pain control, minimized posttraumatic deformities and shorter back to work time. (author)

  15. The Diagnostic Reproducibility of Tomosynthesis for the Correlation between Acromiohumeral Distance and Rotator Cuff Size or Type.

    Science.gov (United States)

    Song, Yoonah; Lee, Seunghun; Lee, Bong Gun; Joo, Young Bin; Song, Soon-Young

    2018-01-01

    To correlate the acromiohumeral distance (AHD) using tomosynthesis and rotator cuff (RC) pathology and various anatomical indices and to assess the diagnostic reproducibility of tomosynthesis for the evaluation of subacromial impingement. A retrospective review of 63 patients with clinically suspected subacromial impingement was conducted. Two musculoskeletal radiologists independently measured the following quantitative data: the AHD on plain radiographs and the AHD at three compartments (anterior, middle, and posterior) using tomosynthesis, computed tomography (CT) arthrography, or magnetic resonance (MR) arthrography. To investigate the association between the AHD and RC pathology and various anatomical indices, we reviewed the arthroscopic operation record as the referenced standard. The size of rotator cuff tear (RCT) in full-thickness tears displayed a significant inverse correlation with the middle and the posterior tomosynthetic AHDs ( p tomosynthesis, and CT or MR arthrography ( p tomosynthesis is reproducible compared with other modalities.

  16. Initial Experience of Tomosynthesis-Guided Vacuum-Assisted Biopsies of Tomosynthesis-Detected (2D Mammography and Ultrasound Occult) Architectural Distortions.

    Science.gov (United States)

    Patel, Bhavika K; Covington, Matthew; Pizzitola, Victor J; Lorans, Roxanne; Giurescu, Marina; Eversman, William; Lewin, John

    2018-03-23

    As experience and aptitude in digital breast tomosynthesis (DBT) have increased, radiologists are seeing more areas of architectural distortion (AD) on DBT images compared with standard 2D mammograms. The purpose of this study is to report our experience using tomosynthesis-guided vacuum-assisted biopsies (VABs) for ADs that were occult at 2D mammography and ultrasound and to analyze the positive predictive value for malignancy. We performed a retrospective review of 34 DBT-detected ADs that were occult at mammography and ultrasound. We found a positive predictive value of 26% (nine malignancies in 34 lesions). Eight of the malignancies were invasive and one was ductal carcinoma in situ. The invasive cancers were grade 1 (4/8; 50%), grade 2 (2/8; 25%), or grade 3 (1/8; 13%); information about one invasive cancer was not available. The mean size of the invasive cancers at pathologic examination was 7.5 mm (range, 6-30 mm). Tomosynthesis-guided VAB is a feasible method to sample ADs that are occult at 2D mammography and ultrasound. Tomosynthesis-guided VAB is a minimally invasive method that detected a significant number of carcinomas, most of which were grade 1 cancers. Further studies are needed.

  17. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space

    International Nuclear Information System (INIS)

    Chawla, Amarpreet S.; Lo, Joseph Y.; Baker, Jay A.; Samei, Ehsan

    2009-01-01

    Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigated the effects of these acquisition parameters on the overall diagnostic image quality of breast tomosynthesis in both the projection and reconstruction space. Five mastectomy specimens were imaged using a prototype tomosynthesis system. 25 angular projections of each specimen were acquired at 6.2 times typical single-view clinical dose level. Images at lower dose levels were then simulated using a noise modification routine. Each projection image was supplemented with 84 simulated 3 mm 3D lesions embedded at the center of 84 nonoverlapping ROIs. The projection images were then reconstructed using a filtered backprojection algorithm at different combinations of acquisition parameters to investigate which of the many possible combinations maximizes the performance. Performance was evaluated in terms of a Laguerre-Gauss channelized Hotelling observer model-based measure of lesion detectability. The analysis was also performed without reconstruction by combining the model results from projection images using Bayesian decision fusion algorithm. The effect of acquisition parameters on projection images and reconstructed slices were then compared to derive an optimization rule for tomosynthesis. The results indicated that projection images yield comparable but higher performance than reconstructed images. Both modes, however, offered similar trends: Performance improved with an increase in the total acquisition dose level and the angular span. Using a constant dose level and angular

  18. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    Directory of Open Access Journals (Sweden)

    Saeed Seyyedi

    2013-01-01

    Full Text Available Digital breast tomosynthesis (DBT is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART and total variation regularized reconstruction techniques (ART+TV are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM values.

  19. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    Science.gov (United States)

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  20. Chest X ray effective doses estimation in computed radiography

    International Nuclear Information System (INIS)

    Abdalla, Esra Abdalrhman Dfaalla

    2013-06-01

    Conventional chest radiography is technically difficult because of wide in tissue attenuations in the chest and limitations of screen-film systems. Computed radiography (CR) offers a different approach utilizing a photostimulable phosphor. photostimulable phosphors overcome some image quality limitations of chest imaging. The objective of this study was to estimate the effective dose in computed radiography at three hospitals in Khartoum. This study has been conducted in radiography departments in three centres Advanced Diagnostic Center, Nilain Diagnostic Center, Modern Diagnostic Center. The entrance surface dose (ESD) measurement was conducted for quality control of x-ray machines and survey of operators experimental techniques. The ESDs were measured by UNFORS dosimeter and mathematical equations to estimate patient doses during chest X rays. A total of 120 patients were examined in three centres, among them 62 were males and 58 were females. The overall mean and range of patient dosed was 0.073±0.037 (0.014-0.16) mGy per procedure while the effective dose was 3.4±01.7 (0.6-7.0) mSv per procedure. This study compared radiation doses to patients radiographic examinations of chest using computed radiology. The radiation dose was measured in three centres in Khartoum- Sudan. The results of the measured effective dose showed that the dose in chest radiography was lower in computed radiography compared to previous studies.(Author)

  1. Chest tube insertion - series (image)

    Science.gov (United States)

    Chest tubes are inserted to drain blood, fluid, or air and allow full expansion of the lungs. The tube is placed in the pleural space. The area where the tube will be inserted is numbed (local anesthesia). The patient may also be sedated. The chest ...

  2. Mass chest radiography in Greece

    International Nuclear Information System (INIS)

    Papavasiliou, C.

    1987-01-01

    In Greece mass chest radiography has been performed regularly on various population groups as a measure to control tuberculosis. Routine chest radiography is performed in most Greek hospitals on admission. In this report available data-admittedly inadequate-directly or indirectly addressing the problem of benefit versus the risk or cost associated with this examination is presented

  3. Imaging of blunt chest trauma

    International Nuclear Information System (INIS)

    Prosch, H.; Negrin, L.

    2014-01-01

    Blunt chest trauma is associated with high morbidity and mortality. Consequently, all patients should be evaluated radiologically after blunt chest trauma to allow timely and appropriate treatment. Conventional chest radiographs and computed tomography (CT) are proven modalities with which to evaluate patients after blunt chest trauma. Over the last several years extended focused assessment with sonography for trauma (eFAST) has gained increasing importance for the initial assessment of seriously injured patients. In the acute phase of severely injured patients eFAST examinations are helpful to exclude pneumothorax, hemothorax and hemopericardium. Chest radiographs may also be used to diagnose a pneumothorax or hemothorax; however, the sensitivity is limited and CT is the diagnostic modality of choice to evaluate severely injured patients. (orig.) [de

  4. Ultrasonography of chest wall lesion

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol Min; Kim, C. H.; Cha, I. H.; Chung, K. B.; Ser, W. H.; Choi, Y. H. [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1989-12-15

    Thirty-one patients with chest wall diseases were studied with ultrasound to evaluate its role in chest wall lesions. There were eight infectious conditions, 9 benign tumors, 11 malignant lesions and 3 miscellaneous cases. Diffuse chest wall thickening with heterogeneous echogenicity and obliteration of subcutaneous fat layer are findings of acute infection. In cases of tuberculous smpyema necessitates, pleural abnormality extended to the chest wall through intercostal space. Benign tumors were well demarcated, except in 4 cases of lipoma/lipomatosis. Malignant lesions showed irregular soft tissue masses, bone destruction, pleural effusion and subcutaneous invasion. Multiple enlarged lymph nodes were also shown. Ultrasound can demonstrate te internal structure, extent, depth and associated findings such as pleural effusion, bone destruction and peripheral lung involvement. Ultrasound is not only safe, non-invasive and an effective diagnostic imaging modality for chest wall disease, but can also guide aspiration or biopsy for pathologic diagnosis

  5. Ultrasonography of chest wall lesion

    International Nuclear Information System (INIS)

    Park, Cheol Min; Kim, C. H.; Cha, I. H.; Chung, K. B.; Ser, W. H.; Choi, Y. H.

    1989-01-01

    Thirty-one patients with chest wall diseases were studied with ultrasound to evaluate its role in chest wall lesions. There were eight infectious conditions, 9 benign tumors, 11 malignant lesions and 3 miscellaneous cases. Diffuse chest wall thickening with heterogeneous echogenicity and obliteration of subcutaneous fat layer are findings of acute infection. In cases of tuberculous smpyema necessitates, pleural abnormality extended to the chest wall through intercostal space. Benign tumors were well demarcated, except in 4 cases of lipoma/lipomatosis. Malignant lesions showed irregular soft tissue masses, bone destruction, pleural effusion and subcutaneous invasion. Multiple enlarged lymph nodes were also shown. Ultrasound can demonstrate te internal structure, extent, depth and associated findings such as pleural effusion, bone destruction and peripheral lung involvement. Ultrasound is not only safe, non-invasive and an effective diagnostic imaging modality for chest wall disease, but can also guide aspiration or biopsy for pathologic diagnosis

  6. Quality criteria for chest X-ray image

    International Nuclear Information System (INIS)

    Krieg, R.

    1985-01-01

    A distinction has to be made between invariable and variable criteria in the determination of chest X-ray picture quality criteria. The invariable criteria are defined by the properties of the object and the psychophysiological laws of perception and cognition, and the variable criteria are determined by the prevailing state of the art of technology. An agreement on these criteria is based on the knowledge of the nature and the technical conditions of X-ray picture production and reproduction. The slogan 'the best picture at the lowest dose' dominates, too, the discussion centering around the X-ray picture of the chest, its quality and criteria. (orig./MG) [de

  7. A review of breast tomosynthesis. Part I. The image acquisition process

    Science.gov (United States)

    Sechopoulos, Ioannis

    2013-01-01

    Mammography is a very well-established imaging modality for the early detection and diagnosis of breast cancer. However, since the introduction of digital imaging to the realm of radiology, more advanced, and especially tomographic imaging methods have been made possible. One of these methods, breast tomosynthesis, has finally been introduced to the clinic for routine everyday use, with potential to in the future replace mammography for screening for breast cancer. In this two part paper, the extensive research performed during the development of breast tomosynthesis is reviewed, with a focus on the research addressing the medical physics aspects of this imaging modality. This first paper will review the research performed on the issues relevant to the image acquisition process, including system design, optimization of geometry and technique, x-ray scatter, and radiation dose. The companion to this paper will review all other aspects of breast tomosynthesis imaging, including the reconstruction process. PMID:23298126

  8. Work in progress. Flashing tomosynthesis: a tomographic technique for quantitative coronary angiography

    International Nuclear Information System (INIS)

    Woelke, H.; Hanrath, P.; Schlueter, M.; Bleifeld, W.; Klotz, E.; Weiss, H.; Waller, D.; von Weltzien, J.

    1982-01-01

    Flashing tomosynthesis, a procedure that consists of a recording step and a reconstruction step, facilitates the tomographic imaging of coronary arteries. In a comparative study 10 postmortem coronary arteriograms were examined with 35-mm cine technique and with flashing tomosynthesis. The degrees of stenosis found with both of these techniques were compared with morphometrically obtained values. A higher correlation coefficient existed for the degrees of stenosis obtained with tomosynthesis and morphometry (r=0.92, p<0.001, SEE=9%) than for those obtained with cine technique and morphometry (r=0.82, p<0.001, SEE=16%). The technique has also been successfully carried out in 5 patients with coronary artery disease

  9. Refraction-enhanced tomosynthesis of a finger joint by X-ray dark-field imaging

    International Nuclear Information System (INIS)

    Shimao, Daisuke; Kunisada, Toshiyuki; Sugiyama, Hiroshi; Ando, Masami

    2007-01-01

    A finger joint tomogram based on X-ray dark-field imaging (XDFI) was demonstrated using the simplest shift-and-add tomosynthesis algorithm. Raw XDFI image data for tomosynthesis were acquired in a total of 11 views through 10deg, in increments of 1deg, by rotating the object and detector synchronously. Incident X-ray energy was monochromatic 36.0 keV, derived from synchrotron radiation. The total dosage in acquiring 11 views for raw image data was equivalent to that of one XDFI image. A clear tomogram was obtained of a finger joint (including articular cartilage, which is invisible by conventional tomosynthesis) without an increase in X-ray dosage. (author)

  10. Endobronchial Tuberculosis and Chest Radiography

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Sasani

    2016-03-01

    Full Text Available Endobronchial tuberculosis and chest radiography I read, with interest, the article entitled “Clinical and Para-clinical Presentations of Endobronchial Tuberculosis” by Ahmadi Hoseini H. S. et al. (1 published in this journal. I would like to focus on some details about the chest X-ray of patients as elaborated by the authors in the results section. Accordingly, the findings of chest radiography in the available patients were as follows: pulmonary consolidation (75%, reduced pulmonary volume (20%, and hilar adenopathy (10%. This is an incomplete statement because the authors did not explain whether there was any normal chest radiography in the study population. In addition, it is not clear whether the X-ray examinations of the patients were normal, how many abnormal plain films yielded the presented data. On the other hand, the fact that the studied patients had no normal chest radiography is  controversial since in the literature, 10-20% of the patients with endobronchial tuberculosis are reported to have normal chest X-ray (2, 3. In fact, this is one of the problems in the diagnosis of the disease, as well as a potential cause of delayed diagnosis and treatment of the patients. Therefore, the absence of normal chest radiographs is in contrast to the available literature, and if not an error, it could be a subject of further investigation.

  11. DART, a platform for the creation and registration of cone beam digital tomosynthesis datasets.

    Science.gov (United States)

    Sarkar, Vikren; Shi, Chengyu; Papanikolaou, Niko

    2011-04-01

    Digital tomosynthesis is an imaging modality that allows for tomographic reconstructions using only a fraction of the images needed for CT reconstruction. Since it offers the advantages of tomographic images with a smaller imaging dose delivered to the patient, the technique offers much promise for use in patient positioning prior to radiation delivery. This paper describes a software environment developed to help in the creation of digital tomosynthesis image sets from digital portal images using three different reconstruction algorithms. The software then allows for use of the tomograms for patient positioning or for dose recalculation if shifts are not applied, possibly as part of an adaptive radiotherapy regimen.

  12. DART, a platform for the creation and registration of cone beam digital tomosynthesis datasets

    International Nuclear Information System (INIS)

    Sarkar, Vikren; Shi, Chengyu; Papanikolaou, N.

    2011-01-01

    Full text: Digital tomosynthesis is an imaging modality that allows for tomographic reconstructions using only a fraction of the images needed for CT reconstruction. Since it offers the advantages of tomographic images with a smaller imaging dose delivered to the patient, the technique offers much promise for use in patient positioning prior to radiation delivery. This paper describes a software environment developed to help in the creation of digital tomosynthesis image sets from digital portal images using three different reconstruction algorithms. The software then allows for use of the tomograms for patient posi tioning or for dose recalculation if shifts are not applied, possibly as part of an adaptive radiotherapy regimen.

  13. Estimation of the average glandular dose on a team of tomosynthesis

    International Nuclear Information System (INIS)

    Nunez Martinez, L. M. R.; Sanchez Jimenez, J.; Pizarro trigo, F.

    2013-01-01

    Seeking to improve the information that gives us an image of mammography the manufacturers have implemented tomosynthesis. With this method of acquisition and reconstruction of image we went from having a 2D to a 3D image image, in such a way that it reduces or eliminates the effect of overlap of tissues. The estimate of the dose, which is always a fundamental parameter in the control of quality of radiology equipment, is more in the case of mammography by the radiosensitivity of this body and the frequency of their use. The objective of this work is the determination of the mean in a team glandular dose of with tomosynthesis mammography. (Author)

  14. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-01-01

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  15. Added value of one-view breast tomosynthesis combined with digital mammography according to reader experience.

    Science.gov (United States)

    Thomassin-Naggara, Isabelle; Perrot, Nicolas; Dechoux, Sophie; Ribeiro, Carine; Chopier, Jocelyne; de Bazelaire, Cedric

    2015-02-01

    To retrospectively evaluate the added value of one-view breast tomosynthesis in adjunct with mammography to characterize breast lesions. Our institutional ethics committees approved the study and granted a waiver of informed consent. One hundred fifty-five women (mean age, 51.3 years, range: 24-92 years) who systematically underwent mammography and breast tomosynthesis with subsequent percutaneous biopsy were analyzed. Four radiologists (two seniors, R1 and R2, and two juniors, R3 and R4 with 30, 10, 3 and 1 years of experience in breast imaging, respectively) independently reviewed exams in two steps: mammography alone and tomosynthesis in adjunct with mammography. The lesions in the cohort included 39.3% (61/155) cancers, 2.5% (4/155) high-risk lesions and 58.1% (90/155) benign lesions. A receiver operating characteristic (ROC) curve analysis was performed to compare the results of the two readings. There was almost perfect agreement irrespective of reader experience for the reading of the mammography in adjunct with tomosynthesis, whereas agreement was poor between junior and senior readers for the reading of mammography alone. Area under the ROC (Az) values for the tomosynthesis in adjunct with mammography were significantly better than Az values for mammography alone for all readers except the most experienced, for whom only a tendency was noted. The proportion of cancers undiagnosed by mammography alone that were well diagnosed by tomosynthesis in adjunct with mammography was 6.5% (4/61), 13.1% (8/61), 27.8% (17/61) and 26.2% (16/61) for Readers 1, 2, 3 and 4, respectively. The proportion of false positive cases induced by the addition of breast tomosynthesis to mammography was 2.1% (2/94), 2.1% (2/94), 9.5% (9/94) and 12.7% (12/94) for Readers 1, 2, 3 and 4, respectively. Adding breast tomosynthesis to mammography improved sensitivity and negative predictive value for all readers except for the most experienced one, in whom only a tendency for improvement

  16. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis.

    Science.gov (United States)

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Dance, David R; Young, Kenneth C; Van Ongeval, Chantal

    2014-08-01

    This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly suggestive for malignancy (BIRADS 5

  17. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, Eman, E-mail: eman.shaheen@uzleuven.be; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van [Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  18. A parameterization method and application in breast tomosynthesis dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinhua; Zhang, Da; Liu, Bob [Division of Diagnostic Imaging Physics and Webster Center for Advanced Research and Education in Radiation, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2013-09-15

    Purpose: To present a parameterization method based on singular value decomposition (SVD), and to provide analytical parameterization of the mean glandular dose (MGD) conversion factors from eight references for evaluating breast tomosynthesis dose in the Mammography Quality Standards Act (MQSA) protocol and in the UK, European, and IAEA dosimetry protocols.Methods: MGD conversion factor is usually listed in lookup tables for the factors such as beam quality, breast thickness, breast glandularity, and projection angle. The authors analyzed multiple sets of MGD conversion factors from the Hologic Selenia Dimensions quality control manual and seven previous papers. Each data set was parameterized using a one- to three-dimensional polynomial function of 2–16 terms. Variable substitution was used to improve accuracy. A least-squares fit was conducted using the SVD.Results: The differences between the originally tabulated MGD conversion factors and the results computed using the parameterization algorithms were (a) 0.08%–0.18% on average and 1.31% maximum for the Selenia Dimensions quality control manual, (b) 0.09%–0.66% on average and 2.97% maximum for the published data by Dance et al. [Phys. Med. Biol. 35, 1211–1219 (1990); ibid. 45, 3225–3240 (2000); ibid. 54, 4361–4372 (2009); ibid. 56, 453–471 (2011)], (c) 0.74%–0.99% on average and 3.94% maximum for the published data by Sechopoulos et al. [Med. Phys. 34, 221–232 (2007); J. Appl. Clin. Med. Phys. 9, 161–171 (2008)], and (d) 0.66%–1.33% on average and 2.72% maximum for the published data by Feng and Sechopoulos [Radiology 263, 35–42 (2012)], excluding one sample in (d) that does not follow the trends in the published data table.Conclusions: A flexible parameterization method is presented in this paper, and was applied to breast tomosynthesis dosimetry. The resultant data offer easy and accurate computations of MGD conversion factors for evaluating mean glandular breast dose in the MQSA

  19. Review and management of breast lesions detected with breast tomosynthesis but not visible on mammography and ultrasonography.

    Science.gov (United States)

    Taskin, Fusun; Durum, Yasemin; Soyder, Aykut; Unsal, Alparslan

    2017-12-01

    Background Breast tomosynthesis is more sensitive than mammography and can detect lesions that are not always visible with conventional methods such as digital mammography (MG) and ultrasonography (US). No standardized approach is available for the management of lesions that are detectable with tomosynthesis but are not visible on MG or US. Purpose To review suspicious breast lesions detected with tomosynthesis but not visible on two-dimensional (2D) MG or US and to determine the management options for these lesions. Material and Methods Ethical committee approval was obtained. The radiological records, biopsy or surgery results, and follow-up findings of 107 patients who had a tomosynthesis-positive but MG- or US-negative breast lesion between 2011 and 2016 were retrospectively evaluated. Results Of 107 lesions visible only with tomosynthesis, 74% were architectural distortions and 26% were asymmetrical opacities. All patients underwent magnetic resonance imaging (MRI) for further evaluation. Among the 48 (45%) MRI-negative lesions, none had a suspicious alteration during the follow-up period. Among the MRI-positive lesions, 28% of the 50 architectural distortions and 11% of the nine asymmetrical opacities were malignant. Conclusion Given the inherent high false-positive rate of breast tomosynthesis, breast MRI prior to biopsy may reduce the number of unnecessary biopsies for suspicious breast lesions that are tomosynthesis-positive only.

  20. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program.

    Science.gov (United States)

    Skaane, Per; Bandos, Andriy I; Gullien, Randi; Eben, Ellen B; Ekseth, Ulrika; Haakenaasen, Unni; Izadi, Mina; Jebsen, Ingvild N; Jahr, Gunnar; Krager, Mona; Niklason, Loren T; Hofvind, Solveig; Gur, David

    2013-04-01

    To assess cancer detection rates, false-positive rates before arbitration, positive predictive values for women recalled after arbitration, and the type of cancers detected with use of digital mammography alone and combined with tomosynthesis in a large prospective screening trial. A prospective, reader- and modality-balanced screening study of participants undergoing combined mammography plus tomosynthesis, the results of which were read independently by four different radiologists, is under way. The study was approved by a regional ethics committee, and all participants provided written informed consent. The authors performed a preplanned interim analysis of results from 12,631 examinations interpreted by using mammography alone and mammography plus tomosynthesis from November 22, 2010, to December 31, 2011. Analyses were based on marginal log-linear models for binary data, accounting for correlated interpretations and adjusting for reader-specific performance levels by using a two-sided significance level of .0294. Detection rates, including those for invasive and in situ cancers, were 6.1 per 1000 examinations for mammography alone and 8.0 per 1000 examinations for mammography plus tomosynthesis (27% increase, adjusted for reader; P = .001). False-positive rates before arbitration were 61.1 per 1000 examinations with mammography alone and 53.1 per 1000 examinations with mammography plus tomosynthesis (15% decrease, adjusted for reader; P tomosynthesis; P = .72). Twenty-five additional invasive cancers were detected with mammography plus tomosynthesis (40% increase, adjusted for reader; P tomosynthesis (P tomosynthesis in a screening environment resulted in a significantly higher cancer detection rate and enabled the detection of more invasive cancers. Clinical trial registration no. NCT01248546. RSNA, 2013

  1. Practice and regulations of radiological chest screening in Denmark

    International Nuclear Information System (INIS)

    Berg, O.; Hjardemaal, O.

    1987-01-01

    Mass chest screening by means of photofluorography was initiated in Denmark in the first years after World War II. The number of persons examined yearly increased continually to a maximum of 900.000 (a fourth of the whole population) in 1972. At this time efforts were made to reduce mass chest screening to small specific risk groups in the population, resulting in a gradual reduction until 1983 when mass chest screening was totally abolished. The technical provisions for photofluorographic X-ray equipment and for X-ray rooms as well as the provisions for the inspection of the installations are stated. Finally results of surveys regarding exposure measurements on photofluorografic equipment are shown and a maximum permissible level of the exposure measured at the entrance plane of the equipment is recommended. (author)

  2. Radiology illustrated. Chest radiology

    International Nuclear Information System (INIS)

    Lee, Kyung Soo; Han, Joungho; Chung, Man Pyo; Jeong, Yeon Joo

    2014-01-01

    Pattern approach to the diagnosis of lung diseases based on CT scan appearances. Guide to quick and reliable differential diagnosis. CT-pathology correlation. Emphasis on state-of-the-art MDCT. The purpose of this atlas is to illustrate how to achieve reliable diagnoses when confronted by the different abnormalities, or ''disease patterns'', that may be visualized on CT scans of the chest. The task of pattern recognition has been greatly facilitated by the advent of multidetector CT (MDCT), and the focus of the book is very much on the role of state-of-the-art MDCT. A wide range of disease patterns and distributions are covered, with emphasis on the typical imaging characteristics of the various focal and diffuse lung diseases. In addition, clinical information relevant to differential diagnosis is provided and the underlying gross and microscopic pathology is depicted, permitting CT-pathology correlation. The entire information relevant to each disease pattern is also tabulated for ease of reference. This book will be an invaluable handy tool that will enable the reader to quickly and easily reach a diagnosis appropriate to the pattern of lung abnormality identified on CT scans.

  3. Performance of breast cancer screening using digital breast tomosynthesis: results from the prospective population-based Oslo Tomosynthesis Screening Trial.

    Science.gov (United States)

    Skaane, Per; Sebuødegård, Sofie; Bandos, Andriy I; Gur, David; Østerås, Bjørn Helge; Gullien, Randi; Hofvind, Solveig

    2018-02-10

    Digital breast tomosynthesis (DBT) has the potential to overcome limitations of conventional mammography. This study investigated the effects of addition of DBT on interval and detected cancers in population-based screening. Oslo Tomosynthesis Screening Trial (OTST) was a prospective, independent double-reading trial inviting women 50-69 years biennially, comparing full-field digital mammography (FFDM) plus DBT with FFDM alone. Performance indicators and characteristics of screen-detected and interval cancers were compared with two previous FFDM rounds. 24,301 consenting women underwent FFDM + DBT screening over a 2-year period. Results were compared with 59,877 FFDM examinations during prior rounds. Addition of DBT resulted in a non-significant increase in sensitivity (76.2%, 378/496, vs. 80.8%, 227/281, p = 0.151) and a significant increase in specificity (96.4%, 57229/59381 vs. 97.5%, 23427/24020, p < .001). Number of recalls per screen-detected cancer decreased from 6.7 (2530/378) to 3.6 (820/227) with DBT (p < .001). Cancer detection per 1000 women screened increased (6.3, 378/59877, vs. 9.3, 227/24301, p < .001). Interval cancer rate per 1000 screens for FFDM + DBT remained similar to previous FFDM rounds (2.1, 51/24301 vs. 2.0, 118/59877, p = 0.734). Interval cancers post-DBT were comparable to prior rounds but significantly different in size, grade, and node status from cancers detected only using DBT. 39.6% (19/48) of interval cancers had positive nodes compared with only 3.9% (2/51) of additional DBT-only-detected cancers. DBT-supplemented screening resulted in significant increases in screen-detected cancers and specificity. However, no significant change was observed in the rate, size, node status, or grade of interval cancers. ClinicalTrials.gov: NCT01248546.

  4. Geometric estimation method for x-ray digital intraoral tomosynthesis

    Science.gov (United States)

    Li, Liang; Yang, Yao; Chen, Zhiqiang

    2016-06-01

    It is essential for accurate image reconstruction to obtain a set of parameters that describes the x-ray scanning geometry. A geometric estimation method is presented for x-ray digital intraoral tomosynthesis (DIT) in which the detector remains stationary while the x-ray source rotates. The main idea is to estimate the three-dimensional (3-D) coordinates of each shot position using at least two small opaque balls adhering to the detector surface as the positioning markers. From the radiographs containing these balls, the position of each x-ray focal spot can be calculated independently relative to the detector center no matter what kind of scanning trajectory is used. A 3-D phantom which roughly simulates DIT was designed to evaluate the performance of this method both quantitatively and qualitatively in the sense of mean square error and structural similarity. Results are also presented for real data acquired with a DIT experimental system. These results prove the validity of this geometric estimation method.

  5. The Adjunctive Digital Breast Tomosynthesis in Diagnosis of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Tsung-Lung Yang

    2013-01-01

    Full Text Available Purpose. To compare the diagnostic performance of digital breast tomosynthesis (DBT and digital mammography (DM for breast cancers. Materials and Methods. Fifty-seven female patients with pathologically proved breast cancer were enrolled. Three readers gave a subjective assessment superiority of the index lesions (mass, focal asymmetry, architectural distortion, or calcifications and a forced BIRADS score, based on DM reading alone and with additional DBT information. The relevance between BIRADS category and index lesions of breast cancer was compared by chi-square test. Result. A total of 59 breast cancers were reviewed, including 17 (28.8% mass lesions, 12 (20.3% focal asymmetry/density, 6 (10.2% architecture distortion, 23 (39.0% calcifications, and 1 (1.7% intracystic tumor. Combo DBT was perceived to be more informative in 58.8% mass lesions, 83.3% density, 94.4% architecture distortion, and only 11.6% calcifications. As to the forced BIRADS score, 84.4% BIRADS 0 on DM was upgraded to BIRADS 4 or 5 on DBT, whereas only 27.3% BIRADS 4A on DM was upgraded on DBT, as BIRADS 4A lesions were mostly calcifications. A significant P value (<0.001 between the BIRADS category and index lesions was noted. Conclusion. Adjunctive DBT gives exquisite information for mass lesion, focal asymmetry, and/or architecture distortion to improve the diagnostic performance in mammography.

  6. Investigation on 3D dose distribution in digital breast tomosynthesis

    Science.gov (United States)

    Masi, M.

    2017-03-01

    Monte Carlo calculations for dosimetry in digital breast tomosynthesis (DBT) require experimental validations. We measured the 3D dose distribution in a breast phantom in a DBT scan, using XR-QA2 radiochromic films. We positioned film pieces at the entrance surface, at the bottom surface and at four depths between adjacent slabs in the 5-slabs, 5-cm-thick phantom simulating a compressed breast with 50% glandular fraction. We irradiated the phantom at 40kV (half value layer 1.1mm Al) for three angular tilting of the beam central axis ( {±}25° and 0° normal incidence). We determined the transverse and longitudinal distributions of the average dose in the phantom (in terms of air kerma normalized to the entrance air kerma), showing the angular dependence of the depth-resolved 3D dose distributions. In transverse planes the maximum dose variations were between 5.0% and 14.8% for normal incidence, and by 8.6% from the central to the tilted view. In the direction of the beam axis, the dose decreases up to about 71% from the entrance to the exit value. The extimated backscatter fraction was between 3% and 8%.

  7. Individualised calculation of tissue imparted energy in breast tomosynthesis

    International Nuclear Information System (INIS)

    Geeraert, N.; Klausz, R.; Muller, S.; Bosmans, H.; Bloch, I.

    2016-01-01

    The imparted energy to the glandular tissue in the breast (glandular imparted energy, GIE) is proposed for an improved assessment of the individual radiation-induced risk resulting from X-ray breast imaging. GIE is computed from an estimation of the quantity and localisation of glandular tissue in the breast. After a digital breast tomosynthesis (DBT) acquisition, the volumetric glandular content (volumetric breast density, VBD) is computed from the central X-ray projection. The glandular tissue distribution is determined by labelling the DBT voxels to ensure the conservation of the VBD. Finally, the GIE is calculated by Monte Carlo computation on the resulting tissue-labelled DBT volume. For verification, the method was applied to 10 breast-shaped digital phantoms made of different glandular spheres in an adipose background, and to a digital anthropomorphic phantom. Results were compared to direct GIE computations on the phantoms considered as 'ground-truth'. The major limitations in accuracy are those of DBT, in particular the limited z-resolution. However, for most phantoms, the results can be considered as acceptable. (authors)

  8. Description and benefits of dynamic collimation in digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Popova, Y.; Hersemeule, G.; Klausz, R.; Souchay, H.

    2015-01-01

    X-ray field to image receptor active area alignment is usually tested in mammographic QC. In digital breast tomosynthesis (dBT), the source moves during the acquisition, generating a displacement of the X-ray beam edges relative to the detector, in or out of the detector active area. To minimise unnecessary radiation while maximising the useful field of view, a solution consisting in adjusting the collimation with the source rotation was implemented on the GE SenoClaire dBT system. This solution is described and tested using three different methods based on: (1) images from the detector, (2) a non-screen film and (3) a semiconductor tool providing the X-ray intensity profile. Method 1 demonstrated a maximum positioning error of 0.3 mm. Method 2 was found non-applicable; Method 3 provided measurements within 1.5 mm. Dynamic collimation enables maintaining an X-ray field to detector congruence comparable with 2D. Measuring the position of the X-ray field edges using a dedicated tool makes routine QC possible. (authors)

  9. Interpretation of neonatal chest radiography

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hye Kyung [Dept. of Radiology, Kangwon National University Hospital, Chuncheon (Korea, Republic of)

    2016-05-15

    Plain radiographs for infants in the neonatal intensive care unit are obtained using the portable X-ray equipment in order to evaluate the neonatal lungs and also to check the position of the tubes and catheters used for monitoring critically-ill neonates. Neonatal respiratory distress is caused by a variety of medical or surgical disease conditions. Clinical information about the gestational week, respiratory symptoms, and any events during delivery is essential for interpretation of the neonatal chest radiographs. Awareness of common chest abnormality in the prematurely born or term babies is also very important for chest evaluation in the newborn. Furthermore, knowledge about complications such as air leaks and bronchopulmonary dysplasia following treatment are required to accurately inform the clinicians. The purpose of this article was to briefly review radiographic findings of chest diseases in newborns that are relatively common in daily practice.

  10. Interpretation of neonatal chest radiography

    International Nuclear Information System (INIS)

    Yoon, Hye Kyung

    2016-01-01

    Plain radiographs for infants in the neonatal intensive care unit are obtained using the portable X-ray equipment in order to evaluate the neonatal lungs and also to check the position of the tubes and catheters used for monitoring critically-ill neonates. Neonatal respiratory distress is caused by a variety of medical or surgical disease conditions. Clinical information about the gestational week, respiratory symptoms, and any events during delivery is essential for interpretation of the neonatal chest radiographs. Awareness of common chest abnormality in the prematurely born or term babies is also very important for chest evaluation in the newborn. Furthermore, knowledge about complications such as air leaks and bronchopulmonary dysplasia following treatment are required to accurately inform the clinicians. The purpose of this article was to briefly review radiographic findings of chest diseases in newborns that are relatively common in daily practice

  11. CT findings of chest trauma

    International Nuclear Information System (INIS)

    Kim, Young Tong; Kim Young Il

    1998-01-01

    Trauma is the third leading cause of death, irrespective of age, and the leading cause of death in persons under 40 persons under 40 years of age. Most pleural, pulmonary, mediastinal, and diaphragmatic injuries are not seen on conventional chest radiographs, or are underestimated. In patients with chest trauma, CT scanning is an effective and sensitive method of detecting thoracic injuries and provides accurate information regarding their pattern and extent. (author). 5 refs., 17 figs

  12. Design and Development of a New Multi-Projection X-Ray System for Chest Imaging

    Science.gov (United States)

    Chawla, Amarpreet S.; Boyce, Sarah; Washington, Lacey; McAdams, H. Page; Samei, Ehsan

    2009-02-01

    Overlapping anatomical structures may confound the detection of abnormal pathology, including lung nodules, in conventional single-projection chest radiography. To minimize this fundamental limiting factor, a dedicated digital multi-projection system for chest imaging was recently developed at the Radiology Department of Duke University. We are reporting the design of the multi-projection imaging system and its initial performance in an ongoing clinical trial. The system is capable of acquiring multiple full-field projections of the same patient along both the horizontal and vertical axes at variable speeds and acquisition frame rates. These images acquired in rapid succession from slightly different angles about the posterior-anterior (PA) orientation can be correlated to minimize the influence of overlying anatomy. The developed system has been tested for repeatability and motion blur artifacts to investigate its robustness for clinical trials. Excellent geometrical consistency was found in the tube motion, with positional errors for clinical settings within 1%. The effect of tube-motion on the image quality measured in terms of impact on the modulation transfer function (MTF) was found to be minimal. The system was deemed clinic-ready and a clinical trial was subsequently launched. The flexibility of image acquisition built into the system provides a unique opportunity to easily modify it for different clinical applications, including tomosynthesis, correlation imaging (CI), and stereoscopic imaging.

  13. The compressed breast during mammography and breast tomosynthesis: in vivo shape characterization and modeling

    NARCIS (Netherlands)

    Rodriguez Ruiz, A.; Agasthya, G.A.; Sechopoulos, I.

    2017-01-01

    To characterize and develop a patient-based 3D model of the compressed breast undergoing mammography and breast tomosynthesis. During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3D breast surface imaging with structured light (SL) during breast compression, along

  14. Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data

    NARCIS (Netherlands)

    Bouwman, R. W.; van Engen, R. E.; Young, K. C.; den Heeten, G. J.; Broeders, M. J. M.; Schopphoven, S.; Jeukens, C. R. L. P. N.; Veldkamp, W. J. H.; Dance, D. R.

    2015-01-01

    For the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT) phantoms simulating standard model breasts are used. These phantoms consist of slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE). In the last

  15. Correlating locations in ipsilateral breast tomosynthesis views using an analytical hemispherical compression model

    NARCIS (Netherlands)

    Schie, G. van; Tanner, C.; Snoeren, P.R.; Samulski, M.; Leifland, K.; Wallis, M.G.; Karssemeijer, N.

    2011-01-01

    To improve cancer detection in mammography, breast examinations usually consist of two views per breast. In order to combine information from both views, corresponding regions in the views need to be matched. In 3D digital breast tomosynthesis (DBT), this may be a difficult and time-consuming task

  16. Comparison of Sonography versus Digital Breast Tomosynthesis to Locate Intramammary Marker Clips.

    Science.gov (United States)

    Schulz-Wendtland, R; Dankerl, P; Dilbat, G; Bani, M; Fasching, P A; Heusinger, K; Lux, M P; Loehberg, C R; Jud, S M; Rauh, C; Bayer, C M; Beckmann, M W; Wachter, D L; Uder, M; Meier-Meitinger, M; Brehm, B

    2015-01-01

    Introduction: This study aimed to compare the accuracy of sonography versus digital breast tomosynthesis to locate intramammary marker clips placed under ultrasound guidance. Patients and Methods: Fifty patients with suspicion of breast cancer (lesion diameter less than 2 cm [cT1]) had ultrasound-guided core needle biopsy with placement of a marker clip in the center of the tumor. Intramammary marker clips were subsequently located with both sonography and digital breast tomosynthesis. Results: Sonography detected no dislocation of intrammammary marker clips in 42 of 50 patients (84 %); dislocation was reported in 8 patients (16 %) with a maximum dislocation of 7 mm along the x-, y- or z-axis. Digital breast tomosynthesis showed accurate placement without dislocation of the intramammary marker clip in 48 patients (96 %); 2 patients (4 %) had a maximum clip dislocation of 3 mm along the x-, y- or z-axis (p tomosynthesis could improve the accuracy when locating intramammary marker clips compared to sonography and could, in future, be used to complement or even completely replace sonography.

  17. X-ray Digital Linear Tomosynthesis Imaging for Artificial Pulmonary Nodule Detection

    Directory of Open Access Journals (Sweden)

    Tsutomu Gomi

    2011-01-01

    Full Text Available The purpose of this paper is to identify indications for volumetric X-ray digital linear tomosynthesis (DLT with single- and dual-energy subtraction techniques for artificial pulmonary nodule detection and compare X-ray DLT, X-ray digital radiography, and computed tomography.

  18. Can Breast Compression Be Reduced in Digital Mammography and Breast Tomosynthesis?

    NARCIS (Netherlands)

    Agasthya, G.A.; D'Orsi, E.; Kim, Y. J.; Handa, P.; Ho, C.P.; D'Orsi, C.J.; Sechopoulos, I.

    2017-01-01

    OBJECTIVE: The objective of this study was to investigate the impact of decreasing breast compression during digital mammography and breast tomosynthesis (DBT) on perceived pain and image quality. MATERIALS AND METHODS: In this two-part study, two groups of women with prior mammograms were

  19. A second pass correction method for calcification artifacts in digital breast tomosynthesis

    NARCIS (Netherlands)

    Erhard, K.; Grass, M.; Nielsen, T.

    2011-01-01

    Digital breast tomosynthesis (DBT) aims for improving the diagnosis of breast cancer and reducing the false positive rates by going from 2D projection mammography to 3D volume information. With the acquisition of a series of projection images, taken over a limited angular range, DBT allows for

  20. Demystifying the status of fracture healing using tomosynthesis: A case report

    Directory of Open Access Journals (Sweden)

    Eira S. Roth, MD

    2015-10-01

    Full Text Available Radiography is the most common imaging method for assessing the progress of fracture healing. However, accurate assessment may be confounded by fracture complexity in which a combination of anatomic overlay and hypertrophic callous can be visually misleading. We present just such an instance in which delayed fracture healing was further elucidated using tomosynthesis.

  1. Investigation of absorbed radiation dose in refraction-enhanced breast tomosynthesis by a Laue case analyser

    International Nuclear Information System (INIS)

    Sato, H.; Ando, M.; Shimao, D.

    2011-01-01

    An early diagnosis system for breast cancer using refraction-enhanced breast tomosynthesis is under development. Tomograms of breast specimens based on refraction-contrast were demonstrated using the simplest shift-and-add tomosynthesis algorithm. Raw projection image data of breast specimens for tomosynthesis were acquired for a total of 51 views over an angle of 50 deg., in increments of 1 deg., by rotating the object. The incident X ray was monochromatic synchrotron radiation with 20 keV. The purpose of this study was to estimate the absorbed dose of a new X-ray imaging method. As breast cancer almost always arises in glandular breast tissue, the average absorbed dose in such glandular tissue should be measured to estimate the radiation risk associated with mammography. The absorbed dose of the mammary gland due to monochromatic X rays was calculated by the Monte Carlo method, and the optimal X ray energy range for refraction-enhanced breast tomosynthesis was investigated through actual measurements. Compared with the conventional method, it was found to be below one-sixth per inspection. (authors)

  2. Phantoms for quality control procedures in digital breast tomosynthesis: dose assessment

    NARCIS (Netherlands)

    Bouwman, R. W.; Diaz, O.; van Engen, R. E.; Young, K. C.; den Heeten, G. J.; Broeders, M. J. M.; Veldkamp, W. J. H.; Dance, D. R.

    2013-01-01

    The recent introduction of digital breast tomosynthesis into clinical practice requires quality control procedures. In this study we have investigated whether the assessment of the average glandular dose for modelled standard breasts can be performed using a combination of polymethyl methacrylate

  3. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-01-01

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  4. Digital Breast Tomosynthesis versus Supplemental Diagnostic Mammographic Views for Evaluation of Noncalcified Breast Lesions

    Science.gov (United States)

    Bandos, Andriy I.; Ganott, Marie A.; Sumkin, Jules H.; Kelly, Amy E.; Catullo, Victor J.; Rathfon, Grace Y.; Lu, Amy H.; Gur, David

    2013-01-01

    Purpose: To compare the diagnostic performance of breast tomosynthesis versus supplemental mammography views in classification of masses, distortions, and asymmetries. Materials and Methods: Eight radiologists who specialized in breast imaging retrospectively reviewed 217 consecutively accrued lesions by using protocols that were HIPAA compliant and institutional review board approved in 182 patients aged 31–60 years (mean, 50 years) who underwent diagnostic mammography and tomosynthesis. The lesions in the cohort included 33% (72 of 217) cancers and 67% (145 of 217) benign lesions. Eighty-four percent (182 of 217) of the lesions were masses, 11% (25 of 217) were asymmetries, and 5% (10 of 217) were distortions that were initially detected at clinical examination in 8% (17 of 217), at mammography in 80% (173 of 217), at ultrasonography (US) in 11% (25 of 217), or at magnetic resonance imaging in 1% (2 of 217). Histopathologic examination established truth in 191 lesions, US revealed a cyst in 12 lesions, and 14 lesions had a normal follow-up. Each lesion was interpreted once with tomosynthesis and once with supplemental mammographic views; both modes included the mediolateral oblique and craniocaudal views in a fully crossed and balanced design by using a five-category Breast Imaging Reporting and Data System (BI-RADS) assessment and a probability-of-malignancy score. Differences between modes were analyzed with a generalized linear mixed model for BI-RADS–based sensitivity and specificity and with modified Obuchowski-Rockette approach for probability-of-malignancy–based area under the receiver operating characteristic (ROC) curve. Results: Average probability-of-malignancy–based area under the ROC curve was 0.87 for tomosynthesis versus 0.83 for supplemental views (P tomosynthesis, the false-positive rate decreased from 85% (989 of 1160) to 74% (864 of 1160) (P tomosynthesis, more cancers were classified as BI-RADS category 5 (39% [226 of 576] vs 33% [188

  5. Imaging performance of an amorphous selenium digital mammography detector in a breast tomosynthesis system

    International Nuclear Information System (INIS)

    Zhao Bo; Zhao Wei

    2008-01-01

    In breast tomosynthesis a rapid sequence of N images is acquired when the x-ray tube sweeps through different angular views with respect to the breast. Since the total dose to the breast is kept the same as that in regular mammography, the exposure used for each image of tomosynthesis is 1/N. The low dose and high frame rate pose a tremendous challenge to the imaging performance of digital mammography detectors. The purpose of the present work is to investigate the detector performance in different operational modes designed for tomosynthesis acquisition, e.g., binning or full resolution readout, the range of view angles, and the number of views N. A prototype breast tomosynthesis system with a nominal angular range of ±25 deg. was used in our investigation. The system was equipped with an amorphous selenium (a-Se) full field digital mammography detector with pixel size of 85 μm. The detector can be read out in full resolution or 2x1 binning (binning in the tube travel direction). The focal spot blur due to continuous tube travel was measured for different acquisition geometries, and it was found that pixel binning, instead of focal spot blur, dominates the detector modulation transfer function (MTF). The noise power spectrum (NPS) and detective quantum efficiency (DQE) of the detector were measured with the exposure range of 0.4-6 mR, which is relevant to the low dose used in tomosynthesis. It was found that DQE at 0.4 mR is only 20% less than that at highest exposure for both detector readout modes. The detector temporal performance was categorized as lag and ghosting, both of which were measured as a function of x-ray exposure. The first frame lags were 8% and 4%, respectively, for binning and full resolution mode. Ghosting is negligible and independent of the frame rate. The results showed that the detector performance is x-ray quantum noise limited at the low exposures used in each view of tomosynthesis, and the temporal performance at high frame rate (up to

  6. Power spectrum analysis of the x-ray scatter signal in mammography and breast tomosynthesis projections.

    Science.gov (United States)

    Sechopoulos, Ioannis; Bliznakova, Kristina; Fei, Baowei

    2013-10-01

    To analyze the frequency domain characteristics of the signal in mammography images and breast tomosynthesis projections with patient tissue texture due to detected scattered x-rays. Acquisitions of x-ray projection images of 19 different patient breasts were simulated using previously acquired volumetric patient images. Acquisition of these images was performed with a dedicated breast CT prototype system, and the images were classified into voxels representing skin, adipose, and glandular tissue with a previously validated automated algorithm. The classified three dimensional images then underwent simulated mechanical compression representing that which is performed during acquisition of mammography and breast tomosynthesis images. The acquisition of projection images of each patient breast was simulated using Monte Carlo methods with each simulation resulting in two images: one of the primary (non-scattered) signal and one of the scatter signal. To analyze the scatter signal for both mammography and breast tomosynthesis, two projections images of each patient breast were simulated, one with the x-ray source positioned at 0° (mammography and central tomosynthesis projection) and at 30° (wide tomosynthesis projection). The noise power spectra (NPS) for both the scatter signal alone and the total signal (primary + scatter) for all images were obtained and the combined results of all patients analyzed. The total NPS was fit to the expected power-law relationship NPS(f) = k/f β and the results were compared with those previously published on the power spectrum characteristics of mammographic texture. The scatter signal alone was analyzed qualitatively and a power-law fit was also performed. The mammography and tomosynthesis projections of three patient breasts were too small to analyze, so a total of 16 patient breasts were analyzed. The values of β for the total signal of the 0° projections agreed well with previously published results. As expected, the scatter

  7. Value of tomosynthesis for lesion evaluation of small joints in osteoarthritic hands using the OARSI score.

    Science.gov (United States)

    Martini, K; Becker, A S; Guggenberger, R; Andreisek, G; Frauenfelder, T

    2016-07-01

    To determine the diagnostic performance of tomosynthesis in depicting osteoarthritic lesions in comparison to conventional radiographs, with use of computed tomography (CT) as standard-of-reference. Imaging of 12 cadaveric hands was performed with tomosynthesis in dorso-palmar (dp) projection, conventional radiographs (dp) and multi-detector CT. Distal interphalangeal joint (DIP)II, DIPIII, proximal interphalangeal joint (PIP)II, PIPIII, first carpometacarpal (CMC) and scaphotrapezotrapezoidal joint (STT) were graded by two independent readers using the Osteoarthritis Research Society International (OARSI) score. The mean score for each feature was calculated for all modalities. Additional wrists were evaluated for presence of calcium pyrophosphate disease (CPPD). CT served as reference-standard. Inter-reader agreement (ICC) was calculated. Comparing tomosynthesis and conventional radiographs to CT, the sensitivity for the presence of osteophytes was 95,7% vs 65,2%; for joint space narrowing 95,8% vs 52,1%; for subchondral sclerosis 61,5% vs 51,3%; for lateral deformity 83.3% vs 83,3%; and for subchondral cysts 45,8% vs 29,2%. Erosions were not present. While tomosynthesis showed no significant difference in OARSI score grading to CT (mean OARSI-score CT: 16.8, SD = 10.6; mean OARSI-score Tomosynthesis: 16.3, SD = 9.6; P = 0.84), conventional radiographs had significant lower mean OARSI scores (mean OARSI-score X-ray: 11.1, SD = 8.3; P = 0.04). Inter-reader agreement for OARSI scoring was excellent (ICC = 0.99). CPPD calcifications present in CT, were also visible with tomosynthesis, but not with conventional radiography. In conclusion, tomosynthesis depicts more osteoarthritic changes in the small joints of the hand than conventional radiography using the OARSI scoring system and CT as the standard of reference. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Tomosynthesis: A new radiologic technique for rapid diagnosis of scaphoid fractures.

    Science.gov (United States)

    Compton, N; Murphy, L; Lyons, F; Jones, J; MacMahon, P; Cashman, J

    2016-12-21

    Scaphoid fractures constitute 71% of all carpal bone fractures. 1 Early diagnosis and treatment has significant bearing on fracture union rates and better clinical outcomes. While displaced fractures can be readily seen on plain radiograph, undisplaced fractures can require advanced imaging modalities to confirm that diagnosis. Advanced imaging such as Magnetic Resonance Imaging (MRI), Computerised tomography (CT) and bone scintigraphy are routinely used for the diagnosis of scaphoid fractures but require significant radiation exposure, increased cost and can be difficult to access. 2 Tomosynthesis is an emerging imaging modality which uses conventional x-ray systems to produce cross-sectional images. There has yet to be extensive research carried out investigating the diagnostic value of tomosynthesis in scaphoid fractures. The aim of this study is to optimise patient positioning for the diagnosis of scaphoid fractures in a cadaveric model and compare the diagnostic yield of tomography to conventional CT. Using four cadaveric specimens, three limb positions were examined in unfractured and fractured scaphoids to determine the optimal limb positions required for visualisation of the scaphoid. As a result of this study, the optimal position for visualisation of the scaphoid and diagnosis of scaphoid fractures has been determined. The results demonstrate that tomosynthesis is as effective as CT scanning in identifying scaphoid fractures in both sensitivity and specificity. By comparison to CT, tomosynthesis is cheaper, has lower radiation exposure, requires fewer hospital resources and can be performed quickly. Tomosynthesis is a valid diagnostic tool for the diagnosis of scaphoid fractures. Copyright © 2016 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  9. Tomosynthesis Impact on Breast Cancer Screening in Patients Younger Than 50 Years Old.

    Science.gov (United States)

    Rose, Stephen L; Shisler, Julie L

    2018-04-09

    The question of benefits versus harms of breast cancer screening for women younger than 50 years old has been the subject of debate. We investigate if the addition of tomosynthesis to mammography improves screening performance outcomes for women in this age group. Screening performance for 59,921 patients (41,542 digital mammography and 18,379 tomosynthesis) younger than 50 years old was collected from a community-based screening network from January 1, 2015, to December 31, 2015. Patients were offered tomosynthesis if it was available. Parameters including recall, biopsy, and cancer detection rates were compared. Mixed effects regression analysis was used to estimate rates with screening modality, age, and density as fixed effects and screening site as a random effect. Rates for patients with dense breast tissue were also evaluated. Model adjusted rates per 1000 screenings with digital mammography were compared with digital mammography plus tomosynthesis, respectively: recall rate decreased from 117 to 108 (difference, -8.3; p = 0.003); biopsy rate increased from 13.5 to 16.6 (difference, 3.1; p = 0.003); and cancer detection rate increased from 1.9 to 2.6 (difference, 0.8; p = 0.060). Model adjusted rates for patients with dense breast tissue were: recall rate decreased from 135 to 132 (difference, -3.2; p = 0.44); biopsy rate increased from 16.0 to 20.5 (difference, 4.5; p = 0.004); and cancer detection rate increased from 2.1 to 3.5 (difference, 1.3; p = 0.03). Tomosynthesis in a community setting resulted in decreased recall rates for patients younger than 50 years old. For the subgroup of women with dense breast tissue, cancer detection rates also increased.

  10. Chest magnetic resonance imaging: a protocol suggestion

    Directory of Open Access Journals (Sweden)

    Bruno Hochhegger

    2015-12-01

    Full Text Available Abstract In the recent years, with the development of ultrafast sequences, magnetic resonance imaging (MRI has been established as a valuable diagnostic modality in body imaging. Because of improvements in speed and image quality, MRI is now ready for routine clinical use also in the study of pulmonary diseases. The main advantage of MRI of the lungs is its unique combination of morphological and functional assessment in a single imaging session. In this article, the authors review most technical aspects and suggest a protocol for performing chest MRI. The authors also describe the three major clinical indications for MRI of the lungs: staging of lung tumors; evaluation of pulmonary vascular diseases; and investigation of pulmonary abnormalities in patients who should not be exposed to radiation.

  11. Chest tube placement in thorax trauma - comparison chest X-ray and computed tomography (CT)

    International Nuclear Information System (INIS)

    Heim, P.; Maas, R.; Buecheler, E.; Tesch, C.

    1998-01-01

    Estimation of chest tube placement in patients with thoracic trauma with regard to chest tube malposition in chest radiography in the supine position compared to additional computed tomography of the thorax. Material and methods: Apart from compulsory chest radiography after one or multiple chest tube insertions, 31 severely injured patients with thoracic trauma underwent a CT scan of the thorax. These 31 patients with 40 chest tubes constituted the basis for the present analysis. Results: In chest radiography in the supine position there were no chest tube malpositions (n=40); In the CT scans 25 correct positions, 7 pseudo-malpositions, 6 intrafissural and 2 intrapulmonary malpositions were identified. Moreover 16 sufficient, 18 insufficient and 6 indifferent functions of the chest tubes were seen. Conclusion: In case of lasting clinical problems and questionable function of the chest tube, chest radiography should be supplemented by a CT scan of the thorax in order to estimate the position of the chest tube. (orig.) [de

  12. Evaluation of respiration-correlated digital tomosynthesis in lung.

    Science.gov (United States)

    Santoro, Joseph; Kriminski, Sergey; Lovelock, D Michael; Rosenzweig, Kenneth; Mostafavi, Hassan; Amols, Howard I; Mageras, Gig S

    2010-03-01

    Digital tomosynthesis (DTS) with a linear accelerator-mounted imaging system provides a means of reconstructing tomographic images from radiographic projections over a limited gantry arc, thus requiring only a few seconds to acquire. Its application in the thorax, however, often results in blurred images from respiration-induced motion. This work evaluates the feasibility of respiration-correlated (RC) DTS for soft-tissue visualization and patient positioning. Image data acquired with a gantry-mounted kilovoltage imaging system while recording respiration were retrospectively analyzed from patients receiving radiotherapy for non-small-cell lung carcinoma. Projection images spanning an approximately 30 degrees gantry arc were sorted into four respiration phase bins prior to DTS reconstruction, which uses a backprojection, followed by a procedure to suppress structures above and below the reconstruction plane of interest. The DTS images were reconstructed in planes at different depths through the patient and normal to a user-selected angle close to the center of the arc. The localization accuracy of RC-DTS was assessed via a comparison with CBCT. Evaluation of RC-DTS in eight tumors shows visible reduction in image blur caused by the respiratory motion. It also allows the visualization of tumor motion extent. The best image quality is achieved at the end-exhalation phase of the respiratory motion. Comparison of RC-DTS with respiration-correlated cone-beam CT in determining tumor position, motion extent and displacement between treatment sessions shows agreement in most cases within 2-3 mm, comparable in magnitude to the intraobserver repeatability of the measurement. These results suggest the method's applicability for soft-tissue image guidance in lung, but must be confirmed with further studies in larger numbers of patients.

  13. Imaging of blunt chest trauma

    International Nuclear Information System (INIS)

    Wicky, S.; Wintermark, M.; Schnyder, P.; Capasso, P.; Denys, A.

    2000-01-01

    In western European countries most blunt chest traumas are associated with motor vehicle and sport-related accidents. In Switzerland, 39 of 10,000 inhabitants were involved and severely injured in road accidents in 1998. Fifty two percent of them suffered from blunt chest trauma. According to the Swiss Federal Office of Statistics, traumas represented in men the fourth major cause of death (4 %) after cardiovascular disease (38 %), cancer (28 %), and respiratory disease (7 %) in 1998. The outcome of chest trauma patients is determined mainly by the severity of the lesions, the prompt appropriate treatment delivered on the scene of the accident, the time needed to transport the patient to a trauma center, and the immediate recognition of the lesions by a trained emergency team. Other determining factors include age as well as coexisting cardiac, pulmonary, and renal diseases. Our purpose was to review the wide spectrum of pathologies related to blunt chest trauma involving the chest wall, pleura, lungs, trachea and bronchi, aorta, aortic arch vessels, and diaphragm. A particular focus on the diagnostic impact of CT is demonstrated. (orig.)

  14. Task-based strategy for optimized contrast enhanced breast imaging: analysis of six imaging techniques for mammography and tomosynthesis

    Science.gov (United States)

    Ikejimba, Lynda; Kiarashi, Nooshin; Lin, Yuan; Chen, Baiyu; Ghate, Sujata V.; Zerhouni, Moustafa; Samei, Ehsan; Lo, Joseph Y.

    2012-03-01

    Digital breast tomosynthesis (DBT) is a novel x-ray imaging technique that provides 3D structural information of the breast. In contrast to 2D mammography, DBT minimizes tissue overlap potentially improving cancer detection and reducing number of unnecessary recalls. The addition of a contrast agent to DBT and mammography for lesion enhancement has the benefit of providing functional information of a lesion, as lesion contrast uptake and washout patterns may help differentiate between benign and malignant tumors. This study used a task-based method to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: contrast enhanced mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Imaging performance was characterized using a detectability index d', derived from the system task transfer function (TTF), an imaging task, iodine contrast, and the noise power spectrum (NPS). The task modeled a 5 mm lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d' was generated as a function of dose and iodine concentration. In general, higher dose gave higher d', but for the lowest iodine concentration and lowest dose, dual energy subtraction tomosynthesis and temporal subtraction tomosynthesis demonstrated the highest performance.

  15. Breast MRI, digital mammography and breast tomosynthesis: comparison of three methods for early detection of breast cancer.

    Science.gov (United States)

    Roganovic, Dragana; Djilas, Dragana; Vujnovic, Sasa; Pavic, Dag; Stojanov, Dragan

    2015-11-16

    Breast cancer is the most common malignancy in women and early detection is important for its successful treatment. The aim of this study was to investigate the sensitivity and specificity of three methods for early detection of breast cancer: breast magnetic resonance imaging (MRI), digital mammography, and breast tomosynthesis in comparison to histopathology, as well as to investigate the intraindividual variability between these modalities. We included 57 breast lesions, each detected by three diagnostic modalities: digital mammography, breast MRI, and breast tomosynthesis, and subsequently confirmed by histopathology. Breast Imaging-Reporting and Data System (BI-RADS) was used for characterizing the lesions. One experienced radiologist interpreted all three diagnostic modalities. Twenty-nine of the breast lesions were malignant while 28 were benign. The sensitivity for digital mammography, breast MRI, and breast tomosynthesis, was 72.4%, 93.1%, and 100%, respectively; while the specificity was 46.4%, 60.7%, and 75%, respectively. Receiver operating characteristics (ROC) curve analysis showed an overall diagnostic advantage of breast tomosynthesis over both breast MRI and digital mammography. The difference in performance between breast tomosynthesis and digital mammography was significant (p tomosynthesis and breast MRI was not significant (p=0.20).

  16. Breast MRI, digital mammography and breast tomosynthesis: comparison of three methods for early detection of breast cancer

    Directory of Open Access Journals (Sweden)

    Dragana Roganovic

    2015-11-01

    Full Text Available Breast cancer is the most common malignancy in women and early detection is important for its successful treatment. The aim of this study was to investigate the sensitivity and specificity of three methods for early detection of breast cancer: breast magnetic resonance imaging (MRI, digital mammography, and breast tomosynthesis in comparison to histopathology, as well as to investigate the intraindividual variability between these modalities.  We included 57 breast lesions, each detected by three diagnostic modalities: digital mammography, breast MRI, and breast tomosynthesis, and subsequently confirmed by histopathology. Breast Imaging-Reporting and Data System (BI-RADS was used for characterizing the lesions. One experienced radiologist interpreted all three diagnostic modalities. Twenty-nine of the breast lesions were malignant while 28 were benign. The sensitivity for digital mammography, breast MRI, and breast tomosynthesis, was 72.4%, 93.1%, and 100%, respectively; while the specificity was 46.4%, 60.7%, and 75%, respectively. Receiver operating characteristics (ROC curve analysis showed an overall diagnostic advantage of breast tomosynthesis over both breast MRI and digital mammography. The difference in performance between breast tomosynthesis and digital mammography was significant (p < 0.001, while the difference between breast tomosynthesis and breast MRI was not significant (p = 0.20. 

  17. Chest Trauma in Athletic Medicine.

    Science.gov (United States)

    Phillips, Nicholas R; Kunz, Derek E

    2018-03-01

    While overall sports participation continues at high rates, chest injuries occur relatively infrequently. Many conditions of chest injury are benign, related to simple contusions and strains, but the more rare, severe injuries carry a much higher risk of morbidity and mortality than the typical issues encountered in athletic medicine. Missed or delayed diagnosis can prove to be catastrophic. Sports medicine providers must be prepared to encounter a wide range of traumatic conditions relating to the torso, varying from the benign chest wall contusion to the life-threatening tension pneumothorax. Basic field-side management should be rapid and focused, using the standardized approach of Advanced Traumatic Life Support protocol. Early and appropriate diagnosis and management can help allow safe and enjoyable sports participation.

  18. Chest Wall tumor: combined management

    International Nuclear Information System (INIS)

    Rao Bhaskar, N.

    1997-01-01

    Cancer is relatively rare disease among children and adolescents. The incidence of solid tumors other than CNS is less than 2/100,000. Tumors of the chest wall can arise either from the somatic tissue or ribs. These are rare, so either institutional reviews or multi institutional studies should determine optimal therapeutic management. Of the bony chest wall, Ewing's sarcoma or the family of tumor (peripheral neuro epithelioma, Askin tumor), are the most common. These lesions are lytic and have associated large extra pleural component. This large extra pleural component often necessitates major chest wall resection (3 or more ribs), and when lower ribs are involved, this entails resection of portion of diaphragm. Despite this resection, survival in the early 1970 was 10-20%. Since 1970 multi agent chemotherapy has increased survival rates. of importance, however, is these regimens have caused significant reduction of these extra pleural components so that major chest wall resections have become a rarity. With improved survival and decreased morbidity preoperative chemotherapy followed by surgery is now the accepted modality of treatment. Another major advantage of this regimen is that potential radiation therapy may be obviated. The most common chest wall lesion is rhabdomyosarcoma. In the IRS study of 1620 RMS patients, in 141 (9%) the primary lesion was in the chest wall. these are primarily alveolar histology. when lesions were superficial, wide local excision with supplemental radiation therapy was associated with low morbidity and good overall survival. however, a majority have significant intra- thoracic components. in these circumstances the resectability rate is less than 30% and the survival poor. Other lesions include non rhabdomyosarcomas, eosinophilic granuloma, chondrosarcoma, and osteomyelitis. The management of these lesions varies according to extent, histology, and patient characteristics

  19. Accuracy of chest radiography versus chest computed tomography in hemodynamically stable patients with blunt chest trauma

    Directory of Open Access Journals (Sweden)

    Chardoli Mojtaba

    2013-12-01

    Full Text Available 【Abstract】 Objective: Thoracic injuries are respon- sible for 25% of deaths of blunt traumas. Chest X-ray (CXR is the first diagnostic method in patients with blunt trauma. The aim of this study was to detect the accuracy of CXR versus chest computed tomograpgy (CT in hemodynami- cally stable patients with blunt chest trauma. Methods: Study was conducted at the emergency department of Sina Hospital from March 2011 to March 2012. Hemodynamically stable patients with at least 16 years of age who had blunt chest trauma were included. All patients underwent the same diagnostic protocol which consisted of physical examination, CXR and CT scan respectively. Results: Two hundreds patients (84% male and 16% female were included with a mean age of (37.9±13.7 years. Chin J Traumatol 2013;16(6:351-354 Rib fracture was the most common finding of CXR (12.5% and CT scan (25.5%. The sensitivity of CXR for hemothorax, thoracolumbar vertebra fractures and rib fractures were 20%, 49% and 49%, respectively. Pneumothorax, foreign body, emphysema, pulmonary contusion, liver hematoma and ster- num fracture were not diagnosed with CXR alone. Conclusion: Applying CT scan as the first-line diag- nostic modality in hemodynamically stable patients with blunt chest trauma can detect pathologies which may change management and outcome. Key words: Radiography; Thoracic injuries; Tomography, X-ray computed

  20. Contemporary management of flail chest.

    Science.gov (United States)

    Vana, P Geoff; Neubauer, Daniel C; Luchette, Fred A

    2014-06-01

    Thoracic injury is currently the second leading cause of trauma-related death and rib fractures are the most common of these injuries. Flail chest, as defined by fracture of three or more ribs in two or more places, continues to be a clinically challenging problem. The underlying pulmonary contusion with subsequent inflammatory reaction and right-to-left shunting leading to hypoxia continues to result in high mortality for these patients. Surgical stabilization of the fractured ribs remains controversial. We review the history of management for flail chest alone and when combined with pulmonary contusion. Finally, we propose an algorithm for nonoperative and surgical management.

  1. Nuclear imaging of the chest

    International Nuclear Information System (INIS)

    Bahk, Y.W.

    1998-01-01

    This book provides up-to-the minute information on the diagnostic nuclear imaging of chest disorders. The authors have endeavored to integrate and consolidate the many different subspecialities in order to enable a holistic understanding of chest diseases from the nuclear medicine standpoint. Highlights of the book include in addition to the cardiac scan the description of aerosol lung imaging in COPD and other important pulmonary diseases and the updates on breast and lung cancer imaging, as well as imaging of the bony thorax and esophagus. It is required reading not only for nuclear medicine practitioners and researchers but also for all interested radiologists, traumatologists, pulmonologists, oncologists and cardiologists. (orig.)

  2. Characterization of a high-energy in-line phase contrast tomosynthesis prototype.

    Science.gov (United States)

    Wu, Di; Yan, Aimin; Li, Yuhua; Wong, Molly D; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2015-05-01

    In this research, a high-energy in-line phase contrast tomosynthesis prototype was developed and characterized through quantitative investigations and phantom studies. The prototype system consists of an x-ray source, a motorized rotation stage, and a CMOS detector with a pixel pitch of 0.05 mm. The x-ray source was operated at 120 kVp for this study, and the objects were mounted on the rotation stage 76.2 cm (R1) from the source and 114.3 cm (R2) from the detector. The large air gap between the object and detector guarantees sufficient phase-shift effects. The quantitative evaluation of this prototype included modulation transfer function and noise power spectrum measurements conducted under both projection mode and tomosynthesis mode. Phantom studies were performed including three custom designed phantoms with complex structures: a five-layer bubble wrap phantom, a fishbone phantom, and a chicken breast phantom with embedded fibrils and mass structures extracted from an ACR phantom. In-plane images of the phantoms were acquired to investigate their image qualities through observation, intensity profile plots, edge enhancement evaluations, and/or contrast-to-noise ratio calculations. In addition, the robust phase-attenuation duality (PAD)-based phase retrieval method was applied to tomosynthesis for the first time in this research. It was utilized as a preprocessing method to fully exhibit phase contrast on the angular projection before reconstruction. The resolution and noise characteristics of this high-energy in-line phase contrast tomosynthesis prototype were successfully investigated and demonstrated. The phantom studies demonstrated that this imaging prototype can successfully remove the structure overlapping in phantom projections, obtain delineate interfaces, and achieve better contrast-to-noise ratio after applying phase retrieval to the angular projections. This research successfully demonstrated a high-energy in-line phase contrast tomosynthesis

  3. Breast Radiation Dose With CESM Compared With 2D FFDM and 3D Tomosynthesis Mammography.

    Science.gov (United States)

    James, Judy R; Pavlicek, William; Hanson, James A; Boltz, Thomas F; Patel, Bhavika K

    2017-02-01

    We aimed to compare radiation dose received during contrast-enhanced spectral mammography (CESM) using high- and low-energy projections with radiation dose received during 2D full field digital mammography (FFDM) and 3D tomosynthesis on phantoms and patients with varying breast thickness and density. A single left craniocaudal projection was chosen to determine the doses for 6214 patients who underwent 2D FFDM, 3662 patients who underwent 3D tomosynthesis, and 173 patients who underwent CESM in this retrospective study. Dose measurements were also collected in phantoms with composition mimicking nondense and dense breast tissue. Average glandular dose (AGD) ± SD was 3.0 ± 1.1 mGy for CESM exposures at a mean breast thickness of 63 mm. At this thickness, the dose was 2.1 mGy from 2D FFDM and 2.5 mGy from 3D tomosynthesis. The nondense phantom had a mean AGD of 1.0 mGy with 2D FFDM, 1.3 mGy with 3D tomosynthesis, and 1.6 mGy with CESM. The dense breast phantom had a mean AGD of 1.3 mGy with 2D FFDM, 1.4 mGy with 3D tomosynthesis, and 2.1 mGy with CESM. At a compressed thickness of 4.5 cm, radiation exposure from CESM was approximately 25% higher in dense breast phantoms than in nondense breast phantoms. The dose in the dense phantom at a compressed thickness of 6 cm was approximately 42% higher than the dose in the nondense phantom at a compressed thickness of 4.5 cm. CESM was found to increase AGD at a mean breast thickness of 63 mm by approximately 0.9 mGy and 0.5 mGy compared with 2D FFDM and 3D tomosynthesis, respectively. Of note, CESM provides a standard image (similar to 2D FFDM) that is obtained using the low-energy projection. Overall, the AGD from CESM falls below the dose limit of 3 mGy set by Mammography Quality Standards Act regulations.

  4. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    International Nuclear Information System (INIS)

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-01

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS

  5. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    Science.gov (United States)

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-01

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS

  6. Image quality and localization accuracy in C-arm tomosynthesis-guided head and neck surgery

    International Nuclear Information System (INIS)

    Bachar, G.; Siewerdsen, J. H.; Daly, M. J.; Jaffray, D. A.; Irish, J. C.

    2007-01-01

    The image quality and localization accuracy for C-arm tomosynthesis and cone-beam computed tomography (CBCT) guidance of head and neck surgery were investigated. A continuum in image acquisition was explored, ranging from a single exposure (radiograph) to multiple projections acquired over a limited arc (tomosynthesis) to a full semicircular trajectory (CBCT). Experiments were performed using a prototype mobile C-arm modified to perform 3D image acquisition (a modified Siemens PowerMobil). The tradeoffs in image quality associated with the extent of the source-detector arc (θ tot ), the number of projection views, and the total imaging dose were evaluated in phantom and cadaver studies. Surgical localization performance was evaluated using three cadaver heads imaged as a function of θ tot . Six localization tasks were considered, ranging from high-contrast feature identification (e.g., tip of a K-wire pointer) to more challenging soft-tissue delineation (e.g., junction of the hard and soft palate). Five head and neck surgeons and one radiologist participated as observers. For each localization task, the 3D coordinates of landmarks pinpointed by each observer were analyzed as a function of θ tot . For all tomosynthesis angles, image quality was highest in the coronal plane, whereas sagittal and axial planes exhibited a substantial decrease in spatial resolution associated with out-of-plane blur and distortion. Tasks involving complex, lower-contrast features demonstrated steeper degradation with smaller tomosynthetic arc. Localization accuracy in the coronal plane was correspondingly high, maintained to tot ∼30 deg. , whereas sagittal and axial localization degraded rapidly below θ tot ∼60 deg. . Similarly, localization precision was better than ∼1 mm within the coronal plane, compared to ∼2-3 mm out-of-plane for tomosynthesis angles below θ tot ∼45 deg. . An overall 3D localization accuracy of ∼2.5 mm was achieved with θ tot ∼ 90 deg. for most

  7. Imaging of chest wall infections

    International Nuclear Information System (INIS)

    Chelli Bouaziz, Mouna; Jelassi, Helmi; Chaabane, Skander; Ladeb, Mohamed Fethi; Ben Miled-Mrad, Khaoula

    2009-01-01

    A wide variety of infections can affect the chest wall including pyogenic, tuberculous, fungal, and some other unusual infections. These potentially life-threatening disorders are frequent especially among immunocompromised patients but often misdiagnosed by physical examination and radiographs. The purpose of this article is to describe the clinical and imaging features of these different chest wall infections according to the different imaging modalities with emphasis on ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI). The outcome of chest wall infection depends on early diagnosis, severity of the immunosuppression, offending organism, and extent of infection. Because clinical findings and laboratory tests may be not contributive in immunocompromised patients, imaging plays an important role in the early detection and precise assessment of the disease. US, CT, and MRI are all useful: bone destruction is more accurately detected with CT whereas soft tissue involvement are better visualized with US and MRI. CT and US are also used to guide percutaneous biopsy and drainage procedures. MR images are helpful in pre-operative planning of extensive chest wall infections. (orig.)

  8. Radiology of blunt chest trauma

    Energy Technology Data Exchange (ETDEWEB)

    Shulman, H.S.; Samuels, T.H. (Sunnybrook Medical Centre, Toronto, Ontario (Canada))

    1983-09-01

    Chest injuries and related complications prove fatal in over half of the victims of multiple trauma. The radiologist's responsibility is twofold: a) to recognize key radiographic signs and b) to guide the clinician in the radiologic investigation and management of the patient. The important diagnoses to be recognized from radiographs are pneumothorax, aortic rupture, bronhcial rupture and diaphragmatic rupture.

  9. Managing a chest tube and drainage system.

    Science.gov (United States)

    Durai, Rajaraman; Hoque, Happy; Davies, Tony W

    2010-02-01

    Intercostal drainage tubes (ie, chest tubes) are inserted to drain the pleural cavity of air, blood, pus, or lymph. The water-seal container connected to the chest tube allows one-way movement of air and liquid from the pleural cavity. The container should not be changed unless it is full, and the chest tube should not be clamped unnecessarily. After a chest tube is inserted, a nurse trained in chest-tube management is responsible for managing the chest tube and drainage system. This entails monitoring the chest-tube position, controlling fluid evacuation, identifying when to change or empty the containers, and caring for the tube and drainage system during patient transport. This article provides an overview of indications, insertion techniques, and management of chest tubes. Copyright 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  10. Average glandular dose in digital mammography and breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Olgar, T. [Ankara Univ. (Turkey). Dept. of Engineering Physics; Universitaetsklinikum Leipzig AoeR (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Kahn, T.; Gosch, D. [Universitaetsklinikum Leipzig AoeR (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie

    2012-10-15

    Purpose: To determine the average glandular dose (AGD) in digital full-field mammography (2 D imaging mode) and in breast tomosynthesis (3 D imaging mode). Materials and Methods: Using the method described by Boone, the AGD was calculated from the exposure parameters of 2247 conventional 2 D mammograms and 984 mammograms in 3 D imaging mode of 641 patients examined with the digital mammographic system Hologic Selenia Dimensions. The breast glandular tissue content was estimated by the Hologic R2 Quantra automated volumetric breast density measurement tool for each patient from right craniocaudal (RCC) and left craniocaudal (LCC) images in 2 D imaging mode. Results: The mean compressed breast thickness (CBT) was 52.7 mm for craniocaudal (CC) and 56.0 mm for mediolateral oblique (MLO) views. The mean percentage of breast glandular tissue content was 18.0 % and 17.4 % for RCC and LCC projections, respectively. The mean AGD values in 2 D imaging mode per exposure for the standard breast were 1.57 mGy and 1.66 mGy, while the mean AGD values after correction for real breast composition were 1.82 mGy and 1.94 mGy for CC and MLO views, respectively. The mean AGD values in 3 D imaging mode per exposure for the standard breast were 2.19 mGy and 2.29 mGy, while the mean AGD values after correction for the real breast composition were 2.53 mGy and 2.63 mGy for CC and MLO views, respectively. No significant relationship was found between the AGD and CBT in 2 D imaging mode and a good correlation coefficient of 0.98 in 3 D imaging mode. Conclusion: In this study the mean calculated AGD per exposure in 3 D imaging mode was on average 34 % higher than for 2 D imaging mode for patients examined with the same CBT.

  11. Average glandular dose in digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Olgar, T.; Universitaetsklinikum Leipzig AoeR; Kahn, T.; Gosch, D.

    2012-01-01

    Purpose: To determine the average glandular dose (AGD) in digital full-field mammography (2 D imaging mode) and in breast tomosynthesis (3 D imaging mode). Materials and Methods: Using the method described by Boone, the AGD was calculated from the exposure parameters of 2247 conventional 2 D mammograms and 984 mammograms in 3 D imaging mode of 641 patients examined with the digital mammographic system Hologic Selenia Dimensions. The breast glandular tissue content was estimated by the Hologic R2 Quantra automated volumetric breast density measurement tool for each patient from right craniocaudal (RCC) and left craniocaudal (LCC) images in 2 D imaging mode. Results: The mean compressed breast thickness (CBT) was 52.7 mm for craniocaudal (CC) and 56.0 mm for mediolateral oblique (MLO) views. The mean percentage of breast glandular tissue content was 18.0 % and 17.4 % for RCC and LCC projections, respectively. The mean AGD values in 2 D imaging mode per exposure for the standard breast were 1.57 mGy and 1.66 mGy, while the mean AGD values after correction for real breast composition were 1.82 mGy and 1.94 mGy for CC and MLO views, respectively. The mean AGD values in 3 D imaging mode per exposure for the standard breast were 2.19 mGy and 2.29 mGy, while the mean AGD values after correction for the real breast composition were 2.53 mGy and 2.63 mGy for CC and MLO views, respectively. No significant relationship was found between the AGD and CBT in 2 D imaging mode and a good correlation coefficient of 0.98 in 3 D imaging mode. Conclusion: In this study the mean calculated AGD per exposure in 3 D imaging mode was on average 34 % higher than for 2 D imaging mode for patients examined with the same CBT.

  12. Chest wall stabilization in trauma patients: why, when, and how?

    Science.gov (United States)

    White, Thomas W.

    2018-01-01

    Blunt trauma to the chest wall and rib fractures are remarkably frequent and are the basis of considerable morbidity and possible mortality. Surgical remedies for highly displaced rib fractures, especially in cases of flail chest, have been undertaken intermittently for more than 50 years. Rib-specific plating systems have started to be used in the last 10 years. These have ushered in the modern era of rib repair with chest wall stabilization (CWS) techniques that are safer, easier to perform, and more efficient. Recent consensus statements have sought to define the indications and contraindications, as well as the when, the how, and the technical details of CWS. Repair should be considered for patients who have three or more displaced rib fractures or a flail chest, whether or not mechanical ventilation is required. Additional candidates include patients who fail non-operative management irrespective of fracture pattern and those with rib fractures who need thoracic procedures for other reasons. Traditionally, unstable spine fracture and severe traumatic brain injury are definite contraindications. Pulmonary contusion’s role in the decision to perform CWS remains controversial. A range of rib-specific plating systems are now commercially available. PMID:29744222

  13. Comparison of analytic and iterative digital tomosynthesis reconstructions for thin slab objects

    Science.gov (United States)

    Yun, J.; Kim, D. W.; Ha, S.; Kim, H. K.

    2017-11-01

    For digital x-ray tomosynthesis of thin slab objects, we compare the tomographic imaging performances obtained from the filtered backprojection (FBP) and simultaneous algebraic reconstruction (SART) algorithms. The imaging performance includes the in-plane molulation-transfer function (MTF), the signal difference-to-noise ratio (SDNR), and the out-of-plane blur artifact or artifact-spread function (ASF). The MTF is measured using a thin tungsten-wire phantom, and the SDNR and the ASF are measured using a thin aluminum-disc phantom embedded in a plastic cylinder. The FBP shows a better MTF performance than the SART. On the contrary, the SART outperforms the FBP with regard to the SDNR and ASF performances. Detailed experimental results and their analysis results are described in this paper. For a more proper use of digital tomosynthesis technique, this study suggests to use a reconstuction algorithm suitable for application-specific purposes.

  14. TU-EF-207-04: Advances in Detector Technology for Breast Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W. [SUNY Stony Brook (United States)

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  15. Matrix inversion tomosynthesis improvements in longitudinal x-ray slice imaging

    International Nuclear Information System (INIS)

    Dobbines, J.T. III.

    1990-01-01

    This patent describes a tomosynthesis apparatus. It comprises: an x-ray tomography machine for producing a plurality of x-ray projection images of a subject including an x-ray source, and detection means; and processing means, connected to receive the plurality of projection images, for: shifting and reconstructing the projection x-ray images to obtain a tomosynthesis matrix of images T; acquiring a blurring matrix F having components which represent out-of-focus and in-focus components of the matrix T; obtaining a matrix P representing only in-focus components of the imaged subject by solving a matrix equation including the matrix T and the matrix F; correcting the matrix P for low spatial frequency components; and displaying images indicative of contents of the matrix P

  16. Primary breast osteosarcoma mimicking calcified fibroadenoma on screening digital breast tomosynthesis mammogram

    Directory of Open Access Journals (Sweden)

    Debbie Lee Bennett, MD

    2017-12-01

    Full Text Available Primary breast osteosarcoma is a rare malignancy, with mostly case reports in the literature. The appearance of breast osteosarcoma on digital breast tomosynthesis imaging has not yet been described. A 69-year-old woman presents for routine screening mammography and is found to have a calcified mass in her right breast. Pattern of calcification appeared “sunburst” on digital breast tomosynthesis images. This mass was larger than on the previous year's mammogram, at which time it had been interpreted as a benign calcified fibroadenoma. The subsequent workup demonstrated the mass to reflect primary breast osteosarcoma. The patient's workup and treatment are detailed in this case. Primary breast osteosarcoma, although rare, should be included as a diagnostic consideration for breast masses with a sunburst pattern of calcifications, particularly when the mammographic appearance has changed.

  17. TU-EF-207-04: Advances in Detector Technology for Breast Tomosynthesis

    International Nuclear Information System (INIS)

    Zhao, W.

    2015-01-01

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  18. kV x-ray dual digital tomosynthesis for image guided lung SBRT

    Science.gov (United States)

    Partain, Larry; Boyd, Douglas; Kim, Namho; Hernandez, Andrew; Daly, Megan; Boone, John

    2016-03-01

    Two simulated sets of digital tomosynthesis images of the lungs, each acquired at a 90 degree angle from the other, with 19 projection images used for each set and SART iterative reconstructed, gives dual tomosynthesis slice image quality approaching that of spiral CT, and with a data acquisition time that is 3% of that of cone beam CT. This fast kV acquisition, should allow near real time tracking of lung tumors in patients receiving SBRT, based on a novel TumoTrakTM multi-source X-ray tube design. Until this TumoTrakTM prototype is completed over the next year, its projected performance was simulated from the DRR images created from a spiral CT data set from a lung cancer patient. The resulting dual digital tomosynthesis reconstructed images of the lung tumor were exceptional and approached that of the gold standard Feldkamp CT reconstruction of breath hold, diagnostic, spiral, multirow, CT data. The relative dose at 46 mAs was less than 10% of what it would have been if the digital tomosynthesis had been done at the 472 mAs of the CT data set. This is for a 0.77 fps imaging rate sufficient to resolve respiratory motion in many free breathing patients during SBRT. Such image guidance could decrease the magnitudes of targeting error margins by as much as 20 mm or more in the craniocaudal direction for lower lobe lesions while markedly reducing dose to normal lung, heart and other critical structures. These initial results suggest a wide range of topics for future work.

  19. Issues to consider before implementing digital breast tomosynthesis into a breast imaging practice.

    Science.gov (United States)

    Hardesty, Lara A

    2015-03-01

    OBJECTIVE. The purpose of this article is to discuss issues surrounding the implementation of digital breast tomosynthesis (DBT) into a clinical breast imaging practice and assist radiologists, technologists, and administrators who are considering the addition of this new technology to their practices. CONCLUSION. When appropriate attention is given to image acquisition, interpretation, storage, technologist and radiologist training, patient selection, billing, radiation dose, and marketing, implementation of DBT into a breast imaging practice can be successful.

  20. Interval breast cancers in the 'screening with tomosynthesis or standard mammography' (STORM) population-based trial.

    Science.gov (United States)

    Houssami, Nehmat; Bernardi, Daniela; Caumo, Francesca; Brunelli, Silvia; Fantò, Carmine; Valentini, Marvi; Romanucci, Giovanna; Gentilini, Maria A; Zorzi, Manuel; Macaskill, Petra

    2018-04-01

    The prospective 'screening with tomosynthesis or standard mammography' (STORM) trial recruited women participating in biennial breast screening in Italy (2011-2012), and compared sequential screen-readings based on 2D-mammography alone or based on tomosynthesis (integrated 2D/3D-mammography). The STORM trial showed that tomosynthesis screen-reading significantly increased breast cancer detection compared to 2D-mammography alone. The present study completes reporting of the trial by examining interval breast cancers ascertained at two year follow-up. 9 interval breast cancers were identified; the estimated interval cancer rate was 1.23/1000 screens [9/7292] (95%CI 0.56 to 2.34) or 1.24/1000 negative screens [9/7235] (95%CI 0.57 to 2.36). In concurrently screened women who attended the same screening services and received 2D-mammography, interval cancer rate was 1.60/1000 screens [40/25,058] (95% CI 1.14 to 2.17) or 1.61/1000 negative screens [40/24,922] (95% CI 1.15 to 2.18). Estimated screening sensitivity for the STORM trial was 85.5% [59/69] (95%CI 75.0%-92.8%), and that for 2D-mammography screening was 77.3% [136/176] (95%CI 70.4%-83.2%). Interval breast cancer rate amongst screening participants in the STORM trial was marginally lower (and screening sensitivity higher) than estimates amongst 2D-screened women; these findings should be interpreted with caution given the small number of interval cases and the sample size of the trial. Much larger screening studies, or pooled analyses, are required to examine interval cancer rates arising after breast tomosynthesis screening versus digital mammography screening. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Comparison of digital mammography and digital breast tomosynthesis in the detection of architectural distortion.

    Science.gov (United States)

    Dibble, Elizabeth H; Lourenco, Ana P; Baird, Grayson L; Ward, Robert C; Maynard, A Stanley; Mainiero, Martha B

    2018-01-01

    To compare interobserver variability (IOV), reader confidence, and sensitivity/specificity in detecting architectural distortion (AD) on digital mammography (DM) versus digital breast tomosynthesis (DBT). This IRB-approved, HIPAA-compliant reader study used a counterbalanced experimental design. We searched radiology reports for AD on screening mammograms from 5 March 2012-27 November 2013. Cases were consensus-reviewed. Controls were selected from demographically matched non-AD examinations. Two radiologists and two fellows blinded to outcomes independently reviewed images from two patient groups in two sessions. Readers recorded presence/absence of AD and confidence level. Agreement and differences in confidence and sensitivity/specificity between DBT versus DM and attendings versus fellows were examined using weighted Kappa and generalised mixed modeling, respectively. There were 59 AD patients and 59 controls for 1,888 observations (59 × 2 (cases and controls) × 2 breasts × 2 imaging techniques × 4 readers). For all readers, agreement improved with DBT versus DM (0.61 vs. 0.37). Confidence was higher with DBT, p = .001. DBT achieved higher sensitivity (.59 vs. .32), p .90). DBT achieved higher positive likelihood ratio values, smaller negative likelihood ratio values, and larger ROC values. DBT decreases IOV, increases confidence, and improves sensitivity while maintaining high specificity in detecting AD. • Digital breast tomosynthesis decreases interobserver variability in the detection of architectural distortion. • Digital breast tomosynthesis increases reader confidence in the detection of architectural distortion. • Digital breast tomosynthesis improves sensitivity in the detection of architectural distortion.

  2. Regionally adaptive histogram equalization of the chest

    International Nuclear Information System (INIS)

    Sherrier, R.H.; Johnson, G.A.

    1986-01-01

    Advances in digital chest radiography have resulted in the acquisition of high-quality digital images of the human chest. With these advances, there arises a genuine need for image processing algorithms, specific to chest images. The author has implemented the technique of histogram equalization, noting the problems encountered when it is adapted to chest images. These problems have been successfully solved with a regionally adaptive histogram equalization method. Histograms are calculated locally and then modified according to both the mean pixel value of a given region and certain characteristics of the cumulative distribution function. The method allows certain regions of the chest radiograph to be enhanced differentially

  3. Imaging of small children with a prototype for photon counting tomosynthesis

    Science.gov (United States)

    del Risco Norrlid, Lilián; Fredenberg, Erik; Hemmendorff, Magnus; Jackowski, Christian; Danielsson, Mats

    2009-02-01

    We present data on a first prototype for photon counting tomosynthesis imaging of small children, which we call photoncounting tomosynthesis (PCT). A photon counting detector can completely eliminate electronic noise, which makes it ideal for tomosynthesis because of the low dose in each projection. Another advantage is that the detector allows for energy sensitivity in later versions, which will further lower the radiation dose. In-plane resolution is high and has been measured to be 5 lp/mm, at least 4 times better than in CT, while the depth resolution was significantly lower than typical CT resolution. The image SNR decreased from 30 to 10 for a detail of 10 mm depth in increasing thickness of PMMA from 10 to 80 mm. The air kerma measured for PCT was 5.2 mGy, which leads to an organ dose to the brain of approximately 0.7 mGy. This dose is 96 % lower than a typical CT dose. PCT can be appealing for pediatric imaging since young children have an increased sensitivity to radiation induced cancers. We have acquired post mortem images of a newborn with the new device and with a state-of-the-art CT and compared the diagnostic information and dose levels of the two modalities. The results are promising but more work is needed to provide input to a next generation prototype that would be suitable for clinical trials.

  4. Comparative study of patient doses calculated with two methods for breast digital tomosynthesis

    International Nuclear Information System (INIS)

    Castillo, M.; Chevalier, M.; Calzado, A.; Garayo, J.; Valverde, J.

    2015-01-01

    In this study, the average glandular doses (DG) delivered in breast tomosynthesis examinations were estimated over a sample of 150 patients using two different methods. In method 1, the conversion factors air-kerma to DG used were those tabulated by Dance et al. and in method 2 were the ones from Feng et al. The protocol for the examination followed in the unit of this study consists in two views per breast, each view composed by a 2D acquisition and a tomosynthesis scan (3D). The resulting DG values from both methods present statistically significant differences (p=0.02) for the 2D modality and were similar for the 3D scan (p=0.22). The estimated median value of DG for the most frequent breasts (thicknesses between 50 and 60 mm) delivered in a single 3D acquisition is 1.7 mGy (36% and 17% higher than the value for the 2D mode estimated with each method) which lies far below the tolerances established by the Spanish Protocol Quality Control in Radiodiagnostic (2011). The total DG for a tomosynthesis examination (6.0 mGy) is a factor 2.4 higher than the dose delivered in a 2D examination with two views (method 1). (Author)

  5. The Use of Tomosynthesis in the Global Study of Knee Subchondral Insufficiency Fractures.

    Science.gov (United States)

    Nelson, Fred; Bokhari, Omaima; Oravec, Daniel; Kim, Woong; Flynn, Michael; Lumley, Catherine; McPhilamy, Austin; Yeni, Yener N

    2017-02-01

    Subchondral insufficiency fractures (SIF), previously termed spontaneous osteonecrosis of the knee, are marked by a sudden onset of severe pain. Other than the size of the lesion, prediction for progression to joint replacement is difficult. The objective was to determine if quantitative analysis of bone texture using digital tomosynthesis imaging would be useful in predicting more rapid progression to joint replacement. Tomosynthesis studies of 30 knees with documented SIF were quantified by fractal, mean intercept length (MIL), and line fraction deviation analyses. Fractal dimension, lacunarity, MIL, and line fraction deviation variables measured from these analyses were then correlated to short interval progression to joint replacement surgery. Higher odds for joint replacement were related to higher values of the standard deviation of slope lacunarity and to morphometric measures (eg, MIL). Using digital tomosynthesis images for bone texture assessment may help distinguish condylar bone response in SIF, potentially acting as a clinically relevant predictive tool. In the future, contrasting SIF to the more gradual long-term process of osteoarthritis, there may be a better understanding of the different mechanisms for the two conditions. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  6. Design and evaluation of a grid reciprocation scheme for use in digital breast tomosynthesis

    Science.gov (United States)

    Patel, Tushita; Sporkin, Helen; Peppard, Heather; Williams, Mark B.

    2016-03-01

    This work describes a methodology for efficient removal of scatter radiation during digital breast tomosynthesis (DBT). The goal of this approach is to enable grid image obscuration without a large increase in radiation dose by minimizing misalignment of the grid focal point (GFP) and x-ray focal spot (XFS) during grid reciprocation. Hardware for the motion scheme was built and tested on the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis (MBT) on a single gantry. The DMT scanner uses fully isocentric rotation of tube and x-ray detector for maintaining a fixed tube-detector alignment during DBT imaging. A cellular focused copper prototype grid with 80 cm focal length, 3.85 mm height, 0.1 mm thick lamellae, and 1.1 mm hole pitch was tested. Primary transmission of the grid at 28 kV tube voltage was on average 74% with the grid stationary and aligned for maximum transmission. It fell to 72% during grid reciprocation by the proposed method. Residual grid line artifacts (GLAs) in projection views and reconstructed DBT images are characterized and methods for reducing the visibility of GLAs in the reconstructed volume through projection image flat-field correction and spatial frequency-based filtering of the DBT slices are described and evaluated. The software correction methods reduce the visibility of these artifacts in the reconstructed volume, making them imperceptible both in the reconstructed DBT images and their Fourier transforms.

  7. Quality of outpatient paediatric chest radiography - a pilot study

    International Nuclear Information System (INIS)

    Engelmann, D.; Duetting, T.; Wunsch, R.; Troeger, J.

    2001-01-01

    A quality control of outpatient paediatric chest X-rays was conducted in a sample of patients of one paediatric practice. During a period of eight months the technical image quality was analysed considering both diagnostic aspects and radiation protection. The quality of the 139 examined chest X-rays was inadequate concerning the collimation and focussing of the X-rays and the positioning of the patients. Exposure was estimated as average, sharpness was rated as good. In total 14% of the X-rays were not suitable for medical diagnosis. Image quality of the X-rays of infants (children younger than 6 years) was significantly lower compared to the total sample. Radiation protection standards were not fulfilled. As a conclusion from our results, improvements in outpatient paediatric radiography are urgently necessary. Quality control committees should pay particular attention in radiographs of infants. (orig.) [de

  8. Electron arc therapy: chest wall irradiation of breast cancer patients

    International Nuclear Information System (INIS)

    McNeely, L.K.; Jacobson, G.M.; Leavitt, D.D.; Stewart, J.R.

    1988-01-01

    From 1980 to October 1985 we treated 45 breast cancer patients with electron arc therapy. This technique was used in situations where optimal treatment with fixed photon or electron beams was technically difficult: long scars, recurrent tumor extending across midline or to the posterior thorax, or marked variation in depth of target tissue. Forty-four patients were treated following mastectomy: 35 electively because of high risk of local failure, and 9 following local recurrence. One patient with advanced local regional disease was treated primarily. The target volume boundaries on the chest wall were defined by a foam lined cerrobend cast which rested on the patient during treatment, functioning as a tertiary collimator. A variable width secondary collimator was used to account for changes in the radius of the thorax from superior to inferior border. All patients had computerized tomography performed to determine Internal Mammary Chain depth and chest wall thickness. Electron energies were selected based on these thicknesses and often variable energies over different segments of the arc were used. The chest wall and regional node areas were irradiated to 45 Gy-50 Gy in 5-6 weeks by this technique. The supraclavicular and upper axillary nodes were treated by a direct anterior photon field abutted to the superior edge of the electron arc field. Follow-up is from 10-73 months with a median of 50 months. No major complications were observed. Acute and late effects and local control are comparable to standard chest wall irradiation. The disadvantages of this technique are that the preparation of the tertiary field defining cast and CT treatment planning are labor intensive and expensive. The advantage is that for specific clinical situations large areas of chest wall with marked topographical variation can be optimally, homogeneously irradiated while sparing normal uninvolved tissues

  9. Gastric tumors on chest radiographs

    International Nuclear Information System (INIS)

    Tamura, Shozo; Kawanami, Takashi; Russell, W.J.

    1978-04-01

    Gastric neoplasms of three patients protruded into their gas-containing fornices and were first visualized on plain chest radiographs. Endoscopy and/or surgery confirmed these to be a polyp, a leiomyoma, and an adenocarcinoma. The polyp, 1.3 cm in diameter, was the smallest of these three, but smaller lesions may be detectable under suitable conditions. Adequate technique and positioning, sufficiently large lesions in the upper portion of the stomach, a central beam tangential to the tumor, sufficient gas in the stomach, and careful scrutiny by the observer are required. Lesions may be more readily visualized during chest radiography when oral sodium bicarbonate is used to distend the stomach. In chest radiography, exposure limited to the lung fields has been advocated for economy and dose reduction. However, too small an exposure field may result in loss of information potentially beneficial to the patient. Using the smaller of two popular film sizes (35 x 43 cm and 35 x 35 cm), the saving in surface and bone marrow doses is negligible, and the saving in gonad dose may be nil over that when shielding is used. The interest of the observer may be absorbed by a concomitant cardiac or pulmonary lesion. Careful scrutiny of the entire radiograph is therefore essential. (author)

  10. MO-DE-209-04: Radiation Dosimetry in Breast Tomosynthesis

    International Nuclear Information System (INIS)

    Sechopoulos, I.

    2016-01-01

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  11. A software-based x-ray scatter correction method for breast tomosynthesis

    International Nuclear Information System (INIS)

    Jia Feng, Steve Si; Sechopoulos, Ioannis

    2011-01-01

    Purpose: To develop a software-based scatter correction method for digital breast tomosynthesis (DBT) imaging and investigate its impact on the image quality of tomosynthesis reconstructions of both phantoms and patients. Methods: A Monte Carlo (MC) simulation of x-ray scatter, with geometry matching that of the cranio-caudal (CC) view of a DBT clinical prototype, was developed using the Geant4 toolkit and used to generate maps of the scatter-to-primary ratio (SPR) of a number of homogeneous standard-shaped breasts of varying sizes. Dimension-matched SPR maps were then deformed and registered to DBT acquisition projections, allowing for the estimation of the primary x-ray signal acquired by the imaging system. Noise filtering of the estimated projections was then performed to reduce the impact of the quantum noise of the x-ray scatter. Three dimensional (3D) reconstruction was then performed using the maximum likelihood-expectation maximization (MLEM) method. This process was tested on acquisitions of a heterogeneous 50/50 adipose/glandular tomosynthesis phantom with embedded masses, fibers, and microcalcifications and on acquisitions of patients. The image quality of the reconstructions of the scatter-corrected and uncorrected projections was analyzed by studying the signal-difference-to-noise ratio (SDNR), the integral of the signal in each mass lesion (integrated mass signal, IMS), and the modulation transfer function (MTF). Results: The reconstructions of the scatter-corrected projections demonstrated superior image quality. The SDNR of masses embedded in a 5 cm thick tomosynthesis phantom improved 60%-66%, while the SDNR of the smallest mass in an 8 cm thick phantom improved by 59% (p < 0.01). The IMS of the masses in the 5 cm thick phantom also improved by 15%-29%, while the IMS of the masses in the 8 cm thick phantom improved by 26%-62% (p < 0.01). Some embedded microcalcifications in the tomosynthesis phantoms were visible only in the scatter

  12. MO-DE-209-04: Radiation Dosimetry in Breast Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, I. [Radboud University Medical Centre (Netherlands)

    2016-06-15

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  13. Application of digital tomosynthesis to radiographic diagnosis of the temporal bone. Studies on visualization in normal subjects

    International Nuclear Information System (INIS)

    Kawai, Takashi

    1995-01-01

    To examine the usefulness of digital tomosynthesis for conducting radiographic diagnosis of the temporal bone, visualization of various aural structures such as the semicircular canals, cochlea, vestibular apparatus, ossicles of the ear and facial nerve canal was examined in 18 volunteers. The visualization of temporal bone specimens by digital tomosynthesis and CT images (slice thickness: 1.5 mm) was compared. The results showed that this system (Digital Tomosynthesis) produced clear images of bony labyrinthine structures such as the semicircular canals, cochlea, and vestibular apparatus. Visualization of the ossicles was also clear, and their continuity could be comprehended better than on CT images. This system also provided good visualization of the labyrinthine and tympanic parts of the facial nerve canal, although CT images had greater sharpness. Visualization of the lower half of the mastoid part was poor with this system. (author)

  14. Self-masking noise subtraction (SMNS) in digital X-ray tomosynthesis for the improvement of tomographic image quality

    International Nuclear Information System (INIS)

    Oh, J.E.; Cho, H.S.; Choi, S.I.; Park, Y.O.; Lee, M.S.; Cho, H.M.; Yang, Y.J.; Je, U.K.; Woo, T.H.; Lee, H.K.

    2011-01-01

    In this paper, we proposed a simple and effective reconstruction algorithm, the so-called self-masking noise subtraction (SMNS), in digital X-ray tomosynthesis to reduce the tomographic blur that is inherent in the conventional tomosynthesis based upon the shift-and-add (SAA) method. Using the SAA and the SMNS algorithms, we investigated the influence of tomographic parameters such as tomographic angle (θ) and angle step (Δθ) on the image quality, measuring the signal-difference-to-noise ratio (SDNR). Our simulation results show that the proposed algorithm seems to be efficient in reducing the tomographic blur and, thus, improving image sharpness. We expect the simulation results to be useful for the optimal design of a digital X-ray tomosynthesis system for our ongoing application of nondestructive testing (NDT).

  15. Comparison of Two-dimensional Synthesized Mammograms versus Original Digital Mammograms Alone and in Combination with Tomosynthesis Images

    Science.gov (United States)

    Guo, Ben; Catullo, Victor J.; Chough, Denise M.; Kelly, Amy E.; Lu, Amy H.; Rathfon, Grace Y.; Lee Spangler, Marion; Sumkin, Jules H.; Wallace, Luisa P.; Bandos, Andriy I.

    2014-01-01

    Purpose To assess interpretation performance and radiation dose when two-dimensional synthesized mammography (SM) images versus standard full-field digital mammography (FFDM) images are used alone or in combination with digital breast tomosynthesis images. Materials and Methods A fully crossed, mode-balanced multicase (n = 123), multireader (n = 8), retrospective observer performance study was performed by using deidentified images acquired between 2008 and 2011 with institutional review board approved, HIPAA-compliant protocols, during which each patient signed informed consent. The cohort included 36 cases of biopsy-proven cancer, 35 cases of biopsy-proven benign lesions, and 52 normal or benign cases (Breast Imaging Reporting and Data System [BI-RADS] score of 1 or 2) with negative 1-year follow-up results. Accuracy of sequentially reported probability of malignancy ratings and seven-category forced BI-RADS ratings was evaluated by using areas under the receiver operating characteristic curve (AUCs) in the random-reader analysis. Results Probability of malignancy–based mean AUCs for SM and FFDM images alone was 0.894 and 0.889, respectively (difference, −0.005; 95% confidence interval [CI]: −0.062, 0.054; P = .85). Mean AUC for SM with tomosynthesis and FFDM with tomosynthesis was 0.916 and 0.939, respectively (difference, 0.023; 95% CI: −0.011, 0.057; P = .19). In terms of the reader-specific AUCs, five readers performed better with SM alone versus FFDM alone, and all eight readers performed better with combined FFDM and tomosynthesis (absolute differences from 0.003 to 0.052). Similar results were obtained by using a nonparametric analysis of forced BI-RADS ratings. Conclusion SM alone or in combination with tomosynthesis is comparable in performance to FFDM alone or in combination with tomosynthesis and may eliminate the need for FFDM as part of a routine clinical study. © RSNA, 2014 PMID:24475859

  16. Use of Tomosynthesis for Detection of Bone Erosions of the Foot in Patients With Established Rheumatoid Arthritis: Comparison With Radiography and CT.

    Science.gov (United States)

    Simoni, Paolo; Gérard, Laurent; Kaiser, Marie-Joëlle; Ribbens, Clio; Rinkin, Charline; Malaise, Olivier; Malaise, Michel

    2015-08-01

    The purpose of this study was to compare tomosynthesis with radiography for the detection of bone erosions of the foot in patients with established rheumatoid arthritis (RA) using MDCT as a reference standard. Eighteen consecutive patients with established RA were included. Each patient underwent radiography, tomosynthesis, and CT examinations of the feet on the same day. Two radiologists independently determined the number of bone erosions and the Sharp-van der Heijde score with each of the three imaging modalities. On a total of 216 joints from 18 patients, 216 bone erosions were detected on CT, 215 on tomosynthesis, and 181 with radiography. The mean (± SD) Sharp-van der Heijde score was equivalent for tomosynthesis (18.8 ± 16.8) and CT (19.8 ± 18.5) but was statistically lower for radiography (16.4 ± 18.0) (p = 0.030). The respective overall sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for tomosynthesis were 80%, 75%, 78%, 76%, and 80%, whereas the respective corresponding values for radiography were 66%, 81%, 74%, 77%, and 71%. The radiation burden of tomosynthesis was almost equivalent to that of radiography. Tomosynthesis has a higher sensitivity than radiography to detect bone erosions of the foot in patients with established RA and imparts an almost equivalent radiation burden.

  17. Imaging of fetal chest masses

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Richard A. [Lucile Packard Children' s Hospital, Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2012-01-15

    Prenatal imaging with high-resolution US and rapid acquisition MRI plays a key role in the accurate diagnosis of congenital chest masses. Imaging has enhanced our understanding of the natural history of fetal lung masses, allowing for accurate prediction of outcome, parental counseling, and planning of pregnancy and newborn management. This paper will focus on congenital bronchopulmonary malformations, which account for the vast majority of primary lung masses in the fetus. In addition, anomalies that mimic masses and less common causes of lung masses will be discussed. (orig.)

  18. Patient dosimetry during chest radiography

    International Nuclear Information System (INIS)

    Ciraj-Bjelac, O.; Kosutic, D.; Markovic, S.

    2004-01-01

    Reasons for the variation in patient doses from chest radiography procedure were investigated by assessing entrance skin doses from kerma-area product measurements. Data were collected from seven x-ray tubes in five hospitals involving 259 adult patients. The third quartile value was 0.81 mGy compared to general reference level of 0.30 mGy. The applied tube potential was main contributor to patient dose variation. If department use at least 90 k Vp, the mean entrance surface dose would be reduced ut to factor six. Modification of departmental procedure is correct approach for dose reduction in diagnostic radiology. (author) [sr

  19. Direct digital acquisition of neonatal portable chest radiographs

    International Nuclear Information System (INIS)

    Cohen, M.D.; Cory, D.A.; Broderick, N.J.; Smith, J.A.

    1987-01-01

    The Philips computerized radiography system utilizes a phosphor plate instead of an x-ray film to acquire radiographic images. The latent image on the plate is converted to a digital format. The authors report their initial experience with the system in more than 300 studies on intensive care neonates. The digital images provide very uniform image density. Tubes and catheters are more easily visualized than on conventional images. Soft tissues of the chest wall and bony structures are also more clearly seen on the digital images. The authors' initial experience indicates that portable digital imaging of neonates is technically feasible and provides good-quality diagnostic images

  20. [Chest pain in the emergency department : Differential diagnosis and diagnostic strategy].

    Science.gov (United States)

    Köhnlein, T

    2017-01-01

    Chest pain as the leading symptom in emergency patients can have numerous causes and requires an immediate and targeted diagnostic and therapeutic strategy. Clinical scoring systems facilitate risk assessment for individual patients. In the emergency department, critical factors for success are defined professional qualification standards for physicians and nursing staff combined with a well-functioning organization of all technical procedures.

  1. Cost and morbidity analysis of chest port insertion in adults: Outpatient clinic versus operating room placement

    Directory of Open Access Journals (Sweden)

    Claudio F. Feo

    2017-09-01

    Conclusion: Our results suggest that chest ports can be safely placed in most patients under local anesthesia in the office setting without fluoroscopy or ultrasound guidance. Future randomized controlled studies may evaluate if surgeons or interventional radiologists should routinely perform these procedures in a dedicated office setting and reserve more sophisticated facilities only for patients at high risk of technical failure.

  2. Potential of ultrasound in the pediatric chest

    Energy Technology Data Exchange (ETDEWEB)

    Trinavarat, Panruethai, E-mail: pantrinavarat@hotmail.com [Department of Radiology, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok 10330 (Thailand); Riccabona, Michael, E-mail: michael.riccabona@klinikum-graz.at [Department of Radiology, Division of Pediatric Radiology, University Hospital Graz (Austria)

    2014-09-15

    Ultrasound (US) of chest, even with inherent limitations of the US beam and air, has been useful in many pediatric chest conditions. It has extended its role and is now widely used by many subspecialists in medicine. This review article will cover techniques, indications, and applications of chest US in neonates, infants and children, including also different common as well as some rare and modern aspects and applications, such as pleural effusion, pneumothorax, pulmonary lesions, mediastinum, diaphragm, and chest wall. Other related imaging modalities are also briefly discussed.

  3. Coronary artery dissection following chest trauma

    Directory of Open Access Journals (Sweden)

    Manoj K Agarwala

    2016-01-01

    Full Text Available Chest trauma has a high rate of mortality. Coronary dissection causing myocardial infarction (MI following blunt chest trauma is rare. We describe the case of an anterior MI following blunt chest trauma. A 39-year-old male was received in our hospital following a motorcycle accident. The patient was asymptomatic before the accident. The patient underwent craniotomy for evacuation of hematoma. He developed severe chest pain and an electrocardiogram (ECG revealed anterior ST segment elevation following surgery. Acute coronary event was medically managed; subsequently, coronary angiogram was performed that showed dissection in the left anterior coronary artery, which was stented.

  4. Improved drainage with active chest tube clearance.

    Science.gov (United States)

    Shiose, Akira; Takaseya, Tohru; Fumoto, Hideyuki; Arakawa, Yoko; Horai, Tetsuya; Boyle, Edward M; Gillinov, A Marc; Fukamachi, Kiyotaka

    2010-05-01

    This study was performed to evaluate the efficacy of a novel chest drainage system. This system employs guide wire-based active chest tube clearance to improve drainage and maintain patency. A 32 Fr chest tube was inserted into pleural cavities of five pigs. On the left, a tube was connected to the chest canister, and on the right, the new system was inserted between the chest tube and chest canister. Acute bleeding was mimicked by periodic infusion of blood. The amount of blood drained from each chest cavity was recorded every 15 min for 2 h. After completion of the procedure, all residual blood and clots in each chest cavity were assessed. The new system remained widely patent, and the amount of drainage achieved with this system (670+/-105 ml) was significantly (P=0.01) higher than that with the standard tube (239+/-131 ml). The amount of retained pleural blood and clots with this system (150+/-107 ml) was significantly (P=0.04) lower than that with the standard tube (571+/-248 ml). In conclusion, a novel chest drainage system with active tube clearance significantly improved drainage without tube manipulations. 2010 Published by European Association for Cardio-Thoracic Surgery. All rights reserved.

  5. Anteroposterior chest radiograph vs. chest CT scan in early detection of pneumothorax in trauma patients

    OpenAIRE

    Omar, Hesham R; Mangar, Devanand; Khetarpal, Suneel; Shapiro, David H; Kolla, Jaya; Rashad, Rania; Helal, Engy; Camporesi, Enrico M

    2011-01-01

    Abstract Pneumothorax is a common complication following blunt chest wall trauma. In these patients, because of the restrictions regarding immobilization of the cervical spine, Anteroposterior (AP) chest radiograph is usually the most feasible initial study which is not as sensitive as the erect chest X-ray or CT chest for detection of a pneumothorax. We will present 3 case reports which serve for better understanding of the entity of occult pneumothorax. The first case is an example of a tru...

  6. Ultrasonographic examination in chest disease

    Energy Technology Data Exchange (ETDEWEB)

    Choe, K.O.; Lee, J.D.; Yoo, H.S. [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1983-12-15

    Ultrasonographic examination is not widely applied to chest disease, but is may give useful information when the acoustic window for a lesion exist. We did perform ultrasound examination in 68 cases of chest disease. 1. The cases of pleural diseases was predominant; pleural effusion 35 cases, pleural metastatic tumor 2 case, mesothelioma 2 cases and fibrous thickening 1 case, total 40 cases. It was useful to differentiate pleural effusion and fibrous thickening or parenchymal lesion simulating pleural disease, to localize the optimal aspiration site for a loculated empyema, to detect pleural bumorhidden by effusion such as metastatic tumor or mesothelioma. 2. 15 cases of parenchymal lesion and 2 cases of extra pleural mass was examined. The echo pattern of consolidation and atelectasis shows typical multiple tubular streaks within the echogenic area. The echogenicity of the peripheral mass due to primary bronchogenic carcinoma, parenchymal or extrapleural metastatic tumor and granuloma were compared. 3. In the cases of pleural or parenchymal cystic lesions, such as loculated empyema or lung abscess, because of strong reverberation artifact from posterior border of the lesion, the prediction of cystic and solid lesion is sometimes difficult. 4. In 7 cases of mediastinal lesion, cystic lesion show free echo and posterior enhancement. In contrast, solid or fat component show characteristic echo pattern. 5. In the cases of juxta diaphragmatic lesion, sonogram can confirm the underlying intraabdominal pathology, in this case subphrenic abscess

  7. Chest complication after abdominal surgery

    International Nuclear Information System (INIS)

    Koh, B. H.; Choi, J. Y.; Hahm, C. K.; Kang, S. R.

    1981-01-01

    In spite of many advances in medicine, anesthetic technique and surgical managements, pulmonary problems are the most frequent postoperative complications, particularly after abdominal surgery. As postoperative pulmonary complications, atelectasis, pleural effusion, pneumonia, chronic bronchitis and lung abscess can be occurred. This study include evaluation of chest films of 2006 patients (927 male, 1079 female), who had been operated abdominal surgery from Jan. 1979 to June, 1980 in the Hanyang university hospital. The results were as follows: 1. 70 cases out of total 2006 cases (3.5%) developed postoperative chest complications, 51 cases (5.5%) in male, 19 cases (1.8%) in female. 2. The complication rate was increased according to the increase of age. The incidence of the postoperative complications over 40 years of age was higher than the overall average complications rate. 3. The most common postoperative pulmonary complication was pleural effusion, next pneumonia, atelectasis and pulmonary edema respectively. 4. The complication rate of the group of upper abdominal surgery is much higher than the group of lower abdominal surgery. 5. Complication rate was increased according to increase of the duration of operation. 6. There were significant correlations between the operation site and side of the complicated hemithorax

  8. Anterior chest wall examination reviewed

    Directory of Open Access Journals (Sweden)

    F. Trotta

    2011-09-01

    Full Text Available Anterior chest wall involvement is not infrequently observed within inflammatory arthropaties, particularly if one considers seronegative spondiloarthritides and SAPHO syndrome. Physical examination is unreliable and conventional X-rays analysis is an unsatisfactory tool during diagnostic work-up of this region. Scintigraphic techniques yield informations both on the activity and on the anatomical extent of the disease while computerized tomography visualize the elementary lesions, such as erosions, which characterize the process. Moreover, when available, magnetic resonance imaging couple the ability to finely visualize such lesions with the possibility to show early alterations and to characterize the “activity” of the disease, presenting itself as a powerful tool both for diagnosis and follow-up. This review briefly shows the applications of imaging techniques for the evaluation of the anterior chest wall focusing on what has been done in the SAPHO syndrome which can be considered prototypical for this regional involvement since it is the osteo-articular target mainly affected by the disease.

  9. Ultrasonographic examination in chest disease

    International Nuclear Information System (INIS)

    Choe, K.O.; Lee, J.D.; Yoo, H.S.

    1983-01-01

    Ultrasonographic examination is not widely applied to chest disease, but is may give useful information when the acoustic window for a lesion exist. We did perform ultrasound examination in 68 cases of chest disease. 1. The cases of pleural diseases was predominant; pleural effusion 35 cases, pleural metastatic tumor 2 case, mesothelioma 2 cases and fibrous thickening 1 case, total 40 cases. It was useful to differentiate pleural effusion and fibrous thickening or parenchymal lesion simulating pleural disease, to localize the optimal aspiration site for a loculated empyema, to detect pleural bumorhidden by effusion such as metastatic tumor or mesothelioma. 2. 15 cases of parenchymal lesion and 2 cases of extra pleural mass was examined. The echo pattern of consolidation and atelectasis shows typical multiple tubular streaks within the echogenic area. The echogenicity of the peripheral mass due to primary bronchogenic carcinoma, parenchymal or extrapleural metastatic tumor and granuloma were compared. 3. In the cases of pleural or parenchymal cystic lesions, such as loculated empyema or lung abscess, because of strong reverberation artifact from posterior border of the lesion, the prediction of cystic and solid lesion is sometimes difficult. 4. In 7 cases of mediastinal lesion, cystic lesion show free echo and posterior enhancement. In contrast, solid or fat component show characteristic echo pattern. 5. In the cases of juxta diaphragmatic lesion, sonogram can confirm the underlying intraabdominal pathology, in this case subphrenic abscess

  10. Efficacy analysis of tomosynthesis in the diagnosis of the femoral head osteochondropathy (Legg-Calvé-Perthes disease

    Directory of Open Access Journals (Sweden)

    A. Yu. Vasil'ev

    2017-01-01

    Full Text Available Background: Despite the fact that the prevalence of the femoral head osteochondropathy is 2.9% of all bone and muscle disorders and 25% of the disorders of the hip joint, this problem demands special attention, while late diagnosis could lead to disability of the patient.Aim: To compare and clarify X-ray symptomatology of Legg-Calvé-Perthes disease found by standard digital radiography and by tomosynthesis.Materials and methods: Eighty six patients aged from 5 to 12 years with the femoral head osteochondropathy were allocated into two groups: 43  patients from the group  1 were assessed by standard two-plane digital radiography (frontal and Lauenstein projections, whereas 43  patients from the group  2 were assessed by direct plane tomosynthesis only. The investigations were performed with the X-ray machine FDR AcSelerate  200 (Fujifilm, Japan with the function of tomosynthesis. Radiographic symptoms of the disease were assessed in the subgroups that were identified depending on the disease stage: 24 patients had stage I, 20 – stage II, 20 – stage III, and 22 – stages IV and V.Results: Standard radiography could not detect any bone abnormalities in any patient with stage I of Legg-Calvé-Perthes disease (n1 = 12, 100%; however, by means of tomosynthesis, all patients from this subgroup (n2 = 12, 100% had minimally increased density on the affected side. In 9  (75% patients, tomosynthesis showed cystiform remodeling of trabecular structure in subchondral parts of the femoral head of the affected hip, and in 2 (17% patients, flattening of the inner epiphysis pole was visualized. At stage II of the disease standard radiography showed femoral head compression with widening of the joint space in 8 (80% patients, absence of subchondral lucency in 6 (60%, and increased density of the femoral head in 4 (40%. In all these patients (n2 = 10, 100% tomosynthesis showed signs of intra-articular effusion, in 6 (60% cases there were

  11. Clinical Utility of Chest Computed Tomography in Patients with Rib Fractures CT Chest and Rib Fractures

    OpenAIRE

    Chapman, Brandon C.; Overbey, Douglas M.; Tesfalidet, Feven; Schramm, Kristofer; Stovall, Robert T.; French, Andrew; Johnson, Jeffrey L.; Burlew, Clay C.; Barnett, Carlton; Moore, Ernest E.; Pieracci, Fredric M.

    2016-01-01

    Background Chest CT is more sensitive than a chest X-ray (CXR) in diagnosing rib fractures; however, the clinical significance of these fractures remains unclear. Objectives The purpose of this study was to determine the added diagnostic use of chest CT performed after CXR in patients with either known or suspected rib fractures secondary to blunt trauma. Methods Retrospective coho...

  12. Correlations between quality indexes of chest compression.

    Science.gov (United States)

    Zhang, Feng-Ling; Yan, Li; Huang, Su-Fang; Bai, Xiang-Jun

    2013-01-01

    Cardiopulmonary resuscitation (CPR) is a kind of emergency treatment for cardiopulmonary arrest, and chest compression is the most important and necessary part of CPR. The American Heart Association published the new Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care in 2010 and demanded for better performance of chest compression practice, especially in compression depth and rate. The current study was to explore the relationship of quality indexes of chest compression and to identify the key points in chest compression training and practice. Totally 219 healthcare workers accepted chest compression training by using Laerdal ACLS advanced life support resuscitation model. The quality indexes of chest compression, including compression hands placement, compression rate, compression depth, and chest wall recoil as well as self-reported fatigue time were monitored by the Laerdal Computer Skills and Reporting System. The quality of chest compression was related to the gender of the compressor. The indexes in males, including self-reported fatigue time, the accuracy of compression depth and the compression rate, the accuracy of compression rate, were higher than those in females. However, the accuracy of chest recoil was higher in females than in males. The quality indexes of chest compression were correlated with each other. The self-reported fatigue time was related to all the indexes except the compression rate. It is necessary to offer CPR training courses regularly. In clinical practice, it might be better to change the practitioner before fatigue, especially for females or weak practitioners. In training projects, more attention should be paid to the control of compression rate, in order to delay the fatigue, guarantee enough compression depth and improve the quality of chest compression.

  13. Diagnostic value of the stand-alone synthetic image in digital breast tomosynthesis examinations.

    Science.gov (United States)

    Garayoa, Julia; Chevalier, Margarita; Castillo, Maria; Mahillo-Fernández, Ignacio; Amallal El Ouahabi, Najim; Estrada, Carmen; Tejerina, Alejandro; Benitez, Olivia; Valverde, Julio

    2018-02-01

    To demonstrate the non-inferiority of synthetic image (SI) mammography versus full-field digital mammography (FFDM) in breast tomosynthesis (DBT) examinations. An observational, retrospective, single-centre, multireader blinded study was performed, using 2384 images to directly compare SI and FFDM based on Breast Imaging Reporting and Data System (BIRADS) categorisation and visibility of radiological findings. Readers had no access to digital breast tomosynthesis slices. Multiple reader, multiple case (MRMC) receiver operating characteristic (ROC) methodology was used to compare the diagnostic performance of SI and FFDM images. The kappa statistic was used to estimate the inter-reader and intra-reader reliability. The area under the ROC curves (AUC) reveals the non-inferiority of SI versus FFDM based on BIRADS categorisation [difference between AUC (ΔAUC), -0.014] and lesion visibility (ΔAUC, -0.001) but the differences were not statistically significant (p=0.282 for BIRADS; p=0.961 for lesion visibility). On average, 77.4% of malignant lesions were detected with SI versus 76.5% with FFDM. Sensitivity and specificity of SI are superior to FFDM for malignant lesions scored as BIRADS 5 and breasts categorised as BIRADS 1. SI is not inferior to FFDM when DBT slices are not available during image reading. SI can replace FFDM, reducing the dose by 45%. • Stand-alone SI demonstrated performance not inferior for lesion visibility as compared to FFDM. • Stand-alone SI demonstrated performance not inferior for lesion BIRADS categorisation as compared to FFDM. • Synthetic images provide important dose savings in breast tomosynthesis examinations.

  14. Breast mass detection in mammography and tomosynthesis via fully convolutional network-based heatmap regression

    Science.gov (United States)

    Zhang, Jun; Cain, Elizabeth Hope; Saha, Ashirbani; Zhu, Zhe; Mazurowski, Maciej A.

    2018-02-01

    Breast mass detection in mammography and digital breast tomosynthesis (DBT) is an essential step in computerized breast cancer analysis. Deep learning-based methods incorporate feature extraction and model learning into a unified framework and have achieved impressive performance in various medical applications (e.g., disease diagnosis, tumor detection, and landmark detection). However, these methods require large-scale accurately annotated data. Unfortunately, it is challenging to get precise annotations of breast masses. To address this issue, we propose a fully convolutional network (FCN) based heatmap regression method for breast mass detection, using only weakly annotated mass regions in mammography images. Specifically, we first generate heat maps of masses based on human-annotated rough regions for breast masses. We then develop an FCN model for end-to-end heatmap regression with an F-score loss function, where the mammography images are regarded as the input and heatmaps for breast masses are used as the output. Finally, the probability map of mass locations can be estimated with the trained model. Experimental results on a mammography dataset with 439 subjects demonstrate the effectiveness of our method. Furthermore, we evaluate whether we can use mammography data to improve detection models for DBT, since mammography shares similar structure with tomosynthesis. We propose a transfer learning strategy by fine-tuning the learned FCN model from mammography images. We test this approach on a small tomosynthesis dataset with only 40 subjects, and we show an improvement in the detection performance as compared to training the model from scratch.

  15. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    Science.gov (United States)

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.

  16. Cost and morbidity analysis of chest port insertion in adults: Outpatient clinic versus operating room placement.

    Science.gov (United States)

    Feo, Claudio F; Ginesu, Giorgio C; Bellini, Alessandro; Cherchi, Giuseppe; Scanu, Antonio M; Cossu, Maria Laura; Fancellu, Alessandro; Porcu, Alberto

    2017-09-01

    Totally implantable venous access devices (TIVADs) represent a convenient way for the administration of medications or nutrients. Traditionally, chest ports have been positioned by surgeons in the operating room, however there has been a transition over the years to port insertion by interventional radiologists in the radiology suite. The optimal method for chest port placement is still under debate. Data on all adult patients undergoing isolated chest port placement at our institution in a 12-year period were retrospectively reviewed. The aim of this cohort study was to compare cost and morbidity for chest port insertion in two different settings: outpatient clinic and operating room. Between 2003 and 2015 a total of 527 chest ports were placed in adult patients. Of them, 262 procedures were performed in the operating room and 265 procedures were undertaken in the outpatient clinic. Patient characteristics were similar and there was no significant difference in early (port was 1270 Euros in the operating room versus 620 Euros in the outpatient clinic. Our results suggest that chest ports can be safely placed in most patients under local anesthesia in the office setting without fluoroscopy or ultrasound guidance. Future randomized controlled studies may evaluate if surgeons or interventional radiologists should routinely perform these procedures in a dedicated office setting and reserve more sophisticated facilities only for patients at high risk of technical failure.

  17. Weighted simultaneous algebraic reconstruction technique for tomosynthesis imaging of objects with high-attenuation features

    International Nuclear Information System (INIS)

    Levakhina, Y. M.; Müller, J.; Buzug, T. M.; Duschka, R. L.; Vogt, F.; Barkhausen, J.

    2013-01-01

    Purpose: This paper introduces a nonlinear weighting scheme into the backprojection operation within the simultaneous algebraic reconstruction technique (SART). It is designed for tomosynthesis imaging of objects with high-attenuation features in order to reduce limited angle artifacts. Methods: The algorithm estimates which projections potentially produce artifacts in a voxel. The contribution of those projections into the updating term is reduced. In order to identify those projections automatically, a four-dimensional backprojected space representation is used. Weighting coefficients are calculated based on a dissimilarity measure, evaluated in this space. For each combination of an angular view direction and a voxel position an individual weighting coefficient for the updating term is calculated. Results: The feasibility of the proposed approach is shown based on reconstructions of the following real three-dimensional tomosynthesis datasets: a mammography quality phantom, an apple with metal needles, a dried finger bone in water, and a human hand. Datasets have been acquired with a Siemens Mammomat Inspiration tomosynthesis device and reconstructed using SART with and without suggested weighting. Out-of-focus artifacts are described using line profiles and measured using standard deviation (STD) in the plane and below the plane which contains artifact-causing features. Artifacts distribution in axial direction is measured using an artifact spread function (ASF). The volumes reconstructed with the weighting scheme demonstrate the reduction of out-of-focus artifacts, lower STD (meaning reduction of artifacts), and narrower ASF compared to nonweighted SART reconstruction. It is achieved successfully for different kinds of structures: point-like structures such as phantom features, long structures such as metal needles, and fine structures such as trabecular bone structures. Conclusions: Results indicate the feasibility of the proposed algorithm to reduce typical

  18. The development of a pseudo-3D imaging system (tomosynthesis) for security screening of passenger baggage

    International Nuclear Information System (INIS)

    Reid, C.B.; Betcke, M.M.; Chana, D.; Speller, R.D.

    2011-01-01

    This paper describes a study investigating the potential of tomosynthesis as a post check-in baggage scanning system. A laboratory system has been constructed consisting of a moveable source and detector, arranged around a mini 90 o bend conveyor system, from which multiple projection images can be collected. Simulation code has been developed to allow the optimum source and detector positions to be determined. Reconstruction methods are being developed to modify the Shift-And-Add (SAA) algorithm to accommodate the non-typical imaging geometry.

  19. Three-dimensional digital tomosynthesis iterative reconstruction, artifact reduction and alternative acquisition geometry

    CERN Document Server

    Levakhina, Yulia

    2014-01-01

    Yulia Levakhina gives an introduction to the major challenges of image reconstruction in Digital Tomosynthesis (DT), particularly to the connection of the reconstruction problem with the incompleteness of the DT dataset. The author discusses the factors which cause the formation of limited angle artifacts and proposes how to account for them in order to improve image quality and axial resolution of modern DT. The addressed methods include a weighted non-linear back projection scheme for algebraic reconstruction and?novel dual-axis acquisition geometry. All discussed algorithms and methods are supplemented by detailed illustrations, hints for practical implementation, pseudo-code, simulation results and real patient case examples.

  20. Image quality of microcalcifications in digital breast tomosynthesis: Effects of projection-view distributions

    OpenAIRE

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Goodsitt, Mitch; Carson, Paul L.; Hadjiiski, Lubomir; Schmitz, Andrea; Eberhard, Jeffrey W.; Claus, Bernhard E. H.

    2011-01-01

    Purpose: To analyze the effects of projection-view (PV) distribution on the contrast and spatial blurring of microcalcifications on the tomosynthesized slices (X-Y plane) and along the depth (Z) direction for the same radiation dose in digital breast tomosynthesis (DBT).Methods: A GE GEN2 prototype DBT system was used for acquisition of DBT scans. The system acquires PV images from 21 angles in 3° increments over a ±30° range. From these acquired PV images, the authors selected six subsets of...

  1. Weighted simultaneous algebraic reconstruction technique for tomosynthesis imaging of objects with high-attenuation features

    Energy Technology Data Exchange (ETDEWEB)

    Levakhina, Y. M. [Institute of Medical Engineering, University of Luebeck, Luebeck 23562, Germany and Graduate School for Computing in Medicine and Life Sciences, Luebeck 23562 (Germany); Mueller, J.; Buzug, T. M. [Institute of Medical Engineering, University of Luebeck, Luebeck 23562 (Germany); Duschka, R. L.; Vogt, F.; Barkhausen, J. [Clinic for Radiology, University Clinics Schleswig-Holstein, Luebeck 23562 (Germany)

    2013-03-15

    Purpose: This paper introduces a nonlinear weighting scheme into the backprojection operation within the simultaneous algebraic reconstruction technique (SART). It is designed for tomosynthesis imaging of objects with high-attenuation features in order to reduce limited angle artifacts. Methods: The algorithm estimates which projections potentially produce artifacts in a voxel. The contribution of those projections into the updating term is reduced. In order to identify those projections automatically, a four-dimensional backprojected space representation is used. Weighting coefficients are calculated based on a dissimilarity measure, evaluated in this space. For each combination of an angular view direction and a voxel position an individual weighting coefficient for the updating term is calculated. Results: The feasibility of the proposed approach is shown based on reconstructions of the following real three-dimensional tomosynthesis datasets: a mammography quality phantom, an apple with metal needles, a dried finger bone in water, and a human hand. Datasets have been acquired with a Siemens Mammomat Inspiration tomosynthesis device and reconstructed using SART with and without suggested weighting. Out-of-focus artifacts are described using line profiles and measured using standard deviation (STD) in the plane and below the plane which contains artifact-causing features. Artifacts distribution in axial direction is measured using an artifact spread function (ASF). The volumes reconstructed with the weighting scheme demonstrate the reduction of out-of-focus artifacts, lower STD (meaning reduction of artifacts), and narrower ASF compared to nonweighted SART reconstruction. It is achieved successfully for different kinds of structures: point-like structures such as phantom features, long structures such as metal needles, and fine structures such as trabecular bone structures. Conclusions: Results indicate the feasibility of the proposed algorithm to reduce typical

  2. The development of a pseudo-3D imaging system (tomosynthesis) for security screening of passenger baggage

    Energy Technology Data Exchange (ETDEWEB)

    Reid, C.B., E-mail: c.reid@medphys.ucl.ac.uk [Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom); Betcke, M.M. [Department of Computer Science, University College London, London WC1E 6BT (United Kingdom); Chana, D. [Department for Transport, London SW1E 6DT (United Kingdom); Speller, R.D. [Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom)

    2011-10-01

    This paper describes a study investigating the potential of tomosynthesis as a post check-in baggage scanning system. A laboratory system has been constructed consisting of a moveable source and detector, arranged around a mini 90{sup o} bend conveyor system, from which multiple projection images can be collected. Simulation code has been developed to allow the optimum source and detector positions to be determined. Reconstruction methods are being developed to modify the Shift-And-Add (SAA) algorithm to accommodate the non-typical imaging geometry.

  3. Determinants of Mortality in Chest Trauma Patients

    African Journals Online (AJOL)

    10% of trauma admissions.[1,2] In the United States it is estimated at 12 out of 1 million population per day.[3] Furthermore chest injury is still directly responsible for about 25% of trauma‑related deaths and contribute to death in another 25% of trauma‑related deaths.[1,2,4] Therefore, chest injury directly and indirectly ...

  4. Chest Injuries Associated with Head Injury

    African Journals Online (AJOL)

    Traumatic brain injury (TBI) is a common cause of mortality and severe morbidity. Although there have been significant advances in management, associated severe injuries, in particular chest injuries, remain a major challenge. Extracranial injuries, especially chest injuries increase mortality in patients with TBI in both short.

  5. Chest radiographic findings in Human Immunodeficiency Virus ...

    African Journals Online (AJOL)

    This study was carried out to determine findings on chest radiographs in HIV positive/AIDS patients at the University of Benin Teaching Hospital (UBTH) Benin City. All consecutive HIV positive/AIDS patients, managed at the UBTH between 1991 and 2001 were included in the study. Patients had postero-anterior (PA) chest ...

  6. Chest Radiographic Findings in Newly Diagnosed Pulmonary ...

    African Journals Online (AJOL)

    Five hundred newly diagnosed cases of Pulmonary Tuberculosis were treated with directly observed short-course treatment and 100 of them had chest radiographic examination done. The various chest radiographic patterns in the 100 subjects were studied and included: Fluffy exudative changes 80(80%), fibrosis 70(70%) ...

  7. Abbreviated Breast MRI and Digital Tomosynthesis Mammography in Screening Women With Dense Breasts | Division of Cancer Prevention

    Science.gov (United States)

    This randomized phase II trial studies how well abbreviated breast magnetic resonance imaging (MRI) and digital tomosynthesis mammography work in detecting cancer in women with dense breasts. Abbreviated breast MRI is a low cost procedure in which radio waves and a powerful magnet linked to a computer and used to create detailed pictures of the breast in less than 10 minutes.

  8. [How to do - the chest tube drainage].

    Science.gov (United States)

    Klopp, Michael; Hoffmann, Hans; Dienemann, Hendrik

    2015-03-01

    A chest tube is used to drain the contents of the pleural space to reconstitute the physiologic pressures within the pleural space and to allow the lungs to fully expand. Indications for chest tube placement include pneumothorax, hemothorax, pleural effusion, pleural empyema, and major thoracic surgery. The most appropriate site for chest tube placement is the 4th or 5th intercostal space in the mid- or anterior- axillary line. Attention to technique in placing the chest tube is vital to avoid complications from the procedure. Applying the step-by-step technique presented, placement of a chest tube is a quick and safe procedure. Complications - frequently occurring when the tube is inserted with a steel trocar - include hemothorax, dislocation, lung lacerations, and injury to organs in the thoracic or abdominal cavity." © Georg Thieme Verlag KG Stuttgart · New York.

  9. Why x-ray chests

    International Nuclear Information System (INIS)

    Evans, D.W.S.

    1979-06-01

    In order to assess the validity of screening chest radiography at Chalk River Nuclear Laboratories, the yield of occult major disease and its significance to the afflicted employees have been examined over a ten year period. The study suggests that the incidence rate of occult disease which in retrospect proved to have been of major or life-threatening importance to the afflicted employee approximates 1 per 1000 population per annum. Major benefit accrued only to about 1 in 3 of these employees, the remainder gaining little more than that which would have followed treatment had their diseases presented symptomatically. These results are considered in relation to the health surveillance needs of a population generally and selectively exposed to diverse health hazards within the nuclear industry. (auth)

  10. Examination of musculoskeletal chest pain

    DEFF Research Database (Denmark)

    Brunse, Mads Hostrup; Stochkendahl, Mette Jensen; Vach, Werner

    2010-01-01

    using a standardized examination protocol, (2) to determine inter-observer reliability of single components of the protocol, and (3) to determine the effect of observer experience. Eighty patients were recruited from an emergency cardiology department. Patients were eligible if an obvious cardiac or non......-cardiac diagnosis could not be established at the cardiology department. Four observers (two chiropractors and two chiropractic students) performed general health and manual examination of the spine and chest wall. Percentage agreement, Cohen's Kappa and ICC were calculated for observer pairs (chiropractors.......01 to 0.59. Provided adequate training of observers, the examination protocol can be used in carefully selected patients in clinical settings and should be included in pre- and post-graduate clinical training....

  11. Preliminary report from the World Health Organisation Chest Radiography in Epidemiological Studies project

    Energy Technology Data Exchange (ETDEWEB)

    Mahomed, Nasreen [University of the Witwatersrand, Department of Radiology, Johannesburg (South Africa); University of the Witwatersrand, Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Johannesburg (South Africa); Fancourt, Nicholas [Johns Hopkins Bloomberg School of Public Health, Baltimore (United States); Murdoch Children' s Research Institute, Melbourne (Australia); De Campo, John; De Campo, Margaret [Murdoch Children' s Research Institute, Melbourne (Australia); Melbourne University, Melbourne (Australia); Akano, Aliu [Department of Radiology National Hospital, Abuja (Nigeria); Medical Research Council, Gambia (South Africa); Cherian, Thomas [World Health Organization, Geneva (Switzerland); Cohen, Olivia G. [Johns Hopkins Bloomberg School of Public Health, Baltimore (United States); World Health Organization, Geneva (Switzerland); Greenberg, David [Soroka University Medical Center, Beer-Sheva (Israel); Lacey, Stephen [Murdoch Children' s Research Institute, Melbourne (Australia); Kohli, Neera [King George Medical University, Lucknow (India); Lederman, Henrique M. [Paulista School of Medicine, Hospital Sao Paulo, Sao Paulo (Brazil); Madhi, Shabir A. [University of the Witwatersrand, Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Johannesburg (South Africa); University of the Witwatersrand, Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Johannesburg (South Africa); Manduku, Veronica [Kenya Medical Research Institute (KEMRI), Nairobi (Kenya); McCollum, Eric D. [Johns Hopkins School of Medicine, Eudowood Division of Pediatric Respiratory Sciences, Baltimore (United States); Johns Hopkins Bloomberg School of Public Health, Baltimore (United States); Park, Kate [Oxford University Hospitals NHS Foundation Trust, Oxford (United Kingdom); Ribo-Aristizabal, Jose Luis [Hospital Sant Joan de Deu, Barcelona (Spain); Bar-Zeev, Naor [University of Malawi, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre (Malawi); University of Liverpool, Centre for Global Vaccine Research, Liverpool (United Kingdom); O' Brien, Katherine L. [Johns Hopkins Bloomberg School of Public Health, Baltimore (United States); Mulholland, Kim [Murdoch Children' s Research Institute, Melbourne (Australia); London School of Hygiene and Tropical Medicine, London (United Kingdom)

    2017-10-15

    Childhood pneumonia is among the leading infectious causes of mortality in children younger than 5 years of age globally. Streptococcus pneumoniae (pneumococcus) is the leading infectious cause of childhood bacterial pneumonia. The diagnosis of childhood pneumonia remains a critical epidemiological task for monitoring vaccine and treatment program effectiveness. The chest radiograph remains the most readily available and common imaging modality to assess childhood pneumonia. In 1997, the World Health Organization Radiology Working Group was established to provide a consensus method for the standardized definition for the interpretation of pediatric frontal chest radiographs, for use in bacterial vaccine efficacy trials in children. The definition was not designed for use in individual patient clinical management because of its emphasis on specificity at the expense of sensitivity. These definitions and endpoint conclusions were published in 2001 and an analysis of observer variation for these conclusions using a reference library of chest radiographs was published in 2005. In response to the technical needs identified through subsequent meetings, the World Health Organization Chest Radiography in Epidemiological Studies (CRES) project was initiated and is designed to be a continuation of the World Health Organization Radiology Working Group. The aims of the World Health Organization CRES project are to clarify the definitions used in the World Health Organization defined standardized interpretation of pediatric chest radiographs in bacterial vaccine impact and pneumonia epidemiological studies, reinforce the focus on reproducible chest radiograph readings, provide training and support with World Health Organization defined standardized interpretation of chest radiographs and develop guidelines and tools for investigators and site staff to assist in obtaining high-quality chest radiographs. (orig.)

  12. Preliminary report from the World Health Organisation Chest Radiography in Epidemiological Studies project.

    Science.gov (United States)

    Mahomed, Nasreen; Fancourt, Nicholas; de Campo, John; de Campo, Margaret; Akano, Aliu; Cherian, Thomas; Cohen, Olivia G; Greenberg, David; Lacey, Stephen; Kohli, Neera; Lederman, Henrique M; Madhi, Shabir A; Manduku, Veronica; McCollum, Eric D; Park, Kate; Ribo-Aristizabal, Jose Luis; Bar-Zeev, Naor; O'Brien, Katherine L; Mulholland, Kim

    2017-10-01

    Childhood pneumonia is among the leading infectious causes of mortality in children younger than 5 years of age globally. Streptococcus pneumoniae (pneumococcus) is the leading infectious cause of childhood bacterial pneumonia. The diagnosis of childhood pneumonia remains a critical epidemiological task for monitoring vaccine and treatment program effectiveness. The chest radiograph remains the most readily available and common imaging modality to assess childhood pneumonia. In 1997, the World Health Organization Radiology Working Group was established to provide a consensus method for the standardized definition for the interpretation of pediatric frontal chest radiographs, for use in bacterial vaccine efficacy trials in children. The definition was not designed for use in individual patient clinical management because of its emphasis on specificity at the expense of sensitivity. These definitions and endpoint conclusions were published in 2001 and an analysis of observer variation for these conclusions using a reference library of chest radiographs was published in 2005. In response to the technical needs identified through subsequent meetings, the World Health Organization Chest Radiography in Epidemiological Studies (CRES) project was initiated and is designed to be a continuation of the World Health Organization Radiology Working Group. The aims of the World Health Organization CRES project are to clarify the definitions used in the World Health Organization defined standardized interpretation of pediatric chest radiographs in bacterial vaccine impact and pneumonia epidemiological studies, reinforce the focus on reproducible chest radiograph readings, provide training and support with World Health Organization defined standardized interpretation of chest radiographs and develop guidelines and tools for investigators and site staff to assist in obtaining high-quality chest radiographs.

  13. Preliminary report from the World Health Organisation Chest Radiography in Epidemiological Studies project

    International Nuclear Information System (INIS)

    Mahomed, Nasreen; Fancourt, Nicholas; De Campo, John; De Campo, Margaret; Akano, Aliu; Cherian, Thomas; Cohen, Olivia G.; Greenberg, David; Lacey, Stephen; Kohli, Neera; Lederman, Henrique M.; Madhi, Shabir A.; Manduku, Veronica; McCollum, Eric D.; Park, Kate; Ribo-Aristizabal, Jose Luis; Bar-Zeev, Naor; O'Brien, Katherine L.; Mulholland, Kim

    2017-01-01

    Childhood pneumonia is among the leading infectious causes of mortality in children younger than 5 years of age globally. Streptococcus pneumoniae (pneumococcus) is the leading infectious cause of childhood bacterial pneumonia. The diagnosis of childhood pneumonia remains a critical epidemiological task for monitoring vaccine and treatment program effectiveness. The chest radiograph remains the most readily available and common imaging modality to assess childhood pneumonia. In 1997, the World Health Organization Radiology Working Group was established to provide a consensus method for the standardized definition for the interpretation of pediatric frontal chest radiographs, for use in bacterial vaccine efficacy trials in children. The definition was not designed for use in individual patient clinical management because of its emphasis on specificity at the expense of sensitivity. These definitions and endpoint conclusions were published in 2001 and an analysis of observer variation for these conclusions using a reference library of chest radiographs was published in 2005. In response to the technical needs identified through subsequent meetings, the World Health Organization Chest Radiography in Epidemiological Studies (CRES) project was initiated and is designed to be a continuation of the World Health Organization Radiology Working Group. The aims of the World Health Organization CRES project are to clarify the definitions used in the World Health Organization defined standardized interpretation of pediatric chest radiographs in bacterial vaccine impact and pneumonia epidemiological studies, reinforce the focus on reproducible chest radiograph readings, provide training and support with World Health Organization defined standardized interpretation of chest radiographs and develop guidelines and tools for investigators and site staff to assist in obtaining high-quality chest radiographs. (orig.)

  14. The Beatles, the Nobel Prize, and CT scanning of the chest.

    Science.gov (United States)

    Goodman, Lawrence R

    2010-01-01

    From its first test scan on a mouse, in 1967, to current medical practice, the CT scanner has become a core imaging tool in thoracic diagnosis. Initially financed by money from Beatles' record sales, the first patient scan was performed in 1971. Only 8 years later, a Nobel Prize in Physics and Medicine was awarded to Hounsfield and Cormack for their discovery. This article traces the history of CT scanner development and how each technical advance expanded chest diagnostic frontiers. Chest imaging now accounts for 30% of all CT scanning.

  15. Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis

    Science.gov (United States)

    Ikejimba, Lynda C.; Kiarashi, Nooshin; Ghate, Sujata V.; Samei, Ehsan; Lo, Joseph Y.

    2014-01-01

    Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d′, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d′ was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d′, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d′ values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of inplane structures and

  16. Clinical evaluation of contrast-enhanced digital mammography and contrast enhanced tomosynthesis--Comparison to contrast-enhanced breast MRI.

    Science.gov (United States)

    Chou, Chen-Pin; Lewin, John M; Chiang, Chia-Ling; Hung, Bao-Hui; Yang, Tsung-Lung; Huang, Jer-Shyung; Liao, Jia-Bin; Pan, Huay-Ben

    2015-12-01

    To compare the diagnostic accuracy of contrast-enhanced digital mammography (CEDM) and contrast-enhanced tomosynthesis (CET) to dynamic contrast enhanced breast MRI (DCE-MRI) using a multireader-multicase study. Institutional review board approval and informed consents were obtained. Total 185 patients (mean age 51.3) with BI-RADS 4 or 5 lesions were evaluated before biopsy with mammography, tomosynthesis, CEDM, CET and DCE-MRI. Mediolateral-oblique and cranio-caudal views of the target breast CEDM and CET were acquired at 2 and 4 min after contrast agent injection. A mediolateral-oblique view of the non-target breast was taken at 6 min. Each lesion was scored with forced BI-RADS categories by three readers. Each reader interpreted lesions in the following order: mammography, tomosynthesis, CEDM, CET, and DCE-MRI during a single reading session. Histology showed 81 cancers and 144 benign lesions in the study. Of the 81 malignant lesions, 44% (36/81) were invasive and 56% (45/81) were non-invasive. Areas under the ROC curve, averaged for the 3 readers, were as follows: 0.897 for DCE-MRI, 0.892 for CET, 0.878 for CEDM, 0.784 for tomosynthesis and 0.740 for mammography. Significant differences in AUC were found between the group of contrast enhanced modalities (CEDM, CET, DCE-MRI) and the unenhanced modalities (all p0.05). CET and CEDM may be considered as an alternative modality to MRI for following up women with abnormal mammography. All three contrast modalities were superior in accuracy to conventional digital mammography with or without tomosynthesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Metal artifact reduction using a patch-based reconstruction for digital breast tomosynthesis

    Science.gov (United States)

    Borges, Lucas R.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2017-03-01

    Digital breast tomosynthesis (DBT) is rapidly emerging as the main clinical tool for breast cancer screening. Although several reconstruction methods for DBT are described by the literature, one common issue is the interplane artifacts caused by out-of-focus features. For breasts containing highly attenuating features, such as surgical clips and large calcifications, the artifacts are even more apparent and can limit the detection and characterization of lesions by the radiologist. In this work, we propose a novel method of combining backprojected data into tomographic slices using a patch-based approach, commonly used in denoising. Preliminary tests were performed on a geometry phantom and on an anthropomorphic phantom containing metal inserts. The reconstructed images were compared to a commercial reconstruction solution. Qualitative assessment of the reconstructed images provides evidence that the proposed method reduces artifacts while maintaining low noise levels. Objective assessment supports the visual findings. The artifact spread function shows that the proposed method is capable of suppressing artifacts generated by highly attenuating features. The signal difference to noise ratio shows that the noise levels of the proposed and commercial methods are comparable, even though the commercial method applies post-processing filtering steps, which were not implemented on the proposed method. Thus, the proposed method can produce tomosynthesis reconstructions with reduced artifacts and low noise levels.

  18. Investigation of the Section Thickness Measurement in Tomosynthesis by Thin Metal Plate Edge Method.

    Science.gov (United States)

    Ikeno, Kaoru; Akita, Tsunemichi; Hanai, Kozo; Muramatsu, Yoshihisa

    When performing tomosynthesis, the section thickness needs to be set depending on a radiographic part and its diagnostic purpose. However, the section thickness in tomosynthesis has not been clearly defined and its measurement method has not been established yet. In this study, we devised the alternative measurement method to diagnose the section thickness using an edge of thin metal plate, and compared with the simulation results, the wire and bead method reported in the previous papers. The tomographic image of the thin metal plate positioned on the table top inclining 30 degrees, which showed the edge spread function (ESF) of each tomographic height, was taken, and then the line spread function (LSF) was obtained by differentiating the ESF image. For the next, a profile curve was plotted by maximum values of LSF of each tomographic height, and a section thickness was calculated using the full width at half maximum (FWHM) of the profile curve. The edge method derived the section thickness close to the simulation results than the other methods. Further, the section thickness depends on the thickness of the metal plate and not the material. The thickness of the metal plate suitable for the evaluation of section thickness is 0.3 mm that is equivalent to pixel size of the flat panel detector (FPD). We conducted quantitative verification to establish the measurement method of the section thickness. The edge method is a useful technique as well as the wire and bead method for grasping basic characteristics of an imaging system.

  19. An approach of long-view tomosynthesis in peripheral arterial angiographic examinations

    Science.gov (United States)

    Notohara, Daisuke; Nishino, Kazuyoshi; Shibata, Koichi

    2011-03-01

    Tomosynthesis (TS) has been evaluated as a useful diagnostic imaging tool for the orthopedic market and lung cancer screening. Previously, we proposed Long-View Tomosynthesis (LVTS) to apply further clinical application by expanding the reconstructed region of TS. LVTS method consists of three steps. First, it acquires multiple images while X-ray tube and Flat Panel Detector (FPD) are moving in the same linear direction simultaneously at a constant speed. Second, each image is divided into fixed length strips, and then the strips from different images having similar X-ray beam trajectory angles are stitched together. Last, multi slice coronal images are reconstructed by utilizing the Filtered Back Projection (FBP) technique from the long stitched images. The present LVTS method requires the acquisition by the constant speed motion to stitch each strip precisely. It is necessary to improve the LVTS method to apply peripheral angiographic examinations that are usually acquired at arbitrary variable speeds to chase the contrast media in the blood vessel. We propose adding the method of detecting the moved distance of frames along with anatomical structure and the method of selecting pixel values with contrast media to stitching algorithm. As a result, LVTS can extract new clinical information like 3-D structure of superficial femoral arteries and the entire blood vessel from images already acquired by routine bolus chasing techniques.

  20. Tomosynthesis and contrast-enhanced digital mammography: recent advances in digital mammography

    International Nuclear Information System (INIS)

    Diekmann, Felix; Bick, Ulrich

    2007-01-01

    Digital mammography is more and more replacing conventional mammography. Initial concerns about an inferior image quality of digital mammography have been largely overcome and recent studies even show digital mammography to be superior in women with dense breasts, while at the same time reducing radiation exposure. Nevertheless, an important limitation of digital mammography remains: namely, the fact that summation may obscure lesions in dense breast tissue. However, digital mammography offers the option of so-called advanced applications, and two of these, contrast-enhanced mammography and tomosynthesis, are promising candidates for improving the detection of breast lesions otherwise obscured by the summation of dense tissue. Two techniques of contrast-enhanced mammography are available: temporal subtraction of images acquired before and after contrast administration and the so-called dual-energy technique, which means that pairs of low/high-energy images acquired after contrast administration are subtracted. Tomosynthesis on the other hand provides three-dimensional information on the breast. The images are acquired with different angulations of the X-ray tube while the object or detector is static. Various reconstruction algorithms can then be applied to the set of typically nine to 28 source images to reconstruct 1-mm slices with a reduced risk of obscuring pathology. Combinations of both advanced applications have only been investigated in individual experimental studies; more advanced software algorithms and CAD systems are still in their infancy and have only undergone preliminary clinical evaluation. (orig.)

  1. Construction of an Anthropomorphic Phantom for Use in Evaluating Pediatric Airway Digital Tomosynthesis Protocols

    Directory of Open Access Journals (Sweden)

    Nima Kasraie

    2018-01-01

    Full Text Available Interpretation of radiolucent foreign bodies (FBs is a common task charged to pediatric radiologists. The use of a motion compensated technique to decrease breathing motion on images would greatly decrease overall exposure to ionizing radiation and increase access to treatment yielding a great impact on clinical care. This study reports on the methodology and materials used to construct an in-house anthropomorphic phantom for investigating image quality in digital tomosynthesis protocols for volumetric imaging of the pediatric airway. Availability and cost of possible substitute materials were considered and simplifying assumptions were made. Two different modular phantoms were assembled in coronal slab layers using materials designed to approximate a one- and three-year-old thorax at diagnostic photon energies for use with digital tomosynthesis protocols such as those offered on GE’s VolumeRAD application. Exposures were made using both phantoms with inserted food particles inside an oscillating airway. The goal of the phantom is to help evaluate (1 whether the currently used protocol is sufficient to image the airway despite breathing motion and (2 whether it is not, to find the optimal protocol by testing various commercially available protocols using this phantom. The affordable construction of the pediatric sized phantom aimed at optimizing GE’s VolumeRAD protocol for airway foreign body imaging is demonstrated in this study which can be used to test VolumeRAD’s ability to image the airways with and without a low-density foreign body within the airways.

  2. Characterization of Breast Lesions: Comparison of Digital Breast Tomosynthesis and Ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ah [Department of Radiology, Human Medical Imaging & Intervention Center, Seoul 135-120 (Korea, Republic of); Chang, Jung Min; Cho, Nariya [Department of Radiology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Yi, Ann [Department of Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul 135-984 (Korea, Republic of); Moon, Woo Kyung [Department of Radiology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-11-01

    To compare the diagnostic performance of digital breast tomosynthesis (DBT) and conventional breast ultrasound (US) to characterize breast lesions as benign or malignant. A total of 332 women, presenting for screening examinations or for breast biopsy between March and June 2012 were recruited to undergo digital mammography (DM), DBT, and breast US examination. Among them, 113 patients with 119 breast lesions depicted on DM were finally included. Three blinded radiologists performed an enriched reader study and reviewed the DBT and US images. Each reader analyzed the lesions in random order, assigned Breast Imaging Reporting and Data System (BI-RADS) descriptors, rated the images for the likelihood of malignancy (%) and made a BI-RADS final assessment. Diagnostic accuracy, as assessed by the area under the receiver operating characteristic curve, sensitivity, and specificity of DBT and US were compared. Among the 119 breast lesions depicted on DM, 75 were malignant and the remaining 44 were benign. The average diagnostic performance for characterizing breast lesions as benign or malignant in terms of area under the curve was 0.899 for DBT and 0.914 for US (p = 0.394). Mean sensitivity (97.3% vs. 98.7%, p = 0.508) and specificity (44.7% vs. 39.4%, p = 0.360) were also not significantly different. Digital breast tomosynthesis may provide similar reader lesion characterization performance to that of US for breast lesions depicted on DM.

  3. Characterization of Breast Lesions: Comparison of Digital Breast Tomosynthesis and Ultrasonography

    International Nuclear Information Syst