WorldWideScience

Sample records for chesapeake impact crater

  1. The Chesapeake Bay Impact Crater: An Educational Investigation for Students into the Planetary Impact Process and its Environmental Consequences

    Science.gov (United States)

    Levine, Arlene S.

    2008-01-01

    Planetary impact craters are a common surface feature of many planetary bodies, including the Earth, the Moon, Mars, Mercury, Venus, and Jupiter s moons, Ganymede and Callisto. The NASA Langley Research Center in Hampton, VA, is located about 5 km inside the outer rim of the Chesapeake Bay Impact Crater. The Chesapeake Bay Impact Crater, with a diameter of 85 km is the sixth largest impact crater on our planet. The U.S. Geological Survey (USGS), in collaboration with the NASA Langley Research Center, the Virginia Department of Environmental Quality (VDEQ), the Hampton Roads Planning District Commission (HRPDC), and the Department of Geology of the College of William and Mary (WM) drilled into and through the crater at the NASA Langley Research Center and obtained a continuous core to a depth of 2075.9 ft (632.73 meters) from the Chesapeake Bay Impact Crater. At the NASA Langley location, the granite basement depth was at 2046 ft (623.87 meters). This collaborative drilling activity provided a unique educational opportunity and ongoing educational partnership between USGS, NASA Langley and the other collaborators. NASA Langley has a decade-long, ongoing educational partnership with the Colonial Coast Council of the Girl Scouts. The core drilling and on site analysis and cataloguing of the core segments provided a unique opportunity for the Girl Scouts to learn how geologists work in the field, their tools for scientific investigation and evaluation, how they perform geological analyses of the cores in an on-site tent and learn about the formation of impact craters and the impact of impacting bodies on the sub-surface, the surface, the oceans and atmosphere of the target body. This was accomplished with a two-part activity. Girl Scout day camps and local Girl Scout troops were invited to Langley Research Center Conference Center, where more than 300 Girl Scouts, their leaders and adult personnel were given briefings by scientists and educators from the USGS, NASA

  2. In plain sight: the Chesapeake Bay crater ejecta blanket

    Directory of Open Access Journals (Sweden)

    D. L. Griscom

    2012-02-01

    Full Text Available The discovery nearly two decades ago of a 90 km-diameter impact crater below the lower Chesapeake Bay has gone unnoted by the general public because to date all published literature on the subject has described it as "buried". To the contrary, evidence is presented here that the so-called "upland deposits" that blanket ∼5000 km2 of the U.S. Middle-Atlantic Coastal Plain (M-ACP display morphologic, lithologic, and stratigraphic features consistent with their being ejecta from the 35.4 Ma Chesapeake Bay Impact Structure (CBIS and absolutely inconsistent with the prevailing belief that they are of fluvial origin. Specifically supporting impact origin are the facts that (i a 95 %-pure iron ore endemic to the upland deposits of southern Maryland, eastern Virginia, and the District of Columbia has previously been proven to be impactoclastic in origin, (ii this iron ore welds together a small percentage of well-rounded quartzite pebbles and cobbles of the upland deposits into brittle sheets interpretable as "spall plates" created in the interference-zone of the CBIS impact, (iii the predominantly non-welded upland gravels have long ago been shown to be size sorted with an extreme crater-centric gradient far too large to have been the work of rivers, but well explained as atmospheric size-sorted interference-zone ejecta, (iv new evidence is provided here that ~60 % of the non-welded quartzite pebbles and cobbles of the (lower lying gravel member of the upland deposits display planar fractures attributable to interference-zone tensile waves, (v the (overlying loam member of the upland deposits is attributable to base-surge-type deposition, (vi several exotic clasts found in a debris flow topographically below the upland deposits can only be explained as jetting-phase crater ejecta, and (vii an allogenic granite boulder found among the upland deposits is deduced to have been launched into space and sculpted by hypervelocity air friction

  3. Evidence for high salinity of Early Cretaceous sea water from the Chesapeake Bay crater

    Science.gov (United States)

    Sanford, Ward E.; Doughten, Michael W.; Coplen, Tyler B.; Hunt, Andrew G.; Bullen, Thomas D.

    2013-01-01

    High salinity groundwater more than 1000 metres deep in the Atlantic Coastal Plain of the United States has been documented in several locations1,2, most recently within the 35 million-year-old Chesapeake Bay impact crater3,4,5. Suggestions for the origin of increased salinity in the crater have included evaporite dissolution6, osmosis6, and evaporation from heating7 associated with the bolide impact. Here we present chemical, isotopic and physical evidence that together indicate that groundwater in the Chesapeake crater is remnant Early Cretaceous North Atlantic (ECNA) seawater. We find that the seawater is likely 100-145 million years old and that it has an average salinity of about 70 per mil, which is twice that of modern seawater and consistent with the nearly closed ECNA basin8. Previous evidence for temperature and salinity levels of ancient oceans have been estimated indirectly from geochemical, isotopic and paleontological analyses of solid materials in deep sediment cores. In contrast, our study identifies ancient seawater in situ and provides a direct estimate of its age and salinity. Moreover, we suggest that it is likely that remnants of ECNA seawater persist in deep sediments at many locations along the Atlantic margin.

  4. Experimental impact crater morphology

    Science.gov (United States)

    Dufresne, A.; Poelchau, M. H.; Hoerth, T.; Schaefer, F.; Thoma, K.; Deutsch, A.; Kenkmann, T.

    2012-04-01

    The research group MEMIN (Multidisciplinary Experimental and Impact Modelling Research Network) is conducting impact experiments into porous sandstones, examining, among other parameters, the influence of target pore-space saturation with water, and projectile velocity, density and mass, on the cratering process. The high-velocity (2.5-7.8 km/s) impact experiments were carried out at the two-stage light-gas gun facilities of the Fraunhofer Institute EMI (Germany) using steel, iron meteorite (Campo del Cielo IAB), and aluminium projectiles with Seeberg Sandstone as targets. The primary objectives of this study within MEMIN are to provide detailed morphometric data of the experimental craters, and to identify trends and characteristics specific to a given impact parameter. Generally, all craters, regardless of impact conditions, have an inner depression within a highly fragile, white-coloured centre, an outer spallation (i.e. tensile failure) zone, and areas of arrested spallation (i.e. spall fragments that were not completely dislodged from the target) at the crater rim. Within this general morphological framework, distinct trends and differences in crater dimensions and morphological characteristics are identified. With increasing impact velocity, the volume of craters in dry targets increases by a factor of ~4 when doubling velocity. At identical impact conditions (steel projectiles, ~5km/s), craters in dry and wet sandstone targets differ significantly in that "wet" craters are up to 76% larger in volume, have depth-diameter ratios generally below 0.19 (whereas dry craters are almost consistently above this value) at significantly larger diameters, and their spallation zone morphologies show very different characteristics. In dry craters, the spall zone surfaces dip evenly at 10-20° towards the crater centre. In wet craters, on the other hand, they consist of slightly convex slopes of 10-35° adjacent to the inner depression, and of sub-horizontal tensile

  5. Impact Cratering Calculations

    Science.gov (United States)

    Ahrens, Thomas J.

    2001-01-01

    We examined the von Mises and Mohr-Coulomb strength models with and without damage effects and developed a model for dilatancy. The models and results are given in O'Keefe et al. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting with the bolide in the atmosphere produce final crater profiles having the major features found in the field measurements. These features included a central uplift, an inner ring, circular terracing and faulting. This was accomplished with undamaged surface strengths of approximately 0.1 GPa and at depth strengths of approximately 1.0 GPa. We modeled the damage in geologic materials using a phenomenological approach, which coupled the Johnson-Cook damage model with the CTH code geologic strength model. The objective here was not to determine the distribution of fragment sizes, but rather to determine the effect of brecciated and comminuted material on the crater evolution, fault production, ejecta distribution, and final crater morphology.

  6. Morphology of Experimental Impact Craters into Sandstone

    Science.gov (United States)

    Dufresne, A.; Poelchau, M. H.; Kenkmann, T.; Deutsch, A.; Hoerth, T.; Schaefer, F.

    2012-03-01

    Detailed morphometric crater analyses of hypervelocity impact experiments were carried out to investigate the influence of impact velocity and target pore space saturation on crater size and morphology.

  7. Small simple impact craters

    CERN Document Server

    Sparavigna, Amelia Carolina

    2010-01-01

    The paper discusses some examples of image processing applied to improve optical satellite imagery of small craters (Kamil, Veevers, Haviland). The examples show that image processing can be quite useful for further in-situ researches, because the resultant imagery helps to have a better picture of the crater shape and of the distribution of debris about it. The paper is also disclosing an interesting underwater structure, with shape and size of a small crater, located on the coast-line of Sudan.

  8. Venus - Lavinia Region Impact Craters

    Science.gov (United States)

    1990-01-01

    Three large meteorite impact craters, with diameters that range from 37 to 50 kilometers (23 to 31 miles), are seen in this image of the Lavinia region of Venus. The image is centered at 27 degrees south latitude and 339 degrees east longitude (longitude on Venus is measured from 0 degrees to 360 degrees east), and covers an area 550 kilometers (342 miles) wide by about 500 kilometers (311 miles) long. Situated in a region of fractured plains, the craters show many features typical of meteorite impact craters, including rough (bright) material around the rim, terraced inner walls and central peaks. Numerous domes, probably caused by volcanic activity, are seen in the southeastern corner of the mosaic. The domes range in diameter from 1 to 12 kilometers (0.6 to 7 miles). Some of the domes have central pits that are typical of some types of volcanoes. North is at the top of the image.

  9. Postimpact deposition in the Chesapeake Bay impact structure: Variations in eustasy, compaction, sediment supply, and passive-aggressive tectonism

    Science.gov (United States)

    Kulpecz, A.A.; Miller, K.G.; Browning, J.V.; Edwards, L.E.; Powars, D.S.; McLaughlin, P.P., Jr.; Harris, A.D.; Feigenson, M.D.

    2009-01-01

    The Eyreville and Exmore, Virginia, core holes were drilled in the inner basin and annular trough, respectively, of the Chesapeake Bay impact structure, and they allow us to evaluate sequence deposition in an impact crater. We provide new high-resolution geochronologic (<1 Ma) and sequence-stratigraphic interpretations of the Exmore core, identify 12 definite (and four possible) postimpact depositional sequences, and present comparisons with similar results from Eyreville and other mid- Atlantic core holes. The concurrence of increases in ??18O with Chesapeake Bay impact structure sequence boundaries indicates a primary glacioeustatic control on deposition. However, regional comparisons show the differential preservation of sequences across the mid-Atlantic margin. We explain this distribution by the compaction of impactites, regional sediment-supply changes, and the differential movement of basement structures. Upper Eocene strata are thin or missing updip and around the crater, but they thicken into the inner basin (and offshore to the southeast) due to rapid crater infilling and concurrent impactite compaction. Oligocene sequences are generally thin and highly dissected throughout the mid-Atlantic region due to sediment starvation and tectonism, except in southeastern New Jersey. Regional tectonic uplift of the Norfolk Arch coupled with a southward decrease in sediment supply resulted in: (1) largely absent Lower Miocene sections around the Chesapeake Bay impact structure compared to thick sections in New Jersey and Delaware; (2) thick Middle Miocene sequences across the Delmarva Peninsula that thin south of the Chesapeake Bay impact structure; and (3) upper Middle Miocene sections that pinch out just north of the Chesapeake Bay impact structure. Conversely, the Upper Miocene-Pliocene section is thick across Virginia, but it is poorly represented in New Jersey because of regional variations in relative subsidence. ?? 2009 The Geological Society of America.

  10. Geochemical characteristics of basement target rocks, suevitic glasses from the Eyreville B drill core, Chesapeake Bay impact structure, and three bediasites

    Czech Academy of Sciences Publication Activity Database

    Skála, Roman; Langenhorst, F.; Deutsch, A.

    Boulder: Geological Society of America, 2009, s. 435-445. (Special papers of the Geological Society of America). ISBN 978-0-8137-2458-4 Institutional research plan: CEZ:AV0Z30130516 Keywords : Chesapeake Bay impact crater * Eyreville B core hole * impact glasses * bediasites * tektites * geochemistry Subject RIV: DD - Geochemistry

  11. Impacts into Sandstone: Crater Morphology, Crater Scaling and the Effects of Porosity

    Science.gov (United States)

    Poelchau, M. H.; Dufresne, A.; Kenkmann, T.

    2011-03-01

    Crater morphology results from impact cratering experiments in sandstone within the MEMIN program are presented and compared to other brittle materials. The effects of porosity on crater shape, volume and cratering efficiency are analyzed.

  12. Anatomy of the Chesapeake Bay impact structure revealed by seismic imaging, Delmarva Peninsula, Virginia, USA

    Science.gov (United States)

    Catchings, R.D.; Powars, D.S.; Gohn, G.S.; Horton, J.W., Jr.; Goldman, M.R.; Hole, J.A.

    2008-01-01

    A 30-km-long, radial seismic reflection and refraction survey completed across the northern part of the late Eocene Chesapeake Bay impact structure (CBIS) on the Delmarva Peninsula, Virginia, USA, confirms that the CBIS is a complex central-peak crater. We used a tomographic P wave velocity model and low-fold reflection images, constrained by data from two deep boreholes located on the profile, to interpret the structure and composition of the upper 5 km of crust. The seismic images exhibit well-defined structural features, including (with increasing radial distance) a collapsed central uplift, a breccia-filled moat, and a collapsed transient-crater margin (which collectively constitute a ???40-km-wide collapsed transient crater), and a shallowly deformed annular trough. These seismic images are the first to resolve the deep structure of the crater (>1 km) and the boundaries between the central uplift, moat, and annular trough. Several distinct seismic signatures distinguish breccia units from each other and from more coherent crystalline rocks below the central uplift, moat, and annular trough. Within the moat, breccia extends to a minimum depth of 1.5 km or a maximum of 3.5 km, depending upon the interpretation of the deepest layered materials. The images show ???350 to 500 m of postimpact sediments above the impactites. The imaged structure of the CBIS indicates a complex sequence of event during the cratering process that will provide new constraints for numerical modeling. Copyright 2008 by the American Geophysical Union.

  13. Low-emissivity impact craters on Venus

    Science.gov (United States)

    Weitz, C. M.; Elachi, C.; Moore, H. J.; Basilevsky, A. T.; Ivanov, B. A.; Schaber, G. G.

    1992-01-01

    An analysis of 144 impact craters on Venus has shown that 11 of these have floors with average emissivities lower than 0.8. The remaining craters have emissivities between 0.8 and 0.9, independent of the specific backscatter cross section of the crater floors. These 144 impact craters were chosen from a possible 164 craters with diameters greater than 30 km as identified by researchers for 89 percent of the surface of Venus. We have only looked at craters below 6053.5 km altitude because a mineralogical change causes high reflectivity/low emissivity above the altitude. We have also excluded all craters with diameters smaller than 30 km because the emissivity footprint at periapsis is 16 x 24 km and becomes larger at the poles.

  14. The Explorer's Guide to Impact Craters

    Science.gov (United States)

    Pierazzo, E.; Osinski, G.; Chuang, F.

    2004-12-01

    Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, or fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: ``How do scientists learn about impact cratering?'', and ``What information do impact craters provide in understanding the evolution of a planetary surface?'' Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering. We will provide students, science teachers, and the general public an opportunity to experience the scientific endeavor of understanding and exploring impact craters through a multi-level approach including images, videos, and rock samples. This type of interactive learning can also be made available to the general public in the form of a website, which can be addressed worldwide at any time.

  15. Aboriginal Oral Traditions of Australian Impact Craters

    CERN Document Server

    Hamacher, Duane W

    2013-01-01

    We explore Aboriginal oral traditions that relate to Australian meteorite craters. Using the literature, first-hand ethnographic records, and fieldtrip data, we identify oral traditions and artworks associated with four impact sites: Gosses Bluff, Henbury, Liverpool, and Wolfe Creek. Oral traditions describe impact origins for Gosses Bluff and Wolfe Creek craters and non-impact origins of Liverpool and Henbury craters, with Wolfe Creek stories having both impact and non-impact origins. Three impact sites that are believed to have formed during human habitation of Australia - Dalgaranga, Veevers, and Boxhole - do not have associated oral traditions that are reported in the literature.

  16. Aboriginal oral traditions of Australian impact craters

    Science.gov (United States)

    Hamacher, Duane W.; Goldsmith, John

    2013-11-01

    In this paper we explore Aboriginal oral traditions that relate to Australian meteorite craters. Using the literature, first-hand ethnographic records and field trip data, we identify oral traditions and artworks associated with four impact sites: Gosses Bluff, Henbury, Liverpool and Wolfe Creek. Oral traditions describe impact origins for Gosses Bluff, Henbury and Wolfe Creek Craters, and non-impact origins for Liverpool Crater, with Henbury and Wolfe Creek stories having both impact and non-impact origins. Three impact sites that are believed to have been formed during human habitation of Australia -- Dalgaranga, Veevers, and Boxhole -- do not have associated oral traditions that are reported in the literature.

  17. Impact Crater Size and Evolution: Expectations for Deep Impact

    Science.gov (United States)

    Schultz, P. H.; Anderson, J. L. B.; Heineck, J. T.

    2002-01-01

    Deep Impact will involve a unique cratering experiment designed to probe below the surface of a comet. Laboratory experiments provide critical data for crater scaling and evolution of the ejecta curtain. Additional information is contained in the original extended abstract.

  18. The missing large impact craters on Ceres

    Science.gov (United States)

    Marchi, S.; Ermakov, A. I.; Raymond, C. A.; Fu, R. R.; O'Brien, D. P.; Bland, M. T.; Ammannito, E.; de Sanctis, M. C.; Bowling, T.; Schenk, P.; Scully, J. E. C.; Buczkowski, D. L.; Williams, D. A.; Hiesinger, H.; Russell, C. T.

    2016-07-01

    Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10-15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6-7 such basins. However, Ceres' surface appears devoid of impact craters >~280 km. Here, we show a significant depletion of cerean craters down to 100-150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing.

  19. Physics of soft impact and cratering

    CERN Document Server

    Katsuragi, Hiroaki

    2016-01-01

    This book focuses on the impact dynamics and cratering of soft matter to describe its importance, difficulty, and wide applicability to planetary-related problems. A comprehensive introduction to the dimensional analysis and constitutive laws that are necessary to discuss impact mechanics and cratering is first provided. Then, particular coverage is given to the impact of granular matter, which is one of the most crucial constituents for geophysics. While granular matter shows both solid-like and fluid-like behaviors, neither solid nor fluid dynamics is sufficient to fully understand the physics of granular matter. In order to reveal its fundamental properties, extensive impact tests have been carried out recently. The author reveals the findings of these recent studies as well as what remains unsolved in terms of impact dynamics. Impact crater morphology with various soft matter impacts also is discussed intensively. Various experimental and observational results up to the recent Itokawa asteroid’s terrain...

  20. Impact mechanics at Meteor Crater, Arizona

    Science.gov (United States)

    Shoemaker, Eugene Merle

    1959-01-01

    Meteor Crator is a bowl-shaped depression encompassed by a rim composed chiefly of debris stacked in layers of different composition. Original bedrock stratigraphy is preserved, inverted, in the debris. The debris rests on older disturbed strata, which are turned up at moderate to steep angles in the wall of the crater and are locally overturned near the contact with the debris. These features of Meteor Crater correspond closely to those of a crater produced by nuclear explosion where depth of burial of the device was about 1/5 the diameter of the resultant crater. Studies of craters formed by detonation of nuclear devices show that structures of the crater rims are sensitive to the depth of explosion scaled to the yield of the device. The structure of Meteor Crater is such as would be produced by a very strong shock originating about at the level of the present crater floor, 400 feet below the original surface. At supersonic to hypersonic velocity an impacting meteorite penetrates the ground by a complex mechanism that includes compression of the target rocks and the meteorite by shock as well as hydrodynamic flow of the compressed material under high pressure and temperature. The depth of penetration of the meteorite, before it loses its integrity as a single body, is a function primarily of the velocity and shape of the meteorite and the densities and equations of state of the meteorite and target. The intensely compressed material then becomes dispersed in a large volume of breccia formed in the expanding shock wave. An impact velocity of about 15 km/sec is consonant with the geology of Meteor Crater in light of the experimental equation of state of iron and inferred compressibility of the target rocks. The kinetic energy of the meteorite is estimated by scaling to have been from 1.4 to 1.7 megatons TNT equivalent.

  1. Impact craters: An ice study on Rhea

    Science.gov (United States)

    Dalle Ore, Cristina M.; Cruikshank, Dale P.; Mastrapa, Rachel M. E.; Lewis, Emma; White, Oliver L.

    2015-11-01

    The goal of this project is to study the properties of H2O ice in the environment of the Saturn satellites and in particular to measure the relative amounts of crystalline and amorphous H2O ice in and around two craters on Rhea. The craters are remnants of cataclysmic events that, by raising the local temperature, melted the ice, which subsequently crystallized. Based on laboratory experiments it is expected that, when exposed to ion bombardment at the temperatures typical of the Saturn satellites, the crystalline structure of the ice will be broken, resulting in the disordered, amorphous phase. We therefore expect the ice in and around the craters to be partially crystalline and partially amorphous. We have designed a technique that estimates the relative amounts of crystalline and amorphous H2O ice based on measurements of the distortion of the 2-μm spectral absorption band. The technique is best suited for planetary surfaces that are predominantly icy, but works also for surfaces slightly contaminated with other ices and non-ice components. We apply the tool to two areas around the Inktomi and the Obatala craters. The first is a young impact crater on the leading hemisphere of Rhea, the second is an older one on the trailing hemisphere. For each crater we obtain maps of the fraction of crystalline ice, which were overlain onto Imaging Science Subsystem (ISS) images of the satellite searching for correlations between crystallinity and geography. For both craters the largest fractions of crystalline ice are in the center, as would be intuitively expected since the 'ground zero' areas should be most affected by the effects of the impact. The overall distribution of the crystalline ice fraction maps the shape of the crater and, in the case of Inktomi, of the rays. The Inktomi crater ranges between a maximum fraction of 67% crystalline ice to a minimum of 39%. The Obatala crater varies between a maximum of 51% and a minimum of 33%. Based on simplifying assumptions

  2. Physical property data from the ICDP-USGS Eyreville cores A and B, Chesapeake Bay impact structure, Virginia, USA, acquired using a multisensor core logger

    Science.gov (United States)

    Pierce, H.A.; Murray, J.B.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS) drilled three core holes to a composite depth of 1766 m within the moat of the Chesapeake Bay impact structure. Core recovery rates from the drilling were high (??90%), but problems with core hole collapse limited the geophysical downhole logging to natural-gamma and temperature logs. To supplement the downhole logs, ??5% of the Chesapeake Bay impact structure cores was processed through the USGS GeoTek multisensor core logger (MSCL) located in Menlo Park, California. The measured physical properties included core thickness (cm), density (g cm-3), P-wave velocity (m s-1), P-wave amplitude (%), magnetic susceptibility (cgs), and resistivity (ohm-m). Fractional porosity was a secondary calculated property. The MSCL data-sampling interval for all core sections was 1 cm longitudinally. Photos of each MSCL sampled core section were imbedded with the physical property data for direct comparison. These data have been used in seismic, geologic, thermal history, magnetic, and gravity models of the Chesapeake Bay impact structure. Each physical property curve has a unique signature when viewed over the full depth of the Chesapeake Bay impact structure core holes. Variations in the measured properties reflect differences in pre-impact target-rock lithologies and spatial variations in impact-related deformation during late-stage crater collapse and ocean resurge. ?? 2009 The Geological Society of America.

  3. The size-frequency distribution of elliptical impact craters

    Science.gov (United States)

    Collins, G. S.; Elbeshausen, D.; Davison, T. M.; Robbins, S. J.; Hynek, B. M.

    2011-10-01

    Impact craters are elliptical in planform if the impactor's trajectory is below a threshold angle of incidence. Laboratory experiments and 3D numerical simulations demonstrate that this threshold angle decreases as the ratio of crater size to impactor size increases. According to impact cratering scaling laws, this implies that elliptical craters occur at steeper impact angles as crater size or target strength increases. Using a standard size-frequency distribution for asteroids impacting the terrestrial planets we estimate the fraction of elliptical craters as a function of crater size on the Moon, Mars, Earth, Venus and Mercury. In general, the expected fraction of elliptical craters is ~ 2-4% for craters between 5 and 100-km in diameter, consistent with the observed population of elliptical craters on Mars. At larger crater sizes both our model and observations suggest a dramatic increase in the fraction of elliptical craters with increasing crater diameter. The observed fraction of elliptical craters larger than 100-km diameter is significantly greater than our model predictions, which may suggest that there is an additional source of large elliptical craters other than oblique impact.

  4. Chesapeake Bay Impact Structure Deep Drilling Project Completes Coring

    Directory of Open Access Journals (Sweden)

    the Scientific Staff of the Chesapeake Bay Impact Structure Deep Drilling Project

    2006-09-01

    Full Text Available The Chesapeake Bay Impact Structure Deep Drilling Project (CBIS Project completed its coring operations during September–December 2005 and April–May 2006. Cores were collected continuously to a total depth of 1766 m. The recovered section consists of 1322 m of impactites beneath 444 m of post-impact continental shelf sediments.The CBIS Project is a joint venture of the International Continental Scientifi c Drilling Program (ICDP and the U.S. Geological Survey (USGS. Project activities began with a planning workshop in September 2003 attended by sixtythree scientists from ten countries. Field operations began with site preparation in July 2005, and coring began in September 2005. Drilling, Observation and Sampling of theEarth’s Continental Crust (DOSECC was the general contractor for the drilling operations throughout 2005.

  5. Hydrothermal Alteration at Lonar Crater, India and Elemental Variations in Impact Crater Clays

    Science.gov (United States)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Misra, S.; Narasimham, V.

    2005-01-01

    The role of hydrothermal alteration and chemical transport involving impact craters could have occurred on Mars, the poles of Mercury and the Moon, and other small bodies. We are studying terrestrial craters of various sizes in different environments to better understand aqueous alteration and chemical transport processes. The Lonar crater in India (1.8 km diameter) is particularly interesting being the only impact crater in basalt. In January of 2004, during fieldwork in the ejecta blanket around the rim of the Lonar crater we discovered alteration zones not previously described at this crater. The alteration of the ejecta blanket could represent evidence of localized hydrothermal activity. Such activity is consistent with the presence of large amounts of impact melt in the ejecta blanket. Map of one area on the north rim of the crater containing highly altered zones at least 3 m deep is shown.

  6. Impact and cratering rates onto Pluto

    Science.gov (United States)

    Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.

    2015-09-01

    The New Horizons spacecraft fly-through of the Pluto system in July 2015 will provide humanity's first data for the crater populations on Pluto and its binary companion, Charon. In principle, these surfaces could be dated in an absolute sense, using the observed surface crater density (# craters/km2 larger than some threshold crater diameter D). Success, however, requires an understanding of both the cratering physics and absolute impactor flux. The Canada-France Ecliptic Plane Survey (CFEPS) L7 synthetic model of classical and resonant Kuiper belt populations (Petit, J.M. et al. [2011]. Astron. J. 142, 131-155; Gladman, B. et al. [2012]. Astron. J. 144, 23-47) and the scattering object model of Kaib et al. (Kaib, N., Roškar, R., Quinn, T. [2011]. Icarus 215, 491-507) calibrated by Shankman et al. (Shankman, C. et al. [2013]. Astrophys. J. 764, L2-L5) provide such impact fluxes and thus current primary cratering rates for each dynamical sub-population. We find that four sub-populations (the q 100km) connects to smaller projectiles, we compute cratering rates using five model impactor size distributions: a single power-law, a power-law with a knee, a power-law with a divot, as well as the "wavy" size distributions described in Minton et al. (Minton, D.A. et al. [2012]. Asteroids Comets Meteors Conf. 1667, 6348) and Schlichting et al. (Schlichting, H.E., Fuentes, C.I., Trilling, D.E. [2013]. Astron. J. 146, 36-42). We find that there is only a small chance that Pluto has been hit in the past 4 Gyr by even one impactor with a diameter larger than the known break in the projectile size distribution (d ≈ 100km) which would create a basin on Pluto (D ⩾ 400km in diameter). We show that due to present uncertainties in the impactor size distribution between d = 1-100km , computing absolute ages for the surface of Pluto is entirely dependent on the extrapolation to small sizes and thus fraught with uncertainty. We show, however, what the ages would be for several cases

  7. Ancient Impact and Aqueous Processes at Endeavour Crater, Mars

    OpenAIRE

    Knoll, Andrew Herbert; Squyres, S. W.; Arvidson, R. E.; Bell, J. F.; Calef, F., III; Clark, B.C.; Cohen, B. A.; Crumpler, L. A.; P.A. Souza; Farrand, W. H.; Gellert, R.; Grant, J; Hurowitz, J. A.; Herkenhoff, K. E.; J. R. Johnson

    2012-01-01

    The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing...

  8. On the scaling of crater dimensions. II - Impact processes

    Science.gov (United States)

    Holsapple, K. A.; Schmidt, R. M.

    1982-01-01

    Holsapple and Schmidt (1980) previously addressed the problem of the scaling of explosive cratering. Their analysis included results which show under which conditions the scaling can be bounded between quarter-root and cube-root rules. The present investigation is an extension of the earlier analysis and approaches the case of impact cratering. More restrictive bounds are found for impact cratering than for the explosive case. These stronger results come from considering the role of the impactor momentum as an independent variable for impact cratering. Attention is given to impact cratering variables, general scaling rules, the bounds on scaling rules, a generalization to more variables, and previous scaling rules and results.

  9. The Microstructure of Lunar Micrometeorite Impact Craters

    Science.gov (United States)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2016-01-01

    The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.

  10. Coesite in suevites from the Chesapeake Bay impact structure

    Science.gov (United States)

    Jackson, John C.; Horton, J. Wright; Chou, I.-Ming; Belkin, Harvey E.

    2016-05-01

    The occurrence of coesite in suevites from the Chesapeake Bay impact structure is confirmed within a variety of textural domains in situ by Raman spectroscopy for the first time and in mechanically separated grains by X-ray diffraction. Microtextures of coesite identified in situ investigated under transmitted light and by scanning electron microscope reveal coesite as micrometer-sized grains (1-3 μm) within amorphous silica of impact-melt clasts and as submicrometer-sized grains and polycrystalline aggregates within shocked quartz grains. Coesite-bearing quartz grains are present both idiomorphically with original grain margins intact and as highly strained grains that underwent shock-produced plastic deformation. Coesite commonly occurs in plastically deformed quartz grains within domains that appear brown (toasted) in transmitted light and rarely within quartz of spheroidal texture. The coesite likely developed by a mechanism of solid-state transformation from precursor quartz. Raman spectroscopy also showed a series of unidentified peaks associated with shocked quartz grains that likely represent unidentified silica phases, possibly including a moganite-like phase that has not previously been associated with coesite.

  11. Crater morphology in sandstone targets: The MEMIN impact parameter study

    Science.gov (United States)

    Dufresne, Anja; Poelchau, Michael H.; Kenkmann, Thomas; Deutsch, Alex; Hoerth, Tobias; SchńFer, Frank; Thoma, Klaus

    2013-01-01

    Hypervelocity (2.5-7.8 km s-1) impact experiments into sandstone were carried out to investigate the influence of projectile velocity and mass, target pore space saturation, target-projectile density contrast, and target layer orientation on crater size and shape. Crater size increases with increasing projectile velocity and mass as well as with increasing target pore space saturation. Craters in water-saturated porous targets are generally shallower and larger in volume and in diameter than craters from equivalent impacts into dry porous sandstone. Morphometric analyses of the resultant craters, 5-40 cm in diameter, reveal features that are characteristic of all of our experimental craters regardless of impact conditions (I) a large central depression within a fragile, light-colored central part, and (II) an outer spallation zone with areas of incipient spallation. Two different mechanical processes, grain fragmentation and intergranular tensile fracturing, are recorded within these crater morphologies. Zone (I) approximates the shape of the transient crater formed by material compression, displacement, comminution, and excavation flow, whereas (II) is the result of intergranular tensile fracturing and spallation. The transient crater dimensions are reconstructed by fitting quadric parabolas to crater profiles from digital elevation models. The dimensions of this transient and of the final crater show the same trends: both increase in volume with increasing impact energy, and with increasing water saturation of the target pore space. The relative size of the transient crater (in percent of the final crater volume) decreases with increasing projectile mass and velocity, signifying a greater contribution of spallation on the final crater size when projectile mass and velocity are increased.

  12. Mexican site for K/T impact crater?

    Science.gov (United States)

    Pope, K. O.; Ocampo, A. C.; Duller, C. E.

    1991-05-01

    Research throughout the Caribbean suggests that the geophysical anomalies in the Yucatan first noted by Penfield and Camargo (1981) and called the Chicxulub crater could be the site of the impact purported to have caused the K/T extinctions. A semicircular ring of sink holes, known locally as cenotes, which correlates with the geophysical anomalies has been identified, and it is argued that the origin of the cenote ring is related to postimpact subsidence of the Chicxulub crater rim. If there is indeed a crater, the region within the cenote ring corresponds to its floor and the crater rim diameter is probably larger than 200 km. If confirmed as a site of impact, the Chicxulub crater would be the largest terrestrial impact crater known, which is consistent with the uniqueness of the K/T global catastrophe.

  13. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 108 kg, with a corresponding kinetic energy of 1.88 x 1016 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references

  14. Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries

    Science.gov (United States)

    Stewart, Sarah T.; Valiant, Gregory J.

    2006-10-01

    The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near-surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3-50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5-2.0 times deeper (≥5σo difference) with >50% larger cavities (≥2σo) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ˜6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45-70% of their transient cavity volumes, while highland craters preserve only 25-50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9-12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through

  15. Gale Crater: An Amazonian Impact Crater Lake at the Plateau/Plain Boundary

    Science.gov (United States)

    Cabrol, N. A.; Grin, E. A.

    1998-01-01

    Gale is a 140-km diameter impact crater located at the plateau/plain boundary in the Aeolis Northeast subquadrangle of Mars (5S/223W). The crater is bordered in the northward direction by the Elysium Basin, and in eastward direction by Hesperian channels and the Aeolis Mensae 2. The crater displays a rim with two distinct erosion stages: (a) though eroded, the south rim of Gale has an apparent crest line visible from the north to the southwest (b) the west and northwest rims are characterized by a strong erosion that, in some places, partially destroyed the rampart, leaving remnant pits embayed in smooth-like deposits. The same type of deposits is observed north, outside Gale, it also borders the Aeolis Mensae, covers the bottom of the plateau scarp, and the crater floor. The central part of Gale shows a 6400 km2 subround and asymmetrical deposit: (a) the south part is composed of smooth material, (b) the north part shows spectacular terraces, streamlines, and channels. The transition between the two parts of the deposit is characterized by a scarp ranging from 200 to 2000 in high. The highest point of the scarp is at the center of the crater, and probably corresponds to a central peak. Gale crater does not show a major channel directly inflowing. However, several large fluvi systems are bordering the crater, and could be at the origin of the flooding of the crater, or have contributed to. One fluvial system is entering the crater by the southwest rim but cannot be accounted alone for the volume of sediment deposited in the crater. This channel erodes the crater floor deposit, and ends in a irregular-shaped and dark albedo feature. Gale crater shows the morphology of a crater filled during sedimentation episodes, and then eroded Part of the lower sediment deposition contained in Gale might be ancient and not only aqueous in origin. According to the regional geologic history, the sedimentary deposit could be a mixture of aeolian and pyroclastic material, and aqueous

  16. First results of geothermal investigations, Chesapeake Bay impact structure, Eyreville core holes

    Czech Academy of Sciences Publication Activity Database

    Heidinger, P.; Wilhelm, H.; Popov, Y.; Šafanda, Jan; Burkhardt, H.; Mayr, S.

    Boulder : The Geological Society of America , 2009 - (Gohn, G.), s. 931-940 ISBN 978-0-8137-2458-4. - (Special paper. 458) R&D Projects: GA MŠk LA08036 Institutional research plan: CEZ:AV0Z30120515 Keywords : Chesapeake Bay * impact structure * deep borehole * temperature log * geothermal model Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  17. A condensed matter analogy of impact crater formation

    CERN Document Server

    Celebonovic, V

    2014-01-01

    Impact craters exist on various solid objects in the planetary system. A simplified analogy of the process of their formation is here analyzed by standard solid state physics and the so called dynamic quantized fracture mechanics. An expression which links the crater volume to the parameters of the impactor and the target is obtained within the two approaches. For low impactor energy, this expression is of the same mathematical form as the one resulting from recent experiments.It is shown that the formation of an impact crater is possible even without heating of the target, if the critical stress in the target satisfies certain conditions. The critical value of the stress needed for the occurence of a fracture is calculated for three craters: two terrestrial and one lunar crater. The approach presented here uses only measurable material parameters, and is therefore more realistic than the treatement of the same problem using the cohesive energy of materials.

  18. Experimental Impact Cratering into Sandstone: A MEMIN-Progress Report

    Science.gov (United States)

    Poelchau, M. H.; Deutsch, A.; Kenkmann, T.; Hoerth, T.; Schäfer, F.; Thoma, K.; Memin Team

    2011-03-01

    The MEMIN Project is currently focused on impact experiments into sandstone. First results are presented here, including the evaluation of high-speed cameras, ejecta catchment devices, crater morphology, and chemical projectile-target interaction.

  19. Comparing Characteristics of Polygonal Impact Craters on Mercury and Venus

    International Nuclear Information System (INIS)

    Full text: Polygonal impact craters (PICs) are defined as craters, which rims are composed of at least two straight segments. These PICs are often found on terrestrial planets like Mercury, Venus, and Mars and on the Moon. In our current study we compare characteristics of PICs: the numbers, the mean diameters, and the PICs' ages on Mercury and Venus. The surfaces of both planets show significant differences in age - Mercury’s surface is about 4.5 Gyr, but Venus' not more than 1 Gyr old. The age of polygonal impact craters correspond to this difference. (author)

  20. Hydrothermal Processes and Mobile Element Transport in Martian Impact Craters - Evidence from Terrestrial Analogue Craters

    Science.gov (United States)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Dressler, B. L.

    2005-01-01

    Hydrothermal alteration and chemical transport involving impact craters probably occurred on Mars throughout its history. Our studies of alteration products and mobile element transport in ejecta blanket and drill core samples from impact craters show that these processes may have contributed to the surface composition of Mars. Recent work on the Chicxulub Yaxcopoil-1 drill core has provided important information on the relative mobility of many elements that may be relevant to Mars. The Chicxulub impact structure in the Yucatan Peninsula of Mexico and offshore in the Gulf of Mexico is one of the largest impact craters identified on the Earth, has a diameter of 180-200 km, and is associated with the mass extinctions at the K/T boundary. The Yax-1 hole was drilled in 2001 and 2002 on the Yaxcopoil hacienda near Merida on the Yucatan Peninsula. Yax-1 is located just outside of the transient cavity, which explains some of the unusual characteristics of the core stratigraphy. No typical impact melt sheet was encountered in the hole and most of the Yax-1 impactites are breccias. In particular, the impact melt and breccias are only 100 m thick which is surprising taking into account the considerably thicker breccia accumulations towards the center of the structure and farther outside the transient crater encountered by other drill holes.

  1. Surficial geology of the Chicxulub impact crater, Yucatan, Mexico

    Science.gov (United States)

    Pope, Kevin O.; Ocampo, Adriana C.; Duller, Charles E.

    1993-11-01

    The Chicxulub impact crater in northwestern Yucatan, Mexico is the primary candidate for the proposed impact that caused mass extinctions at the end of the Cretaceous Period. The crater is buried by up to a kilometer of Tertiary sediment and the most prominent surface expression is a ring of sink holes, known locally as cenotes, mapped with Landsat imagery. This 165 +/- 5 km diameter Cenote Ring demarcates a boundary between unfractured limestones inside the ring, and fractured limestones outside. The boundary forms a barrier to lateral ground water migration, resulting in increased flows, dissolution, and collapse thus forming the cenotes. The subsurface geology indicates that the fracturing that created the Cenote Ring is related to slumping in the rim of the buried crater, differential thicknesses in the rocks overlying the crater, or solution collapse within porous impact deposits. The Cenote Ring provides the most accurate position of the Chicxulub crater's center, and the associated faults, fractures, and stratigraphy indicate that the crater may be approximately 240 km in diameter.

  2. Mars: New Determination of Impact Crater Production Function Size Distribution

    Science.gov (United States)

    Hartmann, William K.

    2006-12-01

    Several authors have questioned our knowledge of Martian impact crater production function size-frequency distribution (PFSFD), especially at small diameters D. Plescia (2005) questioned whether any area of Mars shows size distributions used for estimating crater retention ages on Mars. McEwen et al. (2005) and McEwen and Bierhaus (2006) suggested existing PFSFD’s are hopelessly confused by the presence of secondaries, and that my isochrons give primary crater densities off by factors of several thousand at small D. In 2005, I addressed some of these concerns, noting my curves do not estimate primary crater densities per se, but show total numbers of primaries + semi-randomly “distant secondaries” (negating many McEwen et al. critiques). In 2006 I have conducted new crater counts on a PFSFD test area suggested by Ken Tanaka. This area shows young lava flows of similar crater density, west of Olympus Mons (around 30 deg N, 100 deg W). Multiple crater counts were made on several adjacent Odyssey THEMIS images and MGS MOC images, giving the SFD over a range of 11mMcEwen, A.S., Bierhaus, E.B., 2006, Ann. Rev. Earth. Planet. Sci. 34, 535-567. McEwen, A.S., 2005, Icarus 176, 351-381. Plescia, J.B. 2005, LPSC 36, 2171.

  3. Zumba crater, Daedalia Planum, Mars: Geologic investigation of a young, rayed impact crater and its secondary field

    Science.gov (United States)

    Chuang, Frank C.; Crown, David A.; Tornabene, Livio L.

    2016-05-01

    Zumba is a ∼2.9 km diameter rayed crater on Mars located on extensive lava plains in Daedalia Planum to the southwest of Arsia Mons. It is a well-preserved young crater with large ejecta rays that extend for hundreds of kilometers from the impact site. The rays are thermally distinct from the background lava flows in THEMIS daytime and nighttime thermal infrared data, a unique characteristic among martian rayed craters. Concentrated within the rays are solitary or dense clusters of secondary craters with associated diffuse dark-toned deposits along with fewer secondary craters lacking dark-toned deposits. Using CTX images, we have mapped secondary craters with dark-toned deposits, collectively termed "secondary fields", to investigate their distribution as a function of distance from the impact site. The mapped secondary field was then used to investigate various aspects of the crater-forming event such as the surface angle and direction of the projectile, the effect of secondary craters on surface age estimates, and the number of secondary craters produced by the impact event. From our mapping, a total of 13,064 secondary fields were documented out to a 200 km radial distance beyond a 15 km-wide non-secondary zone around Zumba crater. Results show that the highest areal coverage of secondary fields occurs within 100 km of Zumba and within its rays, decreasing radially with distance to a background scattering of small secondary fields that are population). The strong east-west asymmetry of crater rays and low areal coverage of fields to the south of Zumba correlate well with studies of Zumba impact melt deposits, indicating a moderately oblique impact projectile coming from the south. Using primary craters in a ∼101 km2 sample region and all craters (primaries and secondaries) from 43 select secondary fields in two map sectors in the study area, we obtain ages of ∼580 ± 100 Ma and ∼650 ± 70 Ma, respectively, for the lava flows into which Zumba impacted

  4. Low-velocity impact craters in ice and ice-saturated sand with implications for Martian crater count ages

    Science.gov (United States)

    Croft, S. K.; Kieffer, S. W.; Ahrens, T. J.

    1979-01-01

    The paper reports on a series of low-velocity impact experiments performed in ice and ice-saturated sand. It is found that crater diameters in ice-saturated sand were about 2 times larger than in the same energy and velocity range in competent blocks of granite, basalt and cement, while craters in ice were 3 times larger. It is shown that if this dependence of crater size on strength persists to large hypervelocity impact craters, then surface of geologic units composed of ice or ice-saturated soil would have greater crater count ages than rocky surfaces with identical influx histories. Among the conclusions are that Martian impact crater energy versus diameter scaling may also be a function of latitude.

  5. Raindrop impact on sand: dynamic and crater formation

    Science.gov (United States)

    Zhao, Song-Chuan; de Jong, Rianne; van der Meer, Devaraj

    2015-03-01

    Droplet impact on a granular bed is very common in nature, industry, and agriculture and extends from raindrops falling on earth to wet granulation in the production process of many pharmaceuticals. In contrast to more traditionally studied impact phenomena, such as a droplet impact on solid substrate and solid object impact on fluid-like substrate, raindrop impact on sand induces more complicated interactions. First, both the intruder and the target deform during impact; second, the liquid composing the droplet may penetrate into the substrate during the impact and may, in the end, completely merge with the grains. These complex interactions between the droplet intruder and the granular target create the very diverse crater morphologies that has been described in the literature. An appealing and natural question is how the craters are formed. To gain insight in the mechanism of crater formation, we resolve the dynamics with high-speed laser profilometry and study the dependence of the dynamics on impact speed and packing fraction of the granular substrate. Finally, we establish a dynamical model to explain the various crater morphologies.

  6. Zumba crater, Daedalia Planum, Mars: Geologic investigation of a young, rayed impact crater and its secondary field

    Science.gov (United States)

    Chuang, Frank C.; Crown, David A.; Tornabene, Livio L.

    2016-05-01

    Zumba is a ∼2.9 km diameter rayed crater on Mars located on extensive lava plains in Daedalia Planum to the southwest of Arsia Mons. It is a well-preserved young crater with large ejecta rays that extend for hundreds of kilometers from the impact site. The rays are thermally distinct from the background lava flows in THEMIS daytime and nighttime thermal infrared data, a unique characteristic among martian rayed craters. Concentrated within the rays are solitary or dense clusters of secondary craters with associated diffuse dark-toned deposits along with fewer secondary craters lacking dark-toned deposits. Using CTX images, we have mapped secondary craters with dark-toned deposits, collectively termed "secondary fields", to investigate their distribution as a function of distance from the impact site. The mapped secondary field was then used to investigate various aspects of the crater-forming event such as the surface angle and direction of the projectile, the effect of secondary craters on surface age estimates, and the number of secondary craters produced by the impact event. From our mapping, a total of 13,064 secondary fields were documented out to a 200 km radial distance beyond a 15 km-wide non-secondary zone around Zumba crater. Results show that the highest areal coverage of secondary fields occurs within 100 km of Zumba and within its rays, decreasing radially with distance to a background scattering of small secondary fields that are primary craters in a ∼101 km2 sample region and all craters (primaries and secondaries) from 43 select secondary fields in two map sectors in the study area, we obtain ages of ∼580 ± 100 Ma and ∼650 ± 70 Ma, respectively, for the lava flows into which Zumba impacted. These ages are consistent with and intermediate to 0.1-1 Ga volcanic flow units within and near Daedalia Planum. For craters within the secondary fields, a log differential plot of the data shows a pronounced downward deflection of the binned points for

  7. Cratering on a Comet: Expectations for Deep Impact

    Science.gov (United States)

    Schultz, P. H.

    2001-11-01

    In 2005, the Deep Impact Mission will witness the collision of a 350kg impactor into Comet P-Temple 1. Laboratory impact experiments provide scaling laws that relate impactor mass to crater diameter and depth for various target and impactor properties. A series of experiments have been performed at the NASA Ames Vertical Gun Range in order to assess the effects of the density and impedance ratio between target and impactor, target compressibility, target porosity, and impact angle. Although the maximum velocity achievable in the laboratory is below that for Deep Impact (7km/sec versus 10.3 km/sec), varying impactor diameter and velocity allows extrapolating beyond this range, for certain assumptions. This approach has been used for various particulate targets including pumice (1.1 to 1.5 g/cc, sand (1.7g/cc), vermiculite (0.09 g/cc), and micro-spheres (0.05g/cc), which provide the maximum possible diameter produced on Temple 1. Smaller sizes are expected if strength, rather than gravity, controls limits of crater growth or if internal energy losses (e.g., pore-space collapse) reduce the coupling efficiency. Crater size also can be augmented through back pressures created by vapor expansion within the crater cavity. The maximum predicted crater diameters (without back pressure) for the DI impact into a 0.3 g/cc porous target are: 89 m (pumice), 124 m (fine sand), 98m (fine sand with compaction losses). Formation times approach 200 seconds. Crater size, plume evolution (size and photometry), formation time, ejection (curtain) angle, and the ejecta deposit will all contribute to meaningful interpretations of the near-surface properties.

  8. Karakul: a young complex impact crater in the Pamir, Tajikistan

    Science.gov (United States)

    Bouley, S.; Baratoux, D.; Baratoux, L.; Colas, F.; Dauvergne, J.; Losiak, A.; Vaubaillon, J.; Bourdeille, C.; Jullien, A.; Ibadinov, K.

    2011-12-01

    A fascinating controversy has been recently renewed about the origin of the Karakul depression in the Pamir (Tajikistan, 39°1'N, 73°27'E), about 4000 m above sea level. Based on the work of E. Gurov reporting breccia and shock features in minerals, the circular depression was mentioned in the Earth Impact Database as one of the largest complex craters, about 50 km in diameter. However, recent studies have suggested that the basin is actually a NW-SE extensional rift. We report the preliminary results of a new expedition in the Karakul area that successfully took place in June 2011. Different types of rocks have been observed, including metamorphosed sediments, granite, limestone, and rare occurrence. The granite appears to be the youngest rock predating the crater, with an age of 230-190 My2. The most exciting preliminary result is the finding of shatter cones in metamorphosed sediments in the northern part of the peninsula. Breccias (not necessary impact-breccia) occur as floats on the central island, and were also found in the northern part of the rim. Thin sections are in preparation at the time of writing, and the report on the search for shock features in granite and breccias will be presented at the conference. The age of the crater is unknown, but is necessarily younger than the India-Asia collision, 55 - 60 My ago. On the basis of the oldest sediments filling the depression, the crater has been tentatively attributed to Neogene, or Pliocene, and would be then younger than 23 My. Consequences of the formation of a large complex crater in the recent geological history of the Pamir have yet to be explored. In a context of elevated convergence rate and rapid exhumation, the site offers the possibility to investigate the possible interactions between impact cratering and tectonic activity. The formation of a 50 km crater has considerable effects on the environment, at least at the regional scale, suggesting the search for such effects in the sediment record

  9. Formation of complex impact craters - Evidence from Mars and other planets

    Science.gov (United States)

    Pike, R. J.

    1980-01-01

    An analysis of the depth vs diameter data of Arthur (1980), is given along with geomorphic data for 73 Martian craters. The implications for the formation of complex impact craters on solid planets is discussed. The analysis integrates detailed morphological observations on planetary craters with geologic data from terrestrial meteorite and explosion craters. The simple to complex transition for impact craters on Mars appears at diameters in the range of 3 to 8 km. Five features appear sequentially with increasing crater size, flat floors, central peaks and shallower depths, scalloped rims, and terraced walls. This order suggests that a shallow depth of excavation and a rebound mechanism have produced the central peaks, not centripetal collapse and deep sliding. Simple craters are relatively uniform in shape from planet to planet, but complex craters vary considerably. Both the average onset diameter for complex impact craters on Mars and the average depth of complex craters vary inversely with gravitational acceleration on four planets.

  10. Earth's Largest Meteorite Impact Craters discovered in South America?

    Science.gov (United States)

    Kellndorfer, J. M.; Schmidt-Falkenberg, H.

    2014-12-01

    Novel analysis of high resolution InSAR-based digital elevation data from the year 2001 Shuttle Radar Topography Mission combined with a recently produced dataset of pan-tropical vegetation height from ALOS-1 SAR and IceSAT/GLAS Lidar estimates led to the quasi-bald-Earth discovery of four sizable near-perfect circle arcs in South America under dense tropical forests ranging in length from 216 km to 441 km. Terrain elevation profiles of cross-sections across the arcs show a distinct vertical rising and falling in elevations of hundreds of meters over a horizontal distance of tens of kilometers. It is hypothesized that these sizable arcs and associated rim-like topographic terrain features are remnants of huge meteorite impact craters with diameters ranging from 770 km to 1,310 km, thus forming potentially the largest known impact carter structures discovered on Earth today. The potential impact crater rim structures are located north of the eastern Amazon River, in the coastal region of Recife and Natal, and in the Brazilian, Bolivian and Paraguayan border region encompassing the Pantanal. Elevation profiles, hillshades and gray-shaded elevation maps were produced to support the geomorphologic analysis. It is also speculated whether in three of the four potential impact craters, central uplift domes or peaks, which are typical for complex impact crater structures can be identified. The worlds largest iron ore mining area of Carajás in Para, Brazil, falls exactly in the center of the largest hypothesized circular impact crater showing topographic elevations similar to the rim structure discovered 655 km to the north-north-west. Based on the topographic/geomorphologic driven hypothesis, geologic exploration of these topographic features is needed to test whether indeed meteorite impact craters could be verified, what the more exact ellipsoidal shapes of the potential impact craters might be, and to determine when during geologic times the impacts would have taken

  11. Search for Impact Craters in Iran: Citizen Science as a Useful Method

    OpenAIRE

    Pourkhorsandi, Hamed

    2013-01-01

    To recognition probable impact craters in Iran, we use Google Earth data in the first step. Some probable structures identified and studies suggest non-impact origin for them. Studies on other craters in Iran are in progress.

  12. Impact craters at falling of large asteroids in Ukraine

    Science.gov (United States)

    Vidmachenko, A. P.

    2016-05-01

    Catastrophes of different scale that are associated with the fall of celestial bodies to the Earth - occurred repeatedly in its history. But direct evidence of such catastrophes has been discovered recently. Thus, in the late 1970s studies of terrestrial rocks showed that in layers of the earth's crust that corresponded to the period of 65 million years before the present, marked by the mass extinction of some species of living creatures, and the beginning of the rapid development of others. It was then - a large body crashed to Earth in the Gulf of Mexico in Central America. The consequence of this is the Chicxulub crater with a diameter of ~170 km on Yucatan Peninsula. Modern Earth's surface retains many traces of collisions with large cosmic bodies. To indicate the craters with a diameter of more than 2 km using the name "astrobleme". Today, it found more than 230. The largest astroblems sizes exceeding 200 km. Ukraine also has some own astroblems. In Ukraine, been found nine large impact craters. Ukrainian crystalline shield, because of its stability for a long time (more than 1.5 billion years), has the highest density of large astroblems on the Earth's surface. The largest of the Ukrainian astroblems is Manevytska. It has a diameter of 45 km. There are also Ilyinetskyi (7 km), Boltysh (25 km), Obolon' (20 km), Ternivka (12-15 km), Bilylivskyi (6 km), Rotmystrivka (3 km) craters. Zelenohayska astrobleme founded near the village Zelenyi Gay in Kirovograd region and consists of two craters: larger with diameter 2.5-3.5 km and smaller - with diameter of 800 m. The presence of graphite, which was the basis for the research of the impact diamond in astroblems of this region. As a result, the diamonds have been found in rocks of Ilyinetskyi crater; later it have been found in rocks in the Bilylivska, Obolon' and other impact structures. The most detailed was studied the geological structure and the presence of diamonds in Bilylivska astrobleme

  13. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    Science.gov (United States)

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  14. SOLID STATE PHYSICS OF IMPACT CRATER FORMATION: FURTHER CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    V. Celebonovic

    2013-01-01

    Full Text Available Impact craters exist on solid surface planets, their satellites and many asteroids. The aim of this paper is to propose a theoretical expression for the product ρr3 v2 1 , where the three symbols denote the mass density, radius and speed of the impactor. The expression is derived using well known results of solid state physics, and it can be used in estimating parameters of impactors which have led to formation of craters on various solid bodies in the Solar System.

  15. An Impact Crater in Palm Valley, Central Australia?

    CERN Document Server

    Hamacher, Duane W; O'Neill, Craig; Britton, Tui R

    2012-01-01

    We explore the origin of a ~280 m wide, heavily eroded circular depression in Palm Valley, Northern Territory, Australia using gravity, morphological, and mineralogical data collected from a field survey in September 2009. From the analysis of the survey, we debate probable formation processes, namely erosion and impact, as no evidence of volcanism is found in the region or reported in the literature. We argue that the depression was not formed by erosion and consider an impact origin, although we acknowledge that diagnostics required to identify it as such (e.g. meteorite fragments, shatter cones, shocked quartz) are lacking, leaving the formation process uncertain. We encourage further discussion of the depression's origin and stress a need to develop recognition criteria that can help identify small, ancient impact craters. We also encourage systematic searches for impact craters in Central Australia as it is probable that many more remain to be discovered.

  16. Hydrogeology associated to faulting of the Chicxulub Impact Crater rim

    Science.gov (United States)

    Rebolledo-Vieyra, M.; Hernandez-Terrones, L.; Almazan-Becerril, A.; Valadez-Cruz, F.

    2011-12-01

    The only surface expression of the Chicxulub Impact Crater is a Ring of Cenotes (sinkholes) whose density varies from several cenotes per kilometer, to several kilometers between each cenote. This ring has a radius of approximately 90 km and it is centered at Chicxulub Puerto. It is not known today whether the Ring of Cenotes is the surface expression of the transient cavity as some authors have suggested, or whether it is the outer rim of the impact structure. The center of the ring is approximately coincident with the center of the Chicxulub Impact Crater. Reactivation of K/T rim faults had been associated to the formation of the ring of cenotes. However, none of these models project such faults to the Tertiary sedimentary sequence; therefore we can only infer that the cenotes are associated to these faults. Other hypotheses include "post impact subsidence induced by slumping and viscous relaxation in the rim" and "slumping in the rim of the buried crater, differential thickness in the rocks overlying the crater, or solution collapse within porous impact deposits", others suggest duration of subaerial exposure and weathering as a principal reason both for difference in permeability and cenote density inside and outside the Ring. This is consistent with the evolution of surface features reported. While sedimentation occurred in the basin outlined by the Ring, erosion and karst weathering were taking place outside the Ring. The karst features are associated with gravity gradients, which have been interpreted as corresponding to peripheral faults of the buried crater. We conducted geoelectric tomography perpendicular to the ring of cenotes, where we mapped the karstic features in the area and we interpret the high permeability in this area, to be associated to the faults generated by the differential compaction of the sedimentary sequence within the crater. This fault system generates a secondary porosity with high permeability that allows the circulation of water

  17. Floor-fractured impact craters on Venus: Implications for igneous crater modification and local mechanism

    Science.gov (United States)

    Wichman, R. W.; Schultz, P. H.

    1995-02-01

    Regional tectonism and volcanism affect crater modification and crater loss on Venus, but a comparison of Venusian craters to lunar floor-fractured craters suggest that a third style of more localized, crater-controlled magmatism also may occur on Venus. Based on lunar models for such magmatism, Venusian crustal conditions should generally favor crater-filling volcanism over crater-centered floor fracturing. Nevertheless, three craters on Venus strongly resemble extensively modified craters on the Moon where deformation can be attributed to failure over large crater-centered intrusions. Models for crater modification over igneous intrusions indicate typical magmatic pressure beneath these three craters of approximately 200-300 bars and intrusion depths of the order of 1-6 km. All three craters also share common settings and low elevations, whereas craters embayed by regional volcanism preferentially occur at much higher elevations on Venus. We suggest that the style of igneous crater modification on Venus thus may be elevation dependent, with crater-centered intrusions primarily occurring at low elevations on Venus. This interpretation is consistent with theoretically predicted variations in magmatic neutral buoyancy depth as a function of atmospheric pressure suggested by other authors.

  18. The MEMIN research unit: First results from impact cratering experiments into quartzite and tuff

    Science.gov (United States)

    Poelchau, M. H.; Hoerth, T.; Schäfer, F.; Deutsch, A.; Thoma, K.; Kenkmann, T.

    2012-09-01

    The MEMIN research unit is focused on performing and evaluating impact cratering experiments into geological materials. As a research unit, MEMIN uses a multidisciplinary approach, with different subprojects analyzing various aspects of the same cratering experiments, including crater morphology, ejecta dynamics, subsurface deformation, etc., along with numerical simulations of the impact process. A series of impact cratering experiments into quartzite and tuff targets is planned for June 2012. We intend to have completed a preliminary evaluation of these experiments for the EPSC conference.

  19. Unified force law for granular impact cratering

    OpenAIRE

    H. Katsuragi; Durian, D. J.

    2007-01-01

    Experiments on the low-speed impact of solid objects into granular media have been used both to mimic geophysical events and to probe the unusual nature of the granular state of matter. Observations have been interpreted in terms of conflicting stopping forces: product of powers of projectile depth and speed; linear in speed; constant, proportional to the initial impact speed; and proportional to depth. This is reminiscent of high-speed ballistics impact in the 19th and 20th centuries, when a...

  20. Suevites from the Rochechouart Impact Crater, France, and the Lake Mien Impact Crater, Sweden: The Search for Robust Carbon Minerals

    Science.gov (United States)

    Hough, R. M.; Langenhorst, F.; Stoffler, D.; Pillinger, C. T.; Gilmour, I.

    1995-09-01

    Suevite from the 24km Ries crater in southern Germany has recently been shown to contain diamond, lonsdaleite and silicon carbide (1). These minerals are of impact, not meteoritic, origin and probably formed by a combination of shock and plasma processes with the contribution due to each mechanism yet to be resolved (1). Diamonds are increasingly becoming an accepted impact signature and have been reported for several Ukranian impact craters including Zapadnaya (2) and also for the Popigai impact crater in Siberia (3). We have also found diamonds associated with the K/T boundary event 65 Ma ago in North America (4) and Mexico (5). The genesis of suevite at the Ries is thought to be within a fireball at very high temperatures and travelling at high velocities. Shocked minerals are associated with the suevite as are the high pressure polymorphs of quartz namely coesite and stishovite (6). Such an extreme temperature and pressure history for the suevite make it an ideal rock type to search for impact diamonds, we are therefore endeavouring to study other suevites from further impact craters, including Rochechouart and Mien. The 165-200 Ma Rochechouart impact crater in the Massif Central, France, is thought to have originally been some 20 km across and therefore is very similar in size to the Ries (7). The basement material of gneisses and granites is also akin to the Ries and as such makes it an ideal candidate for diamond poltypes and possibly silicon carbide. Lake Mien in Sweden has no outcrops of suevite breccia but does have glacial erratic blocks of suevite. The impact crater is only some 7-9 km in size and has an age of 120 Ma (8). It affords a useful method of investigating the importance of size as a controlling factor in formation of carbon impact minerals. The samples were treated with an acid demineralization procedure first developed for the extraction of diamond from meteorites and modified for the particular needs of studying terrestrial samples

  1. Impact cratering – fundamental process in geoscience and planetary science

    Indian Academy of Sciences (India)

    J K Pati; W U Reimold

    2007-04-01

    Impact cratering is a geological process characterized by ultra-fast strain rates, which generates extreme shock pressure and shock temperature conditions on and just below planetary surfaces. Despite initial skepticism, this catastrophic process has now been widely accepted by geoscientists with respect to its importance in terrestrial – indeed, in planetary – evolution. About 170 impact structures have been discovered on Earth so far, and some more structures are considered to be of possible impact origin. One major extinction event, at the Cretaceous–Paleogene boundary, has been firmly linked with catastrophic impact, but whether other important extinction events in Earth history, including the so-called “Mother of All Mass Extinctions” at the Permian–Triassic boundary, were triggered by huge impact catastrophes is still hotly debated and a subject of ongoing research. There is a beneficial side to impact events as well, as some impact structures worldwide have been shown to contain significant (in some cases, world class) ore deposits, including the gold– uranium province of the Witwatersrand basin in South Africa, the enormous Ni and PGE deposits of the Sudbury structure in Canada, as well as important hydrocarbon resources, especially in North America. Impact cratering is not a process of the past, and it is mandatory to improve knowledge of the past-impact record on Earth to better constrain the probability of such events in the future. In addition, further improvement of our understanding of the physico–chemical and geological processes fundamental to the impact cratering process is required for reliable numerical modeling of the process, and also for the correlation of impact magnitude and environmental effects. Over the last few decades, impact cratering has steadily grown into an integrated discipline comprising most disciplines of the geosciences as well as planetary science, which has created positive spin-offs including the study of

  2. Geological remote sensing signatures of terrestrial impact craters

    International Nuclear Information System (INIS)

    Geological remote sensing techniques can be used to investigate structural, depositional, and shock metamorphic effects associated with hypervelocity impact structures, some of which may be linked to global Earth system catastrophies. Although detailed laboratory and field investigations are necessary to establish conclusive evidence of an impact origin for suspected crater landforms, the synoptic perspective provided by various remote sensing systems can often serve as a pathfinder to key deposits which can then be targetted for intensive field study. In addition, remote sensing imagery can be used as a tool in the search for impact and other catastrophic explosion landforms on the basis of localized disruption and anomaly patterns. In order to reconstruct original dimensions of large, complex impact features in isolated, inaccessible regions, remote sensing imagery can be used to make preliminary estimates in the absence of field geophysical surveys. The experienced gained from two decades of planetary remote sensing of impact craters on the terrestrial planets, as well as the techniques developed for recognizing stages of degradation and initial crater morphology, can now be applied to the problem of discovering and studying eroded impact landforms on Earth. Preliminary results of remote sensing analyses of a set of terrestrial impact features in various states of degradation, geologic settings, and for a broad range of diameters and hence energies of formation are summarized. The intention is to develop a database of remote sensing signatures for catastrophic impact landforms which can then be used in EOS-era global surveys as the basis for locating the possibly hundreds of missing impact structures

  3. Impact-generated Hydrothermal Activity at the Chicxulub Crater

    Science.gov (United States)

    Kring, D. A.; Zurcher, L.; Abramov, O.

    2007-05-01

    Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated hydrothermal alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of hydrothermal alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the hydrothermal system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the hydrothermal system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of hydrothermal alteration.

  4. Thermoluminescence dating of the Kamil impact crater (Egypt)

    Science.gov (United States)

    Sighinolfi, Gian Paolo; Sibilia, Emanuela; Contini, Gabriele; Martini, Marco

    2015-02-01

    Thermoluminescence (TL) dating has been used to determine the age of the meteorite impact crater at Gebel Kamil (Egyptian Sahara). Previous studies suggested that the 45 m diameter structure was produced by a fall in recent times (less than 5000 years ago) of an iron meteorite impactor into quartz-arenites and siltstones belonging to the Lower Cretaceous Gilf Kebir Formation. The impact caused the complete fragmentation of the impactor, and the formation of a variety of impactites (e.g., partially vitrified dark and light materials) present as ejecta within the crater and in the surrounding area. After a series of tests to evaluate the TL properties of different materials including shocked intra-crater target rocks and different types of ejecta, we selected a suite of light-colored ejecta that showed evidence of strong thermal shock effects (e.g., partial vitrification and the presence of high-temperature and -pressure silica phases). The abundance of quartz in the target rocks, including the vitrified impactites, allowed TL dating to be undertaken. The variability of radioactivity of the intracrateric target rocks and the lack of direct in situ dosimetric evaluations prevented precise dating; it was, however, possible to constrain the impact in the 2000 BC-500 AD range. If, as we believe, the radioactivity measured in the fallback deposits is a reliable estimate of the mean radioactivity of the site, the narrower range 1600-400 BC (at the 2σ confidence level) can be realistically proposed.

  5. Impact cratering on granular beds: From the impact of raindrops to the strike of hailstones

    Science.gov (United States)

    Gordillo, Leonardo; Wang, Junping; Japardi, Fred; Teddy, Warren; Gao, Ming; Cheng, Xiang

    Impact craters generated by the impact of a spherical object onto a granular bed strongly depend on the material properties of impactors. As an example, impact cratering by liquid drops and by solid spheres exhibits qualitatively different power-law scalings for the size of resulting impact craters. While the basic energy conservation and dimensional analysis provide simple guiding rules, the detailed dynamics governing the relation between these power-law scalings is still far from clear. To analyze the transition between liquid-drop and solid-sphere impact cratering, we investigate impact cratering by liquid drops for a wide range of viscosities over 7 decades. Using high-speed photography and laser profilometry, we delineate the liquid-to-solid transition and show the emergence of the two asymptotic behaviors and their respective power laws. We find that granular avalanches triggered by impacts are crucial in understanding the energy partition between impacted surfaces and impactors, which directly determines the observed scaling relations. A simple model is constructed for the initial stage of the impact that explains the energy partition during crater formation. We ackowledge the support of NSF CAREER DMR-1452180. LG acknowledges fundings from CONICYT/BECAS CHILE 74160007.

  6. Granular impact cratering by liquid drops: Understanding raindrop imprints through an analogy to asteroid strikes

    OpenAIRE

    Zhao, Runchen; Zhang, Qianyun; Tjugito, Hendro; Cheng, Xiang

    2014-01-01

    When a granular material is impacted by a sphere, its surface deforms like a liquid yet it preserves a circular crater like a solid. Although the mechanism of granular impact cratering by solid spheres is well explored, our knowledge on granular impact cratering by liquid drops is still very limited. Here, by combining high-speed photography with high-precision laser profilometry, we investigate liquid-drop impact dynamics on granular surface and monitor the morphology of resulting impact cra...

  7. The MEMIN research unit: Scaling impact cratering experiments in porous sandstones

    Science.gov (United States)

    Poelchau, Michael H.; Kenkmann, Thomas; Thoma, Klaus; Hoerth, Tobias; Dufresne, Anja; SchńFer, Frank

    2013-01-01

    The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12 mm were accelerated to velocities of 2.5-7.8 km s-1, yielding craters with diameters between 3.9 and 40 cm. Results show that the target's porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger-scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size.

  8. Moessbauer studies on impactites from Lonar impact crater

    Energy Technology Data Exchange (ETDEWEB)

    Verma, H. C., E-mail: hcverma@iitk.ac.in [I I T Kanpur, Department of Physics (India); Misra, S., E-mail: misrasaumitra@gmail.com [Indian Institute of Geomagnetism (India); Shyam Prasad, M., E-mail: shyam@nio.org [National Institute of Oceanography, Geological Oceanography Division (India); Bijlani, N.; Tripathi, A., E-mail: rpt2002@sify.com [J.N.V. University, Department of Physics (India); Newsom, Horton, E-mail: newsom@unm.edu [University of New Mexico, Institute of Meteoritics and Department of Earth and Planetary Sciences (United States)

    2008-09-15

    Iron mineralogy has been studied using Moessbauer spectroscopy on eight glassy impactite samples from different parts of the Lonar Crater Rim Region. Distinct changes are observed when compared to the host basaltic samples. Significant amount of Fe{sup 3+} phase is observed in the impactite samples whereas this phase is known to be almost absent in the basalt. Besides this we have a strong Fe{sup 2+} doublet showing up corresponding to the main iron-containing mineral. The Moessbauer results are very similar to those with glasses from Ries crater which is also believed to have formed by meteoritic impact but on nonbasaltic rock bed. Besides the glassy samples, we also study some spherules found in the crater region and some fine glassy particles on the surfaces of melt impact bombs. These contain a good amount of magnetically ordered phase, most likely nanosize hematite. Interestingly, part of it is strongly attracted by a magnet and part of it is not. But both parts show a significantly strong six-line component corresponding to hematite.

  9. Space Radar Image of the Yucatan Impact Crater Site

    Science.gov (United States)

    1999-01-01

    This is a radar image of the southwest portion of the buried Chicxulub impact crater in the Yucatan Peninsula, Mexico. The radar image was acquired on orbit 81 of space shuttle Endeavour on April 14, 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The image is centered at 20 degrees north latitude and 90 degrees west longitude. Scientists believe the crater was formed by an asteroid or comet which slammed into the Earth more than 65 million years ago. It is this impact crater that has been linked to a major biological catastrophe where more than 50 percent of the Earth's species, including the dinosaurs, became extinct. The 180-to 300-kilometer-diameter (110- to 180-mile)crater is buried by 300 to 1,000 meters (1,000 to 3,000 feet) of limestone. The exact size of the crater is currently being debated by scientists. This is a total power radar image with L-band in red, C-band in green, and the difference between C-band L-band in blue. The 10-kilometer-wide (6-mile) band of yellow and pink with blue patches along the top left (northwestern side) of the image is a mangrove swamp. The blue patches are islands of tropical forests created by freshwater springs that emerge through fractures in the limestone bedrock and are most abundant in the vicinity of the buried crater rim. The fracture patterns and wetland hydrology in this region are controlled by the structure of the buried crater. Scientists are using the SIR-C/X-SAR imagery to study wetland ecology and help determine the exact size of the impact crater. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community

  10. The MEMIN Research Unit: New results from impact cratering experiments into geological materials

    Science.gov (United States)

    Poelchau, M. H.; Deutsch, A.; Thoma, K.; Kenkmann, T.

    2013-09-01

    The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on performing hypervelocity impact experiments, analyzing experimental impact craters and modeling cratering rocesses in geological materials. The main goal of the MEMIN project is to comprehensively quantify impact processes by conducting stringently controlled experimental impact cratering campaigns on the mesoscale with a multidisciplinary analytical approach. As a unique feature we use two-stage light gas guns capable of producing impact craters in thedecimeter size-range in solid rocks that, in turn, allow detailed spatial analysis of petrophysical, structural, and geochemical changes in target rocks and ejecta.

  11. Morphometry of impact craters on Mercury from MESSENGER altimetry and imaging

    Science.gov (United States)

    Susorney, Hannah C. M.; Barnouin, Olivier S.; Ernst, Carolyn M.; Johnson, Catherine L.

    2016-06-01

    Data acquired by the Mercury Laser Altimeter and the Mercury Dual Imaging System on the MESSENGER spacecraft in orbit about Mercury provide a means to measure the geometry of many of the impact craters in Mercury's northern hemisphere in detail for the first time. The combination of topographic and imaging data permit a systematic evaluation of impact crater morphometry on Mercury, a new calculation of the diameter Dt at which craters transition with increasing diameter from simple to complex forms, and an exploration of the role of target properties and impact velocity on final crater size and shape. Measurements of impact crater depth on Mercury confirm results from previous studies, with the exception that the depths of large complex craters are typically shallower at a given diameter than reported from Mariner 10 data. Secondary craters on Mercury are generally shallower than primary craters of the same diameter. No significant differences are observed between the depths of craters within heavily cratered terrain and those of craters within smooth plains. The morphological attributes of craters that reflect the transition from simple to complex craters do not appear at the same diameter; instead flat floors first appear with increasing diameter in craters at the smallest diameters, followed with increasing diameter by reduced crater depth and rim height, and then collapse and terracing of crater walls. Differences reported by others in Dt between Mercury and Mars (despite the similar surface gravitational acceleration on the two bodies) are confirmed in this study. The variations in Dt between Mercury and Mars cannot be adequately attributed to differences in either surface properties or mean projectile velocity.

  12. Impact Crater of the Australasian Tektites, Southern Laos

    Science.gov (United States)

    Sieh, K.; Herrin, J. S.; Wiwegwin, W.; Charusiri, P.; Singer, B. S.; Singsomboun, K.; Jicha, B. R.

    2015-12-01

    The Australasian strewn field, a horizon of glassy clasts formed of molten ejecta from the impact of a bolide about 770,000 years ago, covers about a tenth of the Earth - from Indochina to Australia and from the Indian to western Pacific oceans. The distribution of chemical and physical characteristics of these tektites implies a very large impact somewhere in central Indochina. A half-century of unsuccessful searching for the impact crater implies obscuration by either erosion or burial. Geomorphological and stratigraphic evidence suggests that the crater lies buried beneath lavas and cinder cones of a 100-km wide volcanic shield centered atop the Bolaven Plateau of southern Laos. One critical test of this hypothesis, using precise 40Ar/39Ar dating, is now in progress - are these highly weathered basalts younger than the tektites? Although volcanic rocks cover most of the area proximal to our purported impact site, a thick, crudely bedded, bouldery to pebbly breccia that crops out southeast of the obscured crater rim appears to be part of an ejecta blanket. The basal unit of this fining-upward sequence comprises large boulders of late-Mesozoic sandstone bedrock that display in situ shattering. This implies emplacement ballistically rather than by debris-flow. Old surfaces in the surrounding region (as others have noted) and on the Plateau have a mantle of pebbly, detrital lateritic debris that in its upper 15 cm contains angular tektite fragments. We hypothesize that this debris is a proximal fall bed produced by shock-induced comminution and ejection of a lateritic soil that covered the Plateau bedrock. Deposition was nearly complete when sparse tektite fragments ejected from nearer the center of the impact began to land. At many sites this pebbly, lateritic bed is overlain by a thick silty bed that others have associated with aeolian erosion of a barren, incinerated tropical landscape. See Herrin et al (this meeting) for more on the volcanic rocks.

  13. Fractal Fragmentation triggered by meteor impact: The Ries Crater (Germany)

    Science.gov (United States)

    Paredes Marino, Joali; Perugini, Diego; Rossi, Stefano; Kueppers, Ulrich

    2015-04-01

    FRACTAL FRAGMENTATION TRIGGERED BY METEOR IMPACT: THE RIES CRATER (GERMANY) Joali Paredes (1), Stefano Rossi (1), Diego Perugini (1), Ulrich Kueppers (2) 1. Department of Physics and Geology, University of Perugia, Italy 2. Department of Earth and Environmental Sciences, University of Munich, Germany The Nördlinger Ries is a large circular depression in western Bavaria, Germany. The depression was caused by a meteor impact, which occurred about 14.3 million-14.5 million years ago. The original crater rim had an estimated diameter of 24 kilometers. Computer modeling of the impact event indicates that the impact or probably had diameters of about 1.5 kilometers and impacted the target area at an angle around 30 to 50 degrees from the surface in a west- southwest to east-northeast direction. The impact velocity is thought to have been about 20 km/s. The meteor impact generated extensive fragmentation of preexisting rocks. In addition, melting of these rocks also occurred. The impact melt was ejected at high speed provoking its extensive fragmentation. Quenched melt fragments are ubiquitous in the outcrops. Here we study melt fragment size distributions with the aim of understanding the style of melt fragmentation during ejection and to constrain the rheological properties of such melts. Digital images of suevite (i.e. the rock generated after deposition and diagenesis of ash and fragments produced by the meteor impact) were obtained using a high-resolution optical scanner. Successively, melt fragments were traced by image analysis and the images segmented in order to obtain binary images on which impact melt fragments are in black color, embedded on a white background. Hence, the size of fragments was determined by image analysis. Fractal fragmentation theory has been applied to fragment size distributions of melt fragments in the Ries crater. Results indicate that melt fragments follow fractal distributions indicating that fragmentation of melt generated by the

  14. The impact crater as a habitat: effects of impact processing of target materials

    Science.gov (United States)

    Cockell, Charles S.; Osinski, Gordon R.; Lee, Pascal

    2003-01-01

    Impact structures are a rare habitat on Earth. However, where they do occur they can potentially have an important influence on the local ecology. Some of the types of habitat created in the immediate post-impact environment are not specific to the impact phenomenon, such as hydrothermal systems and crater lakes that can be found, for instance, in post-volcanic environments, albeit with different thermal characteristics than those associated with impact. However, some of the habitats created are specifically linked to processes of impact processing. Two examples of how impact processing of target materials has created novel habitats that improve the opportunities for colonization are found in the Haughton impact structure in the Canadian High Arctic. Impact-shocked rocks have become a habitat for endolithic microorganisms, and large, impact-shattered blocks of rock are used as resting sites by avifauna. However, some materials produced by an impact, such as melt sheet rocks, can make craters more biologically depauperate than the area surrounding them. Although there are no recent craters with which to study immediate post-impact colonization, these data yield insights into generalized mechanisms of how impact processing can influence post-impact succession. Because impact events are one of a number of processes that can bring localized destruction to ecosystems, understanding the manner in which impact structures are recolonized is of ecological interest. Impact craters are a universal phenomenon on solid planetary surfaces, and so they are of potential biological relevance on other planetary surfaces, particularly Mars.

  15. Fullerenes in an impact crater on the LDEF spacecraft

    Science.gov (United States)

    Radicati di Brozolo, F.; Bunch, T. E.; Fleming, R. H.; Macklin, J.

    1994-01-01

    The fullerenes C60 and C70 have been found to occur naturally on Earth and have also been invoked to explain features in the absorption spectra of interstellar clouds. But no definitive spectroscopic evidence exists for fullerenes in space and attempts to find fullerenes in carbonaceous chondrites have been unsuccessful. Here we report the observation of fullerenes associated with carbonaceous impact residue in a crater on the Long Duration Exposure Facility (LDEF) spacecraft. Laser ionization mass spectrometry and Raman spectroscopy indicate the presence of fullerenes in the crater and in adjacent ejecta. Man-made fullerenes survive experimental hypervelocity (approximately 6.1 km s-1) impacts into aluminium targets, suggesting that space fullerenes contained in a carbonaceous micrometeorite could have survived the LDEF impact at velocities towards the lower end of the natural particle encounter range (fullerenes were unlikely to have formed as instrumental artefacts, nor are they present as contaminants. Although we cannot specify the origin of the fullerenes with certainty, the most plausible source is the chondritic impactor. If, alternatively, the impact produced the fullerenes in situ on LDEF, then this suggests a viable mechanism for fullerene production in space.

  16. Wildfires Caused by Formation of Small Impact Craters: A Kaali Crater Case

    Science.gov (United States)

    Losiak, Anna; Belcher, Claire; Hudspith, Victoria; Zhu, Menghua; Bronikowska, Malgorzata; Jõeleht, Argo; Plado, Juri

    2016-04-01

    Formation of ~200-km Chicxulub 65 Ma ago was associated with release of significant amount of thermal energy [1,2,3] which was sufficient to start wildfires that had either regional [4] or global [5] range. The evidence for wildfires caused by impacts smaller than Chicxulub is inconclusive. On one hand, no signs of fires are associated with the formation of 24-km Ries crater [6]. On the other hand, the Tunguska site was burned after the impact and the numerical models of the bolide-produced thermal radiation suggest that the Tunguska-like event would produce a thermal flux to the surface that is sufficient to ignite pine needles [7]. However, in case of Tunguska the only proof for the bolide starting the fire comes from an eyewitness description collected many years after the event. Some authors [8] suggest that this fire might have been caused "normaly" later during the same year, induced on dead trees killed by the Tunguska fall. More recently it was observed that the Chelyabinsk meteor [9] - smaller than Tunguska event - did not produced a fire. In order to explore this apparent relationship in more detail, we have studied the proximal ejecta from a 100-m in diameter, ~3500 years old [10] Kaali crater (Estonia) within which we find pieces of charred organic material. Those pieces appear to have been produced during the impact, according to their stratigraphic location and following 14C analysis [19] as opposed to pre- or post-impact forest fires. In order to determine the most probable formation mechanism of the charred organic material found within Kaali proximal ejecta blanket, we: 1) Analyzed charcoal under SEM to identify the charred plants and determine properties of the charcoal related to the temperature of its formation [11]. Detected homogenization of cell walls suggests that at least some pieces of charcoal were formed at >300 °C [11]. 2) Analyzed the reflectance properties of the charred particles in order to determine the intensity with which

  17. The Chicxulub multi-ring impact crater, Yucatan carbonate platform, Gulf of Mexico

    OpenAIRE

    Jaime Urrutia-Fucugauchi; Antonio Camargo-Zanoguera; Ligia Pérez-Cruz; Guillermo Pérez-Cruz

    2011-01-01

    The Chicxulub impact crater is part of a select group of unique geological sites, being a natural laboratory to investigate crater formation processes and global effects of large-scale impacts. Chicxulub is one of only three multi-ring craters documented in the terrestrial record and impact has been related to the global environmental/climatic effects and mass extinction that mark the Cretaceous/Paleogene (K/Pg) boundary. The crater is buried under ~1.0 km of carbonate sediments in the Yucata...

  18. Dropping the Ball: The effect of anisotropic granular materials on ejecta and impact crater shape

    CERN Document Server

    Drexler, Philip; Arratia, Paulo

    2013-01-01

    In this fluid dynamics video, we present an experimental investigation of the shape of impact craters in granular materials. Complex crater shapes, including polygons, have been observed in many terrestrial planets as well as moons and asteroids. We release spherical projectiles from different heights above a granular bed (sand). The experiments demonstrate two different techniques to create non-circular impact craters, which we measure by digitizing the final crater topography. In the first method, we create trenches in the sand to mimic fault lines or valleys on a planetary target. During impact, ejecta move faster in the direction of the trenches, creating nearly elliptical craters with the major axis running parallel to the trench. Larger trenches lead to more oblong craters. In the second method, a hose beneath the surface of the sand injects nitrogen gas. The pressure of the gas counters the hydrostatic pressure of the sand, greatly reducing static friction between grains above the injection point, with...

  19. Role of the granular nature of meteoritic projectiles in impact crater morphogenesis

    CERN Document Server

    Bartali, Roberto; Nahmad-Molinari, Yuri; Sarochi, Damiano; Ruiz-Suárez, J C

    2013-01-01

    By means of novel volume-diameter aspect ratio diagrams, we ponder on the current conception of crater morphogenesis analyzing crater data from beam explosions, hypervelocity collisions and drop experiments and comparing them with crater data from three moons (the Moon, Callisto, and Ganymede) and from our own experimental results. The distinctive volume-diameter scaling laws we discovered make us to conclude that simple and complex craters in satellites and planets could have been formed by granular vs. granular collisions and that central peaks and domes in complex craters were formed by a dynamic confinement of part of the impacting projectile, rather than by the uplift of the target terrain. A granulometric analysis of asteroids and central peaks and domes inside complex craters, shows boulder size distributions consistent with our hypothesis that crater internal features are the remnants of granular impactors.

  20. Phobos grooves and impact craters: A stereographic analysis

    Science.gov (United States)

    Simioni, Emanuele; Pajola, Maurizio; Massironi, Matteo; Cremonese, Gabriele

    2015-08-01

    Phobos parallel grooves were first observed on Viking images 38 years ago and since then they have been greatly debated leading to several formation hypotheses. Nevertheless, none of them have been favoured and widely accepted. In this work, we provide a different approach, assuming that Phobos grooves can be the expression of fracture planes, and deriving their spatial distribution and orientation on 3D reconstructions, we point out that any origin related only to craters at Phobos surface should be ruled out, since the majority of the grooves is unrelated to any craters now present at its surface. This raises the intriguing possibility that such grooves, if expression of fracture planes, are remnant features of an ancient parent body from which Phobos could have originated. Such scenario has never been considered for Phobos, though this origin was already proposed for the formation of 433 Eros grooves (Buczkowski, D.L., Barnouin-Jha, O.S., Prockter, L.M. [2008]. Icarus 193, 39). If this idea holds true, the observed groove distribution could be explained as the result of possible major impacts on the larger parent body, which were inherited by the "Phobos shard".

  1. Characterization of the Morphometry of Impact Craters Hosting Polar Deposits in Mercury's North Polar Region

    Science.gov (United States)

    Talpe Matthieu; Zuber, Maria T.; Yang, Di; Neumann, Gregory A.; Solomon, Sean C.; Mazarico, Erwan; Vilas, Faith

    2012-01-01

    Earth-based radar images of Mercury show radar-bright material inside impact craters near the planet s poles. A previous study indicated that the polar-deposit-hosting craters (PDCs) at Mercury s north pole are shallower than craters that lack such deposits. We use data acquired by the Mercury Laser Altimeter on the MESSENGER spacecraft during 11 months of orbital observations to revisit the depths of craters at high northern latitudes on Mercury. We measured the depth and diameter of 537 craters located poleward of 45 N, evaluated the slopes of the northern and southern walls of 30 PDCs, and assessed the floor roughness of 94 craters, including nine PDCs. We find that the PDCs appear to have a fresher crater morphology than the non-PDCs and that the radar-bright material has no detectable influence on crater depths, wall slopes, or floor roughness. The statistical similarity of crater depth-diameter relations for the PDC and non-PDC populations places an upper limit on the thickness of the radar-bright material (< 170 m for a crater 11 km in diameter) that can be refined by future detailed analysis. Results of the current study are consistent with the view that the radar-bright material constitutes a relatively thin layer emplaced preferentially in comparatively young craters.

  2. Attenuation of Storm Surge Flooding By Wetlands in the Chesapeake Bay: An Integrated Geospatial Framework Evaluating Impacts to Critical Infrastructure

    Science.gov (United States)

    Khalid, A.; Haddad, J.; Lawler, S.; Ferreira, C.

    2014-12-01

    Areas along the Chesapeake Bay and its tributaries are extremely vulnerable to hurricane flooding, as evidenced by the costly effects and severe impacts of recent storms along the Virginia coast, such as Hurricane Isabel in 2003 and Hurricane Sandy in 2012. Coastal wetlands, in addition to their ecological importance, are expected to mitigate the impact of storm surge by acting as a natural protection against hurricane flooding. Quantifying such interactions helps to provide a sound scientific basis to support planning and decision making. Using storm surge flooding from various historical hurricanes, simulated using a coupled hydrodynamic wave model (ADCIRC-SWAN), we propose an integrated framework yielding a geospatial identification of the capacity of Chesapeake Bay wetlands to protect critical infrastructure. Spatial identification of Chesapeake Bay wetlands is derived from the National Wetlands Inventory (NWI), National Land Cover Database (NLCD), and the Coastal Change Analysis Program (C-CAP). Inventories of population and critical infrastructure are extracted from US Census block data and FEMA's HAZUS-Multi Hazard geodatabase. Geospatial and statistical analyses are carried out to develop a relationship between wetland land cover, hurricane flooding, population and infrastructure vulnerability. These analyses result in the identification and quantification of populations and infrastructure in flooded areas that lie within a reasonable buffer surrounding the identified wetlands. Our analysis thus produces a spatial perspective on the potential for wetlands to attenuate hurricane flood impacts in critical areas. Statistical analysis will support hypothesis testing to evaluate the benefits of wetlands from a flooding and storm-surge attenuation perspective. Results from geospatial analysis are used to identify where interactions with critical infrastructure are relevant in the Chesapeake Bay.

  3. Characterization of toxic impacts on living marine resources in tidal rivers of the Chesapeake Bay

    OpenAIRE

    Fulton, M.H.; Hyland, J. L.; Key, P B; Wirth, E. F.; Balthis, W. L.; Cooksey, C.; K. Chung; Leight, A.K.

    2007-01-01

    In 1999, the Chesapeake Bay Program completed a survey of existing data on chemical contaminants and the potential for bioeffects in 38 tidal river systems of Chesapeake Bay. This review led to the identification of 20 areas for which there were insufficient data to adequately characterize the potential for contaminant bioeffects on the Bay’s living resources. The goal of the present study was to estimate the current status of ecological condition in five of these areas and thus help to...

  4. The two Suvasvesi impact structures, Finland: Argon isotopic evidence for a "false" impact crater doublet

    Science.gov (United States)

    Schmieder, Martin; Schwarz, Winfried H.; Trieloff, Mario; Buchner, Elmar; Hopp, Jens; Tohver, Eric; Pesonen, Lauri J.; Lehtinen, Martti; Moilanen, Jarmo; Werner, Stephanie C.; Öhman, Teemu

    2016-05-01

    The two neighboring Suvasvesi North and South impact structures in central-east Finland have been discussed as a possible impact crater doublet produced by the impact of a binary asteroid. This study presents 40Ar/39Ar geochronologic data for impact melt rocks recovered from the drilling into the center of the Suvasvesi North impact structure and melt rock from glacially transported boulders linked to Suvasvesi South. 40Ar/39Ar step-heating analysis yielded two essentially flat age spectra indicating a Late Cretaceous age of ~85 Ma for the Suvasvesi North melt rock, whereas the Suvasvesi South melt sample gave a Neoproterozoic minimum (alteration) age of ~710 Ma. Although the statistical likelihood for two independent meteorite strikes in close proximity to each other is rather low, the remarkable difference in 40Ar/39Ar ages of >600 Myr for the two Suvasvesi impact melt samples is interpreted as evidence for two temporally separate, but geographically closely spaced, impacts into the Fennoscandian Shield. The Suvasvesi North and South impact structures are, thus, interpreted as a "false" crater doublet, similar to the larger East and West Clearwater Lake impact structures in Québec, Canada, recently shown to be unrelated. Our findings have implications for the reliable recognition of impact crater doublets and the apparent rate of binary asteroid impacts on Earth and other planetary bodies in the inner solar system.

  5. Impact cratering in sandstone: The MEMIN pilot study on the effect of pore water

    Science.gov (United States)

    Kenkmann, Thomas; Wünnemann, Kai; Deutsch, Alexander; Poelchau, Michael H.; Schäfer, Frank; Thoma, Klaus

    2011-06-01

    Planetary surfaces are subjected to meteorite bombardment and crater formation. Rocks forming these surfaces are often porous and contain fluids. To understand the role of both parameters on impact cratering, we conducted laboratory experiments with dry and wet sandstone blocks impacted by centimeter-sized steel spheres. We utilized a 40 m two-stage light-gas gun to achieve impact velocities of up to 5.4 km s-1. Cratering efficiency, ejection velocities, and spall volume are enhanced if the pore space of the sandstone is filled with water. In addition, the crater morphologies differ substantially from wet to dry targets, i.e., craters in wet targets are larger, but shallower. We report on the effects of pore water on the excavation flow field and the degree of target damage. We suggest that vaporization of water upon pressure release significantly contributes to the impact process.

  6. Joint IODP/ICDP Scientific Drilling of the Chicxulub Impact Crater

    Directory of Open Access Journals (Sweden)

    Penny Barton

    2007-03-01

    Full Text Available The Chicxulub impact crater in Mexico (Fig. 1 is unique in the terrestrial impact record. Its association with the Cretaceous–Paleocene (K-P mass extinction has generated great interest, but the precise environmental effects and associated extinction mechanisms remain a matter of some debate over several decades. Chicxulub is also the best preserved large impact crater on Earth and is the only known terrestrial impact structure with a demonstrable topographicpeak ring (Figs. 2 and 3. Peak rings are common features of large craters on the terrestrial planets yet their process of formation is poorly understood. At all other large terrestrial craters, erosion and/or tectonic deformation have removed the evidence of a peak ring, should one have existed. Chicxulub is, thus, the only crater where the peak ring can be imaged and sampled.

  7. An object-based classification method for automatic detection of lunar impact craters from topographic data

    Science.gov (United States)

    Vamshi, Gasiganti T.; Martha, Tapas R.; Vinod Kumar, K.

    2016-05-01

    Identification of impact craters is a primary requirement to study past geological processes such as impact history. They are also used as proxies for measuring relative ages of various planetary or satellite bodies and help to understand the evolution of planetary surfaces. In this paper, we present a new method using object-based image analysis (OBIA) technique to detect impact craters of wide range of sizes from topographic data. Multiresolution image segmentation of digital terrain models (DTMs) available from the NASA's LRO mission was carried out to create objects. Subsequently, objects were classified into impact craters using shape and morphometric criteria resulting in 95% detection accuracy. The methodology developed in a training area in parts of Mare Imbrium in the form of a knowledge-based ruleset when applied in another area, detected impact craters with 90% accuracy. The minimum and maximum sizes (diameters) of impact craters detected in parts of Mare Imbrium by our method are 29 m and 1.5 km, respectively. Diameters of automatically detected impact craters show good correlation (R2 > 0.85) with the diameters of manually detected impact craters.

  8. Central ring structure identified in one of the world's best-preserved impact craters

    Science.gov (United States)

    Gebhardt, A. C.; Niessen, F.; Kopsch, C.

    2006-03-01

    Seismic refraction and reflection data were acquired in 2000 and 2003 to study the morphology and sedimentary fill of the remote El'gygytgyn crater (Chukotka, northeastern Siberia; diameter 18 km). These data allow a first insight into the deeper structure of this unique impact crater. Wide-angle data from sonobuoys reveal a five-layer model: a water layer, two lacustrine sedimentary units that fill a bowl-shaped apparent crater morphology consisting of an upper layer of fallback breccia with P-wave velocities of ˜3000 m/s, and a lower layer of brecciated bedrock (velocities >3600 m/s). The lowermost layer shows a distinct anticline structure that, by analogy with other terrestrial and lunar craters of similar size, can be interpreted as a central ring structure. The El'gygytgyn crater exhibits a well-expressed morphology that is typical of craters formed in crystalline target rocks.

  9. A Re-Examination of the Relative Ages of Mare-Filled Impact Basins on the Lunar Nearside from the Gravity Signatures of Buried Craters

    Science.gov (United States)

    Evans, A. J.; Soderblom, J. M.; Solomon, S. C.; Zuber, M. T.

    2015-05-01

    GRAIL gravity data have revealed more than 100 putative buried impact craters beneath the nearside maria. We use this population of buried craters to re-assess basin chronology and the impact crater density of the lunar nearside.

  10. Global Geometric Properties of Martian Impact Craters: A Preliminary Assessment Using Mars Orbiter Laser Altimeter (MOLA)

    Science.gov (United States)

    Garvin, J. B.; Sakimoto, S. E. H.; Schnetzler, C.; Frawley, J. J.

    1999-01-01

    Impact craters on Mars have been used to provide fundamental insights into the properties of the martian crust, the role of volatiles, the relative age of the surface, and on the physics of impact cratering in the Solar System. Before the three-dimensional information provided by the Mars Orbiter Laser Altimeter (MOLA) instrument which is currently operating in Mars orbit aboard the Mars Global Surveyor (MGS), impact features were characterized morphologically using orbital images from Mariner 9 and Viking. Fresh-appearing craters were identified and measurements of their geometric properties were derived from various image-based methods. MOLA measurements can now provide a global sample of topographic cross-sections of martian impact features as small as approx. 2 km in diameter, to basin-scale features. We have previously examined MOLA cross-sections of Northern Hemisphere and North Polar Region impact features, but were unable to consider the global characteristics of these ubiquitous landforms. Here we present our preliminary assessment of the geometric properties of a globally-distributed sample of martian impact craters, most of which were sampled during the initial stages of the MGS mapping mission (i.e., the first 600 orbits). Our aim is to develop a framework for reconsidering theories concerning impact cratering in the martian environment. This first global analysis is focused upon topographically-fresh impact craters, defined here on the basis of MOLA topographic profiles that cross the central cavities of craters that can be observed in Viking-based MDIM global image mosaics. We have considered crater depths, rim heights, ejecta topologies, cross-sectional "shapes", and simple physical models for ejecta emplacement. To date (May, 1999), we have measured the geometric properties of over 1300 impact craters in the 2 to 350 km diameter size interval. A large fraction of these measured craters were sampled with cavity-center cross-sections during the first

  11. Dating a small impact crater: An age of Kaali crater (Estonia) based on charcoal emplaced within proximal ejecta

    Science.gov (United States)

    Losiak, A.; Wild, E. M.; Geppert, W. D.; Huber, M. S.; Jõeleht, A.; Kriiska, A.; Kulkov, A.; Paavel, K.; Pirkovic, I.; Plado, J.; Steier, P.; VäLja, R.; Wilk, J.; Wisniowski, T.; Zanetti, M.

    2016-04-01

    The estimates of the age of the Kaali impact structure (Saaremaa Island, Estonia) provided by different authors vary by as much as 6000 years, ranging from ~6400 to ~400 before current era (BCE). In this study, a new age is obtained based on 14C dating charred plant material within the proximal ejecta blanket, which makes it directly related to the impact structure, and not susceptible to potential reservoir effects. Our results show that the Kaali crater was most probably formed shortly after 1530-1450 BCE (3237 ± 10 14C yr BP). Saaremaa was already inhabited when the bolide hit the Earth, thus, the crater-forming event was probably witnessed by humans. There is, however, no evidence that this event caused significant change in the material culture (e.g., known archeological artifacts) or patterns of human habitation on Saaremaa.

  12. Processing of single channel air and water gun data for imaging an impact structure at the Chesapeake Bay

    Science.gov (United States)

    Lee, Myung W.

    1999-01-01

    Processing of 20 seismic profiles acquired in the Chesapeake Bay area aided in analysis of the details of an impact structure and allowed more accurate mapping of the depression caused by a bolide impact. Particular emphasis was placed on enhancement of seismic reflections from the basement. Application of wavelet deconvolution after a second zero-crossing predictive deconvolution improved the resolution of shallow reflections, and application of a match filter enhanced the basement reflections. The use of deconvolution and match filtering with a two-dimensional signal enhancement technique (F-X filtering) significantly improved the interpretability of seismic sections.

  13. Preliminary Examination of Impact Craters on Al Foil from the Stardust Interstellar Dust Collector

    Science.gov (United States)

    Stroud, R.; Stardust Interstellar Preliminary Examination Team; 29,000 Stardust@home Dusters

    2011-12-01

    The Interstellar Dust Collector from the NASA Stardust mission provides an unprecedented opportunity for direct laboratory study of particles from the contemporary interstellar dust (ISD) stream in order to obtain such information as grain composition and microstructure. The collector is comprised of two collection media: silica aerogel tiles and Al foil strips. Preliminary examination (PE) of particles captured in each medium is on-going. To-date, four grains analyzed in situ in aerogel with synchrotron X-ray techniques show track trajectories and elemental composition that indicate a probable interstellar origin. In addition, we report here the discovery of one crater on an Al foil for which the residue elemental composition and crater shape are consistent with the impact of a grain of interstellar origin, although an interplanetary origin has not been ruled out. Automated mapping by SEM is the primary tool for identifi-cation of craters on the Al foils. A complete map of each foil requires collection of several thousand images at a resolution of ~ 50 nm/px. Automated software has been developed to identify crater candidates, but so far it has not replaced manual efforts. Identified candidates are then re-imaged at ~ 15 nm/px, for confirmation as impact craters. Fifteen foils have been imaged; crater identification is complete for eight, yielding 32 craters. The average areal density of craters is 9.7 cm-2, which extrapolates to ~1500 craters on the total foil collection area. Initial elemental analysis of residues in six craters has been performed with a combination of Auger spectroscopy, conventional, off-axis energy dispersive X-ray spectroscopy (EDX), on-axis, silicon drift-detector EDX. Additional analysis by TEM of the residue composition and crater morphology was obtained on FIB cross-sections of four of the craters. All craters contained detectable levels of Si and O. One crater was found to contain Mg, Si, O, Fe, Ni, S, Ca and Cr, indicative of an

  14. Evidence for coeval Late Triassic terrestrial impacts from the Rochechouart (France) meteorite crater

    CERN Document Server

    Carporzen, L; Carporzen, Laurent; Gilder, Stuart A.

    2006-01-01

    High temperature impact melt breccias from the Rochechouart (France) meteorite crater record magnetization component with antipodal, normal and reverse polarities. The corresponding paleomagnetic pole for this component lies between the 220 Ma and 210 Ma reference poles on the Eurasian apparent polar wander path, consistent with the 214 $\\pm$ 8 Ma 40Ar/39Ar age of the crater. Late Triassic tectonic reconstructions of the Eurasian and North American plates place this pole within 95% confidence limits of the paleomagnetic pole from the Manicouagan (Canada) meteorite impact crater, which is dated at 214 $\\pm$ 1 Ma. Together, these observations reinforce the hypothesis of a Late Triassic, multiple meteorite impact event on Earth.

  15. Cracking associated with micrometeoroid impact craters in anodized aluminum alloy clamps on LDEF

    Science.gov (United States)

    Murr, Lawrence E.; Niou, Chorng S.; Quinones, Stella; Murr, Kyle S.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) is a reusable hollow-cylindrical satellite sustaining a total of 57 different experiments. The 130 sq m of spacecraft surface area included anodized 6061-T6 Al alloy bay frames and clamps for holding experiment trays in the bay areas. Attention is presently given to the micrometeoroid impact crater features observed on two tray clamps recovered from the LDEF leading-edge locations. It is found that even very subtle surface modifications in structural alloy anodizing can influence micrometeoroid impact crater cracking, notable radial cracking due to the ejecta-rim of the impact craters.

  16. Small craters on the meteoroid and space debris impact experiment

    Science.gov (United States)

    Humes, Donald H.

    1995-01-01

    Examination of 9.34 m(exp 2) of thick aluminum plates from the Long Duration Exposure Facility (LDEF) using a 25X microscope revealed 4341 craters that were 0.1 mm in diameter or larger. The largest was 3 mm in diameter. Most were roughly hemispherical with lips that were raised above the original plate surface. The crater diameter measured was the diameter at the top of the raised lips. There was a large variation in the number density of craters around the three-axis gravity-gradient stabilized spacecraft. A model of the near-Earth meteoroid environment is presented which uses a meteoroid size distribution based on the crater size distribution on the space end of the LDEF. An argument is made that nearly all the craters on the space end must have been caused by meteoroids and that very few could have been caused by man-made orbital debris. However, no chemical analysis of impactor residue that will distinguish between meteoroids and man-made debris is yet available. A small area (0.0447 m(exp 2)) of one of the plates on the space end was scanned with a 200X microscope revealing 155 craters between 10 micron and 100 micron in diameter and 3 craters smaller than 10 micron. This data was used to extend the size distribution of meteoroids down to approximately 1 micron. New penetration equations developed by Alan Watts were used to relate crater dimensions to meteoroid size. The equations suggest that meteoroids must have a density near 2.5 g/cm(exp 3) to produce craters of the shape found on the LDEF. The near-Earth meteoroid model suggests that about 80 to 85 percent of the 100 micron to 1 mm diameter craters on the twelve peripheral rows of the LDEF were caused by meteoroids, leaving 15 to 20 percent to be caused by man-made orbital debris.

  17. Scaling of liquid-drop impact craters in wet granular media

    OpenAIRE

    Zhang, Qianyun; Gao, Ming; Zhao, Runchen; Cheng, Xiang

    2015-01-01

    Combining high-speed photography with laser profilometry, we study the dynamics and the morphology of liquid-drop impact cratering in wet granular media---a ubiquitous phenomenon relevant to many important geological, agricultural, and industrial processes. By systematically investigating important variables such as impact energy, the size of impinging drops and the degree of liquid saturation in granular beds, we uncover a novel scaling for the size of impact craters. We show that this scali...

  18. Impact melting on Venus: Some considerations for the nature of the cratering record.

    Science.gov (United States)

    Grieve, Richard A. F.; Cintala, Mark J.

    1995-03-01

    Modeling the volume of impact melt and its variation with the size of the impact event indicates that, for similar-sized final craters, venusian impacts create about 25% more impact melt than terrestrial impacts. More significantly, venusian impacts result in approximately a factor of three more impact melt than lunar events producing equivalent-sized craters. This difference is due to the higher average impact velocity and higher ambient temperatures on Venus, which enhance impact-melt production, combined with higher planetary gravity, which inhibits crater growth for a given impact event. The initial, higher intrinsic temperature of incorporated clastic debris also contributes to impact melts with higher initial temperatures, lower viscosities, and longer cooling times on Venus with respect to lunar impact melts. The enhanced production of relatively hot, low-viscosity impact melts under venusian impact conditions may account for the long exterior runout flows and also for the radar-smooth interior floors of some venusian craters. We also argue that the anomalously deep character of Cleopatra may be attributed to drainage of its interior impact-melt pool to form the smooth deposits in the adjacent Fortuna Tessera. Increasing depth of melting with increasing cavity size, resulting in the progressive weakening of transient-cavity floor material, is offered as a possible explanation for the replacement of uplifted central peaks by rings with increasing crater diameter. A consequence of this process is that interior rings will increase in diameter relative to the diameter of the final crater's rim crest with increasing crater size, a trend observed on Venus and other terrestrial planets. This weakening of the target due to relatively enhanced impact-melt production in the venusian environment makes it unlikely that Orientale-style impact basins ever formed on Venus.

  19. Scaling of liquid-drop impact craters in wet granular media.

    Science.gov (United States)

    Zhang, Qianyun; Gao, Ming; Zhao, Runchen; Cheng, Xiang

    2015-10-01

    Combining high-speed photography with laser profilometry, we study the dynamics and the morphology of liquid-drop impact cratering in wet granular media-a ubiquitous phenomenon relevant to many important geological, agricultural, and industrial processes. By systematically investigating important variables such as impact energy, the size of impinging drops, and the degree of liquid saturation in granular beds, we uncover a scaling law for the size of impact craters. We show that this scaling can be explained by considering the balance between the inertia of impinging drops and the strength of impacted surface. Such a theoretical understanding confirms that the unique energy partition originally proposed for liquid-drop impact cratering in dry granular media also applies for impact cratering in wet granular media. Moreover, we demonstrate that compressive stresses, instead of shear stresses, control the process of granular impact cratering. Our study enriches the picture of generic granular impact cratering and sheds light on the familiar phenomena of raindrop impacts in granular media. PMID:26565233

  20. Periodic impact cratering and extinction events over the last 260 million years

    Science.gov (United States)

    Rampino, Michael R.; Caldeira, Ken

    2015-12-01

    The claims of periodicity in impact cratering and biological extinction events are controversial. A newly revised record of dated impact craters has been analyzed for periodicity, and compared with the record of extinctions over the past 260 Myr. A digital circular spectral analysis of 37 crater ages (ranging in age from 15 to 254 Myr ago) yielded evidence for a significant 25.8 ± 0.6 Myr cycle. Using the same method, we found a significant 27.0 ± 0.7 Myr cycle in the dates of the eight recognized marine extinction events over the same period. The cycles detected in impacts and extinctions have a similar phase. The impact crater dataset shows 11 apparent peaks in the last 260 Myr, at least 5 of which correlate closely with significant extinction peaks. These results suggest that the hypothesis of periodic impacts and extinction events is still viable.

  1. The detailed characterization of Martian impact craters from the 1/16 degree MOLA global topography grid

    OpenAIRE

    Wallis, D.; McBride, N.

    2001-01-01

    We describe a new project to obtain a global characterisation of Martian impact crater morphology from the 1/16 degree MOLA topography dataset. A new mathematical method applicable to both symmetric and asymmetric craters is used.

  2. Dione's resurfacing history as determined from a global impact crater database

    Science.gov (United States)

    Kirchoff, Michelle R.; Schenk, Paul

    2015-08-01

    Saturn's moon Dione has an interesting and unique resurfacing history recorded by the impact craters on its surface. In order to further resolve this history, we compile a crater database that is nearly global for diameters (D) equal to and larger than 4 km using standard techniques and Cassini Imaging Science Subsystem images. From this database, spatial crater density maps for different diameter ranges are generated. These maps, along with the observed surface morphology, have been used to define seven terrain units for Dione, including refinement of the smooth and "wispy" (or faulted) units from Voyager observations. Analysis of the terrains' crater size-frequency distributions (SFDs) indicates that: (1) removal of D ≈ 4-50 km craters in the "wispy" terrain was most likely by the formation of D ≳ 50 km craters, not faulting, and likely occurred over a couple billion of years; (2) resurfacing of the smooth plains was most likely by cryovolcanism at ∼2 Ga; (3) most of Dione's largest craters (D ⩾ 100 km), including Evander (D = 350 km), may have formed quite recently (history; and (4) the variation in crater SFDs at D ≈ 4-15 km is plausibly due to different levels of minor resurfacing (mostly subsequent large impacts) within each terrain.

  3. Comparing Radar and Optical Data Sets of Lunar Impact Crater Ejecta

    Science.gov (United States)

    Stickle, A. M.; Patterson, G.; Cahill, J.; Grier, J.

    2015-12-01

    Impact cratering is a primary weathering process of airless bodies and is the dominant method of redistributing material across the lunar surface. Crater ejecta blankets are a window into the impact cratering process and can provide important information on the properties of subsurface materials as well as surface evolution. Radar scattering information, in particular the circular polarization ratio (CPR), provides a useful means of investigating these properties. Using data returned from the Mini-RF instrument onboard NASA's LRO, we observe significant diversity in the CPR around young mare craters as a function of distance from the crater rim, regardless of crater size or relative age. Some commonalities in the scattering profiles are observed for all crater diameters: higher CPR values occur near the crater rim that decay with radial distance outward, larger craters have a higher CPR than smaller craters, and the overall shapes of the profiles are similar such that the main scattering characteristics of the studied craters can generally be grouped into three main categories. Comparing CPR profiles with data at other wavelengths provides additional insights and suggests two interesting results. The first is that comparisons of radar and optical data imply relationships between mare subsurface stratigraphy and structure and the relative size of the material found within the ejecta blanket. Of the examined craters, twelve have shelves of approximately constant CPR as well as discrete layers outcropping in the subsurface, and nine fall along a trend line when comparing shelf-width with thickness of subsurface layers. The second is that comparisons of radar data with other wavelengths may provide insights into the maturity of the surface. For example, some examined craters have laterally extensive, optically bright ejecta blankets suggesting that a region of rough, high-CPR material should be present near the crater rim, though this is not observed. Radar data is

  4. The Deep Impact crater on 9P/Tempel-1 from Stardust-NExT

    Science.gov (United States)

    Schultz, Peter H.; Hermalyn, Brendan; Veverka, Joe

    2013-02-01

    The Stardust-NExT (SdN) mission returned to Comet 9P/Tempel-1 and viewed the site of the Deep Impact (DI) collision just over one comet year later. Comparisons between pre-impact images from the ITS camera on the DI probe and SdN images reveal a 50 m-diameter crater surrounded by a low rim about 180 m in diameter. The removal of a small mound uprange (but offset from the trajectory) from the impact site can be related to changes in the evolution of ejecta. A narrow (6°) gap in the ejecta curtain downrange indicates that a ridge extending from the impact-facing scarp downrange interrupted the final stages of cratering in one small region. Together, these observations indicate that the DI excavation crater diameter was about 200 m (±20 m), a value consistent with the ejected mass derived from Earth- and space-based observations with the assumption that this mass represents only 10-20% of the total ejected mass. As a result, the DI crater visible today is consistent with either a larger transient crater, which collapsed, or a central crater of a nested crater resembling an inverted sombrero. The latter alternative would be expected from a layered target: a loose particulate surface about 1-2 m deep over a slightly more competent substrate.

  5. Geological Cartography of Inner Materials of an Impact Crater on Nepenthes Mensae, Mars

    Science.gov (United States)

    Valenciano, A.; de Pablo, M. A.

    2012-03-01

    We present the geological map and a brief description of the materials, its geological history and an approach to their astrobiological and exopaleontological implications from sedimentary materials located into impact crater, in Nepenthes Mensae, Mars.

  6. Understanding Spatial Statistics for Purposes of Identifying Non-Primary and Saturated Impact Crater Populations

    Science.gov (United States)

    Riggs, J. D.; Robbins, S. J.; Kirchoff, M. R.; Bierhaus, E. B.; Weaver, B. P.

    2015-05-01

    We discuss some traditional unidimensional summarization statistics and some newer spatial point statistical methods for understanding and identifying non-primary and saturated impact crater populations observed on a variety of solar system bodies.

  7. Measured and Modeled Morphometry of Simple Impact Craters

    Science.gov (United States)

    Watters, W. A.; Collins, G. S.

    2015-09-01

    We discuss the measured diameter dependence of well-preserved simple crater morphometry on Mars and compare with iSALE simulations. We also describe future work to fully characterize the dependence on impactor velocity and mass, and target properties.

  8. Large craters on the meteoroid and space debris impact experiment

    Science.gov (United States)

    Humes, Donald H.

    1992-01-01

    Examination of 29.37 sq m of thick aluminum plates from the LDEF, which were exposed to the meteoroid and man-made orbital debris environments for 5.8 years, revealed 606 craters that were 0.5 mm in diameter or larger. Most were nearly hemispherical. There was a large variation in the number density of craters around the three axis gravity gradient stabilized spacecraft. A new model of the near-Earth meteoroid environment gives good agreement with the crater fluxes measured on the fourteen faces of the LDEF. The man-made orbital debris model of Kessler, which predicts that 16 pct. of the craters would be caused by man-made debris, is plausible. No chemical analyses of impactor residue that will distinguish between meteoroids and man-made debris is yet available.

  9. Numerical modeling of seismic anomalies at impact craters on a laboratory scale

    Science.gov (United States)

    Wuennemann, K.; Grosse, C. U.; Hiermaier, S.; Gueldemeister, N.; Moser, D.; Durr, N.

    2011-12-01

    Almost all terrestrial impact craters exhibit a typical geophysical signature. The usually observed circular negative gravity anomaly and reduced seismic velocities in the vicinity of crater structures are presumably related to an approximately hemispherical zone underneath craters where rocks have experienced intense brittle plastic deformation and fracturing during formation (see Fig.1). In the framework of the "MEMIN" (multidisciplinary experimental and modeling impact crater research network) project we carried out hypervelocity cratering experiments at the Fraunhofer Institute for High-Speed Dynamics on a decimeter scale to study the spatiotemporal evolution of the damage zone using ultrasound, acoustic emission techniques, and numerical modeling of crater formation. 2.5-10 mm iron projectiles were shot at 2-5.5 km/s on dry and water-saturated sandstone targets. The target material was characterized before, during and after the impact with high spatial resolution acoustic techniques to detect the extent of the damage zone, the state of rocks therein and to record the growth of cracks. The ultrasound measurements are applied analog to seismic surveys at natural craters but used on a different - i.e. much smaller - scale. We compare the measured data with dynamic models of crater formation, shock, plastic and elastic wave propagation, and tensile/shear failure of rocks in the impacted sandstone blocks. The presence of porosity and pore water significantly affects the propagation of waves. In particular the crushing of pores due to shock compression has to be taken into account. We present preliminary results showing good agreement between experiments and numerical model. In a next step we plan to use the numerical models to upscale the results from laboratory dimensions to the scale of natural impact craters.

  10. Chicxulub's Cretaceous-Tertiary Boundary Twin Crater. Was There a Double Impact in the Yucatan Peninsula?

    Science.gov (United States)

    Camargo, A. Z.; Juarez, J. S.

    2004-05-01

    In 1980, Alvarez and co-authors proposed that the K/T extinctions were caused by the effects of a celestial body falling on Earth. After a long search for the impact site, the 1981 work by Penfield and Camargo on a 170 km structure in the Yucatan Peninsula got the attention of the specialists, and it was later proved that it was the crater created by the impact of that celestial body. New data suggests the existence of a second impact crater close to Chicxulub, both being of the same age and created by two fragments of the same celestial boby. A new magnetic map plotted as a color-coded shaded relief surface, reveals a feature not evident before: two interlaced ringed anomalies of about 100 and 50 km diameters, the larger one related to the magnetic signature of the Chicxulub Crater, and the second located at its E-SE edge. The 50 km anomaly, with morphology similar to Chicxulub's, is interpreted as also corresponding to an impact crater, centered at about 89 Deg. Long. W and 21 Deg. Lat. N, close to the city of Izamal. The anomaly size indicates that the diameter of the IZAMAL CRATER is about 85 km. The Chicxulub Crater, being buried under several hundred meters of Tertiary carbonate rocks, is not visible from the surface or from space; although some surface expression of its morphology has been reported. The best known is the ring of cenotes (sink holes) at the crater's rim, visible on satellite images and photographs. The JPL/NASA image PIA03379, is a color-coded shaded relief image of terrain elevation in which the topography was exagerated to highlight the Chicxulub Crater rim. On this image, a semi circular arc of dark spots is also visible immediately to the E-SE of the Chicxulub Crater rim. These spots are interpreted as large irregular karstic depressions, similar to the ones along the cenote ring of Chicxulub. On the evidence of the spatial relationship of the magnetic anomalies and the satellite image features, we tested how well the proposed Izamal

  11. Ejecta velocity distribution of impact craters formed on quartz sand: Effect of projectile density on crater scaling law

    Science.gov (United States)

    Tsujido, Sayaka; Arakawa, Masahiko; Suzuki, Ayako I.; Yasui, Minami

    2015-12-01

    In order to clarify the effects of projectile density on ejecta velocity distributions for a granular target, impact cratering experiments on a quartz sand target were conducted by using eight types of projectiles with different densities ranging from 11 g cm-3 to 1.1 g cm-3, which were launched at about 200 m s-1 from a vertical gas gun at Kobe University. The scaling law of crater size, the ejection angle of ejecta grains, and the angle of the ejecta curtain were also investigated. The ejecta velocity distribution obtained from each projectile was well described by the π-scaling theory of v0/√{gR} =k2(x0/R)-1/μ, where v0, g, R and x0 are the ejection velocity, gravitational acceleration, crater radius and ejection position, respectively, and k2 and μ are constants mostly depending on target material properties (Housen, K.R., Holsapple, K.A. [2011]. Icarus 211, 856-875). The value of k2 was found to be almost constant at 0.7 for all projectiles except for the nylon projectile, while μ increased with the projectile density, from 0.43 for the low-density projectile to 0.6-0.7 for the high-density projectile. On the other hand, the π-scaling theory for crater size gave a μ value of 0.57, which was close to the average of the μ values obtained from ejecta velocity distributions. The ejection angle, θ, of each grain decreased slightly with distance, from higher than 45° near the impact point to 30-40° at 0.6 R. The ejecta curtain angle is controlled by the two elementary processes of ejecta velocity distribution and ejection angle; it gradually increased from 52° to 63° with the increase of the projectile density. The comparison of our experimental results with the theoretical model of the crater excavation flow known as the Z-model revealed that the relationship between μ and θ obtained by our experiments could not be described by the Z-model (Maxwell, D.E. [1977]. In: Roddy, D.J., Pepin, R.O., Merrill, R.B. (Eds.), Impact and Explosion Cratering

  12. Experimental impact cratering provides ground truth data for understanding planetary-scale collision processes

    Science.gov (United States)

    Poelchau, Michael H.; Deutsch, Alex; Kenkmann, Thomas

    2013-04-01

    Impact cratering is generally accepted as one of the primary processes that shape planetary surfaces in the solar system. While post-impact analysis of craters by remote sensing or field work gives many insights into this process, impact cratering experiments have several advantages for impact research: 1) excavation and ejection processes can be directly observed, 2) physical parameters of the experiment are defined and can be varied, and 3) cratered target material can be analyzed post-impact in an unaltered, uneroded state. The main goal of the MEMIN project is to comprehensively quantify impact processes by conducting a stringently controlled experimental impact cratering campaign on the meso-scale with a multidisciplinary analytical approach. As a unique feature we use two-stage light gas guns capable of producing impact craters in the decimeter size-range in solid rocks that, in turn, allow detailed spatial analysis of petrophysical, structural, and geochemical changes in target rocks and ejecta. In total, we have carried out 24 experiments at the facilities of the Fraunhofer EMI, Freiburg - Germany. Steel, aluminum, and iron meteorite projectiles ranging in diameter from 2.5 to 12 mm were accelerated to velocities ranging from 2.5 to 7.8 km/s. Targets were solid rocks, namely sandstone, quartzite and tuff that were either dry or saturated with water. In the experimental setup, high speed framing cameras monitored the impact process, ultrasound sensors were attached to the target to record the passage of the shock wave, and special particle catchers were positioned opposite of the target surface to capture the ejected target and projectile material. In addition to the cratering experiments, planar shock recovery experiments were performed on the target material, and numerical models of the cratering process were developed. The experiments resulted in craters with diameters up to 40 cm, which is unique in laboratory cratering research. Target porosity

  13. Grazing Impacts Upon Earth's Surface: Towards an Understanding of the Rio Cuarto Crater Field

    Science.gov (United States)

    Beech, Martin

    2014-10-01

    The origin of the Rio Cuarto crater field, Argentina has been widely debated since the early 1990s when it was first brought to public attention. In a binary on-off sense, however, the craters are either of a terrestrial origin or they formed via a large asteroid impact. While there are distinct arguments in favour of the former option being the correct interpretation, it is the latter possibility that is principally investigated here, and five distinct impact formation models are described. Of the impact scenarios it is found that the most workable model, although based upon a set of fine-tuned initial conditions, is that in which a large, 100-150-m initial diameter asteroid, entered Earth's atmosphere on a shallow angle path that resulted in temporary capture. In this specific situation a multiple-thousand kilometer long flight path enables the asteroid to survive atmospheric passage, without suffering significant fragmentation, and to impact the ground as a largely coherent mass. Although the odds against such an impact occurring are extremely small, the crater field may nonetheless be interpreted as having potentially formed via a very low-angle, smaller than 5° to the horizon, impact with a ground contact speed of order 5 km/s. Under this scenario, as originally suggested by Schultz and Lianza (Nature 355:234, 1992), the largest of the craters (crater A) in the Rio Cuarto structure was produced in the initial ground impact, and the additional, smaller craters are interpreted as being formed through the down-range transport of decapitated impactor material and crater A ejecta.

  14. An Approach to Understanding Complex Socio-Economic Impacts and Responses to Climate Disruption in the Chesapeake Bay Region

    Science.gov (United States)

    Schaefer, R. K.; Nix, M.; Ihde, A. G.; Paxton, L. J.; Weiss, M.; Simpkins, S.; Fountain, G. H.; APl GAIA Team

    2011-12-01

    In this paper we describe the application of a proven methodology for modeling the complex social and economic interactions of a system under stress to the regional issues that are tied to global climate disruption. Under the auspices of the GAIA project (http://gaia.jhuapl.edu), we have investigated simulating the complex interplay between climate, politics, society, industry, and the environment in the Chesapeake Bay Watershed and associated geographic areas of Maryland, Virginia, and Pennsylvania. This Chesapeake Bay simulation draws on interrelated geophysical and climate models to support decision-making analysis about the Bay. In addition to physical models, however, human activity is also incorporated via input and output calculations. For example, policy implications are modeled in relation to business activities surrounding fishing, farming, industry and manufacturing, land development, and tourism. This approach fosters collaboration among subject matter experts to advance a more complete understanding of the regional impacts of climate change. Simulated interactive competition, in which teams of experts are assigned conflicting objectives in a controlled environment, allow for subject exploration which avoids trivial solutions that neglect the possible responses of affected parties. Results include improved planning, the anticipation of areas of conflict or high risk, and the increased likelihood of developing mutually acceptable solutions.

  15. Asteroid Impacts, Crater Scaling Laws, and a Proposed Younger Age for Venus's Surface

    Science.gov (United States)

    Bottke, William; Ghent, Rebecca; Mazrouei, Sara; Robbins, Stuart; Vokrouhlicky, David

    2015-11-01

    A fascinating on-going debate concerns the asteroid sizes needed to form certain large craters. For example, numerical hydrocode models predict that ~12-14 km and ~8 km diameter asteroids are needed to produce craters like Chicxulub (~180 km) and Popigai (~100 km), respectively. The abundance of extraterrestrial Ir/Os measured at well-characterized impact boundaries on land and in oceanic cores, however, predict far smaller projectiles, 4-6 km and 2.5-4 km, respectively (e.g., Paquay et al. 2014; F. Kyte, pers. comm). To test who might be right by proxy, we transformed the near-Earth object (NEO) size distribution (Harris & D'Abramo 2015), where > 90% of the D > 1 km asteroids are known, into a model crater size distribution and compared it to the distribution of D > 20 km craters formed on the Moon, Mars, and Venus over the last ~1-3 Gyr. Here we kept things simple and assumed that f described the ratio between all crater and asteroid diameters of interest (i.e., f = D_crater / D_proj).To our surprise, we found f ~ 23-26 produced excellent matches for the crater size distributions on the Moon, Mars, and Venus, despite their differences in gravity, surface properties, impact velocities, etc. These same values work well for the Earth as well. Consider that terrestrial crater production rates derived by Shoemaker (1998) indicate 340 +/- 170 D > 20 km craters formed over the last 120 Myr. Using f = 25, we get the same value; a D > 0.8 km asteroid makes a D > 20 km crater, and they hit Earth every 0.35 Myr on average (e.g., Bottke et al. 2002), for a total of ~340 over 120 Myr. Accordingly, we predict Chicxulub and Popigai were made by D ~ 7 and D ~ 4 km asteroids, respectively, values close to their predicted sizes from Ir/Os measurements. This result also potentially explains why Chicxulub formed ~65 Myr ago; the interval between D ~ 7 km impacts on Earth is close to this rate.The NEO model by Bottke et al. (2002) also suggests asteroids hit Venus at roughly the same

  16. Identification of Possible Interstellar Dust Impact Craters on Stardust Foil I033N,1

    Science.gov (United States)

    Ansari, A.; ISPE Team; 29,000 Stardust@home Dusters

    2011-12-01

    The Interstellar Dust Collector onboard NASA's Stardust Mission - the first to return solid extraterrestrial material to Earth from beyond the Moon - was exposed to the interstellar dust stream for a total of 229 days prior to the spacecraft's return in 2006 [1]. Aluminum foils and aerogel tiles on the collector may have captured the first samples of contemporary interstellar dust. Interstellar Preliminary Examination (ISPE) focuses in part on crater identification and analysis of residue within the craters to determine the nature and origin of the impacting particles. Thus far, ISPE has focused on nine foils and found a total of 20 craters. The number density of impact craters on the foils exceeds by far estimates made from interstellar flux calculations [2]. To identify craters, foil I1033N,1 was scanned with the Field Museum's Evo 60 Scanning Electron Microscope (SEM) at a resolution of 52 nm/pixel with a 15 kV and 170-240 pA beam. Contamination was monitored according to the ISPE protocol: four 4 μm × 3 μm areas of C layers of different thicknesses on a Stardust-type Al foil were irradiated 20 times for 50 s each, while the C and Al signals were recorded with energy-dispersive X-ray spectroscopy (EDS). The C/Al ratio did not increase after 20 repetitions on each of the four areas. The same experiment repeated 7 months later yielded identical results. Thus, analysis with the SEM results in no detectable contamination. Crater candidates were manually selected from SEM images, then reimaged at higher resolution (17 nm/pixel) in order to eliminate false detections. The foil was then sent to Washington University for Auger Nanoprobe elemental analysis of crater 11_175 (diam. 1.1 μm), and to the Naval Research Laboratory for focused ion beam work and transmission electron microscopy and EDS. Twelve crater candidates (diam. 0.28 - 1.1 μm), both elliptical and circular, were identified. The number density of craters on foil 1033N is 15.8 cm^-2. Auger measurements

  17. Crustal structure of the Chicxulub Impact crater imaged with magnetotelluric exploration

    Science.gov (United States)

    Unsworth, Martyn; Enriquez, Oscar Campos; Belmonte, Salvador; Arzate, Jorge; Bedrosian, Paul

    2002-08-01

    The electrical resistivity structure of the Chicxulub Impact crater has been imaged using broadband magnetotelluric exploration. A 1-2 km thick sequence of conductive Tertiary sedimentary rocks was imaged within the crater. The shallow resistivity of this layer increases across the cenote ring. This is primarily due to a decrease in porosity, although the groundwater composition may have some effect. While this layer reduces the sensitivity of MT, several features can be discerned beneath it. In the center of the crater the structural high is imaged as a region of high resistivity. In the outer part of the crater, lower resistivities in the upper crust may be due to mineralization or hydrothermal alteration.

  18. Martian Polar Impact Craters: A Preliminary Assessment Using Mars Orbiter Laser Altimeter (MOLA)

    Science.gov (United States)

    Sakimoto, S. E. H.; Garvin, J. B.

    1999-01-01

    Our knowledge of the age of the layered polar deposits and their activity in the volatile cycling and climate history of Mars is based to a large extent on their apparent ages as determined from crater counts. Interpretation of the polar stratigraphy (in terms of climate change) is complicated by reported differences in the ages of the northern and southern layered deposits. The north polar residual ice deposits are thought to be relatively young, based on the reported lack of any fresh impact craters in Viking Orbiter Images. Herkenhoff et al., report no craters at all on the North polar layered deposits or ice cap, and placed an upper bound on the surface age (or, alternatively, the vertical resurfacing rate) of 100 thousand years to 10 million years, suggesting that the north polar region is an active resurfacing site. In contrast, the southern polar region was found to have at least 15 impact craters in the layered deposits and cap. Plaut et al, concluded that the surface was less than or = 120 million years old. This reported age difference factor of 100 to 1000 increases complexity in climate and volatile modeling. Recent MOLA results for the topography of the northern polar cap document a handful or more of possible craters, which could result in revised age or resurfacing estimates for the northern cap. This study is a preliminary look at putative craters in both polar caps. Additional information is contained in the original extended abstract.

  19. Impact Craters on Earth: Lessons for Understanding Martian Geological Materials and Processes

    Science.gov (United States)

    Osinski, G. R.

    2015-12-01

    Impact cratering is one of the most ubiquitous geological processes in the Solar System and has had a significant influence on the geological evolution of Mars. Unlike the Moon and Mercury, the Martian impact cratering record is notably diverse, which is interpreted to reflect interactions during the impact process with target volatiles and/or the atmosphere. The Earth also possesses a volatile-rich crust and an atmosphere and so is one of the best analogues for understanding the effects of impact cratering on Mars. Furthermore, fieldwork at terrestrial craters and analysis of samples is critical to ground-truth observations made based on remote sensing data from Martian orbiters, landers, and rovers. In recent years, the effect of target lithology on various aspects of the impact cratering process has emerged as a major research topic. On Mars, volatiles have been invoked to be the primary factor influencing the morphology of ejecta deposits - e.g., the formation of single-, double- and multiple-layered ejecta deposits - and central uplifts - e.g., the formation of so-called "central pit" craters. Studies of craters on Earth have also shown that volatiles complicate the identification of impactites - i.e., rocks produced and/or affected by impact cratering. Identifying impactites on Earth is challenging, often requiring intensive and multi-technique laboratory analysis of hand specimens. As such, it is even more challenging to recognize such materials in remote datasets. Here, observations from the Haughton (d = 23 km; Canada), Ries (d = 24 km; Germany), Mistastin (d = 28 km; Canada), Tunnunik, (d = 28 km; Canada), and West Clearwater Lake (d = 36 km; Canada) impact structures are presented. First, it is shown that some impactites mimic intrusive, volcanic, volcanoclastic and in some cases sedimentary clastic rocks. Care should, therefore, be taken in the identification of seemingly unusual igneous rocks at rover landing sites as they may represent impact melt

  20. How Small Can Impact Craters Be Detected at Large Scale by Automated Algorithms?

    Science.gov (United States)

    Bandeira, L.; Machado, M.; Pina, P.; Marques, J. S.

    2013-12-01

    intended to be detected: the lower this limit is, the higher the false detection rates are. A detailed evaluation is performed with breakdown results by crater dimension and image or surface type, permitting to realize that automated detections in large crater datasets in HiRISE imagery datasets with 25cm/pixel resolution can be successfully done (high correct and low false positive detections) until a crater dimension of about 8-10 m or 32-40 pixels. [1] Martins L, Pina P. Marques JS, Silveira M, 2009, Crater detection by a boosting approach. IEEE Geoscience and Remote Sensing Letters 6: 127-131. [2] Salamuniccar G, Loncaric S, Pina P. Bandeira L., Saraiva J, 2011, MA130301GT catalogue of Martian impact craters and advanced evaluation of crater detection algorithms using diverse topography and image datasets. Planetary and Space Science 59: 111-131. [3] Bandeira L, Ding W, Stepinski T, 2012, Detection of sub-kilometer craters in high resolution planetary images using shape and texture features. Advances in Space Research 49: 64-74.

  1. Planar deformation features in quartz from impact-produced polymict breccia of the Xiuyan crater, China

    Science.gov (United States)

    Chen, Ming; Koeberl, Christian; Xiao, Wansheng; Xie, Xiande; Tan, Dayong

    2011-05-01

    The 1.8 km-diameter Xiuyan crater is an impact structure in northeastern China, exposed in a Proterozoic metamorphic rock complex. The major rocks of the crater are composed of granulite, hornblendite, gneiss, tremolite marble, and marble. The bottom at the center of the crater covers about 100 m thick lacustrine sediments underlain by 188 m thick crater-fill breccia. A layer of polymict breccia composed of clasts of granulite, gneiss, hornblendite, and fragments of glass as well as clastic matrix, occurs near the base, in the depth interval from 260 to 295 m. An investigation in quartz from the polymict breccia in the crater-fill units reveals abundant planar deformation features (PDFs). Quartz with multiple sets of PDFs is found in clasts of granulite that consist of mainly quartz and feldspar, and in fine-grained matrix of the impact-produced polymict breccia. A universal stage was used to measure the orientation of PDFs in 70 grains of quartz from five thin sections made from the clasts of granulite of polymict breccia recovered at the depth of 290 m. Forty-four percent of the quartz grains contain three sets of PDFs, and another 40% contain two sets of PDFs. The most abundant PDFs are rhombohedron forms of ?, ?, and ? with frequency of 33.5, 22.3, and 9.6%, respectively. A predominant PDF form of ? in quartz suggests a shock pressure >20 GPa. The occurrence of PDFs in quartz from the polymict breccia provides crucial evidence for shock metamorphism of target rocks and confirms the impact origin of this crater, which thus appears to be the first confirmed impact crater in China.

  2. Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits

    Science.gov (United States)

    Krüger, T.; van der Bogert, C. H.; Hiesinger, H.

    2016-07-01

    Using SELENE/Kaguya Terrain Camera and Lunar Reconnaissance Orbiter Camera (LROC) data, we produced a new, high-resolution (10 m/pixel), geomorphological and impact melt distribution map for the lunar crater Tycho. The distal ejecta blanket and crater rays were investigated using LROC wide-angle camera (WAC) data (100 m/pixel), while the fine-scale morphologies of individual units were documented using high resolution (∼0.5 m/pixel) LROC narrow-angle camera (NAC) frames. In particular, Tycho shows a large coherent melt sheet on the crater floor, melt pools and flows along the terraced walls, and melt pools on the continuous ejecta blanket. The crater floor of Tycho exhibits three distinct units, distinguishable by their elevation and hummocky surface morphology. The distribution of impact melt pools and ejecta, as well as topographic asymmetries, support the formation of Tycho as an oblique impact from the W-SW. The asymmetric ejecta blanket, significantly reduced melt emplacement uprange, and the depressed uprange crater rim at Tycho suggest an impact angle of ∼25-45°.

  3. Large rock slides in impact craters on the Moon and Mercury

    Science.gov (United States)

    Brunetti, Maria Teresa; Xiao, Zhiyong; Komatsu, Goro; Peruccacci, Silvia; Guzzetti, Fausto

    2015-11-01

    Impact craters are the most common surface features on the Moon and Mercury. On these two bodies, we recognized and mapped large landslides on the walls of impact craters. Through visual inspection of high-resolution imagery, we compiled an inventory of 60 landslides on the Moon and a second inventory of 58 landslides on Mercury. Adopting categories used to catalog terrestrial mass movements, we classified the landslides on the Moon and Mercury as rock slides. We determined the probability density distribution of their planimetric area, and we compared the distributions with similar distributions for terrestrial and martian landslides using data from the literature. We found that rock slides mapped in impact craters on the Moon are, on average, larger than analogous rock slides on Mercury. The relationship between the area of the individual rock slides and the area of the hosting crater suggests that rock slides on Mercury initiate in smaller craters. We hypothesize that the above findings are an effect of the weaker surface gravity of the Moon compared to that of Mercury and/or an effect of the rock material properties.

  4. Meteorite impact craters and possibly impact-related structures in Estonia

    Science.gov (United States)

    Plado, Jüri

    2012-10-01

    Three structures (Neugrund, Kärdla, and Kaali) of proven impact origin make Estonia the most cratered country in the world by area. In addition, several candidate impact structures exist, waiting for future studies to determine their origin. This article is an overview of these proven and possible impact structures, including some breccia layers. It summarizes the information and descriptions of the morphology; geological characteristics; and mineralogical, chemical, and geophysical data available in the literature. The overview was prepared to make information in many earlier publications in local journals (many of which had been published in Estonian or Russian) accessible to the international community. This review summarizes the facts and observations in a historical fashion, summarizing the current state of knowledge with some additional comments, and providing the references.

  5. Microbial mats of the Tswaing impact crater: results of a South African exobiology expedition and implications for the search for biological molecules on Mars

    OpenAIRE

    Cockell, C. S.; Brandt, D. (Dieter); Hand, K.; Lee, P C

    2001-01-01

    We describe microbial mats from the Tswaing impact crater in South Africa. The mats provide insights into the unique biological characteristics of impact craters and can help strategies for the search for biomolecules on Mars.

  6. Lunar Impact Basins: Stratigraphy, Sequence and Ages from Superposed Impact Crater Populations Measured from Lunar Orbiter Laser Altimeter (LOLA) Data

    Science.gov (United States)

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the superposed impact crater size-frequency distributions for 30 lunar basins (D = 300 km). These data generally support the widely used Wilhelms sequence of lunar basins, although we find significantly higher densities of superposed craters on many lunar basins than derived by Wilhelms (50% higher densities). Our data also provide new insight into the timing of the transition between distinct crater populations characteristic of ancient and young lunar terrains. The transition from a lunar impact flux dominated by Population 1 to Population 2 occurred before the mid-Nectarian. This is before the end of the period of rapid cratering, and potentially before the end of the hypothesized Late Heavy Bombardment. LOLA-derived crater densities also suggest that many Pre-Nectarian basins, such as South Pole-Aitken, have been cratered to saturation equilibrium. Finally, both crater counts and stratigraphic observations based on LOLA data are applicable to specific basin stratigraphic problems of interest; for example, using these data, we suggest that Serenitatis is older than Nectaris, and Humboldtianum is younger than Crisium. Sample return missions to specific basins can anchor these measurements to a Pre-Imbrian absolute chronology.

  7. Tenoumer impact crater, Mauritania: Impact melt genesis from a lithologically diverse target

    Science.gov (United States)

    Schultze, Dina Simona; Jourdan, Fred; Hecht, Lutz; Reimold, Wolf Uwe; Schmitt, Ralf-Thomas

    2016-02-01

    Impact melt rocks from the 1.9 km diameter, simple bowl-shaped Tenoumer impact crater in Mauritania have been analyzed chemically and petrologically. They are heterogeneous and can be subdivided into three types based on melt matrix color, occurrence of lithic clast components, amount of vesiculation (melt degassing), different proportions of carbonate melt mingled into silicate melt, and bulk rock chemical composition. These heterogeneities have two main causes (1) due to the small size of the impact crater, there was probably no coherent melt pool where a homogeneous mixture of melts, derived from different target lithologies, could be created; and (2) melt rock heterogeneity occurring at the thin section scale is due to fast cooling during and after the dynamic ejection and emplacement process. The overall period of crystal growth from these diverse melts was extremely short, which provides a further indication that complete chemical equilibration of the phases could not be achieved in such short time. Melt mixing processes involved in the generation of impact melts are, thus, recorded in nonequilibrium growth features. Variable mixing processes between chemically different melt phases and the formation of hybrid melts can be observed even at millimeter scales. Due to extreme cooling rates, different mixing and mingling stages are preserved in the varied parageneses of matrix minerals and in the mineral chemistry of microlites. 40Ar39Ar step-heating chronology on specimens from three melt rock samples yielded five concordant inverse isochron ages. The inverse isochron plots show that minute amounts of inherited 40Ar* are present in the system. We calculated a weighted mean age of 1.57 ± 0.14 Ma for these new results. This preferred age represents a refinement from the previous range of 21 ka to 2.5 Ma ages based on K/Ar and fission track dating.

  8. Hypervelocity impacts on dry and wet sandstone: Observations of ejecta dynamics and crater growth

    Science.gov (United States)

    Hoerth, Tobias; SchńFer, Frank; Thoma, Klaus; Kenkmann, Thomas; Poelchau, Michael H.; Lexow, Bernd; Deutsch, Alexander

    2013-01-01

    This study deals with the investigation of highly dynamic processes associated with hypervelocity impacts on porous sandstone. For the impact experiments, two light-gas accelerators with different calibers were used, capable of accelerating steel projectiles with diameters ranging from 2.5 to 12 mm to several kilometers per second. The projectiles impacted on dry and water-saturated Seeberger Sandstone targets. The study includes investigations of the influence of pore water on the shape of the ejecta cloud as well as transient crater growth. The results show a significant influence of pore water on ejecta behavior. Steeper ejecta cone angles are observed if the impacts are conducted on wet sandstones. The transient crater grows at a faster rate and reaches a larger diameter if the target is water saturated. In our experiments, target porosity leads to smaller crater sizes compared with nonporous targets. Water within the pore space reduces porosity and counteracts this process. Power law fits were applied to the crater growth curves. The results show an increase in the scaling exponent μ with increasing pore space saturation.

  9. Roter Kamm impact crater, Namibia: Geochemistry of basement rocks and breccias

    Science.gov (United States)

    Reimold, Wolf Uwe; Koeberl, Christian; Bishop, Janice

    1994-06-01

    The Roter Kamm crater in the southern Namib Desert has previously been identified as an impact structure on the basis of crater morphology and the presence of impact melt breccias which contain shock metamorphosed quartz and lithic clasts. To better define the variety of target rocks and breccias, we studied the petrography and chemical composition of a new suite of twenty-eight basement and breccia samples from the Roter Kamm crater. Based on chemical data for target lithologies and breccias we suggest that the crater was formed in a two-layer target region: an upper layer of Gariep metasediments (schist, marble, ± quartzite and sandstone) overlying the crystalline basement of the Namaqualand Metamorphic Complex. The basement was also heavily intruded by coarse-grained quartz veins and quartz- and quartz-feldspar pegmatites. The clast population in the melt breccias indicates that impact-induced melting involved mainly metasedimentary target rocks, with rarely detected contributions from pegmatite and granite/granodiorite. Three varieties of melt breccias can be defined: (1) "schistose," (2) quartzitic melt breccias, (3) "true" impact melt breccias. These melt breccia types are chemically heterogeneous, and even the impact melt breccias may have been produced in situ and not from a coherent melt body. The shapes of the schistose melt breccias, previously thought to be ejected impact breccias, are most likely caused by erosion, and these breccias are now interpreted to be locally derived. The crater basement as exposed at the rim was structurally severely affected and, at least locally, considerable thermal energy was generated during formation of large volumes of cataclastic, mylonitic, and pseudotachylitic breccias. Analyses of mylonite and pseudotachylites from the crater rim, as well as their respective host rocks, show that these breccias were mainly formed from local material. Analyses of pseudotachylite-like breccias indicate that these possible friction

  10. Impact melt- and projectile-bearing ejecta at Barringer Crater, Arizona

    Science.gov (United States)

    Osinski, Gordon R.; Bunch, Ted E.; Flemming, Roberta L.; Buitenhuis, Eric; Wittke, James H.

    2015-12-01

    Our understanding of the impact cratering process continues to evolve and, even at well-known and well-studied structures, there is still much to be learned. Here, we present the results of a study on impact-generated melt phases within ejecta at Barringer Crater, Arizona, one of the first impact craters on Earth to be recognized and arguably the most famous. We report on previously unknown impact melt-bearing breccias that contain dispersed fragments of the projectile as well as impact glasses that contain a high proportion of projectile material - higher than any other glasses previously reported from this site. These glasses are distinctly different from so-called "melt beads" that are found as a lag deposit on the present-day erosion surface and that we also study. It is proposed that the melts in these impact breccias were derived from a more constrained sub-region of the melt zone that was very shallow and that also had a larger projectile contribution. In addition to low- and high-Fe melt beads documented previously, we document Ca-Mg-rich glasses and calcite globules within silicate glass that provide definitive evidence that carbonates underwent melting during the formation of Barringer Crater. We propose that the melting of dolomite produces Ca-Mg-rich melts from which calcite is the dominant liquidus phase. This explains the perhaps surprising finding that despite dolomite being the dominant rock type at many impact sites, including Barringer Crater, calcite is the dominant melt product. When taken together with our estimate for the amount of impact melt products dispersed on, and just below, the present-day erosional surface, it is clear that the amount of melt produced at Barringer Crater is higher than previously estimated and is more consistent with recent numerical modeling studies. This work adds to the growing recognition that sedimentary rocks melt during hypervelocity impact and do not just decompose and/or devolatilize as was previously thought

  11. Analysis of Cometary Dust Impact Residues in the Aluminum Foil Craters of Stardust

    Science.gov (United States)

    Graham, G. A.; Kearsley, A. T.; Vicenzi, E. P.; Teslich, N.; Dai, Z. R.; Rost, D.; Horz, F.; Bradley, J. P.

    2007-01-01

    In January 2006, the sample return capsule from NASA s Stardust spacecraft successfully returned to Earth after its seven year mission to comet Wild-2. While the principal capture medium for comet dust was low-density graded silica aerogel, the 1100 series aluminum foil (approximately 100 m thick) which wrapped around the T6064 aluminum frame of the sample tray assembly (STA) contains micro-craters that constitute an additional repository for Wild-2 dust. Previous studies of similar craters on spacecraft surfaces, e.g. the Long Duration Exposure Facility (LDEF), have shown that impactor material can be preserved for elemental and mineralogical characterization, although the quantity of impact residue in Stardust craters far exceeds previous missions. The degree of shock-induced alteration experienced by the Wild-2 particles impacting on foil will generally be greater than for those captured in the low-density aerogel. However, even some of the residues found in LDEF craters showed not only survival of crystalline silicates but even their solar flare tracks, which are extremely fragile structures and anneal at around 600 C. Laboratory hypervelocity experiments, using analogues of Wild-2 particles accelerated into flight-grade foils under conditions close to those of the actual encounter, showed retention of abundant projectile residues at the Stardust encounter velocity of 6.1 km/s. During the preliminary examination (PE) of the returned foils, using optical and electron microscopy studies, a diverse range in size and morphologies of micro-craters was identified. In this abstract we consider the state of residue preservation in a diverse range of craters with respect to their elemental composition and inferred mineralogy of the original projectiles.

  12. Hypervelocity dust impact craters on photovoltaic devices imaged by ion beam induced charge

    International Nuclear Information System (INIS)

    Hypervelocity dust has a speed of greater than 5 km/s and is a significant problem for equipment deployed in space such as satellites because of impacts that damage vulnerable components. Photovoltaic (PV) arrays are especially vulnerable because of their large surface area and the performance can be degraded owing to the disruption of the structure of the junction in the cells making up the array. Satellite PV arrays returned to Earth after service in orbit reveal a large number of craters larger than 5 μm in diameter arising from hypervelocity dust impacts. Extensive prior work has been done on the analysis of the morphology of craters in PV cells to understand the origin of the micrometeoroid that caused the crater and to study the corresponding mechanical damage to the structure of the cell. Generally, about half the craters arise from natural micrometeoroids, about one third from artificial Al-rich debris, probably from solid rocket exhausts, and the remainder from miscellaneous sources both known and unknown. However to date there has not been a microscopic study of the degradation of the electrical characteristics of PV cells exposed to hypervelocity dust impacts. Here we present an ion beam induced charge (IBIC) pilot study by a 2 MeV He microbeam of craters induced on a Hamamatsu PIN diode exposed to artificial hypervelocity Al dust from a dust accelerator. Numerous 5–30 μm diameter craters were identified and the charge collection efficiency of the crater and surrounds mapped with IBIC with bias voltages between 0 and 20 V. At highest bias, it was found the efficiency of the crater had been degraded by about 20% compared to the surrounding material. The speed distribution achieved in the Al dust accelerator was peaked at about 4 km/s compared to 11–68 km/s for dust encountered in low Earth orbit. We are able to extrapolate the charge collection efficiency degradation rate of unbiased cells in space based on our current measurements and the

  13. Hypervelocity dust impact craters on photovoltaic devices imaged by ion beam induced charge

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Changyi [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia); Wu, Yiyong; Lv, Gang [National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environments, Harbin Institute of Technology, Harbin (China); Rubanov, Sergey [Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010 (Australia); Jamieson, David N., E-mail: d.jamieson@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2015-04-01

    Hypervelocity dust has a speed of greater than 5 km/s and is a significant problem for equipment deployed in space such as satellites because of impacts that damage vulnerable components. Photovoltaic (PV) arrays are especially vulnerable because of their large surface area and the performance can be degraded owing to the disruption of the structure of the junction in the cells making up the array. Satellite PV arrays returned to Earth after service in orbit reveal a large number of craters larger than 5 μm in diameter arising from hypervelocity dust impacts. Extensive prior work has been done on the analysis of the morphology of craters in PV cells to understand the origin of the micrometeoroid that caused the crater and to study the corresponding mechanical damage to the structure of the cell. Generally, about half the craters arise from natural micrometeoroids, about one third from artificial Al-rich debris, probably from solid rocket exhausts, and the remainder from miscellaneous sources both known and unknown. However to date there has not been a microscopic study of the degradation of the electrical characteristics of PV cells exposed to hypervelocity dust impacts. Here we present an ion beam induced charge (IBIC) pilot study by a 2 MeV He microbeam of craters induced on a Hamamatsu PIN diode exposed to artificial hypervelocity Al dust from a dust accelerator. Numerous 5–30 μm diameter craters were identified and the charge collection efficiency of the crater and surrounds mapped with IBIC with bias voltages between 0 and 20 V. At highest bias, it was found the efficiency of the crater had been degraded by about 20% compared to the surrounding material. The speed distribution achieved in the Al dust accelerator was peaked at about 4 km/s compared to 11–68 km/s for dust encountered in low Earth orbit. We are able to extrapolate the charge collection efficiency degradation rate of unbiased cells in space based on our current measurements and the

  14. UNAM Scientific Drilling Program of Chicxulub Impact Structure-Evidence for a 300 kilometer crater diameter

    Science.gov (United States)

    Urrutia-Fucugauchi, J.; Marin, L.; Trejo-Garcia, A.

    As part of the UNAM drilling program at the Chicxulub structure, two 700 m deep continuously cored boreholes were completed between April and July, 1995. The Peto UNAM-6 and Tekax UNAM-7 drilling sites are ˜150 km and 125 km, respectively, SSE of Chicxulub Puerto, near the crater's center. Core samples from both sites show a sequence of post-crater carbonates on top of a thick impact breccia pile covering the disturbed Mesozoic platform rocks. At UNAM-7, two impact breccia units were encountered: (1) an upper breccia, mean magnetic susceptibility is high (˜55 × 10-6 SI units), indicating a large component of silicate basement has been incorporated into this breccia, and (2) an evaporite-rich, low susceptibility impact breccia similar in character to the evaporite-rich breccias observed at the PEMEX drill sites further out. The upper breccia was encountered at ˜226 m below the surface and is ˜125 m thick; the lower breccia is immediately subjacent and is >240 m thick. This two-breccia sequence is typical of the suevite-Bunte breccia sequence found within other well preserved impact craters. The suevitic upper unit is not present at UNAM-6. Instead, a >240 m thick evaporite-rich breccia unit, similar to the lower breccia at UNAM-7, was encountered at a depth of ˜280 m. The absence of an upper breccia equivalent at UNAM-6 suggests some portion of the breccia sequence has been removed by erosion. This is consistent with interpretations that place the high-standing crater rim at 130-150 km from the center. Consequently, the stratigraphic observations and magnetic susceptibiity records on the upper and lower breccias (depth and thickness) support a ˜300 km diameter crater model.

  15. LU60645GT and MA132843GT Catalogues of Lunar and Martian Impact Craters Developed Using a Crater Shape-based Interpolation Crater Detection Algorithm for Topography Data

    Science.gov (United States)

    Salamuniccar, Goran; Loncaric, Sven; Mazarico, Erwan Matias

    2012-01-01

    For Mars, 57,633 craters from the manually assembled catalogues and 72,668 additional craters identified using several crater detection algorithms (CDAs) have been merged into the MA130301GT catalogue. By contrast, for the Moon the most complete previous catalogue contains only 14,923 craters. Two recent missions provided higher-quality digital elevation maps (DEMs): SELENE (in 1/16° resolution) and Lunar Reconnaissance Orbiter (we used up to 1/512°). This was the main motivation for work on the new Crater Shape-based interpolation module, which improves previous CDA as follows: (1) it decreases the number of false-detections for the required number of true detections; (2) it improves detection capabilities for very small craters; and (3) it provides more accurate automated measurements of craters' properties. The results are: (1) LU60645GT, which is currently the most complete (up to D>=8 km) catalogue of Lunar craters; and (2) MA132843GT catalogue of Martian craters complete up to D>=2 km, which is the extension of the previous MA130301GT catalogue. As previously achieved for Mars, LU60645GT provides all properties that were provided by the previous Lunar catalogues, plus: (1) correlation between morphological descriptors from used catalogues; (2) correlation between manually assigned attributes and automated measurements; (3) average errors and their standard deviations for manually and automatically assigned attributes such as position coordinates, diameter, depth/diameter ratio, etc; and (4) a review of positional accuracy of used datasets. Additionally, surface dating could potentially be improved with the exhaustiveness of this new catalogue. The accompanying results are: (1) the possibility of comparing a large number of Lunar and Martian craters, of e.g. depth/diameter ratio and 2D profiles; (2) utilisation of a method for re-projection of datasets and catalogues, which is very useful for craters that are very close to poles; and (3) the extension of the

  16. Geometric properties of Martian impact craters: Preliminary results from the Mars Orbiter Laser Altimeter

    Science.gov (United States)

    Garvin, James B.; Frawley, James J.

    1998-12-01

    The Mars Orbiter Laser Altimeter (MOLA) acquired high spatial and vertical resolution topographic data for 18 tracks across the northern hemisphere of Mars during the Fall of 1997. It sampled 98 minimally degraded impact craters between the latitudes of 80°N and 12°S The best fitting depth (d) versus diameter (D) power-law relationship for these craters is: d = 0.14 D0.90 for simple varieties, and d = 0.25 D0.49 for complex structures. The simple-to-complex transition diameter is 8 km (+/-0.5 km). The cross-sectional “shape” of the crater cavities was determined by fitting a power-function to each profile. Variation in the exponent (n) suggest the craters flatten with increasing diameter and impact energy. The ejecta thickness is skewed suggesting that use of existing empirical expressions for the expected radial decay of ejecta thickness is inappropriate for Mars in most cases.

  17. Mapping Buried Impact Craters in the Chryse Basin to Understand the Distribution of Outflow Channel Sediment

    Science.gov (United States)

    Miller, Moira; Frey, Herbert V.

    2016-01-01

    The Chryse Basin's location in the northern hemisphere of Mars allowed it to collect water from a number of major outflow channels. These outflows likely deposited significant amounts of sediment within the Basin. This project's goal was to see if mapping buried impact craters, revealed as Quasi-Circular Depressions (QCDs) in Mars Orbiter Laser Altimeter (MOLA) data, could be used to determine the distribution and variation of sediment thickness within the Basin. QCDs, including likely buried impact craters, were mapped to test the hypothesis that further into the basin there would be fewer smaller craters because thicker sediments would have preferentially covered them. Mapping was done using Gridview, an interactive graphics program that manipulates data, in this case topographic data from MOLA. It should be possible to estimate the thickness of the sediment from the smallest buried craters found in a given area, and therefore map out the change in sediment thickness across the basin. The smallest QCDs beginning to be completely covered by sediment were just below 30 km in diameter. The minimum sediment needed to cover a QCD of this size was calculated to be between 1-2km. Therefore, the absence of QCDs below 30 km in the NE corner of Chryse could be explained by sediment at least that thick. Lower thickness is expected elsewhere in the basin, especially in the SW, where more QCDs with smaller diameters were found. The method of mapping buried impact craters provides a way to determine variations in sediment thickness within the Chryse Basin. This method could be used on other sediment-covered areas to learn about past water flow.

  18. Crater chains on Mercury

    Science.gov (United States)

    Shevchenko, V.; Skobeleva, T.

    After discovery of disruption comet Shoemaker-Levy 9 into fragment train before it's collision with Jupiter there was proposed that linear crater chains on the large satellites of Jupiter and on the Moon are impact scars of past tidally disrupted comets.It's known that radar images have revealed the possible presence of water ice deposits in polar regions of Mercury. Impacts by a few large comets seem to provide the best explanation for both the amount and cleanliness of the ice deposits on Mercury because they have a larger volatile content that others external sources, for example, asteroid. A number of crater chains on the surface of Mercury are most likely the impact tracks of "fragment trains" of comets tidally disrupted by Sun or by Mercury and are not secondary craters. Mariner 10 image set (the three Mariner 10 flybys in 1974-1975) was used to recognize the crater chains these did not associate with secondary crater ejecta from observed impact structures. As example, it can be shown such crater chain located near crater Imhotep and crater Ibsen (The Kuiper Quadrangle of Mercury). Resolution of the Mariner 10 image is about 0.54 km/pixel. The crater chain is about 50 km long. It was found a similar crater chain inside large crater Sophocles (The Tolstoj Quadrangle of Mercury). The image resolution is about 1.46 km/pixel. The chain about 50 km long is located in northen part of the crater. Image resolution limits possibility to examine the form of craters strongly. It seems the craters in chains have roughly flat floor and smooth form. Most chain craters are approximately circular. It was examined many images from the Mariner 10 set and there were identified a total 15 crater chains and were unable to link any of these directly to any specific large crater associated with ejecta deposits. Chain craters are remarkably aligned. All distinguished crater chains are superposed on preexisting formations. A total of 127 craters were identified in the 15 recognized

  19. Postimpact heat conduction and compaction-driven fluid flow in the Chesapeake Bay impact structure based on downhole vitrinite reflectance data, ICDP-USGS Eyreville deep core holes and Cape Charles test holes

    Science.gov (United States)

    Malinconico, M.L.; Sanford, W.E.; Wright, Horton W.J.J., Jr.

    2009-01-01

    Vitrinite reflectance data from the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville deep cores in the centralcrater moat of the Chesapeake Bay impact structure and the Cape Charles test holes on the central uplift show patterns of postimpact maximum-temperature distribution that result from a combination of conductive and advective heat flow. Within the crater-fill sediment-clast breccia sequence at Eyreville, an isoreflectance (-0.44% Ro) section (525-1096 m depth) is higher than modeled background coastal-plain maturity and shows a pattern typical of advective fluid flow. Below an intervening granite slab, a short interval of sediment-clast breccia (1371-1397 m) shows a sharp increase in reflectance (0.47%-0.91% Ro) caused by conductive heat from the underlying suevite (1397-1474 m). Refl ectance data in the uppermost suevite range from 1.2% to 2.1% Ro. However, heat conduction alone is not sufficient to affect the temperature of sediments more than 100 m above the suevite. Thermal modeling of the Eyreville suevite as a 390 ??C cooling sill-like hot rock layer supplemented by compaction- driven vertical fluid flow (0.046 m/a) of cooling suevitic fluids and deeper basement brines (120 ??C) upward through the sediment breccias closely reproduces the measured reflectance data. This scenario would also replace any marine water trapped in the crater fill with more saline brine, similar to that currently in the crater, and it would produce temperatures sufficient to kill microbes in sediment breccias within 450 m above the synimsuevite. A similar downhole maturity pattern is present in the sediment-clast breccia over the central uplift. High-reflectance (5%-9%) black shale and siltstone clasts in the suevite and sediment-clast breccia record a pre-impact (Paleozoic?) metamorphic event. Previously published maturity data in the annular trough indicate no thermal effect there from impact-related processes. ?? 2009 The

  20. WIRGO in TIC's? [What (on Earth) is Really Going On in Terrestrial Impact Craters?

    Science.gov (United States)

    Dence, Michael R.

    2003-02-01

    Canada is well endowed with impact craters formed in crystalline rocks with relatively homogeneous physical properties. They exhibit all the main morphological-structural variations with crater size seen in craters on other rocky planets, from small simple bowl to large peak and ring forms. Lacking stratigraphy, analysis is based on the imprint of shock melting and metamorphism, the position of the GPL (limit of initial Grady-Kipp fracturing due to shock wave reverberations) relative to shock level, the geometry of late stage shears and breccias and the volume of shocked material beyond the GPL. Simple craters, exemplified by Brent (D = 3.7 km) allow direct comparison with models and experimental data. Results of interest include: 1. The central pool of impact melt and underlying breccia at the base of the crater fill is interpreted as the remnant of the transient crater lining; 2. The overlying main mass of breccias filling the final apparent crater results from latestage slumping of large slabs bounded by a primary shear surface that conforms to a sphere segment of radius, rs approx. = 2dtc, where dtc is the transient crater depth; 3. The foot of the primary shear intersects above the GPL at the centre of the melt pool and the rapid emplacement of slumped slabs produces further brecciation while suppressing any tendency for the centre to rise. In the autochthonous breccias below the melt and in the underlying para-allochthone below the GPL, shock metamorphism weakens with depth. The apparent attenuation of the shock pulse can be compared with experimentally derived rates of attenuation to give a measure of displacements down axis and estimates of the size of a nominal bolide of given velocity, the volume of impact melt and the energy released on impact. In larger complex craters (e.g. Charlevoix, D = 52 km) apparent shock attenuation is low near the centre but is higher towards the margin. The inflection point marks the change from uplift of deep material in the

  1. Internal structure of the Chicxulub Impact crater imaged with magnetotelluric exploration

    Science.gov (United States)

    Campos, O.; Unsworth, M.; Bedrosian, P.; Belmonte, S.; Arzate, J.; Lazorek, M.; Zimmer, U.

    2001-12-01

    The magnetotelluric technique allows remote sensing of the Earth's subsurface structure using natural, low frequency radio waves. It measures the electrical resistivity, a parameter that contains information about the lithology and fluid content of subsurface rock units. In January 2001, magnetotelluric (MT) data were collected on two radial profiles across the Chicxulub impact crater in Yucatan, Mexico. Each profile extended from the centre of the crater near Puerto Chicxulub to beyond the cenote ring. The MT data were processed and then combined with data collected in previous years by UNAM. The combined data set was then inverted to give a two-dimensional image of the subsurface resistivity structure of the crater. The following features can be resolved in the subsurface resistivity model. The Tertiary sedimentary sequence that fills the crater has a resistivity of 1-3 ohm-m and is approximately 2 km deep. In the basement a zone of high resistivity is imaged from the centre of the impact structure to a radius of approximately 45 km. This high resistivity at shallow depth can be interpreted as uplifted basement rocks of the structural high in the centre of the crater. Between radial distances of 50 and 70 km is a zone of lower resistivities in the upper 5-10 km of the crust. This coincides with the observed low in the Bouguer gravity anomaly. The coincidence of these two anomalies suggests a common origin. This is most probably due to a region of breccia that exhibits both low electrical resistivity and density.

  2. Craters on Pluto and Charon: The Influence of Low Gravities, Low Impact Speeds, and Unique Ices

    Science.gov (United States)

    Singer, K. N.; Schenk, P.; McKinnon, W. B.; Robbins, S. J.; Moore, J. M.; Bray, V. J.; Spencer, J. R.; Stern, S. A.; Grundy, W. M.; Beyer, R. A.; Howett, C.; Dalle Ore, C.; White, O. L.; Parker, A. H.; Porter, S.; Zangari, A. M.; Young, L. A.; Olkin, C.; Ennico Smith, K.; Weaver, H. A., Jr.

    2015-12-01

    The surfaces of Pluto and Charon display a wide variety of crater landforms. Pluto and Charon present a unique regime to investigate cratering physics due to a combination of circumstances: 1) their relatively low gravities—Pluto's gravity (~0.66 m s-2) falls between those of the large icy satellites of Jupiter and their mid-sized saturnian cousins, while Charon's gravity (0.28 m s-2) is more similar to the latter, 2) the low primary impact velocities onto Pluto and Charon's surfaces (average ~2 km s-1), and 3) the mix of surface ices likely present (e.g., N2, CO, CH4, H2O). We use available images from both the Long Range Reconnaissance Imager (LORRI; Cheng et al., 2008, SSR 140, 189-215) and data from the Ralph (Reuter et al., 2008, SSR 140, 129-154) color/composition instruments to characterize crater morphologies and ejecta characteristics. This presentation will focus on understanding formation of craters on Pluto and Charon (with reference to deformation/degradation processes described in other presentations) and will include comparison to icy satellites. We will also discuss what inferences can be drawn about impactor characteristics.

  3. Fragment shapes in impact experiments ranging from cratering to catastrophic disruption

    Science.gov (United States)

    Michikami, Tatsuhiro; Hagermann, Axel; Kadokawa, Tokiyuki; Yoshida, Akifumi; Shimada, Akira; Hasegawa, Sunao; Tsuchiyama, Akira

    2016-01-01

    Laboratory impact experiments have found that impact fragments tend to be elongated. Their shapes, as defined by axes a, b and c, these being the maximum dimensions of the fragment in three mutually orthogonal planes (a ⩾ b ⩾ c), are distributed around mean values of the axial ratios b/a ∼ 0.7 and c/a ∼ 0.5. This corresponds to a:b:c in the simple proportion 2:√2:1. The shape distributions of some boulders on Asteroid Eros, the small- and fast-rotating asteroids (diameter <200 m and rotation period <1 h), and asteroids in young families, are similar to those of laboratory fragments created in catastrophic disruptions. Catastrophic disruption is, however, a process that is different from impact cratering. In order to systematically investigate the shapes of fragments in the range from impact cratering to catastrophic disruption, impact experiments for basalt targets 5-15 cm in size were performed. A total of 28 impact experiments were carried out by firing a spherical nylon projectile (diameter 7.14 mm) perpendicularly into the target surface at velocities of 1.60-7.13 km/s. More than 12,700 fragments with b ⩾ 4 mm generated in the impact experiments were measured. We found that the mean value of c/a in each impact decreases with decreasing impact energy per unit target mass. For instance, the mean value of c/a in an impact cratering event is nearly 0.2, which is considerably smaller than c/a in a catastrophic disruption (∼0.5). The data presented here can provide important evidence to interpret the shapes of asteroids and boulders on asteroid surfaces, and can constrain current interpretations of asteroid formation. As an example, by applying our experimental results to the boulder shapes on Asteroid Itokawa's surface, we can infer that Itokawa's parent body must have experienced a catastrophic disruption.

  4. The XLLGG — A Hypervelocity Launcher for Impact Cratering Research

    Science.gov (United States)

    Lexow, B.; Bückle, A.; Wickert, M.; Hiermaier, S.

    2015-09-01

    Hypervelocity launchers are used to accelerate projectiles that simulate impacting meteoroids or asteroids. The XLLGG (eXtra Large Light Gas Gun) at the EMI (Ernst-Mach-Institute) was used within the MEMIN program.

  5. Impact Cratering and Its Planetary and Environmental Effects

    Science.gov (United States)

    Morrow, Jared; Gibson, Roger; Reimold, Wolf Uwe

    2009-01-01

    Large Meteorite Impacts and Planetary Evolution IV; Vredefort Dome, South Africa, 17-21 August 2008; The Fourth Conference on Large Meteorite Impacts and Planetary Evolution ( LMI IV) was held near the town of Parys in the Vredefort Dome, the center of Earth's oldest and largest preserved impact structure. The Vredefort Dome, approximately 120 kilometers southwest of Johannesburg, South Africa, presents a superb cross section through deep levels of the impact structure. The Dome also provides exposures of the exceptionally well preserved Archean and Paleoproterozoic (>3.1 to 2.1 billion year old) rocks of the Kaapvaal craton. In July 2005, the northwestern part of the Dome was declared a World Heritage Site. Work is under way to strengthen the tourism infrastructure at the site, including construction of a visitor center.

  6. Identification of buried lunar impact craters from GRAIL data and implications for the nearside maria

    Science.gov (United States)

    Evans, Alexander J.; Soderblom, Jason M.; Andrews-Hanna, Jeffrey C.; Solomon, Sean C.; Zuber, Maria T.

    2016-03-01

    Gravity observations from the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft have revealed more than 100 quasi-circular mass anomalies, 26-300 km in diameter, on the lunar nearside. These anomalies are interpreted to be impact craters filled primarily by mare deposits, and their characteristics are consistent with those of impact structures that formed prior to, and during, intervals of flooding of feldspathic terrane by mare basalt lavas. We determine that mare deposits have an average density contrast of 850-200+300 kg m-3 relative to the surrounding crust. The presence of a large population of volcanically buried craters with minimal topographic expression and diameters up to 300 km requires an average nearside mare thickness of at least 1.5 km and local lenses of mare basalt as thick as ~7 km.

  7. The Impact of Competition on Raising Mathematics Competency at Camelot Elementary School in Chesapeake, Virginia

    Science.gov (United States)

    Hayden, L. B.; Johnson, D.

    2012-12-01

    In 1995, the Virginia Department of Education approved a federal mandate for No Child Left Behind 2001 Education Act implementing the Standards of Learning (SOL) in four content areas: Mathematics, Science, English, and History and Social Sciences. These new guidelines set forth learning and achievement expectations for content areas for grades K-12 in Virginia's Public Schools. Given the SOL mandates, Virginia's elementary teachers and school leaders utilized research for specific teaching methods intended to encourage score improvements on end of year mathematics tests. In 2001, the concept of the Math Sprint Competition was introduced to Camelot Elementary School in Chesapeake Virginia, by researchers at Elizabeth City State University of Elizabeth City, North Carolina. Camelot Elementary, a K-5 school, is a Title I school nestled in a lower middle class neighborhood and houses a high number of minority students. On average, these students achieve lower test score gains than students in higher socioeconomic status district schools. Defined as a test-review based in relay format that utilizes released SOL test items, Math Sprint promotes mathematical skills outlined in Virginia SOL's and encourages competition among students that motivated them to quickly pick up on new material and retain the old material in order to out-do the others. Research identified was based on specific relationships between student competition and statewide testing results in mathematics for grades three, four, and five at Camelot Elementary. Data was compiled from results of the Math Sprint Competition and research focused on methods for motivating students encouraged by the use of a math sprint competition. Individual Pearson Product Moment Correlations were conducted to determine which variables possess strong and statistically significant relationships. Significantly, positive results came from 2005 to 2010 math sprints data from which students participated.

  8. Global Geometric Properties of Martian Impact Craters: An Assessment from Mars Orbiter Laser Altimeter (MOLA) Digital Elevation Models

    Science.gov (United States)

    Garvin, J. B.; Frawley, J. J.; Sakimoto, S. E. H.; Schnetzler, C.

    2000-01-01

    Global geometric characteristics of topographically fresh impact craters have been assessed, for the first time, from gridded MOLA topography. Global trends of properties such as depth/diameter differ from previous estimates. Regional differences are observed.

  9. Using Mars Orbiter Laser Altimeter (MOLA) Data to Assess Impact Crater Modification in the Arrhenius Region of Mars

    Science.gov (United States)

    Garvin, J. B.; Grosfils, E. B.; Sakimoto, S. E. H.

    2000-01-01

    This study combines MOLA altimetry with photographic imagery to begin assessing the extent to which sedimentary and volcanic processes have affected impact crater morphology in the Arrhenius region of Mars.

  10. A Comparison of Crater-Size Scaling and Ejection-Speed Scaling During Experimental Impacts in Sand

    Science.gov (United States)

    Anderson, J. L. B.; Cintala, M. J.; Johnson, M. K.

    2014-01-01

    Non-dimensional scaling relationships are used to understand various cratering processes including final crater sizes and the excavation of material from a growing crater. The principal assumption behind these scaling relationships is that these processes depend on a combination of the projectile's characteristics, namely its diameter, density, and impact speed. This simplifies the impact event into a single point-source. So long as the process of interest is beyond a few projectile radii from the impact point, the point-source assumption holds. These assumptions can be tested through laboratory experiments in which the initial conditions of the impact are controlled and resulting processes measured directly. In this contribution, we continue our exploration of the congruence between crater-size scaling and ejection-speed scaling relationships. In particular, we examine a series of experimental suites in which the projectile diameter and average grain size of the target are varied.

  11. Mid-Infrared Studies of Impact Rocks: Suevite from the Nördlinger Ries Crater, Germany

    Science.gov (United States)

    Morlok, A.; Ahmedi, M.; Hiesinger, H.; Helbert, J.

    2014-04-01

    Bulk suevites, impact rocks from the Ries impact crater, are very similar in their mid-infrared spectra. Red suevite exhibits a higher content of crystalline fragments compared to the Ottingen suevite. The Christiansen Feature (CF) reflects the felsic composition of the basement rocks in the area of the impact, mainly granite and gneiss. The shift of the CF in the smallest size fraction may indicate small differences in the composition of the finest fraction e.g. due to smaller grain sizes or greater strength of a (mafic ?) mineral fraction.

  12. Molecular dynamics study of crater formation by core-shell structured cluster impact

    Science.gov (United States)

    Aoki, Takaaki; Seki, Toshio; Matsuo, Jiro

    2012-07-01

    Crater formation processes by the impacts of large clusters with binary atomic species were studied using molecular dynamics (MD) simulations. Argon and xenon atoms are artificially organized in core-shell cluster structures with various component ratios and irradiated on a Si(1 0 0) target surface. When the cluster has Xe1000 core covered with 1000 Ar atoms, and impacts at a total of 20 keV, the core Xe cluster penetrates into the deep area, and a crater with a conical shape is left on the target. On the other hand, in the case of a cluster with the opposite structure, Ar1000 core covered with 1000 Xe atoms, the cluster stops at a shallow area of the target. The incident cluster atoms are mixed and tend to spread in a lateral direction, which results in a square shaped crater with a shallower hole and wider opening. The MD simulations suggest that large cluster impacts cause different irradiation effects by changing the structure, even if the component ratio is the same.

  13. Molecular dynamics study of crater formation by core-shell structured cluster impact

    International Nuclear Information System (INIS)

    Crater formation processes by the impacts of large clusters with binary atomic species were studied using molecular dynamics (MD) simulations. Argon and xenon atoms are artificially organized in core-shell cluster structures with various component ratios and irradiated on a Si(1 0 0) target surface. When the cluster has Xe1000 core covered with 1000 Ar atoms, and impacts at a total of 20 keV, the core Xe cluster penetrates into the deep area, and a crater with a conical shape is left on the target. On the other hand, in the case of a cluster with the opposite structure, Ar1000 core covered with 1000 Xe atoms, the cluster stops at a shallow area of the target. The incident cluster atoms are mixed and tend to spread in a lateral direction, which results in a square shaped crater with a shallower hole and wider opening. The MD simulations suggest that large cluster impacts cause different irradiation effects by changing the structure, even if the component ratio is the same.

  14. Delineating Bukit Bunuh impact crater boundary by geophysical and geotechnical investigation

    International Nuclear Information System (INIS)

    Evidences of crater morphology and shock metamorphism in Bukit Bunuh, Lenggong, Malaysia were found during the archaeological research conducted by the Centre for Global Archaeological Research Malaysia, Universiti Sains Malaysia. In order to register Bukit Bunuh as one of the world meteorite impact site, detailed studies are needed to verify the boundary of the crater accordingly. Geophysical study was conducted utilising the seismic refraction and 2-D electrical resistivity method. Seismic refraction survey was done using ABEM MK8 24 channel seismograph with 14Hz geophones and 40kg weight drop while 2-D electrical resistivity survey was performed using ABEM SAS4000 Terrameter and ES10-64C electrode selector with pole-dipole array. Bedrock depths were digitized from the sections obtained. The produced bedrock topography map shows that there is low bedrock level circulated by high elevated bedrock and interpreted as crater and rim respectively with diameter approximately 8km. There are also few spots of high elevated bedrock appear at the centre of the crater which interpreted as rebounds zone. Generally, the research area is divided into two layers where the first layer with velocity 400-1100 m/s and resistivity value of 10-800 Om predominantly consists of alluvium mix with gravel and boulders. Second layer represents granitic bedrock with depth of 5-50m having velocity >2100 m/s and resistivity value of >1500 Om. This research is strengthen by good correlation between geophysical data and geotechnical borehole records executed inside and outside of the crater, on the rim, as well as at the rebound area

  15. Delineating Bukit Bunuh impact crater boundary by geophysical and geotechnical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Azwin, I. N., E-mail: nurazwinismail@yahoo.com; Rosli, S.; Nordiana, M. M.; Ragu, R. R.; Mark, J. [Geophysics Section, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Mokhtar, S. [Centre for Global Archaeological Research Malaysia, 11800 USM, Penang (Malaysia)

    2015-03-30

    Evidences of crater morphology and shock metamorphism in Bukit Bunuh, Lenggong, Malaysia were found during the archaeological research conducted by the Centre for Global Archaeological Research Malaysia, Universiti Sains Malaysia. In order to register Bukit Bunuh as one of the world meteorite impact site, detailed studies are needed to verify the boundary of the crater accordingly. Geophysical study was conducted utilising the seismic refraction and 2-D electrical resistivity method. Seismic refraction survey was done using ABEM MK8 24 channel seismograph with 14Hz geophones and 40kg weight drop while 2-D electrical resistivity survey was performed using ABEM SAS4000 Terrameter and ES10-64C electrode selector with pole-dipole array. Bedrock depths were digitized from the sections obtained. The produced bedrock topography map shows that there is low bedrock level circulated by high elevated bedrock and interpreted as crater and rim respectively with diameter approximately 8km. There are also few spots of high elevated bedrock appear at the centre of the crater which interpreted as rebounds zone. Generally, the research area is divided into two layers where the first layer with velocity 400-1100 m/s and resistivity value of 10-800 Om predominantly consists of alluvium mix with gravel and boulders. Second layer represents granitic bedrock with depth of 5-50m having velocity >2100 m/s and resistivity value of >1500 Om. This research is strengthen by good correlation between geophysical data and geotechnical borehole records executed inside and outside of the crater, on the rim, as well as at the rebound area.

  16. The Chicxulub crater - impact metamorphism of sulfate and carbonate lithologies

    Science.gov (United States)

    Deutsch, A.; Langenhorst, F.; Hornemann, U.; Ivanov, B. A.

    2003-04-01

    It is discussed whether in the aftermath of the Chicxulub event, impact-released CO_2 and SO_x have changed the Earth's climate, acting also as lethal thread for life. Undoubtedly, vaporization of carbonates and sulfates, which are major target lithologies at the Chicxulub impact site, occurred in the footprint of the projectile. What happened to these lithologies outside this very restricted zone was so far unconstrained. Petrologic observations on PEMEX and UNAM as well as on the CSDP cores allow to set up a general classification for shock-related pro-grade effects on sulfate and carbonate sedimentary rocks. Shock effects in lithic breccias are restricted to brecciation and formation of twins in calcite. Suevites mostly lack melted carbonate clasts; annealing effects in anhydrite fragments are absent. The underlying melt breccias contain anhydrite fragments still displaying a sedimentary texture, and limestone clasts, whose texture reflect crystallization from melt. Impact melt breccias from deeper levels frequently contain partially resorbed anhydrite clasts and a melt matrix with the Ca-rich mineral assemblage quartz + plagioclase + clinopyroxene; this mineral assemblage provides evidence for partial dissociation of CaSO_4. Large clasts of anhydrite consist of equant crystals with 120^o triple junctions, a feature indicative for re-crystallization in the solid state. Tagamites (impact melt rocks) are virtually free of clasts from sedimentary lithologies. These rocks have an extremely high formation temperature, which caused total dissociation of CaSO_4 and CaCO_3. Finally, up to 100 μm wide veins of anhydrite + calcite + quartz cut the matrix of all lithologies except the tagamites. They probably represent "degassing vents". The given scheme is in qualitative accordance with data of shock recovery and annealing experiments as well as with modeling results. In addition, it substantiates that annealing plays a fundamental role in the impact metamorphism of

  17. Impact cratering experiments into quartzite, sandstone and tuff: The effects of projectile size and target properties on spallation

    Science.gov (United States)

    Poelchau, Michael H.; Kenkmann, Thomas; Hoerth, Tobias; Schäfer, Frank; Rudolf, Michael; Thoma, Klaus

    2014-11-01

    Impact cratering experiments were performed on quartzite, tuff, and dry and water-saturated sandstones in the framework of the MEMIN research unit. 2.5-12 mm diameter projectiles were accelerated to ∼5 km/s. Evaluation of the resulting craters shows that crater volumes and crater efficiencies of large-scale experiments are greater than predicted by strength scaling laws. A method to approximate the transient crater volume shows that this effect is largely due to an increase in spallation. Strength scaling laws are used to determine the reduction of tensile strength in large-scale experiments and show a decrease by a factor of 1.8-3.6. This strength reduction can be correlated with a decrease in strain rate for larger projectiles, and with the Weibull theory of strength reduction for larger rock sample sizes. Further variations in spallation are observed between different target materials; a decrease in spall is suggested to be controlled by increased porosity.

  18. Transient Crater Growth and Ejecta Behavior in Experimental Impacts into Geological Materials

    Science.gov (United States)

    Poelchau, M. H.; Hoerth, T.; Pietrek, A.; Schäfer, F.; Kenkmann, T.

    2015-07-01

    High-speed images from cratering experiments were evaluated. Initial results suggests that transient crater growth rates in strength-dominated cratering increase with velocity and projectile size, and ejecta cone angles increase with velocity.

  19. IMPACT CRATERING ON MERCURY: CONSEQUENCES FOR THE SPIN EVOLUTION

    International Nuclear Information System (INIS)

    Impact basins identified by Mariner 10 and Messenger flyby images provide us with a fossilized record of the impactor flux of asteroids on Mercury during the last stages of the early solar system. The distribution of these basins is not uniform across the surface and is consistent with a primordial synchronous rotation. By analyzing the size of the impacts, we derive a simple collisional model coherent with the observations. When combining it with the secular evolution of the spin of Mercury, we are able to reproduce the present 3/2 spin-orbit resonance (∼50% of chances), as well as a primordial synchronous rotation. This result is robust with respect to variations in the dissipation and collisional models, or in the initial spin state of the planet.

  20. Impact cratering on Mercury: consequences for the spin evolution

    CERN Document Server

    Correia, Alexandre C M; 10.1088/2041-8205/751/2/L43

    2012-01-01

    Impact basins identified by Mariner 10 and Messenger flyby images provide us a fossilized record of the impactor flux of asteroids on Mercury during the last stages of the early Solar System. The distribution of these basins is not uniform across the surface, and is consistent with a primordial synchronous rotation (Wieczorek et al. 2012). By analyzing the size of the impacts, we show that the distribution for asteroid diameters D < 110 km is compatible with an index power law of 1.2, a value that matches the predicted primordial distribution of the main-belt. We then derive a simple collisional model coherent with the observations, and when combining it with the secular evolution of the spin of Mercury, we are able to reproduce the present 3/2 spin-orbit resonance (about 50% of chances), as well as a primordial synchronous rotation. This result is robust with respect to variations in the dissipation and collisional models, or in the initial spin state of the planet.

  1. Deep Onshore Crustal Structure of Chicxulub Impact Crater Hinted From Mt Studies.

    Science.gov (United States)

    Arzate, J. A.; Campos-Enríquez, J. O.

    This detailed MT study provides information about the deep continental structure of the Chicxulub impact crater (Yucatan, Mexico). In particular MT images of the elec- trical resistivity distribution along three radial profiles confirm the presence of shallow high resistive material at the crater center. Over this resitive high the MT soundings are featured by a sharper rise in resistivity related to the basement. This uplifted base- ment material coincides with the central structural high inferred in previous gravity, magnetic and MT studies. The top to the uplifted material is about 5 km in agreement with a recent seismic study. Its diameter is about 40 km and according to our images the basement material has been uplifted from a depth of about 10 km. The cenotes ring mark the rim of a deep basin featured by low resistivities. These low resistivities are interpreted as due to the fluids filling and interconecting the fractures of this portion.

  2. Formation age and geomorphologic history of the Lonar impact crater deduced from in- situ cosmogenic 10Be and 26Al

    Science.gov (United States)

    Nakamura, A.; Yokoyama, Y.; Sekine, Y.; Goto, K.; Komatsu, G.; Kumar, P.; Matsuzaki, H.; Matsui, T.

    2013-12-01

    Impact cratering is a dominant surface modification process on planetary surfaces. In the inner solar system, the large majority of impacts occur on bodies covered by primitive igneous rocks. However, most of the impacts remaining on Earth surface are on different rock types than that of the inner planet and hence geologic knowledge derived from Earth's surface cannot be translated readily. The Lonar crater is a 1.88-km-diameter crater located on the Deccan basaltic traps in India (ca. 65 Ma), and is one of a few craters on Earth bombarded directly on basaltic lava flows. Thus, the Lonar crater provides a rare opportunity to study impact structures on the basaltic surfaces of other terrestrial planets and the Moon. Since the ages of terrestrial impact structures is a key to understand geomorphological processes after the impact, various dating methods have been applied to the Lonar Crater such as fission track (Storzer and Koeberl, 2004), radiocarbon (Maloof, 2010), thermoluminescence (Sengupta et al., 1997), and 40Ar/39Ar (Jourdan et al., 2011). Yet, a large discrepancy between these methods ranging from ca. 1.79 to 570 ka has been resulted. Here we report surface exposure ages based on in-situ cosmogenic 10Be and 26Al in order to obtain a precise age of the Lonar crater formation as well as to study the geomorphologic evolution. The samples are collected from the topographic highs on the rim of the crater and from the ejecta blanket. Exposure ages together with newly obtained radiocarbon age of pre-impact soil indicate much younger ages than that of obtained from 40Ar/39Ar method. This suggests the potential bias because of inherited 40Ar in impact glass. Systematically young exposure age from the rim samples compared to the samples from the ejecta blanket indicate that the rim of the Lonar crater is being actively eroded. Spatial distributions of geomorphic ages observed from the Lonar creator is not the same as the pattern reported from the well

  3. 3D Characterization of the Magnetic Signature of a Medium Sized Impact Crater at Odessa, TX

    Science.gov (United States)

    Robinson, A.; Soule, D.; Everett, M.; Rodman, T.; Mangue Ndong, M.; Pereira, A.; Platt, P.; Trahan, A.

    2008-12-01

    Meteorite impacts are a common occurrence throughout Earth's geologic history. Many of the surface expressions of large ancient impacts have been subsequently erased by weathering and erosion processes. The study of preserved meteorite impacts is necessary to better understand this natural hazard which has been increasingly linked to rapid climate change and mass extinctions. The 60 ka Odessa meteorite crater located in Ector Co. Texas, is unique because it is not only well-preserved, but also has been the subject of extensive geologic examination. Geologic mapping and numeric models indicate that the crater was caused by a relatively small oblique impactor. The crater rim is remarkably well exposed. Much of the ejecta blanket is present, although deeply eroded. There has been considerable site disturbance due to drilling, shaft excavation, trenching, construction of a museum, trails, and the oil/gas activity in surrounding fields. Two previous geophysical investigations have shown that our data clearly corresponds to large-scale thrust deformation. With this in mind we have performed 3D high resolution magnetic gradiometer surveys that will allow us to quantify and characterize the magnetic signature of small to medium impacts. We will tie this data set to a 3D photorealistic outcrop image provided by laser scanning with coarser-scale, below-ground geophysical information. Our geophysical imagery provides a useful constraint on numerical simulations of the impact and its immediate regional-scale environmental effects. This information can be used to identify impact sites whose surface expression has been erased by natural erosional processes, allowing for improved frequency estimates and improved geo-hazard assessment.

  4. Cratering on Asteroids

    Science.gov (United States)

    Marchi, S.; Chapman, C. R.; Barnouin, O. S.; Richardson, J. E.; Vincent, J.-B.

    Impact craters are a ubiquitous feature of asteroid surfaces. On a local scale, small craters puncture the surface in a way similar to that observed on terrestrial planets and the Moon. At the opposite extreme, larger craters often approach the physical size of asteroids, thus globally affecting their shapes and surface properties. Crater measurements are a powerful means of investigation. Crater spatial and size distributions inform us of fundamental processes, such as asteroid collisional history. A paucity of craters, sometimes observed, may be diagnostic of mechanisms of erasure that are unique on low-gravity asteroids. Byproducts of impacts, such as ridges, troughs, and blocks, inform us of the bulk structure. In this chapter we review the major properties of crater populations on asteroids visited by spacecraft. In doing so we provide key examples to illustrate how craters affect the overall shape and can be used to constrain asteroid surface ages, bulk properties, and impact-driven surface evolution.

  5. Investigation of impact materials around Barringer Meteor Crater by SEMEDX and micro-PIXE techniques

    International Nuclear Information System (INIS)

    Complete text of publication follows. Up to date (2008), 174 terrestrial impact craters have been explored on the Earth's surface. They were created by hitting asteroids, meteorites and/or comets. The most famous and well-preserved meteorite crater is the Barringer Meteor Crater in Arizona, USA which is approximately 50,000 years old. It was created by an iron meteorite. In recent years, much effort has been devoted to the elemental characterization of various impact materials collected in its near environment by the leadership of the late Prof. Gyula Szoeor. Especially, their Fe-rich inclusions were studied supposedly originated from the projectile of the impacted meteorite. In this report, results for some non-spherical, aggregate-like specimens are shown. The application of Scanning Electron Microscope combined with Energy Dispersive Xray Analysis (SEM-EDX) and a Scanning Nuclear Microprobe (SNM) is a powerful technique for the complex characterization of such materials. SEM provides the fine textural information and the concentration of the major elements. SNM with Particle Induced X-ray Emission (PIXE) method serves for the determination of both the major constituents and the important minor and trace elements such as the Platinum Group Elements (PGEs): Ru, Rh, Pd, etc. In this report analytical data are presented for S-Fe-Ni-Cu systems in order to feature the major characteristics of impact metamorphism of materials. A part of the work was presented in the 11th Int. Conf. on Nuclear Microprobe Technology and Applications (Hungary) and 71st Annual Meeting of the Meteoritical Society (Japan) conferences. Detailed results are under publication in a NIM B volume. Acknowledgements Support from the EU co-funded Economic Competitiveness Operative Programme GVOP- 3.2.1.-2004-04-0402/3.0, the Hungarian-Slovenian intergovernmental S and T cooperation program (SLO-16/2005 GVOP) as well as from the Hungarian Research Foundation (OTKA) under contract No T046579 are

  6. Heat flow pattern at the Chicxulub impact crater, northern Yucatan, Mexico

    Science.gov (United States)

    Espinosa-Cardeña, J. M.; Campos-Enríquez, J. O.; Unsworth, M.

    2016-02-01

    Along an east-west profile crossing the Chicxulub impact structure in northern Yucatán, México, Curie depths were obtained from statistical-spectral analysis of a grid of aeromagnetic data (256 km wide and 600 km long). These depths were corrected for flight height and depth to the sea floor to determine the geothermal gradient, assuming a temperature of 580 °C for the Curie temperature. Heat flow was then calculated from the geothermal gradients using a value of 2.67 W/m-K for the mean crustal thermal conductivity. The results show a conspicuous heat flow high above on the impact basin. In this location, the heat flow is 80 mW/m2 approximately. Available offshore estimates of the depth to the crustal magnetic source bases, on the northern Yucatán platform, and onshore heat flow determination on 8 shallow bore holes, and in a 1511 m deep one, support the existence of this major high heat flow anomaly associated with the impact crater. This high heat flow might be related to the impact through: (1) an uplift of the crystalline basement rocks in the center of the crater; and (2) impact induced radioactive element concentration into the crust below the impact structure. Higher thermal conductivities at the lower crust might also play a key role. Available seismological and thermal property data are compatible with these mechanisms.

  7. Target-projectile interaction during impact melting at Kamil Crater, Egypt

    Science.gov (United States)

    Fazio, Agnese; D'Orazio, Massimo; Cordier, Carole; Folco, Luigi

    2016-05-01

    In small meteorite impacts, the projectile may survive through fragmentation; in addition, it may melt, and chemically and physically interact with both shocked and melted target rocks. However, the mixing/mingling between projectile and target melts is a process still not completely understood. Kamil Crater (45 m in diameter; Egypt), generated by the hypervelocity impact of the Gebel Kamil Ni-rich ataxite on sandstone target, allows to study the target-projectile interaction in a simple and fresh geological setting. We conducted a petrographic and geochemical study of macroscopic impact melt lapilli and bombs ejected from the crater, which were collected during our geophysical campaign in February 2010. Two types of glasses constitute the impact melt lapilli and bombs: a white glass and a dark glass. The white glass is mostly made of SiO2 and it is devoid of inclusions. Its negligible Ni and Co contents suggest derivation from the target rocks without interaction with the projectile (compression stage and the excavation stage, projectile and target liquids formed at their interface and chemically interact in a restricted zone. Projectile contamination affected only a shallow portion of the target rocks. The SiO2 melt that eventually solidified as white glass behaved as an immiscible liquid and did not interact with the projectile. During the excavation stage dark glass melt engulfed and coated the white glass melt, target fragments, and got stuck to iron meteorite shrapnel fragments. This model could also explain the common formation of white and dark glasses in small impact craters generated by iron bodies (e.g., Wabar).

  8. Using the viscoelastic relaxation of large impact craters to study the thermal history of Mars

    Science.gov (United States)

    Karimi, Saman; Dombard, Andrew J.; Buczkowski, Debra L.; Robbins, Stuart J.; Williams, Rebecca M.

    2016-07-01

    We simulate the long-term deformation of Martian craters and investigate the role of lower crustal flow in the evolution of surface and subsurface topography. Using the finite element method and a viscoelastic rheological model, we model the deformation of more than 30 large craters and Quasi-Circular Depressions (QCDs), in the diameter range of ∼200-500 km, in both the Northern Lowlands and Southern Highlands. We determine the most appropriate background heat fluxes that produce the current topography beneath the impacts at the crust-mantle boundary (ranges from 40 to ∼90 mW m-2). Our study shows that a higher background heat flux leads to more relaxation at the surface and subsurface. By applying various viscous creep parameters for hydrous and anhydrous rheologies, we demonstrate that Mars's interior is wet to a certain degree, which is consistent with other estimates. Since craters and QCDs are distributed fairly equally on the surface of the Red Planet, this study provides a less regionally biased picture of the thermal history of early Mars than in previous studies. Based on our results, the ancient average background heat flux in the Northern Lowlands was higher than that of the Southern Highlands, which could indicate that whatever process formed the crustal dichotomy had a thermal signature at least through the middle Noachian.

  9. Petrographic and geochemical characterization of the granitic rocks of the Araguainha impact crater, Brazil

    Science.gov (United States)

    Silva, Dailto; Lana, Cristiano; Souza Filho, Carlos Roberto

    2016-03-01

    Petrographic and geochemical data obtained on the Araguainha impact crater (Goiás/Mato Grosso States, Brazil) indicate the existence of several molten products that originated during impact-induced congruent melting of an alkali-granite exposed in the inner part of the central uplift of the structure. Although previous studies have described these melts to some extent, there is no detailed discussion on the petrographic and geochemical variability in the granite and its impactogenic derivatives, and therefore, little is known about the geochemical behavior and mobility of trace elements during its fusion in the central part of the Araguainha crater. This paper demonstrates that the preserved granitoid exposed in the core of the structure is a magnesium-rich granite, similar to postcollisional, A-type granites, also found in terrains outside the Araguainha crater, in the Brasília orogenic belt. The molten products are texturally distinct and different from the original rock, but have very similar geochemical composition, making it difficult to separate these lithotypes based on concentrations of major and minor elements. This also applies for trace and rare earth elements (REE), thus indicating a high degree of homogenization during impact-induced congruent melting under high pressure and postshock temperature conditions. Petrographic observations, along with geochemical data, indicate that melting occurs selectively, where some of the elements are transported with the melt. Simultaneously, there is an effective dissolution of the rock (granite), which leads to entrainment of the most resistant solid phases (intact or partially molten minerals) into the melt. Minerals more resistant to melting, such as quartz and oxides, contribute substantially to a chemical balance between the preserved granite and the fusion products generated during the meteoritic impact.

  10. A symbiotic view of the origin of life at hydrothermal impact crater-lakes.

    Science.gov (United States)

    Chatterjee, Sankar

    2016-07-27

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. The theory suffers from the 'concentration problem' of cosmic and terrestrial biomolecules because of the vastness of the Eoarchean global ocean. An attractive alternative site would be highly sequestered, small, hydrothermal crater-lakes that might have cradled life on early Earth. A new symbiotic model for the origin of life at hydrothermal crater-lakes is proposed here. Meteoritic impacts on the Eoarchean crust at the tail end of the Heavy Bombardment period might have played important roles in the origin of life. Impacts and collisions that created hydrothermal crater lakes on the Eoarchean crust inadvertently became the perfect crucibles for prebiotic chemistry with building blocks of life, which ultimately led to the first organisms by prebiotic synthesis. In this scenario, life arose through four hierarchical stages of increasing molecular complexity in multiple niches of crater basins. In the cosmic stage (≥4.6 Ga), the building blocks of life had their beginnings in the interstellar space during the explosion of a nearby star. Both comets and carbonaceous chondrites delivered building blocks of life and ice to early Earth, which were accumulated in hydrothermal impact crater-lakes. In the geologic stage (∼4 Ga), crater basins contained an assortment of cosmic and terrestrial organic compounds, powered by hydrothermal, solar, tidal, and chemical energies, which drove the prebiotic synthesis. At the water surface, self-assembled primitive lipid membranes floated as a thick oil slick. Archean Greenstone belts in Greenland, Australia, and South Africa possibly represent the relics of these Archean craters, where the oldest fossils of thermophilic life (∼3.5 Ga) have been detected. In the chemical stage, monomers such as nucleotides and amino acids were selected from random assemblies of the prebiotic soup; they were

  11. Crater Chains

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] The large crater at the top of this THEMIS visible image has several other craters inside of it. Most noticeable are the craters that form a 'chain' on the southern wall of the large crater. These craters are a wonderful example of secondary impacts. They were formed when large blocks of ejecta from an impact crashed back down onto the surface of Mars. Secondaries often form radial patterns around the impact crater that generated them, allowing researchers to trace them back to their origin.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Image information: VIS instrument. Latitude 19.3, Longitude 347.5 East (12.5 West). 19 meter/pixel resolution.

  12. The search for fullerenes in rocks from the Ries impact crater

    Czech Academy of Sciences Publication Activity Database

    Frank, O.; Jehlička, J.; Hamplová, Věra; Svatoš, A.

    2005-01-01

    Roč. 40, č. 2 (2005), s. 307-314. ISSN 1086-9379 R&D Projects: GA ČR(CZ) GA205/03/1468 Grant ostatní: GA UK - GEO(CZ) 212/1999 B; FRVŠ MŠk(CZ) FRVS 2307/2002 Institutional research plan: CEZ:AV0Z10100520 Keywords : fullerenes * Ries crater * laser desorption time-of-flight mass spectrometry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.253, year: 2005

  13. 10Be Content in Suevite Breccia from the Bosumtwi Impact Crater

    Science.gov (United States)

    Losiak, Anna; Wild, Eva Maria; Michlmayr, Leonard; Koeberl, Christian

    2013-04-01

    Introduction: According to the current understanding of meteorite impact processes, surface target material is transported from a crater in the form of ejecta or is vaporized/melted (e.g., [1]). The formation model of tektites from the surface of the target rocks has been established using the 10Be content of tektites (e.g., [2]), and chemical comparison with the possible target surface material (e.g., [3]); it was also reproduced by computer modeling (e.g., [4]). On the other hand, some observations ([5, 6]) suggest that part of the surface material may be incorporated into the crater-fill. The aim of this study is to check if surface-derived material is present in suevitic breccias to better understand formation mechanisms of fallback breccias. Also, 10Be can be used to trace contamination of rocks in the top layer of the suevitic layer by meteoric (lake) water. This abstract is an update (based on more data now available) of the previous report presented during the Metsoc75 conference. Samples: The Bosumtwi crater was chosen as study site because of its relatively large size (10.5 km in diameter), young age of 1.07 Ma [7], good state of preservation, and availability of core samples. Clasts from suevitic breccia selected for this study come from the LB-07A and LB-08A cores that are located within the crater and represent fallback breccia (e.g., [7]). Of 41 analyzed samples (22 single clasts and 21 matrix samples - 11 of those being monomictic breccia), 36 came from core LB-07A (in the zone outside the central uplift) and represent depths of 333.7 - 407.9 m and 5 are from core LB-08A (on the flank of the central uplift) from depths 239.5 - 264.9 m. Methods: For each sample, 0.8 g of finely grounded material from clasts containing in situ produced and meteoric 10Be was dissolved in a mixture of HF and HNO3 by microwave digestion. A 9Be carrier (1 mg or 0.6 mg, 10Be/9Be ratio: 2.82±0.31*10-15 [2? uncertainty]) was added to the sample, and then Be was chemically

  14. Development and Execution of an Impact Cratering Application on a Computational Grid

    Directory of Open Access Journals (Sweden)

    E. Huedo

    2005-01-01

    Full Text Available Impact cratering is an important geological process of special interest in Astrobiology. Its numerical simulation comprises the execution of a high number of tasks, since the search space of input parameter values includes the projectile diameter, the water depth and the impactor velocity. Furthermore, the execution time of each task is not uniform because of the different numerical properties of each experimental configuration. Grid technology is a promising platform to execute this kind of applications, since it provides the end user with a performance much higher than that achievable on any single organization. However, the scheduling of each task on a Grid involves challenging issues due to the unpredictable and heterogeneous behavior of both the Grid and the numerical code. This paper evaluates the performance of a Grid infrastructure based on the Globus toolkit and the GridWay framework, which provides the adaptive and fault tolerance functionality required to harness Grid resources, in the simulation of the impact cratering process. The experiments have been performed on a testbed composed of resources shared by five sites interconnected by RedIRIS, the Spanish Research and Education Network.

  15. Tectonic-karstic origin of the alleged "impact crater" of Lake Isli (Imilchil district, High Atlas, Morocco)

    Science.gov (United States)

    Ibouh, Hassan; Michard, André; Charrière, André; Benkaddour, Abdelfattah; Rhoujjati, Ali

    2014-03-01

    The scenic lakes Tislit and Isli of the Imilchil area in the central High Atlas of Morocco have been recently promoted to the rank of "dual impact crater" by a group of geoscientists. This was promptly denied by a group of meteorite specialists, but the first team reiterated their impact crater interpretation, now restricted to Lake Isli. This alleged 40-kyr-old impact crater would be associated with the Agoudal meteorite recognized further in the southeast. Here, we show that the lake formed during the Lowe-Middle Pleistocene in a small Pliocene (?) pull-apart basin through additional collapsing due to karst phenomena in the underlying limestones. This compares with the formation of a number of lakes of the Atlas Mountains. None of the "proofs" produced in support of a meteoritic origin of Lake Isli coincides with the geology of the area.

  16. Impact Cratering Experiments into Quartzite and Tuff: First Results from the MEMIN Research Unit

    Science.gov (United States)

    Poelchau, M. H.; Hoerth, T.; Schäfer, F.; Deutsch, A.; Thoma, K.; Kenkmann, T.

    2012-09-01

    The effects of porosity on the cratering process will be examined in experiments planned for June 2012. Porosity in combination with target strength is expected to have an effect on crater morphology and ejection behavior.

  17. Composition and heterogeneity of anorthositic impact melt at Mistastin Lake crater, Labrador

    Science.gov (United States)

    Marion, Cassandra L.; Sylvester, Paul J.

    2010-03-01

    Anorthositic impact melt rocks, their target rocks (principally anorthosite, mangerite, granodiorite) and zircon clasts from the ˜36-Ma-old, 28-km-wide Mistastin Lake crater of northern Labrador (55°53'N; 63°18'W) have been examined in order to evaluate the scale and origin of compositional heterogeneities in impact melts produced in craters of moderate size. In particular we assess whether and, if so, how the initial composition of the impact melt was modified as it entrained mineral clasts derived from the underlying rocks over which it flowed when it moved away from the shock-induced, central melting zone. A secondary goal was to determine if zircon clasts in the impact melts are present in the proportions of their target rock sources and/or the substrate lithologies over which they flowed. Chemical compositions of bulk samples of 33 melt rocks and 14 target rocks were measured by XRF and SN-ICPMS. Matrix compositions of nine samples of impact melt rocks were determined by EPMA and LA-ICPMS. Zircon grains from four samples of target rock and zircon clasts from three samples of impact melt rock were measured for multi-element composition, U-Pb age and Hf-isotopic composition by LA-(MC)-ICPMS. The data reveal compositional heterogeneities in the impact melts on the scales of both bulk samples and matrices. Bulk samples can be divided into compositions with high and low concentrations of high-field-strength elements (HFSE; Ti, Zr, Nb) and Fe, Ba, Ce and Y. High HFSE-type melt rocks formed when impact melt entrained large quantities of clasts from mangerite, which is rich in HFSE. Matrix compositions of bulk samples do not show the HFSE distinction but are affected by the introduction of low-temperature melts from the clasts to form dispersed, micron-scale silica-rich heterogeneities. The best estimate of sources of the initial impact melt is ˜73% anorthosite, ˜7% mangerite and ˜20% granodiorite, based on least-squares modeling of major-element compositions of

  18. Impact of Environmental Policies on the Adoption of Animal Waste Management Practices in the Chesapeake Bay Watershed

    OpenAIRE

    Savage, Jeff; Ribaudo, Marc

    2012-01-01

    We use data from the ERS-NASS ARMS surveys to compare the use of best management practices on poultry and livestock farms inside the watershed and outside the watershed. Animal operations within the Chesapeake Bay States were found to be adopting some important manure management practices at a greater rate than operations outside the watershed. Adoption was taking place before the implementation of the TMDL, indicating that farmers may have been acting in response to building public pressure ...

  19. Role of the granular nature of meteoritic projectiles in impact crater morphogenesis

    OpenAIRE

    Bartali, Roberto; Rodríguez-Liñán, Gustavo M.; Nahmad-Molinari, Yuri; Sarocchi, Damiano; Ruiz-Suárez, J.C.

    2013-01-01

    By means of novel volume-diameter aspect ratio diagrams, we ponder on the current conception of crater morphogenesis analyzing crater data from beam explosions, hypervelocity collisions and drop experiments and comparing them with crater data from three moons (the Moon, Callisto, and Ganymede) and from our own experimental results. The distinctive volume-diameter scaling laws we discovered make us to conclude that simple and complex craters in satellites and planets could have been formed by ...

  20. Hong Kong is an impact crater: Proof from the geomorphological and geological evidence

    Science.gov (United States)

    Chan, Chu-Lok; Wu, Siben; Luo, Xiuquan

    1992-01-01

    Hong Kong is a city in southern China. The urban districts of Hong Kong, Kowloon, and Victoria Harbour are situated within Hong Kong. Hong Kong is surrounded by mountains with a diameter of 11 km. Three million people live inside the basin. The round structure of the mountains in Hong Kong has been describd as a granite dome that is deeply eroded (batholith). The circularity of the mountains, the existence of a central hill, the inner slope of the mountains being greater than the outer slope, the presence of deep layer rock inside the basin, and the depth-to-diameter ratio were studied. All this evidence shows that the Hong Kong structure satisfies the geomorphological requirement of an impact crater. Some shock metamorphic phenomena of the rocks in Hong Kong such as planar features, microspherilitic silica glass (lechaterlierite), fused margins of rock fragments, concussion fractures, impact glass in which some schlierens are consistent with pyroxene spiculites, etc., were first discovered in Oct. 1990. In Hong Kong Island, an impact melt sheet was observed from the Victoria Peak to the southern shore. Quenching fractures of quartz in Kowloon fine-grained granite was also discovered. In our work, the K-Ar age (83.34 + 1.26 m.y.) of the impact melt rock, which is younger in comparison to the K-Ar age (117 m.y.) in Hong Kong and Kowloon granite, was measured, and the phenomena indicate that after the granite body formed, there was another geologic event. Maybe it is the Hong Kong cratering event.

  1. Chicxulub Impact Crater and Yucatan Carbonate Platform - Stratigraphy and Petrography of PEMEX Borehole Cores

    Science.gov (United States)

    Gutierrez-Cirlos, A. G.; Perez-Drago, G.; Perez-Cruz, L.; Urrutia-Fucugauchi, J.

    2008-12-01

    Chicxulub impact crater is the best preserved of the three large multi-ring structures documented in the terrestrial record. Chicxulub, formed 65 Ma ago, is associated with the Cretaceous/Tertiary (K/T) boundary layer and the impact related to the organism extinctions and events marking the boundary. The crater is buried under Tertiary sediments in the Yucatan carbonate platform in the southern Gulf of Mexico. The structure was initially recognized from gravity and magnetic anomalies in the PEMEX exploration surveys of the northwestern Yucatan peninsula. The exploration program included eight deep boreholes completed from 1952 through the 1970s. The investigations showing Chicxulub as a large complex impact crater formed at the K/T boundary have relayed on the PEMEX decades-long exploration program. However, despite frequent use of PEMEX information and core samples, significant parts of the database and cores remain to be evaluated, analyzed and incorporated with results from recent efforts. Access to PEMEX Core Repository has permitted to study the cores and collect new samples from some of the boreholes. We analyzed cores from Yucatan-6, Chicxulub-1, Sacapuc-1, Ticul-1, Yucatan-1 and Yucatan-4 boreholes to make new detailed stratigraphic correlations and petrographic characterization, using information from PEMEX database and the recent studies. In C-1 cores, breccias show 4-8 cm clasts of fine grained altered melt dispersed in a medium to coarse grained matrix composed of pyroxene and feldspar with little macroscopic alteration. Clasts contain 0.2 to 0.1 cm fragments of silicate material (basement) that show variable degrees of digestion. Melt samples from C-1 N10 comes from interval 1,393-1,394 m, and show a fine-to-medium grained coherent microcrystalline groundmass. Melt and breccias in Y-6 extend from about 1,100 m to more than 1,400 m. Sequence is well sorted, with an apparent gradation in both the lithic and melt clasts. In this presentation we report on

  2. Microbial Mats in the Tswaing Impact Crater: Results of a South African Exobiology Expedition and Implications for the Search for Biological Molecules on Mars

    Science.gov (United States)

    Cockell, C. S.; Brandt, D.; Hand, K.; Lee, P. C.

    2001-01-01

    We describe microbial mats from the Tswaing impact crater in South Africa. The mats provide insights into the unique biological characteristics of impact craters and can help strategies for the search for biomolecules on Mars. Additional information is contained in the original extended abstract.

  3. A paleomagnetic and rock magnetic study of the Manicouagan impact structure: Implications for crater formation and geodynamo effects

    Science.gov (United States)

    Eitel, Michael; Gilder, Stuart A.; Spray, John; Thompson, Lucy; Pohl, Jean

    2016-02-01

    We report rock magnetic and paleomagnetic data from the ~214 Ma Manicouagan (Canada) impact crater based on 25 widely distributed sites of impact melt and basement rocks collected at the surface as well as from boreholes drilled to depths ≤1.5 km. Titanomagnetite and titanohematite carry the magnetic remanence in impact melts above 320 m elevation and in most basement rocks. Impact melts below 320 m contain solely titanomagnetite. Magnetic susceptibility and saturation magnetization, proxies for titanomagnetite concentration, increase more than tenfold toward the base of the thickest impact melt that underwent fractional crystallization. The titanomagnetite-enriched zone partially contributes to a 2000 nT magnetic anomaly in the crater's center. Stepwise demagnetization reveals a single, normal polarity magnetization component in all samples regardless of the magnetic phases present. Coeval lock-in remanence times for titanomagnetite and titanohematite indicate that the titanohematite formed >570°C during oxi-exsolution. The average paleomagnetic direction and intensity coincide well with 214 Ma reference values. We find no evidence for an aberration of the geomagnetic field over the several thousands of years it took to cool a 481 m thick portion of the impact melt body. Hence, the energy released by the Manicouagan impact that created one of the 10 largest known craters on Earth provoked no measurable disturbance of the geodynamo. Magnetic anisotropy of clast-free impact melts define magnetic lineation directions that are, in places, radially oriented with respect to the crater's center. Centrifugal flow of the melt within the evolving transient crater probably generated the fabric.

  4. Application of nondestructive testing methods to study the damage zone underneath impact craters of MEMIN laboratory experiments

    Science.gov (United States)

    Moser, Dorothee; Poelchau, Michael H.; Stark, Florian; Grosse, Christian

    2013-01-01

    Within the framework of the Multidisciplinary Experimental and Modeling Impact Research Network (MEMIN) research group, the damage zones underneath two experimentally produced impact craters in sandstone targets were investigated using several nondestructive testing (NDT) methods. The 20 × 20 × 20 cm sandstones were impacted by steel projectiles with a radius of 1.25 mm at approximately 5 km s-1, resulting in craters with approximately 6 cm diameter and approximately 1 cm depth. Ultrasound (US) tomography and vibrational analysis were applied before and after the impact experiments to characterize the damage zone, and micro-computer tomography (μ-CT) measurements were performed to visualize subsurface fractures. The newly obtained experimental data can help to quantify the extent of the damage zone, which extends to about 8 cm depth in the target. The impacted sandstone shows a local p-wave reduction of 18% below the crater floor, and a general reduction in elastic moduli by between approximately 9 and approximately 18%, depending on the type of elastic modulus. The results contribute to a better empirical and theoretical understanding of hypervelocity events and simulations of cratering processes.

  5. Chicxulub Impact Crater and Yucatan Carbonate Platform - PEMEX Oil Exploratory Wells Revisited

    Science.gov (United States)

    Pérez-Drago, G.; Gutierrez-Cirlos, A. G.; Pérez-Cruz, L.; Urrutia-Fucugauchi, J.

    2008-12-01

    Geophysical oil exploration surveys carried out by PEMEX in the 1940's revealed occurrence of an anomalous pattern of semi-circular concentric gravity anomalies. The Bouguer gravity anomalies covered an extensive area over the flat carbonate platform in the northwestern Yucatan Peninsula; strong density contrasts were suggestive of a buried igneous complex or basement uplift beneath the carbonates, which was referred as the Chicxulub structure. The exploration program carried out afterwards included a drilling program, starting with Chicxulub-1 well in 1952 and comprising eight deep boreholes through the 1970s. An aeromagnetic survey in late 1970's showed high amplitude anomalies in the gravity anomaly central sector. Thus, research showing Chicxulub as a large complex impact crater formed at the K/T boundary was built on the PEMEX decades-long exploration program. Despite frequent reference to PEMEX information and samples, original data and cores have not been openly available for detailed evaluation and integration with results from recent investigations. Core samples largely remain to be analyzed and interpreted in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we report on the stratigraphy and paleontological data for PEMEX wells: Chicxulub- 1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m), Ticul-1 (3575m) Yucatan-4 (2398m), Yucatan-2 (3474m), Yucatan-5A (3003m) and Yucatan-1 (3221m). These wells remain the deepest drilled in Chicxulub, providing samples of impact lithologies, carbonate sequences and basement, which give information on post- and pre-impact stratigraphy and crystalline basement. We concentrate on stratigraphic columns, lateral correlations and integration with UNAM and ICDP borehole data. Current plans for deep drilling in Chicxulub crater target the peak ring and central sector, with offshore and onshore boreholes proposed to the IODP and ICDP

  6. Analytical Scanning and Transmission Electron Microscopy of Laboratory Impacts on Stardust Aluminium Foils: Interpreting Impact Crater Morphology and the Composition of Impact Residues.

    Energy Technology Data Exchange (ETDEWEB)

    Kearsley, A T; Graham, G A; Burchell, M J; Cole, M J; Dai, Z R; Teslich, N; Chater, R; Wozniakiewicz, P A; Spratt, J; Jones, G

    2006-10-19

    The known encounter velocity (6.1kms{sup -1}) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild 2 has allowed realistic simulation of dust collection in laboratory experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminium foil components of the Stardust collector. In this report we present information on crater gross morphology, the pre-existing major and trace element composition of the foil, geometrical issues for energy dispersive X-ray analysis of the impact residues in scanning electron microscopes, and the modification of dust chemical composition during creation of impact craters as revealed by analytical transmission electron microscopy. Together, these observations help to underpin the interpretation of size, density and composition for particles impacted upon the Stardust aluminium foils.

  7. The Dawn Mission & Asteroid Mappers: The Impact of Crowd-Sourced Crater Counting

    Science.gov (United States)

    Schmidt, B. E.; Scully, J. E.; Hart, R.; Russell, C. T.; Wise, J.; Cobb, W. H.; Ristvey, J.; Counley, J.; Hess, N.

    2012-12-01

    While the driving principle for a science investigation may be the pursuit of knowledge, the process of acquiring that knowledge that matters as much as the result. This process is known to many as the scientific method, a concept regularly taught in schools but that remains in many cases poorly tied to science outreach. But with the growth of the Citizen Science movement, we have entered a new era for both science and science outreach marked by the accessibility of tools that allow the public to experience science first hand in a manner previously unimagined. Gone are the days when a launch and a landing are all that are seen of a mission. Now, it's time to let the public in on the fun, and of course, all the work. In a time of large data returns and dwindling science budgets, citizen science may help scientists and educators with two fundamental problems: (1) increasing awareness and (2) accomplishing the key science investigations. The Dawn Mission has long been on the path towards involving the public in the process of science, and with the advent of the new Asteroid Mappers project, joint with CosmoQuest, the long-term goal of presenting the data to the public in a meaningful manner will be achieved. And in the long run, the public may also prove key to accomplishing mission science. Vesta is a unique body in the solar system, a likely a witness to the earliest stages of solar system formation and the environment within the main asteroid belt. Its impact history will be critical not only to understanding the initial population of the asteroid belt and thus impact hazards on the early Earth, but also the production of Vesta's impact family and the samples of Vesta, the HED meteorites, we have on Earth. Thus determining the impact crater population and distribution is a critical mission goal. Because craters are easily recognized and relatively straightforward to measure, a careful member of the public may be able to perform the same basic tasks as a scientist

  8. Monte Carlo prediction of crater formation by single ion impact on solid surface

    International Nuclear Information System (INIS)

    A method is presented for predicting the topography changes following the impact of one energetic ion on the plane surface of a monatomic amorphous solid. This is done in two stages. The first is a Monte Carlo calculation of the sputter yield and interior distribution relocated atoms, with no compensation for local departures from equilibrium density. In the second stage there is a systematic relaxation of the solid, in which the density returns to its previous constant value and a crater develops in the surface. Two alternative methods of carrying out stage two are compared. In the first the solid is subdivided into cells within which relaxation is carried out normal to the surface, as in previous one-dimensional studies. The second method treats the solid as a 3-dimensional incompressible medium. Both seem to reproduce quite well the main features found experimentally. (orig.)

  9. Impacts into quartz sand: Crater formation, shock metamorphism, and ejecta distribution in laboratory experiments and numerical models

    Science.gov (United States)

    Wünnemann, Kai; Zhu, Meng-Hua; StöFfler, Dieter

    2016-08-01

    We investigated the ejection mechanics by a complementary approach of cratering experiments, including the microscopic analysis of material sampled from these experiments, and 2-D numerical modeling of vertical impacts. The study is based on cratering experiments in quartz sand targets performed at the NASA Ames Vertical Gun Range. In these experiments, the preimpact location in the target and the final position of ejecta was determined by using color-coded sand and a catcher system for the ejecta. The results were compared with numerical simulations of the cratering and ejection process to validate the iSALE shock physics code. In turn the models provide further details on the ejection velocities and angles. We quantify the general assumption that ejecta thickness decreases with distance according to a power-law and that the relative proportion of shocked material in the ejecta increase with distance. We distinguish three types of shock metamorphic particles (1) melt particles, (2) shock lithified aggregates, and (3) shock-comminuted grains. The agreement between experiment and model was excellent, which provides confidence that the models can predict ejection angles, velocities, and the degree of shock loading of material expelled from a crater accurately if impact parameters such as impact velocity, impactor size, and gravity are varied beyond the experimental limitations. This study is relevant for a quantitative assessment of impact gardening on planetary surfaces and the evolution of regolith layers on atmosphereless bodies.

  10. NRM measurements of shatter cones and rim deposits from the Sierra Madera Impact Crater in Texas, USA

    Czech Academy of Sciences Publication Activity Database

    Adachi, T.; Kletetschka, Günther; Wasilewski, P.; Mikula, V.

    Geofyzikální ústav AV ČR, v. v. i.. Roč. 38, - (2006) ISSN 0231-5548. [Castle meeting palaeo, rock and environmental magnetism. 03.09.2006-08.09.2006, Valtice] Keywords : natural remanent magnetization * Sierra Madera impact crater * Texas Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  11. Isolated crater formation by gas cluster ion impact and their use as templates for carbon nanotube growth

    Science.gov (United States)

    Toyoda, Noriaki; Kimura, Asahi; Yamada, Isao

    2016-03-01

    Crater-like defects formations with gas cluster ion beams (GCIB) were used as templates for carbon nanotube (CNT) growth. Upon a gas cluster ion impact, dense energy is deposited on a target surface while energy/atom of gas cluster ion is low, which creates crater-like defects. Si and SiO2 were irradiated with Ar-GCIB, subsequently CNTs were grown with an alcohol catalytic CVD using Co and ethanol as catalyst and precursor, respectively. From SEM, AFM and Raman spectroscopy, it was shown that growth of CNT with small diameter was observed on SiO2 with Ar-GCIB irradiation. On Si targets, formation of craters with bottom oxide prevented Co diffusion during CNT growth, as a result, CNT growth was observed only on Si irradiated with high-energy Ar-GCIB. These results showed that isolated defects created by GCIB can be used as templates for nanotube growth.

  12. Monte Carlo models of the interaction between impact cratering and volcanic resurfacing on Venus: The effect of the Beta-Atla-Themis anomaly

    Science.gov (United States)

    Romeo, I.

    2013-10-01

    Detailed Monte Carlo models of the interaction of impact cratering and volcanic resurfacing, which included the Beta-Atla-Themis (BAT) volcanic concentration, were used to test different planetary resurfacing histories. The results were compared with: (1) the randomness of the spatial distribution of craters, (2) the number of modified craters, (3) the number of dark-floored craters due to volcanic flooding, (4) the frequency-area distribution of volcanic units, (5) the frequency-size distribution of craters and modified craters, and (6) the spatial distribution of craters and modified craters with respect to the BAT anomaly. Two catastrophic and two equilibrium resurfacing models were tested. The two catastrophic models consisted of one with a drastic decay and the other with a moderate decay of volcanic activity following the catastrophic event. The two equilibrium models consisted of one with a gradual decay of volcanic activity at the end of the model and the other with a magmatic event followed by a gradual decay of volcanic activity. Both equilibrium models and the catastrophic model with moderate decay fail to reproduce the small reduction of the crater density in the BAT area. The model that best fits all the observations is a global catastrophic resurfacing event followed by a drastic decay of volcanic activity. Thus, a Venus global catastrophic resurfacing event erasing all previous craters with little post-resurfacing volcanism is supported by this study.

  13. Organosilane occurrence in irghizite samples from the Zhamanshin impact crater, Kazakhstan

    Science.gov (United States)

    Zbik, Marek; Jasieniak, Marek; St. C. Smart, Roger

    2000-09-01

    The composition of surface deposits on vesicle walls in irghizites (i.e., impact glasses at site) from the Zhamanshin meteorite crater were studied using time of flight secondary ion mass spectrometry (ToF-SIMS). The cavity walls are unique interfaces for condensation of gases from the superheated, high-silica melt during the impact. Initially, signals from the cavity wall are dominated by hydrocarbon fragments whereas the glass fracture face surrounding the cavity gave only signals corresponding to glass components. After 12h in UHV, signals from the cavity wall are dominated by peaks corresponding to fragments normally measured from organo-silanes and organo-siloxanes with the majority of the hydrocarbon signals markedly reduced. Characteristic hydrocarbon fragments are now observed on the glass fracture surface next to the cavity in an annulus around the cavity perimeter. There are also minor signals in this region from organo-silanes and organo-siloxanes. In contrast, four tektites (Australites) (i.e. glassy distal ejecta) gave no organo-silane or organo-siloxane signals after the same preparation and vacuum evaporation procedure. These species appear to be formed only at the impact site where higher levels of organic material are likely to be present in soil and are trapped before evaporation. This appears to be the first report of naturally occurring silicon-organic compounds.

  14. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA.

    Science.gov (United States)

    Coxon, T M; Odhiambo, B K; Giancarlo, L C

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight (210)Pb and (137)Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. PMID:27310532

  15. This Dynamic Planet: World map of volcanoes, earthquakes, impact craters and plate tectonics

    Science.gov (United States)

    Simkin, Tom; Tilling, Robert I.; Vogt, Peter R.; Kirby, Stephen H.; Kimberly, Paul; Stewart, David B.

    2006-01-01

    Our Earth is a dynamic planet, as clearly illustrated on the main map by its topography, over 1500 volcanoes, 44,000 earthquakes, and 170 impact craters. These features largely reflect the movements of Earth's major tectonic plates and many smaller plates or fragments of plates (including microplates). Volcanic eruptions and earthquakes are awe-inspiring displays of the powerful forces of nature and can be extraordinarily destructive. On average, about 60 of Earth's 550 historically active volcanoes are in eruption each year. In 2004 alone, over 160 earthquakes were magnitude 6.0 or above, some of which caused casualties and substantial damage. This map shows many of the features that have shaped--and continue to change--our dynamic planet. Most new crust forms at ocean ridge crests, is carried slowly away by plate movement, and is ultimately recycled deep into the earth--causing earthquakes and volcanism along the boundaries between moving tectonic plates. Oceans are continually opening (e.g., Red Sea, Atlantic) or closing (e.g., Mediterranean). Because continental crust is thicker and less dense than thinner, younger oceanic crust, most does not sink deep enough to be recycled, and remains largely preserved on land. Consequently, most continental bedrock is far older than the oldest oceanic bedrock. (see back of map) The earthquakes and volcanoes that mark plate boundaries are clearly shown on this map, as are craters made by impacts of extraterrestrial objects that punctuate Earth's history, some causing catastrophic ecological changes. Over geologic time, continuing plate movements, together with relentless erosion and redeposition of material, mask or obliterate traces of earlier plate-tectonic or impact processes, making the older chapters of Earth's 4,500-million-year history increasingly difficult to read. The recent activity shown on this map provides only a present-day snapshot of Earth's long history, helping to illustrate how its present surface came to

  16. Probing the Hidden Geology of Isidis Planitia (Mars with Impact Craters

    Directory of Open Access Journals (Sweden)

    Graziella Caprarelli

    2015-02-01

    Full Text Available In this study we investigated Isidis Planitia, a 1325 km diameter multi-ring impact basin intersecting the Martian hemispheric dichotomy, located in the eastern hemisphere, between Syrtis Major and Utopia Planitia. From Mars Orbiter Laser Altimeter gridded data we observed that in the center of Isidis the −3700 m and −3800 m isolines strike NW-SE, being quasi-parallel to the diameter of the basin. We interpreted this as evidence that the basement of Isidis Planitia was faulted prior to being completely covered by layers of sediments and volcanic rocks. Plotting the morphometric data of impact craters located on the floor of the basin in a measured depths vs. predicted depths diagram (MPD, we concluded that the fault planes should dip SW, which is consistent with the location of the most topographically depressed sector of Isidis Planitia. We also estimated a minimum vertical displacement of ~1–2 km. Considering that the crust under Isidis Planitia is only a few km thick, our estimate implies brittle behavior of the lithosphere under the basin, suggesting that a low geothermal gradient and rheologically strong material characterize this Martian location.

  17. Eucrite Impact Melt NWA 5218 - Evidence for a Large Crater on Vesta

    Science.gov (United States)

    Wittmann, Axel; Hiroi, Takahiro; Ross, Daniel K.; Herrin, Jason S.; Rumble, Douglas, III; Kring, David A.

    2011-01-01

    Northwest Africa (NWA) 5218 is a 76 g achondrite that is classified as a eucrite [1]. However, an initial classification [2] describes it as a "eucrite shock-melt breccia...(in which) large, partially melted cumulate basalt clasts are set in a shock melt flow...". We explore the petrology of this clast-bearing impact melt rock (Fig. 1), which could be a characteristic lithology at large impact craters on asteroid Vesta [3]. Methods: Optical microscopy, scanning electronmicroscopy, and Raman spectroscopy were used on a thin section (Fig. 1) for petrographic characterization. The impact melt composition was determined by 20 m diameter defocused-beam analyses with a Cameca SX-100 electron microprobe. The data from 97 spots were corrected for mineral density effects [4]. Constituent mineral phases were analyzed with a focusedbeam. Bidirectonal visible and near-infrared (VNIR) and biconical FT-IR reflectance spectra were measured on the surface of a sample slab on its central melt area and on an eucrite clast, and from 125-500 m and rock. The thin section captures a central, subophitic-textured melt that contains 1 cm to tens of m-size subangular to rounded, variably-shocked eucrite clasts. Clasts >100 m are coarse-grained with equigranular 1 mm size plagioclase, quartz, and clinopyroxene (Fig. 1). Single crystals of chromite, ilmenite, zircon, Ca-Mg phosphate, Fe-metal, and troilite are embedded in the melt. Polymineralic clasts are mostly compositionally similar to the above mentioned larger clasts but scarce granulitic fragments are observed as well.

  18. Investigation of impact materials around Barringer Meteor Crater by SEM-EDX and micro-PIXE techniques

    Energy Technology Data Exchange (ETDEWEB)

    Uzonyi, I. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Department of Electrostatic Accelerators, H-4026 Debrecen, Bem ter 18/C (Hungary)], E-mail: uzonyi@atomki.hu; Szoeor, Gy.; Rozsa, P. [Department of Mineralogy and Geology, University of Debrecen, H-4010 Debrecen, Egyetem ter 1 (Hungary); Pelicon, P.; Simcic, J. [Jozef Stefan Institute, Microanalytical Center, Jamova 39, P.P. 3000, SI-1001 Ljubljana (Slovenia); Cserhati, C.; Daroczi, L. [Department of Solid State Physics, University of Debrecen, H-4032 Debrecen, Bem ter 18/b (Hungary); Kiss, A.Z. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Department of Electrostatic Accelerators, H-4026 Debrecen, Bem ter 18/C (Hungary)

    2009-06-15

    Impact materials collected at the Barringer Meteor Crater have been characterized by SEM-EDX and micro-PIXE techniques. Fine textural and true elemental images were created. As a main feature silica-bearing shell and an S-Fe-Ni-Cu core could be distinguished. Three different types of S-Fe-Ni-Cu systems were identified such as chalcopyrite, pentlandite and pyrrhotite.

  19. Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean

    Science.gov (United States)

    Ivanov, Mikhail A.; Hiesinger, H.; Erkeling, G.; Reiss, D.

    2014-01-01

    Results of our detailed geological mapping and interpretation of the nature and relative and absolute model ages of units and structures in the SW portion of Utopia Planitia (20-45°N, 100-120°E) suggest the following. (1) The size-frequency distribution (SFD) of craters that both are buried by materials of the Vastitas Borealis units (VB) and superpose its surface indicate that the absolute model ages of terrain predating the emplacement of the VB is ˜3.7 Ga. (2) Lack of craters that are partly embayed by materials of the VB in the SW portion of Utopia Planitia implies that the emplacement of the VB was faster than the rate of accumulation of impact craters and is consistent with the geologically short time of emplacement of the VB due to catastrophic release of water from outflow channels (e.g., Carr, M.H. [1996]. Water on Mars. Oxford University Press, New York, p. 229). (3) The SFD of craters that superpose the surface of the VB indicates an absolute model age of ˜3.6-3.5 Ga. The absolute model ages of etched flows, which represent the upper stratigraphic limit of the VB, are estimated to be ˜3.5 Ga. (4) The majority of the larger (i.e., >1 km) impact craters show ejecta morphologies (rampart and pancake-like ejecta) that are indicative of the presence of ice/water in the target materials. The distal portions of the pancake-like ejecta are heavily degraded (not due to embayment). This suggests that these craters formed in targets that contained higher abundances of volatiles. (5) The diameter ranges of the craters with either rampart- or pancake-like ejecta are overlapping (from ˜2 to ˜60 km). Craters with pancake-like ejecta are concentrated within the central portion of the Utopia basin (less than ˜1000 km from the basin center) and rampart craters occur at the periphery of the basin. This pattern of the crater spatial distribution suggests that materials within the center of Utopia Planitia contained more ice/water. (6) Etched flows around the central

  20. Looking Beneath an Impakt Crater — Non-Destructive Testing for Hypervelocity Impact Experiments

    Science.gov (United States)

    Moser, D.; Grosse, C.; Güldemeister, N.; Buhl, E.; Wünnemann, K.; Kenkmann, T.

    2012-03-01

    In the framework of the "MEMIN" project, ultrasound tomography gives an overview about the inner damage zone. The comparison to numerical simulations and optical evaluation will give an association about terrestrial craters.

  1. Biostratigraphic Indications of End Cretaceous Age of the Boltysh Impact Crater (Ukrainian Shield)

    Science.gov (United States)

    Valter, A. A.; Plotnikova, L. F.

    2003-03-01

    The complexes of foraminifera in ejecta breccia fragments and in ejecta covering sediments were determined. According to these data the time interval of crater formation is detected to be 66.8 - 65 Ma.

  2. STUDY ON CHEMICAL PARAMETER OF METEORITE IMPACT CRATER LAKE LONAR, INDIA.

    Directory of Open Access Journals (Sweden)

    Tandale M. R.

    2016-01-01

    Full Text Available Lonar Crater (19o58'N and 76o31'E Lake is the third biggest normal salt-water lake on the planet. Lonar Crater is a wet area which is vital biodiversity division. The lake saline solution bolsters run of the mill microbial verdure should be researched to get to its estimation of wet-area to be perceived as Ramsar Site of India.

  3. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes

    Directory of Open Access Journals (Sweden)

    M. L. Kirwan

    2013-03-01

    Full Text Available The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.

  4. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes

    Directory of Open Access Journals (Sweden)

    M. L. Kirwan

    2012-10-01

    Full Text Available The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.

  5. The extra-large light-gas gun of the Fraunhofer EMI: Applications for impact cratering research

    Science.gov (United States)

    Lexow, B.; Wickert, M.; Thoma, K.; SchńFer, F.; Poelchau, M. H.; Kenkmann, T.

    2013-01-01

    The extra-large light-gas gun (XLLGG) at the Fraunhofer Ernst-Mach-Institut (EMI, Efringen-Kirchen, Germany) is a two-stage light-gas gun that can accelerate projectile masses of up to 100 g up to velocities of 6 km s-1. The accelerator's set-up allows various combinations of pump and launch tubes for applications in different fields of hypervelocity impact research. In the framework of the MEMIN (Multidisciplinary Experimental and Modeling Impact Research Network) program, the XLLGG is used for mesoscale cratering experiments with projectiles made of steel and of iron meteorites, and targets consisting of sandstone and other rocks. The craters produced with this equipment reach a diameter of up to 40 cm, a size unique in laboratory cratering research. With the implementation of neural networks, the acceleration process is being optimized, currently yielding peak velocities of 7.8 km s-1 for a 100 g projectile. Here, we summarize technical aspects of the XLLGG.

  6. Venus Crater Database

    Data.gov (United States)

    National Aeronautics and Space Administration — This web page leads to a database of images and information about the 900 or so impact craters on the surface of Venus by diameter, latitude, and name.

  7. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Science.gov (United States)

    2010-03-12

    ... Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY: Commodity Credit Corporation and... program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The Commodity Credit Corporation (CCC... Watershed Initiative for agricultural producers in the Chesapeake Bay watershed in the States of...

  8. STUDY ON CHEMICAL PARAMETER OF METEORITE IMPACT CRATER LAKE LONAR, INDIA.

    Directory of Open Access Journals (Sweden)

    Tandale M. R

    2016-03-01

    Full Text Available Lonar Crater (19o58’N and 76o31’E Lake is the third largest natural salt-water lake in the world. Lonar Crater is a wet land which is important biodiversity sector. The lake brine supports typical microbial flora and fauna need to be investigated to access its value of wet-land to be recognized as Ramsar Site of India. During the study period Seven different chemical Parameter were studied, Total Iron, Soluble Iron, Ferric Iron, Ammonia, Nitrite, Nitrates, Total Organic Nitrogen, Total Phosphate, Sulphates and Silicates. The crater physical setup, its relative Geographical and Ecological isolation evolve Limnological status in a unique way. Its unusual and climatic isolation highlights the ecosystem as an ecological wonder.

  9. Is There any Relationship Between the Santa Elena Depression and Chicxulub Impact Crater, Northwestern Yucatan Peninsula, Mexico?

    Science.gov (United States)

    Lefticariu, L.

    2005-05-01

    The Terminal Cretaceous Chicxulub Impact Crater had a strong control on the depositional and diagenetic history of the northern Yucatan Platform during most of the Cenozoic Era. The Chicxulub Sedimentary Basin (henceforth Basin), which approximately coincides with the impact crater, is circumscribed by a concentration of karstic sinkholes known as the Ring of Cenotes. Santa Elena Depression (henceforth Depression) is the name proposed for the bowl-shaped buried feature, first contoured by geophysical studies, immediately south of the Basin, in the area where the Ticul 1 and UNAM 5 wells were drilled. Lithologic, petrographic, and biostratigraphic data on PEMEX, UNAM, and ICDP cores show that: 1) Cenozoic deposits are much thicker inside the Basin than inside the Depression, 2) in general, the Cenozoic formations from inside the Depression are the thickest among those outside the Basin, 3) variably dolomitized pelagic or outer-platform wackestone or mudstone occur both inside the Basin and Depression, 4) the age of the deeper-water sedimentary carbonate rocks is Paleocene-Eocene inside the Basin and Paleocene?-Early Eocene inside the Depression, 5) the oldest formations that crop out are of Middle Eocene age at the edge of the Basin and Early-Middle Eocene age inside the Depression, 6) saline lake deposits, that consist chiefly of anhydrite, gypsum, and fine carbonate, and also contain quartz, chert, clay, zeolite, potassium feldspar, pyrite, and fragments of wood, are present in the Cenozoic section of the UNAM 5 core between 282 and 198 m below the present land surface, 7) the dolomite, subaerial exposure features (subaerial crusts, vugs, karst, dedolomite), and vug-filling cement from the Eocene formations are more abundant inside the Depression than inside the Basin. The depositional environments that are proposed for explaining the Cenozoic facies succession within the Santa Elena Depression are: 1) deeper marine water (Paleocene?-Early Eocene), 2) relatively

  10. Corrigendum to "Impact and Cratering Rates onto Pluto" [Icarus 258 (2015) 267-288

    Science.gov (United States)

    Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.

    2016-08-01

    The authors regret that an error was found in the code used to compute Charon primary crater densities by mistakenly using Pluto's diameter instead of Charon's diameter, causing the Charon cumulative crater density plots and R-plots (Figure 12) to have values that were too low by a factor of ≈12002/6002 ≈ 4. The corrected figure presented here implies younger surface ages (by roughly a factor of four) for Charon and should be used for interpretation of the New Horizons data.

  11. Chesapeake Bay Program Water Quality Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Chesapeake Information Management System (CIMS), designed in 1996, is an integrated, accessible information management system for the Chesapeake Bay Region....

  12. Lake evolution during the Early Danian Dan-C2 hyperthermal, Boltysh impact crater, Ukraine

    Science.gov (United States)

    Ebinghaus, Alena; Jolley, David W.

    2016-04-01

    Lacustrine facies record complex relationships between lake evolution and environmental conditions and provide proxies for climate changes. However, lacustrine successions formed during past hyperthermals as recorded from negative carbon isotope excursions (CIEs) are of limited availability and thus less well understood. Here, we present a complete lacustrine record of the Early Danian Dan-C2 hyperthermal at c. 65.2 Ma from a core drilled in the K-Pg Boltysh impact crater, Ukraine. This borehole allows a detailed facies analysis and reconstruction of lake evolution and associated plant ecosystem in correspondence with rapid climate change. The Boltysh borehole reveals a c. 400 m thick siliciclastic and organic-rich succession overlying impact melt-breccia dated at 65.17 ± 0.64 Ma. Based on detailed core logging, 8 distinctive facies associations are identified, including 1) littoral mudstones, 2) siliciclastic shoreline deposits, 3) siliciclastic littoral to sublittoral deposits, 4) mudstone laminites, 5) organic-rich mudstones, and deposits of 6) coarse-grained, 7) fine-grained density currents, and 8) debris flows. Based on the occurrence of these facies associations 3 major phases of lake evolution are distinguished: 1) an initial pre-CIE rising clastic-dominated lake phase characterised by the presence of coarse-grained density and debris flow deposits, 2) an organic-rich fluctuating shallow lake phase during the main phase of the CIE, characterised by alternating packages of the mudstone laminites and organic-rich mudstones; and 3) a rising clastic-dominated lake during and post-CIE recovery phase, which shows a high presence of siliciclastic shoreline and littoral to sublittoral deposits. This study provides a full record of lacustrine response to climate change during the Dan-C2 hyperthermal, and subsequently allows us to infer lake formation and environmental conditions at different stages during climate warming. The high resolution sedimentary record

  13. The Effect of Pre-Impact Porosity and Vertical Density Gradients on the Gravity Signature of Lunar Craters as Seen by GRAIL

    Science.gov (United States)

    Milbury, C.; Johnson, B. C.; Melosh, H., IV; Collins, G. S.; Blair, D. M.; Soderblom, J. M.; Nimmo, F.; Bierson, C. J.; Phillips, R. J.; Zuber, M. T.

    2015-12-01

    As a result of NASA's dual spacecraft Gravity Recovery And Interior Laboratory (GRAIL) mission [Zuber et al., 2013; doi:10.1126/science.1231507], we now know that the lunar crust is highly porous and that the porosity varies laterally [Wieczorek et al., 2013; doi:10.1126/science.1231530] and vertically [Besserer et al., 2014; doi:10.1002/2014GL060240]. Analysis of complex craters located within the lunar highlands reveals that: 1) craters larger than diameter D~210 have positive Bouguer Anomalies (BAs), 2) craters with D ≲ 100 km have both positive and negative BAs that vary about the (near 0) mean by approximately ± 25 mGal, and, 3) D and BA are anticorrelated for craters with D ≲ 100 km [Soderblom et al., 2015; submitted]. Numerical modeling by Milbury et al. [2015, LPSC] shows that pre-impact porosity is the dominant influence on the gravity signature of complex craters with D ≲ 100 km, and mantle uplift dominates the gravity for those with D > 140 km. Phillips et al. [2015, LPSC] showed that complex craters located in the South Pole-Aitken (SPA) basin tend to have more-negative BAs than similar craters in the highlands. By including (pre-impact) vertical porosity/density gradients in our impact simulations, we reproduce the observed anticorrelation between BA and D for D ≲ 100 km, and the observed difference between the BAs of SPA and highland craters. We use the iSALE hydrocode including pore space compaction [Wünnemann et al., 2006; doi:10.1016/j.icarus.2005.10.013] and dilatant bulking [Collins, 2014; doi:10.1002/2014JE004708] to understand how the gravity signature of impact craters develop. In this study we vary density/porosity with depth. We find that simulations that have constant porosity with depth have a lower BA for a given crater diameter than those with varying porosity. We used two different mean porosities (7% and 14%) and found that the BA increases with increasing porosity, similar to simulations with constant porosity. Larger

  14. The Chicxulub Multiring Impact Crater and the Cretaceous/Paleogene Boundary: Results From Geophysical Surveys and Drilling

    Science.gov (United States)

    Urrutia-Fucugauchi, J.; Perez-Cruz, Ligia

    2010-03-01

    The Chicxulub crater has attracted considerable attention as one of the three largest terrestrial impact structures and its association with the Cretaceous/Paleogene boundary (K/Pg). Chicxulub is a 200 km-diameter multi-ring structure formed 65.5 Ma ago in the Yucatan carbonate platform in the southern Gulf of Mexico and which has since been buried by Paleogene and Neogene carbonates. Chicxulub is one of few large craters with preserved ejecta deposits, which include the world-wide K/Pg boundary clay layer. The impact has been related to the global major environmental and climatic effects and the organism mass extinction that mark the K/Pg boundary, which affected more than 70 % of organisms, including the dinosaurs, marine and flying reptiles, ammonites and a large part of the marine microorganisms. The impact and crater formation occur instantaneously, with excavation of the crust down to 25 km depths in fractions of second and lower crust uplift and crater formation in a few hundreds of seconds. Energy released by impact and crustal deformation generates seismic waves traveling the whole Earth, and resulting in intense fracturing and deformation at the target site. Understanding of the physics of impacts on planetary surfaces and modeling of processes of crustal deformation, rheological behavior of materials at high temperatures and pressures remain a major challenge in geosciences. Study of the Chicxulub crater and the global effects and mass extinction requires inter- and multidisciplinary approaches, with researchers from many diverse fields beyond the geosciences. With no surface exposures, geophysical surveys and drilling are required to study the crater. Differential compaction between the impact breccias and the surrounding carbonate rocks has produced a ring-fracture structure that at the surface reflects in a small topographic depression and the karstic cenote ring. The crater structure, located half offshore and half on-land, has been imaged by

  15. The self-secondary crater population of the Hokusai crater on Mercury

    Science.gov (United States)

    Xiao, Zhiyong; Prieur, Nils C.; Werner, Stephanie C.

    2016-07-01

    Whether or not self-secondaries dominate small crater populations on continuous ejecta deposits and floors of fresh impact craters has long been a controversy. This issue potentially affects the age determination technique using crater statistics. Here the self-secondary crater population on the continuous ejecta deposits of the Hokusai crater on Mercury is unambiguously recognized. Superposition relationships show that this population was emplaced after both the ballistic sedimentation of excavation flows and the subsequent veneering of impact melt, but it predated the settlement and solidification of melt pools on the crater floor. Fragments that formed self-secondaries were launched via impact spallation with large angles. Complex craters on the Moon, Mercury, and Mars probably all have formed self-secondaries populations. Dating young craters using crater statistics on their continuous ejecta deposits can be misleading. Impact melt pools are less affected by self-secondaries. Overprint by subsequent crater populations with time reduces the predominance of self-secondaries.

  16. Aluminum Foils of the Stardust Interstellar Collector: The Challenge of Recognizing Micrometer-sized Impact Craters made by Interstellar Grains

    Science.gov (United States)

    Kearsley, A. T.; Westphal, A. J.; Burchell, M. J.; Zolensky, Michael E.

    2008-01-01

    Preliminary Examination (PE) of the Stardust cometary collector revealed material embedded in aerogel and on aluminium (Al) foil. Large numbers of sub-micrometer impact craters gave size, structural and compositional information. With experience of finding and analyzing the picogram to nanogram mass remains of cometary particles, are we now ready for PE of the Interstellar (IS) collector? Possible interstellar particle (ISP) tracks in the aerogel are being identified by the stardust@home team. We are now assessing challenges facing PE of Al foils from the interstellar collector.

  17. Power-Law Scaling of the Impact Crater Size-Frequency Distribution on Pluto: A Preliminary Analysis Based on First Images from New Horizons' Flyby

    Directory of Open Access Journals (Sweden)

    Scholkmann F.

    2016-01-01

    Full Text Available The recent (14 th July 2015 flyby of NASA’s New Horizons spacecraft of the dwarf planet Pluto resulted in the first high-resolution images of the geological surface- features of Pluto. Since previous studies showed that the impact crater size-frequency distribution (SFD of different celestial objects of our solar system follows power-laws, the aim of the present analysis was to determine, for the first time, the power-law scaling behavior for Pluto’s crater SFD based on the first images available in mid-September 2015. The analysis was based on a high-resolution image covering parts of Pluto’s re- gions Sputnik Planum , Al-Idrisi Montes and Voyager Terra . 83 impact craters could be identified in these regions and their diameter ( D was determined. The analysis re- vealed that the crater diameter SFD shows a statistically significant power-law scaling ( α = 2.4926±0.3309 in the interval of D values ranging from 3.75±1.14 km to the largest determined D value in this data set of 37.77 km. The value obtained for the scaling coefficient α is similar to the coefficient determined for the power-law scaling of the crater SFDs from the other celestial objects in our solar system. Further analysis of Pluto’s crater SFD is warranted as soon as new images are received from the spacecraft.

  18. Evidence for Localized High Temperature Hydrothermal Fluid Flow within the Sub-Crater Environment of the Rochechouart Impact Structure: Observations from a Polymict Breccia Dike

    OpenAIRE

    Simpson, S.L.; Lambert, P; Lee, M R

    2015-01-01

    Hypervelocity impacts into volatilebearing terrestrial targets can initiate hydrothermal circulation for a finite period of time; evidence for this is preserved in approximately one-third of impact structures on Earth [1, 2]. Hydrothermal environments can host extremophile life, and microbial communities have been found to colonize impact craters [3, 4]. The majority of impact structures on Earth have yet to be studied in great detail; many aspects of the post-impact environment such as the e...

  19. Meteorite crater impact study: a new way to study seismology at school with exciting experiments, and an example of meteorite astroblema in France (Rochechouart)

    Science.gov (United States)

    Carrer, Diane; Berenguer, Jean-Luc; MacMurray, Andrew

    2016-04-01

    The InSIGHT mission to Mars (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) supported by NASA, IPGP and CNES, is a great opportunity for teachers and pupils to study the Red planet, but also to study other fields of geology at school, such as seismology. With our pupils, we are following the InSight mission and we look forward to analyze seismic data registered by the SEIS seismometer , once it will be available (the InSight mission will launch in 2018 from California, and will land to Mars in 2018 or 2019). As this mission needs meteorite impacts to generate seismic waves ( to discover the Martian interior structure) , we've decided to model those meteorite strikes in the classroom. With our pupils, we've modeled meteorite impact craters with different impactors , such as tennis balls, baseballs, or pingpong balls, and used an analogue substratum made by flour and cocoa. Then, we kept on going our geophysical investigation , studying several parameters. For instance, we've studied the link between size of impactor and size of crater , the link between mass of impactor and Crater Formation, and the link between velocity of impactor and crater formation. In this geophysical approach , potential energy and kinetic energy can be introduced in terms of energy transfer as the impactor falls ( calculation of the velocity of impact and plotting that against crater diameter using v = (2gh)1/2). For each crater formation made in class by students, we have registered seismological data thanks to Audacity software, and study the seismic signal propagation. This exemple of hands-on activity with pupils, and its wide range of geophysical calculation shows how we can do simple experiment modeling meteorite crater impact and exploit registered seismological data at school. We've finaly focused our work with the very famous example of the astroblema of Rochechouart in the South-west of France ( crater formation : - 214 My) , in which it's easy to

  20. High Temperature and High Pressure Mixtures of Iron Oxides from the Impact Event at the Bee Bluff Crypto-Meteorite Impact Crater of South Texas

    Science.gov (United States)

    Graham, R. A.

    2012-10-01

    Disturbed geology within a several km diameter surface area of sedimentary Carrizo Sandstone near Uvalde, Texas, indicates the presence of a partially buried meteorite impact crater. Identification of its impact origin is supported by detailed studies but quartz grains recovered from distances of about100 km from the structure also show planar deformation features (PDFs). While PDFs are recognized as uniquely from impact processes, quantitative interpretation requires extension of Hugoniot materials models to more realistic grain-level, mixture models. Carrizo sandstone is a porous mixture of fine quartz and goethite. At impact pressures of tens of GPa, goethite separates into hematite and water vapor upon release of impact pressure. Samples from six different locations up to 50 km from the impact site preserve characteristic features resulting from mixtures of goethite, its water vapor, hematite and quartz. Spheroids resulting from local radial acceleration of mixed density, hot products are common at various sites. Local hydrodynamic instabilities cause similar effects.

  1. Chronicle of Bukit Bunuh for possible complex impact crater by 2-D resistivity imaging (2-DERI) with geotechnical borehole records

    Science.gov (United States)

    Jinmin, M.; Saad, R.; Saidin, M.; Ismail, N. A.

    2015-03-01

    A 2-D resistivity imaging (2-DERI) study was conducted at Bukit Bunuh, Lenggong, Perak. Archaeological Global Research Centre, Universiti Sains Malaysia shows the field evidence of shock metamorphisms (suevite breccia) and crater morphology at Bukit Bunuh. A regional 2-DERI study focusing at Bukit Bunuh to identify the features of subsurface and detail study was then executed to verify boundary of the crater with the rebound effects at Bukit Bunuh which covered approximately 132.25 km2. 2-DERI survey used resistivity equipment by ABEM SAS4000 Terrameter and ES10-64C electrode slector with pole-dipole array. The survey lines were carried out using `roll-along' technique. The data were processed and analysed using RES2DINV, Excel and Surfer software to obtain resistivity results for qualitative interpretations. Bedrock depths were digitized from section by sections obtained. 2-DERI results gives both regional and detail study shows that the study area was divided into two main zones, overburden consists of alluvium mix with boulders embedded with resistivity value of 10-800 Ωm and granitic bedrock with resistivity value of >1500 Ωm and depth 5-50 m. The low level bedrock was circulated by high level bedrock (crater rim) was formed at the same area with few spots of high level bedrock which appeared at the centre of the rim which suspected as rebound zones (R). Assimilations of 2-DERI with boreholes are successful give valid and reliable results. The results of the study indicates geophysical method are capable to retrieve evidence of meteorite impact subsurface of the studied area.

  2. Formation of Craters in Sand

    Directory of Open Access Journals (Sweden)

    Vanissra Boonyaleepun

    2007-06-01

    Full Text Available The diameter of craters formed by spheres of varying mass dropped into sand at low speed was studied. The relationship between the diameter of the crater formed and the kinetic energy of the projectile at impact was found to be of the same general form as that for planetary meteor craters. The relationship is shown to be a power law with exponent 0.17.

  3. Geology of Holden Crater and the Holden and Ladon Multi-Ring Impact Basins, Margaritifer Terra, Mars

    Science.gov (United States)

    Irwin, R. P., III; Grant, J. A.

    2008-01-01

    Geologic mapping at 1:500K scale of Mars quads 15s027, 20s027, 25s027, and 25s032 (Fig. 1) is in progress to constrain the geologic and geomorphic history of southwestern Margaritifer Terra. This work builds on earlier maps at 1:5M [1] and 1:15M scales [2], recent to concurrent 1:500Kscale mapping of adjacent areas to the east [3-5], and studies of drainage basin evolution along the Uzboi-Ladon-M (ULM; the third valley in the sequence has no formal name) Valles basin overflow system and nearby watersheds [6-9]. Two of the six landing sites under consideration for the Mars Science Laboratory rover are in this map area, targeting finely layered, phyllosilicate-rich strata and alluvial fans in Holden crater [10-12] (26degS, 34degW, 150 km diameter) or deposits southeast of a likely delta in Eberswalde crater [13-16] (24degS, 33degW, 50 km in diameter). Diverse processes including larger and smaller impacts, a wide range in fluvial activity, and local to regional structural influences have all affected the surface morphology.

  4. Description of Tessaracoccus profundi sp.nov., a deep-subsurface actinobacterium isolated from a Chesapeake impact crater drill core (940 m depth)

    DEFF Research Database (Denmark)

    Finster, Kai; Cockell, C.S.; Voytek, M.A.; Gronstal, A.L.; Kjeldsen, Kasper Urup

    2009-01-01

    grew anaerobically by reducing nitrate to nitrite or by fermenting glucose. It was catalase positive and oxidase negative. It grew between 10 and 45°C, with an optimum between 35 and 40°C. The pH range for growth was 5.7-9.3, with an optimum at pH 7.5. The closest phylogenetic neighbors based on 16S r...... first member of this genus that has been isolated from a deep subsurface environment. The type strain is CB31T (=NCIMB 14440T = DSM 21240T)....

  5. Analytical scanning and transmission electron microscopy of laboratory impacts on Stardust aluminum foils: interpreting impact crater morphology and the composition of impact residues

    CERN Document Server

    Kearsley, A T; Burchell, M J; Cole, M J; Dai, Z R; Teslich, N; Bradley, J P; Chater, R; Wozniakiewicz, P A; Spratt, J; Jones, G

    2006-01-01

    The known encounter velocity (6.1kms-1) and particle incidence angle (perpendicular) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild 2 fall within a range that allows simulation in laboratory light gas gun experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminum foil components of the Stardust collector. Buckshot of a wide size, shape and density range of mineral, glass, polymer and metal grains, have been fired to impact perpendicularly upon samples of Stardust Al1100 foil, tightly wrapped onto aluminium alloy plate as an analogue of foil on the spacecraft collector. We have not yet been able to produce laboratory impacts by projectiles with weak and porous aggregate structure, as may occur in some cometary dust grains. In this report we present information on crater gross morphology and its dependence on particle size and density, the pre-existing major and trace element composition of the foil, geometrical issues for en...

  6. Detection of erosion events using 10Be profiles: example of the impact of agriculture on soil erosion in the Chesapeake Bay area (U.S.A.)

    Science.gov (United States)

    Valette-Silver, J. N.; Brown, L.; Pavich, M.; Klein, J.; Middleton, R.

    1986-01-01

    10Be concentration, total carbon and grain-size were measured in cores collected in undisturbed estuarine sediments of three tributaries of the Chesapeake Bay. These cores were previously studied by Davis [1] and Brush [2,3] for pollen content, age and sedimentation rate. In this work, we compare the results obtained for these various analyses. In the cores, we observed two increases in 10Be concentration concomitant with two major changes in the pollen composition of the sediments. These two pollen changes each correspond to well-dated agricultural horizons reflecting different stages in the introduction of European farming techniques [2]. In the Chesapeake Bay area, the agricultural development, associated with forest clearing, appears to have triggered the erosion, transport, and sedimentation into the river mouths of large quantities of 10Be-rich soils. This phenomenon explains the observed rise in the sedimentation rate associated with increases in agricultural land-use. ?? 1986.

  7. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    Directory of Open Access Journals (Sweden)

    Sangchul Lee

    Full Text Available The adoption rate of winter cover crops (WCCs as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE reduced NO3-N loads by ~49.3% compared to the baseline (no WCC. The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean, with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  8. Impact of Hurricane Irene on Vibrio vulnificus and Vibrio parahaemolyticus concentrations in surface water, sediment and cultured oysters in the Chesapeake Bay, Maryland, USA

    Directory of Open Access Journals (Sweden)

    KristiSShaw

    2014-05-01

    Full Text Available To determine if a storm event (i.e., high winds, large volumes of precipitation could alter concentrations of Vibrio vulnificus and Vibrio parahaemolyticus in aquacultured oysters (Crassostrea virginica and associated surface water and sediment, this study followed a sampling timeline before and after Hurricane Irene impacted the Chesapeake Bay estuary in late August 2011. Aquacultured oysters were sampled from two levels in the water column: surface 0.3 m and near-bottom just above the sediment. Concentrations of each Vibrio spp. and associated virulence genes were measured in oysters with a combination of real-time PCR and most probable number enrichment methods, and in sediment and surface water with real-time PCR. While concentration shifts of each Vibrio species were apparent post-storm, statistical tests indicated no significant change in concentration change for either Vibrio species by location (surface or near bottom oysters or date sampled (oyster tissue, surface water and sediment concentrations. V. vulnificus in oyster tissue was correlated with total suspended solids (r=0.41, p=0.04, and V. vulnificus in sediment was correlated with secchi depth (r=-0.93, p< 0.01, salinity (r=-0.46, p=0.02, tidal height (r=-0.45, p=0.03, and surface water V. vulnificus (r=0.98, p< 0.01. V. parahaemolyticus in oyster tissue did not correlate with environmental measurements, but V. parahaemolyticus in sediment and surface water correlated with several measurements including secchi depth (r=-0.48, p=0.02[sediment]; r=-0.97 p< 0.01[surface water] and tidal height (r=-0.96. p< 0.01[sediment], r=-0.59,p< 0.01 [surface water]. The concentrations of Vibrio spp. were higher in oysters relative to other studies (average V. vulnificus 4x105 MPN g-1, V. parahaemolyticus 1x105 MPN g-1, and virulence-associated genes were detected in most oyster samples. This study provides a first estimate of storm-related Vibrio density changes in oyster tissues, sediment and

  9. The Impact Crater Size-Frequency Distribution on Pluto Follows a Truncated Pareto Distribution: Results from a First Data Set Based on the Recent New Horizons' Flyby

    CERN Document Server

    Zaninetti, L

    2015-01-01

    Recently it could be shown ( that the impact crater size-frequency distribution of Pluto (based on an analysis of first images obtained by the recent New Horizons flyby) follows a power law alpha = 2.4926 in the interval of diameter (D) values ranging from 3.75 km to the largest determined value of 37.77 km. A reanalysis of this data set revealed that the whole crater SFD (i.e., with values in the interval of 1.2-37.7 km) can be described by a truncated Pareto distribution.

  10. Power-Law Scaling of the Impact Crater Size-Frequency Distribution on Pluto: A Preliminary Analysis Based on First Images from New Horizons' Flyby

    OpenAIRE

    Scholkmann F.

    2016-01-01

    The recent (14 th July 2015) flyby of NASA’s New Horizons spacecraft of the dwarf planet Pluto resulted in the first high-resolution images of the geological surface- features of Pluto. Since previous studies showed that the impact crater size-frequency distribution (SFD) of different celestial objects of our solar system follows power-laws, the aim of the present analysis was to determine, for the first time, the power-law scaling behavior for Pluto’s crater SFD ba...

  11. Stratigraphy, Sequence, and Crater Populations of Lunar Impact Basins from Lunar Orbiter Laser Altimeter (LOLA) Data: Implications for the Late Heavy Bombardment

    Science.gov (United States)

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    New measurements of the topography of the Moon from the Lunar Orbiter Laser Altimeter (LOLA)[1] provide an excellent base-map for analyzing the large crater population (D.20 km)of the lunar surface [2, 3]. We have recently used this data to calculate crater size-frequency distributions (CSFD) for 30 lunar impact basins, which have implications for their stratigraphy and sequence. These data provide an avenue for assessing the timing of the transitions between distinct crater populations characteristic of ancient and young lunar terrains, which has been linked to the late heavy bombardment (LHB). We also use LOLA data to re-examine relative stratigraphic relationships between key lunar basins.

  12. Chesapeake Bay Watershed - Protecting the Chesapeake Bay and its rivers through science, restoration, and partnership

    Science.gov (United States)

    U.S. Geological Survey

    2012-01-01

    The Chesapeake Bay, the Nation's largest estuary, has been degraded due to the impact of human-population increase, which has doubled since 1950, resulting in degraded water quality, loss of habitat, and declines in populations of biological communities. Since the mid-1980s, the Chesapeake Bay Program (CBP), a multi-agency partnership which includes the Department of Interior (DOI), has worked to restore the Bay ecosystem. The U.S. Geological Survey (USGS) has the critical role of providing unbiased scientific information that is utilized to document and understand ecosystem change to help assess the effectiveness of restoration strategies in the Bay and its watershed. The USGS revised its Chesapeake Bay science plan for 2006-2011 to address the collective needs of the CBP, DOI, and USGS with a mission to provide integrated science for improved understanding and management of the Bay ecosystem. The USGS science themes for this mission are: Causes and consequences of land-use change; Impact of climate change and associated hazards; Factors affecting water quality and quantity; Ability of habitat to support fish and bird populations; and Synthesis and forecasting to improve ecosystem assessment, conservation, and restoration.

  13. Search for a meteoritic component in impact-melt rocks from the Lonar crater, India - Evidence from osmium isotope systematics

    Science.gov (United States)

    Schulz, T.; Luguet, A.; Koeberl, C.

    2013-12-01

    Introduction: The Lonar crater in western India (Maharashtra) is a bowl-shaped simple impact structure of 1830 m diameter and a depth of 120 m below the rim crest. The crater formed 0.656 × 0.081 Ma ago on the 65 Ma old basaltic lava flows of the Deccan Traps (Jourdan et al. 2010) and is one of the few terrestrial impact structures to have formed in basaltic host-rocks. In the absence of actual meteorite fragments, the impact origin of this structure was supported by the identification of a variety of shock metamorphic features (e.g. Fredriksson et al. 1973). However, clear indications of an extraterrestrial component in impactites based on geochemical studies are absent or remained ambiguous so far (e.g. Osae et al. 2005). As the Os isotope tool has the potential to provide firm constraints on the presence or absence of even very small (regia. Osmium solvent extraction and microdistillation were performed as described by Cohen and Waters (1996). Osmium isotopic compositions were measured using a TRITON N-TIMS at the Department of Lithospheric Research in Vienna. Results and Discussion: Osmium data on seven target and nine impact melt rocks reveal 187Os/188Os ratios ranging from ~0.38 to ~2.23 for the target rocks and from ~0.22 to ~0.59 for the nine analyzed impact melt rocks, whereas Os concentrations range from ~7.1 to ~31.6 ppt and ~7.2 to ~134 ppt, respectively. Although in the typical range for basalts from the Deccan Traps (e.g., Allegre et al. 1999), our data clearly point toward an enrichment of Os in impact melt rocks compared to the host basalt. Detailed petrographic as well as geochemical investigations (Osae et al. 2005) found no evidence for a possible mantle contamination that could also account for the elevated Os concentrations and low 187Os/188Os signatures in the impact-melt rocks. Instead, the data for the impact-melt rocks show a good fit to a calculated curve generated for mixing between chondritic and basaltic end-members. However, further

  14. The Distribution of Subsurface Water at Hadriaca and Tyrrhena Paterae and Surrounding Areas on Mars from Impact Crater Morphology

    Science.gov (United States)

    Lancaster, M. G.; Guest, J. E.

    1996-03-01

    It is well established that the surface of Mars exhibits abundant evidence for the presence of either liquid or frozen water during the course of Martian history. The origin, location, extent and transport of this water is of critical importance in the understanding of Martian geology and climate. In particular, the fluid appearance of rampart crater ejecta has been cited as evidence for subsurface ice at the time of impact. Ejecta morphology has proven to be a useful tool for studying the distribution of subsurface ice on Mars. It is possible that in some regions the concentration and distribution of subsurface ice has been affected by volcanic processes, either in the melting and/or mobilisation of existing subsurface water, and/or in the injection of juvenile water into the martian crust. The presence of water may also have affected the style of volcanic eruptions on Mars, increasing the volatile content of rising magmas and generating explosive activity. We are currently investigating the abundance and role of water in the evolution of the volcanoes Hadriaca and Tyrrhena Patera and surrounding highlands northeast of the Hellas Basin. The morphology of these volcanoes has been attributed to explosive volcanism, and to the presence of substantial amounts of water in the regolith at the time of their eruption. The location of Hadriaca Patera in a region containing channelled plains, debris flows, and pitted plains, together with the style of erosion of the volcano flanks suggests presence of volatile-rich surface materials or fluvial or periglacial activity. This work is a continuation of research undertaken by Cave in the Elysium Mons Region, where ice was found to be enriched at depth in the Elysium Lavas. We are performing a similar analysis for the volcanics of Hadriaca and Tyrrhena Paterae. A database containing information on the location, size, morphology, ejecta characteristics and degradation state of several hundred impact craters displaying ejecta in

  15. Compilation of a Global GIS Crater Database for the Moon

    Science.gov (United States)

    Barlow, Nadine G.; Mest, S. C.; Gibbs, V. B.; Kinser, R. M.

    2012-10-01

    We are using primarily Lunar Reconnaissance Orbiter (LRO) information to compile a new global database of lunar impact craters 5 km in diameter and larger. Each crater’s information includes coordinates of the crater center (ULCN 2005), crater diameter (major and minor diameters if crater is elliptical), azimuthal angle of orientation if crater is elliptical, ejecta and interior morphologies if present, crater preservation state, geologic unit, floor depth, average rim height, central peak height and basal diameter if present, and elevation and elemental/mineralogy data of surroundings. LROC WAC images are used in ArcGIS to obtain crater diameters and central coordinates and LROC WAC and NAC images are used to classify interior and ejecta morphologies. Gridded and individual spot data from LOLA are used to obtain crater depths, rim heights, and central peak height and basal diameter. Crater preservational state is based on crater freshness as determined by the presence/absence of specific interior and ejecta morphologies and elevated crater rim together with the ratio of current crater depth to depth expected for fresh crater of identical size. The crater database currently contains data on over 15,000 craters covering 80% of the nearside and 15% of the farside. We also include information allowing cross-correlation of craters in our database with those in existing crater catalogs, including the ground-based “System of Lunar Craters” by Arthur et al. (1963-1966), the Lunar Orbiter/Apollo-based crater catalog compiled by Andersson and Whitaker (1982), and the Apollo-based morphometric crater database by Pike (1980). We find significant differences in crater diameter and classification between these earlier crater catalogs and our new compilation. Utilizing the capability of GIS to overlay different datasets, we will report on how specific crater features such as central peaks, wall terraces, and impact melt deposits correlate with parameters such as elevation

  16. Geology of Lofn Crater, Callisto

    Science.gov (United States)

    Greeley, Ronald; Heiner, Sarah; Klemaszewski, James E.

    2001-01-01

    Lofn crater is a 180-km-diameter impact structure in the southern cratered plains of Callisto and is among the youngest features seen on the surface. The Lofn area was imaged by the Galileo spacecraft at regional-scale resolutions (875 m/pixel), which enable the general geology to be investigated. The morphology of Lofn crater suggests that (1) it is a class of impact structure intermediate between complex craters and palimpsests or (2) it formed by the impact of a projectile which fragmented before reaching the surface, resulting in a shallow crater (even for Callisto). The asymmetric pattern of the rim and ejecta deposits suggests that the impactor entered at a low angle from the northwest. The albedo and other characteristics of the ejecta deposits from Lofn also provide insight into the properties of the icy lithosphere and subsurface configuration at the time of impact. The "target" for the Lofn impact is inferred to have included layered materials associated with the Adlinda multiring structure northwest of Loh and ejecta deposits from the Heimdall crater area to the southeast. The Lofn impact might have penetrated through these materials into a viscous substrate of ductile ice or possibly liquid water. This interpretation is consistent with models of the current interior of Callisto based on geophysical information obtained from the Galileo spacecraft.

  17. Evidence of Non-Impact Cratering Origin of Imilchil (Morocco) Lakes (Isli and Tislit)

    Science.gov (United States)

    Chaabout, S.; Chennaoui Aoudjehane, H.; Reimold, W. U.; Aboulahris, M.; Aoudjehane, M.

    2013-08-01

    Isli and Tislit lakes (High Atlas Mountains, Morocco) were recently proposed as impact structures, related to the Agoudal iron meteorite found about twenty km from the lakes. Our study did not provide any evidence for such an origin.

  18. Vegetation history of Central Chukotka deduced from permafrost paleoenvironmental records of the El'gygytgyn Impact Crater

    Directory of Open Access Journals (Sweden)

    A. A. Andreev

    2012-04-01

    Full Text Available Frozen sediments from three cores bored in permafrost surrounding of the El'gygytgyn Impact Crater Lake have been studied for pollen, non-pollen palynomorphs, plant macrofossils, and rhizopods. The palynological study of the cores contributes to a higher resolution of time intervals presented in a poor temporal resolution in the lacustrine sediments; namely the Allerød and succeeding periods. Moreover, permafrost records better reflect local environmental changes, thus, allowing more reliable reconstruction of the local paleoenvironments. The new data confirm that shrub tundra with dwarf birch, shrub alder and willow dominated in the lake surroundings during the Allerød warming. Younger Dryas pollen assemblages reflect abrupt changes to grass-sedge-herb dominated environments reflecting significant climate deterioration. Low shrub tundra with dwarf birch and willow dominate the lake vicinity at the onset of the Holocene. The founds of larch seeds indicate its local presence around 11 000 cal. yr BP and, thus a northward shift of treeline by about 100 km during the early Holocene thermal optimum. Forest tundra with larch and shrub alder stands grew in the area during the early Holocene. After ca. 3500 cal. yr BP similar-to-modern plant communities became common in the lake vicinity.

  19. The shapes of fragments in hypervelocity impact experiments ranging from cratering to catastrophic disruption

    Science.gov (United States)

    Michikami, T.; Hagermann, A.; Kadokawa, T.; Yoshida, A.; Shimada, A.; Hasegawa, S.; Tsuchiyama, A.

    2015-12-01

    Laboratory impact experiments have found that the shapes of impact fragments as defined by axes a, b and c, these being the maximum dimensions of the fragment in three mutually orthogonal planes (a ≥ b ≥ c) are distributed around mean values of the axial ratios b/a ~0.7 and c/a ~0.5, i.e., corresponding to a : b: c in the simple proportion 2: √2: 1. The shape distributions of some boulders on asteroid Eros, the small- and fast-rotating asteroids (diameter 8 m) on asteroid Itokawa. The mean value of c/a of these boulders is 0.46, which is similar to the value for catastrophic disruption. This implies that the parent body of Itokawa could have experienced a catastrophic disruption.

  20. Probing the Hidden Geology of Isidis Planitia (Mars) with Impact Craters

    OpenAIRE

    Graziella Caprarelli; Roberto Orosei

    2015-01-01

    In this study we investigated Isidis Planitia, a 1325 km diameter multi-ring impact basin intersecting the Martian hemispheric dichotomy, located in the eastern hemisphere, between Syrtis Major and Utopia Planitia. From Mars Orbiter Laser Altimeter gridded data we observed that in the center of Isidis the −3700 m and −3800 m isolines strike NW-SE, being quasi-parallel to the diameter of the basin. We interpreted this as evidence that the basement of Isidis Planitia was faulted prior to being ...

  1. The Global TanDEM-X Digital Elevation Model and the Terrestrial Impact Crater Record

    OpenAIRE

    Gottwald, Manfred; Fritz, Thomas; Breit, Helko; Schättler, Birgit; Harris, Alan

    2016-01-01

    The German TanDEM-X mission produced a new DEM with unprecedented accuracy. From December 2010 to March 2015 the two X-band radar satellites TerraSAR-X and TanDEM-X have been operated in close formation as a single-pass SAR interferometer. The data acquired in bistatic mode were processed to yield a global DEM with an independent pixel spacing of 12 m and an absolute height error of < 10 m. We used this DEM to generate a TanDEM-X sample of more than 120 confirmed impact structures, all ma...

  2. Characteristics of Polygonal Craters on (1) Ceres

    Science.gov (United States)

    Otto, Katharina A.; Jaumann, Ralf; Krohn, Katrin; Buczkowski, Debra L.; von der Gathen, Isabel; Kersten, Elke; Mest, Scott C.; Naß, Andrea; Neesemann, Adrian; Preusker, Frank; Roatsch, Thomas; Schröder, Stefan E.; Schulzeck, Fanziska; Scully, Jennifer E. C.; Stephan, Katrin; Wagner, Roland; Williams, David A.; Raymond, Carol A.; Russell, Chistopher T.

    2016-04-01

    The Dawn spacecraft arrived at Ceres in March 2015. There, the on-board Framing Camera (FC) collects image data with a resolution of up to 35 m/pixel, which reveal a large variety of impact crater morphologies including polygonal craters. Polygonal craters show straight rim sections aligned to form an angular shape. They are commonly associated with fractures in the target material, which may be preserved as linear structures on Ceres [3, 4]. On Ceres, we find polygonal craters with a size ranging between 5 km and 280 km in diameter. However, the majority of polygonal craters have diameters ranging between 10 km and 50 km diameter. A preferential hexagonal shape is observed and some polygonal craters exhibit central peaks or relaxed crater floors. On average there are eight to ten polygonal craters per 100,000 km², however the northern latitudes have a slightly higher and the southern latitudes a slightly lower polygonal crater density. This may hint at an older and younger age of the northern (> 60° N) and southern regions (> 60° S) compared to the mid latitudes, respectively. Alternatively, the relaxation of craters may be advanced in the mid latitudes which are generally warmer than the poles and thus support the relaxation of depressions. Also, the southern region harbors relatively large craters which may have altered or destroyed preexisting structures in the crust which are necessary for the formation of polygonal craters. Most polygonal craters have six or seven straight rim sections; however, there is a tendency for fewer edges with decreasing crater size. Although this observation may be biased due to the map resolution, it is also possible that the impactor creating a relatively small polygonal crater embeds less energy and thus forms the straight rim sections during the excavation stage. This may result in fewer straight rim sections compared to more energetic impactors which form their polygonal shape during the modification stage. Straight rim

  3. The Impact Crater Size-Frequency Distribution on Pluto Follows a Truncated Pareto Distribution: Results from a First Data Set Based on the Recent New Horizons' Flyby

    Directory of Open Access Journals (Sweden)

    Zaninetti L.

    2016-01-01

    Full Text Available Recently it could be shown (Scholkmann, Prog. in Phys. , 2016, v. 12(1, 26-29 that the impact crater size-frequency distribution of Pluto (based on an analysis of first images obtained by the recent New Horizons’ flyby follows a power law (α =2.4926±0.3309 in the interval of diameter ( D values ranging from 3.75±1.14 km to the largest deter- mined value of 37.77 km. A reanalysis of this data set revealed that the whole crater SFD (i.e., with values in the interval of 1.2–37.7 km can be described by a truncated Pareto distribution.

  4. Projectile Velocity and Crater Formation in Water

    Directory of Open Access Journals (Sweden)

    Pravitra Chaikulngamdee

    2010-01-01

    Full Text Available The relationship between the velocity of impact and maximum crater diameter was found for two steel balls dropped into water using 300 fps video. The maximum diameter of the crater was found to be proportional to the impact velocity and independent of the diameter of the ball.

  5. Ring of Cenotes (sinkholes), northwest Yucatan, Mexico: Its hydrogeologic characteristics and possible association with the Chicxulub impact crater

    Science.gov (United States)

    Perry, Eugene; Marin, Luis; McClain, Jana; Velazquez, Guadalupe

    1995-01-01

    A 180-km-diameter semicircular band of abundant karst sinkholes (Ring of Cenotes) in northwest Yucatan, Mexico, coincides approximately with a concentric ring of the buried Chicxulub structure, a circular feature manifested in Cretaceous and older rocks, that has been identified as the product of the impact of a bolide. The ring, expressed in Tertiary rocks, marks a zone of high permeability as shown by (1) the sinkholes themselves, (2) breaks in the coastal dune system and high density of springs where the ring intersects the coast, and (3) water-level transects characterized by a decline in water level toward the ring. Any direct relation that exists between the Ring of Cenotes and the Chicxulub structure bears on regional hydrogeology. If the layer or zone responsible for the ring is deeply buried, it may act as a barrier to the movement of ground water across the main flow direction. Shallower zones of horizontal permeability could result in less complete diversion of ground water. Through its influence on Yucatan aquifer characteristics, the ring may provide a link between modern environmental problems and astrogeology. Possible origins for the Ring of Cenotes are (1) faulting, perhaps reactivated by post-Eocene mid-Miocene basin loading, (2) permeability in a buried reef complex developed in the shallow Paleocene sea around the crater rim, or (3) breccia collapse occasioned by consolidation or by solution of evaporite components. If the ring developed on ancient faults, it may outline hydrothermal systems and mineral deposits produced during Paleocene cooling of the Chicxulub melt sheet.

  6. Blocky craters: implications about the lunar megaregolith

    International Nuclear Information System (INIS)

    Radar, infrared, and photogeologic properties of lunar craters have been studied to determine whether there is a systematic difference in blocky craters between the maria and terrae and whether this difference may be due to a deep megaregolith of pulverized material forming the terra surface, as opposed to a layer of semi-coherent basalt flows forming the mare surface. Some 1310 craters from about 4 to 100 km diameter have been catalogued as radar and/or infrared anomalies. In addition, a study of Apollo Orbital Photography confirmed that the radar and infrared anomalies are correlated with blocky rubble around the crater. Analysis of the radar and infrared data indicated systematic terra-mare differences. Fresh terra craters smaller than 12 km were less likely to be infrared and radar anomalies than comparable mare craters: but terra and mare craters larger than 12 km had similar infrared and radar signatures. Also, there are many terra craters which are radar bright but not infrared anomalies. The authors interpretation of these data is that while the maria are rock layers (basaltic flow units) where craters eject boulder fields, the terrae are covered by relatively pulverized megaregolith at least 2 km deep, where craters eject less rocky rubble. Blocky rubble, either in the form of actual rocks or partly consolidated blocks, contributes to the radar and infrared signatures of the crater. However, aging by impacts rapidly destroys these effects, possibly through burial by secondary debris or by disintegration of the blocks themselves, especially in terra regions. (Auth.)

  7. Tektite origin by hypervelocity asteroidal or cometary impact: The quest for the source craters

    Science.gov (United States)

    Koeberl, Christian

    Tektites are natural glasses that are chemically homogeneous, often spherically symmetrical objects several centimeters in size, and occur in four known strewn fields on the surface of the Earth: the North American, moldavite (or Central European), Ivory Coast, and Australasian strewn fields. Tektites found within such strewn fields are related to each other with respect to their petrological, physical, and chemical properties as well as their age. A theory of tektite origin needs to explain the similarity of tektites in respect to age and certain aspects of isotopic and chemical composition within one strewn field, as well as the variety of tektite materials present in each strewn field. In addition to tektites on land, microtektites (which are generally less than 1 mm in diameter) have been found in deep-sea cores. Tektites are classified into three groups: (1) normal or splash-form tektites, (2) aerodynamically shaped tektites, and (3) Muong Nong-type tektites (sometimes also called layered tektites). The aerodynamic ablation results from partial remelting of glass during atmospheric passage after it was ejected outside the terrestrial atmosphere and quenched from a hot liquid. Aerodynamically shaped tektites are known mainly from the Australasian strewn field where they occur as flanged-button australites. The shapes of splash-form tektites (spheres, droplets, teardrops, dumbbells, etc., or fragments thereof) are the result of the solidification of rotating liquids in the air or vacuum. Mainly due to chemical studies, it is now commonly accepted that tektites are the product of melting and quenching of terrestrial rocks during hypervelocity impact on the Earth. The chemistry of tektites is in many respects identical to the composition of upper crustal material.

  8. Crater in Marte Vallis

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-566, 6 December 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a streamlined tail-pointing toward the upper right (northeast)--in the lee of a meteor impact crater in Marte Vallis, a large valley and channel complex southeast and east of the Elysium volcanic region. The fluid that went through Marte Vallis, whether water, mud, lava, or otherwise, created this form as it moved from the lower left (southwest) toward the upper right. The crater is located near 19.0oN, 174.9oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the left.

  9. Marte Valles Crater 'Island'

    Science.gov (United States)

    2004-01-01

    10 April 2004 Marte Valles is an outflow channel system that straddles 180oW longitude between the region south of Cerberus and far northwestern Amazonis. The floor of the Marte valleys have enigmatic platy flow features that some argue are formed by lava, others suggest they are remnants of mud flows. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an island created in the middle of the main Marte Valles channel as fluid---whether lava or mud---flowed past two older meteor impact craters. The craters are located near 21.5oN, 175.3oW. The image covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  10. Target rocks, impact glasses, and melt rocks from the Lonar crater, India: Highly siderophile element systematics and Sr-Nd-Os isotopic signatures

    Science.gov (United States)

    Schulz, Toni; Luguet, Ambre; Wegner, Wencke; Acken, David; Koeberl, Christian

    2016-07-01

    The Lonar crater is a ~0.57-Myr-old impact structure located in the Deccan Traps of the Indian peninsula. It probably represents the best-preserved impact structure hosted in continental flood basalts, providing unique opportunities to study processes of impact cratering in basaltic targets. Here we present highly siderophile element (HSE) abundances and Sr-Nd and Os isotope data for target basalts and impactites (impact glasses and impact melt rocks) from the Lonar area. These tools may enable us to better constrain the interplay of a variety of impact-related processes such as mixing, volatilization, and contamination. Strontium and Nd isotopic compositions of impactites confirm and extend earlier suggestions about the incorporation of ancient basement rocks in Lonar impactites. In the Re-Os isochron plot, target basalts exhibit considerable scatter around a 65.6 Myr Re-Os reference isochron, most likely reflecting weathering and/or magma replenishment processes. Most impactites plot at distinctly lower 187Re/188Os and 187Os/188Os ratios compared to the target rocks and exhibit up to two orders of magnitude higher abundances of Ir, Os, and Ru. Moreover, the impactites show near-chondritic interelement ratios of HSE. We interpret our results in terms of an addition of up to 0.03% of a chondritc component to most impact glasses and impact melt rocks. The magnitude of the admixture is significantly lower than the earlier reported 12-20 wt% of extraterrestrial component for Lonar impact spherules, reflecting the typical difference in the distribution of projectile component between impact glass spherules and bulk impactites.

  11. Target rocks, impact glasses, and melt rocks from the Lonar crater, India: Highly siderophile element systematics and Sr-Nd-Os isotopic signatures

    Science.gov (United States)

    Schulz, Toni; Luguet, Ambre; Wegner, Wencke; Acken, David; Koeberl, Christian

    2016-06-01

    The Lonar crater is a ~0.57-Myr-old impact structure located in the Deccan Traps of the Indian peninsula. It probably represents the best-preserved impact structure hosted in continental flood basalts, providing unique opportunities to study processes of impact cratering in basaltic targets. Here we present highly siderophile element (HSE) abundances and Sr-Nd and Os isotope data for target basalts and impactites (impact glasses and impact melt rocks) from the Lonar area. These tools may enable us to better constrain the interplay of a variety of impact-related processes such as mixing, volatilization, and contamination. Strontium and Nd isotopic compositions of impactites confirm and extend earlier suggestions about the incorporation of ancient basement rocks in Lonar impactites. In the Re-Os isochron plot, target basalts exhibit considerable scatter around a 65.6 Myr Re-Os reference isochron, most likely reflecting weathering and/or magma replenishment processes. Most impactites plot at distinctly lower 187Re/188Os and 187Os/188Os ratios compared to the target rocks and exhibit up to two orders of magnitude higher abundances of Ir, Os, and Ru. Moreover, the impactites show near-chondritic interelement ratios of HSE. We interpret our results in terms of an addition of up to 0.03% of a chondritc component to most impact glasses and impact melt rocks. The magnitude of the admixture is significantly lower than the earlier reported 12-20 wt% of extraterrestrial component for Lonar impact spherules, reflecting the typical difference in the distribution of projectile component between impact glass spherules and bulk impactites.

  12. Shallow Crustal Structure of Chicxulub Impact Crater Imaged With Seismic, Gravity and Magnetotelluric Data: Structure of the Central Uplift and Origin of the Cenotes Ring.

    Science.gov (United States)

    Campos Enriquez, O.; Chavez Garcia, F.; Cruz Jimenez, H.; Acosta Chang, J.; Takafumi, M.; Arzate, J.; Unsworth, M.; Ramos Lopez, J.

    2002-12-01

    The shallow crustal structure of the onshore portion of the Chicxulub impact structure (Yucatan, Mexico) has been studied with seismic, gravity and MT exploration. A dispersion analysis of Rayleigh waves along a 150-km long, east-west profile allowed to image the shallow Tertiary cover to a depth of 400 m. The thickness of the first layer increases towards the central basin, from less than 100 m immediately outside, to more than 200 m in the terrace zone. The second layer also increases its thickness from about 150 m outside the crater rim, to around 250 m in the vicinity of the rim. At the center of the crater the first layer is again about 100 m thick. The increase in thickness of the first two layers as we approach the sinkhole ring from the exterior of the crater is consistent with the existence of a central basin. The velocity distribution along our profile does not have low-velocity layers. Thus, a low velocity layer observed in the Tertiary cover in a previous study, may be delimited to a ring around the crater center. The inferred inward slope of the two shallow layers immediately outside the central basin correlates with a smooth gravity gradient. A gravity model based in detailed measurements along our profile enable us to associate the fracturing that favored the development of the sink holes at the eastern rim with the ring fracture mapped by offshore seismic line. Finally, preliminary results of ongoing magnetotelluric (MT) studies support the existence of the central structural high.

  13. Degradation of Victoria Crater, Mars

    Science.gov (United States)

    Wilson, Sharon A.; Grant, John A.; Cohen, Barbara A.; Golombek, Mathew P.; Geissler, Paul E.; Sullivan, Robert J.; Kirk, Randolph L.; Parker, Timothy J.

    2008-01-01

    The $\\sim$750 m diameter and $\\sim$75 m deep Victoria crater in Meridiani Planum, Mars, presents evidence for significant degradation including a low, serrated, raised rim characterized by alternating alcoves and promontories, a surrounding low relief annulus, and a floor partially covered by dunes. The amount and processes of degradation responsible for the modified appearance of Victoria crater were evaluated using images obtained in situ by the Mars Exploration Rover Opportunity in concert with a digital elevation model created using orbital HiRISE images. Opportunity traversed along the north and northwest rim and annulus, but sufficiently characterized features visible in the DEM to enable detailed measurements of rim relief, ejecta thickness, and wall slopes around the entire degraded, primary impact structure. Victoria retains a 5 m raised rim consisting of 1-2 m of uplifted rocks overlain by 3 m of ejecta at the rim crest. The rim is $\\sim$120 to 220 m wide and is surrounded by a dark annulus reaching an average of 590 m beyond the raised rim. Comparison between observed morphology and that expected for pristine craters 500 to 750 m across indicate the original, pristine crater was close to 600 m in diameter. Hence, the crater has been erosionally widened by approximately 150 m and infilled by about 50 m of sediments. Eolian processes are responsible for modification at Victoria, but lesser contributions from mass wasting or other processes cannot be ruled out. Erosion by prevailing winds is most significant along the exposed rim and upper walls and accounts for $\\sim$50 m widening across a WNW-ESE diameter. The volume of material eroded from the crater walls and rim is $\\sim$20% less than the volume of sediments partially filling the crater, indicating eolian infilling from sources outside the crater over time. The annulus formed when $\\sim$1 m deflation of the ejecta created a lag of more resistant hematite spherules that trapped darker, regional

  14. The Cratering History of Asteroid (21) Lutetia

    CERN Document Server

    Marchi, S; Vincent, J -B; Morbidelli, A; Mottola, S; Marzari, F; Kueppers, M; Besse, S; Thomas, N; Barbieri, C; Naletto, G; Sierks, H

    2011-01-01

    The European Space Agency's Rosetta spacecraft passed by the main belt asteroid (21) Lutetia the 10th July 2010. With its ~100km size, Lutetia is one of the largest asteroids ever imaged by a spacecraft. During the flyby, the on-board OSIRIS imaging system acquired spectacular images of Lutetia's northern hemisphere revealing a complex surface scarred by numerous impact craters, reaching the maximum dimension of about 55km. In this paper, we assess the cratering history of the asteroid. For this purpose, we apply current models describing the formation and evolution of main belt asteroids, that provide the rate and velocity distributions of impactors. These models, coupled with appropriate crater scaling laws, allow us to interpret the observed crater size-frequency distribution (SFD) and constrain the cratering history. Thanks to this approach, we derive the crater retention age of several regions on Lutetia, namely the time lapsed since their formation or global surface reset. We also investigate the influe...

  15. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study.

    Science.gov (United States)

    Drake, Bert G

    2014-11-01

    An ongoing field study of the effects of elevated atmospheric CO2 on a brackish wetland on Chesapeake Bay, started in 1987, is unique as the longest continually running investigation of the effects of elevated CO2 on an ecosystem. Since the beginning of the study, atmospheric CO2 increased 18%, sea level rose 20 cm, and growing season temperature varied with approximately the same range as predicted for global warming in the 21st century. This review looks back at this study for clues about how the effects of rising sea level, temperature, and precipitation interact with high atmospheric CO2 to alter the physiology of C3 and C4 photosynthetic species, carbon assimilation, evapotranspiration, plant and ecosystem nitrogen, and distribution of plant communities in this brackish wetland. Rising sea level caused a shift to higher elevations in the Scirpus olneyi C3 populations on the wetland, displacing the Spartina patens C4 populations. Elevated CO2 stimulated carbon assimilation in the Scirpus C3 species measured by increased shoot and root density and biomass, net ecosystem production, dissolved organic and inorganic carbon, and methane production. But elevated CO2 also decreased biomass of the grass, S. patens C4. The elevated CO2 treatment reduced tissue nitrogen concentration in shoots, roots, and total canopy nitrogen, which was associated with reduced ecosystem respiration. Net ecosystem production was mediated by precipitation through soil salinity: high salinity reduced the CO2 effect on net ecosystem production, which was zero in years of severe drought. The elevated CO2 stimulation of shoot density in the Scirpus C3 species was sustained throughout the 28 years of the study. Results from this study suggest that rising CO2 can add substantial amounts of carbon to ecosystems through stimulation of carbon assimilation, increased root exudates to supply nitrogen fixation, reduced dark respiration, and improved water and nitrogen use efficiency. PMID:24820033

  16. Subsurface Deformation in Hypervelocity Cratering Experiments into High-Porosity Tuffs

    Science.gov (United States)

    Winkler, R.; Poelchau, M. H.; Moser, S.; Hoerth, T.; Schäfer, F.; Kenkmann, T.

    2015-07-01

    Three hypervelocity impact experiments into 43% porosity tuff were performed to analyze the effects of porosity during impact cratering. We investigated the crater shapes and processes in the subsurface of hypervelocity impacts.

  17. Surface expression of the Chicxulub crater

    Science.gov (United States)

    Pope, Kevin O.; Ocampo, Adriana C.; Kinsland, Gary L.; Smith, Randy

    1996-06-01

    Analyses of geomorphic, soil, and topographic data from the northern Yucatán Peninsula, México, confirm that the buried Chicxulub impact crater has a distinct surface expression and that carbonate sedimentation throughout the Cenozoic has been influenced by the crater. Late Tertiary sedimentation was mostly restricted to the region within the buried crater, and a semicircular moat existed until at least Pliocene time. The topographic expression of the crater is a series of features concentric with the crater. The most prominent is an ˜ 83-km-radius trough or moat containing sinkholes (the Cenote ring). Early Tertiary surfaces rise abruptly outside the moat and form a stepped topography with an outer trough and ridge crest at radii of ˜103 and ˜ 129 km, respectively. Two discontinuous troughs lie within the moat at radii of ˜ 41 and ˜ 62 km. The low ridge between the inner troughs corresponds to the buried peak ring. The moat corresponds to the outer edge of the crater floor demarcated by a major ring fault. The outer trough and the ˜ 62-km-radius inner trough also mark buried ring faults. The ridge crest corresponds to the topographic rim of the crater as modified by postimpact processes. These interpretations support previous findings that the principal impact basin has a diameter of ˜ 180 km, but concentric, low-relief slumping extends well beyond this diameter and the eroded crater rim may extend to a diameter of ˜ 260 km.

  18. Minerals of a soil developed in the meteoritic crater of Carancas, Peru, and evidences of phase changes on the impact event

    Science.gov (United States)

    Loayza, María L. Cerón; Cabrejos, Jorge A. Bravo

    2014-01-01

    We report studies about the phase transformations in the soil of the Carancas meteoritic crater located in an inhabited area near the town of Carancas, in the Region of Puno, about 1,300 km southeast of Lima, Peru. The studies by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Mössbauer spectroscopy (at RT and 77 K) reveal that the sample consists mainly of quartz, albite and impactites such as coesite and stishovite (SiO2) that have experienced phase metamorphism or alterations, related to high pressures and temperatures, forming their corresponding polymorphs. The occurrence of these phases, with high content of SiO2, in the soil of the crater strengthens the hypothesis of its origin by metamorphism induced by impact; we observed also a magnetic sextet on the Mössbauer pattern, assigned to the Fe3 + in hematite, and three paramagnetic doublets, two of them associated with structural Fe3 + and Fe2 + cations, respectively, in illite and/or montmorillonite, and a third one due to an unidentified Fe3 + site.

  19. Degradation of Endeavour Crater, Mars

    Science.gov (United States)

    Grant, J. A.; Crumpler, L. S.; Parker, T. J.; Golombek, M. P.; Wilson, S. A.; Mittlefehldt, D. W.

    2015-01-01

    The Opportunity rover has traversed portions of two western rim segments of Endeavour, a 22 km-diameter crater in Meridiani Planum, for the past three years. The resultant data enables the evaluation of the geologic expression and degradation state of the crater. Endeavour is Noa-chian-aged, complex in morphology, and originally may have appeared broadly similar to the more pristine 20.5 km-diameter Santa Fe complex crater in Lunae Palus (19.5degN, 312.0degE). By contrast, Endeavour is considerably subdued and largely buried by younger sulfate-rich plains. Exposed rim segments dubbed Cape York (CY) and Solander Point/Murray Ridge/Pillinger Point (MR) located approximately1500 m to the south reveal breccias interpreted as remnants of the ejecta deposit, dubbed the Shoemaker Formation. At CY, the Shoemaker Formation overlies the pre-impact rocks, dubbed the Matijevic Formation.

  20. On the Clustering of Europa's Small Craters

    Science.gov (United States)

    Bierhaus, E. B.; Chapman, C. R.; Merline, W. J.

    2001-01-01

    We analyze the spatial distribution of Europa's small craters and find that many are too tightly clustered to result from random, primary impacts. Additional information is contained in the original extended abstract.

  1. Novel approach of crater detection by crater candidate region selection and matrix-pattern-oriented least squares support vector machine

    Institute of Scientific and Technical Information of China (English)

    Ding Meng; Cao Yunfeng; Wu Qingxian

    2013-01-01

    Impacted craters are commonly found on the surface of planets,satellites,asteroids and other solar system bodies.In order to speed up the rate of constructing the database of craters,it is important to develop crater detection algorithms.This paper presents a novel approach to automatically detect craters on planetary surfaces.The approach contains two parts:crater candidate region selection and crater detection.In the first part,crater candidate region selection is achieved by Kanade-Lucas-Tomasi (KLT) detector.Matrix-pattern-oriented least squares support vector machine (MatLSSVM),as the matrixization version of least square support vector machine (SVM),inherits the advantages of least squares support vector machine (LSSVM),reduces storage space greatly and reserves spatial redundancies within each image matrix compared with general LSSVM.The second part of the approach employs MatLSSVM to design classifier for crater detection.Experimental results on the dataset which comprises 160 preprocessed image patches from Google Mars demonstrate that the accuracy rate of crater detection can be up to 88%.In addition,the outstanding feature of the approach introduced in this paper is that it takes resized crater candidate region as input pattern directly to finish crater detection.The results of the last experiment demonstrate that MatLSSVM-based classifier can detect crater regions effectively on the basis of KLT-based crater candidate region selection.

  2. Method for evaluation of laboratory craters using crater detection algorithm for digital topography data

    Science.gov (United States)

    Salamunićcar, Goran; Vinković, Dejan; Lončarić, Sven; Vučina, Damir; Pehnec, Igor; Vojković, Marin; Gomerčić, Mladen; Hercigonja, Tomislav

    In our previous work the following has been done: (1) the crater detection algorithm (CDA) based on digital elevation model (DEM) has been developed and the GT-115225 catalog has been assembled [GRS, 48 (5), in press, doi:10.1109/TGRS.2009.2037750]; and (2) the results of comparison between explosion-induced laboratory craters in stone powder surfaces and GT-115225 have been presented using depth/diameter measurements [41stLPSC, Abstract #1428]. The next step achievable using the available technology is to create 3D scans of such labo-ratory craters, in order to compare different properties with simple Martian craters. In this work, we propose a formal method for evaluation of laboratory craters, in order to provide objective, measurable and reproducible estimation of the level of achieved similarity between these laboratory and real impact craters. In the first step, the section of MOLA data for Mars (or SELENE LALT for Moon) is replaced with one or several 3D-scans of laboratory craters. Once embedment was done, the CDA can be used to find out whether this laboratory crater is similar enough to real craters, as to be recognized as a crater by the CDA. The CDA evaluation using ROC' curve represents how true detection rate (TDR=TP/(TP+FN)=TP/GT) depends on the false detection rate (FDR=FP/(TP+FP)). Using this curve, it is now possible to define the measure of similarity between laboratory and real impact craters, as TDR or FDR value, or as a distance from the bottom-right origin of the ROC' curve. With such an approach, the reproducible (formally described) method for evaluation of laboratory craters is provided.

  3. Hydrogeomorphic Regions in the Chesapeake Bay Watershed.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Generalized lithology (rock type) and physiography based on geologic formations were used to characterize hydrgeomorphic regions (HGMR) within the Chesapeake Bay...

  4. Factors influencing best management practice implementation in Virginia's Chesapeake Bay drainage basin

    OpenAIRE

    Lowery, James B.

    1996-01-01

    A survey of farmers was conducted to determine the extent of cost-share and non-costshare BMP implementation and to evaluate the impact of socio-economic variables of the adoption of BMPs in Virginia's Chesapeake Bay drainage basin. Farmers in 67 counties in Virginia were randomly selected using VirGIS land use data and GRASS 4.1. All of the counties included in the study had at least 90 percent of their total land in the Chesapeake Bay drainage basin. Surveys were mailed to ap...

  5. Processes Modifying Cratered Terrains on Pluto

    Science.gov (United States)

    Moore, J. M.

    2015-01-01

    The July encounter with Pluto by the New Horizons spacecraft permitted imaging of its cratered terrains with scales as high as approximately 100 m/pixel, and in stereo. In the initial download of images, acquired at 2.2 km/pixel, widely distributed impact craters up to 260 km diameter are seen in the near-encounter hemisphere. Many of the craters appear to be significantly degraded or infilled. Some craters appear partially destroyed, perhaps by erosion such as associated with the retreat of scarps. Bright ice-rich deposits highlight some crater rims and/or floors. While the cratered terrains identified in the initial downloaded images are generally seen on high-to-intermediate albedo surfaces, the dark equatorial terrain informally known as Cthulhu Regio is also densely cratered. We will explore the range of possible processes that might have operated (or still be operating) to modify the landscape from that of an ancient pristinely cratered state to the present terrains revealed in New Horizons images. The sequence, intensity, and type of processes that have modified ancient landscapes are, among other things, the record of climate and volatile evolution throughout much of the Pluto's existence. The deciphering of this record will be discussed. This work was supported by NASA's New Horizons project.

  6. Processes Modifying Cratered Terrains on Pluto

    Science.gov (United States)

    Moore, Jeffrey M.; Howard, Alan D.; White, Oliver L.; Umurhan, Orkan M.; Schenk, Paul M.; Beyer, Ross A.; McKinnon, William B.; Singer, Kelsi N.; Spencer, John; Stern, S. A.; Weaver, H. A.; Young, Leslie A.; Ennico, Kimberly; Olkin, Cathy B.

    2015-11-01

    The July encounter with Pluto by the New Horizons spacecraft permitted imaging of its cratered terrains with scales as high as ~100 m/pixel, and in stereo. In the initial download of images, acquired at 2.2 km/pixel, widely distributed impact craters up to 260 km diameter are seen in the near-encounter hemisphere. Many of the craters appear to be significantly degraded or infilled. Some craters appear partially destroyed, perhaps by erosion such as associated with the retreat of scarps. Bright ice-rich deposits highlight some crater rims and/or floors. While the cratered terrains identified in the initial downloaded images are generally seen on high-to-intermediate albedo surfaces, the dark equatorial terrain informally known as Cthulhu Regio is also densely cratered. We will explore the range of possible processes that might have operated (or still be operating) to modify the landscape from that of an ancient pristinely cratered state to the present terrains revealed in New Horizons images. The sequence, intensity, and type of processes that have modified ancient landscapes are, among other things, the record of climate and volatile evolution throughout much of the Pluto’s existence. The deciphering of this record will be discussed. This work was supported by NASA's New Horizons project.

  7. Deriving Chesapeake Bay Water Quality Standards

    Science.gov (United States)

    Tango, Peter J.; Batiuk, Richard A.

    2013-01-01

    Achieving and maintaining the water quality conditions necessary to protect the aquatic living resources of the Chesapeake Bay and its tidal tributaries has required a foundation of quantifiable water quality criteria. Quantitative criteria serve as a critical basis for assessing the attainment of designated uses and measuring progress toward meeting water quality goals of the Chesapeake Bay Program partnership. In 1987, the Chesapeake Bay Program partnership committed to defining the water quality conditions necessary to protect aquatic living resources. Under section 303(c) of the Clean Water Act, States and authorized tribes have the primary responsibility for adopting water quality standards into law or regulation. The Chesapeake Bay Program partnership worked with U.S. Environmental Protection Agency to develop and publish a guidance framework of ambient water quality criteria with designated uses and assessment procedures for dissolved oxygen, water clarity, and chlorophyll a for Chesapeake Bay and its tidal tributaries in 2003. This article reviews the derivation of the water quality criteria, criteria assessment protocols, designated use boundaries, and their refinements published in six addendum documents since 2003 and successfully adopted into each jurisdiction's water quality standards used in developing the Chesapeake Bay Total Maximum Daily Load.

  8. Radar monitoring of wetland hydrology: Water quality implications for the Chesapeake Bay

    Science.gov (United States)

    Wetlands are hydrologically dynamic ecosystems which have the potential to improve water quality. Unfortunately, many of the Chesapeake Bay’s wetlands, especially forested wetlands, have been lost or degraded due to human impacts primarily associated with agriculture and urban/suburban development. ...

  9. ISOLATION AND DIVERSITY OF ACTINOMYCETES IN THE CHESAPEAKE BAY

    Science.gov (United States)

    Chesapeake Bay was investigated as a source of actinomycetes to creen for production of novel bioactive compounds. he presence of relatively large populations of actinoplanetes, chemotype IID actinomycetes in Chesapeake Bay sediment samples indicates that is an eminently suitable...

  10. Galileo SSI lunar observations: Copernican craters and soils

    Science.gov (United States)

    Mcewen, A. S.; Greeley, R.; Head, James W.; Pieters, C. M.; Fischer, E. M.; Johnson, T. V.; Neukum, G.

    1993-01-01

    The Galileo spacecraft completed its first Earth-Moon flyby (EMI) in December 1990 and its second flyby (EM2) in December 1992. Copernican-age craters are among the most prominent features seen in the SSI (Solid-State Imaging) multispectral images of the Moon. The interiors, rays, and continuous ejecta deposits of these youngest craters stand out as the brightest features in images of albedo and visible/1-micron color ratios (except where impact melts are abundant). Crater colors and albedos (away from impact melts) are correlated with their geologic emplacement ages as determined from counts of superposed craters; these age-color relations can be used to estimate the emplacement age (time since impact event) for many Copernican-age craters on the near and far sides of the Moon. The spectral reflectivities of lunar soils are controlled primarily by (1) soil maturity, resulting from the soil's cumulative age of exposure to the space environment; (2) steady-state horizontal and vertical mixing of fresh crystalline materials ; and (3) the mineralogy of the underlying bedrock or megaregolith. Improved understanding of items (1) and (2) above will improve our ability to interpret item (3), especially for the use of crater compositions as probes of crustal stratigraphy. We have examined the multispectral and superposed crater frequencies of large isolated craters, mostly of Eratosthenian and Copernican ages, to avoid complications due to (1) secondaries (as they affect superposed crater counts) and (2) spatially and temporally nonuniform regolith mixing from younger, large, and nearby impacts. Crater counts are available for 11 mare craters and 9 highlands craters within the region of the Moon imaged during EM1. The EM2 coverage provides multispectral data for 10 additional craters with superposed crater counts. Also, the EM2 data provide improved spatial resolution and signal-to-noise ratios over the western nearside.

  11. Lunar Crater Interiors with High Circular Polarization Signatures

    Science.gov (United States)

    Weitz, C. M.; Campbell, B. A.; Morgan, G.

    2015-12-01

    We analyzed 12.6-cm Earth-based radar images of the Moon to search for older craters (pre-Copernican) that display high values of the circular polarization ratio (CPR) on their interior walls. These craters have highly eroded rims and ejecta, indicating that there must be a source exposed within the crater interior that is continuously creating a rougher surface. Of particular interest are craters between 10-25 km in diameter that occur in smooth plains in the highlands, where competent layers are not expected as they are for the mare. After identifying these high-CPR interiors in pre-Copernican craters, we studied LROC NAC and Kaguya TC images to search for possible albedo and layering on crater interior walls that might signal the presence of anomalous material. Our results indicate that high-CPR craters generally have boulder fields clustered around their upper interior walls. We divide the high-CPR craters into three types: (1) craters on the layered mare lava flows; (2) craters in the highlands that correlate to mapped locations of smooth plains; and (3) craters on the highlands that are not associated with smooth plains. Most of the high-CPR craters in the highlands are associated with Eratosthenian-period craters, and most of these are also on smooth plains, indicating that impact melt sheets are a likely source for the boulders exposed on their interior walls. Statistical analyses will be performed after incorporating multiple lunar datasets into GIS to quantify these preliminary interpretations. Figure 1. Example of high-CPR crater Zagut A located on smooth plains in the highlands. LROC images showing boulders on (a) northern crater interior wall and (b) southern crater interior wall. (c) Stronlgy enhanced values of CPR are observed for the interior of Zagut A.

  12. PyCraters: A Python framework for crater function analysis

    OpenAIRE

    Norris, Scott A.

    2014-01-01

    We introduce a Python framework designed to automate the most common tasks associated with the extraction and upscaling of the statistics of single-impact crater functions to inform coefficients of continuum equations describing surface morphology evolution. Designed with ease-of-use in mind, the framework allows users to extract meaningful statistical estimates with very short Python programs. Wrappers to interface with specific simulation packages, routines for statistical extraction of out...

  13. Small crater populations on Vesta

    CERN Document Server

    Marchi, S; O'Brien, D P; Schenk, P; Mottola, S; De Sanctis, M C; Kring, D A; Williams, D A; Raymond, C A; Russell, C T

    2013-01-01

    The NASA Dawn mission has extensively examined the surface of asteroid Vesta, the second most massive body in the main belt. The high quality of the gathered data provides us with an unique opportunity to determine the surface and internal properties of one of the most important and intriguing main belt asteroids (MBAs). In this paper, we focus on the size frequency distributions (SFDs) of sub-kilometer impact craters observed at high spatial resolution on several selected young terrains on Vesta. These small crater populations offer an excellent opportunity to determine the nature of their asteroidal precursors (namely MBAs) at sizes that are not directly observable from ground-based telescopes (i.e., below ~100 m diameter). Moreover, unlike many other MBA surfaces observed by spacecraft thus far, the young terrains examined had crater spatial densities that were far from empirical saturation. Overall, we find that the cumulative power-law index (slope) of small crater SFDs on Vesta is fairly consistent with...

  14. 33 CFR 165.556 - Regulated Navigation Area; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD.

    Science.gov (United States)

    2010-07-01

    ... areas, found in 33 CFR 165.13, apply to the regulated navigation area described in paragraph (a) of this...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area:...

  15. Magnetostratigraphy of the impact breccias and post-impact carbonates from borehole Yaxcopoil-1, Chicxulub impact crater, Yucatán, Mexico

    Science.gov (United States)

    Rebolledo-Vieyra, Mario; Urrutia-Fucugauchi, Jaime

    2004-06-01

    We report the magnetostratigraphy of the sedimentary sequence between the impact breccias and the post-impact carbonate sequence conducted on samples recovered by Yaxcopoil-1 (Yax-1). Samples of impact breccias show reverse polarities that span up to ~56 cm into the postimpact carbonate lithologies. We correlate these breccias to those of PEMEX boreholes Yucatán-6 and Chicxulub-1, from which we tied our magnetostratigraphy to the radiometric age from a melt sample from the Yucatán-6 borehole. Thin section analyses of the carbonate samples showed a significant amount of dark minerals and glass shards that we identified as the magnetic carriers; therefore, we propose that the mechanism of magnetic acquisition within the carbonate rocks for the interval studied is detrital remanent magnetism (DRM). With these samples, we constructed the scale of geomagnetic polarities where we find two polarities within the sequence, a reverse polarity event within the impact breccias and the base of the post-impact carbonate sequence (up to 794.07 m), and a normal polarity event in the last ~20 cm of the interval studied. The polarities recorded in the sequence analyzed are interpreted to span from chron 29r to 29n, and we propose that the reverse polarity event lies within the 29r chron. The magnetostratigraphy of the sequence studied shows that the horizon at 794.11 m deep, interpreted as the K/T boundary, lies within the geomagnetic chron 29r, which contains the K/T boundary.

  16. Primordial Cratering Regimes on Planets

    Science.gov (United States)

    Hartmann, W. K.

    2004-11-01

    Understanding of planetary surface evolution (and possibly biological evolution) is hampered by a longstanding uncertainty over the nature of impact cratering and interplanetary debris in the first 600 My of solar system history. On the one hand, a number of researchers (1-3) treat a cataclysmic spike in cratering 3.9 Gy ago as an observational fact, arguing that little or no cratering occurred from 4.5 to 4.0 Gy ago, and that all multi-ring lunar basins formed 3.85 to 4.0 Gy ago. On the other hand, dynamical theorists have had problems trying to explain the a large impactor spike, as reviewed in (4). Worse yet, meteorite evidence on lunar and asteroidal impact melts (3,5) fail to confirm the strong spike in Apollo-sample impact melts at 3.9 Gy. A semi-quantitative model has been suggested to reconcile the findings (5). References: (1) Tera, F., D.A. Papanastassiou, G. J. Wasserberg 1974. Isotopic evidence for a terminal Lunar cataclysm, Earth Planet. Sci. Lett. 22, 1-21. (2) Stoeffler, D., G. Ryder 2001. "Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System," in Chronology and Evolution of Mars, Eds. R. Kallenbach, J. Geiss, W. K. Hartmann. Kluwer Academic Publishers, Netherlands, pp. 105-164. (3) Cohen, B. A., T. D. Swindle, D. A. Kring 2000. Support for the Lunar Cataclysm Hypothesis from Lunar Meteorite Impact Melt Ages. Science 290, 1754-1756. (4) Hartmann, W. K., G. Ryder, L. Dones, D. Grinspoon 2000. The Time-Dependent Intense Bombardment of the Primordial Earth/Moon System. In Origin of the Earth and Moon, Eds. R. M. Canup, K. Righter (Tucson: Univ. Arizona Press), pp. 493-512. (5) Hartmann, W. K. 2003. Megaregolith evolution and cratering cataclysm models - Lunar cataclysm as a misconception (28 years later). Meteor. Planet. Sci. 38, 579-593.

  17. Testing Crater Counting Assumptions with the Cratered Terrain Evolution Model

    Science.gov (United States)

    Minton, D. A.; Richardson, J. E.; Fassett, C. I.

    2015-05-01

    Using CTEM to answer the questions; 1) How close to Poisson-distributed are crater count uncertainties? and 2) How does observed clustering in crater count densities of large craters relate to the changes in the impactor flux?

  18. Do young martian ray craters have ages consistent with the crater count system?

    Science.gov (United States)

    Hartmann, William K.; Quantin, Cathy; Werner, Stephanie C.; Popova, Olga

    2010-08-01

    McEwen et al. (McEwen, A.S., Preblich, B.S., Turtle, E.P., Artemieva, N.A., Golombek, M.P., Hurst, M., Kirk, R.L., Burr, D.M., Christensen, P. [2005]. Icarus 176, 351-381) developed a useful test for the internal consistency of crater-count chronometry systems. They argued that certain multi-kilometer, fresh-looking martian craters with prominent rays should be the youngest or near-youngest craters in their size range. The "McEwen et al. test" is that the ages determined from crater densities of the smallest superimposed craters (typically diameter D ˜ 5-20 m) should thus be comparable to the expected formation intervals of the host primary. McEwen et al. concluded from MOC data that crater chronometry failed this test by factors of 700-2000. We apply HiRISE and other imagery to eight different young craters in order to re-evaluate their arguments. We use existing crater chronology systems as well as the reported observed production rate of 16 m craters (Malin, M.C., Edgett, K., Posiolova, L., McColley, S., Noe Dobrea, E. [2006]. Science 314, 1573-1557; Hartmann, W.K., Quantin, C., Mangold, N. [2007]. Icarus 186, 11-23; Kreslavsky [2007]. Seventh International Conference on Mars, 3325). Every case passes the McEwen et al. test. We conclude that the huge inconsistencies suggested by McEwen et al. are spurious. Many of these craters show evidence of impact into ice-rich material, and appear to have ice-flow features and sublimation pits on their floors. As production rate data improve, decameter-scale craters will provide a valuable way of dating these young martian geological formations and the processes that modify them.

  19. The Mechanism for Forming Martian Rampart Craters: Clues from Crater Morphometry

    Science.gov (United States)

    Craddock, R. A.; Chuang, F.

    1996-03-01

    Many large craters on the martian surface have ejecta blankets that terminate with a pronounced lobate ridge. These rampart craters represent features unique to Mars, and their morphology suggests that their ejecta was emplaced as a highly mobile fluid instead of ballistically. High velocity experiments into mud have duplicated many of the common morphologic characteristics of rampart craters supporting this hypothesis. However, additional experiments performed at a variety of atmospheric pressures have also been able to duplicate aspects of rampart crater morphology These results suggest that rampart craters form as the result of a low pressure atmosphere. Obviously the presence of ice or water would have an effect on the target properties (i.e., material strength) of the martian substrate, which should also influence the overall crater morphometry, thus allowing us to test these competing hypotheses. In this study we used the photoclinometric algorithm developed by Davis and Soderblom and written for the Planetary Image Cartography System to determined the shape of over 300 fresh lunar-like or rampart impact craters at a variety of diameters (3 to 80 km). Because it is probable that Ethology would also effect the strength of the target material, we confined our study to craters formed in the dissected unit of the Highland Plateau (Npld) as defined by the 1:15M-scale geologic mappers and interpretable to the scale of our images. In addition we confined our study to +30 degrees to omit variations in crater morphology seen at higher latitudes. The images used were radiometrically-calibrated (red and minus-blue filter), moderate resolution (~200 m/pixel) obtained by the Viking orbiters. Our initial results show that there is a slight difference in morphometric relations between fresh lunar-like and rampart craters, supporting the hypothesis that the unique morphology of rampart crater ejecta results from the incorporation of volatile materials contained in the target

  20. Shoemaker Crater-Going Where We Can "See"

    Science.gov (United States)

    Allen, Carl C.

    2006-01-01

    The recommended impact site for LCROSS is Shoemaker crater, centered at 88.1 S, 45 E. This 51-km diameter crater is in permanent shadow. However, more than half of its floor has been imaged by Earth-base radar. This degree of target knowledge will strongly constrain impact models and significantly increase the confidence of data interpretation.

  1. PyCraters: A Python framework for crater function analysis

    CERN Document Server

    Norris, Scott A

    2014-01-01

    We introduce a Python framework designed to automate the most common tasks associated with the extraction and upscaling of the statistics of single-impact crater functions to inform coefficients of continuum equations describing surface morphology evolution. Designed with ease-of-use in mind, the framework allows users to extract meaningful statistical estimates with very short Python programs. Wrappers to interface with specific simulation packages, routines for statistical extraction of output, and fitting and differentiation libraries are all hidden behind simple, high-level user-facing functions. In addition, the framework is extensible, allowing advanced users to specify the collection of specialized statistics or the creation of customized plots. The framework is hosted on the BitBucket service under an open-source license, with the aim of helping non-specialists easily extract preliminary estimates of relevant crater function results associated with a particular experimental system.

  2. Cratering record in the inner solar system: Implications for earth

    International Nuclear Information System (INIS)

    Internal and external processes have reworked the Earth's surface throughout its history. In particular, the effect of meteorite impacts on the early history of the earth is lost due to fluvial, aeolian, volcanic and plate tectonic action. The cratering record on other inner solar system bodies often provides the only clue to the relative cratering rates and intensities that the earth has experienced throughout its history. Of the five major bodies within the inner solar system, Mercury, Mars, and the Moon retain scars of an early episode of high impact rates. The heavily cratered regions on Mercury, Mars, and the Moon show crater size-frequency distribution curves similar in shape and crater density, whereas the lightly cratered plains on the Moon and Mars show distribution curves which, although similar to each other, are statistically different in shape and density from the more heavily cratered units. The similarities among crater size-frequency distribution curves for the Moon, Mercury, and Mars suggest that the entire inner solar system was subjected to the two populations of impacting objects but Earth and Venus have lost their record of heavy bombardment impactors. Thus, based on the cratering record on the Moon, Mercury, and Mars, it can be inferred that the Earth experienced a period of high crater rates and basin formation prior to about 3.8 BY ago. Recent studies have linked mass extinctions to large terrestrial impacts, so life forms were unable to establish themselves until impact rates decreased substantially and terrestrial conditions became more benign. The possible periodicity of mass extinctions has led to the theory of fluctuating impact rates due to comet showers in the post heavy bombardment period. The active erosional environment on the Earth complicates attempts to verify these showers by erasing geological evidence of older impact craters

  3. Recent Radar Imaging Observations of the Moon: New Views of Pyrocastics, Mare Basalts, Impact Crater Deposits, and the Lunar Subsurface

    Science.gov (United States)

    Carter, L. M.; Campbell, B. A.; Morgan, G. A.; Ghent, R. R.; Neish, C. D.

    2016-05-01

    In the last decade, radars with different wavelengths have provided polarimetric imaging of the lunar surface. These data sets have yielded new information about topics such as pyroclastics, mare basalts, cryptomare, and impact ejecta and melt flows.

  4. Paleohydrology of Eberswalde crater, Mars

    Science.gov (United States)

    Irwin, Rossman P.; Lewis, Kevin W.; Howard, Alan D.; Grant, John A.

    2015-07-01

    Eberswalde crater, Mars, contains a well-preserved fluvial distributary network in a likely deltaic setting. The meandering inverted paleochannels and closed drainage basin of this deposit support relatively well constrained estimates of channel-forming discharge (over an individual event flood timescale), runoff production (event and annual timescales), and longevity of deposition (geologic timescale) during the Late Hesperian to Early Amazonian Epochs. The width and meander dimensions of two inverted paleochannels reflect the channel-forming discharge from event floods (~ 200 to 400 m3/s), the deposit surface indicates the level (- 1400 to - 1350 m) and surface area (410 to 810 km2) of the likely paleolake, and the topography and mapped extent of tributaries constrain the watershed area (5000 to 17,000 km2). Based on these results and terrestrial empirical constraints on evaporation and sediment concentration, we evaluated three hypothetical water sources: meltwater liberated by the nearby Holden crater impact (continuous deposition over ~ 101-102 years), intermittent rainfall or snowmelt during finite periods controlled by orbital evolution (deposition over ~ 104-106 years), and highly infrequent runoff or melting of accumulated snowpacks following distant impacts or secular changes in orbital parameters. Local impact-generated runoff and highly infrequent rainfall or snowmelt require unreasonably high and low rates of evaporation, respectively, to maintain the paleolake level. The local impact hypothesis alternatively depends on one flooding episode with very high concentrations of fluvial sediment that are inconsistent with morphologic considerations. Multiple primary impact craters in the area postdate Holden ejecta but were later dissected, indicating fluvial erosion long after the Holden impact. Intermittent rainfall of ~ 1 cm/day and seasonal snowmelt are both consistent with our results over a deposition timescale totaling ~ 104-106 years.

  5. The role of power plant atmospheric emissions in the deposition of nitrogen to the Chesapeake Bay

    International Nuclear Information System (INIS)

    The Maryland Power Plant Research Program (PPRP) has sponsored research on several aspects of atmospheric nitrogen emissions, source attribution, deposition estimation and impact assessment since the mid-eighties. The results of these studies will be presented and discussed in the context of power plant emissions control impact on nitrogen loadings to the Chesapeake Bay and watershed. Information needs with respect to power plant contribution and emission control policy will be identified and discussed from the perspective of PPRP

  6. Origin of the rock abundance anomaly at Tsiolkovskiy crater

    Science.gov (United States)

    Greenhagen, B. T.

    2015-12-01

    Early Diviner measurements have indicated that Tsiolkovskiy crater has unexpectedly high rock abundance relative to its age. New datasets from the Lunar Reconnaissance Orbiter enable further analysis of this crater through measurements of surface and near-subsurface rock populations at a variety of spatial scales and wavelengths. We used Diviner, Mini-RF, and LROC datasets to analyze the block population and distribution around Tsiolkovskiy crater. We found that Tsiolkovskiy has an external deposit where (1) Diviner rock abundance was anomalously high, similar to Copernican aged craters, (2) Diviner estimates of rock-free regolith thickness were anomalously low, consistent with CPR indicated well preserved massive impact melt, which is rough at the decimeter scale, and (4) LROC imagery provided clear examples of surface block population morphology similar to the crater interior. Furthermore, we used LROC imagery to perform a new calculation of modeled crater age consistent with an ancient origin at least 3.2 Ga. Together these data showed that Tsiolkovskiy has a unique massive impact melt and blocky ejecta deposit for a crater of its size and age and may be the youngest crater capable of producing this type and scale of deposit. To reconcile the anomalously blocky appearance of Tsiolkovskiy with its age, we propose mechanisms that support a higher surface rock production rate. The most likely scenario requires (1) Tsiolkovkiy's impactor and target properties and/or impact geometry to produce a massive impact melt deposit with sufficiently large blocks, and (2) the recent disruption of surface fines exposing original blocks from local, regional, and/or antipodal impacts. The source of this disruption is unknown, but Tsiolkovskiy crater is located antipodal to the Copernican-aged Aristarchus crater. Future modeling of the seismic effects of this impact may help to determine whether this was a likely source for the recent surface modification at Tsiolkovskiy crater.

  7. Planetary cratering 2: Studies of saturation equilibrium

    Science.gov (United States)

    Hartmann, William K.; Gaskell, Robert W.

    1997-01-01

    A realistic computer model has been developed to display images of imaginary cratered surfaces, taking into account empirically measured input size distributions of primary and secondary craters, ejecta blanket morphology including feathering with distance, obliteration due to ejecta from outside the imaged area, lighting effects, etc. The model allows us to track surface evolution of morphology as new craters are added. Using the model as well as lunar photos, we have studied the approach to saturation equilibrium (defined as a condition when no further proportionate increase in crater density occurs as input cratering increases). We find that an identifiable saturation equilibrium occurs close to a level previously identified for this state (Hartmann 1984), typically fluctuating around a crater density from about 0.4 to 2 times that level. This result is fairly robust vis-a-vis the range of model parameters we have chosen. Flooding, basin ejecta blankets, and other obliterative effects can introduce structure and oscillations within this range, even after saturation equilibrium is achieved. These findings may constrain or revise certain earlier interpretations of satellite and planet surface evolution and impactor populations which were predicated on the assumed absence of saturation equilibrium. In our fourth experimental run, we found that suppression of "sandblasting" by sub-resolution impacts allows the smallest secondaries to rise above the saturation equilibrium line, a result that might be relevant to a similar situation on Gaspra and perhaps some other asteroids.

  8. At Bright Band Inside Victoria Crater

    Science.gov (United States)

    2007-01-01

    A layer of light-toned rock exposed inside Victoria Crater in the Meridiani Planum region of Mars appears to mark where the surface was at the time, many millions of years ago, when an impact excavated the crater. NASA's Mars Exploration Rover Opportunity drove to this bright band as the science team's first destination for the rover during investigations inside the crater. Opportunity's left front hazard-identification camera took this image just after the rover finished a drive of 2.25 meters (7 feet, 5 inches) during the rover's 1,305th Martian day, or sol, (Sept. 25, 2007). The rocks beneath the rover and its extended robotic arm are part of the bright band. Victoria Crater has a scalloped shape of alternating alcoves and promontories around the crater's circumference. Opportunity descended into the crater two weeks earlier, within an alcove called 'Duck Bay.' Counterclockwise around the rim, just to the right of the arm in this image, is a promontory called 'Cabo Frio.'

  9. Autumn Afternoon in Hale Crater

    Science.gov (United States)

    2000-01-01

    The seasons on Mars and Earth are anti-correlated at present: days are getting shorter and shadows are getting longer as autumn end sand the beginning of winter draws nearer in the martian southern hemisphere, just as the same is occurring in Earth's northern hemisphere. Long shadows are especially prominent in this high resolution view of mountains forming part of the central peaks of Hale Crater (left), a 136 kilometer-(85 mile)-diameter impact crater at 36oS, 37oW. The two pictures were taken simultaneously by the Mars Global Surveyor Mars Orbiter Camera on November 10, 2000. The sun illuminates the scene from the northwest (upper left)about 22o above the horizon. Knowing the sun angle and the length of the longest shadow (1.6 km; 1.0 mi), the height of the largest peak in the high resolution view (right) is about 630 meters (2,070 ft) above the crater floor. Sand dunes blanket the middle portion of the high resolution view, and small gullies--possibly carved by water--can be seen on the slopes of some of the peaks at the upper left. Winter in the southern hemisphere will begin in mid-December 2000. The high resolution view covers an area 3 km (1.9 mi) wide at a full-resolution scale of 3 meters (9.8 ft) per pixel.

  10. Cratering Equations for Zinc Orthotitanate Coated Aluminum

    Science.gov (United States)

    Hyde, James; Christiansen, Eric; Liou, Jer-Chyi; Ryan, Shannon

    2009-01-01

    The final STS-125 servicing mission (SM4) to the Hubble Space Telescope (HST) in May of 2009 saw the return of the 2nd Wide Field Planetary Camera (WFPC2) aboard the shuttle Discovery. This hardware had been in service on HST since it was installed during the SM1 mission in December of 1993 yielding one of the longest low Earth orbit exposure times (15.4 years) of any returned space hardware. The WFPC2 is equipped with a 0.8 x 2.2 m radiator for thermal control of the camera electronics (Figure 1). The space facing surface of the 4.1 mm thick aluminum radiator is coated with Z93 zinc orthotitanate thermal control paint with a nominal thickness of 0.1 0.2 mm. Post flight inspections of the radiator panel revealed hundreds of micrometeoroid/orbital debris (MMOD) impact craters ranging in size from less than 300 to nearly 1000 microns in diameter. The Z93 paint exhibited large spall areas around the larger impact sites (Figure 2) and the craters observed in the 6061-T651 aluminum had a different shape than those observed in uncoated aluminum. Typical hypervelocity impact craters in aluminum have raised lips around the impact site. The craters in the HST radiator panel had suppressed crater lips, and in some cases multiple craters were present instead of a single individual crater. Humes and Kinard observed similar behavior after the WFPC1 post flight inspection and assumed the Z93 coating was acting like a bumper in a Whipple shield. Similar paint behavior (spall) was also observed by Bland2 during post flight inspection of the International Space Station (ISS) S-Band Antenna Structural Assembly (SASA) in 2008. The SASA, with similar Z93 coated aluminum, was inspected after nearly 4 years of exposure on the ISS. The multi-crater phenomena could be a function of the density, composition, or impact obliquity angle of the impacting particle. For instance, a micrometeoroid particle consisting of loosely bound grains of material could be responsible for creating the

  11. Structural uplift and ejecta thickness of lunar mare craters: New insights into the formation of complex crater rims

    Science.gov (United States)

    Krüger, Tim; Kenkmann, Thomas

    2015-04-01

    Most complex impact craters on solid planetary surfaces throughout the Solar System exhibit elevated crater rims similar to the elevated crater rims of simple craters. In principal the final elevation of the crater rim is due to the deposition of ejecta on the structurally uplifted bedrock of the pre-impact surface. For simple craters the elevated crater rim is due to two well understood factors: (i) Emplacement of the coherent proximal ejecta material at the transient cavity rim (overturned flap) [1]. (ii) Structural uplift of the pre-impact surface in the proximity of the transient cavity [1, 2]. The amount of structural uplift at the rim of simple craters is due to plastic thickening of the target rock, the emplacement of interthrust wedges and/or the injection of dike material in the underlying target [1, 2, 3, 4]. Both factors, (i) and (ii), are believed to equally contribute to the structural uplift of simple craters. Larger craters have complex morphologies and the crater's extent may considerably exceed that of the transient cavity due to gravity-driven adjustment movements. For instance, the Ries crater's final diameter is twice of its transient cavity size. It is expected that both ejecta thickness and structural uplift decrease with increasing distance from the rim of the transient crater. For lunar craters the continuous ejecta extends up to 2 crater radii from the crater center. The ejecta blanket thickness ET at the rim crest of the transient crater (which is inside the final crater) is a function of the distance r from the crater center, with RT as the radius of the transient crater [2, 6, 7] and is expressed by the following function: (1) ET = 0.033 RT (r/RT)^-3.0 for r ≥ RT [5, 6] The structural uplift is largest at the transient cavity rim and gets rapidly smaller with increasing distance to the crater center and disappears after 1.3 - 1.7 crater radii [1]. These circumstances raise the question, how elevated rims of complex craters form? Based

  12. Craters on Earth, Moon, and Mars - Multivariate classification and mode of origin

    Science.gov (United States)

    Pike, R. J.

    1974-01-01

    Testing extraterrestrial craters and candidate terrestrial analogs for morphologic similitude is treated as a problem in numerical taxonomy. According to a principal-components solution and a cluster analysis, 402 representative craters on the Earth, the Moon, and Mars divide into two major classes of contrasting shapes and modes of origin. Craters of net accumulation of material (cratered lunar domes, Martian calderas, and all terrestrial volcanoes except maars and tuff rings) group apart from craters of excavation (terrestrial meteorite impact and experimental explosion craters, typical Martian craters, and all other lunar craters). Maars and tuff rings belong to neither group but are transitional. The classification criteria are four independent attributes of topographic geometry derived from seven descriptive variables by the principal-components transformation. Morphometric differences between crater bowl and raised rim constitute the strongest of the four components.

  13. Mass Movement on Vesta at Steep Scarps and Crater Rims

    Science.gov (United States)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; De Sanctis, M. C.; Kneissl, T.; Schmedemann, N.; Kersten, E.; Stephan, K.; Matz, K.-D.; Pieters, C. M.; Preusker, F.; Roatsch, T.; Schenk, P.; Russell, C. T.; Raymond, C. A.

    2014-01-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  14. Proceedings of the Geophysical Laboratory - Lawrence Radiation Laboratory Cratering Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Nordyke, M. D.

    1961-10-01

    The geological papers in this morning's session will deal descriptively with surficial features and end products of impact craters caused by meteorite falls. Such items as breccia, structural deformation, normal and inverse stratigraphy, glass (fused rock), and coesite will frequently be mentioned. Meteor and explosion crater data are presented.

  15. Isolation and Diversity of Actinomycetes in the Chesapeake Bay †

    OpenAIRE

    Takizawa, Masayuki; Colwell, Rita R.; Hill, Russell T.

    1993-01-01

    Chesapeake Bay was investigated as a source of actinomycetes to screen for production of novel bioactive compounds. The presence of relatively large populations of actinoplanetes (chemotype II/D actinomycetes) in Chesapeake Bay sediment samples indicates that it is an eminently suitable ecosystem from which to isolate actinomycetes for screening programs. Actinomycetes were isolated from sediment samples collected in Chesapeake Bay with an isolation medium containing nalidixic acid, which pro...

  16. Longitudinal asymmetry of craters' density distributions on the icy satellites

    Science.gov (United States)

    Leliwa-Kopystynski, Jacek; Banaszek, Marcin; Wlodarczyk, Ireneusz

    2012-01-01

    Crater's density distribution versus satellitographical longitude was searched for seven icy satellites: two of Jupiter (Ganymede and Callisto) and five of Saturn (Mimas, Tethys, Dione, Rhea and Iapetus). Craters were classified according to their size. Four bins of the craters' diameter were used. Density distributions were found in the longitudinal sectors of the near-equatorial stripes that circumscribe the satellites. The size distributions (R-plots) were done independently for each of the eight longitudinal sectors of the satellites. Searching for the leading/trailing (apex/antapex) and the near-side/far-side asymmetry was done. It was found that the crater density is longitudinally asymmetric for all seven satellites being studied. However, the apex-antapex asymmetry is much less pronounced than predicted by theory of Zahnle et al. (2003), for impacts on the satellites by ecliptic comets. We conclude that the impact craters observed on the considered satellites are mostly originated from planetocentric swarm of debris. In that case longitudinal asymmetry is not expected, as stated by Horedt and Neukum (1984a, b). However, cratering longitudinal asymmetry that we observe for Mimas perfectly agrees with calculations of Alvarellos et al. (2005). It is very likely that important part of craters on Mimas were formed due to impacts of ejecta originated from crater Herschel.

  17. A history of the Lonar crater, India: An overview

    Science.gov (United States)

    Nayak, V. K.

    1992-01-01

    The origin of the circular structure at Lonar, India, described variously as cauldron, pit, hollow, depression, and crater, has been a controversial subject since the early nineteenth century. A history of its origin and other aspects from 1823 to 1990 are overviewed. The structure in the Deccan Trap Basalt is nearly circular with a breach in the northeast, 1830 m in diameter, 150 m deep, with a saline lake in the crater floor. Over the years, the origin of the Lonar structure has risen from volcanism, subsidence, and cryptovolcanism to an authentic meteorite impact crater. Lonar is unique because it is probably the only terrestrial crater in basalt and is the closest analog with the Moon's craters. Some unresolved questions are suggested. The proposal is made that the young Lonar impact crater, which is less than 50,000 years old, should be considered as the best crater laboratory analogous to those of the Moon, be treated as a global monument, and preserved for scientists to comprehend more about the mysteries of nature and impact cratering, which is now emerging as a fundamental ubiquitous geological process in the evolution of the planets.

  18. Problems determining relative and absolute ages using the small crater population

    Science.gov (United States)

    Xiao, Zhiyong; Strom, Robert G.

    2012-07-01

    The small crater populations (diameter smaller than 1 km) are widely used to date planetary surfaces. The reliability of small crater counts is tested by counting small craters at several young and old lunar surfaces, including Mare Nubium and craters Alphonsus, Tycho and Giordano Bruno. Based on high-resolution images from both the Lunar Reconnaissance Orbiter Camera and Kaguya Terrain Camera, small craters in two different diameter ranges are counted for each counting area. Large discrepancies exist in both the cumulative (absolute model ages) and relative plots for the two different size ranges of the same counting areas. The results indicate that dating planetary surfaces using small crater populations is highly unreliable because the contamination of secondaries may invalidate the results of small crater counts. A comparison of the size-frequency distributions of the small crater populations and impact ejected boulders around fresh lunar craters shows the same upturn as typical martian secondaries, which supports the argument that secondaries dominate the small crater populations on the Moon and Mars. Also, the size-frequency distributions of small rayed lunar and martian craters of probable primary origin are similar to that of the Population 2 craters on the inner Solar System bodies post-dating Late Heavy Bombardment. Dating planetary surfaces using the small crater populations requires the separation of primaries from secondaries which is extremely difficult. The results also show that other factors, such as different target properties and the subjective identification of impact craters by different crater counters, may also affect crater counting results. We suggest that dating planetary surfaces using small crater populations should be with highly cautious.

  19. Gravitational signatures of lunar floor-fractured craters

    Science.gov (United States)

    Thorey, Clément; Michaut, Chloé; Wieczorek, Mark

    2015-08-01

    Lunar floor-fractured craters are impact craters characterized by distinctive shallow floors crossed by important networks of fractures. Different scenarios have been proposed to explain their formations but recent studies showed that the intrusion of magma at depth below the crater floor is the most plausible explanation. The intrusion of dense magma within the light upper-most part of the lunar crust should have left a positive signature in the gravity field. This study takes advantage of the unprecedented resolution of the lunar gravity field obtained from the NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, in combination with topographic data obtained from the Lunar Orbiter Laser Altimeter (LOLA) instrument, to investigate the gravitational signatures of both normal and floor-fractured craters. Despite the large variability in their gravitational signatures, the floor-fractured and normal craters in the Highlands show significant differences: the gravitational anomalies are significantly larger at floor-fractured craters. The anomaly amplitudes for floor-fractured craters are in agreement with synthetic gravity anomalies based on the predicted intrusion shapes from a theoretical flow model. Our results are consistent with magmatic intrusions intruding a crust characterized by a 12% porosity and where the intrusion has no porosity. Similar studies have been carried out in the lunar maria and South Pole-Aikten basin. Although the average gravitational signature of floor-fractured craters is larger than at normal craters in these regions, they cannot be distinguished statistically due to the small number of craters and the large variability of the anomalies. In general, a better characterization of the signal due solely to the initial impact crater is needed to isolate the magmatic intrusion signal and characterize the density contrast between the magma and crust.

  20. Fluvial erosion as a mechanism for crater modification on Titan

    Science.gov (United States)

    Neish, C. D.; Molaro, J. L.; Lora, J. M.; Howard, A. D.; Kirk, R. L.; Schenk, P.; Bray, V. J.; Lorenz, R. D.

    2016-05-01

    There are few identifiable impact craters on Titan, especially in the polar regions. One explanation for this observation is that the craters are being destroyed through fluvial processes, such as weathering, mass wasting, fluvial incision and deposition. In this work, we use a landscape evolution model to determine whether or not this is a viable mechanism for crater destruction on Titan. We find that fluvial degradation can modify craters to the point where they would be unrecognizable by an orbiting spacecraft such as Cassini, given enough time and a large enough erosion rate. A difference in the erosion rate between the equator and the poles of a factor of a few could explain the latitudinal variation in Titan's crater population. Fluvial erosion also removes central peaks and fills in central pits, possibly explaining their infrequent occurrence in Titan craters. Although many craters on Titan appear to be modified by aeolian infilling, fluvial modification is necessary to explain the observed impact crater morphologies. Thus, it is an important secondary modification process even in Titan's drier equatorial regions.

  1. Creation of High Resolution Terrain Models of Barringer Meteorite Crater (Meteor Crater) Using Photogrammetry and Terrestrial Laser Scanning Methods

    Science.gov (United States)

    Brown, Richard B.; Navard, Andrew R.; Holland, Donald E.; McKellip, Rodney D.; Brannon, David P.

    2010-01-01

    Barringer Meteorite Crater or Meteor Crater, AZ, has been a site of high interest for lunar and Mars analog crater and terrain studies since the early days of the Apollo-Saturn program. It continues to be a site of exceptional interest to lunar, Mars, and other planetary crater and impact analog studies because of its relatively young age (est. 50 thousand years) and well-preserved structure. High resolution (2 meter to 1 decimeter) digital terrain models of Meteor Crater in whole or in part were created at NASA Stennis Space Center to support several lunar surface analog modeling activities using photogrammetric and ground based laser scanning techniques. The dataset created by this activity provides new and highly accurate 3D models of the inside slope of the crater as well as the downslope rock distribution of the western ejecta field. The data are presented to the science community for possible use in furthering studies of Meteor Crater and impact craters in general as well as its current near term lunar exploration use in providing a beneficial test model for lunar surface analog modeling and surface operation studies.

  2. Remote Sensing and Electrodynamic Model of Chicxulub Crater

    Science.gov (United States)

    Velasco, V.; Silva, M.; Salguero, E.; Fucugauchi, J.

    2004-05-01

    Advances on space observational systems have opened new exiting possibilities to investigate our planet in an unprecedented detail and in a global scale. Information retrieved from surveys of other solar system bodies like our moon, planets and satellites, from missions like Apollo, have documented the origin of planetary surfaces and the role of impacts as a major process. Voyagers 1 and 2 and Galileo have showed impact craterism is a process rather generalized in all bodies of the solar system. Thus establishing it as part of the major processes to be considered for the evolution of our planet, together with tectonics, mantle process, volcanism, weathering, etc. Investigations on impact craters from solar systems provide valuable information on different surfaces, crustal thickness, existence of crust layers, type of material under the most superficial layer, type of bolide which formed crater, impact angle, etc. The studies constitute an important tool to rebuild the planets' geological history and develop theories on their internal structure. The Chicxulub crater in the carbonate platform of the Yucatan peninsula is one of the largest multiring structures found on Earth. The crater is some 180-200 km in diameter, is well preserved and has been studied in the past few years (geophysical surveys and drilling programs). The crater is buried under a thick sequence of tertiary carbonate rocks, and on the surface there are relatively few indications of the crater (e.g., topographic depression, ring of cenotes). In this study, it is analyzed and presented an electrodynamic model for an impact crater and its electrophysical properties, these data are derived from Fisher inverse matrix elements. We also present a surface model for the buried Chicxulub crater derived from remote sensing data.

  3. Volatile-rich Crater Interior Deposits on Mars: An Energy Balance Model of Modification

    Science.gov (United States)

    Russell, Patrick S.; Head, James W.; Hecht, Michael H.

    2003-01-01

    Several craters on Mars are partially filled by material emplaced by post-impact processes. Populations of such craters include those in the circumsouth polar cap region, in Arabia Terra, associated with the Medusae Fossae Formation, and in the northern lowlands proximal to the north polar cap. In this study, crater fill material refers to an interior mound, generally separated from the interior walls of the crater by a trough that may be continuous along the crater s circumference (i.e. a ring-shaped trough), or may only partially contact the crater walls (i.e. a crescent-shaped trough). The fill deposit is frequently off-center from the crater center and may be asymmetric, (i.e. not circular) in plan view shape. Here we test the hypothesis that asymmetries in volatile fill shape, profile, and center-location within a crater result from asymmetries in local energy balance within the crater due mainly to variation of solar insolation and radiative effects of the crater walls over the crater interior. We first focus on Korolev crater in the northern lowlands. We can then apply this model to other craters in different regions. If asymmetry in morphology and location of crater fill are consistent with radiative-dominated asymmetries in energy budget within the crater, then 1) the volatile-rich composition of the fill is supported (this process should not be effective at shaping volcanic or sedimentary deposits), and 2) the dominant factor determining the observed shape of volatile-rich crater fill is the local radiative energy budget within the crater (and erosive processes such as eolian deflation are not necessary).

  4. Origin of the anomalously rocky appearance of Tsiolkovskiy crater

    Science.gov (United States)

    Greenhagen, Benjamin T.; Neish, Catherine D.; Williams, Jean-Pierre; Cahill, Joshua T. S.; Ghent, Rebecca R.; Hayne, Paul O.; Lawrence, Samuel J.; Petro, Noah E.; Bandfield, Joshua L.

    2016-07-01

    Rock abundance maps derived from the Diviner Lunar Radiometer instrument on the Lunar Reconnaissance Orbiter (LRO) show Tsiolkovskiy crater to have high surface rock abundance and relatively low regolith thickness. The location of the enhanced rock abundance to the southeast of the crater is consistent with a massive, well-preserved impact melt deposit apparent in LRO Miniature Radio Frequency instrument circular polarization ratio data. A new model crater age using LRO Lunar Reconnaissance Orbiter Camera imagery suggests that while it originated in the Late Imbrian, Tsiolkovskiy may be the youngest lunar crater of its size (∼180 km diameter). Together these data show that Tsiolkovskiy has a unique surface rock population and regolith properties for a crater of its size and age. Explanation of these observations requires mechanisms that produce more large blocks, preserve boulders and large blocks from degradation to regolith, and/or uncover buried rocks. These processes have important implications for formation of regolith on the Moon.

  5. Layers and Boulders in Crater Wall, Nepenthes Mensae Region

    Science.gov (United States)

    1999-01-01

    Peering down into craters offers Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) scientists an opportunity to examine one of the few landforms that Mars shares in common with the other planets and moons of our Solar System.The picture on the left (above) is a MOC context frame taken at the same time as the MOC high resolution image on the right. The white box on the left shows the location of the high resolution view. The high resolution image was targeted on a 3 kilometers (1.9 miles) wide impact crater on the floor of a larger crater in the Nepenthes Mensae region (near 3oS, 239oW). The context image is about 115 km (71 mi) across, the high-resolution image is 3 km (1.9 mi) across, and both are illuminated from the left/lower left.The 3 km diameter crater in the MOC image on the right is three times wider than the famous Meteor Crater in northern Arizona, USA. The high resolution image shows many small windblown drifts or dunes in the low areas both within the crater and outside on the surrounding terrain. Some portions of the crater's walls exhibit outcrops of bare, layered rock. Large boulders have been dislodged from the walls and have tumbled down the slopes to the crater floor. Many of these boulders are bigger than school buses and automobiles.

  6. Geomorphology of Lowell crater region on the Moon

    Science.gov (United States)

    Srivastava, N.; Varatharajan, I.

    2016-03-01

    Surface topography, surface morphology and crater chronology studies have been carried out for the Lowell crater region (occupying ∼198 × 198 km2 in the northwestern quadrant of the Orientale basin) using Kaguya TC-DTM, LRO-WAC data, and Chandrayaan-1 M3-750 nm image, to characterize and date Lowell impact event and to identify and assess the geological importance of the Lowell crater and effect of pre-existing geological conditions on the present day appearance of Lowell crater. The Lowell crater has been found to be polygonal in shape with an average diameter of 69.03 km. Its average rim height and depth from pre-existing surface are 1.02 km and 2.82 km respectively. A prominent central peak with average height of 1.77 km above the crater floor is present, which could have exposed undifferentiated mantle rocks. The peak exhibits a pronounced "V" shaped slumped zone on the eastern side and a distinct "V" shaped depression in the adjacent region on the crater floor. Several other peculiarities noticed and mapped here include W-E asymmetry in the degree of slumping of the walls and height of the topographic rim, N-S asymmetry in the proximal ejecta distribution with most of the material lying in the northern direction, concentration of exterior melt pools in the northeastern direction only, presence of several cross cutting pre-existing lineaments on the crater walls, presence of a superposed rayed crater on the eastern wall, and a geologically interesting resurfaced unit, which could be an outcome of recent volcanic activity in the region. It has been inferred that the Lowell crater formed due to impact of a ∼5.7 km diameter bolide in the Montes Rook region. The impact occurred at an angle of ∼30-45° from the S-SW direction. The age of the Lowell crater has been estimated as 374 ± 28 Ma, therefore it is a Younger Copernican crater consistent with the possibility expressed by McEwen et al. (McEwen, A.S., et al. [1993]. J. Geophys. Res. 98(E9), 17207

  7. The Morphology of Craters on Mercury: Results from MESSENGER Flybys

    Science.gov (United States)

    Barnouin, Oliver S.; Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Herrick, Robert R.; Chappelow, John E.; Murchie, Scott L.; Prockter, Louise M.

    2012-01-01

    Topographic data measured from the Mercury Laser Altimeter (MLA) and the Mercury Dual Imaging System (MDIS) aboard the MESSENGER spacecraft were used for investigations of the relationship between depth and diameter for impact craters on Mercury. Results using data from the MESSENGER flybys of the innermost planet indicate that most of the craters measured with MLA are shallower than those previously measured by using Mariner 10 images. MDIS images of these same MLA-measured craters show that they have been modified. The use of shadow measurement techniques, which were found to be accurate relative to the MLA results, indicate that both small bowl-shaped and large complex craters that are fresh possess depth-to-diameter ratios that are in good agreement with those measured from Mariner 10 images. The preliminary data also show that the depths of modified craters are shallower relative to fresh ones, and might provide quantitative estimates of crater in-filling by subsequent volcanic or impact processes. The diameter that defines the transition from simple to complex craters on Mercury based on MESSENGER data is consistent with that reported from Mariner 10 data.

  8. The Variability of Crater Identification Among Expert and Community Crater Analysts

    Science.gov (United States)

    Robbins, S. J.; Antonenko, I.; Kirchoff, M. R.; Chapman, C. R.; Fassett, C. I.; Herrick, R. R.; Singer, K.; Zanetti, M.; Lehan, C.; Huang, D.; Gay, P. L.

    2015-05-01

    We all know it in the back of our minds, but we tend to ignore the fact that crater identification and measurement is not an exact science. This work was to start to quantify the variation in how independent analysts identify and measure impacts.

  9. Craters on Earth, Moon, and Mars: Multivariate classification and mode of origin

    Science.gov (United States)

    Pike, R.J.

    1974-01-01

    Testing extraterrestrial craters and candidate terrestrial analogs for morphologic similitude is treated as a problem in numerical taxonomy. According to a principal-components solution and a cluster analysis, 402 representative craters on the Earth, the Moon, and Mars divide into two major classes of contrasting shapes and modes of origin. Craters of net accumulation of material (cratered lunar domes, Martian "calderas," and all terrestrial volcanoes except maars and tuff rings) group apart from craters of excavation (terrestrial meteorite impact and experimental explosion craters, typical Martian craters, and all other lunar craters). Maars and tuff rings belong to neither group but are transitional. The classification criteria are four independent attributes of topographic geometry derived from seven descriptive variables by the principal-components transformation. Morphometric differences between crater bowl and raised rim constitute the strongest of the four components. Although single topographic variables cannot confidently predict the genesis of individual extraterrestrial craters, multivariate statistical models constructed from several variables can distinguish consistently between large impact craters and volcanoes. ?? 1974.

  10. Transitioning a Chesapeake Bay Ecological Prediction System to Operations

    Science.gov (United States)

    Brown, C.; Green, D. S.; Eco Forecasters

    2011-12-01

    Ecological prediction of the impacts of physical, chemical, biological, and human-induced change on ecosystems and their components, encompass a wide range of space and time scales, and subject matter. They vary from predicting the occurrence and/or transport of certain species, such harmful algal blooms, or biogeochemical constituents, such as dissolved oxygen concentrations, to large-scale ecosystem responses and higher trophic levels. The timescales of ecological prediction, including guidance and forecasts, range from nowcasts and short-term forecasts (days), to intraseasonal and interannual outlooks (weeks to months), to decadal and century projections in climate change scenarios. The spatial scales range from small coastal inlets to basin and global scale biogeochemical and ecological forecasts. The types of models that have been used include conceptual, empirical, mechanistic, and hybrid approaches. This presentation will identify the challenges and progress toward transitioning experimental model-based ecological prediction into operational guidance and forecasting. Recent efforts are targeting integration of regional ocean, hydrodynamic and hydrological models and leveraging weather and water service infrastructure to enable the prototyping of an operational ecological forecast capability for the Chesapeake Bay and its tidal tributaries. A path finder demonstration predicts the probability of encountering sea nettles (Chrysaora quinquecirrha), a stinging jellyfish. These jellyfish can negatively impact safety and economic activities in the bay and an impact-based forecast that predicts where and when this biotic nuisance occurs may help management effects. The issuance of bay-wide nowcasts and three-day forecasts of sea nettle probability are generated daily by forcing an empirical habitat model (that predicts the probability of sea nettles) with real-time and 3-day forecasts of sea-surface temperature (SST) and salinity (SSS). In the first demonstration

  11. Secondary Craters and the Size-Velocity Distribution of Ejected Fragments around Lunar Craters Measured Using LROC Images

    Science.gov (United States)

    Singer, K. N.; Jolliff, B. L.; McKinnon, W. B.

    2013-12-01

    Title: Secondary Craters and the Size-Velocity Distribution of Ejected Fragments around Lunar Craters Measured Using LROC Images Authors: Kelsi N. Singer1, Bradley L. Jolliff1, and William B. McKinnon1 Affiliations: 1. Earth and Planetary Sciences, Washington University in St Louis, St. Louis, MO, United States. We report results from analyzing the size-velocity distribution (SVD) of secondary crater forming fragments from the 93 km diameter Copernicus impact. We measured the diameters of secondary craters and their distances from Copernicus using LROC Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) image data. We then estimated the velocity and size of the ejecta fragment that formed each secondary crater from the range equation for a ballistic trajectory on a sphere and Schmidt-Holsapple scaling relations. Size scaling was carried out in the gravity regime for both non-porous and porous target material properties. We focus on the largest ejecta fragments (dfmax) at a given ejection velocity (υej) and fit the upper envelope of the SVD using quantile regression to an equation of the form dfmax = A*υej ^- β. The velocity exponent, β, describes how quickly fragment sizes fall off with increasing ejection velocity during crater excavation. For Copernicus, we measured 5800 secondary craters, at distances of up to 700 km (15 crater radii), corresponding to an ejecta fragment velocity of approximately 950 m/s. This mapping only includes secondary craters that are part of a radial chain or cluster. The two largest craters in chains near Copernicus that are likely to be secondaries are 6.4 and 5.2 km in diameter. We obtained a velocity exponent, β, of 2.2 × 0.1 for a non-porous surface. This result is similar to Vickery's [1987, GRL 14] determination of β = 1.9 × 0.2 for Copernicus using Lunar Orbiter IV data. The availability of WAC 100 m/pix global mosaics with illumination geometry optimized for morphology allows us to update and extend the work of Vickery

  12. Sands at Gusev Crater, Mars

    Science.gov (United States)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F., III; Yingst, R. Aileen

    2014-01-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  13. Sands at Gusev Crater, Mars

    Science.gov (United States)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth; Knoll, Andrew H.; Farmer, Jack; Arvidson, Raymond; Grin, Edmond; Li, Ronxing; Fenton, Lori; Cohen, Barbara; Bell, James F.; Aileen Yingst, R.

    2014-05-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  14. Simulating Three Dimensional Regolith Transport with the Cratered Terrain Evolution Model

    Science.gov (United States)

    Huang, Y.; Minton, D. A.; Richardson, J.; Cohen, B.; Fassett, C.; Zellner, N.

    2015-05-01

    Because of ability of craters to mix and transport materials, impacts could potentially change the spatial and temporal distribution of impact-related products generated by an impact over time. We propose a updated version of CTEM to address them.

  15. An Igneous Origin for Features of a Candidate Crater-Lake System in Western Memnonia, Mars

    Science.gov (United States)

    Leverington, D. W.; Maxwell, T. A.

    2004-01-01

    The association of channels, inner terraces, and delta-like features with Martian impact craters has previously been interpreted as evidence in favor of the past existence of crater lakes on Mars. However, examination of a candidate crater-lake system in western Memnonia suggests instead that its features may have formed through igneous processes involving the flow and ponding of lava. Accumulations of material in craters and other topographic lows throughout much of the study region have characteristics consistent with those of volcanic deposits, and terraces found along the inner flanks of some of these craters are interpreted as having formed through drainage or subsidence of volcanic materials. Channels previously identified as inlets and outlets of the crater-lake system are interpreted instead as volcanic rilles. These results challenge previous interpretations of terrace and channel features in the study region and suggest that candidate crater lakes located elsewhere should be reexamined.

  16. Oblique View of Eros' Crater

    Science.gov (United States)

    2000-01-01

    This image, showing an oblique view of Eros' large central crater, was taken at a resolution of about 20 meters (65 feet) per pixel. The brightness or albedo patterns on the walls of this crater are clearly visible, with the brighter materials near the tops of the walls and darker materials on the lower walls. Boulders are seen inside this crater and the smaller nearby craters. The higher density of craters to the left of the large crater implies that this region is older than the smoother area seen associated with the saddle region on the opposite side of the asteroid.Built and managed by The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, NEAR was the first spacecraft launched in NASA's Discovery Program of low-cost, small-scale planetary missions. See the NEAR web page at http://near.jhuapl.edu for more details.

  17. Crater Count Ages of Young Martian Ray Craters: a Successful Test of the Crater Chronometry System

    Science.gov (United States)

    Hartmann, William K.; Quantin, C.; Werner, S. C.; Popova, O.

    2008-09-01

    McEwen et al. (2005) developed a useful test of crater-count chronometry systems [1]. They argued that fresh-looking, Zunil-style Martian ray craters are the youngest or near-youngest craters in their size ranges. The "McEwen et al. test" is that crater-count ages from small craters (D 10-25 m), superimposed on these "Zunils," should be comparable to the expected formation intervals of these host Zunil-style primaries themselves, typically 1 to a few My. McEwen et al., however, found few or no small superposed craters in MOC frames, and concluded that crater chronometry systems are in error by factors of 700 to 2000. Since then, Malin et al. discovered that 10-25m craters form at essentially the rate we used in our isochron system [2,3,4]. Thus, 10-25m craters should be usable for dating these "Zunils." We re-evaluate the "McEwen et al. test" with HiRise images, studying three young craters they discussed, and five others. In every case we found small-crater populations, giving approximately the expected ages. We conclude that the alleged large errors are incorrect. The semi-independent crater count systems of Neukum and of Hartmann agree with the Malin cratering rate, are internally consistent, and appear to give valid age information within about a factor 2 to 4. We thank the International Space Science Institute (ISSI), Bern, for hosting our working group. [1] McEwen et al. 2005 Icarus,176, 351-381. [2] Malin, M. et al. 2006 Science 314, 1573-1557. [3] Hartmann, W.K. 2007 Icarus, 189, 274-278. [4] Kreslavsky, M.A. 2007 7th Internatl. Conf. on Mars, Abstract 3325.

  18. Chesapeake Marshlands National Wildlife Refuge Complex: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Chesapeake Marshlands NWR Complex for the next 15 years. This plan outlines the...

  19. Craters on Mars: Global Geometric Properties from Gridded MOLA Topography

    Science.gov (United States)

    Garvin, J. B.; Sakimoto, S. E. H.; Frawley, J. J.

    2003-01-01

    Impact craters serve as natural probes of the target properties of planetary crusts and the tremendous diversity of morphological expressions of such features on Mars attests to their importance for deciphering the history of crustal assembly, modification, and erosion. This paper summarizes the key findings associated with a five year long survey of the three-dimensional properties of approx. 6000 martian impact craters using finely gridded MOLA topography. Previous efforts have treated representative subpopulations, but this effort treats global properties from the largest survey of impact features from the perspective of their topography ever assimilated. With the Viking missions of the mid-1970 s, the most intensive and comprehensive robotic expeditions to any Deep Space location in the history of humanity were achieved, with scientifically stunning results associated with the morphology of impact craters. The relationships illustrated and suggest that martian impact features are remarkably sensitive to target properties and to the local depositional processes.

  20. 33 CFR 207.100 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware...

    Science.gov (United States)

    2010-07-01

    ... River to Chesapeake Bay, Del. and Md., between Reedy Point, Delaware River, and Old Town Point Wharf... located at Reedy Point and Old Town Point Wharf. These traffic lights are described in the rules...

  1. Absolute ages from crater statistics: Using radiometric ages of Martian samples for determining the Martian cratering chronology

    Science.gov (United States)

    Neukum, G.

    1988-01-01

    In the absence of dates derived from rock samples, impact crater frequencies are commonly used to date Martian surface units. All models for absolute dating rely on the lunar cratering chronology and on the validity of its extrapolation to Martian conditions. Starting from somewhat different lunar chronologies, rather different Martian cratering chronologies are found in the literature. Currently favored models are compared. The differences at old ages are significant, the differences at younger ages are considerable and give absolute ages for the same crater frequencies as different as a factor of 3. The total uncertainty could be much higher, though, since the ratio of lunar to Martian cratering rate which is of basic importance in the models is believed to be known no better than within a factor of 2. Thus, it is of crucial importance for understanding the the evolution of Mars and determining the sequence of events to establish an unambiguous Martian cratering chronology from crater statistics in combination with clean radiometric ages of returned Martian samples. For the dating goal, rocks should be as pristine as possible from a geologically simple area with a one-stage emplacement history of the local formation. A minimum of at least one highland site for old ages, two intermediate-aged sites, and one very young site is needed.

  2. 77 FR 64980 - Chesapeake Renewable Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2012-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Chesapeake Renewable Energy LLC; Supplemental Notice That Initial Market... supplemental notice in the above-referenced proceeding of Chesapeake Renewable Energy LLC's application...

  3. Endocrine disrupter - estradiol - in Chesapeake Bay tributaries

    Energy Technology Data Exchange (ETDEWEB)

    Dorabawila, Nelum [University of Maryland Eastern Shore, Princess Anne, MD 21853 (United States); Gupta, Gian [University of Maryland Eastern Shore, Princess Anne, MD 21853 (United States)]. E-mail: gcgupta@umes.edu

    2005-04-11

    Exogenous chemicals that interfere with natural hormonal functions are considered endocrine disrupting chemicals (EDCs). Estradiol (17{beta}-estradiol or E2) is the most potent of all xenoestrogens. Induction of vitellogenin (VTG) production in male fish occurs at E2 concentrations as low as 1 ng l{sup -1}. E2 reaches aquatic systems mainly through sewage and animal waste disposal. Surface water samples from ponds, rivers (Wicomico, Manokin and Pocomoke), sewage treatment plants (STPs), and coastal bays (Assawoman, Monie, Chincoteague, and Tangier Sound - Chesapeake Bay) on the Eastern Shore of Maryland were analyzed for E2 using enzyme linked immuno-sorbent assay (ELISA). E2 concentrations in river waters varied between 1.9 and 6.0 ng l{sup -1}. Highest E2 concentrations in river waters were observed immediately downstream of STPs. E2 concentrations in all the coastal bays tested were 2.3-3.2 ng l{sup -1}.

  4. Basin Formation and Cratering on Mercury Revealed by MESSENGER

    Science.gov (United States)

    Chapman, C. R.; Fassett, C.; Marchi, S.; Merline, W. J.; Ostrach, L. R.; Prockter, L. M.

    2015-12-01

    Mercury has been bombarded by asteroids and comets throughout its history. The resulting craters and basins are the dominant topographic features on the planet. Although visible basins contain some of the most interesting tectonic features, plains, and evidence of vertical stratigraphy, they fall far short of saturating the surface. Nevertheless, Mercury has a greater spatial density of peak-ring basins and protobasins than any other Solar System body, partly because these morphologies begin at smaller sizes than on most bodies. Cratering at approximately three times the cratering rate on the Moon, combined with likely plains-forming volcanism, prevents recognition of surface features older than 4.0 to 4.1 Ga. Severe losses of craters Mercury suggest that most plains formation ended about 3.6 to 3.7 Ga, though activity has continued in a few small regions until much more recently (e.g., inside the Rachmaninoff basin). Mercury, compared with other terrestrial bodies, is struck by projectiles impacting at much higher velocities, which is probably responsible for the formation of abundant secondary craters that dominate the numbers of craters Mercury-specific impactors ("vulcanoids") cannot be excluded, imaging searches by MESSENGER have revealed no remaining vulcanoids and no other evidence suggests that Mercury has been bombarded by anything other than the same populations of asteroids and comets that have impacted the Moon and other terrestrial planets from the end of the period of heavy bombardment 3.8 to 3.9 Ga to the present.

  5. Experimental Analysis of Impact Glass Alteration

    Science.gov (United States)

    Kalleson, E.; Dypvik, H.; Hellevang, H.

    2011-12-01

    Phyllosilicates have been suggested to commonly appear on the surface of Mars, mainly associated with Noachian successions. The formation of these aqueous minerals, indicate the presence of liquid water on an early Noachian Mars. In the present project we seek to better understand the alteration process of melt rocks, impact melt in particular. On the Earth large amounts of phyllosilicates have been detected in relation with impact craters and impact glass / melt. In the studies we use impact melt and glasses from different impact structures as starting materials for alteration experiments and modeling of mineral alteration / transformation products. The studied samples vary in age and lithology (glass, suevite and melt), with mineralogical composition partly reflecting the target lithologies at sites of impact. During impact some of the target rocks are melted by the intense heat. Some melt are ejected out of the crater, whereas about half of the melt remains within the impact structure. If water is present, hydrothermal systems may be established within the crater and exist for thousands of years after impact. In the experimental study we aim at representing possible alteration conditions of melt bearing rocks the first few thousand years after an impact. The samples are put into a saline solution containing 30 mg/l NaCl in Parr stirred titanium batch reactors at a temperature of 200 to 230 °C and 15 bar pressure for 3 weeks. The geochemistry / mineralogy of samples and reaction products are studied before and after the alteration experiments (dissolution and precipitation). The experimental results are compared to results of geochemical modeling (PHREEQC) in order to increase our understanding of the chemical reactions during alteration. The alterations products reflect the composition of both the source material and the percolation water. The first results (artificial melt and Chesapeake Bay impact melt) show the formation of smectite, chlinochlore, Fe

  6. Young populations of small craters on Mars: A case study.

    Science.gov (United States)

    Kreslavsky, M.

    2008-09-01

    Introduction The HiRISE camera imaged the Mars surface at scales that had never been studied before. Beside a host of other fascinating features, these images revealed small (diameter D down to 1 m) impact craters. In planetary geology, impact craters and properties of their populations have been used as valuable sources of information about surface history and geological processes. Small craters on Mars can potentially give essential information about young terrains on this planet, resurfacing rates at small scales and the most recent events in the geological history, first of all, the most recent climate changes. Very young crater populations are thought to be unaffected by distal secondary craters, because they are formed after the most recent secondary-forming event. However, extracting this information is not simple or straightforward. Here I illustrate these difficulties and ways of overcoming them using a population of small craters on ejecta of crater Zunil as an example. Population of small craters on Zunil ejecta Terrain I used HiRISE images PSP_001764_1880 and PSP_002397_1880. In these images I outlined an area (totally 52.8 km2) to NE, NW and SW of the crater limited by the toes of the outer walls of Zunil and the image boundaries. Terrain texture within the area is diverse; however, the area is entirely within the proximal ejecta lobes. The ejecta material was obviously emplaced as a result of the Zunil-forming impact and has a uniform age. The morphology of the surface indicates later resurfacing of steep slopes (over a small total area) and minor eolian modification of the terrain; some sub-areas might be modified by the post-impact hydrothermal activity. Crater population I registered diameters and positions of all impact craters in the area, a total of 1025 craters with D > 1.5 m. The largest of them has D = 20 m. Craters usually have no visible ejecta, which indicates some minor (perhaps, eolian) modification of the surface. Almost all craters

  7. Improved Measurement of Ejection Velocities From Craters Formed in Sand

    Science.gov (United States)

    Cintala, Mark J.; Byers, Terry; Cardenas, Francisco; Montes, Roland; Potter, Elliot E.

    2014-01-01

    A typical impact crater is formed by two major processes: compression of the target (essentially equivalent to a footprint in soil) and ejection of material. The Ejection-Velocity Measurement System (EVMS) in the Experimental Impact Laboratory has been used to study ejection velocities from impact craters formed in sand since the late 1990s. The original system used an early-generation Charge-Coupled Device (CCD) camera; custom-written software; and a complex, multicomponent optical system to direct laser light for illumination. Unfortunately, the electronic equipment was overtaken by age, and the software became obsolete in light of improved computer hardware.

  8. Exploration Zone in Newton Crater

    Science.gov (United States)

    Laine, P. E.

    2015-10-01

    Newton is a large crater (300 km) located in Terra Sirenum. This region is heavily cratered, preserves crustal magnetism, and has ground ice present. Within this EZ there are many potential science and resource ROIs, e.g. indicatives of past water.

  9. Meteor Crater, AZ

    Science.gov (United States)

    2002-01-01

    The Barringer Meteorite Crater (also known as 'Meteor Crater') is a gigantic hole in the middle of the arid sandstone of the Arizona desert. A rim of smashed and jumbled boulders, some of them the size of small houses, rises 50 m above the level of the surrounding plain. The crater itself is nearly a 1500 m wide, and 180 m deep. When Europeans first discovered the crater, the plain around it was covered with chunks of meteoritic iron - over 30 tons of it, scattered over an area 12 to 15 km in diameter. Scientists now believe that the crater was created approximately 50,000 years ago. The meteorite which made it was composed almost entirely of nickel-iron, suggesting that it may have originated in the interior of a small planet. It was 50 m across, weighed roughly 300,000 tons, and was traveling at a speed of 65,000 km per hour. This ASTER 3-D perspective view was created by draping an ASTER bands 3-2-1image over a digital elevation model from the US Geological Survey National Elevation Dataset.This image was acquired on May 17, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along

  10. Comparison of the Cratering Records of Ceres and Rhea

    Science.gov (United States)

    Schmedemann, N.; Wagner, R. J.; Michael, G.; Kneissl, T.; Hiesinger, H.; Ivanov, B.; Denk, T.; Jaumann, R.; Neesemann, A.; Raymond, C. A.; Russell, C.

    2015-12-01

    Comparing the cratering records of dwarf planet Ceres and the Saturnian satellite Rhea, offers a great opportunity in comparative planetology to fill the gaps of understanding of the cratering history of the two bodies. Both bodies show strong indications for a water-ice rich crust. For Ceres, the amount of ice in the crust is indeterminate. Early Dawn imaging data shows complex craters on Ceres which are smaller than those on the basaltic asteroid Vesta. The smallest complex craters on Ceres are similar in size (~10-15 km) to those on Rhea, which might indicate a rather high water-ice content in Ceres' crust. The surface gravity on both bodies is almost equal, differing by only ~4%. Thus, regardless of their absolute values many variables required to relate projectile and crater size should be very similar on both bodies (surface gravity, strength to gravity transition, simple to complex transition, target density). The remaining variables such as projectile density and impact velocity are comparatively well known for Ceres but still in discussion for the Saturnian satellites. If the crater size-frequency distributions for craters >5 km from Rhea and Ceres are plotted together and are corrected for different projectile flux and exposure time, both records plot nearly on top of each other. This could indicate a common projectile population that impacted both bodies at nearly the same velocity. However, if the impacting projectile populations are very different, the impact velocity would have to compensate for such differences. Different ice temperatures may also play some role. Reducing the degrees of freedom increases the chance of understanding the projectile source and dynamics in the Saturnian system. We acknowledge the support of the Dawn and Cassini Instrument, Operations, and Science Teams. This work is supported by the German Space Agency (DLR), grants 50OW1101, 50OH1102 and 50OH0305.

  11. Calculation of ejecta thickness and structural uplift for Lunar and Martian complex crater rims.

    Science.gov (United States)

    Krüger, Tim; Sturm, Sebastian; Kenkmann, Thomas

    2014-05-01

    Crater rims of simple and complex craters have an elevation that is formed during the excavation stage of crater formation. For simple crater rims it is believed that the elevation is due to the sum of two equal parts, the thickness of the most proximal impact ejecta blanket (overturned flap) plus the thickness that results from plastic deformation including injection [1, 2, 3]. We intend to measure and quantify the kinematics of mass movements, especially concerning the question why complex impact craters have elevated crater rims like simple craters and precisely constrain the ejecta thickness and structural uplift of Lunar and Martian crater rims to understand what the main contributor to the elevated rim is [4]. We investigated a pristine 16 km-diameter unnamed Martian complex crater (21.52°N, 184.35°) and the lunar complex craters Bessel (21.8°N, 17.9°E) 16 km in diameter and Euler (23.3°N, 29.2°W) 28 km in diameter [5, 6]. In the crater walls of these craters we found columnar lavas on Mars and basaltic layering on the Moon. We used the uppermost layers of these exposed outcrops along the crater wall to determine the dip of the target rocks (Mars) and to distinguish between the bedrock and the overlying ejecta. We precisely measured the structural uplift and ejecta thickness of these complex craters. The unnamed crater on Mars has a mean rim height of 375.75 m, with a structural uplift of 233.88 m (57.44%), exposed as columnar lavas and the superposing ejecta has a height of 141.87 m (43.56%). For the Lunar complex crater Euler the mean total rim height is 790 ± 100 m, with a minimal structural uplift of 475 ± 100 m (60 ± 10 %), exposed as basaltic layers [e.g., 7, 8] and a maximum ejecta thickness of 315 ± 100 m (40 ± 10%). The Lunar complex crater Bessel has a total rim height of 430 ± 15 m , with a minimal structural uplift of 290 ± 15 m (67 ± 3 %), exposed as basaltic layers and a maximum ejecta thickness of 140 ± 115 m (33 ± 3%). For the

  12. The Geology of the Marcia Quadrangle of Asteroid Vesta: Assessing the Effects of Large, Young Craters

    Science.gov (United States)

    Williams, David A.; Denevi, Brett W.; Mittlefehldt, David W.; Mest, Scott C.; Schenk, Paul M.; Yingst, R. Aileen; Buczowski, Debra L.; Scully, Jennifer E. C.; Garry, W. Brent; McCord, Thomas B.; Combe, Jean-Phillipe; Jaumann, Ralf; Pieters, Carle M.; Nathues, Andreas; Le Corre, Lucille; Hoffmann, Martin; Reddy, Vishnu; Schafer, Michael; Roatsch, Thomas; Preusker, Frank; Marchi, Simone; Kneissl, Thomas; Schmedemann, Nico; Neukum, Gerhard; Raymond, Carol A.

    2014-01-01

    We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (approximately 63 kilometers diameter) and Calpurnia (approximately 53 kilometers diameter) and their surrounding ejecta field on the local geology. We also investigated a local topographic high with a dark-rayed crater named Aricia Tholus, and the impact crater Octavia that is surrounded by a distinctive diffuse mantle. Crater counts and stratigraphic relations suggest that Marcia is the youngest large crater on Vesta, in which a putative impact melt on the crater floor ranges in age between approximately 40 and 60 million years (depending upon choice of chronology system), and Marcia's ejecta blanket ranges in age between approximately 120 and 390 million years (depending upon choice of chronology system). We interpret the geologic units in and around Marcia crater to mark a major Vestan time-stratigraphic event, and that the Marcia Formation is one of the geologically youngest formations on Vesta. Marcia crater reveals pristine bright and dark material in its walls and smooth and pitted terrains on its floor. The smooth unit we interpret as evidence of flow of impact melts and (for the pitted terrain) release of volatiles during or after the impact process. The distinctive dark ejecta surrounding craters Marcia and Calpurnia is enriched in OH- or H-bearing phases and has a variable morphology, suggestive of a complex mixture of impact ejecta and impact melts including dark materials possibly derived from carbonaceous chondrite-rich material. Aricia Tholus, which was originally interpreted as a putative Vestan volcanic edifice based on lower resolution observations, appears to be a fragment of an ancient impact basin rim topped by a dark-rayed impact crater. Octavia crater has a cratering model formation age of approximately 280-990 million years based on counts

  13. Interpretation of Wild 2 Dust Fine Structure: Comparison of Stardust Aluminium Foil Craters to the Three-Dimensional Shape of Experimental Impacts by Artificial Aggregate Particles and Meteorite Powders

    Energy Technology Data Exchange (ETDEWEB)

    Kearsley, A T; Burchell, M J; Price, M C; Graham, G A; Wozniakiewicz, P J; Cole, M J; Foster, N J; Teslich, N

    2009-12-10

    New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm{sup -3} (similar to soda-lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by {micro}m-scale and smaller sub-grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore-space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse fine-grained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.

  14. Uncertainty in model predictions of Vibrio vulnificus response to climate variability and change: a Chesapeake Bay case study.

    Directory of Open Access Journals (Sweden)

    Erin A Urquhart

    Full Text Available The effect that climate change and variability will have on waterborne bacteria is a topic of increasing concern for coastal ecosystems, including the Chesapeake Bay. Surface water temperature trends in the Bay indicate a warming pattern of roughly 0.3-0.4°C per decade over the past 30 years. It is unclear what impact future warming will have on pathogens currently found in the Bay, including Vibrio spp. Using historical environmental data, combined with three different statistical models of Vibrio vulnificus probability, we explore the relationship between environmental change and predicted Vibrio vulnificus presence in the upper Chesapeake Bay. We find that the predicted response of V. vulnificus probability to high temperatures in the Bay differs systematically between models of differing structure. As existing publicly available datasets are inadequate to determine which model structure is most appropriate, the impact of climatic change on the probability of V. vulnificus presence in the Chesapeake Bay remains uncertain. This result points to the challenge of characterizing climate sensitivity of ecological systems in which data are sparse and only statistical models of ecological sensitivity exist.

  15. Uncertainty in Model Predictions of Vibrio Vulnificus Response to Climate Variability and Change: A Chesapeake Bay Case Study

    Science.gov (United States)

    Urquhart, Erin A.; Zaitchik, Benjamin F.; Waugh, Darryn W.; Guikema, Seth D.; Del Castillo, Carlos E.

    2014-01-01

    The effect that climate change and variability will have on waterborne bacteria is a topic of increasing concern for coastal ecosystems, including the Chesapeake Bay. Surface water temperature trends in the Bay indicate a warming pattern of roughly 0.3-0.4 C per decade over the past 30 years. It is unclear what impact future warming will have on pathogens currently found in the Bay, including Vibrio spp. Using historical environmental data, combined with three different statistical models of Vibrio vulnificus probability, we explore the relationship between environmental change and predicted Vibrio vulnificus presence in the upper Chesapeake Bay. We find that the predicted response of V. vulnificus probability to high temperatures in the Bay differs systematically between models of differing structure. As existing publicly available datasets are inadequate to determine which model structure is most appropriate, the impact of climatic change on the probability of V. vulnificus presence in the Chesapeake Bay remains uncertain. This result points to the challenge of characterizing climate sensitivity of ecological systems in which data are sparse and only statistical models of ecological sensitivity exist.

  16. Time history of the Martian dynamo from crater magnetic field analysis

    Science.gov (United States)

    Lillis, R. J.; Robbins, S. J.; Manga, M.; Halekas, J. S.; Frey, H.

    2013-12-01

    Large impacts simultaneously reset both the surface age and the magnetization of the entire depth of crust over areas comparable to the final size of the resulting craters. These properties make large impact craters (>300 km in diameter) ideal 'magnetic markers' for constraining the history of the Martian core dynamo. However the relationship between crustal magnetization and magnetic field measured in orbit is non-unique, making the measured magnetic field signature of an impact crater only a proxy for the magnetization (or lack thereof) below. Using Monte Carlo Fourier domain modeling of subsurface magnetization, we calculate probability distributions of the magnetic field signatures of partially and completely demagnetized craters. We compare these distributions to measured magnetic field signatures of 41 old impact craters on Mars larger than 300 km in diameter and calculate probabilities of their magnetization state. We compare these probabilities to cratering densities and absolute model ages and in this manner arrive at a robust time-history of Martian large crater magnetization and hence of the Martian dynamo. We conclude that the most likely scenario was a Mars dynamo active when the oldest detectable basins formed, ceasing before the Hellas and Utopia impacts, between 4.0 and 4.1 Ga (in model age) and not thereafter restarting. The Mars atmosphere was thereafter exposed directly to erosion by the solar wind, significantly altering the path of climate evolution. Further improvements to the history of the Martian dynamo will require better crater age estimates and lower altitude magnetic field data.

  17. Geology of McLaughlin Crater, Mars: A Unique Lacustrine Setting with Implications for Astrobiology

    Science.gov (United States)

    Michalski, J. R.; Niles, P. B.; Rogers, A. D.; Johnson, S. S.; Ashley, J. W.; Golombek, M. P.

    2016-01-01

    McLaughlin crater is a 92-kmdiameter Martian impact crater that contained an ancient carbonate- and clay mineral-bearing lake in the Late Noachian. Detailed analysis of the geology within this crater reveals a complex history with important implications for astrobiology [1]. The basin contains evidence for, among other deposits, hydrothermally altered rocks, delta deposits, deep water (>400 m) sediments, and potentially turbidites. The geology of this basin stands in stark contrast to that of some ancient basins that contain evidence for transient aqueous processes and airfall sediments (e.g. Gale Crater [2-3]).

  18. Morphology of meteoroid and space debris craters on LDEF metal targets

    Science.gov (United States)

    Love, S. G.; Brownlee, D. E.; King, N. L.; Hoerz, F.

    1994-01-01

    We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties.

  19. Treating Bony craters by osseous resection in periodontics: Crater therapy

    OpenAIRE

    V. Selahi Moghadam

    1989-01-01

    Treating bony craters by surgical method needs elimination or reduction of bony lesions as well as providing sufficient bone by minimum osteotomy in order to preserve supporting bone. Furcation preservation is very important. Most mandibular molars are overtreated from buccal aspect that leads to inverted morphology and affects buccal forcation. Identifying anatomical structures and their relation to lesions is essential. In crater therapy, furcation and tooth trunk are two ...

  20. Multiple origins for olivine at Copernicus crater

    Science.gov (United States)

    Dhingra, Deepak; Pieters, Carle M.; Head, James W.

    2015-06-01

    Multiple origins for olivine-bearing lithologies at Copernicus crater are recognized based on integrated analysis of data from Chandrayaan-1 Moon Mineralogy Mapper (M3), Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) and Kaguya Terrain Camera (TC). We report the diverse morphological and spectral character of previously known olivine-bearing exposures as well as the new olivine occurrences identified in this study. Prominent albedo differences exist between olivine-bearing exposures in the central peaks and a northern wall unit (the latter being ∼40% darker). The low-albedo wall unit occurs as a linear mantling deposit and is interpreted to be of impact melt origin, in contrast with the largely unmodified nature of olivine-bearing peaks. Small and localized occurrences of olivine-bearing lithology have also been identified on the impact melt-rich floor, representing a third geologic setting (apart from crater wall and peaks). Recent remote sensing missions have identified olivine-bearing exposures around lunar basins (e.g. Yamamoto et al., 2010; Pieters et al., 2011; Kramer et al., 2013) and at other craters (e.g. Sun and Li, 2014), renewing strong interest in its origin and provenance. A direct mantle exposure has commonly been suggested in this regard. Our detailed observations of the morphological and spectral diversity in the olivine-bearing exposures at Copernicus have provided critical constraints on their origin and source regions, emphasizing multiple formation mechanisms. These findings directly impact the interpretation of olivine exposures elsewhere on the Moon. Olivine can occur in diverse environments including an impact melt origin, and therefore it is unlikely for all olivine exposures to be direct mantle occurrences as has generally been suggested.

  1. Modeling the effect of hypoxia on macrobenthos production in the lower Rappahannock River, Chesapeake Bay, USA.

    Directory of Open Access Journals (Sweden)

    Samuel Kersey Sturdivant

    Full Text Available Hypoxia in Chesapeake Bay has substantially increased in recent decades, with detrimental effects on macrobenthic production; the production of these fauna link energy transfer from primary consumers to epibenthic and demersal predators. As such, the development of accurate predictive models that determine the impact of hypoxia on macrobenthic production is important. A continuous-time, biomass-based model was developed for the lower Rappahannock River, a Bay tributary prone to seasonal hypoxia. Phytoplankton, zooplankton, and macrobenthic state variables were modeled, with a focus on quantitatively constraining the effect of hypoxia on macrobenthic biomass. This was accomplished through regression with Z': a sigmoidal function between macrobenthic biomass and dissolved oxygen concentration, derived using macrobenthic data collected from the Rappahannock River during the summers of 2007 and 2008, and applied to compute hypoxia-induced mortality as a rate process. The model was verified using independent monitoring data collected by the Chesapeake Bay Program. Simulations showed that macrobenthic biomass was strongly linked to dissolved oxygen concentrations, with fluctuations in biomass related to the duration and severity of hypoxia. Our model demonstrated that hypoxia negatively affected macrobenthic biomass, as longer durations of hypoxia and greater hypoxic severity resulted in an increasing loss in biomass. This exercise represents an important contribution to modeling anthropogenically impacted coastal ecosystems, by providing an empirically constrained relationship between hypoxia and macrobenthic biomass, and applying that empirical relationship in a mechanistic model to quantify the effect of the severity, duration, and frequency of hypoxia on benthic biomass dynamics.

  2. Modeling the effect of hypoxia on macrobenthos production in the lower Rappahannock River, Chesapeake Bay, USA.

    Science.gov (United States)

    Sturdivant, Samuel Kersey; Brush, Mark J; Diaz, Robert J

    2013-01-01

    Hypoxia in Chesapeake Bay has substantially increased in recent decades, with detrimental effects on macrobenthic production; the production of these fauna link energy transfer from primary consumers to epibenthic and demersal predators. As such, the development of accurate predictive models that determine the impact of hypoxia on macrobenthic production is important. A continuous-time, biomass-based model was developed for the lower Rappahannock River, a Bay tributary prone to seasonal hypoxia. Phytoplankton, zooplankton, and macrobenthic state variables were modeled, with a focus on quantitatively constraining the effect of hypoxia on macrobenthic biomass. This was accomplished through regression with Z': a sigmoidal function between macrobenthic biomass and dissolved oxygen concentration, derived using macrobenthic data collected from the Rappahannock River during the summers of 2007 and 2008, and applied to compute hypoxia-induced mortality as a rate process. The model was verified using independent monitoring data collected by the Chesapeake Bay Program. Simulations showed that macrobenthic biomass was strongly linked to dissolved oxygen concentrations, with fluctuations in biomass related to the duration and severity of hypoxia. Our model demonstrated that hypoxia negatively affected macrobenthic biomass, as longer durations of hypoxia and greater hypoxic severity resulted in an increasing loss in biomass. This exercise represents an important contribution to modeling anthropogenically impacted coastal ecosystems, by providing an empirically constrained relationship between hypoxia and macrobenthic biomass, and applying that empirical relationship in a mechanistic model to quantify the effect of the severity, duration, and frequency of hypoxia on benthic biomass dynamics. PMID:24391904

  3. Evolution of sediment plumes in the Chesapeake bay and implications of climate variability.

    Science.gov (United States)

    Zheng, Guangming; DiGiacomo, Paul M; Kaushal, Sujay S; Yuen-Murphy, Marilyn A; Duan, Shuiwang

    2015-06-01

    Fluvial sediment transport impacts fisheries, marine ecosystems, and human health. In the upper Chesapeake Bay, river-induced sediment plumes are generally known as either a monotonic spatial shape or a turbidity maximum. Little is known about plume evolution in response to variation in streamflow and extreme discharge of sediment. Here we propose a typology of sediment plumes in the upper Chesapeake Bay using a 17 year time series of satellite-derived suspended sediment concentration. On the basis of estimated fluvial and wind contributions, we define an intermittent/wind-dominated type and a continuous type, the latter of which is further divided into four subtypes based on spatial features of plumes, which we refer to as Injection, Transport, Temporary Turbidity-Maximum, and Persistent Turbidity-Maximum. The four continuous types exhibit a consistent sequence of evolution within 1 week to 1 month following flood events. We also identify a "shift" in typology with increased frequency of Turbidity-Maximum types before and after Hurricane Ivan (2004), which implies that extreme events have longer-lasting effects upon estuarine suspended sediment than previously considered. These results can serve as a diagnostic tool to better predict distribution and impacts of estuarine suspended sediment in response to changes in climate and land use. PMID:25938877

  4. Preliminary Chronostratigraphy of Pingualuit Impact Crater Lake Sediments (Nunavik, Canada): a Possible Arctic Terrestrial Record of Several Glacial/Interglacial Cycles

    Science.gov (United States)

    St-Onge, G.; Guyard, H.; Pienitz, R.; Hausmann, S.; Salonen, V.; Luoto, T.; Francus, P.; Larocque, I.; Lavoie, M.; Lamothe, M.; Vincent, W. F.; Niederreiter, R.

    2007-12-01

    The Pingualuit Crater Lake is a 1.4 Ma perfectly circular depression. It is 3.4 km in diameter and hosts a lake with a maximum depth of 267 m with no surface connection to other surrounding water bodies. It is located in the northernmost part of the Ungava Peninsula in Nunavik, Canada (61°N, 73°W) and, due to its unique morphometry (shape, depth), the lake bottom may have escaped glacial erosion, possibly preserving a continuous Arctic terrestrial record of several glacial/interglacial cycles. Previous attempts to core the lake have resulted in the collection of only 14 cm of sediments that spanned about the last ~5000 years. Here, in order to test the possible accumulation of several glacial/interglacial cycles, we will present initial high resolution physical (CAT-scan, Multi Sensor Core Logger, color reflectance, high resolution digital images), magnetic (point source magnetic susceptibility) and sedimentological (detailed visual description, grain size) properties of about 10 m of sediments recently cored using a UWITEC piston percussion corer under harsh climatic conditions. The initial results revealed the presence of at least two decimetre-thick intervals composed of laminated, dark grey clayey silts characterized by a relatively low density and magnetic susceptibility that contrast sharply with the thicker and more abundant over- and underlying light grey, denser, sandy sediments. The sediment characteristics in the darker laminated intervals are also similar to the ones observed in the small surface gravity core sampled at the same site. Moreover, smear slides performed in these two intervals revealed the presence of diatoms and chrysophytes, suggesting that these two intervals represent ice-free conditions and thus possible interglacials, whereas the more abundant light grey and more sandy sediments likely reflect glacial intervals. This interpretation will be tested by ongoing paleomagnetic measurements (i.e., magnetostratigraphy), as well as

  5. Distant Secondary Craters from Lyot Crater, Mars, and Implications for Ages of Planetary Bodies

    Science.gov (United States)

    Robbins, S. J.; Hynek, B. M.

    2011-03-01

    We identified thousands of secondary craters in distinct clusters up to 5200 km from their primary crater, Lyot, on Mars. Their properties, relation to Lyot, and broader implications to secondary cratering and planetary ages will be discussed.

  6. Geology of the Selk crater region on Titan from Cassini VIMS observations

    Science.gov (United States)

    Soderblom, J.M.; Brown, R.H.; Soderblom, L.A.; Barnes, J.W.; Jaumann, R.; Le Mouélic, Stéphane; Sotin, C.; Stephan, K.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2010-01-01

    Observations of Titan obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) have revealed Selk crater, a geologically young, bright-rimmed, impact crater located ???800. km north-northwest of the Huygens landing site. The crater rim-crest diameter is ???90. km; its floor diameter is ???60. km. A central pit/peak, 20-30. km in diameter, is seen; the ratio of the size of this feature to the crater diameter is consistent with similarly sized craters on Ganymede and Callisto, all of which are dome craters. The VIMS data, unfortunately, are not of sufficient resolution to detect such a dome. The inner rim of Selk crater is fluted, probably by eolian erosion, while the outer flank and presumed ejecta blanket appear dissected by drainages (particularly to the east), likely the result of fluvial erosion. Terracing is observed on the northern and western walls of Selk crater within a 10-15. km wide terrace zone identified in VIMS data; the terrace zone is bright in SAR data, consistent with it being a rough surface. The terrace zone is slightly wider than those observed on Ganymede and Callisto and may reflect differences in thermal structure and/or composition of the lithosphere. The polygonal appearance of the crater likely results from two preexisting planes of weakness (oriented at azimuths of 21?? and 122?? east of north). A unit of generally bright terrain that exhibits similar infrared-color variation and contrast to Selk crater extends east-southeast from the crater several hundred kilometers. We informally refer to this terrain as the Selk "bench." Both Selk and the bench are surrounded by the infrared-dark Belet dune field. Hypotheses for the genesis of the optically bright terrain of the bench include: wind shadowing in the lee of Selk crater preventing the encroachment of dunes, impact-induced cryovolcanism, flow of a fluidized-ejecta blanket (similar to the bright crater outflows observed on Venus), and erosion of a streamlined upland formed

  7. 'Lyell' Panorama inside Victoria Crater

    Science.gov (United States)

    2008-01-01

    During four months prior to the fourth anniversary of its landing on Mars, NASA's Mars Exploration Rover Opportunity examined rocks inside an alcove called 'Duck Bay' in the western portion of Victoria Crater. The main body of the crater appears in the upper right of this stereo panorama, with the far side of the crater lying about 800 meters (half a mile) away. Bracketing that part of the view are two promontories on the crater's rim at either side of Duck Bay. They are 'Cape Verde,' about 6 meters (20 feet) tall, on the left, and 'Cabo Frio,' about 15 meters (50 feet) tall, on the right. The rest of the image, other than sky and portions of the rover, is ground within Duck Bay. Opportunity's targets of study during the last quarter of 2007 were rock layers within a band exposed around the interior of the crater, about 6 meters (20 feet) from the rim. Bright rocks within the band are visible in the foreground of the panorama. The rover science team assigned informal names to three subdivisions of the band: 'Steno,' 'Smith,' and 'Lyell.' This view combines many images taken by Opportunity's panoramic camera (Pancam) from the 1,332nd through 1,379th Martian days, or sols, of the mission (Oct. 23 to Dec. 11, 2007). Images taken through Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers were mixed to produce an approximately true-color panorama. Some visible patterns in dark and light tones are the result of combining frames that were affected by dust on the front sapphire window of the rover's camera. Opportunity landed on Jan. 25, 2004, Universal Time, (Jan. 24, Pacific Time) inside a much smaller crater about 6 kilometers (4 miles) north of Victoria Crater, to begin a surface mission designed to last 3 months and drive about 600 meters (0.4 mile).

  8. Emplacement of Fahrenheit crater ejecta at the Luna-24 site

    International Nuclear Information System (INIS)

    The Luna-24 site is situated in Mare Crisium at a range of 18.4 km from Fahrenheit, an Eratosthenian-aged crater 6.4 km in diameter. Fahrenheit's ejecta deposits have been degraded to such an extent that secondary craters and rays cannot be unambiguously identified in the vicinity of the Luna-24 site. On the basis of an analogy between Fahrenheit and Lichtenberg B (a much younger crater of comparable size located in northern Oceanus Procellarum) Fahrenheit ejecta deposits near the sample site are inferred to have consisted of secondary crater clusters, subradially aligned secondary crater chains, and lineated terrain furrowed by fine-scale radial grooves. At the range of the Luna-24 site more than 80% of the mare surface should have been morphologically disturbed by the ballistic deposition of Fahrenheit ejecta. Blocks and fragment clusters of primary Fehrenheit ejecta ranging up to 5-20 m in diameter are inferred to have impacted the local surface at velocities of 165-230 m s-1 forming secondary craters ranging up to 100m in diameter. The maximum depth of excavation of primary Fahrenheit ejecta deposited near the sample site is estimated to be at least 100m. Primary Fahremheit ejecta is expected to constitute a substantial fraction of the exterior deposits emplaced at the range of the Luna-24 site. Microgabbro and monomineralic fragments discovered in the Luna-24 drill core may have been derived from gabbroic rocks transported to the sample site by the Fahrenheit cratering event. This hypothesis is consistent with the widespread occurrence and characteristics of Fahrenheit ejecta anticipated in the vicinity of the Luna-24 site. (Auth.)

  9. Modelling the gravity and magnetic field anomalies of the Chicxulub crater

    Science.gov (United States)

    Aleman, C. Ortiz; Pilkington, M.; Hildebrand, A. R.; Roest, W. R.; Grieve, R. A. F.; Keating, P.

    1993-01-01

    The approximately 180-km-diameter Chicxulub crater lies buried by approximately 1 km of sediment on the northwestern corner of the Yucatan Peninsula, Mexico. Geophysical, stratigraphic and petrologic evidence support an impact origin for the structure and biostratigraphy suggests that a K/T age is possible for the impact. The crater's location is in agreement with constraints derived from proximal K/T impact-wave and ejecta deposits and its melt-rock is similar in composition to the K/T tektites. Radiometric dating of the melt rock reveals an age identical to that of the K/T tektites. The impact which produced the Chicxulub crater probably produced the K/T extinctions and understanding the now-buried crater will provide constraints on the impact's lethal effects. The outstanding preservation of the crater, the availability of detailed gravity and magnetic data sets, and the two-component target of carbonate/evaporites overlying silicate basement allow application of geophysical modeling techniques to explore the crater under most favorable circumstances. We have found that the main features of the gravity and magnetic field anomalies may be produced by the crater lithologies.

  10. Seasonality of Chesapeake Bay bacterioplankton species.

    Science.gov (United States)

    Heidelberg, J F; Heidelberg, K B; Colwell, R R

    2002-11-01

    Bacteria, gamma-subclass of Proteobacteria, Vibrio-Photobacterium, Vibrio vulnificus, Vibrio cholerae-Vibrio mimicus, and Vibrio cincinnatiensis in water samples collected from the Choptank River in Chesapeake Bay from 15 April to 16 December 1996 were enumerated using a fluorescent oligonucleotide direct-counting (FODC) procedure. FODC results obtained using a Bacteria taxon-specific probe ranged from one-third the number of to the same number as that obtained by the acridine orange direct count (AODC) procedure. The abundance of individual taxa (per liter) ranged from 0.25 x 10(10) to 2.6 x 10(10) Bacteria, 0.32 x 10(8) to 3.1 x 10(8) gamma-Proteobacteria, 0.2 x 10(8) to 2.1 x 10(8) Vibrio-Photobacterium, 0.5 x 10(7) to 10 x 10(7) V. vulnificus, 0.2 x 10(6) to 6 x 10(6) V. cholerae-V. mimicus, and 0.5 x 10(5) to 8 x 10(5) V. cincinnatiensis. The occurrence of all taxa monitored in this study was higher in summer; however, these taxa made up a larger proportion of the Bacteria when the water temperature was low. Large fluctuations in species abundance as well as in percent composition of Vibrio-Photobacterium occurred from week to week, indicating that localized blooms of these taxa occur. The cross-Choptank River transect sample profile of V. vulnificus and V. cholerae-V. mimicus varied significantly in abundance, and trans-Choptank River transect samples revealed a patchy distribution. PMID:12406742

  11. Stability of nuclear crater slopes in rock

    International Nuclear Information System (INIS)

    The United States Army Engineer Nuclear Cratering Group was established in 1962 to participate with the Atomic Energy Commission in a joint research and development program to develop nuclear engineering and construction technology. A major part of this research effort has been devoted to studies of the engineering properties of craters. The program to date has included field investigations of crater properties in various media over a broad range of chemical and nuclear explosive yields, studies of man-made and natural slopes, and studies directed toward the development of analytical and empirical methods of crater stability analysis. From this background, a general understanding has been developed of the effects of a cratering explosion on the surrounding medium and of physical nature of the various crater zones which are produced. The stability of nuclear crater slopes has been a subject of prime interest in the feasibility study being conducted for an Atlantic-Pacific sea-level canal. Based on experimental evidence assembled to date, nuclear crater slopes in dry dock and dry alluvium have an initially stable configuration. There have been five nuclear craters produced to date with yields of 0.4 kt or more on which observations are based and the initial configurations of these craters have remained stable for over seven years. The medium, yield, crater dimensions, and date of event for these craters are summarized. It is interesting to note that the Sedan Crater has been subjected to strong seismic motions from nearby detonations without adverse effects

  12. Impact microcraters on an Australasian microtektite

    Digital Repository Service at National Institute of Oceanography (India)

    ShyamPrasad, M.; Sudhakar, M.

    Microcraters attributable to impact have been discovered on an Australasian microtektite from a core in the Central Indian Basin. The craters resemble lunar microcraters and those generated during impact experiments. The largest crater here, which...

  13. Magnetic/isotopic characteristic of the spherule-rich impact ejecta blanket from the Chicxulub crater: analog for robotic exploration of similar deposits on Mars

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther

    2007-01-01

    Roč. 39, č. 5 (2007), s. 12-12. ISSN 0016-7592. [Rocky Mountain Section - Annual Meeting /59./. 07.05.2007-09.05.2007, St. George] Keywords : magnetic * isotopes * spherules * impact * Mars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://gsa.confex.com/gsa/2007RM/finalprogram/abstract_121718.htm

  14. How old is Autolycus crater?

    Science.gov (United States)

    Hiesinger, Harald; Pasckert, Jan Henrik; van der Bogert, Carolyn H.; Robinson, Mark S.

    2016-04-01

    Accurately determining the lunar cratering chronology is prerequisite for deriving absolute model ages (AMAs) across the lunar surface and throughout the Solar System [e.g., 1]. However, the lunar chronology is only constrained by a few data points over the last 1 Ga and there are no calibration data available between 1 and 3 Ga and beyond 3.9 Ga [2]. Rays from Autolycus and Aristillus cross the Apollo 15 landing site and presumably transported material to this location [3]. [4] proposed that at the Apollo 15 landing site about 32% of any exotic material would come from Autolycus crater and 25% would come from Aristillus crater. [5,6] proposed that the 39Ar-40Ar age of 2.1 Ga derived from three petrologically distinct, shocked Apollo 15 KREEP basalt samples, date Autolycus crater. Grier et al. [7] reported that the optical maturity (OMAT) characteristics of these craters are indistinguishable from the background values despite the fact that both craters exhibit rays that were used to infer relatively young, i.e., Copernican ages [8,9]. Thus, both OMAT characteristics and radiometric ages of 2.1 Ga and 1.29 Ga for Autolycus and Aristillus, respectively, suggest that these two craters are not Copernican in age. [10] interpreted newer U-Pb ages of 1.4 and 1.9 Ga from sample 15405 as the formation ages of Aristillus and Autolycus. If Autolycus is indeed the source of the dated exotic material collected at the Apollo 15 landing site, than performing crater size frequency distribution (CSFD) measurements for Autolycus offers the possibility to add a new calibration point to the lunar chronology, particularly in an age range that was previously unconstrained. We used calibrated and map-projected LRO NAC images to perform CSFD measurements within ArcGIS, using CraterTools [11]. CSFDs were then plotted with CraterStats [12], using the production and chronology functions of [13]. We determined ages of 3.72 and 3.85 Ga for the interior (Ai1) and ejecta area Ae3, which we

  15. STRAWBERRY CRATER ROADLESS AREAS, ARIZONA.

    Science.gov (United States)

    Wolfe, Edward W.; Light, Thomas D.

    1984-01-01

    The results of a mineral survey conducted in the Strawberry Crater Roadless Areas, Arizona, indicate little promise for the occurrence of metallic mineral or fossil fuel resources in the area. The area contains deposits of cinder, useful for the production of aggregate block, and for deposits of decorative stone; however, similar deposits occur in great abundance throughout the San Francisco volcanic field outside the roadless areas. There is a possibility that the Strawberry Crater Roadless Areas may overlie part of a crustal magma chamber or still warm pluton related to the San Francisco Mountain stratovolcano or to basaltic vents of late Pleistocene or Holocene age. Such a magma chamber or pluton beneath the Strawberry Crater Roadless Areas might be an energy source from which a hot-, dry-rock geothermal energy system could be developed, and a probable geothermal resource potential is therefore assigned to these areas. 9 refs.

  16. Evidence for gravity scaling and implications for explosion craters

    International Nuclear Information System (INIS)

    Crater data have been examined from recent hypervelocity impact and chemical explosion experiments conducted in accelerating frames. Data have been identified from experiments for which the conditions of similitude have been very nearly achieved. Examination of these data from similar experiments indicates that fourth-root or gravity scaling is the rule which best relates crater dimensions to the energy release of impacting projectiles or explosives. Implications for chemical and nuclear explosion cratering are that in model experiments where the gravitational field is constant the specific energy and dimensions of the explosive must be scaled as the fourth-root of explosion energy release. Additionally, medium properties must be appropriately scaled in similar experiments. Because of the impracticability of realizing the constraints imposed on model experiments by similitude requirements attention in future experiments should be focused on the sources of similarity violation and their influence on empirical relationships derived from experiments. Experiments in accelerating frames with both explosive sources and hypervelocity impact projectiles offer one means for investigating effects of similitude violation. To further elucidate the question of crater scaling, experiments in accelerating frames may be conducted which most nearly achieve the conditions of similitude required

  17. Evidence for gravity scaling and implications for explosion craters

    Energy Technology Data Exchange (ETDEWEB)

    Chabai, A.J.

    1979-01-01

    Crater data have been examined from recent hypervelocity impact and chemical explosion experiments conducted in accelerating frames. Data have been identified from experiments for which the conditions of similitude have been very nearly achieved. Examination of these data from similar experiments indicates that fourth-root or gravity scaling is the rule which best relates crater dimensions to the energy release of impacting projectiles or explosives. Implications for chemical and nuclear explosion cratering are that in model experiments where the gravitational field is constant the specific energy and dimensions of the explosive must be scaled as the fourth-root of explosion energy release. Additionally, medium properties must be appropriately scaled in similar experiments. Because of the impracticability of realizing the constraints imposed on model experiments by similitude requirements attention in future experiments should be focused on the sources of similarity violation and their influence on empirical relationships derived from experiments. Experiments in accelerating frames with both explosive sources and hypervelocity impact projectiles offer one means for investigating effects of similitude violation. To further elucidate the question of crater scaling, experiments in accelerating frames may be conducted which most nearly achieve the conditions of similitude required.

  18. Integrating Federal and State data records to report progress in establishing agricultural conservation practices on Chesapeake Bay farms

    Science.gov (United States)

    Hively, W. Dean; Devereux, Olivia H.; Claggett, Peter

    2013-01-01

    In response to the Executive Order for Chesapeake Bay Protection and Restoration (E.O. #13508, May 12, 2009), the U.S. Geological Survey (USGS) took on the task of acquiring and assessing agricultural conservation practice data records for U.S. Department of Agriculture (USDA) programs, and transferred those datasets in aggregated format to State jurisdictional agencies for use in reporting conservation progress to the Chesapeake Bay Program Partnership (CBP Partnership). Under the guidelines and regulations that have been developed to protect and restore water-quality in the Chesapeake Bay, the six State jurisdictions that fall within the Chesapeake Bay watershed are required to report their progress in promoting agricultural conservation practices to the CBP Partnership on an annual basis. The installation and adoption of agricultural best management practices is supported by technical and financial assistance from both Federal and State conservation programs. The farm enrollment data for USDA conservation programs are confidential, but agencies can obtain access to the privacy-protected data if they are established as USDA Conservation Cooperators. The datasets can also be released to the public if they are first aggregated to protect farmer privacy. In 2012, the USGS used its Conservation Cooperator status to obtain implementation data for conservation programs sponsored by the USDA Natural Resources Conservation Service (NRCS) and the USDA Farm Service Agency (FSA) for farms within the Chesapeake Bay watershed. Three jurisdictions (Delaware, Pennsylvania, and West Virginia) used the USGS-provided aggregated dataset to report conservation progress in 2012, whereas the remaining three jurisdictions (Maryland, New York, and Virginia) used jurisdictional Conservation Cooperator Agreements to obtain privacy-protected data directly from the USDA. This report reviews the status of conservation data sharing between the USDA and the various jurisdictions, discusses the

  19. Crater-based dating of geological units on Mars: Methods and application for the new global geological map

    Science.gov (United States)

    Platz, Thomas; Michael, Gregory; Tanaka, Kenneth L.; Skinner, James A.; Fortezzo, Corey M.

    2013-07-01

    The new, post-Viking generation of Mars orbital imaging and topographical data provide significant higher-resolution details of surface morphologies, which induced a new effort to photo-geologically map the surface of Mars at 1:20,000,000 scale. Although from unit superposition relations a relative stratigraphical framework can be compiled, it was the ambition of this mapping project to provide absolute unit age constraints through crater statistics. In this study, the crater counting method is described in detail, starting with the selection of image data, type locations (both from the mapper's and crater counter's perspectives) and the identification of impact craters. We describe the criteria used to validate and analyse measured crater populations, and to derive and interpret crater model ages. We provide examples of how geological information about the unit's resurfacing history can be retrieved from crater size-frequency distributions. Three cases illustrate short-, intermediate, and long-term resurfacing histories. In addition, we introduce an interpretation-independent visualisation of the crater resurfacing history that uses the reduction of the crater population in a given size range relative to the expected population given the observed crater density at larger sizes. From a set of potential type locations, 48 areas from 22 globally mapped units were deemed suitable for crater counting. Because resurfacing ages were derived from crater statistics, these secondary ages were used to define the unit age rather than the base age. Using the methods described herein, we modelled ages that are consistent with the interpreted stratigraphy. Our derived model ages allow age assignments to be included in unit names. We discuss the limitations of using the crater dating technique for global-scale geological mapping. Finally, we present recommendations for the documentation and presentation of crater statistics in publications.

  20. Geomorphometric analysis of selected Martian craters using polar coordinate transformation

    Science.gov (United States)

    Magyar, Zoltán; Koma, Zsófia; Székely, Balázs

    2016-04-01

    Centrally symmetric landform elements are very common features on the surface of the planet Mars. The most conspicuous ones of them are the impact craters of various size. However, a closer look on these features reveals that they show often asymmetric patterns as well. These are partially related to the geometry of the trajectory of the impacting body, but sometimes it is a result of surface processes (e.g., freeze/thaw cycles, mass movements). Geomorphometric studies have already been carried out to reveal these pecularities. Our approach, the application of polar coordinate transformation (PCT) very sensitively enhances the non-radial and non-circular shapes. We used digital terrain models (DTMs) derived from the ESA Mars Express HRSC imagery. The original DTM or its derivatives (e.g. slope angle or aspect) are PCT transformed. We analyzed the craters inter alia with scattergrams in polar coordinates. The resulting point cloud can be used directly for the analysis, but in some cases an interpolation should be applied to enhance certain non-circular features (especially in case of smaller craters). Visual inspection of the crater slopes, coloured by the aspect, reveals smaller features. Some of them are processing artefacts, but many of them are related to local undulations in the topography or indications of mass movements. In many cases the undulations of the crater rim are due to erosional processes. The drawbacks of the technology are related to the uneven resolution of the projected image: features in the crater centre should be left out from the analysis because PCT has a low resolution around the projection center. Furthermore, the success of the PCT depends on the correct definition of the projection centre: erroneously centered images are not suitable for analysis. The PCT transformed images are also suitable for radial averaging and calculation of standard deviations, resulting in typical, comparable craters shapes. These studies may lead to a deeper

  1. Stratigraphy of the crater Copernicus

    Science.gov (United States)

    Paquette, R.

    1984-01-01

    The stratigraphy of copernicus based on its olivine absorption bands is presented. Earth based spectral data are used to develop models that also employ cratering mechanics to devise theories for Copernican geomorphology. General geologic information, spectral information, upper and lower stratigraphic units and a chart for model comparison are included in the stratigraphic analysis.

  2. Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes

    Science.gov (United States)

    Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.

    1995-09-01

    Differing interpretations of the Bouguer gravity anomaly over the Chicxulub crater, Yucatan Peninsula, Mexico, have yielded diameter estimates of 170 to 320 km. Knowing the crater's size is necessary to quantify the lethal perturbations to the Cretaceous environment associated with its formation. The crater's size (and internal structure) is revealed by the horizontal gradient of the Bouguer gravity anomaly over the structure, and by mapping the karst features of the Yucatan region. To improve our resolution of the crater's gravity signature we collected additional gravity measurements primarily along radial profiles, but also to fill in previously unsurveyed areas. Horizontal gradient analysis of Bouguer gravity data objectively highlights the lateral density contrasts of the impact lithologies and suppresses regional anomalies which may obscure the gravity signature of the Chicxulub crater lithologies. This gradient technique yields a striking circular structure with at least 6 concentric gradient features between 25 and 85 km radius. These features are most distinct in the southwest probably because of denser sampling of the gravity field. Our detailed profiles detected an additional feature and steeper gradients (up to 5 mGal/km) than the original survey. We interpret the outer four gradient maxima to represent concentric faults in the crater's zone of slumping as is also revealed by seismic reflection data. The inner two probably represent the margin of the central uplift and the peak ring and or collapsed transient cavity. Radial gradients in the SW quadrant over the inferred ~40 km-diameter central uplift (4) may represent structural "puckering" as revealed at eroded terrestrial craters. Gradient features related to regional gravity highs and lows are visible outside the crater, but no concentric gradient features are apparent at distances > 90 km radius. The marginal gradient features may be modelled by slump faults as observed in large complex craters on

  3. A Giant Crater on 90 Antiope?

    CERN Document Server

    Descamps, P; Michalowski, T; Berthier, J; Pollock, J; Wiggins, P; Birlan, M; Colas, F; Vachier, F; Fauvaud, S; Fauvaud, M; Sareyan, J -P; Pilcher, F; Klinglesmith, D A

    2009-01-01

    Mutual event observations between the two components of 90 Antiope were carried out in 2007-2008. The pole position was refined to lambda0 = 199.5+/-0.5 eg and beta0 = 39.8+/-5 deg in J2000 ecliptic coordinates, leaving intact the physical solution for the components, assimilated to two perfect Roche ellipsoids, and derived after the 2005 mutual event season (Descamps et al., 2007). Furthermore, a large-scale geological depression, located on one of the components, was introduced to better match the observed lightcurves. This vast geological feature of about 68 km in diameter, which could be postulated as a bowl-shaped impact crater, is indeed responsible of the photometric asymmetries seen on the "shoulders" of the lightcurves. The bulk density was then recomputed to 1.28+/-0.04 gcm-3 to take into account this large-scale non-convexity. This giant crater could be the aftermath of a tremendous collision of a 100-km sized proto-Antiope with another Themis family member. This statement is supported by the fact ...

  4. Seismic Shaking Removal of Craters 0.2-0.5 km in Diameter on Asteroid 433 Eros

    Science.gov (United States)

    Thomas, P. C.; Robinson, M. S.

    2005-01-01

    Impact cratering acts in a variety of ways to create a surprising range of scenery on small satellites and asteroids. The visible crater population is a self-modifying characteristic of these airless objects, and determining the various ways younger craters can add or subtract from the population is an important aspect of small body "geology." Asteroid 433 Eros, the most closely studied of any small body, has two aspects of its crater population that have attracted attention: a fall-off of crater densities below approx.100 m diameter relative to an expected equilibrium population [1] and regions of substantially lower large crater densities [2, 3, 4]. In this work we examine the global variation of the density of craters on Eros larger than 0.177 km, a size range above that involved in small crater depletion hypotheses [1, 5]. We counted all craters on Eros to a size range somewhat below 0.177 km diameter (and different from data used in [3]). The primary metric for this study is the number of craters between 0.177 and 1.0 km within a set radius of each grid point on the 2deg x 2deg shape model of Eros. This number can be expressed as an R-value [6], provided that it is remembered that the large bin size makes individual R values slightly different from those obtained in the usual root-2 bins.

  5. Climate Change and the Evolution and Fate of the Tangier Islands of Chesapeake Bay, USA

    Science.gov (United States)

    Schulte, David M.; Dridge, Karin M.; Hudgins, Mark H.

    2015-12-01

    Climate change and associated sea level rise (SLR) are already impacting low-lying coastal areas, including islands, throughout the world. Many of these areas are inhabited, many will need to be abandoned in coming decades as SLR continues. We examine the evolution (1850-2013) of the last inhabited offshore island in Virginia waters of Chesapeake Bay USA, the Tangier Islands. Three SLR scenarios, a low, mid, and high, were considered. Since 1850, 66.75% of the islands landmass has been lost. Under the mid-range SLR scenario, much of the remaining landmass is expected to be lost in the next 50 years and the Town will likely need to be abandoned. The high SLR scenario will accelerate the land loss and subsidence, such that the Town may need to be abandoned in as few as 25 years. We propose a conceptual plan that would significantly extend the lifespan of the islands and Town.

  6. Crater Boguslawsky on the moon: Geological structure and an estimate of the degree of rockiness of the floor

    Science.gov (United States)

    Ivanov, M. A.; Basilevsky, A. T.; Abdrakhimov, A. M.; Karachevtseva, I. P.; Kokhanov, A. A.; Head, J. W.

    2015-12-01

    The paper considers the results of a study of the geological structure of the floor of the crater Boguslawsky selected as a primary target for the Luna-Glob mission. The deplanate floor of the crater is covered by the material ejected from remote craters and the crater Boguslawsky-D on the eastern inner slope of the crater Boguslawsky. It is highly probable that the sampling of the crater Boguslawsky-D ejecta will provide the unique possibility to detect and analyze the material that predates the formation of the largest and most ancient currently known basin on the Moon—the South Pole-Aitken basin. The rockiness degree of the Boguslawsky crater floor has been estimated from the radar data and the manual boulder counts in the superresolution images (0.5 m/pixel obtained with the Narrow Angle Camera from the Lunar Reconnaissance Orbiter). Comparison of the radar data to the results of the photo-geological analysis shows that the main contributor to the radar signal is the rock debris located in the subsurface layer sounded by radar (1-1.5 m), while there are practically no boulders on the surface. The two most rocky regions on the crater Boguslawsky floor are associated with the relatively fresh impact craters 300-400 m in diameter. The spatial density of boulders near the craters suggests that one of them is 30-50 Myr older than the other. For both of these craters, the spatial density of boulders drops with the distance from their rims. The rate of the decrease in the boulder spatial density is the same for both craters, which points to the constant-in-time intensity of the fragmentation of boulders. The size distribution of boulders versus the distance from a rim of the older crater is approximated by the curve with a slope of-0.02, while the curve slope for the younger crater is-0.05. The gentler curve slope for the older crater is obviously connected with the equalization of sizes of the rock debris with time. The size-frequency distribution of all rock

  7. Double-layered ejecta craters on Mars: morphology, formation, and a comparison with the Ries ejecta blanket

    Science.gov (United States)

    Kenkmann, Thomas; Wulf, Gerwin; Sturm, Sebastian; Pietrek, Alexa

    2015-04-01

    The ejecta blankets of impact craters in volatile-rich environments often show characteristic layered ejecta morphologies. The so-called double-layer ejecta (DLE) craters are probably the most confusing crater types showing two ejecta layers with distinct morphologies. A phenomenological ejecta excavation and emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim - a textbook like, pristine DLE crater - and studies of other DLE craters [1]. The observations show that DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock-induced vaporization and melting of ground ice. The deposits of the ejecta curtain are wet in the distal part and dryer in composition in the proximal part. As a result, the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a fluid saturated debris flow mode after landing overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits. This slide overruns and superimposes parts of the outer ejecta layer. Basal melting of the ice components of the ejecta volumes at the transient crater rim is induced by frictional heating and the enhanced pressure at depth. The results indicate similar processes also for other planetary bodies with volatile-rich environments, such as Ganymede, Europa or the Earth. The Ries crater on Earth has a similar ejecta thickness distribution as DLE craters on Mars [2]. Here basal sliding and fluidization of the ejecta increases outward by the entrainment of locally derived Tertiary sands and clays, that are saturated with groundwater. References: [1] Wulf, G. & Kenkmann, T. (2015) Met. Planet. Sci. (in press); [2] Sturm, S., Wulf. G., Jung, D. & Kenkmann, T. (2013) Geology 41, 531-534.

  8. Depth to Diameter Ratios of New Martian Craters from HiRISE Images

    Science.gov (United States)

    Daubar, Ingrid; McEwen, A. S.

    2009-09-01

    More than 90 new primary impact sites have been identified by the Context camera on the Mars Reconnaissance Orbiter and confirmed with HiRISE. Before and after images date these impacts at only months to decades old. The 25-cm pixel scale of HiRISE data allows us to study the morphology of these extremely young and extremely small (10 meter-scale) craters. 142 craters were measured at 44 separate new impact sites. About half of those sites are single-crater impacts, while the rest consist of clusters of craters, which were measured individually when large enough to resolve. Depths were calculated from shadow measurements assuming a simple parabolic shape using the technique of Chappelow & Sharpton (2002). The measurements follow a power law fit: d=0.28*D0.97. No statistical difference was found between single-crater sites and cluster sites. These new impacts seem to result in slightly deeper craters on average than previously found for older, larger simple craters, although the fit converges with previous studies at larger sizes. If the difference is statistically significant, it could be related to their extreme youth, their small sizes, uncertainties in the depth measurements due to non-parabolic shapes, or the target material properties. Since detection relies on low-resolution identification of dark blast zones where surface dust has been disturbed, these new craters are concentrated in areas of uniform dust cover and often significant mantling. Morphological features such as flat floors and benches may provide a measure of the depth of this mantling and an estimate of its effect on the observed d/D.

  9. On the Nature of the Impactor That Formed the Shackleton Crater on the Moon

    Science.gov (United States)

    Pugacheva, Svetlana G.; Feoktistova, Ekaterina A.; Shevchenko, Vladislav V.

    2016-06-01

    The present paper attempts to assess the characteristics of the impactor that formed the Shackleton crater, located at the south pole of the Moon. The crater's morphometric parameters were analyzed based on the data of the Lunar Orbiter Laser Altimeter aboard the Lunar Reconnaissance Orbiter. Conclusions were drawn regarding the possible range of the impact angle and the parameters of the transient crater, such as depth and volume. The thickness of ejecta deposits on the transient crater rim and the volume of these deposits at a certain distance from the crater rim were assessed. These assessments enabled determining the type and characteristics of impactors (velocity, density, size, and impact angle) that could have formed the Shackleton crater. It was shown that the Shackleton crater could have been formed by an impact of a low-velocity (3 km/s) comets with diameter 4-4.5 km, chondrite or achondrite with a diameter of 2 km at a 45°-50° angle, whose velocity did not exceed 6 km/s, as well as stony-iron or iron-nickel impactors with a 1-2 km diameter for stony-iron asteroids and 1-1.5 km for iron-nickel asteroids. The impact velocity of stony-iron impactors, according to the authors' calculations, can reach 12 km/s. The impact velocities of iron-nickel asteroids range from 6 to 9 km/s. The impactor's substance mass that could have remained in the crater after it was formed was assessed.

  10. 78 FR 44556 - Chesapeake Energy Marketing, Inc. v. Midcontinent Express Pipeline LLC; Notice of Complaint

    Science.gov (United States)

    2013-07-24

    ... Energy Regulatory Commission Chesapeake Energy Marketing, Inc. v. Midcontinent Express Pipeline LLC... Energy Regulatory Commission (Commission), 18 CFR 385.206, Chesapeake Energy Marketing, Inc. (CEMI or...Subscription'' link on the Web site that enables subscribers to receive email notification when a document...

  11. 75 FR 27552 - Guidance for Federal Land Management in the Chesapeake Bay Watershed

    Science.gov (United States)

    2010-05-17

    ... Information Executive Order 13508, Chesapeake Bay Protection and Restoration, dated May 12, 2009 (74 FR 23099... 24, 2010 (75 FR 91294, March 24). This final guidance incorporates revisions resulting from public... AGENCY Guidance for Federal Land Management in the Chesapeake Bay Watershed AGENCY:...

  12. Duke on the Craters Edge

    Science.gov (United States)

    1972-01-01

    Astronaut Charles M. Duke Jr., Lunar Module pilot of the Apollo 16 mission, is photographed collecting lunar samples at Station no. 1 during the first Apollo 16 extravehicular activity at the Descartes landing site. This picture, looking eastward, was taken by Astronaut John W. Young, commander. Duke is standing at the rim of Plum crater, which is 40 meters in diameter and 10 meters deep. The parked Lunar Roving Vehicle can be seen in the left background.

  13. Distribution and provenance of lunar highland rock types at North Ray Crater, Apollo 16

    Science.gov (United States)

    Stoeffler, D.; Ostertag, R.; Borchardt, R.; Malley, J.; Rehfeldt, A.; Reimold, W. U.

    1982-01-01

    In connection with its selenographic setting in the central lunar highlands, the Apollo 16 landing site in the Descartes area is highly important as a prime sampling area for rocks which formed as part of the primordial crust and as a key location for the analysis of the deformation and transport of crustal material by impact processes. The present investigation is concerned with the North Ray crater, which is located on the N-S running boundary between the smooth Cayley plains to the west and the Descartes mountains to the east. Attention is given to aspects of selenography and location of samples, the ejecta distribution of post-Cayley impact craters, sample classification, the frequency distribution of rock types in the North Ray Crater ejecta, an interpretation of compositional and age data, a model of the target stratigraphy and excavation of North Ray Crater, and implications for the emplacement and provenance of North Ray target rocks.

  14. A new study of crater concentric ridges on the Moon

    Science.gov (United States)

    Atwood-Stone, Corwin; Bray, Veronica J.; McEwen, Alfred S.

    2016-07-01

    Crater concentric ridges (CCRs) are topographic ridges found in the ejecta blankets of fresh few-kilometer-scale lunar craters. These ridges, which were last studied in detail in the late 1970 s (referred to as 'lunar concentric dunes'), were hypothesized to form due to ballistic impact sedimentation and erosion. We have surveyed the Moon to find 59 craters with CCRs and have constructed mosaics of these craters where possible using high-resolution LROC NAC (Lunar Reconnaissance Orbiter Camera-Narrow Angle Camera) images. We then map from some of these mosaics in order to measure the CCRs and examine their morphologies. Ejecta scaling models and some of our observations of the CCRs contradict the current hypothesis for the formation of these features. We therefore propose new hypotheses to consider for the formation of CCRs, specifically interaction of ejecta with initial topography or formation via interactions of shocks in the ejecta. Additionally, for the first time we have found CCRs on Mercury, but they are rare or absent on Mars.

  15. The distribution of megablocks in the Ries crater, Germany: Remote sensing, field investigation, and statistical analyses

    Science.gov (United States)

    Sturm, Sebastian; Kenkmann, Thomas; Willmes, Malte; PöSges, Gisela; Hiesinger, Harald

    2015-01-01

    The Ries crater is a well-preserved, complex impact crater that has been extensively used in the study of impact crater formation processes across the solar system. However, its geologic structure, especially the megablock zone, still poses questions regarding crater formation mechanics. The megablock zone, located between the inner crystalline ring and outer, morphologic crater rim, consists of allochthonous crystalline and sedimentary blocks, Bunte Breccia deposits, patches of suevite, and parautochthonous sedimentary blocks that slumped into the crater during crater modification. Our remote sensing detection method in combination with a shallow drilling campaign and geoelectric measurements at two selected megablocks proved successful in finding new megablock structures (>25 m mean diameter) within the upper approximately 1.5 m of the subsurface in the megablock zone. We analyzed 1777 megablocks of the megablock zone, 81 of which are new discoveries. In our statistical analysis, we also included 2318 ejecta blocks >25 m beyond the crater rim. Parautochthonous megablocks show an increase in total area and size toward the final crater rim. The sizes of allochthonous megablocks generally decrease with increasing radial range, but inside the megablock zone, the coverage with postimpact sediments obscures this trend. The size-frequency distribution of all megablocks obeys a power-law distribution with an exponent between approximately -1.7 and -2.3. We estimated a total volume of 95 km3 of Bunte Breccia and 47 km3 of megablocks. Ejecta volume calculations and a palinspastic restoration of the extension within the megablock zone indicate that the transient cavity diameter was probably 14-15 km.

  16. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay

    International Nuclear Information System (INIS)

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007–2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed. - Highlights: ► Reduced recruitment of yellow perch has occurred in urban tributaries of Chesapeake Bay. ► We compared reproductive health biomarkers in perch from two urban, one developing, two less developed watersheds.

  17. Strangways Crater, Northern Territory, Australia: siderophile element enrichment and lithophile element fractionation.

    Science.gov (United States)

    Morgan, J.W.; Wandless, G.A.

    1983-01-01

    Seven samples of melt rock and four samples of country rock from the Strangways crater were analysed for Sc, Cr, Fe, Co, Zn, Rb, Zr, Sb, Cs, Ba, REE, Hf, Ta, Th, U, Ni, Se, Pd, Ag, Cd, Re, Os, Ir and Au. The data indicate that the crater may have been formed by the impact of an olivine-rich achondrite, and melt rocks appear to contain approx 3 wt.% of projectile material.-B.M.

  18. Geomorphic constraints on the geologic history of Gale Crater (Invited)

    Science.gov (United States)

    Palucis, M. C.; Dietrich, W. E.; Hayes, A. G.; Williams, R. M.; Calef, F. J.; Sumner, D. Y.; Parker, T. J.; Bridges, N. T.; Team, M.

    2013-12-01

    count on the entire wall of Gale (~14,200 km2) as well as on the PV fan (~80 km2) and its headwaters (~730 km2). We found that both the wall of Gale and the PV headwaters are ~3.6 Ga, similar in age to that of the crater itself, while the fan is perhaps the youngest hydro-geomorphic feature in the crater. These data suggest that perhaps Gale was never fully buried after formation, or if so, burial and excavation occurred very rapidly. Based on the geomorphological evidence, shortly after impact, Gale may have hosted a series of large lakes, sourced by FV, thereby saturating the mound sediment and the crater walls. We do not observe any morphological evidence on the PV fan surface, however, suggesting the decline in lake levels post-dates Peace Vallis fan formation.

  19. Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters

    Science.gov (United States)

    Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Killen, R. M.; Delory, G. T.; Collier, M. R.; Vondrak, R. R.

    2010-01-01

    Shadowed locations ncar the lunar poles arc almost certainly electrically complex regions. At these locations near the terminator, the local solar wind flows nearly tangential to the surface and interacts with large-scale topographic features such as mountains and deep large craters, In this work, we study the solar wind orographic effects from topographic obstructions along a rough lunar surface, On the leeward side of large obstructions, plasma voids are formed in the solar wind because of the absorption of plasma on the upstream surface of these obstacles, Solar wind plasma expands into such voids) producing an ambipolar potential that diverts ion flow into the void region. A surface potential is established on these leeward surfaces in order to balance the currents from the expansion-limited electron and ion populations, Wc find that there arc regions ncar the leeward wall of the craters and leeward mountain faces where solar wind ions cannot access the surface, leaving an electron-rich plasma previously identified as an "electron cloud." In this case, some new current is required to complete the closure for current balance at the surface, and we propose herein that lofted negatively charged dust is one possible (nonunique) compensating current source. Given models for both ambipolar and surface plasma processes, we consider the electrical environment around the large topographic features of the south pole (including Shoemaker crater and the highly varied terrain near Nobile crater), as derived from Goldstone radar data, We also apply our model to moving and stationary objects of differing compositions located on the surface and consider the impact of the deflected ion flow on possible hydrogen resources within the craters

  20. Method for crater detection from digital topography data: interpolation based improvement and application to Lunar SELENE LALT data

    Science.gov (United States)

    Salamunićcar, Goran; Lončarić, Sven

    Crater detection algorithms (CDAs) are an important subject of recent scientific research, as evident from the numerous recent publications in the field [ASR, 42 (1), 6-19]. In our previous work: (1) all the craters from the major currently available manually assembled catalogues have been merged into the catalogue with 57633 known Martian impact-craters [PSS, 56 (15), 1992-2008]; and (2) the CDA (developed to search for still uncatalogued impact-craters using 1/128° MOLA data) has been used to extend GT-57633 catalogue with 57592 additional craters resulting in GT-115225 catalog [GRS, 48 (5), in press, doi:10.1109/TGRS.2009.2037750]. On the other hand, the most complete catalog for Moon is the Morphological catalog of Lunar craters [edited by V. V. Shevchenko], which includes information on 14923 craters larger than 10km, visible on the lunar nearside and farside. This was the main motivation for application of our CDA to newly available Lunar SELENE LALT data. However, one of the main differences between MOLA and LALT data is the highest available resolution, wherein MOLA is available in 1/128° and LALT in 1/16° . The consequence is that only the largest craters can be detected using LALT dataset. However, this is still an excellent opportunity for further work on CDA in order to prepare it for forthcoming LRO LOLA data (which is expected to be in even better resolution than MOLA). The importance is in the fact that morphologically Martian and Lunar craters are not the same. Therefore, it is important to use the dataset for Moon in order to work on the CDA which is meant for detection of Lunar craters as well. In order to overcome the problem of currently available topography data in low resolution only, we particularly concentrated our work on the CDA's capability to detect very small craters relative to available dataset (up to the extreme case wherein the radius is as small as only two pixels). For this purpose, we improved the previous CDA with a new

  1. McLaughlin Crater as a Candidate Landing Site for Humans on Mars

    Science.gov (United States)

    Michalski, J. R.; Niles, P. B.; Sutter, B.; Bell, M. S.

    2015-01-01

    McLaughlin Crater is an ancient (Noachian) Martian impact crater located at 337.6 East, 21.9 North, just south of the dichotomy boundary. This site should be considered for future landed exploration because: a) it is located at the boundary of three types of scientifically important terrain that will yield key results about the geological evolution and habitability of Mars; b) it contains surfaces where radiometric dating can be related to age dates estimated from crater counting, c) it contains volatile-rich rocks that will not only yield interesting results regarding ancient atmospheric chemistry, but will also be high quality, accessible targets for in-situ resource utilization (ISRU), and d) the site within the crater provides a flat, low-risk and low-elevation landing zone, which will facilitate landing large payloads on Mars.

  2. Martian fresh crater depths: More evidence for subsurface volatiles

    International Nuclear Information System (INIS)

    Shadow measurements on Viking Orbiter photography have yielded depths for 172 fresh martian craters spanning a diameter range of 0.7 to 80 km. Most craters studied are shallower than their lunar and mercurian counterparts. While the martian data exhibit a break in the depth/diameter distribution similar to those found for the Moon and Mercury, the ''inflection'' occurs at a smaller diameter on Mars, and the slopes below and above the break are respectively less than and greater than those of the other two planets. In addition to possible substrate-related transient cavity modification mechanisms, flash vaporization of proposed subsurface H2O would alter the original impact-induced velocity field by enhancing horizontal to subhorizontal target flow an excavation, thus yielding shallower craters. On the basis of the observed distribution, it is suggested that this process is more active at diameters near the break in slope (approx.4 km), declining in efficiency with increasing diameter, and can account for many dissimilarities between the martian distribution and those of the Moon and Mercury, which cannot be reconciled with gravity , impact velocity, or projectile differences alone

  3. Technical problems and future cratering experiments

    International Nuclear Information System (INIS)

    This paper reviews some of the key technical problems that remain to be solved in nuclear cratering technology. These include: (1) developing a broader understanding of the effects that material properties and water content of the earth materials around the shot have on cratering behavior, (2) extending the experimental investigation of retarc formation to include intermediate yields and various materials, and (3) improving our ability to predict the escape of radioactive material to the atmosphere to form the cloud source responsible for fallout. The formation processes of ejecta craters, retarcs, and subsidence craters are described in the light of our present understanding, and the major gaps in our understanding are indicated. Methods of calculating crater and retarc formation are discussed, with particular reference to the input information needed. Methods for calculating fallout are presented, and their shortcomings are discussed. A preliminary analysis of the safety factors associated with the presently proposed nuclear excavation concepts is presented. (author)

  4. Conowingo Reservoir Sedimentation and Chesapeake Bay: State of the Science.

    Science.gov (United States)

    Cerco, Carl F

    2016-05-01

    The Conowingo Reservoir is situated on the Susquehanna River, immediately upstream of Chesapeake Bay, the largest estuary in the United States. Sedimentation in the reservoir provides an unintended benefit to the bay by preventing sediments, organic matter, and nutrients from entering the bay. The sediment storage capacity of the reservoir is nearly exhausted, however, and the resulting increase in loading of sediments and associated materials is a potential threat to Chesapeake Bay water quality. In response to this threat, the Lower Susquehanna River Watershed Assessment was conducted. The assessment indicates the reservoir is in a state of "dynamic equilibrium" in which sediment loads from the upstream watershed to the reservoir are balanced by sediments leaving the reservoir. Increased sediment loads are not a threat to bay water quality. Increased loads of associated organic matter and nutrients are, however, detrimental. Bottom-water dissolved oxygen declines of 0.1 to 0.2 g m are projected as a result of organic matter oxidation and enhanced eutrophication. The decline is small relative to normal variations but results in violations of standards enforced in a recently enacted total maximum daily load. Enhanced reductions in nutrient loads from the watershed are recommended to offset the decline in water quality caused by diminished retention in the reservoir. The assessment exposed several knowledge gaps that require additional investigation, including the potential for increased loading at flows below the threshold for reservoir scour and the nature and reactivity of organic matter and nutrients scoured from the reservoir bottom. PMID:27136154

  5. River Flow Control on the Phytoplankton Dynamics of Chesapeake Bay

    Institute of Scientific and Technical Information of China (English)

    YU Qingyun; WANG You; TANG Xuexi; LI Ming

    2013-01-01

    Recent observations support an emerging paradigm that climate variability dominates nutrient enrichment in costal ecosystems,which can explain seasonal and inter-annual variability of phytoplankton community composition,biomass (Chl-a),and primary production (PP).In this paper,we combined observation and modeling to investigate the regulation of phytoplankton dynamics in Chesapeake Bay.The year we chose is 1996 that has high river runoff and is usually called a ‘wet year’.A 3-D physical-biogeochemical model based on ROMS was developed to simulate the seasonal cycle and the regional distributions of phytoplankton biomass and primary production in Chesapeake Bay.Based on the model results,NO3 presents a strong contrast to the river nitrate load during spring and the highest concentration in the bay reaches around 80mmol N m3.Compared with the normal year,phytoplankton bloom in spring of 1996 appears in lower latitudes with a higher concentration.Quantitative comparison between the modeled and observed seasonal averaged dissolved inorganic nitrogen concentrations shows that the model produces reliable results.The correlation coefficient r2 for all quantities exceeds 0.95,and the skill parameter for the four seasons is all above 0.95.

  6. The sedimentology and dynamics of crater-affiliated wind streaks in western Arabia Terra, Mars and Patagonia, Argentina

    Science.gov (United States)

    Rodriguez, J.A.P.; Tanaka, K.L.; Yamamoto, A.; Berman, D.C.; Zimbelman, J.R.; Kargel, J.S.; Sasaki, S.; Jinguo, Y.; Miyamoto, H.

    2010-01-01

    Wind streaks comprise recent aeolian deposits that have been extensively documented on Venus, Earth and Mars. Martian wind streaks are among the most abundant surface features on the planet and commonly extend from the downwind margins of impact craters. Previous studies of wind streaks emerging from crater interior deposits suggested that the mode of emplacement was primarily related to the deposition of silt-sized particles as these settled from plumes. We have performed geologic investigations of two wind streaks clusters; one situated in western Arabia Terra, a region in the northern hemisphere of Mars, and another in an analogous terrestrial site located in southern Patagonia, Argentina, where occurrences of wind streaks emanate from playas within maar craters. In both these regions we have identified bedforms in sedimentary deposits on crater floors, along wind-facing interior crater margins, and along wind streaks. These observations indicate that these deposits contain sand-sized particles and that sediment migration has occurred via saltation from crater interior deposits to wind streaks. In Arabia Terra and in Patagonia wind streaks initiate from crater floors that contain lithic and evaporitic sedimentary deposits, suggesting that the composition of wind streak source materials has played an important role in development. Spatial and topographic analyses suggest that regional clustering of wind streaks in the studied regions directly correlates to the areal density of craters with interior deposits, the degree of proximity of these deposits, and the craters' rim-to-floor depths. In addition, some (but not all) wind streaks within the studied clusters have propagated at comparable yearly (Earth years) rates. Extensive saltation is inferred to have been involved in its propagation based on the studied terrestrial wind streak that shows ripples and dunes on its surface and the Martian counterpart changes orientation toward the downslope direction where it

  7. National Status and Trends: Bioeffects Assessment Program, Chesapeake Bay Summary Database (1998-2001)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study was based on the sediment quality triad (SQT) approach. A stratified probabilistic sampling design was utilized to characterize the Chesapeake Bay system...

  8. Contaminant exposure and reproductive success of ospreys (Pandion haliaetus) nesting in Chesapeake Bay regions of concern

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Chesapeake Bay osprey population has more than doubled in size since restrictions were placed on the production and use of and other in the 1970s. Ospreys are...

  9. Bald Eagle Movements, Distribution and Abundance on the Northern Chesapeake Bay

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary objective of this study was to monitor bald eagle movements and to locate bald eagle intensive use areas on the northern Chesapeake Bay. An important...

  10. Integrated Pest Management Plan for Chesapeake Marshlands National Wildlife Refuge Complex 2012

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — With this Integrated Pest Management Plan, the Chesapeake Marshlands National Wildlife Refuge Complex aims to demonstrate land stewardship in controlling invasive...

  11. Willingness to Pay Survey for Chesapeake Bay Total Maximum Daily Load

    Science.gov (United States)

    A stated preference survey to collect data on households’ use of Chesapeake Bay and its watershed, and of their preferences for a variety of water quality improvements likely to follow from pollution reduction programs.

  12. The Cratering History of Asteroid (2867) Steins

    CERN Document Server

    Marchi, S; Kueppers, M; Marzari, F; Davidsson, B; Keller, H U; Besse, S; Lamy, P; Mottola, S; Massironi, M; Cremonese, G

    2010-01-01

    The cratering history of main belt asteroid (2867) Steins has been investigated using OSIRIS imagery acquired during the Rosetta flyby that took place on the 5th of September 2008. For this purpose, we applied current models describing the formation and evolution of main belt asteroids, that provide the rate and velocity distributions of impactors. These models coupled with appropriate crater scaling laws, allow the cratering history to be estimated. Hence, we derive Steins' cratering retention age, namely the time lapsed since its formation or global surface reset. We also investigate the influence of various factors -like bulk structure and crater erasing- on the estimated age, which spans from a few hundred Myrs to more than 1Gyr, depending on the adopted scaling law and asteroid physical parameters. Moreover, a marked lack of craters smaller than about 0.6km has been found and interpreted as a result of a peculiar evolution of Steins cratering record, possibly related either to the formation of the 2.1km ...

  13. Processing Images of Craters for Spacecraft Navigation

    Science.gov (United States)

    Cheng, Yang; Johnson, Andrew E.; Matthies, Larry H.

    2009-01-01

    A crater-detection algorithm has been conceived to enable automation of what, heretofore, have been manual processes for utilizing images of craters on a celestial body as landmarks for navigating a spacecraft flying near or landing on that body. The images are acquired by an electronic camera aboard the spacecraft, then digitized, then processed by the algorithm, which consists mainly of the following steps: 1. Edges in an image detected and placed in a database. 2. Crater rim edges are selected from the edge database. 3. Edges that belong to the same crater are grouped together. 4. An ellipse is fitted to each group of crater edges. 5. Ellipses are refined directly in the image domain to reduce errors introduced in the detection of edges and fitting of ellipses. 6. The quality of each detected crater is evaluated. It is planned to utilize this algorithm as the basis of a computer program for automated, real-time, onboard processing of crater-image data. Experimental studies have led to the conclusion that this algorithm is capable of a detection rate >93 percent, a false-alarm rate <5 percent, a geometric error <0.5 pixel, and a position error <0.3 pixel.

  14. The Virginia Beach response to implementing the Chesapeake Bay Preservation Area Ordinance

    OpenAIRE

    Butts, Jeffery Hornor

    2010-01-01

    The City of Virginia Beach adopted the Chesapeake Bay Preservation Area Ordinance in November 1990, effective January 1, 1991. This ordinance incorporated the mandated development performance standards written in the Chesapeake Bay Act. The Act required the implementation of these regulations by localities. The Virginia Beach response to implementing these regulations has been satisfactory to meet the requirements of these regulations, and the City is in compliance with these regulations. The...

  15. An Economic Evaluation of the Nutrient Assimilation Potential for Commercial Oyster Aquaculture in the Chesapeake Bay

    OpenAIRE

    Miller, Alexander Louis

    2009-01-01

    The Chesapeake Bay states continue to struggle to achieve the water quality goals set out in the Chesapeake Bay Agreement. While policy efforts to combat eutrophication tend to focus on reducing nutrient loads at point and nonpoint sources, waters of the Bay can be improved through an increase in the assimilative capacity of the ecosystem, which would remove nutrients (called nutrient assimilation services) from ambient waters. The filtering capacity of the native oyster, C.virginica, is a wi...

  16. Crater size-frequency distribution measurements and age of the Compton-Belkovich Volcanic Complex

    Science.gov (United States)

    Shirley, K. A.; Zanetti, M.; Jolliff, B.; van der Bogert, C. H.; Hiesinger, H.

    2016-07-01

    The Compton-Belkovich Volcanic Complex (CBVC) is a 25 × 35 km feature on the lunar farside marked by elevated topography, high albedo, high thorium concentration, and high silica content. Morphologies indicate that the complex is volcanic in origin and compositions indicate that it represents rare silicic volcanism on the Moon. Constraining the timing of silicic volcanism at the complex is necessary to better understand the development of evolved magmas and when they were active on the lunar surface. We employ image analysis and crater size-frequency distribution (CSFD) measurements on several locations within the complex and at surrounding impact craters, Hayn (87 km diameter), and Compton (160 km diameter), to determine relative and absolute model ages of regional events. Using CSFD measurements, we establish a chronology dating regional resurfacing events and the earliest possible onset of CBVC volcanism at ∼3.8 Ga, the formation of Compton Crater at 3.6 Ga, likely resurfacing by volcanism at the CBVC at ∼3.5 Ga, and the formation of Hayn Crater at ∼1 Ga. For the CBVC, we find the most consistent results are obtained using craters larger than 300 m in diameter; the small crater population is affected by their approach to an equilibrium condition and by the physical properties of regolith at the CBVC.

  17. Atypical pit craters on Mars: New insights from THEMIS, CTX, and HiRISE observations

    Science.gov (United States)

    Cushing, Glen E.; Okubo, Chris H.; Titus, Timothy N.

    2015-06-01

    More than 100 pit craters in the Tharsis region of Mars exhibit morphologies, diameters, and thermal behaviors that diverge from the much larger bowl-shaped pit craters that occur in most regions across Mars. These Atypical Pit Craters (APCs) generally have sharp and distinct rims, vertical or overhanging walls that extend down to their floors, surface diameters of ~50-350 m, and high depth to diameter (d/D) ratios that are usually greater than 0.3 (which is an upper range value for impacts and bowl-shaped pit craters) and can exceed values of 1.8. Observations by the Mars Odyssey Thermal Emission Imaging System (THEMIS) show that APC floor temperatures are warmer at night and fluctuate with much lower diurnal amplitudes than nearby surfaces or adjacent bowl-shaped pit craters. Kīlauea volcano, Hawai'i, hosts pit craters that formed through subsurface collapse into active volcanic dikes, resulting in pits that can appear morphologically analogous to either APCs or bowl-shaped pit craters. Partially drained dikes are sometimes exposed within the lower walls and floors of these terrestrial APC analogs and can form extensive cave systems with unique microclimates. Similar caves in Martian pit craters are of great interest for astrobiology. This study uses new observations by the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) and Context Camera to refine previous work where seven APCs were described from lower resolution THEMIS visible wavelength observations. Here we identify locations of 115 APCs, map their distribution across the Tharsis region, characterize their internal morphologies with high-resolution observations, and discuss possible formation mechanisms.

  18. Size and structure of the Chicxulub crater revealed by horizontal gravity gradients and cenotes

    Science.gov (United States)

    Hildebrand, A. R.; Pilkington, M.; Connors, M.; Ortiz-Aleman, C.; Chavez, R. E.

    1995-08-01

    IT is now widely believed that a large impact occurred on the Earth at the end of the Cretaceous period, and that the buried Chicxulub structure in Yucatán, Mexico, is the resulting crater24. Knowledge of the size and internal structure of the Chicxulub crater is necessary for quantifying the effects of the impact on the Cretaceous environment. Although much information bearing on the crater's structure is available, diameter estimates range from 170 to 300 km (refs 1á¤-7), corresponding to an order of magnitude variation in impact energy. Here we show the diameter of the crater to be ~180 km by examining the horizontal gradient of the Bouguer gravity anomaly over the structure. This size is confirmed by the distribution of karst features in the Yucatan region (mainly water-filled sinkholes, known as cenotes). The coincidence of cenotes and peripheral gravity-gradient maxima suggests that cenote formation is closely related to the presence of slump faults near the crater rim.

  19. Why Landers Should Explore Fresh, Small Craters on Mars

    Science.gov (United States)

    Kirkland, L. E.; Herr, K. C.; Adams, P. M.

    2008-03-01

    Small, fresh craters at the Nevada Test Site are unique, high quality test beds to develop exploration techniques for new craters spotted on Mars by Malin et al. The NTS craters provide data to determine the optimum crater size for exploration.

  20. Combined analysis of 2-D electrical resistivity, seismic refraction and geotechnical investigations for Bukit Bunuh complex crater

    International Nuclear Information System (INIS)

    Interest in studying impact crater on earth has increased tremendously due to its importance in geologic events, earth inhabitant history as well as economic value. The existences of few shock metamorphism and crater morphology evidences are discovered in Bukit Bunuh, Malaysia thus detailed studies are performed using geophysical and geotechnical methods to verify the type of the crater and characteristics accordingly. This paper presents the combined analysis of 2-D electrical resistivity, seismic refraction, geotechnical SPT N value, moisture content and RQD within the study area. Three stages of data acquisition are made starting with regional study followed by detailed study on West side and East side. Bulk resistivity and p-wave seismic velocity were digitized from 2-D resistivity and seismic sections at specific distance and depth for corresponding boreholes and samples taken. Generally, Bukit Bunuh shows the complex crater characteristics. Standard table of bulk resistivity and p-wave seismic velocity against SPT N value, moisture content and RQD are produce according to geological classifications of impact crater; inside crater, rim/slumped terrace and outside crater

  1. Towards a New Catalog of Lobed Martian Craters Compared with a New Global Crater Database, Complete to 1.5 km

    Science.gov (United States)

    Robbins, S. J.; Hynek, B. M.

    2009-03-01

    Presenting preliminary results of a new crater database, focusing on lobed crater characteristics. Database is complete to at least 1.5 km-diameter craters and contains more characteristics of each crater than previous catalogs.

  2. Global Distribution of On-Set Diameters of Rampart Ejecta Craters on Mars: Their Implication to the History of Martian Water

    Science.gov (United States)

    Boyce, Joseph M.; Roddy, David J.; Soderblom, Lawrence A.; Hare, Trent

    2000-01-01

    A global map is presented of on-set diameters of rampart craters. These craters are proposed to result from impact into wet targets. This map shows both global latitudinal and regional trends that are consistent with the climate and geologic history of Mars.

  3. Determining proportions of lunar crater populations by fitting crater size distribution

    CERN Document Server

    Wang, Nan

    2016-01-01

    We determine the proportions of two mixed crater populations distinguishable by size distributions on the Moon. A "multiple power-law" model is built to formulate crater size distribution $N(D) \\propto D^{-\\alpha}$ whose slope $\\alpha$ varies with crater diameter $D$. Fitted size distribution of lunar highland craters characterized by $\\alpha = 1.17 \\pm 0.04$, $1.88 \\pm 0.07$, $3.17 \\pm 0.10$ and $1.40 \\pm 0.15$ for consecutive $D$ intervals divided by 49, 120 and 251 km and that of lunar Class 1 craters with a single slope $\\alpha = 1.96 \\pm 0.14$, are taken as Population 1 and 2 crater size distribution respectively, whose sum is then fitted to the size distribution of global lunar craters with $D$ between 10 and 100 km. Estimated crater densities of Population 1 and 2 are $44 \\times 10^{-5}$ and $5 \\times 10^{-5}$ km$^{-2}$ respectively, leading to the proportion of the latter $10 \\%$. The results underlines the need for considering the Population 1 craters and the relevant impactors, the primordial main-b...

  4. Formation and mantling ages of lobate debris aprons on Mars: Insights from categorized crater counts

    Science.gov (United States)

    Berman, Daniel C.; Crown, David A.; Joseph, Emily C. S.

    2015-06-01

    Lobate debris aprons in the Martian mid-latitudes offer important insights into the history of the Martian climate and the role of volatiles in Martian geologic activity. Here we present the results of counts of small impact craters, categorized by morphology, on debris aprons in the Deuteronilus Mensae region and the area east of Hellas basin. Mars Reconnaissance Orbiter (MRO) ConTeXt Camera (CTX) images were used to document crater populations on the apron surfaces. Each crater was assessed and categorized according to its morphological characteristics (fresh, degraded, or filled). Fresh and most degraded craters likely superpose recent mantling deposits, whereas filled craters contain mantling deposits and thus indicate a minimum formation age for the apron (i.e., the age since stabilization of the debris apron surface following some modification but prior to mantling). Size-frequency distributions (SFDs) were compiled using established methodologies and plotted to assess their fit to the isochrons. The range or ranges in crater diameter over which each distribution paralleled the isochrons was determined by visual inspection, and general age constraints were noted from SFDs for all craters on a given surface and from each morphological class. The diameter range of each SFD segment observed to parallel an isochron was then input into the Craterstats2 analysis tool to calculate specific age estimates. The aprons were assessed both individually and as regional populations, which improved interpretation of the results and demonstrated the value and limitations of both approaches. The categorized counts reveal three groups of ages: (a) filled impact craters at larger diameters (>~500 m) typically show the oldest ages, between ~300 Ma and 1 Ga, (b) smaller diameter filled and degraded craters reveal ages of resurfacing events between ~10 Ma and 300 Ma, and (c) fresh crater populations (<~100 m diameter) indicate mantling deposits of less than ~10 Ma in age. These

  5. The Steen River Crater Seismic Refraction Project

    Science.gov (United States)

    Mazur, M. J.; Hildebrand, A. R.; Hladiuk, D.; Schafer, A.; Pilkington, M.

    2002-03-01

    Rim uplift, slump blocks, CDC edge, central uplift, and inverted flap are indicated by refraction methods. The inverted flap also has a gravity high and may explain the puzzling partly annular gravity high ringing the CDC at the Chicxulub crater.

  6. Landing site selection for Luna-Glob mission in crater Boguslawsky

    Science.gov (United States)

    Ivanov, M. A.; Hiesinger, H.; Abdrakhimov, A. M.; Basilevsky, A. T.; Head, J. W.; Pasckert, J.-H.; Bauch, K.; van der Bogert, C. H.; Gläser, P.; Kohanov, A.

    2015-11-01

    Boguslawsky crater (72.9°S, 43.3°E, ~100 km in diameter) is a primary target for the Luna-Glob mission. The crater has a morphologically smooth (at the resolution of WAC images), flat, and horizontal floor, which is about 55-60 km in diameter. Two ellipses were selected as specific candidate landing areas on the floor: the western ellipse is centered at 72.9°S, 41.3°E and the eastern ellipse is centered at 73.9°S, 43.9°E. Both ellipses represent areas from which Earth is visible during the entire year of 2016 and lack permanently shadowed areas. Boguslawsky crater is located on or near the rim of the South Pole-Aitken basin, which provides the unique possibility to sample some of the most ancient rocks on the Moon that probably pre-date the SPA impact event. The low depth/diameter ratio of Boguslawsky suggests that the crater has been partly filled after its formation. Although volcanic flooding of the crater cannot be ruled out, the more likely process of filling of Boguslawsky is the emplacement of ejecta from nearby and remote large craters/basins. Three morphologically distinctive units are the most abundant within the selected landing ellipses: rolling plains (rpc), flat plains (fp), and ejecta from crater Boguslawsky-D (ejf), which occurs on the eastern wall of Boguslawsky. The possible contribution of materials from unknown sources makes the flat and rolling plains less desirable targets for landing. In contrast, ejecta from Boguslawsky-D represents local materials re-distributed by the Boguslawsky-D impact from the wall onto the floor of Boguslawsky. Thus, this unit, which constitutes about 50% of the eastern landing ellipse, represents a target of clearer provenance and a higher scientific priority.

  7. Field guide to fishes of the chesapeake bay

    CERN Document Server

    Murdy, Edward O.

    2013-01-01

    The only comprehensive field guide to the Chesapeake’s fishes, this book is an indispensable resource for both anglers and students of the Bay. Vivid illustrations by Val Kells complement the expertise of researchers Edward O. Murdy and John A. Musick. They describe fishes that inhabit waters ranging from low-salinity estuaries to the point where the Bay meets the Atlantic Ocean. Key features of this field guide include• full-color illustrations of more than 200 species• text that is presented adjacent to illustrations for easy reference• detailed descriptions of physical characteristics, range, occurrence in the Bay, reproduction, diet, and statistics from fisheries research• spot illustrations that highlight critical features of certain fish• illustrations of juveniles when they look different from adults• appendices that include identification keys Formatted as a compact field guide for students, scientists, researchers, and fishermen, Field Guide to Fishes of the Chesapeake Bay should be a ...

  8. Crater Formation Due to Lunar Plume Impingement

    Science.gov (United States)

    Marsell, Brandon

    2011-01-01

    Thruster plume impingement on a surface comprised of small, loose particles may cause blast ejecta to be spread over a large area and possibly cause damage to the vehicle. For this reason it is important to study the effects of plume impingement and crater formation on surfaces like those found on the moon. Lunar soil, also known as regolith, is made up of fine granular particles on the order of 100 microns.i Whenever a vehicle lifts-off from such a surface, the exhaust plume from the main engine will cause the formation of a crater. This crater formation may cause laterally ejected mass to be deflected and possibly damage the vehicle. This study is a first attempt at analyzing the dynamics of crater formation due to thruster exhaust plume impingement during liftoff from the moon. Though soil erosion on the lunar surface is not considered, this study aims at examining the evolution of the shear stress along the lunar surface as the engine fires. The location of the regions of high shear stress will determine where the crater begins to form and will lend insight into how big the crater will be. This information will help determine the probability that something will strike the vehicle. The final sections of this report discuss a novel method for studying this problem that uses a volume of fluid (VOF)ii method to track the movement of both the exhaust plume and the eroding surface.

  9. Nuclear cratering on a digital computer

    International Nuclear Information System (INIS)

    Computer programs based on the artificial viscosity method are applied to developing an understanding of the physics of cratering, with emphasis on cratering by nuclear explosives. Two established codes, SOC (spherical symmetry) and TENSOR (cylindrical symmetry), are used to illustrate the effects of variations in the material properties of various media on the cratering processes, namely shock, spall, and gas acceleration. Water content is found to be the most important material property, followed by strength, porosity, and compressibility. Crater profile calculations are presented for Pre-Gondola Charley (20-ton nitromethane detonation in shale) and Sedan (100-kt nuclear detonation in alluvium). Calculations also are presented for three 1-Mt yields in saturated Divide basalt and 1-Mt yield in dry Buckboard basalt, to show crater geometry as a function of the burial depth for large explosive yields. The calculations show, for megaton-level yields, that gas acceleration is the dominate mechanism in determining crater size and depends in turn on the water content in the medium. (author)

  10. Orientations of central peaks in lunar craters - Implications for regional structural trends

    Science.gov (United States)

    Hale, W.

    1980-01-01

    Impact craters are dominant features on the lunar surface and all fresh craters with diameters greater than 35 km possess central peaks. Approximately half of these central peaks (54%) have either linear or arcuate geometry and display some preferential orientation. These orientations were measured for 200 lunar craters of Pre-Nectarian to Copernican age. A pervasive regional north-south trend is identified for central peak orientation, with secondary trends at + or - 20-30 deg from this axis. No evidence for regional east-west trends is found. These orientations are shown to persist in craters formed through the last 4 billion years of lunar history. A lack of coincidence between impact direction, as determined from ejecta asymmetries and peak orientation, argues for structural control by the target as a source of the linear peak morphology. This is supported by the regional and temporal persistence of preferred peak orientations. It is proposed that linear central peak orientations in lunar craters reflect a pervasive regional structural system which developed early in lunar history and has persisted through geologic time.

  11. Wave and Hydrodynamic Modeling for Engineering Design of Jetties at Tangier Island in Chesapeake Bay, USA

    Directory of Open Access Journals (Sweden)

    Lihwa Lin

    2015-12-01

    Full Text Available The protection of a boat canal at the western entrance of Tangier Island, Virginia, located in the lower Chesapeake Bay, is investigated using different structural alternatives. The existing entrance channel is oriented 45 deg with respect to the local shoreline, and exposed directly to the lower Bay without any protection. The adjacent shoreline has experienced progressive erosion in recent decades by flooding due to severe storms and waves. To protect the western entrance of the channel and shoreline, five different jetty and spur combinations were proposed to reduce wave energy in the lee of jetties. Environmental forces affecting the proposed jettied inlet system are quantified using the Coastal Modeling System, consisting of a spectral wave model and a depth-averaged circulation model with sediment transport calculations. Numerical simulations were conducted for design wave conditions and a 50-year return period tropical storm at the project site. Model results show a low crested jetty of 170-m length connecting to the north shore at a 45-deg angle, and a short south spur of 25-m long, provide adequate wave-reduction benefits among the five proposed alternatives. The model simulation indicates this alternative has the minimum impact on sedimentation around the structured inlet and boat canal.

  12. Effects of erosion control structures along a portion of the northern Chesapeake Bay shoreline

    Science.gov (United States)

    Zabawa, C.F.; Kerhin, R.T.; Bayley, S.

    1981-01-01

    A 6.500-meter reach of western Chesapeake Bay shoreline (lower Mayo Peninsula) lost about 1.1??106 cubic meters of sediment (equivalent to 170 cubic meters lost per meter of shoreline) between 1846 and 1932, when the first aerial photographs show the shoreline already substantially protected by a system of groins and intermittent bulkheading. These structures have eliminated the fastland as a source of erodable material, and have starved the supply of sand for littoral drift, thus limiting the extent of the beaches to the remaining groin fields. Volumes of sediment involved in these impacts are small in the overall sediment budget. Bulkheads produce no deficit in the budget since scouring of the beaches on their seaward sides makes up for the decreased erosion of protected fastland. Groins trap little of the potential littoral drift (computed to be about 104 cubic meters per meter of shoreline per year). The sand supply in the remaining beaches is nearly equivalent to the annual loss of sediment from the entire shoreline system due to the long-term rate of erosion of the shoreline and nearshore between 1846 and 1932. ?? 1981 Springer-Verlag New York Inc.

  13. The Impact of Feed Management Software on Whole-Farm Nutrient Balance on Virginia Dairy Farms

    OpenAIRE

    Stewart, Brittany Allison

    2011-01-01

    Agricultural runoff is the largest source of nitrogen and phosphorus pollution entering the Chesapeake Bay, contributing 38% of nitrogen and 45% of phosphorus (USEPA, 2010). Since agricultural runoff is the number one contributing source of nitrogen and phosphorus entering the Chesapeake Bay, action needs to be taken to reduce nitrogen and phosphorus on agriculture production facilities, such as dairy farms. The impact of feed management software on whole-farm nutrient balance was studied on ...

  14. 'Lyell' Panorama inside Victoria Crater (Stereo)

    Science.gov (United States)

    2008-01-01

    During four months prior to the fourth anniversary of its landing on Mars, NASA's Mars Exploration Rover Opportunity examined rocks inside an alcove called 'Duck Bay' in the western portion of Victoria Crater. The main body of the crater appears in the upper right of this stereo panorama, with the far side of the crater lying about 800 meters (half a mile) away. Bracketing that part of the view are two promontories on the crater's rim at either side of Duck Bay. They are 'Cape Verde,' about 6 meters (20 feet) tall, on the left, and 'Cabo Frio,' about 15 meters (50 feet) tall, on the right. The rest of the image, other than sky and portions of the rover, is ground within Duck Bay. Opportunity's targets of study during the last quarter of 2007 were rock layers within a band exposed around the interior of the crater, about 6 meters (20 feet) from the rim. Bright rocks within the band are visible in the foreground of the panorama. The rover science team assigned informal names to three subdivisions of the band: 'Steno,' 'Smith,' and 'Lyell.' This view incorporates many images taken by Opportunity's panoramic camera (Pancam) from the 1,332nd through 1,379th Martian days, or sols, of the mission (Oct. 23 to Dec. 11, 2007). It combines a stereo pair so that it appears three-dimensional when seen through blue-red glasses. Some visible patterns in dark and light tones are the result of combining frames that were affected by dust on the front sapphire window of the rover's camera. Opportunity landed on Jan. 25, 2004, Universal Time, (Jan. 24, Pacific Time) inside a much smaller crater about 6 kilometers (4 miles) north of Victoria Crater, to begin a surface mission designed to last 3 months and drive about 600 meters (0.4 mile).

  15. Cosmic impacts, cosmic catastrophes. I

    Science.gov (United States)

    Chapman, Clark R.; Morrison, David

    1989-01-01

    The discovery of cosmic impacts and their effects on the earth's surface are discussed. The manner in which the object impacts with the earth is described. The formation of crytovolcanic structures by craters is examined. Examples of cosmic debris collisions with earth, in particular the Tunguska explosion of 1908 and the Meteor Crater in Arizona, are provided.

  16. Geology of the Gusec cratered plains from the Spirit rover transverse

    Science.gov (United States)

    Golombek, M. P.; Crumpler, L. S.; Grant, J. A.; Greely, R.; Cabrol, N. A.; Parker, T. J.; Rice, J. W., Jr.; Ward, J. G.; Arvidson, R. E.; Moersch, J. E.; Fergason, J. F.; Christensen, P. R.; Castano, A.; Castano, R.; Haldemann, A. F. C.; Li, R.; Bell, J. F., III; Squyres, S. W.

    2006-01-01

    The cratered plains of Gusev traversed by Spirit are generally low-relief rocky plains dominated by impact and eolian processes. Ubiquitous shallow, soil-filled, circular depressions, called hollows, are modified impact craters. Rocks are dark, fine-grained basalts, and the upper 10 m of the cratered plains appears to be an impact-generated regolith developed over intact basalt flows. Systematic field observations across the cratered plains identified vesicular clasts and rare scoria similar to original lava flow tops, consistent with an upper inflated surface of lava flows with adjacent collapse depressions. Crater and hollow morphometry are consistent with most being secondaries. The size frequency distribution of rocks >0.1 m diameter generally follows exponential functions similar to other landing sites for total rock abundances of 5-35%. Systematic clast counts show that areas with higher rock abundance and more large rocks have higher thermal inertia. Plains with lower thermal inertia have fewer rocks and substantially more pebbles that are well sorted and evenly spaced, similar to a desert pavement or lag. Eolian bed forms (ripples and wind tails) have coarse surface lags, and many are dust covered and thus likely inactive. Deflation of the surface _5-25 cm likely exposed two-toned rocks and elevated ventifacts and transported fines into craters creating the hollows. This observed redistribution yields extremely slow average erosion rates of _0.03 nm/yr and argues for very little long-term net change of the surface and a dry and desiccating environment similar to today's since the Hesperian (or _3 Ga).

  17. Oyster Reef Communities in the Chesapeake Bay. Virginia Institute of Marine Science Educational Series. [CD-ROM].

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This CD-ROM, Oyster Reef Communities in the Chesapeake Bay, describes oyster reefs, reef communities, and their roles in the Chesapeake Bay ecosystem. Detailed descriptions of scientific research methods and techniques used to monitor and describe oyster reef communities as well as applications of the resulting data are provided. The CD-ROM was…

  18. HYPOXIA IN CHESAPEAKE BAY, 1950-2001: LONG-TERM CHANGE IN RELATION TO NUTRIENT LOADING AND RIVER FLOW

    Science.gov (United States)

    A 52-yr record of dissolved oxygen in Chesapeake Bay (1950 to 2001) and a record of nitrate (NO3-) loading by the Susquehanna River spanning a longer period (1903, 1945 to 2001) were assembled to describe the long-term pattern of hypoxia and anoxia in Chesapeake Bay an...

  19. Physical properties of craters on the Achaia region of asteroid (21) Lutetia

    Science.gov (United States)

    Auger, A.; Bouley, S.; Jorda, L.; Groussin, O.; Baratoux, D.; Capanna, C.; Lamy, P. L.

    2013-12-01

    The Rosetta spacecraft flew by the main-belt asteroid (21) Lutetia on 10 July 2010. Images of the surface were acquired with the Narrow Angle Camera, from which Digital Terrain Models (DTM) of the surface were produced. These DTMs give access to the topography to study the physical properties of the craters of the asteroid. In this study, we focus on their depth-to-diameter ratio (d/D) to study their degradation. The d/D ratios are are derived from the DTM of Jorda et al. (2012), based on the method of Gaskell et al. (2008), which offers the best compromise between spatial resolution and the accuracy of the topographic reconstruction. Our values differ notably from previous studies (Vincent et al., 2012; Thomas et al., 2012). The discrepancy has been found to result from the fact that the local slope of the terrains on which the craters formed is ignored in these studies, whereas we rigorously takes this into account in our calculations. As a consequence, we find that d/D values for the fresh craters of Lutetia are consistent with the values found on other asteroids of similar size (within on order of magnitude) like (243) Ida or (951) Gaspra (Carr et al., 1994; Sullivan et al., 1996). The Achaia region may be divided into three units based on geomorphological analysis. A comparison of the crater density on the three units suggests two different ages, the youngest part corresponding to the Nicaea crater unit. Interestingly, the mean d/D values of the three units are different. The craters of these units were therefore differently affected by geological events (e.g., essentially impact and associated phenomena such as seismic shaking or ejecta blanketing) that occurred in the past history of Lutetia. Some of these events must be recent since several lineaments intersect most craters of one of the unit. Ejecta deposits have been previously noted on one part of Achaia and provide a good explanation for the low d/D values on this unit. Moreover, we suggest that

  20. Mini-RF and LROC observations of mare crater layering relationships

    Science.gov (United States)

    Stickle, A. M.; Patterson, G. W.; Cahill, J. T. S.; Bussey, D. B. J.

    2016-07-01

    The lunar maria cover approximately 17% of the Moon's surface. Discerning discrete subsurface layers in the mare provides some constraints on thickness and volume estimates of mare volcanism. Multiple types of data and measurement techniques allow probing the subsurface and provide insights into these layers, including detailed examination of impact craters, mare pits and sinuous rilles, and radar sounders. Unfortunately, radar sounding includes many uncertainties about the material properties of the lunar surface that may influence estimates of layer depth and thickness. Because they distribute material from depth onto the surface, detailed examination of impact ejecta blankets provides a reliable way to examine deeper material using orbital instruments such as cameras, spectrometers, or imaging radars. Here, we utilize Miniature Radio Frequency (Mini-RF) data to investigate the scattering characteristics of ejecta blankets of young lunar craters. We use Circular Polarization Ratio (CPR) information from twenty-two young, fresh lunar craters to examine how the scattering behavior changes as a function of radius from the crater rim. Observations across a range of crater size and relative ages exhibit significant diversity within mare regions. Five of the examined craters exhibit profiles with no shelf of constant CPR near the crater rim. Comparing these CPR profiles with LROC imagery shows that the magnitude of the CPR may be an indication of crater degradation state; this may manifest differently at radar compared to optical wavelengths. Comparisons of radar and optical data also suggest relationships between subsurface stratigraphy and structure in the mare and the block size of the material found within the ejecta blanket. Of the examined craters, twelve have shelves of approximately constant CPR as well as discrete layers outcropping in the subsurface, and nine fall along a trend line when comparing shelf-width with thickness of subsurface layers. These

  1. Mafic Materials in Scott Crater? A Test for Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Cooper, Bonnie L.

    2007-01-01

    Clementine 750 nm and multispectral ratio data, along with Lunar Orbiter and radar data, were used to study the crater Scott in the lunar south polar region. The multispectral data provide evidence for mafic materials, impact melts, anorthositic materials, and a small pyroclastic deposit. High-resolution radar data and Lunar Orbiter photography for this area show differences in color and surface texture that correspond with the locations of the hypothesized mafic and anorthositic areas on the crater floor. This region provides a test case for the upcoming Lunar Reconnaissance Orbiter. Verification of the existence of a mafic deposit at this location is relevant to future lunar resource utilization planning.

  2. Water-quality assessment of DOD installations/facilities in the Chesapeake Bay Region. Phase 3. Volume 2. Overall approach, findings and recommendations. Technical report, 1985-1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-11-01

    This report represents the culmination of a two-year, three-phase effort to determine the relative impact of DOD activities on the water quality and living resources of the Chesapeake Bay. Phase I defined the recent historical and present pollution potential of all 66 DOD installations in the Bay's drainage basin, and developed a preliminary screening procedure to categorize these installations according to existing or potential impacts on the Bay and its tributaries. Phase II developed and tested a detailed assessment methodology on six installations to define the character and extent of their impact on the Bay. Phase III applied this tested methodology to the remaining 31 installations identified in Phase I as needing more detailed assessment, and summarizes impacts and program recommendations from an installation, regional, and Bay-wide perspective. This volume presents detailed results of this analysis.

  3. Atmospheric tides in Gale Crater, Mars

    Science.gov (United States)

    Guzewich, Scott D.; Newman, C. E.; de la Torre Juárez, M.; Wilson, R. J.; Lemmon, M.; Smith, M. D.; Kahanpää, H.; Harri, A.-M.

    2016-04-01

    Atmospheric tides are the primary source of daily air pressure variation at the surface of Mars. These tides are forced by solar heating of the atmosphere and modulated by the presence of atmospheric dust, topography, and surface albedo and thermal inertia. This results in a complex mix of sun-synchronous and non-sun-synchronous tides propagating both eastward and westward around the planet in periods that are integer fractions of a solar day. The Rover Environmental Monitoring Station on board the Mars Science Laboratory has observed air pressure at a regular cadence for over 1 Mars year and here we analyze and diagnose atmospheric tides in this pressure record. The diurnal tide amplitude varies from 26 to 63 Pa with an average phase of 0424 local true solar time, while the semidiurnal tide amplitude varies from 5 to 20 Pa with an average phase of 0929. We find that both the diurnal and semidiurnal tides in Gale Crater are highly correlated to atmospheric opacity variations at a value of 0.9 and to each other at a value of 0.77, with some key exceptions occurring during regional and local dust storms. We supplement our analysis with MarsWRF general circulation modeling to examine how a local dust storm impacts the diurnal tide in its vicinity. We find that both the diurnal tide amplitude enhancement and regional coverage of notable amplitude enhancement linearly scales with the size of the local dust storm. Our results provide the first long-term record of surface pressure tides near the martian equator.

  4. Hints at diapirism in Arabia Terra craters, Mars

    Science.gov (United States)

    Pozzobon, Riccardo; Pio Rossi, Angelo; Massironi, Matteo; Mazzarini, Francesco; Pondrelli, Monica; Marinangeli, Lucia; Unnithan, Vikram

    2014-05-01

    Arabia Terra is a region of Mars located at the boundary between the southern highlands and the northern lowlands and classically dominated by heavily cratered terrain. Unlike the rest of the topographic dichotomy on the planet, in Arabia Terra the elevation transition is very gentle, falling of 4 km over a distance of 2500 km (average slope = 0.0016°). Most of the impact craters within the region display a central bulge, bearing a well preserved stratification and a wide range of smaller morphologies like pitted cones, mounds and knobs (Franchi et al. 2013). Images acquired by HiRISE and CTX cameras on board MRO provided a comprehensive dataset in which also these small features can be easily recognized. These are tens of meters of diameter and tens of meters high, and many of them show an apical orifice. They are interpreted to have worked as pathways for subsurface fluid flow (e.g. Pondrelli et al., 2011; Rossi et al., 2008). Indeed an active underground fluid flow activity in Arabia Terra It has been recently hypothesized (e.g. Andrews-Hanna et al, 2011) , being crater central bulges a place of sulfate precipitation, due to local water table emergence (e.g. Franchi et al., 2013). To date, there is no clear explanation for occurrence of central bulges surrounded by prominent depressions in Arabia craters. In addition, in Firsoff and Crommelin craters it is possible to recognize folds and outward dipping strata on the central bulges and their surroundings. Interestingly, a few craters with a prominent bulged floor elsewhere in Arabia Terra do not display stratification and are not explainable as impact related structures as their expected pristine central peak derived by hydrocode modelling is ~2km lower and one third the diameter than the actual topography (Pozzobon et al., 2013). All these evidences are not consistent with a typical lacustrine stratigraphic environment, whether interested by sulfate precipitation or not, and suggest active deformation after or

  5. Closure Plan for Corrective Action Unit 109: U-2bu Subsidence Crater Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shannon Parsons

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facilities Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). The subsidence crater was used as a land disposal unit for radioactive and hazardous waste from 1973 to 1988. Site disposal history is supported by memorandums, letters, and personnel who worked at the Nevada Test Site at the time of active disposal. Closure activities will include the excavation and disposal of impacted soil form the tip of the crater. Upon completion of excavation, verification samples will be collected to show that lead has been removed to concentrations be low regulatory action level. The area will then be backfilled and a soil flood diversion berm will be constructed, and certified by an independent professional engineer as to having followed the approved Closure Plan.

  6. Closure plan for Corrective Action Unit 109: U-2bu subsidence crater, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facility Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). Based on the results of the analyses reported in the site characterization report, the only constituents of concern in the U-2bu subsidence crater include leachable lead and total petroleum hydrocarbons. Closure activities will include the excavation and disposal of impacted soil from the top of the crater. Upon completion of excavation, verification samples will be collected to show that the leachable lead has been removed to concentrations below the regulatory action level. After sample results show that the lead has been removed, the excavated area will be backfilled and a soil flood diversion berm will be constructed as a best management practice. An independent registered professional engineer will certify the site was closed following the approved Closure Plan. Post-closure care is not warranted for this site because closure activities will involve removal of the Resource Conservation and Recovery Act constituents of concern.

  7. Closure plan for Corrective Action Unit 109: U-2bu subsidence crater, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facility Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). Based on the results of the analyses reported in the site characterization report, the only constituents of concern in the U-2bu subsidence crater include leachable lead and total petroleum hydrocarbons. Closure activities will include the excavation and disposal of impacted soil from the top of the crater. Upon completion of excavation, verification samples will be collected to show that the leachable lead has been removed to concentrations below the regulatory action level. After sample results show that the lead has been removed, the excavated area will be backfilled and a soil flood diversion berm will be constructed as a best management practice. An independent registered professional engineer will certify the site was closed following the approved Closure Plan. Post-closure care is not warranted for this site because closure activities will involve removal of the Resource Conservation and Recovery Act constituents of concern

  8. Chemostratigraphy and Fe Mineralogy of the Victoria Crater Duck Bay Section: Opportunity APXS and Moessbauer Results

    Science.gov (United States)

    Mittlefehldt, D. W.; Schroeder, C.; Gellert, R.; Klingelhoefer, G.; Jolliff, B. L.; Morris, R. V.

    2008-01-01

    Meridiani Planum is a vast plain of approximately horizontally bedded sedimentary rocks composed of mixed and reworked basaltic and evaporitic sands containing secondary, diagenetic minerals [e.g., 1-5]. Because bedding planes are subparallel to topography, investigation of contiguous stratigraphy requires examining exposures in impact craters. Early in the mission (sols 130-317), Opportunity was commanded to do detailed study of exposed outcrops in Endurance crater, including the contiguous Karatepe section at the point of ingress. Just over 1000 sols later and roughly 7 km to the south, the rover is being commanded to do a similar study of the Duck Bay section of Victoria crater. Here we report on the preliminary results from the Alpha Particle X-ray Spectrometer (APXS) and Moessbauer instruments.

  9. Application of machine learning using support vector machines for crater detection from Martian digital topography data

    Science.gov (United States)

    Salamunićcar, Goran; Lončarić, Sven

    In our previous work, in order to extend the GT-57633 catalogue [PSS, 56 (15), 1992-2008] with still uncatalogued impact-craters, the following has been done [GRS, 48 (5), in press, doi:10.1109/TGRS.2009.2037750]: (1) the crater detection algorithm (CDA) based on digital elevation model (DEM) was developed; (2) using 1/128° MOLA data, this CDA proposed 414631 crater-candidates; (3) each crater-candidate was analyzed manually; and (4) 57592 were confirmed as correct detections. The resulting GT-115225 catalog is the significant result of this effort. However, to check such a large number of crater-candidates manually was a demanding task. This was the main motivation for work on improvement of the CDA in order to provide better classification of craters as true and false detections. To achieve this, we extended the CDA with the machine learning capability, using support vector machines (SVM). In the first step, the CDA (re)calculates numerous terrain morphometric attributes from DEM. For this purpose, already existing modules of the CDA from our previous work were reused in order to be capable to prepare these attributes. In addition, new attributes were introduced such as ellipse eccentricity and tilt. For machine learning purpose, the CDA is additionally extended to provide 2-D topography-profile and 3-D shape for each crater-candidate. The latter two are a performance problem because of the large number of crater-candidates in combination with the large number of attributes. As a solution, we developed a CDA architecture wherein it is possible to combine the SVM with a radial basis function (RBF) or any other kernel (for initial set of attributes), with the SVM with linear kernel (for the cases when 2-D and 3-D data are included as well). Another challenge is that, in addition to diversity of possible crater types, there are numerous morphological differences between the smallest (mostly very circular bowl-shaped craters) and the largest (multi-ring) impact

  10. A concept of row crater enhancement

    International Nuclear Information System (INIS)

    Linear craters formed by the simultaneous detonation of a row of buried explosives will probably have a wider application than single charges in the explosive excavation of engineering structures. Most cratering experience to date has been with single charges, and an analytical procedure for the design of a row of charges to excavate a crater with a specified configuration has been lacking. There are no digital computer codes having direct application to a row of charges as there are for single charges. This paper derives a simple relationship which can be used to design row charges with some assurance of achieving the desired result and with considerable flexibility in the choice of explosive yield of the individual charges

  11. Tempest in Vailulu'u Crater

    Science.gov (United States)

    Hart, S. R.; Staudigel, H.; Koppers, A.; Young, C.; Baker, E.

    2005-12-01

    The summit crater of the Samoan submarine volcano, Vailulu'u, has been actively erupting since 2001. Based on water chemistry, CTD and temperature logger data from 2000 and 2001, we formulated a model for the hydrothermal system in the crater involving a tidally-modulated "breathing" (Staudigel et al., 2004). During low stands of internal waves (exterior to the crater), the crater exhales warm buoyant hydrothermal water that forms a "halo" around the crater rich in Mn, 3He, and particulates. During "high tides", cold dense external water is inhaled into the crater through the three breaches, and cascades to the crater floor. In April 2005, we used the HURL PISCES V submersible to deploy various temperature and particulate loggers and current meters in and around the crater; these were retrieved by Pisces V in July 2005. In addition, continuous CTD profiling was carried out over 12 hour tidal cycles at one location inside, and one outside, the crater. The accumulated data set fully reinforces our "breathing" model. An ADCP, deployed for 93 days in the NW breach at 752m, showed dominant easterly inflow currents and westerly outflow currents, with maximum velocities of approximately 25 cm/s. The flows were coherent for distances up to 50-60m above the ADCP; the mean inflow velocity and azimuth (20-40 m interval above the ADCP) was 7 cm/s due east; the mean outflow velocity and azimuth was 5 cm/s at 260 degrees. Mean inflows were consistently colder than outflows (5.00 C vs 5.20 C); the maximum observed range in temperature was 1.1 C, correlated with peak flow velocities. The coldest inflows would require very large regional internal wave amplitudes, up to 50-100 meters. A 2-D acoustic current meter was deployed on top of the west crater rim summit (582m) for 90 days, and in the S breach (697m) for 4 days. The summit flows are presumed to represent the regional scale currents; these were largely from the SW quadrant, with typical velocities of 8-15 cm/s, and peaks to

  12. MOLA Topography and Morphometry of Rampart and Pedestal Craters, Mars

    Science.gov (United States)

    Mitchell, D. E.; Sakimoto, S. E. H.; Garvin, J. B.

    2002-01-01

    Martian rampart and pedestal craters have characteristic geometric parameter ranges that are significantly different than fresh craters. Combined MOLA geometric measurements and MOC analyses can be used to constrain their modification. Additional information is contained in the original extended abstract.

  13. 'Sharks Teeth' -- Sand Dunes in Proctor Crater

    Science.gov (United States)

    2001-01-01

    Sometimes, pictures received from Mars Global Surveyor's Mars Orbiter Camera (MOC) are 'just plain pretty.' This image, taken in early September 2000, shows a group of sand dunes at the edge of a much larger field of dark-toned dunes in Proctor Crater. Located at 47.9oS, 330.4oW, in the 170 km (106 mile) diameter crater named for 19th Century British astronomer Richard A. Proctor (1837-1888), the dunes shown here are created by winds blowing largely from the east/northeast. A plethora of smaller, brighter ripples covers the substrate between the dunes. Sunlight illuminates them from the upper left.

  14. Novel psychrotolerant picocyanobacteria isolated from Chesapeake Bay in the winter.

    Science.gov (United States)

    Xu, Yongle; Jiao, Nianzhi; Chen, Feng

    2015-08-01

    Picocyanobacteria are major primary producers in the ocean, especially in the tropical or subtropical oceans or during warm seasons. Many "warm" picocyanobacterial species have been isolated and characterized. However, picocyanobacteria in cold environments or cold seasons are much less studied. In general, little is known about the taxonomy and ecophysiology of picocyanobacteria living in the winter. In this study, 17 strains of picocyanobacteria were isolated from Chesapeake Bay, a temperate estuarine ecosystem, during the winter months. These winter isolates belong to five distinct phylogenetic lineages, and are distinct from the picocyanobacteria previously isolated from the warm seasons. The vast majority of the winter isolates were closely related to picocyanobacteria isolated from other cold environments like Arctic or subalpine waters. The winter picocyanobacterial isolates were able to maintain slow growth or prolonged dormancy at 4°C. Interestingly, the phycoerythrin-rich strains outperformed the phycocyanin-rich strains at cold temperature. In addition, winter picocyanobacteria changed their morphology when cultivated at 4°C. The close phylogenetic relationship between the winter picocyanobacteria and the picocyanobacteria living in high latitude cold regions indicates that low temperature locations select specific ecotypes of picocyanobacteria. PMID:26986796

  15. Catastrophic anoxia in the chesapeake bay in 1984.

    Science.gov (United States)

    Seliger, H H; Boggs, J A; Biggley, W H

    1985-04-01

    In 1984, four climatic sequences combined to produce what may be a major anoxic catastrophe in the northern Chesapeake Bay, sufficient to severely threaten the major benthic species. These sequences are (i) the highest late-winter streamflow on record from the Susquehanna River watershed; (ii) streamflows from the Susquehanna River for the consecutive months of June, July, and August that are higher by 2 standard deviations than the respective monthly mean values measured over the last 34 years; (iii) a stationary high in August off the Atlantic Coast; and (iv) an absence of strong storm events in summer. An empirical equation is proposed for the prediction of the monthly trend of dissolved oxygen decrease in terms of a temperature-dependent subpycnoclinal respiration and a modified estuarine Richardson number. As of 23 August 1984, the summer pycnocline of the northern bay had eroded upward from its historically recorded depth below 10 meters to an abnormally shallow 5 meters, with higher stratification than in earlier years. Dissolved oxygen concentrations directly below the pycnocline decreased to zero during June, 2 months earlier than for previous wet years. At present, oxygen-deficient waters containing significant concentrations of hydrogen sulfide have penetrated into Eastern Bay and the Choptank and Potomac rivers. Because most remaining shellfish-spawning and seed-bed areas in these tributaries are located at depths between 4 and 8 meters, the continued absence of major destratifying events will prolong the present anoxic trend and may result in high benthic mortalities. PMID:17811570

  16. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay

    Science.gov (United States)

    Harding, Lawrence W., Jr.; Mallonee, Michael E.; Perry, Elgin S.; Miller, W. David; Adolf, Jason E.; Gallegos, Charles L.; Paerl, Hans W.

    2016-03-01

    Variable climatic conditions strongly influence phytoplankton dynamics in estuaries globally. Our study area is Chesapeake Bay, a highly productive ecosystem providing natural resources, transportation, and recreation for nearly 16 million people inhabiting a 165,000-km2 watershed. Since World War II, nutrient over-enrichment has led to multiple ecosystem impairments caused by increased phytoplankton biomass as chlorophyll-a (chl-a). Doubled nitrogen (N) loadings from 1945–1980 led to increased chl-a, reduced water clarity, and low dissolved oxygen (DO), while decreased N loadings from 1981–2012 suggest modest improvement. The recent 30+ years are characterized by high inter-annual variability of chl-a, coinciding with irregular dry and wet periods, complicating the detection of long-term trends. Here, we synthesize time-series data for historical and recent N loadings (TN, NO2 + NO3), chl-a, floral composition, and net primary productivity (NPP) to distinguish secular changes caused by nutrient over-enrichment from spatio-temporal variability imposed by climatic conditions. Wet years showed higher chl-a, higher diatom abundance, and increased NPP, while dry years showed lower chl-a, lower diatom abundance, and decreased NPP. Our findings support a conceptual model wherein variable climatic conditions dominate recent phytoplankton dynamics against a backdrop of nutrient over-enrichment, emphasizing the need to separate these effects to gauge progress toward improving water quality in estuaries.

  17. The nomogram of density distribution of lunar craters.

    Science.gov (United States)

    Pugacheva, S. G.; Bolkhovitinov, I. S.

    1994-12-01

    Least-square fits to the density of the distribution of lunar craters described by the approximating function are found for craters larger then 10 km in diamater. The nomogram of parameters of the approximating function is given for the estimate of density of primary, secondary and tertiary craters over an area of 104km2.

  18. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Cratering histories of the intercrater plains. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The intercrater plains of Mercury and the Moon are defined, in part, by their high densities of small craters. The crater size frequency statistics presented in this chapter may help constrain the relative ages and origins of these surfaces. To this end, the effects of common geologic processes on crater frequency statistics are compared with the diameter frequency distributions of the intercrater regions of the Moon and Mercury. Such analyses may determine whether secondary craters dominate the distribution at small diameters, and whether volcanic plains or ballistic deposits form the intercrater surface. Determining the mass frequency distribution and flux of the impacting population is a more difficult problem. The necessary information such as scaling relationships between projectile energy and crater diameter, the relative fluxes of solar system objects, and the absolute ages of surface units is model dependent and poorly constrained, especially for Mercury.

  19. Summary of results of cratering experiments

    International Nuclear Information System (INIS)

    The use of nuclear excavation as a construction technique for producing harbors, canals, highway cuts, and other large excavations requires a high assurance that the yield and depth of burst selected for the explosive will produce the desired configuration within an acceptable degree of tolerance. Nuclear excavation technology advanced significantly during 1968 as a result of the successful execution of Projects Cabriolet, Buggy, and Schooner. Until these experiments were conducted, the only nuclear data available for designing large excavations were derived from Sedan (100 kt in alluvium), Danny Boy (0.42 kt in basalt), and Sulky (0.090 kt in basalt). Applicable experience has now been extended to include two additional rock types: tuff and porphyritic trachyte, non-homogeneous formations with severe geologic layering, and a nuclear row in hard rock. The continued development of cratering calculations using in situ geophysical measurements and high-pressure test data have provided a means for predicting the cratering characteristics of untested materials. Chemical explosive cratering experiments conducted in the pre-Gondola series during the past several years have been directed toward determining the behavior of weak, wet clay shales. This material is important to nuclear excavation because of potential long-term stability problems which may affect the cratered slopes. (author)

  20. Signs of Landscape Modifications at Martian Crater

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for larger version The lower portion of this image from the Thermal Emission Imaging System camera (THEMIS) on NASA's Mars Odyssey orbiter shows a crater about 16 kilometers (10 miles) in diameter with features studied as evidence of deposition or erosion. The crater is centered at 40.32 degrees south latitude and 132.5 degrees east longitude, in the eastern portion of the Hellas basin on Mars. It has gullies and arcuate ridges on its north, pole-facing interior wall. This crater is in the center of a larger (60-kilometer or 37-mile diameter) crater with lobate flows on its north, interior wall. The image, number V07798008 in the THEMIS catalog, covers a swath of ground 17.4 kilometers (10.8 miles) wide. NASA's Jet Propulsion Laboratory manages the Mars Odyssey mission for NASA's Office of Space Science. THEMIS was developed by Arizona State University in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Putative crater-floor pingos, paleolakes and periglacial landscapes in north Utopia Planitia, Mars.

    Science.gov (United States)

    Soare, R. J.; Conway, S. J.; Dohm, J. M.

    2012-04-01

    Pingos are perennial ice-cored (but non-glacial) hills or mounds. They evolve and persist only in continuous and deep permafrost, i.e. ground that is frozen for periods of no less than two years. In periglacial (or cold-climate, non-glacial) regions such as the Tuktoyaktuk Coastlands of northern Canada closed-system pingos originate where thermokarst lakes either have lost or are losing their water by drainage, evaporation or sublimation. Closed-system pingos form as a result of freeze-thaw cycling, permafrost aggradation and pore-water migration. If closed-system pingos were identified on Mars, particularly on late Amazonian terrain at near-polar latitudes, this would point to boundary-conditions of pressure and temperature at or above the triple point of water having occurred much more recently and closer to the polar regions than many workers have thought possible. In 2005, we found two crater-floor landscapes in northern Utopia Planitia with mounds that seemed to share a suite of morphological characteristics and landform associations with closed-system pingos on Earth (Soare et al. 2005). Since this study the HiRISE and CTX cameras on-board the Mars Reconnaissance Orbiter have provided better coverage and higher resolution images of the area, allowing us to refine our previous work. We have identified two additional craters with similar assemblages and have verified the absence of such assemblages in other craters across a circum-global longitudinal transect spanning 20 degrees (~52°-72° N) of latitude. This allows us to evaluate the closed-system pingo hypothesis anew. Interestingly, the four principal mound-bearing craters occur within a tight latitudinal band from ~64°-71° N. This could be a marker of active albeit highly localised hydrological and freeze-thaw cycling. Conway et al. (2011) have identified perennial ice-domes on impact-crater floors at latitudes (~70° N) that are adjacent to the mound-bearing craters. They hypothesise that the ice domes

  2. Transmission Electron Microscopy of Cometary Residues from Micron-Sized Craters in the Stardust Al-Foils

    Science.gov (United States)

    Leroux, Hugues; Stroud, Rhonda M.; Dai, Zu Rong; Graham, Giles A.; Troadec, David; Bradley, John P.; Teslich, Nick; Borg, Janet; Kearsley, Anton T.; Horz, Friedrich

    2008-01-01

    We report Transmission Electron Microscopy (TEM) investigations of micro-craters that originated from hypervelocity impacts of comet 81P/Wild 2 dust particles on the aluminium foil of the Stardust collector. The craters were selected by Scanning Electron Microscopy (SEM) and then prepared by Focused Ion Beam (FIB) milling techniques in order to provide electron transparent cross-sections for TEM studies. The crater residues contain both amorphous and crystalline materials in varying proportions and compositions. The amorphous component is interpreted as resulting from shock melting during the impact and the crystalline phases as relict minerals. The latter show evidence for shock metamorphism. Based on the residue morphology and the compositional variation, the impacting particles are inferred to have been dominated by mixtures of submicron olivine, pyroxene and Fe-sulfide grains, in agreement with prior results of relatively coarse-grained mineral assemblages in the aerogel collector.

  3. 'Lyell' Panorama inside Victoria Crater (False Color)

    Science.gov (United States)

    2008-01-01

    Photojournal note: This very large image (487.9 MB TIFF and 17.71 MB JPEG) may be too large for some web browsers to handle. Users may right-click on the TIFF or JPEG link in the legend above to download the file to their desktop. The image can then be viewed in an image manipulation application such as Adobe Photoshop. During four months prior to the fourth anniversary of its landing on Mars, NASA's Mars Exploration Rover Opportunity examined rocks inside an alcove called 'Duck Bay' in the western portion of Victoria Crater. The main body of the crater appears in the upper right of this stereo panorama, with the far side of the crater lying about 800 meters (half a mile) away. Bracketing that part of the view are two promontories on the crater's rim at either side of Duck Bay. They are 'Cape Verde,' about 6 meters (20 feet) tall, on the left, and 'Cabo Frio,' about 15 meters (50 feet) tall, on the right. The rest of the image, other than sky and portions of the rover, is ground within Duck Bay. Opportunity's targets of study during the last quarter of 2007 were rock layers within a band exposed around the interior of the crater, about 6 meters (20 feet) from the rim. Bright rocks within the band are visible in the foreground of the panorama. The rover science team assigned informal names to three subdivisions of the band: 'Steno,' 'Smith,' and 'Lyell.' This view combines many images taken by Opportunity's panoramic camera (Pancam) from the 1,332nd through 1,379th Martian days, or sols, of the mission (Oct. 23 to Dec. 11, 2007). Images taken through Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers were mixed to produce this view, which is presented in a false-color stretch to bring out subtle color differences in the scene. Some visible patterns in dark and light tones are the result of combining frames that were affected by dust on the front sapphire window of the rover's camera. Opportunity landed on Jan. 25, 2004

  4. Ultraviolet radiation and bio-optics in Crater Lake, Oregon

    Science.gov (United States)

    Hargreaves, B.R.; Girdner, S.F.; Buktenica, M.W.; Collier, R.W.; Urbach, E.; Larson, G.L.

    2007-01-01

    Crater Lake, Oregon, is a mid-latitude caldera lake famous for its depth (594 m) and blue color. Recent underwater spectral measurements of solar radiation (300-800 nm) support earlier observations of unusual transparency and extend these to UV-B wavelengths. New data suggest that penetration of solar UVR into Crater Lake has a significant ecological impact. Evidence includes a correlation between water column chlorophyll-a and stratospheric ozone since 1984, the scarcity of organisms in the upper water column, and apparent UV screening pigments in phytoplankton that vary with depth. The lowest UV-B diffuse attenuation coefficients (K d,320) were similar to those reported for the clearest natural waters elsewhere, and were lower than estimates for pure water published in 1981. Optical proxies for UVR attenuation were correlated with chlorophyll-a concentration (0-30 m) during typical dry summer months from 1984 to 2002. Using all proxies and measurements of UV transparency, decadal and longer cycles were apparent but no long-term trend since the first optical measurement in 1896. ?? 2007 Springer Science+Business Media B.V.

  5. Lunar polar craters -- icy, rough or just sloping?

    CERN Document Server

    Eke, Vincent R; Lane, David A; Smith, David; Teodoro, Luis F A

    2013-01-01

    Circular Polarisation Ratio (CPR) mosaics from Mini-SAR on Chandrayaan-1 and Mini-RF on LRO are used to study craters near to the lunar north pole. The look direction of the detectors strongly affects the appearance of the crater CPR maps. Rectifying the mosaics to account for parallax also significantly changes the CPR maps of the crater interiors. It is shown that the CPRs of crater interiors in unrectified maps are biased to larger values than crater exteriors, because of a combination of the effects of parallax and incidence angle. Using the LOLA Digital Elevation Map (DEM), the variation of CPR with angle of incidence has been studied. For fresh craters, CPR~0.7 with only a weak dependence on angle of incidence or position interior or just exterior to the crater, consistent with dihedral scattering from blocky surface roughness. For anomalous craters, the CPR interior to the crater increases with both incidence angle and distance from the crater centre. Central crater CPRs are similar to those in the cra...

  6. CULTURAL EUTROPHICATION IN THE CHOPTANK AND PATUXENT ESTUARIES OF CHESAPEAKE BAY

    Science.gov (United States)

    The Choptank and Patuxent tributaries of Chesapeake Bay have become eutrophic over the last 50-100 years. Systematic monitoring of nutrient inputs began in ~1970, and there have been 2-5-fold increases in nitrogen (N) and phosphorus (P) inputs during 1970-2004 due to sewage disch...

  7. 3 CFR 13508 - Executive Order 13508 of May 12, 2009. Chesapeake Bay Protection and Restoration

    Science.gov (United States)

    2010-01-01

    ... laws, and to protect and restore the health, heritage, natural resources, and social and economic value... Historic Trail, the Chesapeake Bay Gateways and Watertrails Network, and the Star-Spangled Banner National Historic Trail. PART 8—MONITORING AND DECISION SUPPORT FOR ECOSYSTEM MANAGEMENT Sec. 801. The...

  8. Oyster Reef Communities in the Chesapeake Bay: A Brief Primer. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experience supported by multimedia instruction. This document presents an overview on the biology of…

  9. Derivation of habitat-specific dissolved oxygen criteria for Chesapeake Bay and its tidal tributaries

    Science.gov (United States)

    Batiuk, R.A.; Breitburg, D.L.; Diaz, R.J.; Cronin, T. M.; Secor, D.H.; Thursby, G.

    2009-01-01

    The Chesapeake 2000 Agreement committed its state and federal signatories to "define the water quality conditions necessary to protect aquatic living resources" in the Chesapeake Bay (USA) and its tidal tributaries. Hypoxia is one of the key water quality issues addressed as a result of the above Agreement. This paper summarizes the protection goals and specific criteria intended to achieve those goals for addressing hypoxia. The criteria take into account the variety of Bay habitats and the tendency towards low dissolved oxygen in some areas of the Bay. Stressful dissolved oxygen conditions were characterized for a diverse array of living resources of the Chesapeake Bay by different aquatic habitats: migratory fish spawning and nursery, shallow-water, open-water, deep-water, and deep-channel. The dissolved oxygen criteria derived for each of these habitats are intended to protect against adverse effects on survival, growth, reproduction and behavior. The criteria accommodate both spatial and temporal aspects of low oxygen events, and have been adopted into the Chesapeake Bay states - Maryland, Virginia, and Delaware - and the District of Columbia's water quality standards regulations. These criteria, now in the form of state regulatory standards, are driving an array of land-based and wastewater pollution reduction actions across the six-watershed.

  10. Agricultural Pesticides and Selected Degradation Products in Five Tidal Regions and the Mainstem of Chesapeake Bay

    Science.gov (United States)

    Nutrients, sediment, air pollution, and toxics from the water sources and the surrounding airshed are major problems contributing to poor water quality in many regions of the Chesapeake Bay (CB). Toxics are defined as chemicals that may affect the reproduction, development, and ultimately, the surv...

  11. BOOK REVIEW OF "CHESAPEAKE BAY BLUES: SCIENCE, POLITICS, AND THE STRUGGLE TO SAVE THE BAY"

    Science.gov (United States)

    This is a book review of "Chesapeake Bay Blues: Science, Politics, and the Struggle to Save the Bay". This book is very well written and provides an easily understandable description of the political challenges faced by those proposing new or more stringent environmental regulat...

  12. 75 FR 14152 - Executive Order 13508; Chesapeake Bay Protection and Restoration Section 502; Guidance for...

    Science.gov (United States)

    2010-03-24

    ...-effective tools and practices that reduce water pollution and requests public comment. The document was... Bay Protection and Restoration, dated May 12, 2009 (74 FR 23099, May 15, 2009), requires the... Chesapeake Bay watershed describing proven, cost-effective tools and practices that reduce water...

  13. Huygens Crater: Insights into Noachian Volcanism, Stratigraphy, and Aqueous Processes

    Science.gov (United States)

    Ackiss, S. E.; Wray, J. J.; Seelos, K. D.; Niles, P. B.

    2015-01-01

    Huygens crater is a well preserved peak ring structure on Mars centered at 13.5 deg S, 55.5 deg E in the Noachian highlands between Terras Tyrrhena and Sabaea near the NW rim of Hellas basin. With a diameter of approximately 470 km, it uplifted and exhumed pre-Noachian crustal materials from depths greater than 25 km, penetrating below the thick, ubiquitous layer of Hellas ejecta. In addition, Huygens served as a basin for subsequent aqueous activity, including erosion/deposition by fluvial valley networks and subsurface alteration that is now exposed by smaller impacts. Younger mafic-bearing plains that partially cover the basin floor and surrounding intercrater areas were likely emplaced by later volcanism.

  14. RES2DINV Format Continuous Resistivity Profile Data Collected in the Potomac River/Chesapeake Bay on Sept. 8, 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on...

  15. RES2DINV Format Continuous Resistivity Profile Data Collected in the Potomac River/Chesapeake Bay on Sept. 7, 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on...

  16. Processed Continuous Resistivity Profile Data Collected in the Potomac River/Chesapeake Bay on Sept. 8, 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on...

  17. Raw and Modified Raw Continuous Resistivity Profile Data Collected in the Potomac River/Chesapeake Bay on Sept. 6, 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on...

  18. Processed Continuous Resistivity Profile Data Collected in the Potomac River/Chesapeake Bay on Sept. 6, 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on...

  19. Raw and Modified Raw Continuous Resistivity Profile Data Collected in the Potomac River/Chesapeake Bay on Sept. 8, 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on...

  20. Raw and Modified Raw Continuous Resistivity Profile Data Collected in the Potomac River/Chesapeake Bay on Sept. 7, 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on...

  1. Processed Continuous Resistivity Profile Data Collected in the Potomac River/Chesapeake Bay on Sept. 7, 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on...

  2. Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater

    Science.gov (United States)

    Crumpler, L. S.; Arvidson, R. E.; Bell, J.; Clark, B. C.; Cohen, B. A.; Farrand, W. H.; Gellert, R.; Golombek, M.; Grant, J. A.; Guinness, E.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.; Rice, J. W., Jr.; Squyres, S. W.; Sullivan, R.; Yen, A. S.

    2015-03-01

    Using the Mars Exploration Rover Opportunity, we have compiled one of the first field geologic maps on Mars while traversing the Noachian terrain along the rim of the 22 km diameter Endeavour Crater (Latitude -2°16'33", Longitude -5°10'51"). In situ mapping of the petrographic, elemental, structural, and stratigraphic characteristics of outcrops and rocks distinguishes four mappable bedrock lithologic units. Three of these rock units predate the surrounding Burns formation sulfate-rich sandstones and one, the Matijevic Formation, represents conditions on early Mars predating the formation of Endeavour Crater. The stratigraphy assembled from these observations includes several geologic unconformities. The differences in lithologic units across these unconformities record changes in the character and intensity of the Martian aqueous environment over geologic time. Water circulated through fractures in the oldest rocks over periods long enough that texturally and elementally significant alteration occurred in fracture walls. These oldest pre-Endeavour rocks and their network of mineralized and altered fractures were preserved by burial beneath impact ejecta and were subsequently exhumed and exposed. The alteration along joints in the oldest rocks and the mineralized veins and concentrations of trace metals in overlying lithologic units is direct evidence that copious volumes of mineralized and/or hydrothermal fluids circulated through the early Martian crust. The wide range in intensity of structural and chemical modification from outcrop to outcrop along the crater rim shows that the ejecta of large (>8 km in diameter) impact craters is complex. These results imply that geologic complexity is to be anticipated in other areas of Mars where cratering has been a fundamental process in the local and regional geology and mineralogy.

  3. Searching for the Source Crater of Nakhlite Meteorites

    Science.gov (United States)

    Kereszturi, A.; Chatzitheodoridis, E.

    2016-03-01

    We surveyed the Martian surface in order to identify possible source craters of the nakhlite Martian meteorites. We investigated rayed craters that are assumed to be younger than 11 Ma, on lava surfaces with a solidification age around 1.2 Ga. An area of 17.3 million km2 Amazonian lava plains was surveyed and 53 rayed craters were identified. Although most of them are smaller than the threshold limit that is estimated as minimum of launching fragments to possible Earth crossing trajectories, their observed size frequency distribution agrees with the expected areal density from cratering models characteristic for craters that are less than few tens of Ma old. We identified 6 craters larger than 3 km diameter constituting the potentially best source craters for nakhlites. These larger candidates are located mostly on a smooth lava surface, and in some cases, on the earlier fluvial-like channels. In three cases they are associated with fluidized ejecta lobes and rays - although the rays are faint in these craters, thus might be older than the other craters with more obvious rays. More work is therefore required to accurately estimate ages based on ray system for this purpose. A more detailed search should further link remote sensing Martian data with the in-situ laboratory analyses of Martian meteorites, especially in case of high altitude, steep terrains, where the crater rays seems to rarely survive several Ma.

  4. A Spanish Tagset for the CRATER Project

    OpenAIRE

    León, Fernando Sánchez

    1994-01-01

    This working paper describes the Spanish tagset to be used in the context of CRATER, a CEC funded project aiming at the creation of a multilingual (English, French, Spanish) aligned corpus using the International Telecommunications Union corpus. In this respect, each version of the corpus will be (or is currently) tagged. Xerox PARC tagger will be adapted to Spanish in order to perform the tagging of the Spanish version. This tagset has been devised as the ideal one for Spanish, and has been ...

  5. Ejecta from single-charge cratering explosions

    International Nuclear Information System (INIS)

    The objective was to obtain experimental data tracing the location of ejecta to its origin within the crater region. The experiment included ten high-explosive spherical charges weighing from 8 to 1000 pounds and detonated in a playa dry lake soil on the Tonopah Test Range. Each event included from 24 to 40 locations of distinctly different tracer material embedded in a plane in the expected crater region. Tracers consisted of glass, ceramic and bugle beads, chopped metal, and plastic wire. Results of this experiment yielded data on tracer dispersion as a function of charge weight, charge burial depth and tracer emplacement position. Tracer pattern parameters such as center-of-tracer mass, range to center-of-tracer mass, and angle to center-of-tracer mass were determined. There is a clear tendency for range (to center-of-tracer mass) and the size of the dispersion pattern to decrease as tracer emplacement depth increases. Increasing tracer emplacement depth and range tends to decrease the area over which tracers are dispersed on the ground surface. Tracers at the same scaled position relative to the charge were deposited closer to the crater (on a scaled basis) as charge weight was increased. (author)

  6. Analytical formulation of lunar cratering asymmetries

    CERN Document Server

    Wang, Nan

    2016-01-01

    We formulate the lunar cratering distribution and verify the cratering asymmetries generated by the main-belt asteroids (MBAs) as well as the near-Earth objects (NEOs). Based on a planar model that excludes the terrestrial and lunar gravitations on the impactors and assuming the impactor encounter speed with Earth $v_{\\rm{enc}}$ is higher than the lunar orbital speed $v_{\\rm{M}}$, we rigorously integrated the lunar cratering distribution, and derived its approximation to the first order of $v_{\\rm{M}}/v_{\\rm{enc}}$. Numerical simulations of lunar bombardment by the MBAs during the late heavy bombardment were performed with an Earth-Moon distance $a_{\\rm{M}}$ = 20--60 Earth radii in five cases. The analytical model directly proves the existence of a leading/trailing asymmetry and the absence of near/far asymmetry. The approximate form of the leading/trailing asymmetry is $(1 + A_1 \\cos\\beta)$, which decreases as the apex distance $\\beta$ increases. The numerical simulations show evidence of a pole/equator asym...

  7. Sporadic Groundwater Upwelling in Deep Martian Craters: Evidence for Lacustrine Clays and Carbonates

    Science.gov (United States)

    Michalski, J. R.; Rogers, A. D.; Wright, S. P.; Niles, P.; Cuadros, J.

    2012-01-01

    While the surface of Mars may have had an active hydrosphere early in its history [1], it is likely that this water retreated to the subsurface early on due to loss of the magnetic field and early atmosphere [2]. This likely resulted in the formation of two distinct aqueous regimes for Mars from the Late Noachian onward: one dominated by redistribution of surface ice and occasional melting of snow/ice [3], and one dominated by groundwater activity [4]. The excavation of alteration minerals from deep in the crust by impact craters points to an active, ancient, deep hydrothermal system [5]. Putative sapping features [6] may occur where the groundwater breached the surface. Upwelling groundwater may also have played a critical role in the formation of massive, layered, cemented sediments in Sinus Meridiani [7,8], in the Valles Marineris [9], and possibly in Gale Crater [10], where the Curiosity Rover will land later this year. Understanding the past distribution, geochemistry, and significance of groundwater on Mars is critical to untangling the origins of deep alteration minerals, Hesperian sulfate deposits, and crater fill deposits at Gale Crater or in other locations.

  8. The discovery of fullerenes in the 1.85 billion-year-old Sudbury meteorite crater

    Energy Technology Data Exchange (ETDEWEB)

    Becker, L.; Bada, J.L. [Scripps Institution of Oceanography, La Jolla, CA (United States); Winans, R.E.; Hunt, J.E. [Argonne National Lab., IL (United States); Bunch, T.E. [National Aeronautics and Space Administration, Moffett Field, CA (United States). Ames Research Center; French, B.M. [National Aeronautics and Space Administration, Washington, DC (United States)

    1996-02-01

    Fullerenes (C{sub 60}, C{sub 70}) have been identified by laser time-of-flight and electron-ionization mass spectroscopy in rock samples (black tuff in the Onaping formation) from the crater. They were likely synthesized within the impact plume from carbon contained in the meteorite. The isotopic ratios suggest {sup 13}C enrichment. They are associated with sulfur which may have protected them. This is the largest known deposit of naturally occurring fullerenes.

  9. On a possible parent crater for Australasian tektites: Geochemical, isotopic, geographical and other constraints

    Czech Academy of Sciences Publication Activity Database

    Mizera, Jiří; Řanda, Zdeněk; Kameník, Jan

    2016-01-01

    Roč. 154, MAR (2016), s. 123-137. ISSN 0012-8252 R&D Projects: GA ČR GA13-22351S Institutional support: RVO:67985891 ; RVO:61389005 Keywords : Australasian tektite * Parent crater * Geochemical analysis * Isotope analysis * Chinese loess * Badain Jaran Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; DD - Geochemistry (USMH-B) Impact factor: 7.885, year: 2014

  10. Impact microcrater morphology on Australian microtektites

    Digital Repository Service at National Institute of Oceanography (India)

    ShyamPrasad, M.; Khedekar, V.D.

    the radial cracks are fewer and thecraters are shallow. The development of the stylus on thesecraters seems to be due to elastic rebound on a heated, viscoustarget. With increasing hardening of the target, the plastic flowage disappears and the triangular... craters (Figs. 15a and 15c). Ingeneral, pitless craters have fewer cracks than glass-lined or stylus pit craters; and the typical triangular cracks, seen on the latter, are also rare. Further, with hardening of the targets andwith higher impact energies...

  11. 3D structure of the Gusev Crater region

    Science.gov (United States)

    Parker, Mirjam van Kan; Zegers, Tanja; Kneissl, Thomas; Ivanov, Boris; Foing, Bernard; Neukum, Gerhard

    2010-06-01

    Gusev Crater lies within the Aeolis Quadrangle of Mars at the boundary between the northern lowlands and southern highlands. The ancient valley Ma'adim Vallis dissects the highlands south of Gusev Crater and is thought to have fed the crater with sediments. High Resolution Stereo Camera data and Digital Elevation Models were used to construct a geologic-geomorphic map (173.5-178.5° E, 10-18° S) and cross-sections, complemented by data from Mars Orbiter Camera, Mars Orbiter Laser Altimeter and Thermal Emission Imaging System. Three geologic domains are recognised: the highlands in the south, Gusev Crater and lowlands in the north. Twelve units are mapped, with thicknesses ranging from hundred meters to several kilometres. Thicknesses of units, and their bedding attitude, are estimated combining the geologic map and topographic information. Relative ages are determined from crater counts, ranging from Early Noachian for highland units to Middle Amazonian for units in Gusev Crater and in lowlands. Episodes of intense geologic activity (deposition, volcanism, deformation) occur at around 4.0 Ga, 3.7 Ga, and 3.5 Ga. Comparing the geometry of the Gusev Crater with similar sized, filled and un-filled, Martian craters, suggests that the Columbia Hills are relics of the original central peak of Gusev Crater.

  12. Analysis of crater valleys, Noachis Terra, Mars: Evidence of fluvial and glacial processes

    Science.gov (United States)

    Hobbs, S. W.; Clarke, J. D. A.; Paull, D. J.

    2016-05-01

    The precise mechanism for the formation and evolution of crater valley networks in the Martian southern highlands remains under debate, with precipitation, groundwater flow, and melting induced by impact being suggested. We studied valley networks within four craters of the Noachis Terra highlands that were representative of similar features in Noachis Terra and where orbital data existed for analysis in order to characterise their morphology and infer possible processes involved in their formation and evolution. We found evidence for valleys carved by liquid water and ice-related processes. This included strong evidence of liquid water-based valley formation through melting of ice-rich deposits throughout our study area, suggesting an alternative to previously suggested rainfall or groundwater-based scenarios. The location of these valleys on steeply sloping crater walls, as opposed to the shallow slopes of the highlands where Martian valleys are typically found, suggested that our 'fluvial' valleys had not evolved a more structured fluvial morphology as valley networks found on the Martian plains. Our studied valleys' association with ice-rich material and abundant evidence for erosion caused by downslope flow of ice-rich material are consistent with a cold, wet Mars hypothesis where accumulation, flow, and melting of ice have been dominant factors in eroding crater valleys. Additionally, analysis of valley morphology with slope and aspect suggested a greater dependence on local geology and presence of volatiles than larger valley networks, though ice-related valleys were consistently wider for their length than valleys assessed as fluvial carved. We assessed that local conditions such as climate, geology, and availability of ice-rich material played a major role in the erosion of crater valleys at our study site.

  13. Mineralogy at Gusev Crater and Meridiani Planum from the Moessbauer Spectrometers on the Mars Exploration Rovers

    Science.gov (United States)

    Morris, Richard V.; Klingelhoefer, Goestar

    2006-01-01

    The Moessbauer spectrometers on the twin MER rovers Spirit and Opportunity have provided significant new information on the distribution of iron among its oxidation states, the identification of the mineralogical composition of iron-bearing phases, and the distribution of iron among those phases for rock and soil at Gusev Crater and Meridiani Planum. The plains of Gusev Crater are dominated by olivine-bearing basalt (approximately Fo(60)) and Fe(3+)/Fe(total)=0.1 - 0.5. The oxide mineral generally present is magnetite. In contrast, initial results for the Columbia Hills are consistent with the presence of hematite and a ferrous iron phase, possibly pyroxene. Gusev spectra also have a ferric doublet (not jarosite) that is tentatively associated with nano-phase ferric oxide. A wider diversity of material is present at Meridiani Planum. Significantly, jarosite-bearing outcrop is present throughout the region, with good exposures in impact craters such as Eagle and Endurance (Fe(3+)/Fe (total) approx. 0.9). The Moessbauer identification of jarosite (a hydroxyl-bearing sulfate mineral) is evidence for aqueous, acid-sulfate processes on Mars. Hematite is observed within the outcrop matrix and in the spheroidal particles (Blueberries) found within the outcrop and as a surface lag. An isolated rock (Bounce Rock) was the only sample at either landing site whose iron-bearing phase was dominated by pyroxene. The basaltic sand in the central portion of Eagle crater, in the intercrater plains, and between slabs of outcrop at both Eagle and Endurance craters is olivine-bearing basalt. The widespread occurrence of olivine-bearing basalt at both MER landing sites implies that physical, rather than chemical, weathering processes dominate at the surface of contemporary Mars.

  14. Opportunity, Geologic and Structural Context of Aqueous Alteration in Noachian Outcrops, Marathon Valley and Rim and Endeavour Crater

    Science.gov (United States)

    Crumpler, L. S.; Arvidson, R. E.; Mittlefehldt, D. W.; Jolliff, B. L.; Farrand, W. H.; Fox, V.; Golombek, M. P.

    2016-01-01

    In its 12th year of exploration and 1600 sols since arrival at the rim of the 22 km-diameter Noachian Endeavour impact crater, Mars Exploration Rover Opportunity traversed from the summit of the western rim segment "Cape Tribulation" to "Marathon Valley", a shallow trough dissecting the rim and the site of strong orbital detection of smectites. In situ analysis of the exposures within Marathon Valley is establishing some of the geologic and geochemical controls on the aqueous alteration responsible for smectite detection known to occur in crater rims throughout Noachian terrains of Mars.

  15. The Effect of Dissolved Polyunsaturated Aldehydes on Microzooplankton Growth Rates in the Chesapeake Bay and Atlantic Coastal Waters

    Directory of Open Access Journals (Sweden)

    Peter J. Lavrentyev

    2015-05-01

    Full Text Available Allelopathy is wide spread among marine phytoplankton, including diatoms, which can produce cytotoxic secondary metabolites such as polyunsaturated aldehydes (PUA. Most studies on diatom-produced PUA have been dedicated to their inhibitory effects on reproduction and development of marine invertebrates. However, little information exists on their impact on key herbivores in the ocean, microzooplankton. This study examined the effects of dissolved 2E,4E-octadienal and 2E,4E-heptadienal on the growth rates of natural ciliate and dinoflagellate populations in the Chesapeake Bay and the coastal Atlantic waters. The overall effect of PUA on microzooplankton growth was negative, especially at the higher concentrations, but there were pronounced differences in response among common planktonic species. For example, the growth of Codonella sp., Leegaardiella sol, Prorodon sp., and Gyrodinium spirale was impaired at 2 nM, whereas Strombidium conicum, Cyclotrichium gigas, and Gymnodinium sp. were not affected even at 20 nM. These results indicate that PUA can induce changes in microzooplankton dynamics and species composition.

  16. The effect of dissolved polyunsaturated aldehydes on microzooplankton growth rates in the Chesapeake Bay and Atlantic coastal waters.

    Science.gov (United States)

    Lavrentyev, Peter J; Franzè, Gayantonia; Pierson, James J; Stoecker, Diane K

    2015-05-01

    Allelopathy is wide spread among marine phytoplankton, including diatoms, which can produce cytotoxic secondary metabolites such as polyunsaturated aldehydes (PUA). Most studies on diatom-produced PUA have been dedicated to their inhibitory effects on reproduction and development of marine invertebrates. However, little information exists on their impact on key herbivores in the ocean, microzooplankton. This study examined the effects of dissolved 2E,4E-octadienal and 2E,4E-heptadienal on the growth rates of natural ciliate and dinoflagellate populations in the Chesapeake Bay and the coastal Atlantic waters. The overall effect of PUA on microzooplankton growth was negative, especially at the higher concentrations, but there were pronounced differences in response among common planktonic species. For example, the growth of Codonella sp., Leegaardiella sol, Prorodon sp., and Gyrodinium spirale was impaired at 2 nM, whereas Strombidium conicum, Cyclotrichium gigas, and Gymnodinium sp. were not affected even at 20 nM. These results indicate that PUA can induce changes in microzooplankton dynamics and species composition. PMID:25955757

  17. On the Binning and Associated Uncertainty of Crater Diameter Size-Frequency Distributions

    Science.gov (United States)

    Weaver, B. P.; Robbins, S. J.; Plesko, C. S.; Riggs, J. D.

    2015-05-01

    The tabulation and graphical display of crater size-frequency data (crater diameters) is a critical part of analyzing crater populations, but despite a landmark 1979 paper, standardization remains elusive. We will discuss recommendations.

  18. Determining Statistically Significant Deviations from a Model Crater Production Function for Estimating Resurfacing Events

    Science.gov (United States)

    Weaver, B. P.; Hilbe, J. M.; Robbins, S. J.; Plesko, C. S.; Riggs, J. D.

    2015-05-01

    Many crater analysts will search for deviations of observed crater population data from model crater populations and treat those deviations as a modification event - usually resurfacing. We will discuss how to assign confidences for these deviations.

  19. What drives interannual variability of hypoxia in Chesapeake Bay: Climate forcing versus nutrient loading?

    Science.gov (United States)

    Li, Ming; Lee, Younjoo J.; Testa, Jeremy M.; Li, Yun; Ni, Wenfei; Kemp, W. Michael; Di Toro, Dominic M.

    2016-03-01

    Oxygen depletion in estuaries is a worldwide problem with detrimental effects on many organisms. Although nutrient loading has been stabilized for a number of these systems, seasonal hypoxia persists and displays large year-to-year variations, with larger hypoxic volumes in wetter years and smaller hypoxic volumes in drier years. Data analysis points to climate as a driver of interannual hypoxia variability, but nutrient inputs covary with freshwater flow. Here we report an oxygen budget analysis of Chesapeake Bay to quantify relative contributions of physical and biogeochemical processes. Vertical diffusive flux declines with river discharge, whereas longitudinal advective flux increases with river discharge, such that their total supply of oxygen to bottom water is relatively unchanged. However, water column respiration exhibits large interannual fluctuations and is correlated with primary production and hypoxic volume. Hence, the model results suggest that nutrient loading is the main mechanism driving interannual hypoxia variability in Chesapeake Bay.

  20. Food habits and distribution of wintering canvasbacks, Aythya valisineria, on Chesapeake Bay

    Science.gov (United States)

    Perry, M.C.; Uhler, F.M.

    1988-01-01

    Baltic clams (Macoma balthica) were the predominant food items of 323 canvasbacks (Aythya valisineria) collected throughout Chesapeake Bay during 1970-1979. Natural vegetation constituted 4% of the food volume. Widgeongrass (Ruppia maritima) and redhead grass (Potamogeton perfoliatus) constituted the greatest percent volume and frequency of occurrence among the plant species, whereas wild celery (Vallisneria americana) constituted only a trace of the food volume. These results contrast with historical records of food habits of canvasbacks in Chesapeake Bay. Canvasback population estimates during the 1970?s were examined to detect annual and seasonal changes in distribution. Linear regression analyses of winter canvasback populations in the bay showed a significant decline in the upper-bay and middle-bay populations, but no significant changes in the lower-bay and Potomac River populations. The changes in winter distribution and abundance of the canvasback appear related to changes in natural food availability, which is the result of altered environmental conditions.

  1. A Spanish Tagset for the CRATER Project

    CERN Document Server

    Sánchez-León, F

    1994-01-01

    This working paper describes the Spanish tagset to be used in the context of CRATER, a CEC funded project aiming at the creation of a multilingual (English, French, Spanish) aligned corpus using the International Telecommunications Union corpus. In this respect, each version of the corpus will be (or is currently) tagged. Xerox PARC tagger will be adapted to Spanish in order to perform the tagging of the Spanish version. This tagset has been devised as the ideal one for Spanish, and has been posted to several lists in order to get feedback to it.

  2. Crater size distributions on Ganymede and Callisto: fundamental issues

    Science.gov (United States)

    Wagner, Roland; Schmedemann, Nico; Werner, Stefanie; Ivanov, Boris; Stephan, Katrin; Jaumann, Ralf

    2015-04-01

    Crater size distributions on the two largest Jovian satellites Ganymede and Callisto and the origin of impactors are subject of intense and controversial debates. In this paper, we reinvestigate crater size distributions measured in surface units derived from a recently published global geologic map, based on Voyager and Galileo SSI images at a scale of 1 km/pxl (Collins G. C. et al. (2013), U. S. Geol. Surv., Sci. Inv. Map 3237). These units are used as a context to units mapped in more detail at higher resolution in Galileo SSI images. We focus on the following fundamental issues: (1) Similarity between shapes of crater distributions on the Galilean satellites and on inner solar system bodies; (2) production versus equilibrium distributions; (3) apex/antapex variations in crater distributions. First, our results show a strong similarity in shape between the crater distributions on the most densely cratered regions on Ganymede and Callisto with those in the lunar highlands. We conclude that the shape of the crater distributions on these two Jovian satellites implies the craters were preferentially formed from members of a collisionally evolved projectile family, derived either from Main Belt asteroids as candidates of impactors on the Jovian satellites, or from projectiles stemming from the outer solar system which have undergone collisional evolution, resulting in a size distribution similar to those of Main Belt asteroids. Second, the complex shape of the crater distributions on Ganymede and Callisto indicates they are mostly production distributions and can be used to infer the underlying shape of the projectile size distribution. Locally, equilibrium distributions occur, especially at smaller sub-kilometer diameters. Third, the most densely cratered regions on both satellites do not show apex-antapex variations in crater frequency, as inferred for bodies from heliocentric orbits (e.g., Zahnle K. et al. (2003), Icarus 163, 263-289). This indicates that these

  3. Bacteria of the γ-Subclass Proteobacteria Associated with Zooplankton in Chesapeake Bay

    OpenAIRE

    Heidelberg, J. F.; Heidelberg, K. B.; Colwell, R R

    2002-01-01

    The seasonal abundance of γ-subclass Proteobacteria, Vibrio-Photobacterium, Vibrio cholerae-Vibrio mimicus, Vibrio cincinnatiensis, and Vibrio vulnificus in the Choptank River of Chesapeake Bay associated with zooplankton was monitored from April to December 1996. Large (>202-μm) and small (64- to 202-μm) size classes of zooplankton were collected, and the bacteria associated with each of the zooplankton size classes were enumerated by fluorescent oligonucleotide direct count. Large populatio...

  4. Movements and bioenergetics of canvasbacks wintering in the upper Chesapeake Bay

    OpenAIRE

    David W. Howerter

    1990-01-01

    The movement patterns, range areas and energetics of canvasbacks (Aythya valisineria) wintering in the upper Chesapeake Bay, Maryland, were investigated. Eighty-seven juvenile female canvasbacks were radio-tracked between 30 December 1988 and 25 March 1989. Diurnal time and energy budgets were constructed for a time of day-season matrix for canvasbacks using riverine and main bay habitats. Canvasbacks were very active at night, making regular and often lengthy crepuscular movements (x = 11.7 ...

  5. Composition and temporal patterns of larval fish communities in Chesapeake and Delaware Bays

    Directory of Open Access Journals (Sweden)

    Filipe Ribeiro

    2015-11-01

    Full Text Available Comparing larval fish assemblages in different estuaries provides insights about the coastal distribution of larval populations, larval transport, and adult spawning locations (Ribeiro et al. 2015. We simultaneously compared the larval fish assemblages entering two Middle Atlantic Bight (MAB estuaries (Delaware Bay and Chesapeake Bay, USA through weekly sampling from 2007 to 2009. In total, 43 taxa (32 families and 36 taxa (24 families were collected in Delaware and Chesapeake Bays, respectively. Mean taxonomic diversity, mean richness, and evenness were generally lower in Delaware Bay. Communities of both bays were dominated by Anchoa spp., Gobiosoma spp., Micropogonias undulatus, and Brevoortia tyrannus; Paralichthys spp. was more abundant in Delaware Bay and Microgobius thalassinus was more abundant in Chesapeake Bay. Inter-annual variation in the larval fish communities was low at both sites, with a relatively consistent composition across years, but strong seasonal (intra-annual variation in species composition occurred in both bays. Two groups were identified in Chesapeake Bay: a ‘winter’ group dominated by shelf-spawned species (e.g. M. undulatus and a ‘summer’ group comprising obligate estuarine species and coastal species (e.g. Gobiosoma spp. and Cynoscion regalis, respectively. In Delaware Bay, 4 groups were identified: a ‘summer’ group of mainly obligate estuarine fishes (e.g. Menidia sp. being replaced by a ‘fall’ group (e.g. Ctenogobius boleosoma and Gobionellus oceanicus; ‘winter’ and ‘spring’ groups were dominated by shelf-spawned (e.g. M. undulatus and Paralichthys spp. and obligate estuarine species (e.g. Leiostomus xanthurus and Pseudopleuronectes americanus, respectively. This study demonstrates that inexpensive and simultaneous sampling in different estuaries provides important insights into the variability in community structure of fish assemblages at large spatial scales.

  6. Magnitude and Extent of Contaminated Sediment and Toxicity in Chesapeake Bay

    OpenAIRE

    Hartwell, S. Ian; Hameedi, Jawed

    2007-01-01

    INTRODUCTION: This report summarizes the results of NOAA's sediment toxicity, chemistry, and benthic community studies in the Chesapeake Bay estuary. As part of the National Status and Trends (NS&T) Program, NOAA has conducted studies to determine the spatial extent and severity of chemical contamination and associated adverse biological effects in coastal bays and estuaries of the United States since 1991. Sediment contamination in U.S. coastal areas is a major environmental issue becaus...

  7. Incentive-Based Land Use Policies and Water Quality in the Chesapeake Bay

    OpenAIRE

    Walls, Margaret; McConnell, Virginia

    2004-01-01

    Abstract The activities conducted on land surrounding the Chesapeake Bay directly affect pollution levels in the Bay, and they do so in complex and varied ways. Policy attention has been focused, for the most part, on modifying these activities within a particular land use category but not on wholesale changes in land use. For example, farmers are encouraged to use “best management practices” (BMPs) that focus on fertilizer use, crop covers, and the like; residential and commercial developers...

  8. Integrated analysis of ecosystem interactions with land use Change: The Chesapeake Bay watershed

    Science.gov (United States)

    Goetz, Scott J.; Jantz, Claire A.; Prince, Stephen D.; Smith, Andrew J.; Varlyguin, Dmitry; Wright, Robb K.

    The Chesapeake Bay is the largest estuary in the United States, encompassed by a watershed extending 168,000 km2 over portions of six states and Washington, D.C. Restoration of the Bay has been the focus of a two-decade regional partnership of local, state and federal agencies, including a network of scientists, politicians and activists interacting through various committees, working groups, and advisory panels. The effectiveness of the restoration effort has been mixed, with both notable successes and failures. The overall health of the Bay has not declined since the restoration was initiated in 1983, but many of the advances have been offset by the pressure of increasing population and exurban sprawl across the watershed. The needs of the Chesapeake Bay Program are many, but the greatest is accurate information on land cover and land use change, primarily to assess the implications for water quality, examine various restoration scenarios, and calibrate spatial models of the urbanization process. We report here on a number of new land cover and land use data products, and associated applications to assist vulnerability assessment, integrated ecosystem analysis, and ultimately Bay restoration. We provide brief overviews of applications to model new residential development, assess losses and vulnerability of resource lands, and identify the factors that disrupt the health of streams in small watersheds. These data products and approaches are being applied by a number of agencies involved with the restoration effort, including the Chesapeake Bay Program's activities focused on living resources, water quality, and sound land use.

  9. Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery.

    Science.gov (United States)

    Rick, Torben C; Reeder-Myers, Leslie A; Hofman, Courtney A; Breitburg, Denise; Lockwood, Rowan; Henkes, Gregory; Kellogg, Lisa; Lowery, Darrin; Luckenbach, Mark W; Mann, Roger; Ogburn, Matthew B; Southworth, Melissa; Wah, John; Wesson, James; Hines, Anson H

    2016-06-01

    Estuaries around the world are in a state of decline following decades or more of overfishing, pollution, and climate change. Oysters (Ostreidae), ecosystem engineers in many estuaries, influence water quality, construct habitat, and provide food for humans and wildlife. In North America's Chesapeake Bay, once-thriving eastern oyster (Crassostrea virginica) populations have declined dramatically, making their restoration and conservation extremely challenging. Here we present data on oyster size and human harvest from Chesapeake Bay archaeological sites spanning ∼3,500 y of Native American, colonial, and historical occupation. We compare oysters from archaeological sites with Pleistocene oyster reefs that existed before human harvest, modern oyster reefs, and other records of human oyster harvest from around the world. Native American fisheries were focused on nearshore oysters and were likely harvested at a rate that was sustainable over centuries to millennia, despite changing Holocene climatic conditions and sea-level rise. These data document resilience in oyster populations under long-term Native American harvest, sea-level rise, and climate change; provide context for managing modern oyster fisheries in the Chesapeake Bay and elsewhere around the world; and demonstrate an interdisciplinary approach that can be applied broadly to other fisheries. PMID:27217572

  10. Land subsidence and relative sea-level rise in the southern Chesapeake Bay region

    Science.gov (United States)

    Eggleston, Jack; Pope, Jason

    2013-01-01

    The southern Chesapeake Bay region is experiencing land subsidence and rising water levels due to global sea-level rise; land subsidence and rising water levels combine to cause relative sea-level rise. Land subsidence has been observed since the 1940s in the southern Chesapeake Bay region at rates of 1.1 to 4.8 millimeters per year (mm/yr), and subsidence continues today. This land subsidence helps explain why the region has the highest rates of sea-level rise on the Atlantic Coast of the United States. Data indicate that land subsidence has been responsible for more than half the relative sea-level rise measured in the region. Land subsidence increases the risk of flooding in low-lying areas, which in turn has important economic, environmental, and human health consequences for the heavily populated and ecologically important southern Chesapeake Bay region. The aquifer system in the region has been compacted by extensive groundwater pumping in the region at rates of 1.5- to 3.7-mm/yr; this compaction accounts for more than half of observed land subsidence in the region. Glacial isostatic adjustment, or the flexing of the Earth’s crust in response to glacier formation and melting, also likely contributes to land subsidence in the region.

  11. 77 FR 16558 - General Management Plan/Final Environmental Impact Statement, Hampton National Historic Site...

    Science.gov (United States)

    2012-03-21

    ... National Park Service General Management Plan/Final Environmental Impact Statement, Hampton National...: The National Park Service (NPS) announces the availability of the Final Environmental Impact Statement.... Baltimore County Tourism Office and Towson Chamber of Commerce, 44 West Chesapeake Avenue, Towson,...

  12. Mineralogy of Marcia, the youngest large crater of Vesta: Character and distribution of pyroxenes and hydrated material

    Science.gov (United States)

    De Sanctis, M. C.; Frigeri, A.; Ammannito, E.; Tosi, F.; Marchi, S.; Zambon, F.; Raymond, C. A.; Russell, C. T.

    2015-03-01

    The young Marcia crater on Vesta displays several interesting features, including pitted and smooth terrains, exposure of relatively bright and dark material, and enrichments of hydrated material in the ejecta. Several questions arise about the origin of Marcia and of the dark material (exogenic material vs volcanic or impact melts) and the smooth and pitted terrains. Here we describe the results of the spectral and thermal analysis of the Marcia crater, with a particular effort to assess the composition of the different units, identifying the presence of OH and its correlation with dark material. Detailed studies of the Marcia crater wall, smooth and floor units reveal a compositional rich terrain with small areas enriched in diogenites with respect to the general eucritic regolith dominating the equatorial region of Vesta. The signature of OH is particularly clear in the pitted floor, dark material, smooth unit, and ejecta. The pitted terrains, beside their appearance, also show thermal anomalies, being colder with respect to the surrounding terrains. The presence of OH, concentrated in darker layers, and the pitted crater floor indicate that the area where the Marcia impact event occurred was rich in volatiles. The results show how the relatively young impact events have modified the surface of Vesta, disrupting a layer of dark material once present on Vesta's equatorial terrain and exposing fresh, bright material rich in pyroxene.

  13. 36 CFR 7.2 - Crater Lake National Park.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Crater Lake National Park. 7.2 Section 7.2 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.2 Crater Lake National Park. (a)...

  14. Carbon Chemistry Of Giant Impacts

    OpenAIRE

    Abbott, Jennifer Ileana

    2000-01-01

    Impact diamonds were found in several impactites from the Ries crater, Germany including fallout and fallback (crater fill) suevites. a glass bomb, impact melt rock and shocked gneiss. These diamonds formed two distinct grain size populations: 50-300?m apographitic. platy aggregates with surface ornamentation and etching that were observed using optical and scanning electron microscopy and 5-20?m diamonds which displayed two different morphologies identified using transmission electron micros...

  15. Near-crater discoloration of white lead in wall paintings during laser induced breakdown spectroscopy analysis

    Science.gov (United States)

    Bruder, R.; L'Hermite, D.; Semerok, A.; Salmon, L.; Detalle, V.

    2007-12-01

    During Laser-Induced Breakdown Spectroscopy (LIBS) analysis of white lead pigment (basic lead carbonate, 2PbCO 3·Pb(OH) 2), used in wall paintings of historical interest, a yellow-brown discoloration has been observed around the crater. This phenomenon faded after a few days exposure under ambient atmosphere. It was established that the mechanism of this discoloration consists in lead oxides (PbO) formation. It was verified by further experiments under argon atmosphere that recombination of lead with oxygen in the plasma plume produces the oxides, which settle around the crater and induce this discoloration. The impact of discoloration on the artwork's aesthetic aspect and the role of atmosphere on discoloration attenuation are discussed. The mechanism is studied on three other pigments (malachite, Prussian blue and ultramarine blue) and threshold for discoloration occurrence is estimated.

  16. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    Science.gov (United States)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  17. The effect of craters on the lunar neutron flux

    Science.gov (United States)

    Eke, V. R.; Bower, K. E.; Diserens, S.; Ryder, M.; Yeomans, P. E. L.; Teodoro, L. F. A.; Elphic, R. C.; Feldman, W. C.; Hermalyn, B.; Lavelle, C. M.; Lawrence, D. J.

    2015-08-01

    The variation of remotely sensed neutron count rates is measured as a function of cratercentric distance using data from the Lunar Prospector Neutron Spectrometer. The count rate, stacked over many craters, peaks over the crater center, has a minimum near the crater rim, and at larger distances, it increases to a mean value that is up to 1% lower than the mean count rate observed over the crater. A simple model is presented, based upon an analytical topographical profile for the stacked craters fitted to data from the Lunar Orbiter Laser Altimeter. The effect of topography coupled with neutron beaming from the surface largely reproduces the observed count rate profiles. However, a model that better fits the observations can be found by including the additional freedom to increase the neutron emissivity of the crater area by ˜0.35% relative to the unperturbed surface. It is unclear what might give rise to this effect, but it may relate to additional surface roughness in the vicinities of craters. The amplitude of the crater-related signal in the neutron count rate is small, but not too small to demand consideration when inferring water-equivalent hydrogen (WEH) weight percentages in polar permanently shaded regions (PSRs). If the small crater-wide count rate excess is concentrated into a much smaller PSR, then it can lead to a large bias in the inferred WEH weight percentage. For instance, it may increase the inferred WEH for Cabeus crater at the Moon's south pole from ˜1% to ˜4%.

  18. Theory and experiments on centrifuge cratering

    Science.gov (United States)

    Schmidt, R. M.; Holsapple, K. A.

    1980-01-01

    Centrifuge experimental techniques provide possibilities for laboratory simulation of ground motion and cratering effects due to explosive loadings. The results of a similarity analysis for the thermomechanical response of a continuum show that increased gravity is a necessary condition for subscale testing when identical materials for both model and prototype are being used. The general similarity requirements for this type of subscale testing are examined both theoretically and experimentally. The similarity analysis is used to derive the necessary and sufficient requirements due to the general balance and jump equations and gives relations among all the scale factors for size, density, stress, body forces, internal energy, heat supply, heat conduction, heat of detonation, and time. Additional constraints due to specific choices of material constitutive equations are evaluated separately. The class of constitutive equations that add no further requirements is identified. For this class of materials, direct simulation of large-scale cratering events at small scale on the centrifuge is possible and independent of the actual constitutive equations. For a rate-independent soil it is shown that a small experiment at gravity g and energy E is similar to a large event at 1 G but with energy equal to g3E. Consequently, experiments at 500 G with 8 grams of explosives can be used to simulate a kiloton in the field. A series of centrifuge experiments was performed to validate the derived similarity requirements and to determine the practicality of applying the technique to dry granular soils having little or no cohesion. Ten shots using Ottawa sand at various gravities confirmed reproducibility of results in the centrifuge environment, provided information on particle size effects, and demonstrated the applicability of the derived similitude requirements. These experiments used 0.5-4 grams of pentaerythritol-tetranitrate (PETN) and 1.7 grams of lead-azide explosives. They

  19. Aqueous Alteration of Endeavour Crater Rim Apron Rocks

    Science.gov (United States)

    Ming, D. W.; Mittlefehldt, D. W.; Gellert, R.; Clark, B. C.; Morris, R. V.; Yen, A. S.; Arvidson, R. E.; Crumpler, L. S.; Farrand, W. H.; Grant, J. A., III; Jolliff, B. L.; Parker, T. J.; Peretyazhko, T.

    2014-12-01

    Mars Exploration Rover Opportunity is exploring Noachian age rocks of the rim of 22 km diameter Endeavour crater. Overlying the pre-impact lithologies and rim breccias is a thin apron of fine-grained sediments, the Grasberg fm, forming annuli on the lower slopes of rim segments. Hesperian Burns fm sandstones overly the Grasberg fm. Grasberg rocks have major element compositions that are distinct from Burns fm sandstones, especially when comparing interior compositions exposed by the Rock Abrasion Tool. Grasberg rocks are also different from Endeavour rim breccias, but have general compositional similarities to them. Grasberg sediments are plausibly fine-grained materials derived from the impact breccias. Veins of CaSO4 transect Grasberg fm rocks demonstrating post-formation aqueous alteration. Minor/trace elements show variations consistent with mobilization by aqueous fluids. Grasberg fm rocks have low Mn and high Fe/Mn ratios compared to the other lithologies. Manganese likely was mobilized and removed from the Grasberg host rock by redox reactions. We posit that Fe2+ from acidic solutions associated with formation of the Burns sulfate-rich sandstones acted as an electron donor to reduce more oxidized Mn to Mn2+. The Fe contents of Grasberg rocks are slightly higher than in other rocks suggesting precipitation of Fe phases in Grasberg materials. Pancam spectra show that Grasberg rocks have a higher fraction of ferric oxide minerals than other Endeavour rim rocks. Solutions transported Mn2+ into the Endeavour rim materials and oxidized and/or precipitated it in them. Grasberg has higher contents of the mobile elements K, Zn, Cl, and Br compared to the rim materials. Similar enrichments of mobile elements were measured by the Spirit APXS on West Spur and around Home Plate in Gusev crater. Enhancements in these elements are attributed to interactions of hydrothermal acidic fluids with the host rocks. Interactions of fluids with the Grasberg fm postdate the genesis

  20. Two Different Supply Styles of Crater Outflow Materials on Venus Inferred from Numerical Simulations over DEMs

    Science.gov (United States)

    Miyamoto, Hideaki; Sasaki, Sho

    2000-06-01

    The three-dimensional numerical simulation code for nonisothermal Bingham fluid was applied to four typical crater outflows on Venus to estimate emplacement styles of outflow materials. We have succeeded in reproducing emplacement features qualitatively over digital elevation models (DEMs) obtained by the Magellan spacecraft, and we have shown that outflow materials can be formed by melts of basaltic crust. Therefore, the presence of crater outflows may not be evidence of the presence of previously suggested fluid materials, such as komatiite or carbonatite, although we failed to model the very low viscosity flow. Numerically estimated supply rates of flow materials are categorized into two types, a catastrophic style and a gentle style. Markham and Isabella crater outflows are examples of catastrophic styles, and the flow materials required to form them were probably supplied at higher rates than 10 10 m 3/s and the durations of material supply were less than 100 s. This very high supply rate is difficult to attribute to any volcanic process because typical eruption rates of terrestrial volcanic flows are less than 8 or 9 orders of magnitude lower than that. Such a style of emplacement is more plausibly considered as a result of the impact itself, for example, a catastrophic debris flow or a vapor cloud triggered by the impact. On the other hand, supply rates of Willard and Xantippe outflows, which are considered gentle-style flows, were estimated to be about 10 4 m 3/s and the durations were more than 10 5 s. Such a gentle style of outflow emplacement is probably not a direct result of the impact but is rather due to a secondary process, possibly segregation and drainage of impact melt materials from within previously emplaced ejecta materials, or post-impact volcanism.