WorldWideScience

Sample records for chesapeake bay water

  1. DEVELOP Chesapeake Bay Watershed Hydrology - UAV Sensor Web

    Science.gov (United States)

    Holley, S. D.; Baruah, A.

    2008-12-01

    The Chesapeake Bay is the largest estuary in the United States, with a watershed extending through six states and the nation's capital. Urbanization and agriculture practices have led to an excess runoff of nutrients and sediment into the bay. Nutrients and sediment loading stimulate the growth of algal blooms associated with various problems including localized dissolved oxygen deficiencies, toxic algal blooms and death of marine life. The Chesapeake Bay Program, among other stakeholder organizations, contributes greatly to the restoration efforts of the Chesapeake Bay. These stakeholders contribute in many ways such as monitoring the water quality, leading clean-up projects, and actively restoring native habitats. The first stage of the DEVELOP Chesapeake Bay Coastal Management project, relating to water quality, contributed to the restoration efforts by introducing NASA satellite-based water quality data products to the stakeholders as a complement to their current monitoring methods. The second stage, to be initiated in the fall 2008 internship term, will focus on the impacts of land cover variability within the Chesapeake Bay Watershed. Multiple student led discussions with members of the Land Cover team at the Chesapeake Bay Program Office in the DEVELOP GSFC 2008 summer term uncovered the need for remote sensing data for hydrological mapping in the watershed. The Chesapeake Bay Program expressed in repeated discussions on Land Cover mapping that significant portions of upper river areas, streams, and the land directly interfacing those waters are not accurately depicted in the watershed model. Without such hydrological mapping correlated with land cover data the model will not be useful in depicting source areas of nutrient loading which has an ecological and economic impact in and around the Chesapeake Bay. The fall 2008 DEVELOP team will examine the use of UAV flown sensors in connection with in-situ and Earth Observation satellite data. To maximize the

  2. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Science.gov (United States)

    2010-03-12

    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY...: Notice of availability of program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The... through the Chesapeake Bay Watershed Initiative for agricultural producers in the Chesapeake Bay watershed...

  3. Defining a data management strategy for USGS Chesapeake Bay studies

    Science.gov (United States)

    Ladino, Cassandra

    2013-01-01

    The mission of U.S. Geological Survey’s (USGS) Chesapeake Bay studies is to provide integrated science for improved understanding and management of the Chesapeake Bay ecosystem. Collective USGS efforts in the Chesapeake Bay watershed began in the 1980s, and by the mid-1990s the USGS adopted the watershed as one of its national place-based study areas. Great focus and effort by the USGS have been directed toward Chesapeake Bay studies for almost three decades. The USGS plays a key role in using “ecosystem-based adaptive management, which will provide science to improve the efficiency and accountability of Chesapeake Bay Program activities” (Phillips, 2011). Each year USGS Chesapeake Bay studies produce published research, monitoring data, and models addressing aspects of bay restoration such as, but not limited to, fish health, water quality, land-cover change, and habitat loss. The USGS is responsible for collaborating and sharing this information with other Federal agencies and partners as described under the President’s Executive Order 13508—Strategy for Protecting and Restoring the Chesapeake Bay Watershed signed by President Obama in 2009. Historically, the USGS Chesapeake Bay studies have relied on national USGS databases to store only major nationally available sources of data such as streamflow and water-quality data collected through local monitoring programs and projects, leaving a multitude of other important project data out of the data management process. This practice has led to inefficient methods of finding Chesapeake Bay studies data and underutilization of data resources. Data management by definition is “the business functions that develop and execute plans, policies, practices and projects that acquire, control, protect, deliver and enhance the value of data and information.” (Mosley, 2008a). In other words, data management is a way to preserve, integrate, and share data to address the needs of the Chesapeake Bay studies to better

  4. 33 CFR 334.310 - Chesapeake Bay, Lynnhaven Roads; navy amphibious training area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. 334.310 Section 334.310 Navigation and Navigable Waters CORPS OF....310 Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. (a) The restricted area. Beginning...

  5. Chesapeake Bay plume dynamics from LANDSAT

    Science.gov (United States)

    Munday, J. C., Jr.; Fedosh, M. S.

    1981-01-01

    LANDSAT images with enhancement and density slicing show that the Chesapeake Bay plume usually frequents the Virginia coast south of the Bay mouth. Southwestern (compared to northern) winds spread the plume easterly over a large area. Ebb tide images (compared to flood tide images) show a more dispersed plume. Flooding waters produce high turbidity levels over the shallow northern portion of the Bay mouth.

  6. Long-term trends in submersed aquatic vegetation (SAV) in Chesapeake Bay, USA, related to water quality

    Science.gov (United States)

    Orth, Robert J.; Williams, Michael R.; Marion, Scott R.; Wilcox, David J.; Carruthers, Tim J.B.; Moore, Kenneth A.; Kemp, W.M.; Dennison, William C.; Rybicki, Nancy B.; Peter Bergstrom,; Batiuk, Richard A.

    2010-01-01

    Chesapeake Bay supports a diverse assemblage of marine and freshwater species of submersed aquatic vegetation (SAV) whose broad distributions are generally constrained by salinity. An annual aerial SAV monitoring program and a bi-monthly to monthly water quality monitoring program have been conducted throughout Chesapeake Bay since 1984. We performed an analysis of SAV abundance and up to 22 environmental variables potentially influencing SAV growth and abundance (1984-2006). Historically, SAV abundance has changed dramatically in Chesapeake Bay, and since 1984, when SAV abundance was at historic low levels, SAV has exhibited complex changes including long-term (decadal) increases and decreases, as well as some large, single-year changes. Chesapeake Bay SAV was grouped into three broad-scale community-types based on salinity regime, each with their own distinct group of species, and detailed analyses were conducted on these three community-types as well as on seven distinct case-study areas spanning the three salinity regimes. Different trends in SAVabundance were evident in the different salinity regimes. SAV abundance has (a) continually increased in the low-salinity region; (b) increased initially in the medium-salinity region, followed by fluctuating abundances; and (c) increased initially in the high-salinity region, followed by a subsequent decline. In all areas, consistent negative correlations between measures of SAV abundance and nitrogen loads or concentrations suggest that meadows are responsive to changes in inputs of nitrogen. For smaller case-study areas, different trends in SAV abundance were also noted including correlations to water clarity in high-salinity case-study areas, but nitrogen was highly correlated in all areas. Current maximum SAV coverage for almost all areas remain below restoration targets, indicating that SAV abundance and associated ecosystem services are currently limited by continued poor water quality, and specifically high

  7. Spill management strategy for the Chesapeake Bay

    International Nuclear Information System (INIS)

    Butler, H.L.; Chapman, R.S.; Johnson, B.H.

    1990-01-01

    The Chesapeake Bay Program is a unique cooperative effort between state and Federal agencies to restore the health and productivity of America's largest estuary. To assist in addressing specific management issues, a comprehensive three-dimensional, time-varying hydrodynamic and water quality model has ben developed. The Bay modeling strategy will serve as an excellent framework for including submodules to predict the movement, dispersion, and weathering of accidental spills, such as for petroleum products or other chemicals. This paper presents sample results from the Bay application to illustrate the success of the model system in simulating Bay processes. Also, a review of model requirements for successful spill modeling in Chesapeake Bay is presented. Recommendations are given for implementing appropriate spill modules with the Bay model framework and establishing a strategy for model use in addressing management issues

  8. Are the Chesapeake Bay waters warming up

    International Nuclear Information System (INIS)

    Brady, D.K.

    1976-01-01

    Apparently significant trends within moderately long (50-year) series of meteorological or hydrological data should be regarded with suspicion until justified on the basis of much longer term information. Extra efforts should be directed toward securing the continuance of routine observations at stations where long data histories are already available and where the termination of such records might be regretted at some future time. Mean annual air and water temperatures at different sites may be quite highly correlated even when the points of measurement are very widely separated. The annual average water temperature at one station close to the Chesapeake Bay appears to be normally distributed with a standard deviation of 0.7 0 C about a stationary overall mean value of 14.6 0 C. Its 1000-year departure is +- 2.2 0 C

  9. Chesapeake Bay baseline data acquisition, toxics in the Chesapeake Bay. Final preliminary report, 1946-78

    International Nuclear Information System (INIS)

    1978-07-01

    This report identifies researchers, research activities, and data files applicable to the Chesapeake Bay estuarine system. The identified data were generated after 1973 on the following: submerged aquatic vegetation, shellfish bed closures, eutrophication, toxics accumulation in the food chain, dredging and spoil disposal, hydrologic modifications, modification of fisheries, shoreline erosion, wetlands alterations, and the effects of boating and shipping on water quality. Major past and current program monitoring in the Bay and its tributaries are summarized according to frequency

  10. Changes in Stream Water Temperatures in the Chesapeake Bay Region, 1960-2014

    Science.gov (United States)

    This map shows the changes in stream water temperatures in the Chesapeake Bay region from 1960 to 2014. Blue circles represent cooling trends in stream water temperatures, and red circles represent warming trends in stream water temperatures. Data were analyzed by Mike Kolian of EPA in partnership with John Jastram and Karen Rice of the U.S. Geological Survey. For more information: www.epa.gov/climatechange/science/indicators

  11. Chesapeake Bay under stress

    Science.gov (United States)

    According to extensive data obtained over its 13,000 km of shoreline, the Chesapeake Bay has been suffering a major, indeed unprecedented, reduction in submerged vegetation. Chesapeake Bay is alone in experiencing decline in submerged vegetation. Other estuary systems on the east coast of the United States are not so affected. These alarming results were obtained by the synthesis of the findings of numerous individual groups in addition to large consortium projects on the Chesapeake done over the past decade. R. J. Orth and R. A. Moore of the Virginia Institute of Marine Science pointed to the problem of the severe decline of submerged grasses on the Bay and along its tributaries. In a recent report, Orth and Moore note: “The decline, which began in the 1960's and accelerated in the 1970's, has affected all species in all areas. Many major river systems are now totally devoid of any rooted vegetation” (Science, 222, 51-53, 1983).

  12. Trends in Surface-Water Nitrate-N Concentrations and Loads from Predominantly-Forested Watersheds of the Chesapeake Bay Basin

    Science.gov (United States)

    Eshleman, K. N.

    2011-12-01

    Water quality monitoring data from streams and rivers provide the "gold standard" by which progress toward achieving real reductions in nutrient loadings to Chesapeake Bay must ultimately be assessed. The most recent trend results posted at the Chesapeake Bay Program (CBP) website reveal that a substantial percentage of tributaries are now showing long-term declines in flow-adjusted concentrations of nutrients and sediments: 22 sites showed statistically significant (p pollution controls for improved wastewater treatment plants and practices to reduce nutrients on farms and suburban lands, have reduced concentrations of nitrogen." But could this conclusion be pre-mature? I recently undertook a comparable analysis of long-term nitrate-N trends for a different group of watersheds (all located in the Chesapeake Bay watershed with long data records); this group includes nine watersheds that are predominantly (i.e., >75%) forested, plus five other Potomac River subwatersheds added for comparison. Based on comparable data and analytical methods to those used by CBP partners and USGS, 13 of the 14 sites-including both Potomac River stations (Chain Bridge at Washington DC and Hancock, Maryland)-showed statistically significant decreasing linear trends in annual flow-weighted nitrate-N concentration. Only one station-the heavily agricultural Upper Monocacy River-did not show a statistically significant (p RIM station could be entirely explained by commensurate improvements at the upstream (Hancock) station; in fact, no trend in nitrate-N concentration associated with the eastern portion of the basin was found (after subtracting out the influence of the upstream portion). Additional research is needed to understand why nitrogen retention by forested lands may be increasing and thus helping restore water quality throughout the Chesapeake Bay watershed. The results also have obvious implications for meeting local water quality goals as well as the basin-wide goal of the

  13. Submersed aquatic vegetation in Chesapeake Bay: Sentinel species in a changing world

    Science.gov (United States)

    Orth, Robert J.; Dennison, William C.; Lefcheck, Jonathon S.; Gurbisz, Cassie; Hannam, Michael; Keisman, Jennifer; Landry, J. Brooke; Moore, Kenneth A.; Murphy, Rebecca R.; Patrick, Christopher J.; Testa, Jeremy; Weller, Donald E.; Wilcox, David J.

    2017-01-01

    Chesapeake Bay has undergone profound changes since European settlement. Increases in human and livestock populations, associated changes in land use, increases in nutrient loadings, shoreline armoring, and depletion of fish stocks have altered the important habitats within the Bay. Submersed aquatic vegetation (SAV) is a critical foundational habitat and provides numerous benefits and services to society. In Chesapeake Bay, SAV species are also indicators of environmental change because of their sensitivity to water quality and shoreline development. As such, SAV has been deeply integrated into regional regulations and annual assessments of management outcomes, restoration efforts, the scientific literature, and popular media coverage. Even so, SAV in Chesapeake Bay faces many historical and emerging challenges. The future of Chesapeake Bay is indicated by and contingent on the success of SAV. Its persistence will require continued action, coupled with new practices, to promote a healthy and sustainable ecosystem.

  14. 33 CFR 165.500 - Safety/Security Zones; Chesapeake Bay, Maryland.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety/Security Zones; Chesapeake... HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS... Safety/Security Zones; Chesapeake Bay, Maryland. (a) Definitions. (1) Certain Dangerous Cargo (CDC) means...

  15. Robust Decision Making to Support Water Quality Climate Adaptation: a Case Study in the Chesapeake Bay Watershed

    Science.gov (United States)

    Fischbach, J. R.; Lempert, R. J.; Molina-Perez, E.

    2017-12-01

    The U.S. Environmental Protection Agency (USEPA), together with state and local partners, develops watershed implementation plans designed to meet water quality standards. Climate uncertainty, along with uncertainty about future land use changes or the performance of water quality best management practices (BMPs), may make it difficult for these implementation plans to meet water quality goals. In this effort, we explored how decision making under deep uncertainty (DMDU) methods such as Robust Decision Making (RDM) could help USEPA and its partners develop implementation plans that are more robust to future uncertainty. The study focuses on one part of the Chesapeake Bay watershed, the Patuxent River, which is 2,479 sq km in area, highly urbanized, and has a rapidly growing population. We simulated the contribution of stormwater contaminants from the Patuxent to the overall Total Maximum Daily Load (TMDL) for the Chesapeake Bay under multiple scenarios reflecting climate and other uncertainties. Contaminants considered included nitrogen, phosphorus, and sediment loads. The assessment included a large set of scenario simulations using the USEPA Chesapeake Bay Program's Phase V watershed model. Uncertainties represented in the analysis included 18 downscaled climate projections (based on 6 general circulation models and 3 emissions pathways), 12 land use scenarios with different population projections and development patterns, and alternative assumptions about BMP performance standards and efficiencies associated with different suites of stormwater BMPs. Finally, we developed cost estimates for each of the performance standards and compared cost to TMDL performance as a key tradeoff for future water quality management decisions. In this talk, we describe how this research can help inform climate-related decision support at USEPA's Chesapeake Bay Program, and more generally how RDM and other DMDU methods can support improved water quality management under climate

  16. Spatial and temporal distribution of two diazotrophic bacteria in the Chesapeake Bay.

    Science.gov (United States)

    Short, Steven M; Jenkins, Bethany D; Zehr, Jonathan P

    2004-04-01

    The aim of this study was to initiate autecological studies on uncultivated natural populations of diazotrophic bacteria by examining the distribution of specific diazotrophs in the Chesapeake Bay. By use of quantitative PCR, the abundance of two nifH sequences (907h22 and 912h4) was quantified in water samples collected along a transect from the head to the mouth of the Chesapeake Bay during cruises in April and October 2001 and 2002. Standard curves for the quantitative PCR assays demonstrated that the relationship between gene copies and cycle threshold was linear and highly reproducible from 1 to 10(7) gene copies. The maximum number of 907h22 gene copies detected was approximately 140 ml(-1) and the maximum number of 912h4 gene copies detected was approximately 340 ml(-1). Sequence 912h4 was most abundant at the mouth of the Chesapeake Bay, and in general, its abundance increased with increasing salinity, with the highest abundances observed in April 2002. Overall, the 907h22 phylotype was most abundant at the mid-bay station. Additionally, 907h22 was most abundant in the April samples from the mid-bay and mouth of the Chesapeake Bay. Despite the fact that the Chesapeake Bay is rarely nitrogen limited, our results show that individual nitrogen-fixing bacteria have distinct nonrandom spatial and seasonal distributions in the Chesapeake Bay and are either distributed by specific physical processes or adapted to different environmental niches.

  17. 33 CFR 334.370 - Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base. 334.370 Section 334.370 Navigation and Navigable Waters CORPS... REGULATIONS § 334.370 Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base. (a...

  18. U.S. Geological Survey Science—Improving the value of the Chesapeake Bay watershed

    Science.gov (United States)

    Phillips, Scott W.; Hyer, Kenneth; Goldbaum, Elizabeth

    2017-05-05

    IntroductionCongress directed the Federal Government to work with States to restore the Nation’s largest estuary.Chesapeake Bay restoration provides important economic and ecological benefits:18 million people live and work in the Bay watershed and enjoy its benefits.3,600 types of fish, wildlife, and plants underpin the economic value of the Bay ecosystem.Poor water quality and habitat loss threaten restoration and negatively impact the economy.10 Goals to meet by 2025 through the Chesapeake Bay Program, a voluntary partnership.

  19. Chesapeake Bay impact structure: A blast from the past

    Science.gov (United States)

    Powars, David S.; Edwards, Lucy E.; Gohn, Gregory S.; Horton, J. Wright

    2015-10-28

    About 35 million years ago, a 2-mile-wide meteorite smashed into Earth in what is now the lower Chesapeake Bay in Virginia. The oceanic impact vaporized, melted, fractured, and displaced rocks and sediments and sent billions of tons of water, sediments, and rocks into the air. Glassy particles of solidified melt rock rained down as far away as Texas and the Caribbean. Large tsunamis affected most of the North Atlantic basin. The resulting impact structure is more than 53 miles wide and has a 23-mile-wide, filled central crater surrounded by collapsed sediments. Now buried by hundreds of feet of younger sediments, the Chesapeake Bay impact structure is among the 20 largest known impact structures on Earth.

  20. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    Science.gov (United States)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  1. Production and Field Planting of Vegetative Propagules for Restoration of Redhead Grass and Sago Pondweed in Chesapeake Bay

    Science.gov (United States)

    2009-08-01

    submerged aquatic vegetation (SAV) have been lost from shallow waters of Chesapeake Bay (Orth and Moore 1983) and other coastal ecosystems worldwide...a mixture of ambient estuarine water from the Choptank River (a tributary of Chesapeake Bay) and freshwater (tap) needed to maintain a salinity of 7...with a mixture of freshwater and ambient estuarine water (to maintain a salinity of 10) that was circulated through a closed- loop recirculation system

  2. Lowering Barriers to Achieving Multiple Environmental Goals in the Chesapeake Bay

    Science.gov (United States)

    In recognition of past unsuccessful restoration strategies for the Chesapeake Bay, President Obama signed Executive Order (EO) 13508 “Strategy for Protecting and Restoring the Chesapeake Bay Watershed” in 2009.

  3. Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed-An empirical model

    Science.gov (United States)

    Ator, Scott W.; Brakebill, John W.; Blomquist, Joel D.

    2011-01-01

    Spatially Referenced Regression on Watershed Attributes (SPARROW) was used to provide empirical estimates of the sources, fate, and transport of total nitrogen (TN) and total phosphorus (TP) in the Chesapeake Bay watershed, and the mean annual TN and TP flux to the bay and in each of 80,579 nontidal tributary stream reaches. Restoration efforts in recent decades have been insufficient to meet established standards for water quality and ecological conditions in Chesapeake Bay. The bay watershed includes 166,000 square kilometers of mixed land uses, multiple nutrient sources, and variable hydrogeologic, soil, and weather conditions, and bay restoration is complicated by the multitude of nutrient sources and complex interacting factors affecting the occurrence, fate, and transport of nitrogen and phosphorus from source areas to streams and the estuary. Effective and efficient nutrient management at the regional scale in support of Chesapeake Bay restoration requires a comprehensive understanding of the sources, fate, and transport of nitrogen and phosphorus in the watershed, which is only available through regional models. The current models, Chesapeake Bay nutrient SPARROW models, version 4 (CBTN_v4 and CBTP_v4), were constructed at a finer spatial resolution than previous SPARROW models for the Chesapeake Bay watershed (versions 1, 2, and 3), and include an updated timeframe and modified sources and other explantory terms.

  4. Organic Matter Remineralization Predominates Phosphorus Cycling in the Mid-Bay Sediments in the Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Sunendra, Joshi R.; Kukkadapu, Ravi K.; Burdige, David J.; Bowden, Mark E.; Sparks, Donald L.; Jaisi, Deb P.

    2015-05-19

    The Chesapeake Bay, the largest and most productive estuary in the US, suffers from varying degrees of water quality issues fueled by both point and non–point source nutrient sources. Restoration of the bay is complicated by the multitude of nutrient sources, their variable inputs and hydrological conditions, and complex interacting factors including climate forcing. These complexities not only restrict formulation of effective restoration plans but also open up debates on accountability issues with nutrient loading. A detailed understanding of sediment phosphorus (P) dynamics enables one to identify the exchange of dissolved constituents across the sediment- water interface and aid to better constrain mechanisms and processes controlling the coupling between the sediments and the overlying waters. Here we used phosphate oxygen isotope ratios (δ18Op) in concert with sediment chemistry, XRD, and Mössbauer spectroscopy on the sediment retrieved from an organic rich, sulfidic site in the meso-haline portion of the mid-bay to identify sources and pathway of sedimentary P cycling and to infer potential feedback effect on bottom water hypoxia and surface water eutrophication. Isotope data indicate that the regeneration of inorganic P from organic matter degradation (remineralization) is the predominant, if not sole, pathway for authigenic P precipitation in the mid-bay sediments. We interpret that the excess inorganic P generated by remineralization should have overwhelmed any bottom-water and/or pore-water P derived from other sources or biogeochemical processes and exceeded saturation with respect to authigenic P precipitation. It is the first research that identifies the predominance of remineralization pathway against remobilization (coupled Fe-P cycling) pathway in the Chesapeake Bay. Therefore, these results are expected to have significant implications for the current understanding of P cycling and benthic-pelagic coupling in the bay, particularly on the

  5. Willingness to Pay Survey for Chesapeake Bay Total Maximum Daily Load

    Science.gov (United States)

    A stated preference survey to collect data on households’ use of Chesapeake Bay and its watershed, and of their preferences for a variety of water quality improvements likely to follow from pollution reduction programs.

  6. Understanding nutrients in the Chesapeake Bay watershed and implications for management and restoration: the Eastern Shore

    Science.gov (United States)

    Ator, Scott W.; Denver, Judith M.

    2015-03-12

    The Eastern Shore includes only a small part of the Chesapeake Bay watershed, but contributes disproportionately large loads of the excess nitrogen and phosphorus that have contributed to ecological and economic degradation of the bay in recent decades. Chesapeake Bay is the largest estuary in the United States and a vital ecological and economic resource. The bay and its tributaries have been degraded in recent decades by excessive nitrogen and phosphorus in the water column, however, which cause harmful algal blooms and decreased water clarity, submerged aquatic vegetation, and dissolved oxygen. The disproportionately large nitrogen and phosphorus yields from the Eastern Shore to Chesapeake Bay are attributable to human land-use practices as well as natural hydrogeologic and soil conditions. Applications of nitrogen and phosphorus compounds to the Eastern Shore from human activities are intensive. More than 90 percent of nitrogen and phosphorus reaching the land in the Eastern Shore is applied as part of inorganic fertilizers or manure, or (for nitrogen) fixed directly from the atmosphere in cropland. Also, hydrogeologic and soil conditions promote the movement of these compounds from application areas on the landscape to groundwater and (or) surface waters, and the proximity of much of the Eastern Shore to tidal waters limits opportunities for natural removal of these compounds in the landscape. The Eastern Shore only includes 7 percent of the Chesapeake Bay watershed, but receives nearly twice as much nitrogen and phosphorus applications (per area) as the remainder of the watershed and yields greater nitrogen and phosphorus, on average, to the bay. Nitrogen and phosphorus commonly occur in streams at concentrations that may adversely affect aquatic ecosystems and have increased in recent decades.

  7. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay

    Science.gov (United States)

    Irby, Isaac D.; Friedrichs, Marjorie A. M.; Da, Fei; Hinson, Kyle E.

    2018-05-01

    The Chesapeake Bay region is projected to experience changes in temperature, sea level, and precipitation as a result of climate change. This research uses an estuarine-watershed hydrodynamic-biogeochemical modeling system along with projected mid-21st-century changes in temperature, freshwater flow, and sea level rise to explore the impact climate change may have on future Chesapeake Bay dissolved-oxygen (DO) concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements. Results indicate that warming bay waters will decrease oxygen solubility year-round, while also increasing oxygen utilization via respiration and remineralization, primarily impacting bottom oxygen in the spring. Rising sea level will increase estuarine circulation, reducing residence time in bottom waters and increasing stratification. As a result, oxygen concentrations in bottom waters are projected to increase, while oxygen concentrations at mid-depths (3 < DO < 5 mg L-1) will typically decrease. Changes in precipitation are projected to deliver higher winter and spring freshwater flow and nutrient loads, fueling increased primary production. Together, these multiple climate impacts will lower DO throughout the Chesapeake Bay and negatively impact progress towards meeting water quality standards associated with the Chesapeake Bay Total Maximum Daily Load. However, this research also shows that the potential impacts of climate change will be significantly smaller than improvements in DO expected in response to the required nutrient reductions, especially at the anoxic and hypoxic levels. Overall, increased temperature exhibits the strongest control on the change in future DO concentrations, primarily due to decreased solubility, while sea level rise is expected to exert a small positive impact and increased winter river flow is anticipated to exert a small negative impact.

  8. Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay.

    Science.gov (United States)

    Du, Jiabi; Shen, Jian; Park, Kyeong; Wang, Ya Ping; Yu, Xin

    2018-07-15

    There are increasing concerns about the impact of worsened physical condition on hypoxia in a variety of coastal systems, especially considering the influence of changing climate. In this study, an EOF analysis of the DO data for 1985-2012, a long-term numerical simulation of vertical exchange, and statistical analysis were applied to understand the underlying mechanisms for the variation of DO condition in Chesapeake Bay. Three types of analysis consistently demonstrated that both biological and physical conditions contribute equally to seasonal and interannual variations of the hypoxic condition in Chesapeake Bay. We found the physical condition (vertical exchange+temperature) determines the spatial and seasonal pattern of the hypoxia in Chesapeake Bay. The EOF analysis showed that the first mode, which was highly related to the physical forcings and correlated with the summer hypoxia volume, can be well explained by seasonal and interannual variations of physical variables and biological activities, while the second mode is significantly correlated with the estuarine circulation and river discharge. The weakened vertical exchange and increased water temperature since the 1980s demonstrated a worsened physical condition over the past few decades. Under changing climate (e.g., warming, accelerated sea-level rise, altered precipitation and wind patterns), Chesapeake Bay is likely to experience a worsened physical condition, which will amplify the negative impact of anthropogenic inputs on eutrophication and consequently require more efforts for nutrient reduction to improve the water quality condition in Chesapeake Bay. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Chesapeake Bay recovery and factors affecting trends: Long-termmonitoring, indicators, and insights

    Science.gov (United States)

    Tango, Peter J.; Batiuk, Richard A.

    2016-01-01

    Monitoring the outcome of restoration efforts is the only way to identify the status of a recovery and the most effective management strategies. In this paper, we discuss Chesapeake Bay and watershed recovery and factors influencing water quality trends. For over 30 years, the Chesapeake Bay Program Partnership’s long-term tidal and watershed water quality monitoring networks have measured physical, chemical and biological parameters throughout the bay and its surrounding watershed underpinning an adaptive management process to drive ecosystem recovery. There are many natural and anthropogenic factors operating and interacting to affect the watershed and bay water quality recovery responses to management actions. Across habitats and indicators, the bay and its watershed continue to express a diverse spatial and temporal fabric of multiscale conditions, stressors and trends that show a range of health conditions and impairments, as well as evidence of progress and degradation. Recurrent independent reviews of the monitoring program have driven a culture of continued adaptation of the monitoring networks to reflect ever evolving management information needs. The adherence to bay and watershed-wide consistent monitoring protocols provides monitoring data supporting analyses and development of scientific syntheses that underpin indicator and model development, regulatory assessments, targeting of management actions, evaluation of management effectiveness, and directing of priorities and policies.

  10. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay

    Directory of Open Access Journals (Sweden)

    I. D. Irby

    2018-05-01

    Full Text Available The Chesapeake Bay region is projected to experience changes in temperature, sea level, and precipitation as a result of climate change. This research uses an estuarine-watershed hydrodynamic–biogeochemical modeling system along with projected mid-21st-century changes in temperature, freshwater flow, and sea level rise to explore the impact climate change may have on future Chesapeake Bay dissolved-oxygen (DO concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements. Results indicate that warming bay waters will decrease oxygen solubility year-round, while also increasing oxygen utilization via respiration and remineralization, primarily impacting bottom oxygen in the spring. Rising sea level will increase estuarine circulation, reducing residence time in bottom waters and increasing stratification. As a result, oxygen concentrations in bottom waters are projected to increase, while oxygen concentrations at mid-depths (3 < DO < 5 mg L−1 will typically decrease. Changes in precipitation are projected to deliver higher winter and spring freshwater flow and nutrient loads, fueling increased primary production. Together, these multiple climate impacts will lower DO throughout the Chesapeake Bay and negatively impact progress towards meeting water quality standards associated with the Chesapeake Bay Total Maximum Daily Load. However, this research also shows that the potential impacts of climate change will be significantly smaller than improvements in DO expected in response to the required nutrient reductions, especially at the anoxic and hypoxic levels. Overall, increased temperature exhibits the strongest control on the change in future DO concentrations, primarily due to decreased solubility, while sea level rise is expected to exert a small positive impact and increased winter river flow is anticipated to exert a small negative impact.

  11. The Lower Chesapeake Bay LTAR: A coastal urban-agricultural region

    Science.gov (United States)

    Mccarty, G.; Alfieri, J. G.; Cavigelli, M.; Cosh, M. H.; Hapeman, C. J.; Kustas, W. P.; Maul, J.; Mirsky, S.; Pooler, M.; Sadeghi, A. M.; Schomberg, H.; Timlin, D. J.; Rice, C. P.

    2015-12-01

    The Chesapeake Bay, located in the mid-Atlantic region of the U.S., is the largest estuary in North America. The watershed area includes six states from New York to Virginia and is nearly 167,000 km2 in size with more than 150 rivers and streams entering the 300-km Bay main stem. Forested and agricultural lands make up 58 and 22 percent of the land use, respectively. Nearly 9 percent is urban and suburban use, and the watershed is home to over 17 million people. However, the population is expected to reach 19 million by 2025, raising the potential for conflict between the agricultural and urban communities over land and water use and in protecting natural resources, especially in the lower portion of the Chesapeake Bay watershed. The Lower Chesapeake Bay study area, part of the USDA-ARS Long-Term Agroecosystem Research (LTAR) network, will provide much-needed data to support decisions at this critical agriculture-urban interface. Current long-term projects seek to assess the economic, production, and environmental performance of conventional and organic cropping systems and to evaluate the resilience of these systems to climate change. Large-scale studies are being conducted to examine the effects of land-use and landscape characteristics on ecosystem services and on energy, water, nutrient, carbon, and pest dynamics within watersheds. New in-situ measurement and remote sensor technologies are being considered with the expectancy that the data streams will be available on-line and for use in modeling. Results and outcomes of these research efforts will greatly benefit the national LTAR network and will be applicable to other US coastal urban-agricultural regions.

  12. Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery.

    Science.gov (United States)

    Rick, Torben C; Reeder-Myers, Leslie A; Hofman, Courtney A; Breitburg, Denise; Lockwood, Rowan; Henkes, Gregory; Kellogg, Lisa; Lowery, Darrin; Luckenbach, Mark W; Mann, Roger; Ogburn, Matthew B; Southworth, Melissa; Wah, John; Wesson, James; Hines, Anson H

    2016-06-07

    Estuaries around the world are in a state of decline following decades or more of overfishing, pollution, and climate change. Oysters (Ostreidae), ecosystem engineers in many estuaries, influence water quality, construct habitat, and provide food for humans and wildlife. In North America's Chesapeake Bay, once-thriving eastern oyster (Crassostrea virginica) populations have declined dramatically, making their restoration and conservation extremely challenging. Here we present data on oyster size and human harvest from Chesapeake Bay archaeological sites spanning ∼3,500 y of Native American, colonial, and historical occupation. We compare oysters from archaeological sites with Pleistocene oyster reefs that existed before human harvest, modern oyster reefs, and other records of human oyster harvest from around the world. Native American fisheries were focused on nearshore oysters and were likely harvested at a rate that was sustainable over centuries to millennia, despite changing Holocene climatic conditions and sea-level rise. These data document resilience in oyster populations under long-term Native American harvest, sea-level rise, and climate change; provide context for managing modern oyster fisheries in the Chesapeake Bay and elsewhere around the world; and demonstrate an interdisciplinary approach that can be applied broadly to other fisheries.

  13. Large-Scale Submerged Aquatic Vegetation Restoration in Chesapeake Bay: Status Report, 2003-2006

    National Research Council Canada - National Science Library

    Shafer, Deborah J; Bergstrom, Peter

    2008-01-01

    ...) in the Chesapeake Bay region. The effort employed an agricultural approach to restore under-water grasses by using seeds to produce new plants and mechanical equipment to plant seeds and harvest...

  14. 75 FR 54771 - Safety Zone; Thunder on the Bay, Chesapeake Bay, Buckroe Beach Park, Hampton, VA

    Science.gov (United States)

    2010-09-09

    ... navigable waters of the Chesapeake Bay within the area bounded by a 210-foot radius circle centered on... are technical standards (e.g., specifications of materials, performance, design, or operation; test... cumulatively have a significant effect on the human environment. This rule is categorically excluded, under...

  15. 33 CFR 165.505 - Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland. 165.505 Section 165.505 Navigation and... Areas Fifth Coast Guard District § 165.505 Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake...

  16. Radiocarbon dating, chronologic framework, and changes in accumulation rates of holocene estuarine sediments from Chesapeake Bay

    Science.gov (United States)

    Colman, Steven M.; Baucom, P.C.; Bratton, J.F.; Cronin, T. M.; McGeehin, J.P.; Willard, D.; Zimmerman, A.R.; Vogt, P.R.

    2002-01-01

    Rapidly accumulating Holocene sediments in estuaries commonly are difficult to sample and date. In Chesapeake Bay, we obtained sediment cores as much as 20 m in length and used numerous radiocarbon ages measured by accelarator mass spectrometry methods to provide the first detailed chronologies of Holocene sediment accumulation in the bay. Carbon in these sediments is a complex mixture of materials from a variety of sources. Analyses of different components of the sediments show that total organic carbon ages are largely unreliable, because much of the carbon (including coal) has been transported to the bay from upstream sources and is older than sediments in which it was deposited. Mollusk shells (clams, oysters) and foraminifera appear to give reliable results, although reworking and burrowing are potential problems. Analyses of museum specimens collected alive before atmospheric nuclear testing suggest that the standard reservoir correction for marine samples is appropriate for middle to lower Chesapeake Bay. The biogenic carbonate radiocarbon ages are compatible with 210 Pb and 137 Cs data and pollen stratigraphy from the same sites. Post-settlement changes in sediment transport and accumulation is an important environmental issue in many estuaries, including the Chesapeake. Our data show that large variations in sediment mass accumulation rates occur among sites. At shallow water sites, local factors seem to control changes in accumulation rates with time. Our two relatively deep-water sites in the axial channel of the bay have different long-term average accumulation rates, but the history of sediment accumulation at these sites appears to reflect overall conditions in the bay. Mass accumulation rates at the two deep-water sites rapidly increased by about fourfold coincident with widespread land clearance for agriculture in the Chesapeake watershed.

  17. The regulation of bacterial production in the Chesapeake Bay

    International Nuclear Information System (INIS)

    Chin-Leo, G.

    1988-01-01

    In this study, the possibility that periods when the rates of macromolecule syntheses become uncoupled occur in natural assemblages of bacteria was examined by comparing rates of bacterial DNA and protein synthesis. A dual-label method which measures incorporation rates of [ 3 H]thymidine (TdR) into macromolecules (DNA) and of [ 14 C]leucine (Leu) into protein was developed to facilitate simultaneous estimation of these cellular activities in a single incubation. Under controlled conditions, changes in rates of Leu incorporation preceded fluctuations in TdR incorporation and the Leu:TdR ratio varied prior to shifts in growth rate indicating the uncoupling of protein and DNA synthesis which occurs during unbalanced growth. The delay between this uncoupling and a change in growth rate was always shorter than the generation time. In Chesapeake Bay, during October 1986, the Leu:TdR ratio was quite constant over a diel cycle and with depth, but during July 1987, the magnitude of this ratio and its variation through time increased with depth. Growth conditions for heterotrophic bacteria in Chesapeake Bay during summer in surface waters and throughout the water column in fall may be relatively constant leading to balanced growth. In contrast, fluctuating growth conditions in subsurface waters during summer may lead to unbalanced growth

  18. Using Seeds to Propagate and Restore Vallisneria americana Michaux (Wild Celery) in the Chesapeake Bay

    Science.gov (United States)

    2007-12-01

    the capacity of the plants to elongate so that the leaves can reach closer to the water surface to gather adequate light for photosynthesis . When...transplant eelgrass (Zostera marina L.) in Chesapeake Bay and the Virginia Coastal Bays, In Proc. Conf. Seagrass Restoration: Success, Failure, and

  19. DIFFUSIVE EXCHANGE OF GASEOUS POLYCYCLIC AROMATIC HYDROCARBONS AND POLYCHLORINATED BIPHENYLS ACROSS THE AIR-WATER INTERFACE OF THE CHESAPEAKE BAY. (R825245)

    Science.gov (United States)

    Dissolved and gas-phase concentrations of nine polycyclic aromatic hydrocarbons and 46 polychlorinated biphenyl congeners were measured at eight sites on the Chesapeake Bay at four different times of the year to estimate net diffusive air-water gas exchange rates. Gaseous PAHs ar...

  20. Petrographic Studies of Rocks from The Chesapeake Bay Impact ...

    African Journals Online (AJOL)

    Shock petrographic investigations were carried out on samples collected from drill cores from the Chesapeake Bay impact structure (USA). The late Eocene Chesapeake impact structure is, at 85 km diameter, currently the largest impact structure known in the United States, buried at shallow to moderate depths beneath ...

  1. Meteorological and surface water observations from the Chesapeake Bay Interpretive Buoy System from 2007-04-25 to 2016-12-31 (NCEI Accession 0159578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Meteorological and surface water observations from the Chesapeake Bay Interpretive Buoy System. Ten stations are located from the mouth of the Susquehanna river near...

  2. Field guide to fishes of the chesapeake bay

    CERN Document Server

    Murdy, Edward O.

    2013-01-01

    The only comprehensive field guide to the Chesapeake’s fishes, this book is an indispensable resource for both anglers and students of the Bay. Vivid illustrations by Val Kells complement the expertise of researchers Edward O. Murdy and John A. Musick. They describe fishes that inhabit waters ranging from low-salinity estuaries to the point where the Bay meets the Atlantic Ocean. Key features of this field guide include• full-color illustrations of more than 200 species• text that is presented adjacent to illustrations for easy reference• detailed descriptions of physical characteristics, range, occurrence in the Bay, reproduction, diet, and statistics from fisheries research• spot illustrations that highlight critical features of certain fish• illustrations of juveniles when they look different from adults• appendices that include identification keys Formatted as a compact field guide for students, scientists, researchers, and fishermen, Field Guide to Fishes of the Chesapeake Bay should be a ...

  3. Estimates of nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology

    Science.gov (United States)

    Terziotti, Silvia; Capel, Paul D.; Tesoriero, Anthony J.; Hopple, Jessica A.; Kronholm, Scott C.

    2018-03-07

    The water quality of the Chesapeake Bay may be adversely affected by dissolved nitrate carried in groundwater discharge to streams. To estimate the concentrations, loads, and yields of nitrate from groundwater to streams for the Chesapeake Bay watershed, a regression model was developed based on measured nitrate concentrations from 156 small streams with watersheds less than 500 square miles (mi2 ) at baseflow. The regression model has three predictive variables: geologic unit, percent developed land, and percent agricultural land. Comparisons of estimated and actual values within geologic units were closely matched. The coefficient of determination (R2 ) for the model was 0.6906. The model was used to calculate baseflow nitrate concentrations at over 83,000 National Hydrography Dataset Plus Version 2 catchments and aggregated to 1,966 total 12-digit hydrologic units in the Chesapeake Bay watershed. The modeled output geospatial data layers provided estimated annual loads and yields of nitrate from groundwater into streams. The spatial distribution of annual nitrate yields from groundwater estimated by this method was compared to the total watershed yields of all sources estimated from a Chesapeake Bay SPAtially Referenced Regressions On Watershed attributes (SPARROW) water-quality model. The comparison showed similar spatial patterns. The regression model for groundwater contribution had similar but lower yields, suggesting that groundwater is an important source of nitrogen for streams in the Chesapeake Bay watershed.

  4. Phytoplankton growth, dissipation, and succession in estuarine environments. [Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Seliger, H H

    1976-01-01

    Two major advances in a study of phytoplankton ecology in the Chesapeake Bay are reported. The annual subsurface transport of a dinoflagellate species (Prorocentrum mariae labouriae) from the mouth of the bay a distance northward of 120 nautical miles to the region of the Bay Bridge was followed. Prorocentrum is a major seasonal dinoflagellate in the Chespeake Bay and annually has been reported to form mahogany tides, dense reddish-brown patches, in the northern bay beginning in late spring and continuing through the summer. Subsequent to this annual appearance the Prorocentrum spread southward and into the western tributary estuaries. The physiological behavioral characteristics of the Prorocentrum were correlated with the physical water movements in the bay. A phytoplankton cage technique for the measurement in situ of the growth rates of natural mixed populations is described. (CH)

  5. CBEO:N, Chesapeake Bay Environmental Observatory as a Cyberinfrastructure Node

    Science.gov (United States)

    Zaslavsky, I.; Piasecki, M.; Whitenack, T.; Ball, W. P.; Murphy, R.

    2008-12-01

    Chesapeake Bay Environmental Observatory (CBEO) is an NSF-supported project focused on studying hypoxia in Chesapeake Bay using advanced cyberinfrastructure (CI) technologies. The project is organized around four concurrent and interacting activities: 1) CBEO:S provides science and management context for the use of CI technologies, focusing on hypoxia and its non-linear dynamics as affected by management and climate; 2) CBEO:T constructs a locally-accessible CBEO test bed prototype centered on spatio-temporal interpolation and advanced querying of model runs; 3) CBEO:N incorporates the test bed CI into national environmental observation networks, and 4) CBEO:E develops education and outreach components of the project that translate observational science for public consumption. CBEO:N activities, which are the focus of this paper, are four-fold: - constructing an online project portal to enable researchers to publish, discover, query, visualize and integrate project-related datasets of different types. The portal is based on the technologies developed within the GEON (the Geosciences Network) project, and has established the CBEO project data server as part of the GEON network of servers; * developing a CBEO node within the WATERS network, taking advantage of the CUAHSI Hydrologic Information System (HIS) Server technology that supports online publication of observation data as web services, and ontology-assisted data discovery; *developing new data structures and metadata in order to describe water quality observational data, and model run output, obtained for the Chesapeake Bay area, using data structures adopted and modified from the Observations Data Model of CUAHSI HIS; * prototyping CBEO tools that can be re-used through the portal, in particular implementing a portal version of R-based spatial interpolation tools. The paper describes recent accomplishments in these four development areas, and demonstrates how CI approaches transform research and data sharing

  6. The contingent behavior of charter fishing participants on the Chesapeake Bay: Welfare estimates associated with water quality improvements

    Science.gov (United States)

    Poor, P.J.; Breece, M.

    2006-01-01

    Water quality in the Chesapeake Bay has deteriorated over recent years. Historically, fishing has contributed to the region's local economy in terms of commercial and recreational harvests. A contingent behavior model is used to estimate welfare measures for charter fishing participants with regard to a hypothetical improvement in water quality. Using a truncated Poisson count model corrected for endogenous stratification, it was found that charter fishers not only contribute to the local market economy, but they also place positive non-market value on preserving the Bay's water quality. Using two estimates for travels costs it is estimated that the individual consumer surplus is $200 and $117 per trip, and the average individual consumer surplus values for an improvement in water quality is $75 and $44 for two models estimated. ?? 2006 University of Newcastle upon Tyne.

  7. Heavy metals in tissues of water fowl from the Chesapeake Bay, USA. [Clangula hyemalis; Melanitta deglandi; Anas platyrhynchos; Anas rubripes; Anas strepera

    Energy Technology Data Exchange (ETDEWEB)

    Di Giulio, R; Scanlon, P F

    1984-01-01

    Concentrations of cadmium, lead, copper and zinc were measured in 774 livers, 266 kidneys and 271 ulnar bones from 15 species of ducks obtained from the Chesapeake Bay region. A major purpose of this study was to elucidate relationships between food habits and tissue accumulations of heavy metals in Chesapeake Bay water fowl. Liver and kidney concentrations of cadmium were highest among two carnivorous seaduck species, Clangula hyemalis and Melanitta deglandi. In contrast, lead concentrations in tissues were generally highest in largely herbivorous species, such as Anas platyrhynchos, Anas rubripes and Anas strepera. Spent shot may be an important source for tissue burdens of lead in these ducks. No marked trends were observed between food habits and tissue concentrations of the nutrient elements, copper and zinc.

  8. Multi-decadal variation in size of juvenile Summer Flounder (Paralichthys dentatus) in Chesapeake Bay

    Science.gov (United States)

    Nys, Lauren N.; Fabrizio, Mary C.; Tuckey, Troy D.

    2016-01-01

    During the last quarter-century, management of Summer Flounder Paralichthys dentatus along the Atlantic coast resulted in significant increases in abundance such that rebuilding targets were recently achieved. Although spawning stock biomass is high, recruitment of young-of-the-year (YOY) Summer Flounder remains variable. Chesapeake Bay is one of the principal nursery areas for this species, but processes such as growth and survival that affect production of YOY Summer Flounder in this estuary have not been explored. Here, we investigated the relationship between abundance and size of Summer Flounder recruits from the 1988 to 2012 year classes in Chesapeake Bay. We also considered the effects of environmental factors on fish size because conditions in the bay vary spatially during the time that fish occupy nursery areas. To describe variations in Summer Flounder size, we used monthly length observations from 13,018 YOY fish captured by bottom trawl from the lower Chesapeake Bay and the James, York, and Rappahannock river subestuaries where Summer Flounder are commonly observed. We applied a generalized additive model to describe spatial, temporal, and environmental effects on observed fish size; we also considered the density of Summer Flounder and an index of productivity as factors in the model. Summer Flounder in Chesapeake Bay exhibited density-dependent and spatially related variations in mean length: larger fish were found mostly in the Bay and smaller fish in the subestuaries. Additionally, low ( 26 °C) temperatures and low salinities (indicating that individuals found in these environments were typically smaller than conspecifics inhabiting areas of moderate temperatures and higher salinities. Variable nursery habitat conditions in temperate estuaries affect fish size and, subsequently, may influence production of Summer Flounder year classes through effects on maturation and survival. As water temperatures in the mid-Atlantic region continue to increase

  9. Bacterial biomass and heterotrophic potential in the waters of the Chesapeake Bay plume and contiguous continental shelf

    Science.gov (United States)

    Kator, H. I.; Zubkoff, P. L.

    1981-01-01

    Seasonal baseline data on bacterial biomass and heterotrophic uptake in the Chesapeake Bay plume and contiguous Atlantic Ocean shelf waters are discussed. Viable count bacterial numbers in surface water samples collected during June 1980 ranged from a maximum of 190,000 MPN (most probable number)/ml at the Bay mouth to a minimum of 7900 MPN/ml offshore. Similarly, direct count densities ranged from 1,800,000 BU (bacterial units)/ml to 24,000 BU/ml. Heterotrophic potential (V max) was largest at the Bay mouth and lowest offshore. Biomass and V max values usually decreased with depth although subsurface maxima were occasionally observed at inshore stations. Correlation of biomass and heterotrophic potential data with selected hydrographic variables was determind with a nonparametric statistic. Results indicate viable counts are positively and significantly correlated with total chlorophyll, temperature, direct count and V max during June 1980; significant negative correlations are obtained with salinity and depth. Calculations of bacterial standing crop are discussed.

  10. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

    International Nuclear Information System (INIS)

    Grimm, J.W.; Lynch, J.A.

    2005-01-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8 km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8 km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate. - A linear least-squares regression approach was used to develop daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

  11. Uncertainty in model predictions of Vibrio vulnificus response to climate variability and change: a Chesapeake Bay case study.

    Directory of Open Access Journals (Sweden)

    Erin A Urquhart

    Full Text Available The effect that climate change and variability will have on waterborne bacteria is a topic of increasing concern for coastal ecosystems, including the Chesapeake Bay. Surface water temperature trends in the Bay indicate a warming pattern of roughly 0.3-0.4°C per decade over the past 30 years. It is unclear what impact future warming will have on pathogens currently found in the Bay, including Vibrio spp. Using historical environmental data, combined with three different statistical models of Vibrio vulnificus probability, we explore the relationship between environmental change and predicted Vibrio vulnificus presence in the upper Chesapeake Bay. We find that the predicted response of V. vulnificus probability to high temperatures in the Bay differs systematically between models of differing structure. As existing publicly available datasets are inadequate to determine which model structure is most appropriate, the impact of climatic change on the probability of V. vulnificus presence in the Chesapeake Bay remains uncertain. This result points to the challenge of characterizing climate sensitivity of ecological systems in which data are sparse and only statistical models of ecological sensitivity exist.

  12. Particle-borne radionuclides as tracers for sediment in the Susquehanna River and Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Donoghue, J F [Florida State Univ., Tallahassee, FL (USA). Dept. of Geology; Bricker, O P [Geological Survey, Reston, VA (USA). Water Resources Div.; Olsen, C R [Oak Ridge National Lab., TN (USA)

    1989-10-01

    The Chesapeake Bay receives nearly 1,000,000 tonnes of sediment annually from its major tributary, the Susquehanna River. The pattern of deposition of this sediment affects the lifetime of the estuarine resource and the fate of any sediment-borne contaminants. Previous estimates of the extent to which Susquehanna River sediment is transported down the Chesapeake have differed considerably. By use of reactor-generated radionuclides adsorbed on the river sediment, a sediment budget has been compiled for the upper Chesapeake Bay and the reservoirs on the lower Susquehanna. Reservoirs impound nearly 1,400,000 tonnes of sediment annually behind the power dams on the lower Susquehanna River. Without the dams, sediment delivery to the upper bay would more than double. The uppermost Chesapeake Bay, within and above the turbidity maximum, retains virtually all of the fluvial sediment delivered to it. The result is an annual sedimentation rate of approximately 3 mm yr{sup -1} in the upper bay, an infilling rate that is nearly equal to the regional rate of sea level rise. (author).

  13. Particle-borne radionuclides as tracers for sediment in the Susquehanna River and Chesapeake Bay

    International Nuclear Information System (INIS)

    Donoghue, J.F.

    1989-01-01

    The Chesapeake Bay receives nearly 1,000,000 tonnes of sediment annually from its major tributary, the Susquehanna River. The pattern of deposition of this sediment affects the lifetime of the estuarine resource and the fate of any sediment-borne contaminants. Previous estimates of the extent to which Susquehanna River sediment is transported down the Chesapeake have differed considerably. By use of reactor-generated radionuclides adsorbed on the river sediment, a sediment budget has been compiled for the upper Chesapeake Bay and the reservoirs on the lower Susquehanna. Reservoirs impound nearly 1,400,000 tonnes of sediment annually behind the power dams on the lower Susquehanna River. Without the dams, sediment delivery to the upper bay would more than double. The uppermost Chesapeake Bay, within and above the turbidity maximum, retains virtually all of the fluvial sediment delivered to it. The result is an annual sedimentation rate of approximately 3 mm yr -1 in the upper bay, an infilling rate that is nearly equal to the regional rate of sea level rise. (author)

  14. Exploring the environmental effects of shale gas development in the Chesapeake Bay watershed

    Science.gov (United States)

    Scientific and Technical Committee [STAC]. Chesapeake Bay Program

    2013-01-01

    On April 11-12, 2012, the Chesapeake Bay Program's Scientific and Technical Advisory Committee (STAC) convened an expert workshop to investigate the environmental effects of shale gas development in the Chesapeake Bay Watershed. The purpose of this workshop was to engage scientists from across the nation in a review of the state-of-the-science regarding shale gas...

  15. BOOK REVIEW OF "CHESAPEAKE BAY BLUES: SCIENCE, POLITICS, AND THE STRUGGLE TO SAVE THE BAY"

    Science.gov (United States)

    This is a book review of "Chesapeake Bay Blues: Science, Politics, and the Struggle to Save the Bay". This book is very well written and provides an easily understandable description of the political challenges faced by those proposing new or more stringent environmental regulat...

  16. 33 CFR 162.65 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Science.gov (United States)

    2010-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary to..., which are tributary to or connected by other waterways with the Atlantic Ocean south of Chesapeake Bay...

  17. Composition and temporal patterns of larval fish communities in Chesapeake and Delaware Bays

    Directory of Open Access Journals (Sweden)

    Filipe Ribeiro

    2015-11-01

    Full Text Available Comparing larval fish assemblages in different estuaries provides insights about the coastal distribution of larval populations, larval transport, and adult spawning locations (Ribeiro et al. 2015. We simultaneously compared the larval fish assemblages entering two Middle Atlantic Bight (MAB estuaries (Delaware Bay and Chesapeake Bay, USA through weekly sampling from 2007 to 2009. In total, 43 taxa (32 families and 36 taxa (24 families were collected in Delaware and Chesapeake Bays, respectively. Mean taxonomic diversity, mean richness, and evenness were generally lower in Delaware Bay. Communities of both bays were dominated by Anchoa spp., Gobiosoma spp., Micropogonias undulatus, and Brevoortia tyrannus; Paralichthys spp. was more abundant in Delaware Bay and Microgobius thalassinus was more abundant in Chesapeake Bay. Inter-annual variation in the larval fish communities was low at both sites, with a relatively consistent composition across years, but strong seasonal (intra-annual variation in species composition occurred in both bays. Two groups were identified in Chesapeake Bay: a ‘winter’ group dominated by shelf-spawned species (e.g. M. undulatus and a ‘summer’ group comprising obligate estuarine species and coastal species (e.g. Gobiosoma spp. and Cynoscion regalis, respectively. In Delaware Bay, 4 groups were identified: a ‘summer’ group of mainly obligate estuarine fishes (e.g. Menidia sp. being replaced by a ‘fall’ group (e.g. Ctenogobius boleosoma and Gobionellus oceanicus; ‘winter’ and ‘spring’ groups were dominated by shelf-spawned (e.g. M. undulatus and Paralichthys spp. and obligate estuarine species (e.g. Leiostomus xanthurus and Pseudopleuronectes americanus, respectively. This study demonstrates that inexpensive and simultaneous sampling in different estuaries provides important insights into the variability in community structure of fish assemblages at large spatial scales.

  18. Evaluation of Shortwave Infrared Atmospheric Correction for Ocean Color Remote Sensing of Chesapeake Bay

    Science.gov (United States)

    Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.

    2010-01-01

    The NASA Moderate Resolution Imaging Spectroradiometer onboard the Aqua platform (MODIS-Aqua) provides a viable data stream for operational water quality monitoring of Chesapeake Bay. Marine geophysical products from MODIS-Aqua depend on the efficacy of the atmospheric correction process, which can be problematic in coastal environments. The operational atmospheric correction algorithm for MODIS-Aqua requires an assumption of negligible near-infrared water-leaving radiance, nL(sub w)(NIR). This assumption progressively degrades with increasing turbidity and, as such, methods exist to account for non-negligible nL(sub w)(NIR) within the atmospheric correction process or to use alternate radiometric bands where the assumption is satisfied, such as those positioned within shortwave infrared (SWIR) region of the spectrum. We evaluated a decade-long time-series of nL(sub w)(lambda) from MODIS-Aqua in Chesapeake Bay derived using NIR and SWIR bands for atmospheric correction. Low signal-to-noise ratios (SNR) for the SWIR bands of MODIS-Aqua added noise errors to the derived radiances, which produced broad, flat frequency distributions of nL(sub w)(lambda) relative to those produced using the NIR bands. The SWIR approach produced an increased number of negative nL(sub w)(lambda) and decreased sample size relative to the NIR approach. Revised vicarious calibration and regional tuning of the scheme to switch between the NIR and SWIR approaches may improve retrievals in Chesapeake Bay, however, poor SNR values for the MODIS-Aqua SWIR bands remain the primary deficiency of the SWIR-based atmospheric correction approach.

  19. Long-term decline in the calanoid copepod Acartia tonsa in central Chesapeake Bay, USA: An indirect effect of eutrophication?

    Science.gov (United States)

    Kimmel, David G.; Boynton, Walter R.; Roman, Michael R.

    2012-04-01

    A long-term abundance record of the calanoid copepod Acartia tonsa in the Maryland portion of Chesapeake Bay was compiled from 1966 to 2002. A significant downward trend in the summertime abundance of Acartia tonsa was found in central Chesapeake Bay. We propose that environmental and food web changes occurred as the Chesapeake Bay became increasingly impacted by human activity which eventually led to the overall decline of A. tonsa. Environmental changes included a long-term rise in water temperature and the volume of hypoxic water during the summer. These changes occurred during the same time period as increases in chlorophyll a concentration, declines in the landings of the eastern oyster Crassostrea virginica, and declines in abundance of the sea nettle Chrysaora quinquecirrha. A CUSUM analysis showed that each time-series experienced a change point during over the past 50 years. These changes occurred sequentially, with chlorophyll a concentration increasing beginning in 1969, water temperature and hypoxic volume increasing beginning in the early 1980s, more recent Maryland C. virginica landings begin declining in the early 1980s and A. tonsa and C. quinquecirrha declining starting in 1989. A stepwise regression analysis revealed that the reduction in A. tonsa abundance appeared to be most associated with a decreasing trend in C. quinquecirrha abundance, though only when trends in the two time-series were present. The drop in C. quinquecirrha abundance is associated with reduced predation on the ctenophore, Mnemiopsis leidyi, a key predator of A. tonsa. The long-term decline of A. tonsa has likely impacted trophic transfer to fish, particularly the zooplanktivorous bay anchovy (Anchoa mitchilli). A time-series of bay anchovy juvenile index showed a negative trend and the CUSUM analysis revealed 1993 as its starting point. Total fisheries landings, excluding menhaden (Brevoortia tyrannus), in Chesapeake Bay have also declined during the same period and this

  20. Chesapeake Bay Low Freshwater Inflow Study. Biota Assessment. Phase II. Main Report.

    Science.gov (United States)

    1982-05-01

    Energy, U.S. Geological Survey, Maryland Department of Natural Resources *a (Tidewater and Water Supply Divisions), Maryland Department of Health , Virginia...diverse assemblage of rooted species, including Typha spp., Phragmites, Zizania, Hibiscus , 4 Sagittaria, and many others. These plants are very important...ro(duced froshwatc’r inflow on health and productivity of key Chesapeake Bay organisms. DIRECT IMPACT (OR EFFECT) - a change in the basic physical

  1. Rising air and stream-water temperatures in Chesapeake Bay region, USA

    Science.gov (United States)

    Rice, Karen C.; Jastram, John D.

    2015-01-01

    Monthly mean air temperature (AT) at 85 sites and instantaneous stream-water temperature (WT) at 129 sites for 1960–2010 are examined for the mid-Atlantic region, USA. Temperature anomalies for two periods, 1961–1985 and 1985–2010, relative to the climate normal period of 1971–2000, indicate that the latter period was statistically significantly warmer than the former for both mean AT and WT. Statistically significant temporal trends across the region of 0.023 °C per year for AT and 0.028 °C per year for WT are detected using simple linear regression. Sensitivity analyses show that the irregularly sampled WT data are appropriate for trend analyses, resulting in conservative estimates of trend magnitude. Relations between 190 landscape factors and significant trends in AT-WT relations are examined using principal components analysis. Measures of major dams and deciduous forest are correlated with WT increasing slower than AT, whereas agriculture in the absence of major dams is correlated with WT increasing faster than AT. Increasing WT trends are detected despite increasing trends in streamflow in the northern part of the study area. Continued warming of contributing streams to Chesapeake Bay likely will result in shifts in distributions of aquatic biota and contribute to worsened eutrophic conditions in the bay and its estuaries.

  2. Ospreys Use Bald Eagle Nests in Chesapeake Bay Area

    OpenAIRE

    Therres, Glenn D.; Chandler, Sheri K.

    1993-01-01

    Ospreys (Pandion haliaetus) and Bald Eagles (Haliaeetus leucocephalus) share similar breeding habitat in the Chesapeake Bay area and elsewhere. The nests of these species are similar in size and appearance. Ospreys typically build large stick nests in dead trees or on man-made structures (C.J. Henny et al. 1974, Chesapeake Sci. 15:125-133; A.F. Poole 1989, Ospreys: a natural and unnatural history, Cambridge Univ. Press, NY), while Bald Eagles usually build larger nests in live trees (P.B. Woo...

  3. Modeling drivers of phosphorus loads in Chesapeake Bay tributaries and inferences about long-term change

    Science.gov (United States)

    Ryberg, Karen R.; Blomquist, Joel; Sprague, Lori A.; Sekellick, Andrew J.; Keisman, Jennifer

    2018-01-01

    Causal attribution of changes in water quality often consists of correlation, qualitative reasoning, listing references to the work of others, or speculation. To better support statements of attribution for water-quality trends, structural equation modeling was used to model the causal factors of total phosphorus loads in the Chesapeake Bay watershed. By transforming, scaling, and standardizing variables, grouping similar sites, grouping some causal factors into latent variable models, and using methods that correct for assumption violations, we developed a structural equation model to show how causal factors interact to produce total phosphorus loads. Climate (in the form of annual total precipitation and the Palmer Hydrologic Drought Index) and anthropogenic inputs are the major drivers of total phosphorus load in the Chesapeake Bay watershed. Increasing runoff due to natural climate variability is offsetting purposeful management actions that are otherwise decreasing phosphorus loading; consequently, management actions may need to be reexamined to achieve target reductions in the face of climate variability.

  4. Multi-band algorithms for the estimation of chlorophyll concentration in the Chesapeake Bay

    KAUST Repository

    Gilerson, Alexander

    2015-10-14

    Standard blue-green ratio algorithms do not usually work well in turbid productive waters because of the contamination of the blue and green bands by CDOM absorption and scattering by non-algal particles. One of the alternative approaches is based on the two- or three band ratio algorithms in the red/NIR part of the spectrum, which require 665, 708, 753 nm bands (or similar) and which work well in various waters all over the world. The critical 708 nm band for these algorithms is not available on MODIS and VIIRS sensors, which limits applications of this approach. We report on another approach where a combination of the 745nm band with blue-green-red bands was the basis for the new algorithms. A multi-band algorithm which includes ratios Rrs(488)/Rrs(551)and Rrs(671)/Rrs(745) and two band algorithm based on Rrs671/Rrs745 ratio were developed with the main focus on the Chesapeake Bay (USA) waters. These algorithms were tested on the specially developed synthetic datasets, well representing the main relationships between water parameters in the Bay taken from the NASA NOMAD database and available literature, on the field data collected by our group during a 2013 campaign in the Bay, as well as NASA SeaBASS data from the other group and on matchups between satellite imagery and water parameters measured by the Chesapeake Bay program. Our results demonstrate that the coefficient of determination can be as high as R2 > 0.90 for the new algorithms in comparison with R2 = 0.6 for the standard OC3V algorithm on the same field dataset. Substantial improvement was also achieved by applying a similar approach (inclusion of Rrs(667)/Rrs(753) ratio) for MODIS matchups. Results for VIIRS are not yet conclusive. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  5. Lagrangian structure of flows in the Chesapeake Bay: challenges and perspectives on the analysis of estuarine flows

    Directory of Open Access Journals (Sweden)

    M. Branicki

    2010-03-01

    Full Text Available In this work we discuss applications of Lagrangian techniques to study transport properties of flows generated by shallow water models of estuarine flows. We focus on the flow in the Chesapeake Bay generated by Quoddy (see Lynch and Werner, 1991, a finite-element (shallow water model adopted to the bay by Gross et al. (2001. The main goal of this analysis is to outline the potential benefits of using Lagrangian tools for both understanding transport properties of such flows, and for validating the model output and identifying model deficiencies. We argue that the currently available 2-D Lagrangian tools, including the stable and unstable manifolds of hyperbolic trajectories and techniques exploiting 2-D finite-time Lyapunov exponent fields, are of limited use in the case of partially mixed estuarine flows. A further development and efficient implementation of three-dimensional Lagrangian techniques, as well as improvements in the shallow-water modelling of 3-D velocity fields, are required for reliable transport analysis in such flows. Some aspects of the 3-D trajectory structure in the Chesapeake Bay, based on the Quoddy output, are also discussed.

  6. FY 2016 Grant Announcement: FY 2016 Technical Analysis and Programmatic Evaluation Support to the Chesapeake Bay Program Partnership

    Science.gov (United States)

    The U.S. Environmental Protection Agency’s Chesapeake Bay Program Office is announcing a Request for Proposals for applicants to provide the Chesapeake Bay Program partners with a proposal(s) for providing technical analysis and programmatic evaluation

  7. Bank-derived material dominates fluvial sediment in a suburban Chesapeake Bay watershed

    Science.gov (United States)

    Cashman, M. J.; Gellis, A.; Gorman-Sanisaca, L.; Noe, G. B.; Cogliandro, V.; Baker, A.

    2017-12-01

    Excess fine sediment is a leading cause of ecological degradation within the Chesapeake Bay watershed. The Piedmont physiographic province, which includes parts of the Washington, D.C. metro area, has the highest sediment yields in the Chesapeake Bay. In order to effectively employ sediment mitigation measures, it is necessary to identify and quantify the contributions of sediments sources within rapidly urbanizing areas in the Piedmont. This sediment fingerprinting study examines the inputs of various sediment sources to Upper Difficult Run (14.2 km2; 22.6% impervious surface), an urbanized watershed in Fairfax County, Virginia. A source sediment library was constructed from collections of stream bank material, forest soils, and road dust from across the watershed. Target fluvial sediments were collected from fine channel margin deposits and from suspended sediment using an autosampler during 16 storm events from 2008 - 2012. Apportionment of the target samples to the source sediments was performed using Sed_SAT, a publically available toolkit for sediment fingerprinting. Bed sediment was found to be dominated by stream bank sources (mean: 96%), with minor contributions from forest (4%) and no detectable contribution from roads (0%). Suspended fine sediments were also found to predominantly originate from stream bank sources (SSC-weighted mean: 91%), with minor contributions from roads (8%), and negligible contributions from forests (1%). Stream bank sources dominated at all discharges, with the greatest contributions from overland sources found only at low discharges. On the rising limb of the hydrograph and at peak flow, sediment concentrations increased due to increasing contributions of bank material rather than surface erosion caused by overland flow. Results demonstrate that stream bank erosion is responsible for the vast majority of fine sediment occurring in this suburban basin of the Chesapeake Bay watershed. This is likely a consequence of storm-water

  8. 3 CFR 13508 - Executive Order 13508 of May 12, 2009. Chesapeake Bay Protection and Restoration

    Science.gov (United States)

    2010-01-01

    ... Chesapeake Bay and its tributary waters, including resources under the Food Security Act of 1985 as amended... as possible and prior to release of a final strategy. Sec. 204. Collaboration with State Partners. In... structures at sea, such as cases of force majeure caused by stress of weather or other act of God. PART 11...

  9. Integrating Federal and State data records to report progress in establishing agricultural conservation practices on Chesapeake Bay farms

    Science.gov (United States)

    Hively, W. Dean; Devereux, Olivia H.; Claggett, Peter

    2013-01-01

    In response to the Executive Order for Chesapeake Bay Protection and Restoration (E.O. #13508, May 12, 2009), the U.S. Geological Survey (USGS) took on the task of acquiring and assessing agricultural conservation practice data records for U.S. Department of Agriculture (USDA) programs, and transferred those datasets in aggregated format to State jurisdictional agencies for use in reporting conservation progress to the Chesapeake Bay Program Partnership (CBP Partnership). Under the guidelines and regulations that have been developed to protect and restore water-quality in the Chesapeake Bay, the six State jurisdictions that fall within the Chesapeake Bay watershed are required to report their progress in promoting agricultural conservation practices to the CBP Partnership on an annual basis. The installation and adoption of agricultural best management practices is supported by technical and financial assistance from both Federal and State conservation programs. The farm enrollment data for USDA conservation programs are confidential, but agencies can obtain access to the privacy-protected data if they are established as USDA Conservation Cooperators. The datasets can also be released to the public if they are first aggregated to protect farmer privacy. In 2012, the USGS used its Conservation Cooperator status to obtain implementation data for conservation programs sponsored by the USDA Natural Resources Conservation Service (NRCS) and the USDA Farm Service Agency (FSA) for farms within the Chesapeake Bay watershed. Three jurisdictions (Delaware, Pennsylvania, and West Virginia) used the USGS-provided aggregated dataset to report conservation progress in 2012, whereas the remaining three jurisdictions (Maryland, New York, and Virginia) used jurisdictional Conservation Cooperator Agreements to obtain privacy-protected data directly from the USDA. This report reviews the status of conservation data sharing between the USDA and the various jurisdictions, discusses the

  10. Coastal seas as a context for science teaching: a lesson from Chesapeake Bay.

    Science.gov (United States)

    Bell, Wayne H; Fowler, Erin M; Stein, J Andrew

    2003-01-01

    Lessons that employ authentic environmental data can enhance the ability of students to understand fundamental science concepts. This differs from traditional "environmental education" in that school curricula need not set aside time for educators to teach only environmental topics. Rather, the "environment" is used to advance student learning in science and technology. The success of this approach depends on programs that encourage scientists to communicate more effectively with teachers at all education levels. The expanding diversity of research and monitoring activities on the world's marine waters constitutes an outstanding potential education resource. Many of these projects involve remote sensing with sophisticated instrumentation and employ Internet technology to compile measurements, interpret data using graphs and satellite imagery, and share the results among scientific colleagues and the general public alike. Unfortunately, these resources, which constitute a much shortened path between research findings and textbook presentation, are seldom interpreted for use by K-12 educators. We have developed an example that uses the Chesapeake Bay as a paradigm to demonstrate how such interpretation can assist educators in teaching important principles in physical oceanography and marine ecology. We present this example using PowerPoint to conduct a virtual tour of selected Internet sources. Our example begins with the conceptual "salt wedge" circulation model of Chesapeake Bay as a partially mixed estuary. Teachers have the opportunity to explore this model using salinity, temperature, and dissolved oxygen data taken from a research vessel platform during summer professional development programs. This source of authentic data, originally obtained by teachers themselves, clearly demonstrates the presence of a picnocline and deep-water anoxia. Our lesson plan proceeds to interpret these data using additional Internet-based resources at increasing scales of time and

  11. Modeling investigation of the nutrient and phytoplankton variability in the Chesapeake Bay outflow plume

    Science.gov (United States)

    Jiang, Long; Xia, Meng

    2018-03-01

    The Chesapeake Bay outflow plume (CBOP) is the mixing zone between Chesapeake Bay and less eutrophic continental shelf waters. Variations in phytoplankton distribution in the CBOP are critical to the fish nursery habitat quality and ecosystem health; thus, an existing hydrodynamic-biogeochemical model for the bay and the adjacent coastal ocean was applied to understand the nutrient and phytoplankton variability in the plume and the dominant environmental drivers. The simulated nutrient and chlorophyll a distribution agreed well with field data and real-time satellite imagery. Based on the model calculation, the net dissolved inorganic nitrogen (DIN) and phosphorus (DIP) flux at the bay mouth was seaward and landward during 2003-2012, respectively. The CBOP was mostly nitrogen-limited because of the relatively low estuarine DIN export. The highest simulated phytoplankton biomass generally occurred in spring in the near field of the plume. Streamflow variations could regulate the estuarine residence time, and thus modulate nutrient export and phytoplankton biomass in the plume area; in comparison, changing nutrient loading with fixed streamflow had a less extensive impact, especially in the offshore and far-field regions. Correlation analyses and numerical experiments revealed that southerly winds on the shelf were effective in promoting the offshore plume expansion and phytoplankton accumulation. Climate change including precipitation and wind pattern shifts is likely to complicate the driving mechanisms of phytoplankton variability in the plume region.

  12. Delineation of surf scoter habitat in Chesapeake Bay, Maryland: macrobenthic and sediment composition of surf scoter feeding sites

    Science.gov (United States)

    Kidwell, D.M.; Perry, M.C.

    2005-01-01

    Surveys of surf scoters (Melanitta perspicillata) along the Atlantic coast of the United States have shown population declines in recent decades. The Chesapeake Bay has traditionally been a key wintering area for surf scoters. Past and present research has shown that bivalves constitute a major food item for seaducks in the Chesapeake Bay, with surf scoters feeding primarily on hooked mussel (Ischadium recurvum) and dwarf surf clam (Mulinia lateralis). Degraded water quality conditions in the Chesapeake Bay have been well documented and have been shown to greatly influence the composition of benthic communities. Large concentrations of feeding surf scoters (>500 individuals) in the Bay were determined through monthly boat surveys. Locations consistently lacking surf scoters were also determined. Macrobenthos were seasonally sampled at 3 locations containing scoters and 3 locations without scoters. A 1 kilometer square grid was superimposed over each location using GIS and sampling sites within the square were randomly chosen. Benthos were sampled at each site using SCUBA and a meter square quadrat. Biomass and size class estimates were determined for all bivalves within each kilometer square. Results indicated that scoter feeding sites contained significantly greater biomass of M. lateralis, I. recurvum, and Gemma gemma than locations where no scoters were present. Substrate differences were also detected, with scoter feeding sites being composed of a sand/shell mix while non-scoter sites consisted primarily of mud. This data indicates that surf scoters in the Chesapeake Bay are selecting areas with high densities of preferred food items, potentially maximizing there foraging energetics. In addition, two scoter feeding sites also contained a patchwork of eastern oyster (Crassostrea virginica) and oyster shell, on which much of the I. recurvum was attached. This suggests the possibility that surf scoters utilize eastern oyster habitat and the dramatic depletion of

  13. Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed, and water-quality data from a survey of springs

    Science.gov (United States)

    Focazio, Michael J.; Plummer, Niel; Bohlke, John K.; Busenberg, Eurybiades; Bachman, L. Joseph; Powars, David S.

    1998-01-01

    Knowledge of the residence times of the ground-water systems in Chesapeake Bay watershed helps resource managers anticipate potential delays between implementation of land-management practices and any improve-ments in river and estuary water quality. This report presents preliminary estimates of ground-water residence times and apparent ages of water in the shallow aquifers of the Chesapeake Bay watershed. A simple reservoir model, published data, and analyses of spring water were used to estimate residence times and apparent ages of ground-water discharge. Ranges of aquifer hydraulic characteristics throughout the Bay watershed were derived from published literature and were used to estimate ground-water residence times on the basis of a simple reservoir model. Simple combinations of rock type and physiographic province were used to delineate hydrogeomorphic regions (HGMR?s) for the study area. The HGMR?s are used to facilitate organization and display of the data and analyses. Illustrations depicting the relation of aquifer characteristics and associated residence times as a continuum for each HGMR were developed. In this way, the natural variation of aquifer characteristics can be seen graphically by use of data from selected representative studies. Water samples collected in September and November 1996, from 46 springs throughout the watershed were analyzed for chlorofluorocarbons (CFC?s) to estimate the apparent age of ground water. For comparison purposes, apparent ages of water from springs were calculated assuming piston flow. Additi-onal data are given to estimate apparent ages assuming an exponential distribution of ages in spring discharge. Additionally, results from previous studies of CFC-dating of ground water from other springs and wells in the watershed were compiled. The CFC data, and the data on major ions, nutrients, and nitrogen isotopes in the water collected from the 46 springs are included in this report. The apparent ages of water

  14. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay

    Science.gov (United States)

    Kemp, W.M.; Smith, E.M.; Marvin-DiPasquale, M.; Boynton, W.R.

    1997-01-01

    The major fluxes of organic carbon associated with physical transport and biological metabolism were compiled, analyzed and compared for the mainstem portion of Chesapeake Bay (USA). In addition, 5 independent methods were used to calculate the annual mean net ecosystem metabolism (NEM = production - respiration) for the integrated Bay. These methods, which employed biogeochemical models, nutrient mass-balances anti summation of individual organic carbon fluxes, yielded remarkably similar estimates, with a mean NEM of +50 g C m-2 yr-1 (?? SE = 751, which is approximately 8% of the estimated annual average gross primary production. These calculations suggest a strong cross-sectional pattern in NEM throughout the Bay, wherein net heterotrophic metabolism prevails in the pelagic zones of the main channel, while net autotrophy occurs in the littoral zones which flank the deeper central area. For computational purposes, the estuary was separated into 3 regions along the land-sea gradient: (1) the oligohaline Upper Bay (11% of total area); (2) the mesohaline Mid Bay (36% of area); and (3) the polyhaline Lower Bay (53% of area). A distinct regional trend in NEM was observed along this salinity gradient, with net here(atrophy (NEM = 87 g C m-2 yr-1) in the Upper Bay, balanced metabolism in the Mid Bay and net autotrophy (NEM = +92 g C m-2 yr-1) in the Lower Bay. As a consequence of overall net autotrophy, the ratio of dissolved inorganic nitrogen (DIN) to total organic nitrogen (TON) changed from DIN:TON = 5.1 for riverine inputs to DIN:TON = 0.04 for water exported to the ocean. A striking feature of this organic C mass-balance was the relative dominance of biologically mediated metabolic fluxes compared to physical transport fluxes. The overall ratio of physical TOC inputs (1) to biotic primary production (P) was 0.08 for the whole estuary, but varied dramatically from 2.3 in the Upper Bay to 0.03 in the Mid and Lower Bay regions. Similarly, ecosystem respiration was

  15. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed.

    Science.gov (United States)

    Grimm, J W; Lynch, J A

    2005-06-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate.

  16. Sorption and bioreduction of hexavalent uranium at a military facility by the Chesapeake Bay

    International Nuclear Information System (INIS)

    Dong Wenming; Xie Guibo; Miller, Todd R.; Franklin, Mark P.; Oxenberg, Tanya Palmateer; Bouwer, Edward J.; Ball, William P.; Halden, Rolf U.

    2006-01-01

    Directly adjacent to the Chesapeake Bay lies the Aberdeen Proving Ground, a U.S. Army facility where testing of armor-piercing ammunitions has resulted in the deposition of >70,000 kg of depleted uranium (DU) to local soils and sediments. Results of previous environmental monitoring suggested limited mobilization in the impact area and no transport of DU into the nation's largest estuary. To determine if physical and biological reactions constitute mechanisms involved in limiting contaminant transport, the sorption and biotransformation behavior of the radionuclide was studied using geochemical modeling and laboratory microcosms (500 ppb U(VI) initially). An immediate decline in dissolved U(VI) concentrations was observed under both sterile and non-sterile conditions due to rapid association of U(VI) with natural organic matter in the sediment. Reduction of U(VI) to U(IV) occurred only in non-sterile microcosms. In the non-sterile samples, intrinsic bioreduction of uranium involved bacteria of the order Clostridiales and was only moderately enhanced by the addition of acetate (41% vs. 56% in 121 days). Overall, this study demonstrates that the migration of depleted uranium from the APG site into the Chesapeake Bay may be limited by a combination of processes that include rapid sorption of U(VI) species to natural organic matter, followed by slow, intrinsic bioreduction to U(IV). - At the Aberdeen Proving Ground in Maryland, USA, migration of depleted uranium into the Chesapeake Bay is limited by rapid sorption of the radionuclide to natural organic matter followed by slow biological reduction of water-soluble U(VI) to the insoluble and less toxic U(IV) species

  17. Temporal and spatial distribution of beryllium-7 in the sediments of Chesapeake Bay

    International Nuclear Information System (INIS)

    Dibb, J.E.; Rice, D.L.

    1989-01-01

    The sediment inventory of 7 Be was determined at six stations in the main stem of Chesapeake Bay nine times between April, 1986, and September, 1987. The inventories ranged from -2 . Comparison to the atmospherically supported 7 Be inventory (range 2-4 dpm cm -2 ) showed significant focusing of 7 Be in the sediments in the zone of the turbidity maximum during the summer, and suggested that the spatial distribution of 7 Be in the lower Bay apparently had a recurrence frequency greater than the sampling frequency in this investigation. The temporal pattern of 7 Be accumulation at the six stations over the first year of this investigation allowed estimation of sedimentation rates, which suggested that the processes governing the distribution of 7 Be in Chesapeake Bay sediments were similar to the processes determining sedimentation patterns over about the past 100 years. (author)

  18. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA.

    Science.gov (United States)

    Lefcheck, Jonathan S; Wilcox, David J; Murphy, Rebecca R; Marion, Scott R; Orth, Robert J

    2017-09-01

    Interactions among global change stressors and their effects at large scales are often proposed, but seldom evaluated. This situation is primarily due to lack of comprehensive, sufficiently long-term, and spatially extensive datasets. Seagrasses, which provide nursery habitat, improve water quality, and constitute a globally important carbon sink, are among the most vulnerable habitats on the planet. Here, we unite 31 years of high-resolution aerial monitoring and water quality data to elucidate the patterns and drivers of eelgrass (Zostera marina) abundance in Chesapeake Bay, USA, one of the largest and most valuable estuaries in the world, with an unparalleled history of regulatory efforts. We show that eelgrass area has declined 29% in total since 1991, with wide-ranging and severe ecological and economic consequences. We go on to identify an interaction between decreasing water clarity and warming temperatures as the primary drivers of this trend. Declining clarity has gradually reduced eelgrass cover the past two decades, primarily in deeper beds where light is already limiting. In shallow beds, however, reduced visibility exacerbates the physiological stress of acute warming, leading to recent instances of decline approaching 80%. While degraded water quality has long been known to influence underwater grasses worldwide, we demonstrate a clear and rapidly emerging interaction with climate change. We highlight the urgent need to integrate a broader perspective into local water quality management, in the Chesapeake Bay and in the many other coastal systems facing similar stressors. © 2017 John Wiley & Sons Ltd.

  19. Chesapeake Bay Low Freshwater Inflow Study. Appendix E. Biota.

    Science.gov (United States)

    1984-09-01

    selecting representative species for study, mapping potential habitat under various conditions, using expert scientists to interpret the significance of...8217 t " TH H P CHESAPEAKE BAYE Ec LOW FRESHWATER INFLOW STUDY . htp APPENDIX E . . BIOTA TABLE OF ONTENTS...intensive manual searches of journals and other sources. Five abstract services were searched under more than 14 topics each. Journals, reports to

  20. Remote sensing of particle backscattering in Chesapeake Bay: a 6-year SeaWiFS retrospective view

    Science.gov (United States)

    Zawada, D.G.; Hu, C.; Clayton, T.; Chen, Z.; Brock, J.C.; Muller-Karger, F. E.

    2007-01-01

    Traditional field techniques to monitor water quality in large estuaries, such as boat-based surveys and autonomous moored sensors, generally provide limited spatial coverage. Satellite imagery potentially can be used to address both of these limitations. Here, we show that satellite-based observations are useful for inferring total-suspended-solids (TSS) concentrations in estuarine areas. A spectra-matching optimization algorithm was used to estimate the particle backscattering coefficient at 400 nm, bbp(400), in Chesapeake Bay from Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) satellite imagery. These estimated values of bbp(400) were compared to in situ measurements of TSS for the study period of September 1997–December 2003. Contemporaneous SeaWiFS bbp(400) values and TSS concentrations were positively correlated (N = 340, r2 = 0.4, P bp(400) values served as a reasonable first-order approximation for synoptically mapping TSS. Overall, large-scale patterns of SeaWiFS bbp(400) appeared to be consistent with expectations based on field observations and historical reports of TSS. Monthly averages indicated that SeaWiFS bbp(400) was typically largest in winter (>0.049 m−1, November–February) and smallest in summer (−1, June–August), regardless of the amount of riverine discharge to the bay. The study period also included Hurricanes Floyd and Isabel, which caused large-scale turbidity events and changes in the water quality of the bay. These results demonstrate that this technique can provide frequent synoptic assessments of suspended solids concentrations in Chesapeake Bay and other coastal regions.

  1. Evaluation of weather forecast systems for storm surge modeling in the Chesapeake Bay

    Science.gov (United States)

    Garzon, Juan L.; Ferreira, Celso M.; Padilla-Hernandez, Roberto

    2018-01-01

    Accurate forecast of sea-level heights in coastal areas depends, among other factors, upon a reliable coupling of a meteorological forecast system to a hydrodynamic and wave system. This study evaluates the predictive skills of the coupled circulation and wind-wave model system (ADCIRC+SWAN) for simulating storm tides in the Chesapeake Bay, forced by six different products: (1) Global Forecast System (GFS), (2) Climate Forecast System (CFS) version 2, (3) North American Mesoscale Forecast System (NAM), (4) Rapid Refresh (RAP), (5) European Center for Medium-Range Weather Forecasts (ECMWF), and (6) the Atlantic hurricane database (HURDAT2). This evaluation is based on the hindcasting of four events: Irene (2011), Sandy (2012), Joaquin (2015), and Jonas (2016). By comparing the simulated water levels to observations at 13 monitoring stations, we have found that the ADCIR+SWAN System forced by the following: (1) the HURDAT2-based system exhibited the weakest statistical skills owing to a noteworthy overprediction of the simulated wind speed; (2) the ECMWF, RAP, and NAM products captured the moment of the peak and moderately its magnitude during all storms, with a correlation coefficient ranging between 0.98 and 0.77; (3) the CFS system exhibited the worst averaged root-mean-square difference (excepting HURDAT2); (4) the GFS system (the lowest horizontal resolution product tested) resulted in a clear underprediction of the maximum water elevation. Overall, the simulations forced by NAM and ECMWF systems induced the most accurate results best accuracy to support water level forecasting in the Chesapeake Bay during both tropical and extra-tropical storms.

  2. Predator removal enhances waterbird restoration in Chesapeake Bay (Maryland)

    Science.gov (United States)

    Erwin, R. Michael; McGowan, Peter C.; Reese, Jan

    2011-01-01

    This report represents an update to an earlier report(Erwin et al. 2007a) on wildlife restoration on the largest dredge material island project in the United States underway in Talbot County, Maryland (Figure 1) in the mid–Chesapeake Bay region, referred to as the Paul Sarbanes Ecosystem Restoration Project at Poplar Island (www.nab.usace.army.mil/projects/Maryland/PoplarIsland/documents.html). An important component of this largescale restoration effort focused on water birds, as many of these species have undergone significant declines in the Chesapeake region over the past 30 years (Erwin et al. 2007b). The priority waterbird species include common terns (Sterna hirundo), least terns (S. antillarum), snowy egrets (Egretta thula), and ospreys (Pandion haliaetus). Although significant numbers of common terns (more than 800 pairs in 2003), least terns (62 pairs in 2003), snowy egrets (50 or more pairs by 2005), and ospreys (7 to 10 pairs) have nested on Poplar Island since early 2000, tern productivity especially had been strongly limited by a combination of red fox (Vulpes vulpes) and great horned owl (Bubo virginianus) predation. Fox trapping began in 2004, and four were removed that year; no more evidence of fox presence was found in 2005 or subsequently. The owls proved to be more problematic.

  3. Weighted Regressions on Time, Discharge, and Season (WRTDS), with an application to Chesapeake Bay River inputs

    Science.gov (United States)

    Hirsch, Robert M.; Moyer, Douglas; Archfield, Stacey A.

    2010-01-01

    A new approach to the analysis of long-term surface water-quality data is proposed and implemented. The goal of this approach is to increase the amount of information that is extracted from the types of rich water-quality datasets that now exist. The method is formulated to allow for maximum flexibility in representations of the long-term trend, seasonal components, and discharge-related components of the behavior of the water-quality variable of interest. It is designed to provide internally consistent estimates of the actual history of concentrations and fluxes as well as histories that eliminate the influence of year-to-year variations in streamflow. The method employs the use of weighted regressions of concentrations on time, discharge, and season. Finally, the method is designed to be useful as a diagnostic tool regarding the kinds of changes that are taking place in the watershed related to point sources, groundwater sources, and surface-water nonpoint sources. The method is applied to datasets for the nine large tributaries of Chesapeake Bay from 1978 to 2008. The results show a wide range of patterns of change in total phosphorus and in dissolved nitrate plus nitrite. These results should prove useful in further examination of the causes of changes, or lack of changes, and may help inform decisions about future actions to reduce nutrient enrichment in the Chesapeake Bay and its watershed.

  4. Concentrations of metals in blood and feathers of nestling ospreys (Pandion haliaetus) in Chesapeake and Delaware Bays

    Science.gov (United States)

    Rattner, B.A.; Golden, N.H.; Toschik, P.C.; McGowan, P.C.; Custer, T.W.

    2008-01-01

    In 2000, 2001, and 2002, blood and feather samples were collected from 40-45-day-old nestling ospreys (Pandion haliaetus) from Chesapeake Bay and Delaware Bay and River. Concentrations of 18 metals, metalloids, and other elements were determined in these samples by inductively coupled plasma-mass spectroscopy, and Hg concentrations were measured by cold vapor atomic absorption spectroscopy. When compared to concurrent reference areas (South, West, and Rhode Rivers), mean As and Hg concentrations in blood were greater (p nestlings from the highly industrialized Elizabeth River compared to the rural reference area. When compared to the concurrent reference area, mean Al, Ba, Hg, Mn, and Pb concentrations in feathers were substantially greater (p nestlings from northern Delaware Bay and River had greater concentrations (p nestling feathers from Delaware were frequently greater than in the Chesapeake. The present findings and those of related reproductive studies suggest that concentrations of several heavy metals (e.g., Cd, Hg, Pb) in nestling blood and feathers from Chesapeake and Delaware Bays were below toxicity thresholds and do not seem to be affecting chick survival during the nestling period.

  5. Transitioning a Chesapeake Bay Ecological Prediction System to Operations

    Science.gov (United States)

    Brown, C.; Green, D. S.; Eco Forecasters

    2011-12-01

    Ecological prediction of the impacts of physical, chemical, biological, and human-induced change on ecosystems and their components, encompass a wide range of space and time scales, and subject matter. They vary from predicting the occurrence and/or transport of certain species, such harmful algal blooms, or biogeochemical constituents, such as dissolved oxygen concentrations, to large-scale ecosystem responses and higher trophic levels. The timescales of ecological prediction, including guidance and forecasts, range from nowcasts and short-term forecasts (days), to intraseasonal and interannual outlooks (weeks to months), to decadal and century projections in climate change scenarios. The spatial scales range from small coastal inlets to basin and global scale biogeochemical and ecological forecasts. The types of models that have been used include conceptual, empirical, mechanistic, and hybrid approaches. This presentation will identify the challenges and progress toward transitioning experimental model-based ecological prediction into operational guidance and forecasting. Recent efforts are targeting integration of regional ocean, hydrodynamic and hydrological models and leveraging weather and water service infrastructure to enable the prototyping of an operational ecological forecast capability for the Chesapeake Bay and its tidal tributaries. A path finder demonstration predicts the probability of encountering sea nettles (Chrysaora quinquecirrha), a stinging jellyfish. These jellyfish can negatively impact safety and economic activities in the bay and an impact-based forecast that predicts where and when this biotic nuisance occurs may help management effects. The issuance of bay-wide nowcasts and three-day forecasts of sea nettle probability are generated daily by forcing an empirical habitat model (that predicts the probability of sea nettles) with real-time and 3-day forecasts of sea-surface temperature (SST) and salinity (SSS). In the first demonstration

  6. Analysis of the Energy Performance of the Chesapeake Bay Foundation's Philip Merrill Environmental Center

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Deru M.; Torcellini, P.; Ellis, P.

    2005-04-01

    The Chesapeake Bay Foundation designed their new headquarters building to minimize its environmental impact on the already highly polluted Chesapeake Bay by incorporating numerous high-performance energy saving features into the building design. CBF then contacted NREL to perform a nonbiased energy evaluation of the building. Because their building attracted much attention in the sustainable design community, an unbiased evaluation was necessary to help designers replicate successes and identify and correct problem areas. This report focuses on NREL's monitoring and analysis of the overall energy performance of the building.

  7. Large-Scale Submerged Aquatic Vegetation Restoration in Chesapeake Bay: Status Report, 2003-2006

    National Research Council Canada - National Science Library

    Shafer, Deborah J; Bergstrom, Peter

    2008-01-01

    In 2003, the U.S. Army Engineer Research and Development Center (ERDC) and the National Oceanic and Atmospheric Administration Chesapeake Bay Office began a comprehensive research effort to restore submerged aquatic vegetation (SAV...

  8. National Status and Trends: Bioeffects Assessment Program, Chesapeake Bay Summary Database (1998-2001)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study was based on the sediment quality triad (SQT) approach. A stratified probabilistic sampling design was utilized to characterize the Chesapeake Bay system...

  9. The exotic mute swan (Cygnus olor) in Chesapeake Bay, USA

    Science.gov (United States)

    Perry, M.C.; Perry, M.C.

    2002-01-01

    The exotic mute swan (Cygnus olor) has increased its population size in Chesapeake Bay (Maryland and Virginia) to approximately 4,500 since 1962 when five swans were released in the Bay. The Bay population of mute swans now represents 30% of the total Atlantic Flyway population (12,600) and has had a phenomenal increase of 1,200% from 1986 to 1999. Unlike the tundra swans (Cygnus columbianus) that migrate to the Bay for the winter, the mute swan is a year-long resident, and, therefore, reports of conflicts with nesting native waterbirds and the consumption of submerged aquatic vegetation (SAV) have raised concerns among resource managers. Populations of black skimmers (Rynchops niger) and least terns (Sterna antillarum) nesting on beaches and oyster shell bars have been eliminated by molting mute swans. Although data on the reduction of SAV by nesting mute swans and their offspring during the spring and summer are limited, food habits data show that mute swans rely heavily on SAV during these months. Widgeon grass (Ruppia maritima) constituted 56% and eel grass (Zostera marina) constituted 43% of the gullet food of mute swans. Other SAV and invertebrates (including bryozoans, shrimp, and amphipods) formed a much smaller amount of the food percentage (1%). Invertebrates are believed to have been selected accidently within the vegetation eaten by the swans. Corn (Zea mays) fed to swans by Bay residents during the winter probably supplement limited vegetative food resources in late winter. A program to control swan numbers by the addling of eggs and the killing of adult swans has been a contentious issue with some residents of the Bay area. A management plan is being prepared by a diverse group of citizens appointed by the Governor to advise the Maryland Department of Natural Resources on viable and optimum options to manage mute swans in the Maryland portion of Chesapeake Bay. Hopefully, the implementation of the plan will alleviate the existing conflicts to the

  10. Radionuclides and trace elements in middle Chesapeake Bay sediments

    International Nuclear Information System (INIS)

    Gavrilas, M.

    1988-01-01

    Sediments play an important role in aquatic ecology by serving as a repository for radioactive substances and for soluble chemical pollutants that they may transport over considerable distances and may pass to a higher trophic level by way of bottom-feeding biota. The Chesapeake Bay is a moderately stratified, drowned river valley estuary. The oscillatory flood and ebb of the tidal currents are the most obvious motions in the bay and its tributary estuaries. It is considered that the distribution of most of the pollutants, once diluted by the mixing action of the tidal flow, remains relatively constant for many miles up and down the bay. This paper documents the present status of the radioactivity and of trace elements in sediment samples collected in March 1986 from and extended area around the Calvert Cliffs Nuclear Power Plant

  11. Flux of nitrogen, phosphorus, and suspended sediment from the Susquehanna River Basin to the Chesapeake Bay during Tropical Storm Lee, September 2011, as an indicator of the effects of reservoir sedimentation on water quality

    Science.gov (United States)

    Hirsch, Robert M.

    2012-01-01

    Concentrations of nitrogen, phosphorus, and suspended sediment are measured at the U.S. Geological Survey streamgage at Conowingo Dam at the downstream end of the Susquehanna River Basin in Maryland, where the river flows into the Chesapeake Bay. During the period September 7-15, 2011, in the aftermath of Tropical Storm Lee, concentrations of these three constituents were among the highest ever measured at this site. These measurements indicate that sediment-storage processes behind the three dams on the lower Susquehanna River are evolving. In particular, they indicate that scouring of sediment (and the nitrogen and phosphorus attached to that sediment) may be increasing with time. Trends in flow-normalized fluxes at the Susquehanna River at Conowingo, Maryland, streamgage during 1996-2011 indicate a 3.2-percent decrease in total nitrogen, but a 55-percent increase in total phosphorus and a 97-percent increase in suspended sediment. These large increases in the flux of phosphorus and sediment from the Susquehanna River to the Chesapeake Bay have occurred despite reductions in the fluxes of these constituents from the Susquehanna River watershed upstream from the reservoirs. Although the Tropical Storm Lee flood event contributed about 1.8 percent of the total streamflow from the Susquehanna River to the Chesapeake Bay over the past decade (water years 2002-11), it contributed about 5 percent of the nitrogen, 22 percent of the phosphorus, and 39 percent of the suspended sediment during the same period. These results highlight the importance of brief high-flow events in releasing nitrogen, phosphorus, and sediment derived from the Susquehanna River watershed and stored in the Conowingo Reservoir to the Chesapeake Bay.

  12. Acquisition Of Rainfall Dataset And The Application For The Automatic Harvester In The Chesapeake Bay Region

    Science.gov (United States)

    Choi, Y.; Piasecki, M.

    2008-12-01

    The objective of this study is the preparation and indexing of rainfall data products for ingestion into the Chesapeake Bay Environmental Observatory (CBEO) node of the CUAHSI/WATERs network. Rainfall products (which are obtained and then processed based on the WSR-88D NEXRAD network) are obtained from the NOAA/NWS Advanced Hydrologic Prediction Service that combines the Multi-sensor Precipitation Estimate (MPE) data generated by the Regional River Forecast Centers and Hydro-NEXRAD rainfall data generated as a service by the University of Iowa. The former is collected on 4*4 km grid (HRAP) with a daily average temporal resolution and the latter on a 1minute*1minute degree grid with hourly values. We have generated a cut-out for the Chesapeake Bay Basin that contains about 9,300 nodes (sites) for the MPE data and about 300,000 nodes (sites) for the Hydro-NEXRAD product. Automated harvesting services have been implemented for both data products. The MPE data is harvested from its download site using ArcGIS which in turn is used to extract the data for the Chesapeake Bay watershed before a scripting program is used to scatter the data into the ODM. The Hydro-NEXRAD is downloaded from a web-based system at the University of Iowa which permits downloads for large scale watersheds organized by Hydraulic Unit Codes (HUC). The resulting ASCII is then automatically parsed and the information stored alongside the MPE data. The two data products stored side-by-side then allows a comparison between them addressing the accuracy and agreement between the methods used to arrive at rainfall data as both use the raw reflectivity data from the WSD-88D system.

  13. Assessing water quality of the Chesapeake Bay by the impact of sea level rise and warming

    Science.gov (United States)

    Wang, P.; Linker, L.; Wang, H.; Bhatt, G.; Yactayo, G.; Hinson, K.; Tian, R.

    2017-08-01

    The influence of sea level rise and warming on circulation and water quality of the Chesapeake Bay under projected climate conditions in 2050 were estimated by computer simulation. Four estuarine circulation scenarios in the estuary were run using the same watershed load in 1991-2000 period. They are, 1) the Base Scenario, which represents the current climate condition, 2) a Sea Level Rise Scenario, 3) a Warming Scenario, and 4) a combined Sea Level Rise and Warming Scenario. With a 1.6-1.9°C increase in monthly air temperatures in the Warming Scenario, water temperature in the Bay is estimated to increase by 0.8-1°C. Summer average anoxic volume is estimated to increase 1.4 percent compared to the Base Scenario, because of an increase in algal blooms in the spring and summer, promotion of oxygen consumptive processes, and an increase of stratification. However, a 0.5-meter Sea Level Rise Scenario results in a 12 percent reduction of anoxic volume. This is mainly due to increased estuarine circulation that promotes oxygen-rich sea water intrusion in lower layers. The combined Sea Level Rise and Warming Scenario results in a 10.8 percent reduction of anoxic volume. Global warming increases precipitation and consequently increases nutrient loads from the watershed by approximately 5-7 percent. A scenario that used a 10 percent increase in watershed loads and current estuarine circulation patterns yielded a 19 percent increase in summer anoxic volume, while a scenario that used a 10 percent increase in watershed loads and modified estuarine circulation patterns by the aforementioned sea level rise and warming yielded a 6 percent increase in summer anoxic volume. Impacts on phytoplankton, sediments, and water clarity were also analysed.

  14. Collection and analysis of remotely sensed data from the Rhode River Estuary Watershed. [ecological parameters of Chesapeake Bay

    Science.gov (United States)

    Jenkins, D. W.

    1972-01-01

    NASA chose the watershed of Rhode River, a small sub-estuary of the Bay, as a representative test area for intensive studies of remote sensing, the results of which could be extrapolated to other estuarine watersheds around the Bay. A broad program of ecological research was already underway within the watershed, conducted by the Smithsonian Institution's Chesapeake Bay Center for Environmental Studies (CBCES) and cooperating universities. This research program offered a unique opportunity to explore potential applications for remote sensing techniques. This led to a joint NASA-CBCES project with two basic objectives: to evaluate remote sensing data for the interpretation of ecological parameters, and to provide essential data for ongoing research at the CBCES. A third objective, dependent upon realization of the first two, was to extrapolate photointerpretive expertise gained at the Rhode River watershed to other portions of the Chesapeake Bay.

  15. Assessing climate change impacts on winter cover crop nitrate uptake efficiency on the coastal plain of the Chesapeake Bay watershed using the SWAT model

    Science.gov (United States)

    Climate change is expected to exacerbate water quality degradation in the Chesapeake Bay watershed (CBW). Winter cover crops (WCCs) have been widely implemented in this region owing to their high effectiveness at reducing nitrate loads. However, little is known about climate change impacts on the ef...

  16. NASA-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay.

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.

  17. Effects of energy related activities on the plankton of the Chesapeake Bay. Section I. Work in progress. Progress report, 1 August 1975--31 July 1976

    International Nuclear Information System (INIS)

    Taft, J.L.

    1976-01-01

    Progress is reported on the following research projects: release of dissolved organic carbon by phytoplankton; plankton respiration and nutrient regeneration; bacterial utilization of labeled compounds; effects of heat and chlorine on natural assemblages of Chesapeake Bay phytoplankton; and nutrient flux between sediment and water

  18. Preventing Pollution to Local Waters, Bay; Preserving Historic Natural Bridge in Virginia

    Science.gov (United States)

    In helping to preserve one of the oldest tourist destinations in the country – a spectacular natural land bridge in Virginia – EPA funding is protecting the surrounding land from development that would have impacted local waters and the Chesapeake Bay.

  19. Restoration Potential of Ruppia Maritima and Potamogeton Perfoliatus by Seed in the Mid-Chesapeake Bay

    National Research Council Canada - National Science Library

    Ailstock, Steve

    2004-01-01

    ... in the mesohaline reaches of the mid-Chesapeake Bay. Once reproductive potential by seed is defined for healthy populations of these species, their life cycles can be evaluated to identify nondestructive methods of harvesting seeds for restoration projects...

  20. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watersheds using SWAT model

    Science.gov (United States)

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrat...

  1. Application of a Weighted Regression Model for Reporting Nutrient and Sediment Concentrations, Fluxes, and Trends in Concentration and Flux for the Chesapeake Bay Nontidal Water-Quality Monitoring Network, Results Through Water Year 2012

    Science.gov (United States)

    Chanat, Jeffrey G.; Moyer, Douglas L.; Blomquist, Joel D.; Hyer, Kenneth E.; Langland, Michael J.

    2016-01-13

    In the Chesapeake Bay watershed, estimated fluxes of nutrients and sediment from the bay’s nontidal tributaries into the estuary are the foundation of decision making to meet reductions prescribed by the Chesapeake Bay Total Maximum Daily Load (TMDL) and are often the basis for refining scientific understanding of the watershed-scale processes that influence the delivery of these constituents to the bay. Two regression-based flux and trend estimation models, ESTIMATOR and Weighted Regressions on Time, Discharge, and Season (WRTDS), were compared using data from 80 watersheds in the Chesapeake Bay Nontidal Water-Quality Monitoring Network (CBNTN). The watersheds range in size from 62 to 70,189 square kilometers and record lengths range from 6 to 28 years. ESTIMATOR is a constant-parameter model that estimates trends only in concentration; WRTDS uses variable parameters estimated with weighted regression, and estimates trends in both concentration and flux. WRTDS had greater explanatory power than ESTIMATOR, with the greatest degree of improvement evident for records longer than 25 years (30 stations; improvement in median model R2= 0.06 for total nitrogen, 0.08 for total phosphorus, and 0.05 for sediment) and the least degree of improvement for records of less than 10 years, for which the two models performed nearly equally. Flux bias statistics were comparable or lower (more favorable) for WRTDS for any record length; for 30 stations with records longer than 25 years, the greatest degree of improvement was evident for sediment (decrease of 0.17 in median statistic) and total phosphorus (decrease of 0.05). The overall between-station pattern in concentration trend direction and magnitude for all constituents was roughly similar for both models. A detailed case study revealed that trends in concentration estimated by WRTDS can operationally be viewed as a less-constrained equivalent to trends in concentration estimated by ESTIMATOR. Estimates of annual mean flow

  2. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  3. Chesapeake Bay fish–osprey (Pandion haliaetus) food chain: Evaluation of contaminant exposure and genetic damage

    Science.gov (United States)

    Lazarus, Rebecca S.; Rattner, Barnett A.; McGowan, Peter C.; Hale, Robert C.; Karouna-Reiner, Natalie K.; Erickson, Richard A.; Ottinger, Mary Ann

    2016-01-01

    From 2011 to 2013, a large-scale ecotoxicological study was conducted in several Chesapeake Bay (USA) tributaries (Susquehanna River and flats, the Back, Baltimore Harbor/Patapsco Rivers, Anacostia/ middle Potomac, Elizabeth and James Rivers) and Poplar Island as a mid-Bay reference site. Osprey (Pandion haliaetus) diet and the transfer of contaminants from fish to osprey eggs were evaluated. The most bioaccumulative compounds (biomagnification factor > 5) included p,p′-dichlorodiphenyldichloroethylene (DDE), total polychlorinated biphenyls (PCBs), total polybrominated diphenyl ethers (PBDEs), and bromodiphenyl ether (BDE) congeners 47, 99, 100, and 154. This analysis suggested that alternative brominated flame retardants and other compounds (methoxytriclosan) are not appreciably biomagnifying. A multivariate analysis of similarity indicated that major differences in patterns among study sites were driven by PCB congeners 105, 128, 156, 170/190, and 189, and PBDE congeners 99 and 209. An integrative redundancy analysis showed that osprey eggs from Baltimore Harbor/Patapsco River and the Elizabeth River had high residues of PCBs and p,p′-DDE, with PBDEs making a substantial contribution to overall halogenated contamination on the Susquehanna and Anacostia/middle Potomac Rivers. The redundancy analysis also suggested a potential relation between PBDE residues in osprey eggs and oxidative DNA damage in nestling blood samples. The results also indicate that there is no longer a discernible relation between halogenated contaminants in osprey eggs and their reproductive success in Chesapeake Bay. Osprey populations are thriving in much of the Chesapeake, with productivity rates exceeding those required to sustain a stable population.

  4. Incidence of malaria in a wintering population of canvasbacks (Aythya valisineria) on Chesapeake Bay

    Science.gov (United States)

    Kocan, R.M.; Knisley, J.O.

    1970-01-01

    Canvasback ducks wintering on Chesapeake Bay had a 6% incidence of Leucocytozoon sirnondi and 2% incidence of Haemoproteus. Sub-inoculation of whole blood into Pekin ducklings produced a Plasmodium infection rate of 31%. Females were more frequently infected (12/22) than males (15/68). The parasite was identified as P. circumflexum.

  5. Deep drilling in the Chesapeake Bay impact structure - An overview

    Science.gov (United States)

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a

  6. Diurnal changes of remote sensing reflectance over Chesapeake Bay: Observations from the Airborne Compact Atmospheric Mapper

    Science.gov (United States)

    Zhang, Minwei; Hu, Chuanmin; Cannizzaro, Jennifer; Kowalewski, Matthew G.; Janz, Scott J.

    2018-01-01

    Using hyperspectral data collected by the Airborne Compact Atmospheric Mapper (ACAM) and a shipborne radiometer in Chesapeake Bay in July-August 2011, this study investigates diurnal changes of surface remote sensing reflectance (Rrs). Atmospheric correction of ACAM data is performed using the traditional "black pixel" approach through radiative transfer based look-up-tables (LUTs) with non-zero Rrs in the near-infrared (NIR) accounted for by iterations. The ACAM-derived Rrs was firstly evaluated through comparison with Rrs derived from the Moderate Resolution Imaging Spectroradiometer satellite measurements, and then validated against in situ Rrs using a time window of ±1 h or ±3 h. Results suggest that the uncertainties in ACAM-derived Rrs are generally comparable to those from MODIS satellite measurements over coastal waters, and therefore may be used to assess whether Rrs diurnal changes observed by ACAM are realistic (i.e., with changes > 2 × uncertainties). Diurnal changes observed by repeated ACAM measurements reaches up to 66.8% depending on wavelength and location and are consistent with those from the repeated in situ Rrs measurements. These findings suggest that once airborne data are processed using proper algorithms and validated using in situ data, they are suitable for assessing diurnal changes in moderately turbid estuaries such as Chesapeake Bay. The findings also support future geostationary satellite missions that are particularly useful to assess short-term changes.

  7. Effects of energy related activities on the plankton of the Chesapeake Bay. Section 1. Progress report, 1 August 1976--30 September 1977

    International Nuclear Information System (INIS)

    Taft, J.L.

    1977-01-01

    Progress is reported on a comprehensive study of the ecology of the Chesapeake Bay estuary system. Emphasis is placed on seasonal variations of initial energy fixation by phytoplankton primary producers and subsequent energy transfer to herbivours and becterial heterotrophs. The impact of chemical and radioactive effluents from electric power plants on the ecology of Chesapeake Bay will be assessed. Data are included on the role of plankton metabolism in regenerating nutrients, nutrient exchange with sediments, and the role of micro-zooplankton in nutrient cycling

  8. Use of Principal Components Analysis to Explain Controls on Nutrient Fluxes to the Chesapeake Bay

    Science.gov (United States)

    Rice, K. C.; Mills, A. L.

    2017-12-01

    The Chesapeake Bay watershed, on the east coast of the United States, encompasses about 166,000-square kilometers (km2) of diverse land use, which includes a mixture of forested, agricultural, and developed land. The watershed is now managed under a Total Daily Maximum Load (TMDL), which requires implementation of management actions by 2025 that are sufficient to reduce nitrogen, phosphorus, and suspended-sediment fluxes to the Chesapeake Bay and restore the bay's water quality. We analyzed nutrient and sediment data along with land-use and climatic variables in nine sub watersheds to better understand the drivers of flux within the watershed and to provide relevant management implications. The nine sub watersheds range in area from 300 to 30,000 km2, and the analysis period was 1985-2014. The 31 variables specific to each sub watershed were highly statistically significantly correlated, so Principal Components Analysis was used to reduce the dimensionality of the dataset. The analysis revealed that about 80% of the variability in the whole dataset can be explained by discharge, flux, and concentration of nutrients and sediment. The first two principal components (PCs) explained about 68% of the total variance. PC1 loaded strongly on discharge and flux, and PC2 loaded on concentration. The PC scores of both PC1 and PC2 varied by season. Subsequent analysis of PC1 scores versus PC2 scores, broken out by sub watershed, revealed management implications. Some of the largest sub watersheds are largely driven by discharge, and consequently large fluxes. In contrast, some of the smaller sub watersheds are more variable in nutrient concentrations than discharge and flux. Our results suggest that, given no change in discharge, a reduction in nutrient flux to the streams in the smaller watersheds could result in a proportionately larger decrease in fluxes of nutrients down the river to the bay, than in the larger watersheds.

  9. Forecasting hypoxia in the Chesapeake Bay and Gulf of Mexico: model accuracy, precision, and sensitivity to ecosystem change

    International Nuclear Information System (INIS)

    Evans, Mary Anne; Scavia, Donald

    2011-01-01

    Increasing use of ecological models for management and policy requires robust evaluation of model precision, accuracy, and sensitivity to ecosystem change. We conducted such an evaluation of hypoxia models for the northern Gulf of Mexico and Chesapeake Bay using hindcasts of historical data, comparing several approaches to model calibration. For both systems we find that model sensitivity and precision can be optimized and model accuracy maintained within reasonable bounds by calibrating the model to relatively short, recent 3 year datasets. Model accuracy was higher for Chesapeake Bay than for the Gulf of Mexico, potentially indicating the greater importance of unmodeled processes in the latter system. Retrospective analyses demonstrate both directional and variable changes in sensitivity of hypoxia to nutrient loads.

  10. Tumor prevalence and biomarkers of genotoxicity in brown bullhead (Ameiurus nebulosus) in Chesapeake Bay tributaries

    Energy Technology Data Exchange (ETDEWEB)

    Pinkney, Alfred E., E-mail: Fred_Pinkney@fws.gov [U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 177 Admiral Cochrane Drive, Annapolis, MD 21401 (United States); Harshbarger, John C., E-mail: jcharshbarger@verizon.net [Department of Pathology, George Washington University Medical Center, 2300 I Street, NW, Washington, DC 20037 (United States); Karouna-Renier, Natalie K., E-mail: nkarouna@usgs.gov [U.S. Geological Survey, Patuxent Wildlife Research Center, BARC, Bldg. 308, Beltsville, MD 20705 (United States); Jenko, Kathryn [U.S. Geological Survey, Patuxent Wildlife Research Center, BARC, Bldg. 308, Beltsville, MD 20705 (United States); Balk, Lennart, E-mail: lennart.balk@itm.su.se [Department of Applied Environmental Science (ITM), Stockholm University SE-106 91, Stockholm (Sweden); Skarphe Latin-Small-Letter-Eth insdottir, Halldora; Liewenborg, Birgitta [Department of Applied Environmental Science (ITM), Stockholm University SE-106 91, Stockholm (Sweden); Rutter, Michael A., E-mail: mar36@psu.edu [Department of Mathematics, Penn State Erie, The Behrend College, 5091 Station Road, Erie, PA 16563 (United States)

    2011-12-01

    We surveyed four Chesapeake Bay tributaries for skin and liver tumors in brown bullhead (Ameiurus nebulosus). We focused on the South River, where the highest skin tumor prevalence (53%) in the Bay watershed had been reported. The objectives were to 1) compare tumor prevalence with nearby rivers (Severn and Rhode) and a more remote river (Choptank); 2) investigate associations between tumor prevalence and polynuclear aromatic hydrocarbons (PAHs) and alkylating agents; and 3) statistically analyze Chesapeake Bay bullhead tumor data from 1992 through 2008. All four South River collections exhibited high skin tumor prevalence (19% to 58%), whereas skin tumor prevalence was 2%, 10%, and 52% in the three Severn collections; 0% and 2% in the Choptank collections; and 5.6% in the Rhode collection. Liver tumor prevalence was 0% to 6% in all but one South River collection (20%) and 0% to 6% in the three other rivers. In a subset of samples, PAH-like biliary metabolites and {sup 32}P-DNA adducts were used as biomarkers of exposure and response to polycyclic aromatic compounds (PACs). Adducts from alkylating agents were detected as O6-methyl-2 Prime -deoxyguanosine (O6Me-dG) and O6-ethyl-2 Prime -deoxyguanosine (O6Et-dG) modified DNA. Bullheads from the contaminated Anacostia River were used as a positive control for DNA adducts. {sup 32}P-DNA adduct concentrations were significantly higher in Anacostia bullhead livers compared with the other rivers. We identified alkyl DNA adducts in bullhead livers from the South and Anacostia, but not the Choptank. Neither the PAH-like bile metabolite data, sediment PAH data, nor the DNA adduct data suggest an association between liver or skin tumor prevalence and exposure to PACs or alkylating agents in the South, Choptank, Severn, or Rhode rivers. Logistic regression analysis of the Chesapeake Bay database revealed that sex and length were significant covariates for liver tumors and length was a significant covariate for skin tumors

  11. Tumor prevalence and biomarkers of genotoxicity in brown bullhead (Ameiurus nebulosus) in Chesapeake Bay tributaries

    International Nuclear Information System (INIS)

    Pinkney, Alfred E.; Harshbarger, John C.; Karouna-Renier, Natalie K.; Jenko, Kathryn; Balk, Lennart; Skarphéðinsdóttir, Halldóra; Liewenborg, Birgitta; Rutter, Michael A.

    2011-01-01

    We surveyed four Chesapeake Bay tributaries for skin and liver tumors in brown bullhead (Ameiurus nebulosus). We focused on the South River, where the highest skin tumor prevalence (53%) in the Bay watershed had been reported. The objectives were to 1) compare tumor prevalence with nearby rivers (Severn and Rhode) and a more remote river (Choptank); 2) investigate associations between tumor prevalence and polynuclear aromatic hydrocarbons (PAHs) and alkylating agents; and 3) statistically analyze Chesapeake Bay bullhead tumor data from 1992 through 2008. All four South River collections exhibited high skin tumor prevalence (19% to 58%), whereas skin tumor prevalence was 2%, 10%, and 52% in the three Severn collections; 0% and 2% in the Choptank collections; and 5.6% in the Rhode collection. Liver tumor prevalence was 0% to 6% in all but one South River collection (20%) and 0% to 6% in the three other rivers. In a subset of samples, PAH-like biliary metabolites and 32 P-DNA adducts were used as biomarkers of exposure and response to polycyclic aromatic compounds (PACs). Adducts from alkylating agents were detected as O6-methyl-2′-deoxyguanosine (O6Me-dG) and O6-ethyl-2′-deoxyguanosine (O6Et-dG) modified DNA. Bullheads from the contaminated Anacostia River were used as a positive control for DNA adducts. 32 P-DNA adduct concentrations were significantly higher in Anacostia bullhead livers compared with the other rivers. We identified alkyl DNA adducts in bullhead livers from the South and Anacostia, but not the Choptank. Neither the PAH-like bile metabolite data, sediment PAH data, nor the DNA adduct data suggest an association between liver or skin tumor prevalence and exposure to PACs or alkylating agents in the South, Choptank, Severn, or Rhode rivers. Logistic regression analysis of the Chesapeake Bay database revealed that sex and length were significant covariates for liver tumors and length was a significant covariate for skin tumors. - Highlights: ► We

  12. Specific responsible environmental behavior among boaters on the Chesapeake Bay: a predictive model part II

    Science.gov (United States)

    Stuart P. Cottrell; Alan R. Graefe

    1995-01-01

    This paper examines predictors of boater behavior in a specific behavior situation, namely the percentage of raw sewage discharged from recreational vessels in a sanitation pumpout facility on the Chesapeake Bay. Results of a multiple regression analysis show knowledge predicts behavior in specific issue situations. In addition, the more specific the...

  13. Multi-Model Validation in the Chesapeake Bay Region in June 2010

    Science.gov (United States)

    2013-05-31

    ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 7030_4 X no ---~~~~~~~~~~~~~~~-~-~~-~------------ thor...US Navy at global , regional and coastal scales (Rowley 2008, 2010). The NCOM model in the Chesapeake Bay region for this exercise is configured in...derived from the NRL DBDB2 global bathymetry database. Boundary forcing and initial conditions were extracted from the East Coast NCOM which has a 3-km

  14. The Effect of Dissolved Polyunsaturated Aldehydes on Microzooplankton Growth Rates in the Chesapeake Bay and Atlantic Coastal Waters

    Directory of Open Access Journals (Sweden)

    Peter J. Lavrentyev

    2015-05-01

    Full Text Available Allelopathy is wide spread among marine phytoplankton, including diatoms, which can produce cytotoxic secondary metabolites such as polyunsaturated aldehydes (PUA. Most studies on diatom-produced PUA have been dedicated to their inhibitory effects on reproduction and development of marine invertebrates. However, little information exists on their impact on key herbivores in the ocean, microzooplankton. This study examined the effects of dissolved 2E,4E-octadienal and 2E,4E-heptadienal on the growth rates of natural ciliate and dinoflagellate populations in the Chesapeake Bay and the coastal Atlantic waters. The overall effect of PUA on microzooplankton growth was negative, especially at the higher concentrations, but there were pronounced differences in response among common planktonic species. For example, the growth of Codonella sp., Leegaardiella sol, Prorodon sp., and Gyrodinium spirale was impaired at 2 nM, whereas Strombidium conicum, Cyclotrichium gigas, and Gymnodinium sp. were not affected even at 20 nM. These results indicate that PUA can induce changes in microzooplankton dynamics and species composition.

  15. The Effect of Dissolved Polyunsaturated Aldehydes on Microzooplankton Growth Rates in the Chesapeake Bay and Atlantic Coastal Waters

    Science.gov (United States)

    Lavrentyev, Peter J.; Franzè, Gayantonia; Pierson, James J.; Stoecker, Diane K.

    2015-01-01

    Allelopathy is wide spread among marine phytoplankton, including diatoms, which can produce cytotoxic secondary metabolites such as polyunsaturated aldehydes (PUA). Most studies on diatom-produced PUA have been dedicated to their inhibitory effects on reproduction and development of marine invertebrates. However, little information exists on their impact on key herbivores in the ocean, microzooplankton. This study examined the effects of dissolved 2E,4E-octadienal and 2E,4E-heptadienal on the growth rates of natural ciliate and dinoflagellate populations in the Chesapeake Bay and the coastal Atlantic waters. The overall effect of PUA on microzooplankton growth was negative, especially at the higher concentrations, but there were pronounced differences in response among common planktonic species. For example, the growth of Codonella sp., Leegaardiella sol, Prorodon sp., and Gyrodinium spirale was impaired at 2 nM, whereas Strombidium conicum, Cyclotrichium gigas, and Gymnodinium sp. were not affected even at 20 nM. These results indicate that PUA can induce changes in microzooplankton dynamics and species composition. PMID:25955757

  16. Top-down control of phytoplankton by oysters in Chesapeake Bay, USA: Comment on Pomeroy et al. (2006)

    Science.gov (United States)

    Pomeroy et al. (2006) proposed that temporal and spatial mismatches between eastern oyster filtration and phytoplankton abundance will preclude restored stocks of eastern oysters from reducing the severity of hypoxia in the deep channel of central Chesapeake Bay. We refute this c...

  17. Invasive Species Guidebook for Department of Defense Installations in the Chesapeake Bay Watershed: Identification, Control, and Restoration

    Science.gov (United States)

    2007-11-01

    Crown vetch Coronilla varia MD, VA 14 Leafy spurge Euphorbia esula VA 15 Ground ivy Glechoma hederacea DC, MD, PA, VA, WV 17 Cogongrass Imperata ...INSTALLATIONS IN THE CHESAPEAKE BAY WATERSHED IDENTIFICATION AND CONTROL METHODS Cogongrass ( Imperata cylindrica) Description & Biology – A large

  18. Oyster Reef Communities in the Chesapeake Bay: A Brief Primer. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experience supported by multimedia instruction. This document presents an overview on the biology of…

  19. Development of Land Segmentation, Stream-Reach Network, and Watersheds in Support of Hydrological Simulation Program-Fortran (HSPF) Modeling, Chesapeake Bay Watershed, and Adjacent Parts of Maryland, Delaware, and Virginia

    Science.gov (United States)

    Martucci, Sarah K.; Krstolic, Jennifer L.; Raffensperger, Jeff P.; Hopkins, Katherine J.

    2006-01-01

    The U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program Office, Interstate Commission on the Potomac River Basin, Maryland Department of the Environment, Virginia Department of Conservation and Recreation, Virginia Department of Environmental Quality, and the University of Maryland Center for Environmental Science are collaborating on the Chesapeake Bay Regional Watershed Model, using Hydrological Simulation Program - FORTRAN to simulate streamflow and concentrations and loads of nutrients and sediment to Chesapeake Bay. The model will be used to provide information for resource managers. In order to establish a framework for model simulation, digital spatial datasets were created defining the discretization of the model region (including the Chesapeake Bay watershed, as well as the adjacent parts of Maryland, Delaware, and Virginia outside the watershed) into land segments, a stream-reach network, and associated watersheds. Land segmentation was based on county boundaries represented by a 1:100,000-scale digital dataset. Fifty of the 254 counties and incorporated cities in the model region were divided on the basis of physiography and topography, producing a total of 309 land segments. The stream-reach network for the Chesapeake Bay watershed part of the model region was based on the U.S. Geological Survey Chesapeake Bay SPARROW (SPAtially Referenced Regressions On Watershed attributes) model stream-reach network. Because that network was created only for the Chesapeake Bay watershed, the rest of the model region uses a 1:500,000-scale stream-reach network. Streams with mean annual streamflow of less than 100 cubic feet per second were excluded based on attributes from the dataset. Additional changes were made to enhance the data and to allow for inclusion of stream reaches with monitoring data that were not part of the original network. Thirty-meter-resolution Digital Elevation Model data were used to delineate watersheds for each

  20. Evolution of sediment plumes in the Chesapeake bay and implications of climate variability.

    Science.gov (United States)

    Zheng, Guangming; DiGiacomo, Paul M; Kaushal, Sujay S; Yuen-Murphy, Marilyn A; Duan, Shuiwang

    2015-06-02

    Fluvial sediment transport impacts fisheries, marine ecosystems, and human health. In the upper Chesapeake Bay, river-induced sediment plumes are generally known as either a monotonic spatial shape or a turbidity maximum. Little is known about plume evolution in response to variation in streamflow and extreme discharge of sediment. Here we propose a typology of sediment plumes in the upper Chesapeake Bay using a 17 year time series of satellite-derived suspended sediment concentration. On the basis of estimated fluvial and wind contributions, we define an intermittent/wind-dominated type and a continuous type, the latter of which is further divided into four subtypes based on spatial features of plumes, which we refer to as Injection, Transport, Temporary Turbidity-Maximum, and Persistent Turbidity-Maximum. The four continuous types exhibit a consistent sequence of evolution within 1 week to 1 month following flood events. We also identify a "shift" in typology with increased frequency of Turbidity-Maximum types before and after Hurricane Ivan (2004), which implies that extreme events have longer-lasting effects upon estuarine suspended sediment than previously considered. These results can serve as a diagnostic tool to better predict distribution and impacts of estuarine suspended sediment in response to changes in climate and land use.

  1. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    Science.gov (United States)

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    One of the major water-quality problems in the Chesapeake Bay is an overabundance of nutrients from the streams and rivers that discharge to the Bay. Some of these nutrients are from nonpoint sources such as atmospheric deposition, agricultural manure and fertilizer, and septic systems. The effects of efforts to control nonpoint sources, however, can be difficult to quantify because of the lag time between changes at the land surface and the response in the base-flow (ground water) component of streams. To help resource managers understand the lag time between implementation of management practices and subsequent response in the nutrient concentrations in the base-flow component of streamflow, a study of ground-water discharge, residence time, and nitrate transport in springs throughout the Chesapeake Bay Watershed and in four smaller watersheds in selected hydrogeomorphic regions (HGMRs) was conducted. The four watersheds were in the Coastal Plain Uplands, Piedmont crystalline, Valley and Ridge carbonate, and Valley and Ridge siliciclastic HGMRs.A study of springs to estimate an apparent age of the ground water was based on analyses for concentrations of chlorofluorocarbons in water samples collected from 48 springs in the Chesapeake Bay Watershed. Results of the analysis indicate that median age for all the samples was 10 years, with the 25th percentile having an age of 7 years and the 75th percentile having an age of 13 years. Although the number of samples collected in each HGMR was limited, there did not appear to be distinct differences in the ages between the HGMRs. The ranges were similar between the major HGMRs above the Fall Line (modern to about 50 years), with only two HGMRs of small geographic extent (Piedmont carbonate and Mesozoic Lowland) having ranges of modern to about 10 years. The median values of all the HGMRs ranged from 7 to 11 years. Not enough samples were collected in the Coastal Plain for comparison. Spring samples showed slightly younger

  2. Scientific Guidance for Rehabilitation of the Chesapeake Bay Ecosystem under the Changing Climate.

    Science.gov (United States)

    Boesch, D. F.; Johnson, Z. P.; Li, M.

    2017-12-01

    While the Chesapeake Bay is an estuary and not a marginal sea on the scale of the Baltic Sea or the Gulf of Mexico, it has a complex set of environmental issues and multiple political jurisdictions such that it can serve as a test bed for science-informed management in larger marine systems. In particular, the Chesapeake Bay possesses a relatively advanced effort to ameliorate eutrophication, reduce toxic stresses, rehabilitate critical habitats, and sustainably utilized resources. Furthermore, both scientists and managers are addressing these challenges while now beginning to incorporate the effects of changes in temperature, precipitation and runoff, sea level, ocean boundary conditions, and pH. Increases in temperature and sea level are already apparent and future conditions can be estimated from global model projections, although sea level and ocean exchanges are also affected by variations in Gulf Stream flows and mesoscale climate. Changes in the volume, seasonality and variability in freshwater delivery from the multiple rivers discharging to the bay are harder to project with confidence, but may have pervasive consequences for circulation, reducing nutrient loads to ameliorate eutrophication, biogeochemical processes, and biotic distributions and dynamics. Science is now challenged to inform multiple adaptation strategies, including minimizing the vulnerability of humans and infrastructure, sustaining important tidal wetlands, managing sediment resources, sustaining living resources, redefining achievable ecosystem rehabilitation goals, and achieving shifting goals for nutrient load reductions. At the same time, science will also have to identify effective means to meet these challenges while also reducing greenhouse gas emissions.

  3. 33 CFR 334.220 - Chesapeake Bay, south of Tangier Island, Va.; naval firing range.

    Science.gov (United States)

    2010-07-01

    ... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.220 Chesapeake Bay, south of Tangier Island, Va.; naval firing range. (a) The danger zone. Beginning... to latitude 37°45′00″, longitude 76°09′48″; thence to latitude 37°45′00″, longitude 76°08′51″; and...

  4. Forecasting system predicts presence of sea nettles in Chesapeake Bay

    Science.gov (United States)

    Brown, Christopher W.; Hood, Raleigh R.; Li, Zhen; Decker, Mary Beth; Gross, Thomas F.; Purcell, Jennifer E.; Wang, Harry V.

    Outbreaks of noxious biota, which occur in both aquatic and terrestrial systems, can have considerable negative economic impacts. For example, an increasing frequency of harmful algal blooms worldwide has negatively affected the tourism industry in many regions. Such impacts could be mitigated if the conditions that give rise to these outbreaks were known and could be monitored. Recent advances in technology and communications allow us to continuously measure and model many environmental factors that are responsible for outbreaks of certain noxious organisms. A new prototype ecological forecasting system predicts the likelihood of occurrence of the sea nettle (Chrysaora quinquecirrha), a stinging jellyfish, in the Chesapeake Bay.

  5. Atmospheric Nitrogen Deposition Loadings to the Chesapeake Bay: An Initial Analysis of the Cost Effectiveness of Control Options (1996)

    Science.gov (United States)

    This report examines the cost effectiveness of control options which reduce nitrate deposition to the Chesapeake watershed and to the tidal Bay. The report analyzes current estimates of the reductions expected in the ozone transport region.

  6. Terrestrially derived dissolved organic matter in the chesapeake bay and the middle atlantic bight

    Science.gov (United States)

    Mitra, Siddhartha; Bianchi, Thomas S.; Guo, Laodong; Santschi, Peter H.

    2000-10-01

    Concentrations of lignin-phenols were analyzed in high molecular weight dissolved organic matter (0.2 μm > HMW DOM > 1 kDa) isolated from surface waters of the Chesapeake Bay (C. Bay), and surface and bottom waters of the Middle Atlantic Bight (MAB). The abundance of lignin-phenols in HMW DOM was higher in the C. Bay (0.128 ± 0.06 μg L -1) compared to MAB surface waters (0.016 ± 0.004 μg L -1) and MAB bottom waters (0.005 ± 0.003 μg L -1). On an organic carbon-normalized basis, lignin-phenol abundances in the HMW DOM (i.e., Λ 6), were significantly higher ( p vanillin (Ad/Al) V in HMW DOM, indicative of lignin decay, ranged from 0.611 to 1.37 in C. Bay, 0.534 to 2.62 in MAB surface waters, and 0.435 to 1.96 in MAB bottom water. Ratios of S/V and (Ad/Al) V showed no significant differences between each environment, providing no evidence of any compositionally distinct input of terrestrial organic matter into each environment. When considering depth profiles of suspended particulate matter in the MAB, with C:N ratios, and bulk radiocarbon ages and stable carbon isotopic values in HMW DOM isolated from these areas, two scenarios present themselves regarding the sources and transport of terrestrially derived HMW DOM in the MAB. Scenario #1 assumes that a low amount of refractory terrestrial organic matter and old DOC are uniformly distributed in the oceans, both in surface and bottom waters, and that primary production in surface waters increases DOC with low lignin and younger DOC which degrades easily. In this case, many of the trends in age and biomarker composition likely reflect general patterns of Atlantic Ocean surface and bottom water circulation in the area of the MAB. Scenario 2 assumes terrestrial organic matter in bottom waters of the MAB may have originated from weathered shelf and slope sediments in nearshore areas via a combination of mechanisms (e.g., diffusion, recent resuspension events, and/or desorption of DOM from riverine POM buried deep

  7. Species-specific accumulation of polybrominated diphenyl ether flame retardants in birds of prey from the Chesapeake Bay region, USA

    Energy Technology Data Exchange (ETDEWEB)

    Chen Da, E-mail: chen@vims.ed [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Hale, Robert C. [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Watts, Bryan D. [Center for Conservation Biology, College of William and Mary, Williamsburg, VA 23185 (United States); La Guardia, Mark J.; Harvey, Ellen [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Mojica, Elizabeth K. [Center for Conservation Biology, College of William and Mary, Williamsburg, VA 23185 (United States)

    2010-05-15

    Compared to organochlorines, little is known about polybrominated diphenyl ether (PBDE) contamination of birds of prey breeding in the Chesapeake Bay, the largest estuary in the U.S. This study examined and compared PBDE contamination in eggs of osprey, double-crested cormorant, brown pelican and peregrine falcon from this area. Several legacy persistent organic pollutants such as PCBs and DDE were also investigated. The level of urbanization of the landscape appeared to influence the level of PBDE exposure. PBDE congener distribution patterns varied between piscivorous and terrestrial-feeding birds. This suggests individual congeners may be subject to differences in bioaccumulation, biomagnification or metabolism in the aquatic and terrestrial food webs. Biomagnification of PBDEs was studied in the Bay aquatic food chains for the first time. A biomagnification factor of 25.1 was estimated for SIGMAPBDEs for the fish - osprey egg food chain. Hazard quotients, applied as a preliminary evaluation, indicated that PBDEs may pose a moderate hazard to ospreys and peregrine falcons through impairment of reproductive performance. - Birds of prey breeding in the Chesapeake Bay (USA) exhibited species-specific PBDE accumulation patterns.

  8. Species-specific accumulation of polybrominated diphenyl ether flame retardants in birds of prey from the Chesapeake Bay region, USA

    International Nuclear Information System (INIS)

    Chen Da; Hale, Robert C.; Watts, Bryan D.; La Guardia, Mark J.; Harvey, Ellen; Mojica, Elizabeth K.

    2010-01-01

    Compared to organochlorines, little is known about polybrominated diphenyl ether (PBDE) contamination of birds of prey breeding in the Chesapeake Bay, the largest estuary in the U.S. This study examined and compared PBDE contamination in eggs of osprey, double-crested cormorant, brown pelican and peregrine falcon from this area. Several legacy persistent organic pollutants such as PCBs and DDE were also investigated. The level of urbanization of the landscape appeared to influence the level of PBDE exposure. PBDE congener distribution patterns varied between piscivorous and terrestrial-feeding birds. This suggests individual congeners may be subject to differences in bioaccumulation, biomagnification or metabolism in the aquatic and terrestrial food webs. Biomagnification of PBDEs was studied in the Bay aquatic food chains for the first time. A biomagnification factor of 25.1 was estimated for ΣPBDEs for the fish - osprey egg food chain. Hazard quotients, applied as a preliminary evaluation, indicated that PBDEs may pose a moderate hazard to ospreys and peregrine falcons through impairment of reproductive performance. - Birds of prey breeding in the Chesapeake Bay (USA) exhibited species-specific PBDE accumulation patterns.

  9. Ecosystem under pressure: ballast water discharge into Galveston Bay, Texas (USA) from 2005 to 2010.

    Science.gov (United States)

    Steichen, Jamie L; Windham, Rachel; Brinkmeyer, Robin; Quigg, Antonietta

    2012-04-01

    Ballast water exchange processes facilitate the dispersal and unnatural geographic expansion of phytoplankton, including harmful algal bloom species. From 2005 to 2010, over 45,000 vessels (≈ 8000 annually) travelled across Galveston Bay (Texas, USA) to the deep-water ports of Houston (10th largest in the world), Texas City and Galveston. These vessels (primarily tankers and bulkers) discharged ≈ 1.2 × 10(8) metrictons of ballast water; equivalent to ≈ 3.4% of the total volume of the Bay. Over half of the ballast water discharged had a coastwise origin, 96% being from US waters. Galveston Bay has fewer non-indigenous species but receives a higher volume of ballast water discharge, relative to the highly invaded Chesapeake and San Francisco Bays. Given the magnitude of shipping traffic, the role of Galveston Bay, both as a recipient and donor region of non-indigenous phytoplankton species is discussed here in terms of the invasibility risk to this system by way of ballast water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Integrated Geologic, Hydrologic, and Geophysical Investigations of the Chesapeake Bay Impact Structure, Virginia, USA: A Multi-Agency Program

    Science.gov (United States)

    Gohn, G. S.; Bruce, T. S.; Catchings, R. D.; Emry, S. R.; Johnson, G. H.; Levine, J. S.; McFarland, E. R.; Poag, C. W.; Powars, D. S.

    2001-01-01

    The Chesapeake Bay impact structure is the focus of an ongoing federal-state-local research program. Recent core drilling and geophysical surveys address the formative processes and hydrogeologic properties of this major "wet-target" impact. Additional information is contained in the original extended abstract.

  11. Novel psychrotolerant picocyanobacteria isolated from Chesapeake Bay in the winter.

    Science.gov (United States)

    Xu, Yongle; Jiao, Nianzhi; Chen, Feng

    2015-08-01

    Picocyanobacteria are major primary producers in the ocean, especially in the tropical or subtropical oceans or during warm seasons. Many "warm" picocyanobacterial species have been isolated and characterized. However, picocyanobacteria in cold environments or cold seasons are much less studied. In general, little is known about the taxonomy and ecophysiology of picocyanobacteria living in the winter. In this study, 17 strains of picocyanobacteria were isolated from Chesapeake Bay, a temperate estuarine ecosystem, during the winter months. These winter isolates belong to five distinct phylogenetic lineages, and are distinct from the picocyanobacteria previously isolated from the warm seasons. The vast majority of the winter isolates were closely related to picocyanobacteria isolated from other cold environments like Arctic or subalpine waters. The winter picocyanobacterial isolates were able to maintain slow growth or prolonged dormancy at 4°C. Interestingly, the phycoerythrin-rich strains outperformed the phycocyanin-rich strains at cold temperature. In addition, winter picocyanobacteria changed their morphology when cultivated at 4°C. The close phylogenetic relationship between the winter picocyanobacteria and the picocyanobacteria living in high latitude cold regions indicates that low temperature locations select specific ecotypes of picocyanobacteria. © 2015 Phycological Society of America.

  12. Bay breeze climatology at two sites along the Chesapeake bay from 1986-2010: Implications for surface ozone.

    Science.gov (United States)

    Stauffer, Ryan M; Thompson, Anne M

    Hourly surface meteorological measurements were coupled with surface ozone (O 3 ) mixing ratio measurements at Hampton, Virginia and Baltimore, Maryland, two sites along the Chesapeake Bay in the Mid-Atlantic United States, to examine the behavior of surface O 3 during bay breeze events and quantify the impact of the bay breeze on local O 3 pollution. Analyses were performed for the months of May through September for the years 1986 to 2010. The years were split into three groups to account for increasingly stringent environmental regulations that reduced regional emissions of nitrogen oxides (NO x ): 1986-1994, 1995-2002, and 2003-2010. Each day in the 25-year record was marked either as a bay breeze day, a non-bay breeze day, or a rainy/cloudy day based on the meteorological data. Mean eight hour (8-h) averaged surface O 3 values during bay breeze events were 3 to 5 parts per billion by volume (ppbv) higher at Hampton and Baltimore than on non-bay breeze days in all year periods. Anomalies from mean surface O 3 were highest in the afternoon at both sites during bay breeze days in the 2003-2010 study period. In conjunction with an overall lowering of baseline O 3 after the 1995-2002 period, the percentage of total exceedances of the Environmental Protection Agency (EPA) 75 ppbv 8-h O 3 standard that occurred on bay breeze days increased at Hampton for 2003-2010, while remaining steady at Baltimore. These results suggest that bay breeze circulations are becoming more important to causing exceedance events at particular sites in the region, and support the hypothesis of Martins et al. (2012) that highly localized meteorology increasingly drives air quality events at Hampton.

  13. Chesapeake Bay Impact Structure Deep Drilling Project Completes Coring

    Directory of Open Access Journals (Sweden)

    the Scientific Staff of the Chesapeake Bay Impact Structure Deep Drilling Project

    2006-09-01

    Full Text Available The Chesapeake Bay Impact Structure Deep Drilling Project (CBIS Project completed its coring operations during September–December 2005 and April–May 2006. Cores were collected continuously to a total depth of 1766 m. The recovered section consists of 1322 m of impactites beneath 444 m of post-impact continental shelf sediments.The CBIS Project is a joint venture of the International Continental Scientifi c Drilling Program (ICDP and the U.S. Geological Survey (USGS. Project activities began with a planning workshop in September 2003 attended by sixtythree scientists from ten countries. Field operations began with site preparation in July 2005, and coring began in September 2005. Drilling, Observation and Sampling of theEarth’s Continental Crust (DOSECC was the general contractor for the drilling operations throughout 2005.

  14. Radionuclide distributions and sorption behavior in the Susquehanna--Chesapeake Bay System

    International Nuclear Information System (INIS)

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; McLean, R.I.; Domotor, S.L.

    1989-01-01

    Radionuclides released into the Susquehanna--Chesapeake System from the Three Mile Island, Peach Bottom, and Calvert Cliffs nuclear power plants are partitioned among dissolved, particulate, and biological phases and may thus exist in a number of physical and chemical forms. In this project, we have measured the dissolved and particulate distributions of fallout 137 Cs; reactor-released 137 Cs, 134 Cs, 65 Zn, 60 Co, and 58 Co; and naturally occurring 7 Be and 210 Pb in the lower Susquehanna River and Upper Chesapeake Bay. In addition, we chemically leached suspended particles and bottom sediments in the laboratory to determine radionuclide partitioning among different particulate-sorbing phases to complement the site-specific field data. This information has been used to document the important geochemical processes that affect the transport, sorption, distribution, and fate of reactor-released radionuclides (and by analogy, other trace contaminants) in this river-estuarine system. Knowledge of the mechanisms, kinetic factors, and processes that affect radionuclide distributions is crucial for predicting their biological availability, toxicity, chemical behavior, physical transport, and accumulation in aquatic systems. The results from this project provide the information necessary for developing accurate radionuclide-transport and biological-uptake models. 76 refs., 12 figs

  15. 77 FR 43822 - Proposed Information Collection Request; Comment Request; Valuing Improved Water Quality in the...

    Science.gov (United States)

    2012-07-26

    ... Request; Comment Request; Valuing Improved Water Quality in the Chesapeake Bay Using Stated Preference... efforts to improve water quality in the Chesapeake Bay. In 2009, Executive Order (E.O.) 13508 re... undertaking a benefits analysis of improvements in Bay water quality under the TMDLs, as well as of ancillary...

  16. Potential hazards of environmental contaminants to avifauna residing in the Chesapeake Bay estuary

    Science.gov (United States)

    Rattner, Barnett A.; McGowan, Peter C.

    2007-01-01

    A search of the Contaminant Exposure and Effects-Terrestrial Vertebrates (CEE-TV) database revealed that 70% of the 839 Chesapeake Bay records deal with avian species. Studies conducted on waterbirds in the past 15 years indicate that organochlorine contaminants have declined in eggs and tissues, although p,p'-DDE, total polychlorinated biphenyls (PCBs) and coplanar PCB congeners may still exert sublethal and reproductive effects in some locations. There have been numerous reports of avian die-off events related to organophosphorus and carbamate pesticides. More contemporary contaminants (e.g., alkylphenols, ethoxylates, perfluorinated compounds, polybrominated diphenyl ethers) are detectable in bird eggs in the most industrialized portions of the Bay, but interpretation of these data is difficult because adverse effect levels are incompletely known for birds. Two moderaterized oil spills resulted in the death of several hundred birds, and about 500 smaller spill events occur annually in the watershed. With the exception of lead, concentrations of cadmium, mercury, and selenium in eggs and tissues appear to be below toxic thresholds for waterbirds. Fishing tackle and discarded plastics, that can entangle and kill young and adults, are prevalent in nests in some Bay tributaries. It is apparent that exposure and potential effects of several classes of contaminants (e.g., dioxins, dibenzofurans, rodenticides, pharmaceuticals, personal care products, lead shot, and some metals) have not been systematically examined in the past 15 years, highlighting the need for toxicological evaluation of birds found dead, and perhaps an avian ecotoxicological monitoring program. Although oil spills, spent lead shot, some pesticides, and industrial pollutants occasionally harm Chesapeake avifauna, contaminants no longer evoke the population level effects that were observed in Ospreys (Pandion haliaetus) and Bald Eagles (Haliaeetus leucocephalus) through the 1970s.

  17. Brominated diphenyl ethers in the sediments, porewater, and biota of the Chesapeake Bay, USA

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K.; Klosterhaus, S.; Liebert, D.; Stapleton, H. [Maryland Univ., Solomons, MD (United States)

    2004-09-15

    Levels of brominated diphenyl ethers (BDEs) are rapidly increasing in the environment, and in a short time these chemicals have evolved from 'emerging contaminants' to globally-distributed organic pollutants. Recent research demonstrates BDEs are sufficiently stable to be transported long distances in the environment and to accumulate in higher trophic levels. Photolysis and metabolism appear to be dominant loss processes for the parent compounds, generating a variety of lower brominated diphenyl ethers, hydroxylated metabolites, and other products. BDEs are hydrophobic, and therefore their transport in aquatic systems is likely controlled by sorption to sediments and perhaps exchange across the air-water interface. To date, few studies have examined the geochemistry of BDEs in natural waters. In this paper, we review our recent measurements of BDEs in the Chesapeake Bay, a shallow, productive estuary in eastern North America. We focus on the distribution of BDE congeners sediment, porewater, and in faunal benthos along a contamination gradient downstream from a wastewater treatment plant and on the spatial distribution of BDEs in bottom-feeding and pelagic fish species.

  18. Long-Term Changes in Sediment and Nutrient Delivery from Conowingo Dam to Chesapeake Bay: Effects of Reservoir Sedimentation.

    Science.gov (United States)

    Zhang, Qian; Hirsch, Robert M; Ball, William P

    2016-02-16

    Reduction of suspended sediment (SS), total phosphorus (TP), and total nitrogen is an important focus for Chesapeake Bay watershed management. The Susquehanna River, the bay's largest tributary, has drawn attention because SS loads from behind Conowingo Dam (near the river's mouth) have been rising dramatically. To better understand these changes, we evaluated histories of concentration and loading (1986-2013) using data from sites above and below Conowingo Reservoir. First, observed concentration-discharge relationships show that SS and TP concentrations at the reservoir inlet have declined under most discharges in recent decades, but without corresponding declines at the outlet, implying recently diminished reservoir trapping. Second, best estimates of mass balance suggest decreasing net deposition of SS and TP in recent decades over a wide range of discharges, with cumulative mass generally dominated by the 75∼99.5th percentile of daily Conowingo discharges. Finally, stationary models that better accommodate effects of riverflow variability also support the conclusion of diminished trapping of SS and TP under a range of discharges that includes those well below the literature-reported scour threshold. Overall, these findings suggest that decreased net deposition of SS and TP has occurred at subscour levels of discharge, which has significant implications for the Chesapeake Bay ecosystem.

  19. An Approach to Understanding Complex Socio-Economic Impacts and Responses to Climate Disruption in the Chesapeake Bay Region

    Science.gov (United States)

    Schaefer, R. K.; Nix, M.; Ihde, A. G.; Paxton, L. J.; Weiss, M.; Simpkins, S.; Fountain, G. H.; APl GAIA Team

    2011-12-01

    In this paper we describe the application of a proven methodology for modeling the complex social and economic interactions of a system under stress to the regional issues that are tied to global climate disruption. Under the auspices of the GAIA project (http://gaia.jhuapl.edu), we have investigated simulating the complex interplay between climate, politics, society, industry, and the environment in the Chesapeake Bay Watershed and associated geographic areas of Maryland, Virginia, and Pennsylvania. This Chesapeake Bay simulation draws on interrelated geophysical and climate models to support decision-making analysis about the Bay. In addition to physical models, however, human activity is also incorporated via input and output calculations. For example, policy implications are modeled in relation to business activities surrounding fishing, farming, industry and manufacturing, land development, and tourism. This approach fosters collaboration among subject matter experts to advance a more complete understanding of the regional impacts of climate change. Simulated interactive competition, in which teams of experts are assigned conflicting objectives in a controlled environment, allow for subject exploration which avoids trivial solutions that neglect the possible responses of affected parties. Results include improved planning, the anticipation of areas of conflict or high risk, and the increased likelihood of developing mutually acceptable solutions.

  20. Stable-isotope analysis of canvasback winter diet in upper Chesapeake Bay

    Science.gov (United States)

    Haramis, G.M.; Jorde, Dennis G.; Macko, S.A.; Walker, J.L.

    2001-01-01

    A major decline in submerged aquatic vegetation (SAV) in Chesapeake Bay has altered the diet of wintering Canvasbacks (Aythya valisineria) from historically plant to a combination of benthic animal foods, especially the ubiquitous Baltic clam (Macoma balthica), supplemented with anthropogenic corn (Zea mays). Because the isotopic signature of corn is readily discriminated from bay benthos, but not SAV, we used stable-isotope methodology to investigate the corn–SAV component of the winter diet of Canvasbacks. Feeding trials with penned Canvasbacks were conducted to establish turnover rates and fractionation end-point loci of δ13C and δ15N signatures of whole blood for individual ducks fed ad libitum diets of (1) Baltic clams, (2) Baltic clams and corn, and (3) tubers of wild celery (Vallisneria americana). Turnover time constants averaged 4.5 weeks, indicating that signatures of wild ducks would be representative of bay diets by late February. Isotopic signatures of wild Canvasbacks sampled in February fell on a continuum between end-point loci for the Baltic clam and the combination Baltic clam and corn diet. Although that finding verifies a clear dependence on corn–SAV for wintering Canvasbacks, it also reveals that not enough corn–SAV is available to establish ad libitum consumption for the 15,000+ Canvasbacks wintering in the upper bay. On the basis of mean δ13C signature of bay Canvasbacks (n = 59) and ingestion rates from feeding trials, we estimated that 258 kg corn per day would account for the observed δ13C enrichment and supply 18% of daily energetic needs for 15,000 Canvasbacks. That level of corn availability is so realistic that we conclude that SAV is likely of little dietary importance to Canvasbacks in that portion of the bay.

  1. Community implementation dynamics: Nutrient management in the New York City and Chesapeake Bay Watersheds

    Directory of Open Access Journals (Sweden)

    Glenn Earl Sterner

    2015-04-01

    Full Text Available The creation of natural resource management and conservation strategies can be affected by engagement with local citizens and competing interests between agencies and stakeholders at the varying levels of governance. This paper examines the role of local engagement and the interaction between governance levels on the outcomes of nutrient management policy, a specific area of natural resource conservation and management. Presented are two case studies of the New York City and Chesapeake Bay Watersheds in the US. These case studies touch upon the themes of local citizen engagement and governance stakeholder interaction in changing nutrient management to improve water quality. An analysis of these cases leads to several key considerations for the creation and implementation of nutrient management and natural resource management more broadly, including the importance of: local citizen engagement, government brokering and cost sharing; and the need of all stakeholders to respect each other in the policy creation and implementation process.

  2. Derelict fishing gear in Chesapeake Bay, Virginia: spatial patterns and implications for marine fauna.

    Science.gov (United States)

    Bilkovic, Donna Marie; Havens, Kirk; Stanhope, David; Angstadt, Kory

    2014-03-15

    Derelict fishing gear is a source of mortality for target and non-target marine species. A program employing commercial watermen to remove marine debris provided a novel opportunity to collect extensive spatially-explicit information for four consecutive winters (2008-2012) on the type, distribution, and abundance of derelict fishing gear and bycatch in Virginia waters of Chesapeake Bay. The most abundant form of derelict gear recovered was blue crab pots with almost 32,000 recovered. Derelict pots were widely distributed, but with notable hotspot areas, capturing 40 species and over 31,000 marine organisms. The target species, blue crab, experienced the highest mortality from lost pots with an estimated 900,000 animals killed each year, a potential annual economic loss to the fishery of $300,000. Important fishery species were captured and killed in derelict pots including Atlantic croaker and black sea bass. While some causes of gear loss are unavoidable, others can be managed to minimize loss. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Identification of largemouth bass virus in the introduced Northern Snakehead inhabiting the Chesapeake Bay watershed.

    Science.gov (United States)

    Iwanowicz, L; Densmore, C; Hahn, C; McAllister, P; Odenkirk, J

    2013-09-01

    The Northern Snakehead Channa argus is an introduced species that now inhabits the Chesapeake Bay. During a preliminary survey for introduced pathogens possibly harbored by these fish in Virginia waters, a filterable agent was isolated from five specimens that produced cytopathic effects in BF-2 cells. Based on PCR amplification and partial sequencing of the major capsid protein (MCP), DNA polymerase (DNApol), and DNA methyltransferase (Mtase) genes, the isolates were identified as Largemouth Bass virus (LMBV). Nucleotide sequences of the MCP (492 bp) and DNApol (419 pb) genes were 100% identical to those of LMBV. The nucleotide sequence of the Mtase (206 bp) gene was 99.5% identical to that of LMBV, and the single nucleotide substitution did not lead to a predicted amino acid coding change. This is the first report of LMBV from the Northern Snakehead, and provides evidence that noncentrarchid fishes may be susceptible to this virus.

  4. Decadal re-evaluation of contaminant exposure and productivity of ospreys (Pandion haliaetus) nesting in Chesapeake Bay Regions of Concern

    International Nuclear Information System (INIS)

    Lazarus, Rebecca S.; Rattner, Barnett A.; McGowan, Peter C.; Hale, Robert C.; Schultz, Sandra L.; Karouna-Renier, Natalie K.; Ottinger, Mary Ann

    2015-01-01

    The last large-scale ecotoxicological study of ospreys (Pandion haliaetus) in Chesapeake Bay was conducted in 2000–2001 and focused on U.S. EPA-designated Regions of Concern (ROCs; Baltimore Harbor/Patapsco, Anacostia/middle Potomac, and Elizabeth Rivers). In 2011–2012, ROCs were re-evaluated to determine spatial and temporal trends in productivity and contaminants. Concentrations of p,p′-DDE were low in eggs and below the threshold associated with eggshell thinning. Eggs from the Anacostia/middle Potomac Rivers had lower total PCB concentrations in 2011 than in 2000; however, concentrations remained unchanged in Baltimore Harbor. Polybrominated diphenyl ether flame retardants declined by 40%, and five alternative brominated flame retardants were detected at low levels. Osprey productivity was adequate to sustain local populations, and there was no relation between productivity and halogenated contaminants. Our findings document continued recovery of the osprey population, declining levels of many persistent halogenated compounds, and modest evidence of genetic damage in nestlings from industrialized regions. - Highlights: • This study documents the continued recovery of the Chesapeake Bay osprey population. • Osprey eggshells have nearly returned to pre-DDT-era thickness. • Organochlorine pesticides are low in eggs, but PCB levels seem unchanged in industrialized areas. • PBDE flame retardants have declined in eggs, but seem to peak near wastewater treatment plants. • There is some evidence of genetic damage in nestling blood samples in the most industrialized areas. - While the Chesapeake Bay osprey population has recovered, concentrations of some persistent contaminants in eggs remain unchanged, and there is some evidence of genetic damage in nestlings

  5. 76 FR 26767 - Captain John Smith Chesapeake National Historic Trail Advisory Council

    Science.gov (United States)

    2011-05-09

    ... DEPARTMENT OF THE INTERIOR National Park Service Captain John Smith Chesapeake National Historic... that the Advisory Committee on the Captain John Smith Chesapeake National Historic Trail will hold a...-1609 voyages of Captain John Smith to chart the land and waterways of the Chesapeake Bay. This meeting...

  6. 77 FR 12324 - Captain John Smith Chesapeake National Historic Trail Advisory Council

    Science.gov (United States)

    2012-02-29

    ... DEPARTMENT OF THE INTERIOR National Park Service Captain John Smith Chesapeake National Historic... that the Advisory Committee on the Captain John Smith Chesapeake National Historic Trail will hold a...-1609 voyages of Captain John Smith to chart the land and waterways of the Chesapeake Bay. This meeting...

  7. 76 FR 52691 - Captain John Smith Chesapeake National Historic Trail Advisory Council

    Science.gov (United States)

    2011-08-23

    ... DEPARTMENT OF THE INTERIOR National Park Service Captain John Smith Chesapeake National Historic... that the Advisory Committee on the Captain John Smith Chesapeake National Historic Trail will hold a...-1609 voyages of Captain John Smith to chart the land and waterways of the Chesapeake Bay. This meeting...

  8. Elemental composition of Chesapeake Bay oyster Crassostrea virginica in the vicinity of Calvert Cliffs Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gavrilas, M.; Munno, F.J.

    1984-01-01

    The stable element composition of the American oyster Crassostrea virginica collected between June 1978 and August 1983 in the Chesapeake Bay in the vicinity of Calvert Cliffs Nuclear Power Plant was analyzed by neutron activation. The minimum, maximum and the mean values of the elemental concentrations are given. The seasonal effect and the linear correlation between elements entering the oyster composition are shown. 7 references, 1 figure, 4 tables

  9. Riverine discharges to Chesapeake Bay: Analysis of long-term (1927–2014) records and implications for future flows in the Chesapeake Bay basin

    Science.gov (United States)

    Rice, Karen; Moyer, Douglas; Mills, Aaron L.

    2017-01-01

    The Chesapeake Bay (CB) basin is under a total maximum daily load (TMDL) mandate to reduce nitrogen, phosphorus, and sediment loads to the bay. Identifying shifts in the hydro-climatic regime may help explain observed trends in water quality. To identify potential shifts, hydrologic data (1927–2014) for 27 watersheds in the CB basin were analyzed to determine the relationships among long-term precipitation and stream discharge trends. The amount, frequency, and intensity of precipitation increased from 1910 to 1996 in the eastern U.S., with the observed increases greater in the northeastern U.S. than the southeastern U.S. The CB watershed spans the north-to-south gradient in precipitation increases, and hydrologic differences have been observed in watersheds north relative to watersheds south of the Pennsylvania—Maryland (PA-MD) border. Time series of monthly mean precipitation data specific to each of 27 watersheds were derived from the Precipitation-elevation Regression on Independent Slopes Model (PRISM) dataset, and monthly mean stream-discharge data were obtained from U.S. Geological Survey streamgage records. All annual precipitation trend slopes in the 18 watersheds north of the PA-MD border were greater than or equal to those of the nine south of that border. The magnitude of the trend slopes for 1927–2014 in both precipitation and discharge decreased in a north-to-south pattern. Distributions of the monthly precipitation and discharge datasets were assembled into percentiles for each year for each watershed. Multivariate correlation of precipitation and discharge within percentiles among the groups of northern and southern watersheds indicated only weak associations. Regional-scale average behaviors of trends in the distribution of precipitation and discharge annual percentiles differed between the northern and southern watersheds. In general, the linkage between precipitation and discharge was weak, with the linkage weaker in the northern watersheds

  10. The role of power plant atmospheric emissions in the deposition of nitrogen to the Chesapeake Bay

    International Nuclear Information System (INIS)

    Miller, P.E.

    1994-01-01

    The Maryland Power Plant Research Program (PPRP) has sponsored research on several aspects of atmospheric nitrogen emissions, source attribution, deposition estimation and impact assessment since the mid-eighties. The results of these studies will be presented and discussed in the context of power plant emissions control impact on nitrogen loadings to the Chesapeake Bay and watershed. Information needs with respect to power plant contribution and emission control policy will be identified and discussed from the perspective of PPRP

  11. Climate effects on phytoplankton floral composition in Chesapeake Bay

    Science.gov (United States)

    Harding, L. W.; Adolf, J. E.; Mallonee, M. E.; Miller, W. D.; Gallegos, C. L.; Perry, E. S.; Johnson, J. M.; Sellner, K. G.; Paerl, H. W.

    2015-09-01

    Long-term data on floral composition of phytoplankton are presented to document seasonal and inter-annual variability in Chesapeake Bay related to climate effects on hydrology. Source data consist of the abundances of major taxonomic groups of phytoplankton derived from algal photopigments (1995-2004) and cell counts (1985-2007). Algal photopigments were measured by high-performance liquid chromatography (HPLC) and analyzed using the software CHEMTAX to determine the proportions of chlorophyll-a (chl-a) in major taxonomic groups. Cell counts determined microscopically provided species identifications, enumeration, and dimensions used to obtain proportions of cell volume (CV), plasma volume (PV), and carbon (C) in the same taxonomic groups. We drew upon these two independent data sets to take advantage of the unique strengths of each method, using comparable quantitative measures to express floral composition for the main stem bay. Spatial and temporal variability of floral composition was quantified using data aggregated by season, year, and salinity zone. Both time-series were sufficiently long to encompass the drought-flood cycle with commensurate effects on inputs of freshwater and solutes. Diatoms emerged as the predominant taxonomic group, with significant contributions by dinoflagellates, cryptophytes, and cyanobacteria, depending on salinity zone and season. Our analyses revealed increased abundance of diatoms in wet years compared to long-term average (LTA) or dry years. Results are presented in the context of long-term nutrient over-enrichment of the bay, punctuated by inter-annual variability of freshwater flow that strongly affects nutrient loading, chl-a, and floral composition. Statistical analyses generated flow-adjusted diatom abundance and showed significant trends late in the time series, suggesting current and future decreases of nutrient inputs may lead to a reduction of the proportion of biomass comprised by diatoms in an increasingly diverse

  12. NODC Standard Product: Coastal Change Analysis Program (C-CAP) Chesapeake Bay Region Data from 1984 to 1989 on CD-ROM (NODC Accession 9200303)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set on this CD-ROM shows changes in land cover for the Chesapeake Bay region over the 5-year interval from 1984 to 1988-89. The data set was produced...

  13. Scientific Personnel Resource Inventory: List and Index to Research Scientists Involved with the Estuarine Environment, Especially the Chesapeake Bay,

    Science.gov (United States)

    1972-06-01

    introduction of sewage from commercial or private structures -- Monthly sampling of sewage treatment effluents -- Resistance of Vibrio parahemolyticus in oyster...of microorganisms in animal diseases and the effect of V. parahemolyticus and other vibrios on recruitment of commercial mollusks and crustaceans 575...Microbiology; including a survey of areas of the Chesapeake Bay for Vibrio parahaemalyticus * 18 Barnard, Thomas Alexander MA Assistant Marine Scientist

  14. Impact of Environmental Policies on the Adoption of Animal Waste Management Practices in the Chesapeake Bay Watershed

    OpenAIRE

    Savage, Jeff; Ribaudo, Marc

    2012-01-01

    We use data from the ERS-NASS ARMS surveys to compare the use of best management practices on poultry and livestock farms inside the watershed and outside the watershed. Animal operations within the Chesapeake Bay States were found to be adopting some important manure management practices at a greater rate than operations outside the watershed. Adoption was taking place before the implementation of the TMDL, indicating that farmers may have been acting in response to building public pressure ...

  15. Coordinated Field Campaigns in Chesapeake Bay and Gulf of Mexico

    Science.gov (United States)

    Mannino, Antonio; Novak, Michael; Tzortziou, Maria A.

    2015-01-01

    NASA's GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission concept recommended by the U.S. National Research Council (2007) focuses on measurements of atmospheric trace gases and aerosols and aquatic coastal ecology and biogeochemistry from geostationary orbit (35,786 km altitude). Two GEO-CAPE-sponsored multi-investigator ship-based field campaigns were conducted to coincide with the NASA Earth Venture Suborbital project DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaigns: (1) Chesapeake Bay in July 2011 and (2) northwestern Gulf of Mexico in September 2013. Goal: to evaluate whether GEO-CAPE coastal mission measurement and instrument requirements are optimized to address science objectives while minimizing ocean color satellite sensor complexity, size and cost - critical mission risk reduction activities. NASA continues to support science studies related to the analysis of data collected as part of these coordinated field campaigns and smaller efforts.

  16. NOAA Office for Coastal Management Benthic Habitat Data, Catlett and Goodwin Islands on the York River in Chesapeake Bay, VA, 2002-2004 (NODC Accession 0090253)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a collection of benthic habitat data from studies conducted in the Catlett and Goodwin Islands on the York River in Chesapeake Bay, Virginia in GIS...

  17. Sources of suspended-sediment flux in streams of the chesapeake bay watershed: A regional application of the sparrow model

    Science.gov (United States)

    Brakebill, J.W.; Ator, S.W.; Schwarz, G.E.

    2010-01-01

    We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain. ?? 2010 American Water Resources Association. No claim to original U.S. government works.

  18. Predicting potentially toxigenic Pseudo-nitzschia blooms in the Chesapeake Bay

    Science.gov (United States)

    Anderson, Clarissa R.; Sapiano, Mathew R. P.; Prasad, M. Bala Krishna; Long, Wen; Tango, Peter J.; Brown, Christopher W.; Murtugudde, Raghu

    2010-11-01

    Harmful algal blooms are now recognized as a significant threat to the Chesapeake Bay as they can severely compromise the economic viability of important recreational and commercial fisheries in the largest estuary of the United States. This study describes the development of empirical models for the potentially domoic acid-producing Pseudo-nitzschia species complex present in the Bay, developed from a 22-year time series of cell abundance and concurrent measurements of hydrographic and chemical properties. Using a logistic Generalized Linear Model (GLM) approach, model parameters and performance were compared over a range of Pseudo-nitzschia bloom thresholds relevant to toxin production by different species. Small-threshold blooms (≥10 cells mL -1) are explained by time of year, location, and variability in surface values of phosphate, temperature, nitrate plus nitrite, and freshwater discharge. Medium- (100 cells mL -1) to large- threshold (1000 cells mL -1) blooms are further explained by salinity, silicic acid, dissolved organic carbon, and light attenuation (Secchi) depth. These predictors are similar to other models for Pseudo-nitzschia blooms on the west coast, suggesting commonalities across ecosystems. Hindcasts of bloom probabilities at a 19% bloom prediction point yield a Heidke Skill Score of ~53%, a Probability of Detection ˜ 75%, a False Alarm Ratio of ˜ 52%, and a Probability of False Detection ˜9%. The implication of possible future changes in Baywide nutrient stoichiometry on Pseudo-nitzschia blooms is discussed.

  19. Scientists and Stakeholders in the Chesapeake Bay: How the Mid-Atlantic RISA Strengthens Climate Resilience Through Participatory Decision-Making Processes

    Science.gov (United States)

    Knopman, D.; Berg, N.

    2017-12-01

    The NOAA Mid-Atlantic Regional Integrated Sciences and Assessments (MARISA) program was formed in September 2016 to increase climate resilience in the Mid-Atlantic, with an initial focus on the Chesapeake Bay Watershed. In this talk, we will discuss how the program's unique structure and approach are designed to advance resilience to a changing climate through improved data, place-based decision support, and public engagement. Emphasis will be placed on MARISA's approach to integrating stakeholder perspectives from the onset of decision scoping, through the creation of actionable data sets, and concluding with the co-development of adaptation strategies between the scientific community, decision-makers, and stakeholders. Specific examples of this process involving climate-sensitive decisions and investments regarding water resources, land management, and urban corridors will be discussed.

  20. The bioeconomic impact of different management regulations on the Chesapeake Bay blue crab fishery

    Science.gov (United States)

    Bunnell, David B.; Lipton, Douglas W.; Miller, Thomas J.

    2010-01-01

    The harvest of blue crabs Callinectes sapidus in Chesapeake Bay declined 46% between 1993 and 2001 and remained low through 2008. Because the total market value of this fishery has declined by an average of US $ 3.3 million per year since 1993, the commercial fishery has been challenged to maintain profitability. We developed a bioeconomic simulation model of the Chesapeake Bay blue crab fishery to aid managers in determining which regulations will maximize revenues while ensuring a sustainable harvest. We compared 15 different management scenarios, including those implemented by Maryland and Virginia between 2007 and 2009, that sought to reduce female crab harvest and nine others that used seasonal closures, different size regulations, or the elimination of fishing for specific market categories. Six scenarios produced the highest revenues: the 2008 and 2009 Maryland regulations, spring and fall closures for female blue crabs, and 152- and 165-mm maximum size limits for females. Our most important finding was that for each state the 2008 and 2009 scenarios that implemented early closures of the female crab fishery produced higher revenues than the 2007 scenario, in which no early female closures were implemented. We conclude that the use of maximum size limits for female crabs would not be feasible despite their potentially high revenue, given the likelihood that the soft-shell and peeler fisheries cannot be expanded beyond their current capacity and the potentially high mortality rate for culled individuals that are the incorrect size. Our model results support the current use of seasonal closures for females, which permit relatively high exploitation of males and soft-shell and peeler blue crabs (which have high prices) while keeping the female crab harvest sustainable. Further, our bioeconomic model allows for the inclusion of an economic viewpoint along with biological data when target reference points are set by managers.

  1. Detection of erosion events using 10Be profiles: Example of the impact of agriculture on soil erosion in the Chesapeake Bay area (U.S.A.)

    International Nuclear Information System (INIS)

    Valette-Silver, J.N.; Brown, L.; Pavich, M.; Klein, J.; Middleton, R.

    1986-01-01

    10 Be concentration, total carbon and grain-size were measured in cores collected in undisturbed estuarine sediments of three tributaries of the Chesapeake Bay. These cores were previously studied by Davis and Brush for pollen content, age and sedimentation rate. In this work, we compare the results obtained for these various analyses. In the cores, we observed two increases in 10 Be concentration concomitant with two major changes in the pollen composition of the sediments. These two pollen changes each correspond to well-dated agricultural horizons reflecting different stages in the introduction of European farming techniques. In the Chesapeake Bay area, the agricultural development, associated with forest clearing, appears to have triggered the erosion, transport, and sedimentation into the river mouths of large quantities of 10 Be-rich soils. This phenomenon explains the observed rise in the sedimentation rate associated with increases in agricultural land-use. (orig.)

  2. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA.

    Science.gov (United States)

    Coxon, T M; Odhiambo, B K; Giancarlo, L C

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight (210)Pb and (137)Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. Copyright © 2016

  3. OYSTER POPULATUION ESTIMATION IN SUPPORT OF THE TEN-YEAR GOAL FOR OYSTER RESOTRATION IN THE CHESAPEAKE BAY: DEVELOPING STRATEGIES FOR RESTORING AND MANAGING THE EASTERN OYSTER

    Science.gov (United States)

    Mann, Roger, Steve Jordan, Gary Smith, Kennedy Paynter, James Wesson, Mary Christman, Jessica Vanisko, Juliana Harding, Kelly Greenhawk and Melissa Southworth. 2003. Oyster Population Estimation in Support of the Ten-Year Goal for Oyster Restoration in the Chesapeake Bay: Develop...

  4. Wave spectra, meteorological, and other data from NOAA Ship FERREL and other platforms from the Chesapeake Bay from 1983-03-14 to 1983-11-22 (NODC Accession 8500124)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wave spectra, meteorological, and other data were collected from NOAA Ship FERREL and other platforms in the Chesapeake Bay. Data were collected by the National...

  5. Mute swans and their Chesapeake Bay habitats: proceedings of a symposium

    Science.gov (United States)

    Perry, M.C.

    2004-01-01

    The symposium 'Mute Swans and their Chesapeake Bay Habitats,' held on June 7, 2001, provided a forum for biologists and managers to share research findings and management ideas concerning the exotic and invasive mute swan (Cygnus olar). This species has been increasing in population size and is considered by many to be a problem in regard to natural food resources in the Bay that are used by native waterfowl during the winter months. Other persons, however, feel that resource managers are attempting to create a problem to justify more killing of waterfowl by hunters. Some persons also believe that managers should focus on the larger issues causing the decline of native food resources, such as the unabated human population increase in the Bay watershed and in the immediate coastal areas of the Bay. The symposium, sponsored by the Wildfowl Trust of North America and the U.S. Geological Survey, provided the atmosphere for presentation of mute swan data and opinions in a collegial setting where discussion was welcomed and was often informative and enthusiastic. An interesting historic review of the swan in regard to the history of mankind was presented, followed by a discussion on the positive and negative effects of invasive species. Biologists from different parts of the continent discussed the population status of the species in several states in the east and in the Great Lakes area. Data on the food habits of this species were presented in regard to submerged aquatic vegetation, and an interesting discussion on the role that the food habits of Canada geese in regard to native vegetation was presented. Findings and recommendations of the Mute Swan Task Force were presented. Finally, a representative of the Friends of Animals gave a thought-provoking presentation in defense of the mute swan. The presentations, in general, provided the necessary information and recommendations to allow managers to proceed with management of this controversial species with new and

  6. Environmental determinants of Vibrio parahaemolyticus in the Chesapeake Bay.

    Science.gov (United States)

    Davis, Benjamin J K; Jacobs, John M; Davis, Meghan F; Schwab, Kellogg J; DePaola, Angelo; Curriero, Frank C

    2017-08-25

    Vibrio parahaemolyticus naturally-occurs in brackish and marine waters and is one of the leading causes of seafood-borne illness. Previous work studying the ecology of V. parahaemolyticus is often limited in geographic extent and lacking a full range of environmental measures. This study used a unique, large dataset of surface water samples in the Chesapeake Bay ( n =1,385) collected from 148 monitoring stations from 2007 to 2010. Water was analyzed for over 20 environmental parameters with additional meteorological and surrounding land use data. V. parahaemolyticus -specific genetic markers thermolabile hemolysin ( tlh ), thermostable direct hemolysin ( tdh ), and tdh -related hemolysin ( trh ) were assayed using quantitative PCR (qPCR), and interval-censored regression models with non-linear effects were estimated to account for limits of detection and quantitation. tlh was detected in 19.6% of water samples; tdh or trh markers were not detected. Results confirmed previously reported positive associations for V. parahaemolyticus abundance with temperature and turbidity and negative associations with high salinity (> 10-23‰). Furthermore, the salinity relationship was determined to be a function of both low temperature and turbidity, with an increase of either nullifying the high salinity effect. Associations with dissolved oxygen and phosphate also appeared stronger when samples were taken nearby human developments. Renewed focus on the V. parahaemolyticus ecological paradigm is warranted to protect public health. Importance Vibrio parahaemolyticus is one of the leading causes of seafood-borne illness in the United States and across the globe. Exposure is often through consuming raw or undercooked shellfish. Given the natural presence of the bacterium in the marine environment, improved understanding of its environmental determinants is necessary for future preventative measures. This analysis of environmental Vibrio parahaemolyticus is one of only a few that

  7. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise.

    Science.gov (United States)

    Beckett, Leah H; Baldwin, Andrew H; Kearney, Michael S

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9-15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.

  8. Estimating Vertical Land Motion in the Chesapeake Bay

    Science.gov (United States)

    Houttuijn Bloemendaal, L.; Hensel, P.

    2017-12-01

    This study aimed to provide a modern measurement of subsidence in the Chesapeake Bay region and establish a methodology for measuring vertical land motion using static GPS, a cheaper alternative to InSAR or classical leveling. Vertical land motion in this area is of particular concern because tide gages are showing up to 5 mm/yr of local, relative sea level rise. While a component of this rate is the actual eustatic sea level rise itself, part of the trend may also be vertical land motion, in which subsidence exacerbates the effects of actual changes in sea level. Parts of this region are already experiencing an increase in the frequency and magnitude of near-shore coastal flooding, but the last comprehensive study of vertical land motion in this area was conducted by NOAA in 1974 (Holdahl & Morrison) using repeat leveled lines. More recent measures of vertical land motion can help inform efforts on resilience to sea level rise, such as in the Hampton Roads area. This study used measured GPS-derived vertical heights in conjunction with legacy GPS data to calculate rates of vertical motion at several points in time for a selection of benchmarks scattered throughout the region. Seventeen marks in the stable Piedmont area and in the areas suspected of subsidence in the Coastal Plain were selected for the analysis. Results indicate a significant difference between the rates of vertical motion in the Piedmont and Coastal Plain, with a mean rate of -4.10 mm/yr in the Coastal Plain and 0.15 mm/yr in the Piedmont. The rates indicate particularly severe subsidence at the southern Delmarva Peninsula coast and the Hampton-Roads area, with a mean rate of -6.57 mm/yr in that region. By knowing local rates of subsidence as opposed to sea level change itself, coastal managers may make better informed decisions regarding natural resource use, such as deciding whether or not to reduce subsurface fluid withdrawals or to consider injecting treated water back into the aquifer to slow

  9. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Blazer, Vicki S., E-mail: Vblazer@usgs.gov [U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430 (United States); Pinkney, Alfred E., E-mail: Fred_Pinkeny@fws.gov [U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 177 Admiral Cochrane Drive, Annapolis, MD 21401 (United States); Jenkins, Jill A., E-mail: jenkinsj@usgs.gov [U.S. Geological Survey, National Wetlands Research Center, 700 Cajundome Blvd., Lafayette, LA 70506 (United States); Iwanowicz, Luke R., E-mail: Liwanowicz@usgs.gov [U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430 (United States); Minkkinen, Steven, E-mail: steve_minkkinen@fws.gov [U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 177 Admiral Cochrane Drive, Annapolis, MD 21401 (United States); Draugelis-Dale, Rassa O., E-mail: daler@usgs.gov [U.S. Geological Survey, National Wetlands Research Center, 700 Cajundome Blvd., Lafayette, LA 70506 (United States); Uphoff, James H., E-mail: juphoff@dnr.state.md.us [Maryland Department of Natural Resources, Fisheries Service, Cooperative Oxford Laboratory, 904 South Morris Street, Oxford, MD 21654 (United States)

    2013-03-01

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007–2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed. - Highlights: ► Reduced recruitment of yellow perch has occurred in urban tributaries of Chesapeake Bay. ► We compared reproductive health biomarkers in perch from two urban, one developing, two less developed

  10. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay

    International Nuclear Information System (INIS)

    Blazer, Vicki S.; Pinkney, Alfred E.; Jenkins, Jill A.; Iwanowicz, Luke R.; Minkkinen, Steven; Draugelis-Dale, Rassa O.; Uphoff, James H.

    2013-01-01

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007–2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed. - Highlights: ► Reduced recruitment of yellow perch has occurred in urban tributaries of Chesapeake Bay. ► We compared reproductive health biomarkers in perch from two urban, one developing, two less developed watersheds.

  11. Understanding Aggregation and Estimating Seasonal Abundance of Chrysaora quinquecirrha Medusae from a Fixed-station Time Series in the Choptank River, Chesapeake Bay

    Science.gov (United States)

    Tay, J.; Hood, R. R.

    2016-02-01

    Although jellyfish exert strong control over marine plankton dynamics (Richardson et al. 2009, Robison et al. 2014) and negatively impact human commercial and recreational activities (Purcell et al. 2007, Purcell 2012), jellyfish biomass is not well quantified due primarily to sampling difficulties with plankton nets or fisheries trawls (Haddock 2004). As a result, some of the longest records of jellyfish are visual shore-based surveys, such as the fixed-station time series of Chrysaora quinquecirrha that began in 1960 in the Patuxent River in Chesapeake Bay, USA (Cargo and King 1990). Time series counts from fixed-station surveys capture two signals: 1) demographic change at timescales on the order of reproductive processes and 2) spatial patchiness at shorter timescales as different parcels of water move in and out of the survey area by tidal and estuarine advection and turbulent mixing (Lee and McAlice 1979). In this study, our goal was to separate these two signals using a 4-year time series of C. quinquecirrha medusa counts from a fixed-station in the Choptank River, Chesapeake Bay. Idealized modeling of tidal and estuarine advection was used to conceptualize the sampling scheme. Change point and time series analysis was used to detect demographic changes. Indices of aggregation (Negative Binomial coefficient, Taylor's Power Law coefficient, and Morisita's Index) were calculated to describe the spatial patchiness of the medusae. Abundance estimates revealed a bloom cycle that differed in duration and magnitude for each of the study years. Indices of aggregation indicated that medusae were aggregated and that patches grew in the number of individuals, and likely in size, as abundance increased. Further inference from the conceptual modeling suggested that medusae patch structure was generally homogenous over the tidal extent. This study highlights the benefits of using fixed-station shore-based surveys for understanding the biology and ecology of jellyfish.

  12. Beryllium-10 in Chesapeake Bay sediments: an indicator of sediment provenance

    International Nuclear Information System (INIS)

    Helz, G.R.; Valette-Silver, Nathalie

    1992-01-01

    In a plot of 10 Be vs. Fe, central Chesapeake Bay sediments can be segregated into distinct units. This plot reveals an unexpected, statistically significant difference between sediments on the eastern and western flanks of the main channel, implying different origins. Although the 10 Be concentrations in sediments from these two regions span as much as an order of magnitude range, the 10 Be/Fe ratios vary by an amount approximating analytical error alone. The large concentration ranges are ascribed to hydraulic sorting, which can produce variance in composition while not affecting ratios between grain surface components such as Fe and Be. On the basis of 10 Be/Fe signatures, sediments on the western flank of the main channel appear to have been derived from the Susquehanna or another Piedmont/Appalachian river. Sediments on the eastern flank may have been transported from the south, by landward flowing bottom currents, or may be relics of a Pleistocene estuarine system. Conditions under which 10 Be may prove a useful tool in sediment provenance studies elsewhere are discussed. (Author)

  13. Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake Bay, East Coast, USA.

    Science.gov (United States)

    Rice, Karen C; Hong, Bo; Shen, Jian

    2012-11-30

    Global sea level is rising, and the relative rate in the Chesapeake Bay region of the East Coast of the United States is greater than the worldwide rate. Sea-level rise can cause saline water to migrate upstream in estuaries and rivers, threatening freshwater habitat and drinking-water supplies. The effects of future sea-level rise on two tributaries of Chesapeake Bay, the James and Chickahominy (CHK) Rivers, were evaluated in order to quantify the salinity change with respect to the magnitude of sea-level rise. Such changes are critical to: 1) local floral and faunal habitats that have limited tolerance ranges to salinity; and 2) a drinking-water supply for the City of Newport News, Virginia. By using the three-dimensional Hydrodynamic-Eutrophication Model (HEM-3D), sea-level rise scenarios of 30, 50, and 100 cm, based on the U.S. Climate Change Science Program for the mid-Atlantic region for the 21st century, were evaluated. The model results indicate that salinity increases in the entire river as sea level rises and that the salinity increase in a dry year is greater than that in a typical year. In the James River, the salinity increase in the middle-to-upper river (from 25 to 50 km upstream of the mouth) is larger than that in the lower and upper parts of the river. The maximum mean salinity increase would be 2 and 4 ppt for a sea-level rise of 50 and 100 cm, respectively. The upstream movement of the 10 ppt isohaline is much larger than the 5 and 20 ppt isohalines. The volume of water with salinity between 10 and 20 ppt would increase greatly if sea level rises 100 cm. In the CHK River, with a sea-level rise of 100 cm, the mean salinity at the drinking-water intake 34 km upstream of the mouth would be about 3 ppt in a typical year and greater than 5 ppt in a dry year, both far in excess of the U.S. Environmental Protection Agency's secondary standard for total dissolved solids for drinking water. At the drinking-water intake, the number of days of salinity

  14. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA

    International Nuclear Information System (INIS)

    Coxon, T.M.; Odhiambo, B.K.; Giancarlo, L.C.

    2016-01-01

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight "2"1"0Pb and "1"3"7Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. - Highlights:

  15. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Coxon, T.M. [Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Avenue Fredericksburg, Virginia 22401 (United States); Odhiambo, B.K., E-mail: bkisila@umw.edu [Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Avenue Fredericksburg, Virginia 22401 (United States); Giancarlo, L.C. [Department of Chemistry, University of Mary Washington, Fredericksburg, VA 22401 (United States)

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight {sup 210}Pb and {sup 137}Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments

  16. A rapid procedure for the determination of thorium, uranium, cadmium and molybdenum in small sediment samples by inductively coupled plasma-mass spectrometry: application in Chesapeake Bay

    International Nuclear Information System (INIS)

    Zheng, Y.; Weinman, B.; Cronin, T.; Fleisher, M.Q.; Anderson, R.F.

    2003-01-01

    This paper describes a rapid procedure that allows precise analysis of Mo, Cd, U and Th in sediment samples as small as 10 mg by using a novel approach that utilizes a 'pseudo' isotope dilution for Th and conventional isotope dilution for Mo, Cd and U by ICP-MS. Long-term reproducibility of the method is between 2.5 and 5% with an advantage of rapid analysis on a single digestion of sediment sample and the potential of adding other elements of interest if so desired. Application of this method to two piston cores collected near the mouth of the Patuxent River in Chesapeake Bay showed that the accumulation of authigenic Mo and Cd varied in response to the changing bottom water redox conditions, with anoxia showing consistent oscillations throughout both pre-industrial and industrial times. Accumulation of authigenic U shows consistent oscillations as well, without any apparent increase in productivity related to anoxic trends. Degrees of Mo and Cd enrichment also inversely correlate to halophilic microfaunal assemblages already established as paleoclimate proxies within the bay indicating that bottom water anoxia is driven in part by the amount of freshwater discharge that the area receives

  17. A simulation of the hydrothermal response to the Chesapeake Bay bolide impact

    Science.gov (United States)

    Sanford, W.E.

    2005-01-01

    Groundwater more saline than seawater has been discovered in the tsunami breccia of the Chesapeake Bay impact Crater. One hypothesis for the origin of this brine is that it may be a liquid residual following steam separation in a hydrothermal system that evolved following the impact. Initial scoping calculations have demonstrated that it is feasible such a residual brine could have remained in the crater for the 35 million years since impact. Numerical simulations have been conducted using the code HYDROTHERM to test whether or not conditions were suitable in the millennia following the impact for the development of a steam phase in the hydrothermal system. Hydraulic and thermal parameters were estimated for the bedrock underlying the crater and the tsunami breccia that fills the crater. Simulations at three different breccia permeabilities suggest that the type of hydrothermal system that might have developed would have been very sensitive to the permeability. A relatively low breccia permeability (1 ?? 10-16 m2) results in a system partitioned into a shallow water phase and a deeper superheated steam phase. A moderate breccia permeability (1 ?? 10-15 m2 ) results in a system with regionally extensive multiphase conditions. A relatively high breccia permeability (1 ?? 10-14 m2 ) results in a system dominated by warm-water convection cells. The permeability of the crater breccia could have had any of these values at given depths and times during the hydrothermal system evolution as the sediments compacted. The simulations were not able to take into account transient permeability conditions, or equations of state that account for the salt content of seawater. Results suggest, however, that it is likely that steam conditions existed at some time in the system following impact, providing additional evidence that is consistent with a hydrothermal origin for the crater brine. ?? Blackwell Publishing Ltd.

  18. Sediment Retention Dynamics and Vegetation Along Three Tributaries of the Chesapeake Bay

    Science.gov (United States)

    Ross, K.; Ross, K.; Hupp, C.; Alexander, L.; Alexander, L.

    2001-12-01

    Coastal Plain riparian wetlands in the Mid-Atlantic United States are the last place for sediment and contaminant storage before reaching critical estuarine and marine environments. The deteriorating health of the Chesapeake Bay has been attributed in part to elevated sediment loads. The purpose of this study is to investigate the effects of channelization and urbanization on sediment deposition and geomorphic processes along the Pocomoke and Chickahominy Rivers and Dragon Run, three Coastal Plain tributaries. Floodplain microtopography was surveyed in 100 x 100 m grids at three characteristic reaches along each river and woody vegetation analyses were conducted. Floodplain suspended sediment concentrations and short and long-term sedimentation rates were estimated at each reach using single stage sediment sampler arrays, clay pads and dendrogeomorphic techniques, respectively. Site hydroperiod and flow characteristics were determined from USGS gaging station records, floodplain water level recorders, and field observations. Channelized floodplain reaches along the Pocomoke River are flooded less frequently, have lower mineral sedimentation rates (2 mm/yr to 6 mm/yr) and woody species diversity than the unchannelized reaches. Along the Chickahominy River, floodplain wetlands close to urban centers are flooded more frequently, but have shorter hydroperiods (3.5 days/yr compared to more than 45 days/yr), lower sedimentation rates (1.8 mm/yr to 6.8 mm/yr), and lower woody species diversity (0.51 to 1.95 on the Shannon-Weiner diversity index) than floodplains further downstream. Suspended sediment delivery and deposition rates are significantly influenced by floodplain hydroperiod duration and channel-floodplain connectivity. These results suggest that understanding floodplain sediment dynamics and geomorphic processes with respect to dominant watershed landuse patterns is critical for effective water quality management and restoration efforts.

  19. Pharmaceuticals in water, fish and osprey nestlings in Delaware River and Bay

    Science.gov (United States)

    Bean, Thomas G.; Rattner, Barnett A.; Lazarus, Rebecca S.; Day, Daniel D.; Burket, S. Rebekah; Brooks, Bryan W.; Haddad, Samuel P.; Bowerman, William W.

    2018-01-01

    Exposure of wildlife to Active Pharmaceutical Ingredients (APIs) is likely to occur but studies of risk are limited. One exposure pathway that has received attention is trophic transfer of APIs in a water-fish-osprey food chain. Samples of water, fish plasma and osprey plasma were collected from Delaware River and Bay, and analyzed for 21 APIs. Only 2 of 21 analytes exceeded method detection limits in osprey plasma (acetaminophen and diclofenac) with plasma levels typically 2–3 orders of magnitude below human therapeutic concentrations (HTC). We built upon a screening level model used to predict osprey exposure to APIs in Chesapeake Bay and evaluated whether exposure levels could have been predicted in Delaware Bay had we just measured concentrations in water or fish. Use of surface water and BCFs did not predict API concentrations in fish well, likely due to fish movement patterns, and partitioning and bioaccumulation uncertainties associated with these ionizable chemicals. Input of highest measured API concentration in fish plasma combined with pharmacokinetic data accurately predicted that diclofenac and acetaminophen would be the APIs most likely detected in osprey plasma. For the majority of APIs modeled, levels were not predicted to exceed 1 ng/mL or method detection limits in osprey plasma. Based on the target analytes examined, there is little evidence that APIs represent a significant risk to ospreys nesting in Delaware Bay. If an API is present in fish orders of magnitude below HTC, sampling of fish-eating birds is unlikely to be necessary. However, several human pharmaceuticals accumulated in fish plasma within a recommended safety factor for HTC. It is now important to expand the scope of diet-based API exposure modeling to include alternative exposure pathways (e.g., uptake from landfills, dumps and wastewater treatment plants) and geographic locations (developing countries) where API contamination of the environment may represent greater risk.

  20. Impact of Hurricane Irene on Vibrio vulnificus and Vibrio parahaemolyticus concentrations in surface water, sediment and cultured oysters in the Chesapeake Bay, Maryland, USA

    Directory of Open Access Journals (Sweden)

    Kristi S Shaw

    2014-05-01

    Full Text Available To determine if a storm event (i.e., high winds, large volumes of precipitation could alter concentrations of Vibrio vulnificus and Vibrio parahaemolyticus in aquacultured oysters (Crassostrea virginica and associated surface water and sediment, this study followed a sampling timeline before and after Hurricane Irene impacted the Chesapeake Bay estuary in late August 2011. Aquacultured oysters were sampled from two levels in the water column: surface 0.3 m and near-bottom just above the sediment. Concentrations of each Vibrio spp. and associated virulence genes were measured in oysters with a combination of real-time PCR and most probable number enrichment methods, and in sediment and surface water with real-time PCR. While concentration shifts of each Vibrio species were apparent post-storm, statistical tests indicated no significant change in concentration change for either Vibrio species by location (surface or near bottom oysters or date sampled (oyster tissue, surface water and sediment concentrations. V. vulnificus in oyster tissue was correlated with total suspended solids (r=0.41, p=0.04, and V. vulnificus in sediment was correlated with secchi depth (r=-0.93, p< 0.01, salinity (r=-0.46, p=0.02, tidal height (r=-0.45, p=0.03, and surface water V. vulnificus (r=0.98, p< 0.01. V. parahaemolyticus in oyster tissue did not correlate with environmental measurements, but V. parahaemolyticus in sediment and surface water correlated with several measurements including secchi depth (r=-0.48, p=0.02[sediment]; r=-0.97 p< 0.01[surface water] and tidal height (r=-0.96. p< 0.01[sediment], r=-0.59,p< 0.01 [surface water]. The concentrations of Vibrio spp. were higher in oysters relative to other studies (average V. vulnificus 4x105 MPN g-1, V. parahaemolyticus 1x105 MPN g-1, and virulence-associated genes were detected in most oyster samples. This study provides a first estimate of storm-related Vibrio density changes in oyster tissues, sediment and

  1. Zostera marina (eelgrass) growth and survival along a gradient ofnutrients and turbidity in the lower Chesapeake Bay

    Science.gov (United States)

    Moore, K.A.; Neckles, H.A.; Orth, R.J.

    1996-01-01

    Survival of transplanted Zostera marina L. (eelgrass), Z. marina growth,and environmental conditions were studied concurrently at a number of sitesin a southwestern tributary of the Chesapeake Bay to elucidate the factorslimiting macrophyte distribution in this region. Consistent differences insurvival of the transplants were observed, with no long-term survival at anyof the sites that were formerly vegetated with this species but thatcurrently remain unvegetated. Therefore, the current distribution of Z.marina likely represents the extent of suitable environmental conditions inthe region, and the lack of recovery into historically vegetated sites is notsolely due to lack of propagules. Poor long-term survival was related toseasonally high levels of water column light attenuation. Fall transplantsdied by the end of summer following exposure to levels of high springturbidity (K(d) > 3.0). Accumulation of an epiphyte matrix during the latespring (0.36 to 1.14 g g-1 dry wt) may also have contributed to thisstress. Differences in water column nutrient levels among sites during thefall and winter (10 to 15 ??M dissolved inorganic nitrogen and 1 ??Mdissolved inorganic phosphates) had no observable effect on epiphyteaccumulation or macrophyte growth. Salinity effects were minor and there wereno symptoms of disease. Although summertime conditions resulted indepressions in growth, they did not alone limit long-term survival. It issuggested that water quality conditions enhancing adequate seagrass growthduring the spring may be key to long-term Z. marina survival and successfulrecolonization in this region.

  2. Studies of dry deposition of trace elements and diesel soot onto Lake Michigan and the Chesapeake Bay

    International Nuclear Information System (INIS)

    Ondov, J.M.; Caffrey, P.F.; Suarez, A.E.; Han, M.; Borgoul, P.V.

    1995-01-01

    As part of the Atmospheric Exchange Over Lakes and Oceans Study (AEOLOS) study, the University of Maryland participated in four intensive field campaigns, three on Lake Michigan (LM) and one on the Chesapeake Bay (CB), to determine the size distributions of potentially toxic elemental aerosol constituents, determine their sources, and their dry deposition loadings to surface waters. The work further seeks to elucidate the relative importance of constituents of fine- and coarse particles, as differentiation of these modes is essential to the eventual formation of control strategies. Unique components of the UMCP studies include (1) resolution of toxic elemental components of aerosol particles depositing to LM and CB by particle size and by source and (2) a Lake-wide evaluation of the importance of fine and coarse particle deposition to inorganic contamination of LM surface waters. In addition, a unique component of the Baltimore Study was the application of a sensitive iridium tracer to intentionally tag emissions form the City of Baltimore's sanitation truck fleet to tag the Baltimore urban plume and to determine the atmospheric behavior of diesel soot particles, a major source of urban carbon aerosol and the principle carrier of toxic polynuclear aromatic hydrocarbons. The work encompasses results for >40 elements by X-ray fluorescence and instrumental neutron activation analyses of more than 700 individual size-segregated aerosol, deposition, urban dust, and surface-water-suspended particulate samples. An overview of the results of these studies will be presented

  3. The sedimentary record of climatic and anthropogenic influence on the Patuxent estuary and Chesapeake Bay ecosystems

    Science.gov (United States)

    Cronin, T. M.; Vann, C.D.

    2003-01-01

    Ecological and paleoecological studies from the Patuxent River mouth reveal dynamic variations in benthic ostracode assemblages over the past 600 years due to climatic and anthropogenic factors. Prior to the late 20th century, centennial-scale changes in species dominance were influenced by climatic and hydrological factors that primarily affected salinity and at times led to oxygen depletion. Decadal-scale droughts also occurred resulting in higher salinities and migration of ostracode species from the deep channel (Loxoconcha sp., Cytheromorpha newportensis) into shallower water along the flanks of the bay. During the 19th century the abundance of Leptocythere nikraveshae and Perissocytheridea brachyforma suggest increased turbidity and decreased salinity. Unprecedented changes in benthic ostracodes at the Patuxent mouth and in the deep channel of the bay occurred after the 1960s when Cytheromorpha curta became the dominant species, reflecting seasonal anoxia. The change in benthic assemblages coincided with the appearance of deformities in foraminifers. A combination of increased nitrate loading due to greater fertilizer use and increased freshwater flow explains this shift. A review of the geochemical and paleoecological evidence for dissolved oxygen indicates that seasonal oxygen depletion in the main channel of Chesapeake Bay varies over centennial and decadal timescales. Prior to 1700 AD, a relatively wet climate and high freshwater runoff led to oxygen depletion but rarely anoxia. Between 1700 and 1900, progressive eutrophication occurred related to land dearance and increased sedimentation, but this was superimposed on the oscillatory pattern of oxygen depletion most likely driven by climatological and hydrological factors. It also seems probable that the four- to five-fold increase in sedimentation due to agricultural and timber activity could have contributed to an increased natural nutrient load, likely fueling the early periods (1700-1900) of hypoxla

  4. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  5. Relationship of land use to water quality in the Chesapeake Bay region. [water sampling and photomapping river basins

    Science.gov (United States)

    Correll, D. L.

    1978-01-01

    Both the proportions of the various land use categories present on each watershed and the specific management practices in use in each category affect the quality of runoff waters, and the water quality of the Bay. Several permanent and portable stations on various Maryland Rivers collect volume-integrated water samples. All samples are analyzed for a series of nutrient, particulate, bacterial, herbicide, and heavy metal parameters. Each basin is mapped with respect to land use by the analysis of low-elevation aerial photos. Analyses are verified and adjusted by ground truth surveys. Data are processed and stored in the Smithsonian Institution data bank. Land use categories being investigated include forests/old fields, pastureland, row crops, residential areas, upland swamps, and tidal marshes.

  6. Cenozoic stratigraphy and structure of the Chesapeake Bay region

    Science.gov (United States)

    Powars, David S.; Edwards, Lucy E.; Kidwell, Susan M.; Schindler, J. Stephen

    2015-01-01

    The Salisbury embayment is a broad tectonic downwarp that is filled by generally seaward-thickening, wedge-shaped deposits of the central Atlantic Coastal Plain. Our two-day field trip will take us to the western side of this embayment from the Fall Zone in Washington, D.C., to some of the bluffs along Aquia Creek and the Potomac River in Virginia, and then to the Calvert Cliffs on the western shore of the Chesapeake Bay. We will see fluvial-deltaic Cretaceous deposits of the Potomac Formation. We will then focus on Cenozoic marine deposits. Transgressive and highstand deposits are stacked upon each other with unconformities separating them; rarely are regressive or lowstand deposits preserved. The Paleocene and Eocene shallow shelf deposits consist of glauconitic, silty sands that contain varying amounts of marine shells. The Miocene shallow shelf deposits consist of diatomaceous silts and silty and shelly sands. The lithology, thickness, dip, preservation, and distribution of the succession of coastal plain sediments that were deposited in our field-trip area are, to a great extent, structurally controlled. Surficial and subsurface mapping using numerous continuous cores, auger holes, water-well data, and seismic surveys has documented some folds and numerous high-angle reverse and normal faults that offset Cretaceous and Cenozoic deposits. Many of these structures are rooted in early Mesozoic and/or Paleozoic NE-trending regional tectonic fault systems that underlie the Atlantic Coastal Plain. On Day 1, we will focus on two fault systems (stops 1–2; Stafford fault system and the Skinkers Neck–Brandywine fault system and their constituent fault zones and faults). We will then see (stops 3–5) a few of the remaining exposures of largely unlithified marine Paleocene and Eocene strata along the Virginia side of the Potomac River including the Paleocene-Eocene Thermal Maximum boundary clay. These exposures are capped by fluvial-estuarine Pleistocene terrace

  7. Spatial and temporal trends in runoff at long-term streamgages within and near the Chesapeake Bay Watershed

    Science.gov (United States)

    Rice, Karen C.; Hirsch, Robert M.

    2012-01-01

    Long-term streamflow data within the Chesapeake Bay watershed and surrounding area were analyzed in an attempt to identify trends in streamflow. Data from 30 streamgages near and within the Chesapeake Bay watershed were selected from 1930 through 2010 for analysis. Streamflow data were converted to runoff and trend slopes in percent change per decade were calculated. Trend slopes for three runoff statistics (the 7-day minimum, the mean, and the 1-day maximum) were analyzed annually and seasonally. The slopes also were analyzed both spatially and temporally. The spatial results indicated that trend slopes in the northern half of the watershed were generally greater than those in the southern half. The temporal analysis was done by splitting the 80-year flow record into two subsets; records for 28 streamgages were analyzed for 1930 through 1969 and records for 30 streamgages were analyzed for 1970 through 2010. The mean of the data for all sites for each year were plotted so that the following datasets were analyzed: the 7-day minimum runoff for the north, the 7-day minimum runoff for the south, the mean runoff for the north, the mean runoff for the south, the 1-day maximum runoff for the north, and the 1-day maximum runoff for the south. Results indicated that the period 1930 through 1969 was statistically different from the period 1970 through 2010. For the 7-day minimum runoff and the mean runoff, the latter period had significantly higher streamflow than did the earlier period, although within those two periods no significant linear trends were identified. For the 1-day maximum runoff, no step trend or linear trend could be shown to be statistically significant for the north, although the south showed a mixture of an upward step trend accompanied by linear downtrends within the periods. In no case was a change identified that indicated an increasing rate of change over time, and no general pattern was identified of hydrologic conditions becoming "more extreme

  8. Using a Content Management System for Integrated Water Quantity, Quality and Instream Flows Modeling

    Science.gov (United States)

    Burgholzer, R.; Brogan, C. O.; Scott, D.; Keys, T.

    2017-12-01

    With increased population and water demand, in-stream flows can become depleted by consumptive uses and dilution of permitted discharges may be compromised. Reduced flows downstream of water withdrawals may increase the violation rate of bacterial concentrations from direct deposition by livestock and wildlife. Water storage reservoirs are constructed and operated to insure more stable supplies for consumptive demands and dilution flows, however their use comes at the cost of increased evaporative losses, potential for thermal pollution, interrupted fish migration, and reduced flooding events that are critical to maintain habitat and water quality. Due to this complex interrelationship between water quantity, quality and instream habitat comprehensive multi-disciplinary models must be developed to insure long-term sustainability of water resources and to avoid conflicts between drinking water, food and energy production, and aquatic biota. The Commonwealth of Virginia funded the expansion of the Chesapeake Bay Program Phase 5 model to cover the entire state, and has been using this model to evaluate water supply permit and planning since 2009. This integrated modeling system combines a content management system (Drupal and PHP) for model input data and leverages the modularity of HSPF with the custom segmentation and parameterization routines programmed by modelers working with the Chesapeake Bay Program. The model has been applied to over 30 Virginia Water Permits, instream flows and aquatic habitat models and a Virginias 30 year water supply demand projections. Future versions will leverage the Bay Model auto-calibration routines for adding small-scale water supply and TMDL models, utilize climate change scenarios, and integrate Virginia's reservoir management modules into the Chesapeake Bay watershed model, feeding projected demand and operational changes back up to EPA models to improve the realism of future Bay-wide simulations.

  9. Wave and Hydrodynamic Modeling for Engineering Design of Jetties at Tangier Island in Chesapeake Bay, USA

    Directory of Open Access Journals (Sweden)

    Lihwa Lin

    2015-12-01

    Full Text Available The protection of a boat canal at the western entrance of Tangier Island, Virginia, located in the lower Chesapeake Bay, is investigated using different structural alternatives. The existing entrance channel is oriented 45 deg with respect to the local shoreline, and exposed directly to the lower Bay without any protection. The adjacent shoreline has experienced progressive erosion in recent decades by flooding due to severe storms and waves. To protect the western entrance of the channel and shoreline, five different jetty and spur combinations were proposed to reduce wave energy in the lee of jetties. Environmental forces affecting the proposed jettied inlet system are quantified using the Coastal Modeling System, consisting of a spectral wave model and a depth-averaged circulation model with sediment transport calculations. Numerical simulations were conducted for design wave conditions and a 50-year return period tropical storm at the project site. Model results show a low crested jetty of 170-m length connecting to the north shore at a 45-deg angle, and a short south spur of 25-m long, provide adequate wave-reduction benefits among the five proposed alternatives. The model simulation indicates this alternative has the minimum impact on sedimentation around the structured inlet and boat canal.

  10. Flock sizes and sex ratios of canvasbacks in Chesapeake Bay and North Carolina

    Science.gov (United States)

    Haramis, G.M.; Derleth, E.L.; Link, W.A.

    1994-01-01

    Knowledge of the distribution, size, and sex ratios of flocks of wintering canvasbacks (Aythya valisineria) is fundamental to understanding the species' winter ecology and providing guidelines for management. Consequently, in winter 1986-87, we conducted 4 monthly aerial photographic surveys to investigate temporal changes in distribution, size, and sex ratios of canvasback flocks in traditional wintering areas of Chesapeake Bay and coastal North Carolina. Surveys yielded 35mm imagery of 194,664 canvasbacks in 842 flocks. Models revealed monthly patterns of flock size in North Carolina and Virginia, but no pattern of change in Maryland. A stepwise analysis of flock size and sex ratio fit a common positive slope (increasing proportion male) for all state-month datasets, except for North Carolina in February where the slope was larger (P lt 0.001). State and month effects on intercepts were significant (P lt 0.001) and confirmed a previously identified latitudinal gradient in sex ratio in the survey region. There was no relationship between flock purity (% canvasbacks vs. other species) and flock size except in North Carolina in January, February, and March when flock purity was related to flock size. Contrasting characteristics in North Carolina with regard to flock size (larger flocks) and flock purity suggested that proximate factors were reinforcing flocking behavior and possibly species fidelity there. Of possible factors, the need to locate foraging sites within this large, open-water environment was hypothesized to be of primary importance. Comparison of January 1981 and 1987 sex ratios indicated no change in Maryland, but lower (P lt 0.05) canvasback sex ratios (proportion male) in Virginia and North Carolina.

  11. Resiliency of the Chesapeake Bay to Pollution Levels Following Storms and Based on Land-Use

    Science.gov (United States)

    Hasan, M.; Pavelsky, T.

    2015-12-01

    As pollution levels, transformations in land use, and ecological loss continue to increase in the Chesapeake Bay, questions arise as to whether this estuary, the largest in North America, will experience a change in the duration and levels of storm-related sediment and nutrient spikes. We use a combination of satellite data and previously-collected field measurements to study this question. We compare same-day and same-pixel NASA MODIS satellite data to in situ observations of sediment and nutrient concentrations over 20 years, and found that for at least 6 tributaries, the r2 value for a linear regression between the satellite reflectance and fieldwork measures of nitrogen, phosphorus, or suspended sediment concentrations exceeded 0.7, while for at least 12 tributaries, the r2 value exceeded 0.5. We took advantage of this relationship to estimate sediment and nutrient concentrations in the Chesapeake following major storm events, even in the absence of continuous in situ data. We studied sediment/nutrient levels daily following the storm, for every date on which a cloud-free MODIS image was available, for a month. The storms included 2003's Hurricane Isabel, 2011's Hurricane Irene, and 2012's Superstorm Sandy. The tributaries we focused on were the York and Piankatank Rivers of southern Virginia (heavily forested), the Potomac River (heavily urban), and the Nanticoke River of the Eastern Shore (heavily farmed). Results show that in the Potomac River, which over the last 15 years has experience a signifiant increase in urbanization, sediments and nutrients persist for longer periods and at higher levels compared to less urbanized rivers.

  12. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    Science.gov (United States)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; hide

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  13. The Chesapeake Bay bolide impact: a new view of coastal plain evolution

    Science.gov (United States)

    Poag, C. Wylie

    1998-01-01

    A spectacular geological event took place on the Atlantic margin of North America about 35 million years ago in the late part of the Eocene Epoch. Sea level was unusually high everywhere on Earth, and the ancient shoreline of the Virginia region was somewhere in the vicinity of where Richmond is today (fig. 1). Tropical rain forests covered the slopes of the Appalachians. To the east of a narrow coastal plain, a broad, lime (calcium carbonate)- covered continental shelf lay beneath the ocean. Suddenly, with an intense flash of light, that tranquil scene was transformed into a hellish cauldron of mass destruction. From the far reaches of space, a bolide (comet or asteroid), 3-5 kilometers in diameter, swooped through the Earth's atmosphere and blasted an enormous crater into the continental shelf. The crater is now approximately 200 km southeast of Washington, D.C., and is buried 300-500 meters beneath the southern part of Chesapeake Bay and the peninsulas of southeastern Virginia (fig. 1). The entire bolide event, from initial impact to the termination of breccia deposition, lasted only a few hours or days. The crater was then buried by additional sedimentary beds, which accumulated during the following 35 million years.

  14. Novel Pelagic Iron-Oxidizing Zetaproteobacteria from the Chesapeake Bay Oxic–Anoxic Transition Zone

    Science.gov (United States)

    Chiu, Beverly K.; Kato, Shingo; McAllister, Sean M.; Field, Erin K.; Chan, Clara S.

    2017-01-01

    Chemolithotrophic iron-oxidizing bacteria (FeOB) could theoretically inhabit any environment where Fe(II) and O2 (or nitrate) coexist. Until recently, marine Fe-oxidizing Zetaproteobacteria had primarily been observed in benthic and subsurface settings, but not redox-stratified water columns. This may be due to the challenges that a pelagic lifestyle would pose for Zetaproteobacteria, given low Fe(II) concentrations in modern marine waters and the possibility that Fe oxyhydroxide biominerals could cause cells to sink. However, we recently cultivated Zetaproteobacteria from the Chesapeake Bay oxic–anoxic transition zone, suggesting that they can survive and contribute to biogeochemical cycling in a stratified estuary. Here we describe the isolation, characterization, and genomes of two new species, Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8, which are the first Zetaproteobacteria isolates from a pelagic environment. We looked for adaptations enabling strains CP-5 and CP-8 to overcome the challenges of living in a low Fe redoxcline with frequent O2 fluctuations due to tidal mixing. We found that the CP strains produce distinctive dreadlock-like Fe oxyhydroxide structures that are easily shed, which would help cells maintain suspension in the water column. These oxides are by-products of Fe(II) oxidation, likely catalyzed by the putative Fe(II) oxidase encoded by the cyc2 gene, present in both CP-5 and CP-8 genomes; the consistent presence of cyc2 in all microaerophilic FeOB and other FeOB genomes supports its putative role in Fe(II) oxidation. The CP strains also have two gene clusters associated with biofilm formation (Wsp system and the Widespread Colonization Island) that are absent or rare in other Zetaproteobacteria. We propose that biofilm formation enables the CP strains to attach to FeS particles and form flocs, an advantageous strategy for scavenging Fe(II) and developing low [O2] microenvironments within more oxygenated waters

  15. In plain sight: the Chesapeake Bay crater ejecta blanket

    Science.gov (United States)

    Griscom, D. L.

    2012-02-01

    The discovery nearly two decades ago of a 90 km-diameter impact crater below the lower Chesapeake Bay has gone unnoted by the general public because to date all published literature on the subject has described it as "buried". To the contrary, evidence is presented here that the so-called "upland deposits" that blanket ∼5000 km2 of the U.S. Middle-Atlantic Coastal Plain (M-ACP) display morphologic, lithologic, and stratigraphic features consistent with their being ejecta from the 35.4 Ma Chesapeake Bay Impact Structure (CBIS) and absolutely inconsistent with the prevailing belief that they are of fluvial origin. Specifically supporting impact origin are the facts that (i) a 95 %-pure iron ore endemic to the upland deposits of southern Maryland, eastern Virginia, and the District of Columbia has previously been proven to be impactoclastic in origin, (ii) this iron ore welds together a small percentage of well-rounded quartzite pebbles and cobbles of the upland deposits into brittle sheets interpretable as "spall plates" created in the interference-zone of the CBIS impact, (iii) the predominantly non-welded upland gravels have long ago been shown to be size sorted with an extreme crater-centric gradient far too large to have been the work of rivers, but well explained as atmospheric size-sorted interference-zone ejecta, (iv) new evidence is provided here that ~60 % of the non-welded quartzite pebbles and cobbles of the (lower lying) gravel member of the upland deposits display planar fractures attributable to interference-zone tensile waves, (v) the (overlying) loam member of the upland deposits is attributable to base-surge-type deposition, (vi) several exotic clasts found in a debris flow topographically below the upland deposits can only be explained as jetting-phase crater ejecta, and (vii) an allogenic granite boulder found among the upland deposits is deduced to have been launched into space and sculpted by hypervelocity air friction during reentry. An

  16. Investigating water use over the Choptank River Watershed using a multisatellite data fusion approach

    Science.gov (United States)

    Sun, Liang; Anderson, Martha C.; Gao, Feng; Hain, Christopher; Alfieri, Joseph G.; Sharifi, Amirreza; McCarty, Gregory W.; Yang, Yun; Yang, Yang; Kustas, William P.; McKee, Lynn

    2017-07-01

    The health of the Chesapeake Bay ecosystem has been declining for several decades due to high levels of nutrients and sediments largely tied to agricultural production systems. Therefore, monitoring of agricultural water use and hydrologic connections between crop lands and Bay tributaries has received increasing attention. Remote sensing retrievals of actual evapotranspiration (ET) can provide valuable information in support of these hydrologic modeling efforts, spatially and temporally describing consumptive water use by crops and natural vegetation and quantifying response to expansion of irrigated area occurring with Bay watershed. In this study, a multisensor satellite data fusion methodology, combined with a multiscale ET retrieval algorithm, was applied over the Choptank River watershed located within the Lower Chesapeake Bay region on the Eastern Shore of Maryland, USA to produce daily 30 m resolution ET maps. ET estimates directly retrieved on Landsat satellite overpass dates have high accuracy with relative error (RE) of 9%, as evaluated using flux tower measurements. The fused daily ET time series have reasonable errors of 18% at the daily time step - an improvement from 27% errors using standard Landsat-only interpolation techniques. Annual water consumption by different land cover types was assessed, showing reasonable distributions of water use with cover class. Seasonal patterns in modeled crop transpiration and soil evaporation for dominant crop types were analyzed, and agree well with crop phenology at field scale. Additionally, effects of irrigation occurring during a period of rainfall shortage were captured by the fusion program. These results suggest that the ET fusion system will have utility for water management at field and regional scales over the Eastern Shore. Further efforts are underway to integrate these detailed water use data sets into watershed-scale hydrologic models to improve assessments of water quality and inform best

  17. Role of manganese oxides in the exposure of mute swans (Cygnus olor) to Pb and other elements in the Chesapeake Bay, USA

    International Nuclear Information System (INIS)

    Beyer, W. Nelson; Day, Daniel

    2004-01-01

    The aims of this study are to estimate exposure of waterfowl to elements in contaminated sediments in the Chesapeake Bay and to consider the potential role of Mn in influencing bioavailability and exposure. Metal concentrations were measured in livers and digesta taken from mute swans living on the Aberdeen Proving Ground, whose sediment had elevated concentrations of Cu, S, Se, Zn, As, Co, Cr, Hg and Pb. Concentrations of only the first four of these elements were elevated in swan digesta. None of the concentrations detected in the digesta or livers of the swans was considered toxic, although the concentrations of Cu and Se were high compared to concentrations of these elements reported in other waterfowl. Lead was found to be scavenged by Mn and Fe oxides from the water and deposited on the surface of vegetation at a reference site. Under some environmental chemical conditions, this is an important route of exposure to Pb in waterfowl, not previously recognized. - Lead was scavenged by Mn and Fe oxides and deposited on aquatic vegetation

  18. Role of manganese oxides in the exposure of mute swans (Cygnus olor) to Pb and other elements in the Chesapeake Bay, USA

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, W. Nelson; Day, Daniel

    2004-05-01

    The aims of this study are to estimate exposure of waterfowl to elements in contaminated sediments in the Chesapeake Bay and to consider the potential role of Mn in influencing bioavailability and exposure. Metal concentrations were measured in livers and digesta taken from mute swans living on the Aberdeen Proving Ground, whose sediment had elevated concentrations of Cu, S, Se, Zn, As, Co, Cr, Hg and Pb. Concentrations of only the first four of these elements were elevated in swan digesta. None of the concentrations detected in the digesta or livers of the swans was considered toxic, although the concentrations of Cu and Se were high compared to concentrations of these elements reported in other waterfowl. Lead was found to be scavenged by Mn and Fe oxides from the water and deposited on the surface of vegetation at a reference site. Under some environmental chemical conditions, this is an important route of exposure to Pb in waterfowl, not previously recognized. - Lead was scavenged by Mn and Fe oxides and deposited on aquatic vegetation.

  19. Baybook: A Guide to Reducing Water Pollution at Home.

    Science.gov (United States)

    Citizens Program for the Chesapeake Bay, Inc., Baltimore, MD.

    Developed to increase public awareness of the Chesapeake Bay ecosystem, this guide provides information and suggestions for improving the quality of life in the Bay area. Contents include background information and a "what can you do" section on separate topics related to: (1) resources of the Chesapeake Bay watershed; (2) streambank…

  20. Assessing development pressure in the Chesapeake Bay watershed: an evaluation of two land-use change models.

    Science.gov (United States)

    Claggett, Peter R; Jantz, Claire A; Goetz, Scott J; Bisland, Carin

    2004-06-01

    Natural resource lands in the Chesapeake Bay watershed are increasingly susceptible to conversion into developed land uses, particularly as the demand for residential development grows. We assessed development pressure in the Baltimore-Washington, DC region, one of the major urban and suburban centers in the watershed. We explored the utility of two modeling approaches for forecasting future development trends and patterns by comparing results from a cellular automata model, SLEUTH (slope, land use, excluded land, urban extent, transportation), and a supply/demand/allocation model, the Western Futures Model. SLEUTH can be classified as a land-cover change model and produces projections on the basis of historic trends of changes in the extent and patterns of developed land and future land protection scenarios. The Western Futures Model derives forecasts from historic trends in housing units, a U.S. Census variable, and exogenously supplied future population projections. Each approach has strengths and weaknesses, and combining the two has advantages and limitations.

  1. Eastern rim of the Chesapeake Bay impact crater: Morphology, stratigraphy, and structure

    Science.gov (United States)

    Poag, C.W.

    2005-01-01

    This study reexamines seven reprocessed (increased vertical exaggeration) seismic reflection profiles that cross the eastern rim of the Chesapeake Bay impact crater. The eastern rim is expressed as an arcuate ridge that borders the crater in a fashion typical of the "raised" rim documented in many well preserved complex impact craters. The inner boundary of the eastern rim (rim wall) is formed by a series of raterfacing, steep scarps, 15-60 m high. In combination, these rim-wall scarps represent the footwalls of a system of crater-encircling normal faults, which are downthrown toward the crater. Outboard of the rim wall are several additional normal-fault blocks, whose bounding faults trend approximately parallel to the rim wall. The tops of the outboard fault blocks form two distinct, parallel, flat or gently sloping, terraces. The innermost terrace (Terrace 1) can be identified on each profile, but Terrace 2 is only sporadically present. The terraced fault blocks are composed mainly of nonmarine, poorly to moderately consolidated, siliciclastic sediments, belonging to the Lower Cretaceous Potomac Formation. Though the ridge-forming geometry of the eastern rim gives the appearance of a raised compressional feature, no compelling evidence of compressive forces is evident in the profiles studied. The structural mode, instead, is that of extension, with the clear dominance of normal faulting as the extensional mechanism. 

  2. Effects of erosion control structures along a portion of the northern Chesapeake Bay shoreline

    Science.gov (United States)

    Zabawa, C.F.; Kerhin, R.T.; Bayley, S.

    1981-01-01

    A 6.500-meter reach of western Chesapeake Bay shoreline (lower Mayo Peninsula) lost about 1.1??106 cubic meters of sediment (equivalent to 170 cubic meters lost per meter of shoreline) between 1846 and 1932, when the first aerial photographs show the shoreline already substantially protected by a system of groins and intermittent bulkheading. These structures have eliminated the fastland as a source of erodable material, and have starved the supply of sand for littoral drift, thus limiting the extent of the beaches to the remaining groin fields. Volumes of sediment involved in these impacts are small in the overall sediment budget. Bulkheads produce no deficit in the budget since scouring of the beaches on their seaward sides makes up for the decreased erosion of protected fastland. Groins trap little of the potential littoral drift (computed to be about 104 cubic meters per meter of shoreline per year). The sand supply in the remaining beaches is nearly equivalent to the annual loss of sediment from the entire shoreline system due to the long-term rate of erosion of the shoreline and nearshore between 1846 and 1932. ?? 1981 Springer-Verlag New York Inc.

  3. Trends in nutrients and suspended solids at the Fall Line of five tributaries to the Chesapeake Bay in Virginia, July 1988 through June 1995

    Science.gov (United States)

    Bell, C.F.; Belval, D.L.; Campbell, J.P.

    1996-01-01

    Water-quality samples were collected at the Fall Line of five tributaries to the Chesapeake Bay in Virginia during a 6- to 7-year period. The water-quality data were used to estimate loads of nutrients and suspended solids from these tributaries to the non-tidal part of Chesapeake Bay Basin and to identify trends in water quality. Knowledge of trends in water quality is required to assess the effectiveness of nutrient manage- ment strategies in the five basins. Multivariate log-linear regression and the seasonal Kendall test were used to estimate flow-adjusted trends in constituent concentration and load. Results of multivariate log-linear regression indicated a greater number of statistically significant trends than the seasonal Kendall test; how-ever, when both methods indicated a significant trend, both agreed on the direction of the trend. Interpre- tation of the trend estimates for this report was based on results of the parametric regression method. No significant trends in total nitrogen concentration were detected at the James River monitoring station from July 1988 through June 1995, though total Kjeldahl nitrogen concen- tration decreased slightly in base-flow samples. Total phosphorus concentration decreased about 29 percent at this station during the sampling period. Most of the decrease can be attributed to reductions in point-source phosphorus loads in 1988 and 1989, especially the phosphate detergent ban of 1988. No significant trends in total suspended solids were observed at the James River monitoring station, and no trends in runoff- derived constituents were interpreted for this river. Significant decreases were detected in concentrations of total nitrogen, total Kjeldahl nitrogen, dissolved nitrite-plus-nitrate nitrogen, and total suspended solids at the Rappahannock River monitoring station between July 1988 and June 1995. A similar downward trend in total phosphorus concentration was significant at the 90-percent confidence level, but not the

  4. Sup(239,240)Pu in estuarine and shelf waters of the north-eastern United States

    International Nuclear Information System (INIS)

    Sholkovitz, E.R.; Mann, D.R.

    1987-01-01

    The distribution of sup(239,240)Pu between dissolved and particulate forms has been measured in four estuaries on the north-east coast of the United States (Connecticut River, Delaware Bay, Chesapeake Bay, and Mullica River). The data cover the whole salinity range from freshwater input to shelf waters at 3.5% and includes one profile from a nearly anoxic basin in the Chesapeake Bay. In the organic-rich Mullica River estuary, large-scale removal of riverine dissolved sup(239,240)Pu occurs at low salinities due to salt-induced coagulation, a mechanism analogous to that for iron and humic acids. Within the 0 to 2.5-3.5% zone in the other three estuaries, the activity of dissolved sup(239,240)Pu increases almost conservatively. The activities of particulate sup(239,240)Pu are highest in the more turbid waters of low salinity regime (0-1.5%), but become increasingly insignificant with respect to dissolved sup(239,240)Pu as salinities increase. At higher salinities corresponding to shelf water, there is a sharp increase in dissolved sup(239,240)Pu activity. The dissolved sup(239,240)Pu activity within each estuary appears to be inversely related to the flushing time of water. The sharp decrease in dissolved sup(239,240)Pu activities between shelf and estuarine waters appears to be driven by removal within the estuaries themselves rather than on the shelf. Dissolved sup(239,240)Pu activities are lower in the nearly-anoxic bottom waters of Chesapeake Bay indicating enhanced removal by redox transformation of Pu [i.e., Pu(V) to Pu(IV)]. (author)

  5. Diurnal variability in carbon and nitrogen pools within Chesapeake Bay and northern Gulf of Mexico: implications for future ocean color satellite sensors

    Science.gov (United States)

    Mannino, A.; Novak, M. G.; Tzortziou, M.; Salisbury, J.

    2016-02-01

    Relative to their areal extent, estuaries and coastal ocean ecosystems contribute disproportionately more to global biogeochemical cycling of carbon, nitrogen and other elements compared to the open ocean. Applying ocean color satellite data to study biological and biogeochemical processes within coastal ecosystems is challenging due to the complex mixtures of aquatic constituents derived from terrestrial, anthropogenic, and marine sources, human-impacted atmospheric properties, presence of clouds during satellite overpass, fine-scale spatial gradients, and time-varying processes on diurnal scales that cannot be resolved with current sensors. On diurnal scales, biological, photochemical, and biogeochemical processes are regulated by the variation in solar radiation. Other physical factors, such as tides, river discharge, estuarine and coastal ocean circulation, wind-driven mixing, etc., impart further variability on biological and biogeochemical processes on diurnal to multi-day time scales. Efforts to determine the temporal frequency required from a NASA GEO-CAPE ocean color satellite sensor to discern diurnal variability C and N stocks, fluxes and productivity culminated in field campaigns in the Chesapeake Bay and northern Gulf of Mexico. Near-surface drogues were released and tracked in quasi-lagrangian space to monitor hourly changes in community production, C and N stocks, and optical properties. While only small diurnal changes were observed in dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) absorption in Chesapeake Bay, substantial variation in particulate organic carbon (POC) and nitrogen (PN), chlorophyll-a, and inorganic nitrogen (DIN) were measured. Similar or greater diurnal changes in POC, PN, chlorophyll-a and DIN were found in Gulf of Mexico nearshore and offshore sites. These results suggest that satellite observations at hourly frequency are desirable to capture diurnal variability in carbon and nitrogen stocks, fluxes

  6. Food habits of mute swans in the Chesapeake Bay

    Science.gov (United States)

    Perry, M.C.; Osenton, P.C.; Lohnes, E.J.R.; Perry, Matthew C.

    2004-01-01

    Unlike the tundra swan (Cygnus columbianus) that migrate to the Bay for the winter, the mute swan (Cygnus olor) is a year long resident and therefore has raised concerns among research managers over reports of conflicts with nesting native water birds and the consumption of submerged aquatic vegetation (SAV). Although data on the reduction of SAV by nesting mute swans and their offspring during the spring and summer are limited, food-habits data show that mute swans rely heavily on SAV during these months. Analyses of the gullet and gizzard of mute swans indicate that widgeon grass (Ruppia maritima) and eelgrass (Zostera marina) were the most important food items to mute swans during the winter and spring. Other organisms were eaten by mute swans, but represent small percentages of food. Corn (Zea mays) fed to the swans by Bay residents in late winter probably supplements their limited vegetative food resources at that time of year.

  7. Nutrient and physical profile data from four Microbial Exchanges and Coupling in Coastal Atlantic Systems (MECCAS) cruises collected aboard the R/V Gyre at the mouth of the Chesapeake Bay and northern Atlantic Ocean from February 17, 1985 to September 7, 1986 (NODC Accession 8800324)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Microbial Exchanges and Coupling in Coastal Atlantic Systems (MECCAS) cruise data collected aboard the R/V Gyre at the mouth of the Chesapeake Bay and northern...

  8. Morphological variation and phylogenetic analysis of the dinoflagellate Gymnodinium aureolum from a tributary of Chesapeake Bay.

    Science.gov (United States)

    Tang, Ying Zhong; Egerton, Todd A; Kong, Lesheng; Marshall, Harold G

    2008-01-01

    Cultures of four strains of the dinoflagellate Gymnodinium aureolum (Hulburt) G. Hansen were established from the Elizabeth River, a tidal tributary of the Chesapeake Bay, USA. Light microscopy, scanning electron microscopy, nuclear-encoded large sub-unit rDNA sequencing, and culturing observations were conducted to further characterize this species. Observations of morphology included: a multiple structured apical groove; a peduncle located between the emerging points of the two flagella; pentagonal and hexagonal vesicles on the amphiesma; production and germination of resting cysts; variation in the location of the nucleus within the center of the cell; a longitudinal ventral concavity; and considerable variation in cell width/length and overall cell size. A fish bioassay using juvenile sheepshead minnows detected no ichthyotoxicity from any of the strains over a 48-h period. Molecular analysis confirmed the dinoflagellate was conspecific with G. aureolum strains from around the world, and formed a cluster along with several other Gymnodinium species. Morphological evidence suggests that further research is necessary to examine the relationship between G. aureolum and a possibly closely related species Gymnodinium maguelonnense.

  9. The Eocene-Oligocene sedimentary record in the Chesapeake Bay impact structure: Implications for climate and sea-level changes on the western Atlantic margin

    Science.gov (United States)

    Schulte, P.; Wade, B.S.; Kontny, A.; ,

    2009-01-01

    A multidisciplinary investigation of the Eocene-Oligocene transition in the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville core from the Chesapeake Bay impact basin was conducted in order to document environmental changes and sequence stratigraphic setting. Planktonic foraminifera and calcareous nannofossil biostratigraphy indicate that the Eyreville core includes an expanded upper Eocene (Biozones E15 to E16 and NP19/20 to NP21, respectively) and a condensed Oligocene-Miocene (NP24-NN1) sedimentary sequence. The Eocene-Oligocene contact corresponds to a =3-Ma-long hiatus. Eocene- Oligocene sedimentation is dominated by great diversity and varying amounts of detrital and authigenic minerals. Four sedimentary intervals are identified by lithology and mineral content: (1) A 30-m-thick, smectite- and illite-rich interval directly overlies the Exmore Formation, suggesting long-term reworking of impact debris within the Chesapeake Bay impact structure. (2) Subsequently, an increase in kaolinite content suggests erosion from soils developed during late Eocene warm and humid climate in agreement with data derived from other Atlantic sites. However, the kaolinite increase may also be explained by change to a predominant sediment input from outside the Chesapeake Bay impact structure caused by progradation of more proximal facies belts during the highstand systems tract of the late Eocene sequence E10.Spectral analysis based on gamma-ray and magnetic susceptibility logs suggests infl uence of 1.2 Ma low-amplitude oscillation of the obliquity period during the late Eocene. (3) During the latest Eocene (Biozones NP21 and E16), several lithological contacts (clay to clayey silt) occur concomitant with a prominent change in the mineralogical composition with illite as a major component: This lithological change starts close to the Biozone NP19/20-NP21 boundary and may correspond to sequence boundary E10-E11 as observed in

  10. Upriver transport of dissolved substances in an estuary and sub-estuary system of the lower James River, Chesapeake Bay

    Science.gov (United States)

    Hong, Bo; Shen, Jian; Xu, Hongzhou

    2018-01-01

    The water exchange between the James River and the Elizabeth River, an estuary and sub-estuary system in the lower Chesapeake Bay, was investigated using a 3D numerical model. The conservative passive tracers were used to represent the dissolved substances (DS) discharged from the Elizabeth River. The approach enabled us to diagnose the underlying physical processes that control the expansion of the DS, which is representative of potential transport of harmful algae blooms, pollutants from the Elizabeth River to the James River without explicitly simulating biological processes. Model simulations with realistic forcings in 2005, together with a series of processoriented numerical experiments, were conducted to explore the correlations of the transport process and external forcing. Model results show that the upriver transport depends highly on the freshwater discharge on a seasonal scale and maximum upriver transport occurs in summer with a mean transport time ranging from 15-30 days. The southerly/easterly wind, low river discharge, and neap tidal condition all act to strengthen the upriver transport. On the other hand, the northerly/westerly wind, river pulse, water level pulse, and spring tidal condition act to inhibit the upriver transport. Tidal flushing plays an important role in transporting the DS during spring tide, which shortens the travel time in the lower James River. The multivariable regression analysis of volume mean subtidal DS concentration in the mesohaline portion of the James River indicates that DS concentration in the upriver area can be explained and well predicted by the physical forcings (r = 0.858, p = 0.00001).

  11. Large-Scale Submerged Aquatic Vegetation Restoration in Chesapeake Bay: Status Report, 2003-2006

    Science.gov (United States)

    2008-06-01

    seed injector designed by VIMS, which does not require a gel matrix, has been tested in Spider Crab Bay in Virginia’s Coastal Bays (Figures 13 and 14...seagrasses, contributing to their loss. Additionally, waters landward of restrictive breakwaters tend to be warmer ( blue and red thermometers) than those...marina), (2) wild celery (V. americana), (3) sago pondweed (S. pectinata), and (4) redhead grass (P. perfoliatus). Molecular and cultivation

  12. Empirical models based on the universal soil loss equation fail to predict sediment discharges from Chesapeake Bay catchments.

    Science.gov (United States)

    Boomer, Kathleen B; Weller, Donald E; Jordan, Thomas E

    2008-01-01

    The Universal Soil Loss Equation (USLE) and its derivatives are widely used for identifying watersheds with a high potential for degrading stream water quality. We compared sediment yields estimated from regional application of the USLE, the automated revised RUSLE2, and five sediment delivery ratio algorithms to measured annual average sediment delivery in 78 catchments of the Chesapeake Bay watershed. We did the same comparisons for another 23 catchments monitored by the USGS. Predictions exceeded observed sediment yields by more than 100% and were highly correlated with USLE erosion predictions (Pearson r range, 0.73-0.92; p USLE estimates (r = 0.87; p USLE model did not change the results. In ranked comparisons between observed and predicted sediment yields, the models failed to identify catchments with higher yields (r range, -0.28-0.00; p > 0.14). In a multiple regression analysis, soil erodibility, log (stream flow), basin shape (topographic relief ratio), the square-root transformed proportion of forest, and occurrence in the Appalachian Plateau province explained 55% of the observed variance in measured suspended sediment loads, but the model performed poorly (r(2) = 0.06) at predicting loads in the 23 USGS watersheds not used in fitting the model. The use of USLE or multiple regression models to predict sediment yields is not advisable despite their present widespread application. Integrated watershed models based on the USLE may also be unsuitable for making management decisions.

  13. 75 FR 27552 - Guidance for Federal Land Management in the Chesapeake Bay Watershed

    Science.gov (United States)

    2010-05-17

    ... will allow the federal government to lead the way in protecting the Bay and its watershed with the most effective tools and practices available to reduce water pollution from a variety of nonpoint sources... describe ``proven cost-effective tools and practices that reduce water pollution'' that are appropriate to...

  14. 77 FR 15323 - Special Local Regulations and Safety Zone; War of 1812 Bicentennial Commemorations, Chesapeake...

    Science.gov (United States)

    2012-03-15

    ... National Technology Transfer and Advancement Act (NTTAA) (15 U.S.C. 272 note) directs agencies to use...] RIN 1625-AA08, AA00 Special Local Regulations and Safety Zone; War of 1812 Bicentennial Commemorations... Chesapeake Bay and Port of Baltimore, Maryland for War of 1812 Bicentennial Commemorations activities. This...

  15. Proposed tethered unmanned aerial system for the detection of pollution entering the Chesapeake Bay area

    Science.gov (United States)

    Goodman, J.; McKay, J.; Evans, W.; Gadsden, S. Andrew

    2016-05-01

    This paper is based on a proposed unmanned aerial system platform that is to be outfitted with high-resolution sensors. The proposed system is to be tethered to a moveable ground station, which may be a research vessel or some form of ground vehicle (e.g., car, truck, or rover). The sensors include, at a minimum: camera, infrared sensor, thermal, normalized difference vegetation index (NDVI) camera, global positioning system (GPS), and a light-based radar (LIDAR). The purpose of this paper is to provide an overview of existing methods for pollution detection of failing septic systems, and to introduce the proposed system. Future work will look at the high-resolution data from the sensors and integrating the data through a process called information fusion. Typically, this process is done using the popular and well-published Kalman filter (or its nonlinear formulations, such as the extended Kalman filter). However, future work will look at using a new type of strategy based on variable structure estimation for the information fusion portion of the data processing. It is hypothesized that fusing data from the thermal and NDVI sensors will be more accurate and reliable for a multitude of applications, including the detection of pollution entering the Chesapeake Bay area.

  16. Optimal hydrograph separation using a recursive digital filter constrained by chemical mass balance, with application to selected Chesapeake Bay watersheds

    Science.gov (United States)

    Raffensperger, Jeff P.; Baker, Anna C.; Blomquist, Joel D.; Hopple, Jessica A.

    2017-06-26

    Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased

  17. Using Water Quality Models in Management - A Multiple Model Assessment, Analysis of Confidence, and Evaluation of Climate Change Impacts

    Science.gov (United States)

    Irby, Isaac David

    Human impacts on the Chesapeake Bay through increased nutrient run-off as a result of land-use change, urbanization, and industrialization, have resulted in a degradation of water quality over the last half-century. These direct impacts, compounded with human-induced climate changes such as warming, rising sea-level, and changes in precipitation, have elevated the conversation surrounding the future of water quality in the Bay. The overall goal of this dissertation project is to use a combination of models and data to better understand and quantify the impact of changes in nutrient loads and climate on water quality in the Chesapeake Bay. This research achieves that goal in three parts. First, a set of eight water quality models is used to establish a model mean and assess model skill. All models were found to exhibit similar skill in resolving dissolved oxygen concentrations as well as a number of dissolved oxygen-influencing variables (temperature, salinity, stratification, chlorophyll and nitrate) and the model mean exhibited the highest individual skill. The location of stratification within the water column was found to be a limiting factor in the models' ability to adequately simulate habitat compression resulting from low-oxygen conditions. Second, two of the previous models underwent the regulatory Chesapeake Bay pollution diet mandated by the Environmental Protection Agency. Both models exhibited a similar relative improvement in dissolved oxygen concentrations as a result of the reduction of nutrients stipulated in the pollution diet. A Confidence Index was developed to identify the locations of the Bay where the models are in agreement and disagreement regarding the impacts of the pollution diet. The models were least certain in the deep part of the upper main stem of the Bay and the uncertainty primarily stemmed from the post-processing methodology. Finally, by projecting the impacts of climate change in 2050 on the Bay, the potential success of the

  18. San Francisco Bay Water Quality Improvement Fund

    Science.gov (United States)

    EPAs grant program to protect and restore San Francisco Bay. The San Francisco Bay Water Quality Improvement Fund (SFBWQIF) has invested in 58 projects along with 70 partners contributing to restore wetlands, water quality, and reduce polluted runoff.,

  19. The Medieval Climate Anomaly and Little Ice Age in Chesapeake Bay and the North Atlantic Ocean

    Science.gov (United States)

    Cronin, T. M.; Hayo, K.; Thunell, R.C.; Dwyer, G.S.; Saenger, C.; Willard, D.A.

    2010-01-01

    A new 2400-year paleoclimate reconstruction from Chesapeake Bay (CB) (eastern US) was compared to other paleoclimate records in the North Atlantic region to evaluate climate variability during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Using Mg/Ca ratios from ostracodes and oxygen isotopes from benthic foraminifera as proxies for temperature and precipitation-driven estuarine hydrography, results show that warmest temperatures in CB reached 16-17. ??C between 600 and 950. CE (Common Era), centuries before the classic European Medieval Warm Period (950-1100. CE) and peak warming in the Nordic Seas (1000-1400. CE). A series of centennial warm/cool cycles began about 1000. CE with temperature minima of ~. 8 to 9. ??C about 1150, 1350, and 1650-1800. CE, and intervening warm periods (14-15. ??C) centered at 1200, 1400, 1500 and 1600. CE. Precipitation variability in the eastern US included multiple dry intervals from 600 to 1200. CE, which contrasts with wet medieval conditions in the Caribbean. The eastern US experienced a wet LIA between 1650 and 1800. CE when the Caribbean was relatively dry. Comparison of the CB record with other records shows that the MCA and LIA were characterized by regionally asynchronous warming and complex spatial patterns of precipitation, possibly related to ocean-atmosphere processes. ?? 2010.

  20. Quantitative assessment of viable Cryptosporidium parvum load in commercial oysters (Crassostrea virginica) in the Chesapeake Bay.

    Science.gov (United States)

    Graczyk, Thaddeus K; Lewis, Earl J; Glass, Gregory; Dasilva, Alexandre J; Tamang, Leena; Girouard, Autumn S; Curriero, Frank C

    2007-01-01

    The epidemiological importance of increasing reports worldwide on Cryptosporidium contamination of oysters remains unknown in relation to foodborne cryptosporidiosis. Thirty market-size oysters (Crassostrea virginica), collected from each of 53 commercial harvesting sites in Chesapeake Bay, MD, were quantitatively tested in groups of six for Cryptosporidium sp. oocysts by immunofluorescent antibody (IFA). After IFA analysis, the samples were retrospectively retested for viable Cryptosporidium parvum oocysts by combined fluorescent in situ hybridization (FISH) and IFA. The mean cumulative numbers of Cryptosporidium sp. oocysts in six oysters (overall, 42.1+/-4.1) were significantly higher than in the numbers of viable C. parvum oocysts (overall, 28.0+/-2.9). Of 265 oyster groups, 221 (83.4%) contained viable C. parvum oocysts, and overall, from 10-32% (mean, 23%) of the total viable oocysts were identified in the hemolymph as distinct from gill washings. The amount of viable C. parvum oocysts was not related to oyster size or to the level of fecal coliforms at the sampling site. This study demonstrated that, although oysters are frequently contaminated with oocysts, the levels of viable oocysts may be too low to cause infection in healthy individuals. FISH assay for identification can be retrospectively applied to properly stored samples.

  1. Climate, Clams, and a Changing Watershed: A time series analysis to quantify the impact of management and climate on water quality in the Potomac Estuary

    Science.gov (United States)

    The Potomac River is the largest tributary of the Chesapeake Bay and has been a key study site in water quality research, beginning with work to address public health concerns such as safe drinking water and waterborne disease during periods of population growth and urbanization ...

  2. Comparison of two regression-based approaches for determining nutrient and sediment fluxes and trends in the Chesapeake Bay watershed

    Science.gov (United States)

    Moyer, Douglas; Hirsch, Robert M.; Hyer, Kenneth

    2012-01-01

    Nutrient and sediment fluxes and changes in fluxes over time are key indicators that water resource managers can use to assess the progress being made in improving the structure and function of the Chesapeake Bay ecosystem. The U.S. Geological Survey collects annual nutrient (nitrogen and phosphorus) and sediment flux data and computes trends that describe the extent to which water-quality conditions are changing within the major Chesapeake Bay tributaries. Two regression-based approaches were compared for estimating annual nutrient and sediment fluxes and for characterizing how these annual fluxes are changing over time. The two regression models compared are the traditionally used ESTIMATOR and the newly developed Weighted Regression on Time, Discharge, and Season (WRTDS). The model comparison focused on answering three questions: (1) What are the differences between the functional form and construction of each model? (2) Which model produces estimates of flux with the greatest accuracy and least amount of bias? (3) How different would the historical estimates of annual flux be if WRTDS had been used instead of ESTIMATOR? One additional point of comparison between the two models is how each model determines trends in annual flux once the year-to-year variations in discharge have been determined. All comparisons were made using total nitrogen, nitrate, total phosphorus, orthophosphorus, and suspended-sediment concentration data collected at the nine U.S. Geological Survey River Input Monitoring stations located on the Susquehanna, Potomac, James, Rappahannock, Appomattox, Pamunkey, Mattaponi, Patuxent, and Choptank Rivers in the Chesapeake Bay watershed. Two model characteristics that uniquely distinguish ESTIMATOR and WRTDS are the fundamental model form and the determination of model coefficients. ESTIMATOR and WRTDS both predict water-quality constituent concentration by developing a linear relation between the natural logarithm of observed constituent

  3. SF Bay Water Quality Improvement Fund: Projects and Accomplishments

    Science.gov (United States)

    San Francisco Bay Water Quality Improvement Fund (SFBWQIF) projects listed here are part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  4. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay

    Science.gov (United States)

    Blazer, Vicki; Pinkney, Alfred E.; Jenkins, Jill A.; Iwanowicz, Luke R.; Minkkinen, Steven; Draugelis-Dale, Rassa O.; Uphoff, James H.

    2013-01-01

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007–2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed.

  5. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay.

    Science.gov (United States)

    Blazer, Vicki S; Pinkney, Alfred E; Jenkins, Jill A; Iwanowicz, Luke R; Minkkinen, Steven; Draugelis-Dale, Rassa O; Uphoff, James H

    2013-03-01

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007-2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed. Published by Elsevier B.V.

  6. Development, calibration, and analysis of a hydrologic and water-quality model of the Delaware Inland Bays watershed

    Science.gov (United States)

    Gutierrez-Magness, Angelica L.; Raffensperger, Jeff P.

    2003-01-01

    watershed are low in comparison to yields reported for the Eastern Shore from the Chesapeake Bay watershed model. The flatness of the terrain and the low annual surface runoff are important factors in determining the amount of detached sediment from the land that is delivered to streams. The highest total suspended solids yields were found in the southern part of the watershed, associated with high total streamflow and a high surface runoff component, and related to soil and aquifer permeability and land use. Nutrient yields from watershed model segments in the southern part of the Inland Bays watershed were the highest of all calibrated segments, due to high runoff and the substantial amount of available organic fertilizer (animal waste), which results in over-application of organic fertilizer to crops. Time series of simulated hourly total nitrogen concentrations and observed instantaneous values indicate a seasonal pattern, with the lowest values occurring during the summer and the highest during the winter months. Total phosphorus and total suspended solids concentrations are somewhat less seasonal. During storm events, total nitrogen concentrations tend to be diluted and total phosphorus concentrations tend to rise sharply. Nitrogen is transported mainly in the aqueous phase and primarily through ground water, whereas phosphorus is strongly associated with sediment, which washes off during precipitation events.

  7. 76 FR 549 - Clean Water Act Section 303(d): Notice for the Establishment of the Total Maximum Daily Load...

    Science.gov (United States)

    2011-01-05

    ... Establishment of the Total Maximum Daily Load (TMDL) for the Chesapeake Bay AGENCY: Environmental Protection... that when met will assure the attainment and maintenance of all applicable water quality standards for... productive estuaries in the world. Despite significant efforts by federal, state, and local governments and...

  8. Conductivity, temperature, depth, fluorescence, optical backscatter, laser in-situ scattering and transmissivity, acoustic zooplankton biomass, net zooplankton counts, and suspended particle data from the RV HUGH R. SHARP in the upper Chesapeake Bay from February 23 through 26, 2007 as part of the Bio-Physical Interaction in the Turbidity Maximum (BITMAX-II) program (NODC Accession 0062884)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data set contains Cruise Reports and CTD data from 8 main cruises in the upper Chesapeake Bay on board the R/V Hugh R. Sharp from February 2007 to October 2008 ....

  9. Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration

    Science.gov (United States)

    Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.

    2008-01-01

    We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.

  10. Chesapeake Bay Water Quality Monitoring Using Satellite Imagery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Work done at Water Resources Center, University of Minnesota has demonstrated the feasibility of performing regional assessment of lake water quality using Landsat...

  11. A feasibility study for a remote laser water turbidity meter

    Science.gov (United States)

    Hickman, G. D.; Ghovanlou, A. H.; Friedman, E. J.; Gault, C. S.; Hogg, J. E.

    1974-01-01

    A technique to remotely determine the attenuation coefficient (alpha) of the water was investigated. The backscatter energy (theta = 180 deg) of a pulse laser (lambda = 440 - 660 nm) was found directly related to the water turbidity. The greatest sensitivity was found to exist at 440 nm. For waters whose turbidity was adjusted using Chesapeake Bay sediment, the sensitivity in determining alpha at 440 nm was found to be approximately 5 - 10%. A correlation was also found to exist between the water depth (time) at which the peak backscatter occurs and alpha.

  12. Land Use and Climate Alter Carbon Dynamics in Watersheds of Chesapeake Bay

    Science.gov (United States)

    Kaushal, S.; Duan, S.; Grese, M.; Pennino, M. J.; Belt, K. T.; Findlay, S.; Groffman, P. M.; Mayer, P. M.; Murthy, S.; Blomquist, J.

    2011-12-01

    There have been long-term changes in the quantity of organic carbon in streams and rivers globally. Shifts in the quality of organic carbon due to environmental changes may also impact downstream ecosystem metabolism and fate and transport of contaminants. We investigated long-term impacts of land use and hydrologic variability on organic carbon transport in watersheds of the Baltimore Long-Term Ecological Research (LTER) site and large rivers of the Chesapeake Bay. In small and medium-sized watersheds of the Baltimore LTER site, urban land use increased organic carbon concentrations in streams several-fold compared to forest and agricultural watersheds. Enzymatic activities of stream microbes were significantly altered across watershed land use during a record wet year. During the wet year, short-term bioassays showed that bioavailable dissolved organic carbon varied seasonally, but comprised a substantial proportion of the dissolved organic carbon pool. Similarly, measurements of biochemical oxygen demand across hydrologic variability suggest that reactive organic carbon export from small and medium-sized urban watersheds during storms can be substantial. At a larger regional scale, major tributaries such as the Potomac, Susquehanna, Patuxent, and Choptank rivers also showed similar variability as smaller watersheds in quantity and quality of organic carbon based on land use and climate. There were distinct isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices for rivers influenced by different land uses. Stable isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices showed marked seasonal changes in organic matter quality during spring floods in the Potomac River at Washington D.C. Across watershed size, there appeared to be differences in seasonal cycles of organic carbon quality and this may have been based on the degree of hydrologic connectivity between watersheds and

  13. Real-time water quality monitoring and providing water quality ...

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  14. Evidence for the existence of Persian Gulf Water and Red Sea Water in the Bay of Bengal

    Science.gov (United States)

    Jain, Vineet; Shankar, D.; Vinayachandran, P. N.; Kankonkar, A.; Chatterjee, Abhisek; Amol, P.; Almeida, A. M.; Michael, G. S.; Mukherjee, A.; Chatterjee, Meenakshi; Fernandes, R.; Luis, R.; Kamble, Amol; Hegde, A. K.; Chatterjee, Siddhartha; Das, Umasankar; Neema, C. P.

    2017-05-01

    The high-salinity water masses that originate in the North Indian Ocean are Arabian Sea High-Salinity Water (ASHSW), Persian Gulf Water (PGW), and Red Sea Water (RSW). Among them, only ASHSW has been shown to exist in the Bay of Bengal. We use CTD data from recent cruises to show that PGW and RSW also exist in the bay. The presence of RSW is marked by a deviation of the salinity vertical profile from a fitted curve at depths ranging from 500 to 1000 m; this deviation, though small (of the order of 0.005 psu and therefore comparable to the CTD accuracy of 0.003 psu), is an order of magnitude larger than the 0.0003 psu fluctuations associated with the background turbulence or instrument noise in this depth regime, allowing us to infer the existence of RSW throughout the bay. PGW is marked by the presence of a salinity maximum at 200-450 m; in the southwestern bay, PGW can be distinguished from the salinity maximum due to ASHSW because of the intervening Arabian Sea Salinity Minimum. This salinity minimum and the maximum associated with ASHSW disappear east and north of the south-central bay (85°E, 8°N) owing to mixing between the fresher surface waters that are native to the bay (Bay of Bengal Water or BBW) with the high-salinity ASHSW. Hence, ASHSW is not seen as a distinct water mass in the northern and eastern bay and the maximum salinity over most of the bay is associated with PGW. The surface water over most of the bay is therefore a mixture of ASHSW and the low-salinity BBW. As a corollary, we can also infer that the weak oxygen peak seen within the oxygen-minimum zone in the bay at a depth of 250-400 m is associated with PGW. The hydrographic data also show that these three high-salinity water masses are advected into the bay by the Summer Monsoon Current, which is seen to be a deep current extending to 1000 m. These deep currents extend into the northern bay as well, providing a mechanism for spreading ASHSW, PGW, and RSW throughout the bay.

  15. Spatial and temporal characterizations of water quality in Kuwait Bay.

    Science.gov (United States)

    Al-Mutairi, N; Abahussain, A; El-Battay, A

    2014-06-15

    The spatial and temporal patterns of water quality in Kuwait Bay have been investigated using data from six stations between 2009 and 2011. The results showed that most of water quality parameters such as phosphorus (PO4), nitrate (NO3), dissolved oxygen (DO), and Total Suspended Solids (TSS) fluctuated over time and space. Based on Water Quality Index (WQI) data, six stations were significantly clustered into two main classes using cluster analysis, one group located in western side of the Bay, and other in eastern side. Three principal components are responsible for water quality variations in the Bay. The first component included DO and pH. The second included PO4, TSS and NO3, and the last component contained seawater temperature and turbidity. The spatial and temporal patterns of water quality in Kuwait Bay are mainly controlled by seasonal variations and discharges from point sources of pollution along Kuwait Bay's coast as well as from Shatt Al-Arab River. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Control of fouling organisms in estuarine cooling water systems by chlorine and bromine chloride

    International Nuclear Information System (INIS)

    Burton, D.T.; Margrey, S.L.

    1979-01-01

    The study described was initiated to evaluate the antifouling effectiveness of chlorine and bromine chloride in low velocity flow areas where estuarine waters are used for cooling purposes. The relative antifouling effectiveness of chlorine and bromine chloride under intermittent and continuous modes of application in low velocity flow areas was evaluated at an estuarine power plant located on the Chesapeake Bay

  17. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    OpenAIRE

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality a...

  18. Relationships between precipitation and surface water chemistry in three Carolina bays

    International Nuclear Information System (INIS)

    Monegue, R.L.; Jagoe, C.H.

    1995-01-01

    Carolina Bays are shallow freshwater wetlands, the only naturally occurring lentic systems on the southeastern coastal plain. Bays are breeding sites for many amphibian species, but data on precipitation/surface water relationships and long-term chemical trends are lacking. Such data are essential to interpret major fluctuations in amphibian populations. Surface water and bulk precipitation were sampled bi-weekly for over two years at three bays along a 25 km transect on the Savannah River Site in South Carolina. Precipitation chemistry was similar at all sites; average pH was 4.56, and the major ions were H + (30.8 % of total), and SO 4 (50.3% of total). H + was positively correlated with SO 4 , suggesting the importance of anthropogenic acids to precipitation chemistry. All three bays, Rainbow Bay (RB), Thunder Bay (TB), and Ellenton Bay (EB), contained soft (specific conductivity 5--90 microS/cm), acidic water (pH 4.0--5.9) with DOM from 4--40 mg/L. The major cation for RB, TB, and EB, respectively, was: Mg (30.8 % of total); Na (27% of total); and Ca (34.2% of total). DOM was the major anion for all bays, and SO 4 represented 13 to 28 % of total anions. H + was not correlated to DOM or SO, in RB; H + was positively correlated to DOM and SO 4 in TB, and negatively correlated to DOM and SO 4 in EB. Different biogeochemical processes probably control pH and other chemical variables in each bay. While surface water H + was not directly correlated with precipitation H + , NO 3 , or SO 4 , precipitation and shallow groundwater are dominant water sources for these bays. Atmospheric inputs of anthropogenic acids and other chemicals are important factors influencing bay chemistry

  19. San Pablo Bay Tidal Marsh Enhancement and Water Quality Improvement Project

    Science.gov (United States)

    Information about the SFBWQP San Pablo Bay Tidal Marsh Enhancement and Water Quality Improvement Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  20. Water quality and discharge data for St. Joseph Bay, Florida, 1997-98

    Science.gov (United States)

    Berndt, M.P.; Franklin, M.A.

    1999-01-01

    Historical data were compiled on water quality and water levels for the St. Joseph Bay area to assess quality of possible sources of land-derived water into the Bay. Ground-water quality data were compiled from Florida Department of Environmental Protection and surface-water quality data were compiled from U.S.Geological Survey files. Water-quality and water-level data were measured during two sample collection periods in October 1997 and March 1998 to determine water-quality and discharge rates in St. Joseph Bay under two sets of flow conditions. Measurements in the Bay included water level, temperature, pH, specific conductance, dissolved oxygen, and turbidity. Median pH in water from the surficial, intermediate and Floridan aquifer systems ranged from 4.8 to 7.8, and median specific conductance values were less than 500 microsiemens per centimeter. Median nutrient concentrations-- nitrate plus nitrite, ammonia and phosphorus--in the three aquifers were less than 0.5 milligrams per liter. The median pH was 7.0 and the median specific conductance was 81 microsiemens per centimeter for two samples from the Chipola River distribution canal. Water level data were obtained for several wells near St. Joseph Bay but only two wells yielded sufficient data to plot hydrographs. Measurements in St. Joseph Bay during the October and March collection periods were similar for pH and turbidity but differed for temperature, specific conductance and dissolved oxygen. The median temperature was 20.6 degrees Celsius in October and 15.4 degrees Celsius in March, median specific conductance was 39,500 microsiemens per centimeter in October and 43,300 microsiemens per centimeter in March, and median dissolved oxygen was 7.6 milligrams per liter in October and 8.3 milligrams per liter in March. The range in water levels over a tidal cycle in St. Joseph Bay on October 29, 1997 was about 1 foot. During a 24-hour tidal cycle on October 29, 1997, estimated hourly discharge varied from

  1. The deep biosphere in terrestrial sediments in the Chesapeake Bay area, Virginia, USA

    Directory of Open Access Journals (Sweden)

    Anja eBreuker

    2011-07-01

    Full Text Available For the first time quantitative data on the abundance of Bacteria, Archaea and Eukarya in deep terrestrial sediments are provided using multiple methods (total cell counting, quantitative real-time PCR (Q-PCR and catalyzed reporter deposition – fluorescence in situ hybridization (CARD-FISH. The oligotrophic (organic carbon content of ~ 0.2 % deep terrestrial sediments in the Chesapeake Bay area at Eyreville, Virginia, USA, were drilled and sampled up to a depth of 140 m in 2006. The possibility of contamination during drilling was checked using fluorescent microspheres. Total cell counts decreased from 109 to 106 cells per g dry weight (dw within the uppermost 20 m depth, and did not further decrease with depth below. A significant proportion of the total cell counts could be detected with CARD-FISH within the uppermost 7 m depth. The CARD-FISH numbers for Bacteria were about an order of magnitude higher than those for Archaea. The dominance of Bacteria over Archaea was confirmed by Q-PCR. The down core quantitative distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes as well as functional genes involved in different biogeochemical processes was revealed by Q-PCR for the uppermost 10 m and for 80-140 m depth. Eukarya and the Fe(III- and Mn(IV-reducing bacterial group Geobacteriaceae were almost only found in the uppermost meter (arable soil, where reactive iron was detected in higher amounts. The bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi, highly abundant in marine sediments, were found up to the maximum sampling depth in high copy numbers at this terrestrial site as well. A similar high abundance of the functional gene cbbL encoding for the large subunit of RubisCO suggests that autotrophic microorganisms could be relevant in addition to heterotrophs. The functional gene aprA of sulfate reducing bacteria was found within distinct layers up to ca. 100 m depth

  2. From headwaters to coast: Influence of human activities on water quality of the Potomac River Estuary

    Science.gov (United States)

    Bricker, Suzanne B.; Rice, Karen C.; Bricker, Owen P.

    2014-01-01

    The natural aging process of Chesapeake Bay and its tributary estuaries has been accelerated by human activities around the shoreline and within the watershed, increasing sediment and nutrient loads delivered to the bay. Riverine nutrients cause algal growth in the bay leading to reductions in light penetration with consequent declines in sea grass growth, smothering of bottom-dwelling organisms, and decreases in bottom-water dissolved oxygen as algal blooms decay. Historically, bay waters were filtered by oysters, but declines in oyster populations from overfishing and disease have led to higher concentrations of fine-sediment particles and phytoplankton in the water column. Assessments of water and biological resource quality in Chesapeake Bay and tributaries, such as the Potomac River, show a continual degraded state. In this paper, we pay tribute to Owen Bricker’s comprehensive, holistic scientific perspective using an approach that examines the connection between watershed and estuary. We evaluated nitrogen inputs from Potomac River headwaters, nutrient-related conditions within the estuary, and considered the use of shellfish aquaculture as an in-the-water nutrient management measure. Data from headwaters, nontidal, and estuarine portions of the Potomac River watershed and estuary were analyzed to examine the contribution from different parts of the watershed to total nitrogen loads to the estuary. An eutrophication model was applied to these data to evaluate eutrophication status and changes since the early 1990s and for comparison to regional and national conditions. A farm-scale aquaculture model was applied and results scaled to the estuary to determine the potential for shellfish (oyster) aquaculture to mediate eutrophication impacts. Results showed that (1) the contribution to nitrogen loads from headwater streams is small (about 2 %) of total inputs to the Potomac River Estuary; (2) eutrophic conditions in the Potomac River Estuary have improved in

  3. Hydrodynamics and water quality models applied to Sepetiba Bay

    Science.gov (United States)

    Cunha, Cynara de L. da N.; Rosman, Paulo C. C.; Ferreira, Aldo Pacheco; Carlos do Nascimento Monteiro, Teófilo

    2006-10-01

    A coupled hydrodynamic and water quality model is used to simulate the pollution in Sepetiba Bay due to sewage effluent. Sepetiba Bay has a complicated geometry and bottom topography, and is located on the Brazilian coast near Rio de Janeiro. In the simulation, the dissolved oxygen (DO) concentration and biochemical oxygen demand (BOD) are used as indicators for the presence of organic matter in the body of water, and as parameters for evaluating the environmental pollution of the eastern part of Sepetiba Bay. Effluent sources in the model are taken from DO and BOD field measurements. The simulation results are consistent with field observations and demonstrate that the model has been correctly calibrated. The model is suitable for evaluating the environmental impact of sewage effluent on Sepetiba Bay from river inflows, assessing the feasibility of different treatment schemes, and developing specific monitoring activities. This approach has general applicability for environmental assessment of complicated coastal bays.

  4. Integrated landscape-based approach of remote sensing, GIS, and physical modelling to study the hydrological connectivity of wetlands to the downstream water: progress and challenge

    Science.gov (United States)

    Yeo, I. Y.

    2015-12-01

    We report the recent progress on our effort to improve the mapping of wetland dynamics and the modelling of its functioning and hydrological connection to the downstream waters. Our study focused on the Coastal Plain of the Chesapeake Bay Watershed (CBW), the Delmarva Peninsula, where the most of wetlands in CBW are densely distributed. The wetland ecosystem plays crucial roles in improving water quality and ecological integrity for the downstream waters and the Chesapeake Bay, and headwater wetlands in the region, such as Delmarva Bay, are now subject to the legal protection under the Clean Water Rules. We developed new wetland maps using time series Landsat images and a highly accurate LiDAR map over last 30 years. These maps show the changes in surface water fraction at a 30-m grid cell at annual time scale. Using GIS, we analyse these maps to characterize changing dynamics of wetland inundation due to the physical environmental factors (e.g., weather variability, tide) and assessed the hydrological connection of wetlands to the downstream water at the watershed scale. Focusing on the two adjacent watersheds in the upper region of the Choptank River Basin, we study how wetland inundation dynamics and the hydrologic linkage of wetlands to downstream water would vary by the local hydrogeological setting and attempt to identify the key landscape factors affecting the wetland ecosystems and functioning. We then discuss the potential of using remote sensing products to improve the physical modelling of wetlands from our experience with SWAT (Soil and Water Assessment Tool).

  5. 75 FR 13454 - Special Local Regulation, Fran Schnarr Open Water Championships, Huntington Bay, NY

    Science.gov (United States)

    2010-03-22

    ...-AA08 Special Local Regulation, Fran Schnarr Open Water Championships, Huntington Bay, NY AGENCY: Coast... navigable waters of Huntington Bay, New York due to the annual Fran Schnarr Open Water Championships. The..., ``Special Local Regulation, Fran Schnarr Open Water Championships, Huntington Bay, NY'' (Docket number USCG...

  6. 75 FR 38710 - Special Local Regulation, Fran Schnarr Open Water Championships, Huntington Bay, NY

    Science.gov (United States)

    2010-07-06

    ...-AA08 Special Local Regulation, Fran Schnarr Open Water Championships, Huntington Bay, NY AGENCY: Coast... Regulation on the navigable waters of Huntington Bay, New York due to the annual Fran Schnarr Open Water... ``Special Local Regulation, Fran Schnarr Open Water Championships, Huntington Bay, NY'' in the Federal...

  7. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2014–15

    Science.gov (United States)

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Livsey, Daniel N.

    2018-03-08

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay (bay) as part of a multi-agency effort to address management, water supply, and ecological concerns. The San Francisco Bay area is home to millions of people, and the bay teems both with resident and with migratory wildlife, plants, and fish. Freshwater mixes with salt water in the bay, which is subject both to riverine influences (floods, droughts, managed reservoir releases and freshwater diversions) and to marine influences (tides, waves, effects of salt water). To understand this environment, the USGS, along with its partners (see “Acknowledgements”), has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay (fig. 1). Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which controls gravity-driven circulation patterns and stratification in the water column. Turbidity, a measure of light scattered from suspended particles in the water, is used to estimate suspended-sediment concentration (SSC). Suspended sediment affects the bay in multiple ways: attenuation of sunlight in the water column, affecting phytoplankton growth; deposition on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; deposition in ports and shipping channels, which can necessitate dredging; and often, adsorption of contaminants, affecting their distribution and concentrations in the environment. Dissolved oxygen concentration, essential to a healthy ecosystem and a fundamental indicator of water quality, is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay

  8. Supplemental materials for the ICDP-USGS Eyreville A, B, and C core holes, Chesapeake Bay impact structure: Core-box photographs, coring-run tables, and depth-conversion files

    Science.gov (United States)

    Durand, C.T.; Edwards, L.E.; Malinconico, M.L.; Powars, D.S.

    2009-01-01

    During 2005-2006, the International Continental Scientific Drilling Program and the U.S. Geological Survey drilled three continuous core holes into the Chesapeake Bay impact structure to a total depth of 1766.3 m. A collection of supplemental materials that presents a record of the core recovery and measurement data for the Eyreville cores is available on CD-ROM at the end of this volume and in the GSA Data Repository. The supplemental materials on the CD-ROM include digital photographs of each core box from the three core holes, tables of the three coring-run logs, as recorded on site, and a set of depth-conversion programs. In this chapter, the contents, purposes, and basic applications of the supplemental materials are briefly described. With this information, users can quickly decide if the materials will apply to their specific research needs. ?? 2009 The Geological Society of America.

  9. Assessing the paradigm of mutually exclusive erosion and deposition of mud, with examples from upper Chesapeake Bay

    Science.gov (United States)

    Sanford, L.P.; Halka, J.P.

    1993-01-01

    A paradigm of cohesive sediment transport research is that erosion and deposition are mutually exclusive. Many laboratory studies have shown that there is a velocity/stress threshold below which erosion does not occur and a lower threshold above which deposition does not occur. In contrast, a deposition threshold is not included in standard noncohesive sediment transport models, allowing erosion and deposition to occur simultaneously. Several researchers have also modeled erosion and deposition of mud without a deposition threshold. This distinction can have important implications for suspended sediment transport predictions and for data interpretation. Model-data comparisons based on observations of in situ erosion and deposition of upper Chesapeake Bay mud indicate poor agreement when the sediments are modeled as a single resuspended particle class and mutually exclusive erosion and deposition is assumed. The total resuspended sediment load increases in conjunction with increasing bottom shear stress as anticipated, but deposition is initiated soon after the shear stress begins to decrease and long before the stress falls below the value at which erosion had previously begun. Models assuming no critical stress for deposition, with continuous deposition proportional to the near bottom resuspended sediment concentration, describe the data better. Empirical parameter values estimated from these model fits are similar to other published values for estuarine cohesive sediments, indicating significantly greater erodability for higher water content surface sediments and settling velocities appropriate for large estuarine flocs. The apparent failure of the cohesive paradigm when applied to in situ data does not mean that the concept of a critical stress for deposition is wrong. Two possibilities for explaining the observed discrepancies are that certain aspects of in situ conditions have not been replicated in the laboratory experiments underlying the cohesive paradigm

  10. Observations and a linear model of water level in an interconnected inlet-bay system

    Science.gov (United States)

    Aretxabaleta, Alfredo; Ganju, Neil K.; Butman, Bradford; Signell, Richard

    2017-01-01

    A system of barrier islands and back-barrier bays occurs along southern Long Island, New York, and in many coastal areas worldwide. Characterizing the bay physical response to water level fluctuations is needed to understand flooding during extreme events and evaluate their relation to geomorphological changes. Offshore sea level is one of the main drivers of water level fluctuations in semienclosed back-barrier bays. We analyzed observed water levels (October 2007 to November 2015) and developed analytical models to better understand bay water level along southern Long Island. An increase (∼0.02 m change in 0.17 m amplitude) in the dominant M2 tidal amplitude (containing the largest fraction of the variability) was observed in Great South Bay during mid-2014. The observed changes in both tidal amplitude and bay water level transfer from offshore were related to the dredging of nearby inlets and possibly the changing size of a breach across Fire Island caused by Hurricane Sandy (after December 2012). The bay response was independent of the magnitude of the fluctuations (e.g., storms) at a specific frequency. An analytical model that incorporates bay and inlet dimensions reproduced the observed transfer function in Great South Bay and surrounding areas. The model predicts the transfer function in Moriches and Shinnecock bays where long-term observations were not available. The model is a simplified tool to investigate changes in bay water level and enables the evaluation of future conditions and alternative geomorphological settings.

  11. Discharge, water-quality characteristics, and nutrient loads from McKay Bay, Delaney Creek, and East Bay, Tampa, Florida, 1991-1993

    Science.gov (United States)

    Stoker, Y.E.; Levesque, V.A.; Fritz, E.M.

    1996-01-01

    Nutrient enrichment in Tampa Bay has caused a decline in water quality in the estuary. Efforts to reduce the nutrient loading to Tampa Bay have resulted in improvement in water quality from 1981 to 1991. However, Tampa Bay still is onsidered enriched with nutrients. Water quality in East Bay (located at the northeastern part of Hillsborough Bay, which is an embayment in Tampa Bay) is not improving at the same rate as the rest of the bay. East Bay is the center of shipping activity in Tampa Bay and the seventh largest port in the United States. One of the primary cargoes is phosphate ore and related products such as fertilizer. The potential for nutrient loading to East Bay from shipping activities is high and has not previously been measured. Nitrogen and phosphorus loads from East Bay to Hillsborough Bay were measured during selected time periods during June 1992 through May 1993; these data were used to estimate seasonal and annual loads. These loads were evaluated to determine whether the loss of fertilizer products from shipping activities resulted in increased nutrient loading to Hillsborough Bay. Discharge was measured, and water-quality samples were collected at the head of East Bay (exiting McKay Bay), and at the mouth of East Bay. Discharge and nitrogen and phosphorus concentrations for the period June 1992 through May 1993 were used to compute loads. Discharges from McKay Bay, Delaney Creek, and East Bay are highly variable because of the effect of tide. Flow patterns during discharge measurements generally were unidirectional in McKay Bay and Delaney Creek, but more complex, bidirectional patterns were observed at the mouth of East Bay. Tidally affected discharge data were digitally filtered with the Godin filter to remove the effects of tide so that residual, or net, discharge could be determined. Daily mean discharge from McKay Bay ranged from -1,900 to 2,420 cubic feet per second; from Delaney Creek, -3.8 to 162 cubic feet per second; and from East

  12. Assessment for water quality by artificial neural network in Daya Bay, South China Sea.

    Science.gov (United States)

    Wu, Mei-Lin; Wang, You-Shao; Gu, Ji-Dong

    2015-10-01

    In this study, artificial neural network such as a self-organizing map (SOM) was used to assess for the effects caused by climate change and human activities on the water quality in Daya Bay, South China Sea. SOM has identified the anthropogenic effects and seasonal characters of water quality. SOM grouped the four seasons as four groups (winter, spring, summer and autumn). The Southeast Asian monsoons, northeasterly from October to the next April and southwesterly from May to September have also an important influence on the water quality in Daya Bay. Spatial pattern is mainly related to anthropogenic activities and hydrodynamics conditions. In spatial characteristics, the water quality in Daya Bay was divided into two groups by chemometrics. The monitoring stations (S3, S8, S10 and S11) were in these area (Dapeng Ao, Aotou Harbor) and northeast parts of Daya Bay, which are areas of human activity. The thermal pollution has been observed near water body in Daya Bay Nuclear Power Plant (S5). The rest of the monitoring sites were in the south, central and eastern parts of Daya Bay, which are areas that experience water exchanges from South China Sea. The results of this study may provide information on the spatial and temporal patterns in Daya Bay. Further research will be carry out more research concerning functional changes in the bay ecology with respect to changes in climatic factor, human activities and bay morphology in Daya Bay.

  13. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2011–13

    Science.gov (United States)

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Shellenbarger, Gregory; Weidich, Kurt

    2014-01-01

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay. The San Francisco Bay area is home to millions of people, and the bay teems with both resident and migratory wildlife, plants, and fish. Fresh water mixes with salt water in the bay, which is subject both to riverine and marine (tides, waves, influx of salt water) influences. To understand this environment, the USGS, along with its partners, has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay. Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which causes gravity driven circulation patterns and stratification in the water column. Turbidity is measured using light-scattering from suspended solids in water, and is used as a surrogate for suspended-sediment concentration (SSC). Suspended sediment often carries adsorbed contaminants; attenuates sunlight in the water column; deposits on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; and deposits in ports and shipping channels, which can necessitate dredging. Dissolved oxygen, which is essential to a healthy ecosystem, is a fundamental indicator of water quality, and its concentration is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay reverse four times a day, and wind direction and intensity typically change on a daily cycle: consequently, salinity, water temperature, suspendedsediment concentration, and dissolvedoxygen concentration vary spatially and temporally throughout the bay, and continuous measurements are needed to observe these changes. The purpose of this fact sheet

  14. Evaluating confidence in the impact of regulatory nutrient reduction and assessing the competing impact of climate change

    Science.gov (United States)

    Irby, I.; Friedrichs, M. A. M.

    2017-12-01

    Human impacts on the Chesapeake Bay through increased nutrient run-off as a result of land-use change, urbanization, and industrialization, have resulted in a degradation of water quality over the last half-century. These direct impacts, compounded with human-induced climate changes such as warming, rising sea level, and changes in precipitation, have elevated the conversation surrounding the future of the Bay's water quality. As a result, in 2010, a Total Maximum Daily Load (TMDL) was established for the Chesapeake Bay that limited nutrient and sediment input in an effort to increase dissolved oxygen. This research utilizes a multiple model approach to evaluate confidence in the estuarine water quality modeling portion of the TMDL. One of the models is then used to assess the potential impact climate change may have on the success of currently mandated nutrient reduction levels in 2050. Results demonstrate that although the models examined differ structurally and in biogeochemical complexity, they project a similar attainment of regulatory water quality standards after nutrient reduction, while also establishing that meeting water quality standards is relatively independent of hydrologic conditions. By developing a Confidence Index, this research identifies the locations and causes of greatest uncertainty in modeled projections of water quality. Although there are specific locations and times where the models disagree, this research lends an increased degree of confidence in the appropriateness of the TMDL levels and in the general impact nutrient reductions will have on Chesapeake Bay water quality under current environmental conditions. However, when examining the potential impacts of climate change, this research shows that the combined impacts of increasing temperature, sea level, and river flow negatively affect dissolved oxygen throughout the Chesapeake Bay and impact progress towards meeting the water quality standards associated with the TMDL with

  15. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    Science.gov (United States)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  16. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    Directory of Open Access Journals (Sweden)

    Sangchul Lee

    Full Text Available The adoption rate of winter cover crops (WCCs as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE reduced NO3-N loads by ~49.3% compared to the baseline (no WCC. The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean, with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  17. 27 CFR 20.102 - Bay rum, alcoholado, or alcoholado-type toilet waters.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bay rum, alcoholado, or alcoholado-type toilet waters. 20.102 Section 20.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND... alcoholado-type toilet waters. All bay rum, alcoholado, or alcoholado-type toilet waters made with specially...

  18. Alteration in Solid State Phosphorous With Depth in Sediments Along the Salinity Transition Zone of a Major Chesapeake Bay Tributary

    Science.gov (United States)

    Hartzell, J. L.; Jordan, T. E.

    2006-05-01

    Determining the fate of particulate phosphorus in estuaries is essential for addressing the widespread problem of estuarine eutrophication, and is key to understanding P cycling and developing accurate global P budgets. Prominent reservoirs of P in surficial sediments include particulate P associated with iron or organic C. However, the importance of these reservoirs changes with the decomposition of organic matter and the reduction of iron. Also, the importance of iron bound P may decrease with increasing salinity due to the formation of iron sulfides. To investigate estuarine P burial and its relationship to salinity, we collected sediment cores of one-meter depth along the salinity gradient of the Patuxent River estuary (Maryland, USA), a major tributary of Chesapeake Bay. The sediments were analyzed using a sequential sedimentary extraction procedure that quantifies five separate reservoirs of particulate P. Total phosphorus concentrations in freshwater sediments were significantly higher than those in more saline sediments at all depths. Conversely, porewater phosphate concentrations were significantly lower in freshwater sediments than in the more saline sediments. Total P in the saline sediment cores decreased with depth, correlating to a reduction in iron-bound P. However, we did not find a concurrent increase in authigenic apatite with depth. Our findings indicate that mechanisms controlling changes in P sorption to sediments change profoundly with salinity and may contribute to increased bioavailability of phosphates with increasing salinity.

  19. Cumulative impacts of hydroelectric development on the fresh water balance in Hudson Bay

    International Nuclear Information System (INIS)

    Anctil, F.; Couture, R.

    1994-01-01

    A study is presented of the impacts of hydroelectric development on the surface water layer of Hudson Bay, including James Bay and the Foxe Basin. These impacts are directly related to the modifications in the fresh water balance of Hudson Bay and originate from the management of hydroelectric complexes. The fresh water balance is determined by identifying, at different scales, the modifications caused by each complex. The main inputs are the freezing and thawing of the ice cover, runoff water, and mass exchange at the air-water interface. Three spatial scales were used to obtain the resolution required to document the cumulative effects of fresh water balance modifications on the water surface layer, one each for Hudson Bay, Hudson Strait, and the Labrador Sea. Finally, the addition of the proposed Great Whale hydroelectric complex is examined from the available information and forecasts. 18 refs,. 6 figs., 1 tab

  20. Spatial patterning of water quality in Biscayne Bay, Florida as a function of land use and water management.

    Science.gov (United States)

    Caccia, Valentina G; Boyer, Joseph N

    2005-11-01

    An objective classification analysis was performed on a water quality data set from 25 sites collected monthly during 1994-2003. The water quality parameters measured included: TN, TON, DIN, NH4+, NO3-, NO2-, TP, SRP, TN:TP ratio, TOC, DO, CHL A, turbidity, salinity and temperature. Based on this spatial analysis, Biscayne Bay was divided into five zones having similar water quality characteristics. A robust nutrient gradient, driven mostly by dissolved inorganic nitrogen, from alongshore to offshore in the main Bay, was a large determinant in the spatial clustering. Two of these zones (Alongshore and Inshore) were heavily influenced by freshwater input from four canals which drain the South Dade agricultural area, Black Point Landfill, and sewage treatment plant. The North Bay zone, with high turbidity, phytoplankton biomass, total phosphorus, and low DO, was affected by runoff from five canals, the Munisport Landfill, and the urban landscape. The South Bay zone, an embayment surrounded by mangrove wetlands with little urban development, was high in dissolved organic constituents but low in inorganic nutrients. The Main Bay was the area most influenced by water exchange with the Atlantic Ocean and showed the lowest nutrient concentrations. The water quality in Biscayne Bay is therefore highly dependent of the land use and influence from the watershed.

  1. Shallow-water Benthic Habitats in Jobos Bay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of Jobos Bay, Puerto Rico were mapped and characterized using visual interpretation...

  2. Linking the watershed to the schoolshed: teaching sustainable development in K-12 with the Chester RIver Watershed Observatory

    Science.gov (United States)

    Trembanis, A. C.; Levin, D.; Seidel, J.

    2012-12-01

    The Chester River has been the subject of ongoing scientific studies in response to both the Clean Water Act and the EPA's Chesapeake Bay Program initiatives. The Upper, Middle, and Lower Chester are on the Maryland Department of Environment's list of "impaired waters". The Chester River Watershed (CRW) Observatory is lead by the Center for Environment & Society at Washington College. Eight clusters representing 22 public and private K-12 schools in the CRW provide the sampling sites distributed throughout the watershed. Weather stations will be installed at these sites allowing monitoring of the watershed's microclimate. Each cluster will be assigned a Basic Observation Buoy (BOB), an easy to assemble inexpensive buoy platform for real-time water column and atmospheric condition measurements. The BOBs are fitted with a data sonde to collect similar data parameters (e.g. salinity, temperature) as the main stem Chesapeake Bay buoys do. These assets will be deployed and the data transmitted to the Chester River Geographic Information System site for archival and visual display. Curriculum already developed for the Chesapeake Bay Interpretive Buoy System by the NOAA Chesapeake Bay Office will be adapted to the Chester River Watershed. Social issues of water sustainability will be introduced using the Watershed Game (Northland NEMO ®). During 2011 NOAA's Chesapeake Bay Office completed curriculum projects including Chesapeake Exploration, Build-a-Buoy (BaBs) and Basic Observation Buoys (BOBs). These engaging projects utilize authentic data and hands-on activities to demonstrate the tools scientists use to understand system interactions in the Bay. Chesapeake Exploration is a collection of online activities that provides teachers and students with unprecedented access to Bay data. Students are guided through a series of tasks that explore topics related to the interrelation between watersheds, land-use, weather, water quality, and living resources. The BaBs and BOBs

  3. San Francisco Bay Water Quality Improvement Fund Points, SF Bay CA, 2015, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — The San Francisco Bay Water Quality Improvement Fund is a competitive grant program that is helping implement TMDLs to improve water quality, protect wetlands, and...

  4. Water quality of Tampa Bay, Florida, June 1972-May 1976

    Science.gov (United States)

    Goetz, Carole L.; Goodwin, Carl R.

    1980-01-01

    A comprehensive assessment of the water quality of Tampa Bay, Florida, was initiated in 1970 to provide background information to evaluate the effects of widening and deepening the ship channel to the port of Tampa. This report provides results of water-quality sampling in the bay from 1972 to 1976, prior to dredging. Measurements of temperature, dissolved oxygen, pH, turbidity, specific conductance, biochemical oxygen demand, and total organic carbon were made as well as measurements for several nutrient, metal, and pesticide parameters. Many parameters were measured at as many as three points in the vertical. These data indicate that Tampa Bay is well-mixed vertically with little density stratification. Time histories of average temperature, dissolved oxygen, pH, turbidity, specific conductance and nutrient values within four subareas of Tampa Bay are given to reveal seasonal or other trends during the period of record. Temperature, dissolved oxygen, pH, turbidity, specific conductance, nutrient, biochemical oxygen demand, total organic carbon, and metal data are also presented as areal distributions. Nutrient concentrations were generally higher in Hillsborough Bay than in other sub-areas of Tampa Bay. Biochemical oxygen demand, total organic carbon, and total organic nitrogen distribution patterns show regions of highest concentrations to be along bay shorelines near population centers. Of the metals analyzed, all were present in concentrations of less than 1 milligram per liter. (USGS)

  5. Application of a circulation model in waters, based in the difference method, for bays

    International Nuclear Information System (INIS)

    Rosa, P.A.C.

    1985-01-01

    The Knowledge of circulation of water in bays, in addition to the possibility of simulation future conditions, can be of great interest in solving problems related to the cooling water for Nuclear Power Plants, study of sediments and water polution, in addition to the study of civil engineering works planned in bays. A Numerical Circulation Model of water in bays, is applied to the conditions of Sepetiba Bay at Rio de Janeiro coast. This System of Partial Differential Equations that constitute the Model, were solved by the Finite Difference Method, using a uniform cartesian grid for uniform time steps generating a bi-dimensional flow measurement of depth. The results obtained by comparing the values of the Model and measurements taken a bay were satisfactory, assuring its credibility and efficiency. A programming code was developed for the application providing outputing at any preditermined time steps, with discrimination of 30 seconds, the average levels, flows, velocities and depths of water of each grid spacing along the length of the bay in addition to a graphic of the flow. (Author) [pt

  6. Flow in water-intake pump bays: A guide for utility engineers. Final report

    International Nuclear Information System (INIS)

    Ettema, R.

    1998-09-01

    This report is intended to serve as a guide for power-plant engineers facing problems with flow conditions in pump bays in water-intake structures, especially those located alongside rivers. The guide briefly introduces the typical prevailing flow field outside of a riverside water intake. That flow field often sets the inflow conditions for pump bays located within the water intake. The monograph then presents and discusses the main flow problems associated with pump bays. The problems usually revolve around the formation of troublesome vortices. A novel feature of this monograph is the use of numerical modeling to reveal diagnostically how the vortices form and their sensitivities to flow conditions, such as uniformity of approach flow entering the bay and water-surface elevation relative to pump-bell submergence. The modeling was carried out using a computer code developed specially for the present project. Pump-bay layouts are discussed next. The discussion begins with a summary of the main variables influencing bay flows. The numerical model is used to determine the sensitivities of the vortices to variations in the geometric parameters. The fixes include the use of flow-control vanes and suction scoops for ensuring satisfactory flow performance in severe flow conditions; notably flows with strong cross flow and shallow flows. The monograph ends with descriptions of modeling techniques. An extensive discussion is provided on the use of numerical model for illuminating bay flows. The model is used to show how fluid viscosity affects bay flow. The effect of fluid viscosity is an important consideration in hydraulic modeling of water intakes

  7. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watershed using SWAT model

    Science.gov (United States)

    Lee, Sangchul; Sadeghi, Ali M.; Yeo, In-Young; McCarty, Gregory W.; Hively, W. Dean

    2017-01-01

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrate loads from agriculture. Accordingly, the question remains whether WCCs are sufficient to mitigate increased nutrient loads caused by FCCs. In this study, we assessed the impacts of FCCs on WCC nitrate reduction efficiency on the Coastal Plain of the CBW using Soil and Water Assessment Tool (SWAT) model. Three FCC scenarios (2085 – 2098) were prepared using General Circulation Models (GCMs), considering three Intergovernmnental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) greenhouse gas emission scenarios. We also developed six representative WCC implementation scenarios based on the most commonly used planting dates and species of WCCs in this region. Simulation results showed that WCC biomass increased by ~ 58 % under FCC scenarios, due to climate conditions conducive to the WCC growth. Prior to implementing WCCs, annual nitrate loads increased by ~ 43 % under FCC scenarios compared to the baseline scenario (2001 – 2014). When WCCs were planted, annual nitrate loads were substantially reduced by ~ 48 % and WCC nitrate reduction efficiency water ~ 5 % higher under FCC scenarios relative to the baseline. The increase rate of WCC nitrate reduction efficiency varied by FCC scenarios and WCC planting methods. As CO2 concentration was higher and winters were warmer under FCC scenarios, WCCs had greater biomass and therefore showed higher nitrate reduction efficiency. In response to FCC scenarios, the performance of less effective WCC practices (e.g., barley, wheat, and late planting) under the baseline indicated ~ 14 % higher increase rate of nitrate reduction efficiency compared to ones with better effectiveness under the baseline (e

  8. Effects of waves on water dispersion in a semi-enclosed estuarine bay

    Science.gov (United States)

    Delpey, M. T.; Ardhuin, F.; Otheguy, P.

    2012-04-01

    The bay of Saint Jean de Luz - Ciboure is a touristic destination located in the south west of France on the Basque coast. This small bay is 1.5km wide for 1km long. It is semi-enclosed by breakwaters, so that the area is mostly protected from waves except in its eastern part, where wave breaking is regularly observed over a shallow rock shelf. In the rest of the area the currents are generally weak. The bay receives fresh water inflows from two rivers. During intense raining events, the rivers can introduce pollutants in the bay. The input of pollutants combined with the low level dynamic of the area can affect the water quality for several days. To study such a phenomenon, mechanisms of water dispersion in the bay are investigated. The present paper focuses on the effects of waves on bay dynamics. Several field experiments were conducted in the area, combining wave and current measurements from a set of ADCP and ADV, lagrangian difter experiments in the surfzone, salinity and temperature profile measurements. An analysis of this set of various data is provided. It reveals that the bay combines remarkable density stratification due to fresh water inflows and occasionally intense wave-induced currents in the surfzone. These currents have a strong influence on river plume dynamics when the sea state is energetic. Moreover, modifications of hydrodynamics in the bay passes are found to be remarkably correlated with sea state evolutions. This result suggests a significant impact of waves on the bay flushing. To further analyse these phenomena, a three dimensional numerical model of bay hydrodynamics is developed. The model aims at reproducing fresh water inflows combined with wind-, tide- and wave-induced currents and mixing. The model of the bay is implemented using the code MOHID , which has been modified to allow the three dimensional representation of wave-current interactions proposed by Ardhuin et al. [2008b] . The circulation is forced by the wave field modelled

  9. Risk assessment for produced water discharges to Louisiana Open Bays

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    1995-06-23

    Data were collected prior to termination of discharge at three sites (including two open bay sites at Delacroix Island and Bay De Chene) for the risk assessments. The Delacroix Island Oil and Gas Field has been in production since the first well drilling in 1940; the Bay De Chene Field, since 1942. Concentrations of 226Ra, 228Ra, 210Po, and 228Th were measured in discharges. Radium conc. were measured in fish and shellfish tissues. Sediment PAH and metal conc. were also available. Benthos sampling was conducted. A survey of fishermen was conducted. The tiered risk assessment showed that human health risks from radium in produced water appear to be small; ecological risk from radium and other radionuclides in produced water also appear small. Many of the chemical contaminants discharged to open Louisiana bays appear to present little human health or ecological risk. A conservative screening analysis suggested potential risks to human health from Hg and Pb and a potential risk to ecological receptors from total effluent, Sb, Cd, Cu, Pb, Ni, Ag, Zn, and phenol in the water column and PAHs in sediment; quantitiative risk assessments are being done for these contaminants.

  10. Water quality in South San Francisco Bay, California: current condition and potential issues for the South Bay Salt Pond Restoration Project.

    Science.gov (United States)

    Grenier, J Letitia; Davis, Jay A

    2010-01-01

    The SBSPRP is an extensive tidal wetland restoration project that is underway at the margin of South San Francisco Bay, California. The Project, which aims to restore former salt ponds to tidal marsh and manage other ponds for water bird support, is taking place in the context of a highly urbanized watershed and an Estuary already impacted by chemical contaminants. There is an intimate relationship between water quality in the watershed, the Bay, and the transitional wetland areas where the Project is located. The Project seeks to restore habitat for endangered and endemic species and to provide recreational opportunities for people. Therefore, water quality and bioaccumulation of contaminants in fish and wildlife is an important concern for the success of the Project. Mercury, PCBs, and PBDEs are the persistent contaminants of greatest concern in the region. All of these contaminants are present at elevated concentrations both in the abiotic environment and in wildlife. Dioxins, pyrethroids, PAHs, and selenium are also problematic. Organochlorine insecticides have historically impacted the Bay, and they remain above thresholds for concern in a small proportion of samples. Emerging contaminants, such as PFCs and non-PBDE flame retardants, are also an important water quality issue. Beyond chemical pollutants, other concerns for water quality in South San Francisco Bay exist, and include biological constituents, especially invasive species, and chemical attributes, such as dissolved oxygen and salinity. Future changes, both from within the Project and from the Bay and watershed, are likely to influence water quality in the region. Project actions to restore wetlands could worsen, improve, or not affect the already impaired water quality in South Bay. Accelerated erosion of buried sediment as a consequence of Project restoration actions is a potentially serious regional threat to South Bay water and sediment quality. Furthermore, the planned restoration of salt ponds

  11. Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware

    Science.gov (United States)

    Krantz, David E.; Manheim, Frank T.; Bratton, John F.; Phelan, Daniel J.

    2004-01-01

    The small bays along the Atlantic coast of the Delmarva Peninsula (Delaware, Maryland, and Virginia) are a valuable natural resource, and an asset for commerce and recreation. These coastal bays also are vulnerable to eutrophication from the input of excess nutrients derived from agriculture and other human activities in the watersheds. Ground water discharge may be an appreciable source of fresh water and a transport pathway for nutrients entering the bays. This paper presents results from an investigation of the physical properties of the surficial aquifer and the processes associated with ground water flow beneath Indian River Bay, Delaware. A key aspect of the project was the deployment of a new technology, streaming horizontal resistivity, to map the subsurface distribution of fresh and saline ground water beneath the bay. The resistivity profiles showed complex patterns of ground water flow, modes of mixing, and submarine ground water discharge. Cores, gamma and electromagnetic-induction logs, and in situ ground water samples collected during a coring operation in Indian River Bay verified the interpretation of the resistivity profiles. The shore-parallel resistivity lines show subsurface zones of fresh ground water alternating with zones dominated by the flow of salt water from the estuary down into the aquifer. Advective flow produces plumes of fresh ground water 400 to 600 m wide and 20 m thick that may extend more than 1 km beneath the estuary. Zones of dispersive mixing between fresh and saline ground water develop on the upper, lower, and lateral boundaries of the the plume. the plumes generally underlie small incised valleys that can be traced landward to stream draining the upland. The incised valleys are filled with 1 to 2 m of silt and peat that act as a semiconfining layer to restrict the downward flow of salt water from the estuary. Active circulation of both the fresh and saline ground water masses beneath the bay is inferred from the geophysical

  12. The deep biosphere in terrestrial sediments in the chesapeake bay area, virginia, USA.

    Science.gov (United States)

    Breuker, Anja; Köweker, Gerrit; Blazejak, Anna; Schippers, Axel

    2011-01-01

    For the first time quantitative data on the abundance of Bacteria, Archaea, and Eukarya in deep terrestrial sediments are provided using multiple methods (total cell counting, quantitative real-time PCR, Q-PCR and catalyzed reporter deposition-fluorescence in situ hybridization, CARD-FISH). The oligotrophic (organic carbon content of ∼0.2%) deep terrestrial sediments in the Chesapeake Bay area at Eyreville, Virginia, USA, were drilled and sampled up to a depth of 140 m in 2006. The possibility of contamination during drilling was checked using fluorescent microspheres. Total cell counts decreased from 10(9) to 10(6) cells/g dry weight within the uppermost 20 m, and did not further decrease with depth below. Within the top 7 m, a significant proportion of the total cell counts could be detected with CARD-FISH. The CARD-FISH numbers for Bacteria were about an order of magnitude higher than those for Archaea. The dominance of Bacteria over Archaea was confirmed by Q-PCR. The down core quantitative distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes as well as functional genes involved in different biogeochemical processes was revealed by Q-PCR for the uppermost 10 m and for 80-140 m depth. Eukarya and the Fe(III)- and Mn(IV)-reducing bacterial group Geobacteriaceae were almost exclusively found in the uppermost meter (arable soil), where reactive iron was detected in higher amounts. The bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi, highly abundant in marine sediments, were found up to the maximum sampling depth in high copy numbers at this terrestrial site as well. A similar high abundance of the functional gene cbbL encoding for the large subunit of RubisCO suggests that autotrophic microorganisms could be relevant in addition to heterotrophs. The functional gene aprA of sulfate reducing bacteria was found within distinct layers up to ca. 100 m depth in low copy numbers

  13. Wind-Wave Effects on Vertical Mixing in Chesapeake Bay, USA: comparing observations to second-moment closure predictions.

    Science.gov (United States)

    Fisher, A. W.; Sanford, L. P.; Scully, M. E.

    2016-12-01

    Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer

  14. 33 CFR 100.124 - Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York. 100.124 Section 100.124 Navigation and Navigable... NAVIGABLE WATERS § 100.124 Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York...

  15. Appearance and water quality of turbidity plumes produced by dredging in Tampa Bay, Florida

    Science.gov (United States)

    Goodwin, Carl R.; Michaelis, D.M.

    1984-01-01

    Turbidity plumes in Tampa Bay, Florida, produced during ship-channel dredging operations from February 1977 to August 1978, were monitored in order to document plume appearance and water quality, evaluate plume influence on the characteristics of Tampa Bay water, and provide a data base for comparison with other areas that have similar sediment, dredge, placement, containment, and tide conditions. The plumes investigated originated from the operation of one hopper dredge and three cutterhead-pipeline dredges. Composition of bottom sediment was found to vary from 85 percent sand and shell fragments to 60 percent silt and clay. Placement methods for dredged sediment included beach nourishment, stationary submerged discharge, oscillating surface discharge, and construction of emergent dikes. Tidal currents ranged from slack water to flow velocities of 0.60 meter per second. Plumes were monitored simultaneously by (1) oblique and vertical 35-millimeter aerial photography and (2) water-quality sampling to determine water clarity and concentrations of nutrients, metals, pesticides, and industrial compounds. Forty-nine photographs depict plumes ranging in length from a few tens of meters to several kilometers and ranging in turbidity level from hopper-dredge unloading operations also produced plumes of low visibility. Primary turbidity plumes were produced directly by dredging and placement operations; secondary plumes were produced indirectly by resuspension of previously deposited material. Secondary plumes were formed both by erosion, in areas of high-velocity tidal currents, and by turbulence from vessels passing over fine material deposited in shallow areas. Where turbidity barriers were not used, turbidity plumes visible at the surface were good indicators of the location of turbid water at depth. Where turbidity barriers were used, turbid bottom water was found at locations having no visible surface plumes. A region of rapidly accelerating then decelerating flow

  16. Variations in water clarity and bottom albedo in Florida Bay from 1985 to 1997

    Science.gov (United States)

    Stumpf, R.P.; Frayer, M.L.; Durako, M.J.; Brock, J.C.

    1999-01-01

    Following extensive seagrass die-offs of the late 1980s and early 1990s, Florida Bay reportedly had significant declines in water clarity due to turbidity and algal blooms. Scant information exists on the extent of the decline, as this bay was not investigated for water quality concerns before the die-offs and limited areas were sampled after the primary die-off. We use imagery from the Advanced Very High Resolution Radiometer (AVHRR) to examine water clarity in Florida Bay for the period 1985 to 1997. The AVHRR provides data on nominal water reflectance and estimated fight attenuation, which are used here to describe turbidity conditions in the bay on a seasonal basis. In situ observations on changes in seagrass abundance within the bay, combined with the satellite data, provide additional insights into losses of seagrass. The imagery shows an extensive region to the west of Florida Bay having increased reflectance and fight attenuation in both winter and summer beginning in winter of 1988. These increases are consistent with a change from dense seagrass to sparse or negligible cover. Approximately 200 km2 of these offshore seagrasses may have been lost during the primary die-off (1988 through 1991), significantly more than in the bay. The imagery shows the distribution and timing of increased turbidity that followed the die-offs in the northwestern regions of the bay, exemplified in Rankin Lake and Johnson Key Basin, and indicates that about 200 km2 of dense seagrass may have been lost or severely degraded within the bay from the start of the die-off. The decline in water clarity has continued in the northwestern bay since 1991. The area west of the Everglades National Park boundaries has shown decreases in both winter turbidity and summer reflectances, suggestive of partial seagrass recovery. Areas of low reflectance associated with a major Syringodium filiforme seagrass meadow north of Marathon (Vaca Key, in the Florida Keys) appear to have expanded westward

  17. Comparative analysis of hydrological responses of two adjacent watersheds to climate variability and change scenarios using SWAT model

    Science.gov (United States)

    The Chesapeake Bay (CB) is the largest and most productive estuary in the United States (US). Despite significant restoration efforts, the health of the Bay has continued to deteriorate, primarily due to excessive nutrient and sediment loadings from agricultural land. The water quality problem is ex...

  18. Hypoxia in Korean Coastal Waters: A Case Study of the Natural Jinhae Bay and Artificial Shihwa Bay

    Directory of Open Access Journals (Sweden)

    Jiyoung Lee

    2018-03-01

    Full Text Available Several coastal regions in Korea have suffered from hypoxia since the 1970s. We present the first review of Korean coastal hypoxia, focusing on its spatiotemporal variation, controlling factors, and effects on marine ecosystems. The review considers the two hotspots of the natural Jinhae Bay (JB and artificial Shihwa Bay (SB, which are referred to as “Korean dead zones.” The hypoxia in the JB is attributed to eutrophication due to domestic and land-used waste input and thermal stratification based on the naturally sluggish water circulation, whereas the hypoxia in the SB is due to eutrophication resulting from domestic, land-used, and industrial waste input and haline stratification as a consequence of the artificially created water stagnation. The bottom-water hypoxia and stratification has led to an imbalance in nitrogen:phosphorus ratio between surface and bottom waters. Hypoxia has also created undesirable benthic community changes in the both bays: (1 mass mortality of large species and recolonization with elevated abundances of opportunists in JB, and (2 decrease of the number of species, abundance, and diversity of benthic communities in SB. Therefore, it behooves us to pay attention to these environmental changes. This review will be helpful in determining the direction of future studies of Korean coastal hypoxia.

  19. Water renewal in Montevideo's bay: a two compartments model for tritium kinetics

    International Nuclear Information System (INIS)

    Suarez-Antola, Roberto

    2013-01-01

    During field work about dynamics and renewal of water in Montevideo's Bay, 100 Ci of tritiated water were evenly distributed in the north-east region of the bay, by a continuous injection of a solution, during 5 hours, from a 200 litres tank, using a peristaltic pump. The whole bay was divided in 20 concentration cells, taking into account available bathymetric charts and corrections from field data obtained in situ. Tritium concentrations (activities per unit volume) and other relevant parameters (temperature, electrical conductivity, etc.) were measured in vertical profiles during three weeks, in the mid-point of each cell, first twice a day and the on a daily basis. Remnant total tritium activity was estimated from cells volumes and midpoint cells activity concentrations. Consistency checks were done. A one compartment model was used to estimate a global renewal time of circa 29 hours. However, the details of the measured tritium kinetics, a careful consideration of bathymetric data, water movements in a tidal environment (measured with drogues, fluorescent tracers and current meters), as well as the results of computer fluid dynamics modelling (in depth averaged) suggests that the bay can be meaningfully divided in two main compartments: a North-East and a South-West compartment. The purpose of this paper is threefold: (1) to describe the construction of a two compartments model for water renewal in Montevideo's Bay, (2) to apply experimental data of tritium kinetics to estimate the parameters of the model, and (3) to discuss the validity of the model and its practical applicability. The meaning of the renewal time of each compartment and its relation with the measured tritium kinetics in each cell is discussed. The perturbations in water circulation and renewal produced by civil works already done or the perturbations that could be expected due to civil works to be done, in relation with Montevideo's harbour, is discussed. The tracer model, jointly with other

  20. Water quality dynamics in an urbanizing subtropical estuary(Oso Bay, Texas).

    Science.gov (United States)

    Wetz, Michael S; Hayes, Kenneth C; Fisher, Kelsey V B; Price, Lynn; Sterba-Boatwright, Blair

    2016-03-15

    Results are presented from a study of water quality dynamics in a shallow subtropical estuary, Oso Bay, Texas, which has a watershed that has undergone extensive urbanization in recent decades. High inorganic nutrient, dissolved organic matter and chlorophyll concentrations, as well as low pH (Oso Bay that receives wastewater effluent. Despite being shallow (Oso Bay, suggesting that it may be exported to adjacent Corpus Christi Bay and contribute to seasonal hypoxia development in that system as well. These results argue for wastewater nutrient input reductions in order to alleviate the symptoms of eutrophication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Optimal Site Characterization and Selection Criteria for Oyster Restoration using Multicolinear Factorial Water Quality Approach

    Science.gov (United States)

    Yoon, J.

    2015-12-01

    Elevated levels of nutrient loadings have enriched the Chesapeake Bay estuaries and coastal waters via point and nonpoint sources and the atmosphere. Restoring oyster beds is considered a Best Management Practice (BMP) to improve the water quality as well as provide physical aquatic habitat and a healthier estuarine system. Efforts include declaring sanctuaries for brood-stocks, supplementing hard substrate on the bottom and aiding natural populations with the addition of hatchery-reared and disease-resistant stocks. An economic assessment suggests that restoring the ecological functions will improve water quality, stabilize shorelines, and establish a habitat for breeding grounds that outweighs the value of harvestable oyster production. Parametric factorial models were developed to investigate multicolinearities among in situ water quality and oyster restoration activities to evaluate posterior success rates upon multiple substrates, and physical, chemical, hydrological and biological site characteristics to systematically identify significant factors. Findings were then further utilized to identify the optimal sites for successful oyster restoration augmentable with Total Maximum Daily Loads (TMDLs) and BMPs. Factorial models evaluate the relationship among the dependent variable, oyster biomass, and treatments of temperature, salinity, total suspended solids, E. coli/Enterococci counts, depth, dissolved oxygen, chlorophyll a, nitrogen and phosphorus, and blocks consist of alternative substrates (oyster shells versus riprap, granite, cement, cinder blocks, limestone marl or combinations). Factorial model results were then compared to identify which combination of variables produces the highest posterior biomass of oysters. Developed Factorial model can facilitate maximizing the likelihood of successful oyster reef restoration in an effort to establish a healthier ecosystem and to improve overall estuarine water quality in the Chesapeake Bay estuaries.

  2. 77 FR 75017 - Security Zone; On the Waters in Kailua Bay, Oahu, HI

    Science.gov (United States)

    2012-12-19

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket Number USCG-2012-1038] RIN 1625-AA87 Security Zone; On the Waters in Kailua Bay, Oahu, HI AGENCY: Coast Guard, DHS. ACTION... to read as follows: Sec. 165.T14-215 Security Zone; On the Waters in Kailua Bay, Oahu, HI. (a...

  3. Water Awareness Through Environmental Restoration

    Science.gov (United States)

    Davis-Caldwell, K.

    2012-04-01

    This poster will highlight a series of project based activities carried out at Hammond Elementary School in Laurel, Maryland, USA. All of the featured projects revolve around the school's Green School Initiative or an integral part of the science curricula. The Maryland Green School program was developed by a diverse team of educators representing the Maryland Association for Environmental and Outdoor Education (MAEOE), Office of the Governor, the Maryland Association of Student Councils, Maryland Department of Education, Department of Natural Resources and Maryland Department of the Environment. The program is administered through the Maryland Association for Environmental and Outdoor Education. The Maryland Green Schools Award Program recognizes Maryland schools that include environmental education in the curricula, model best management practices at the school and address community environmental issues. Among these numerous projects water is a common thread. Hammond Elementary School lies within the Chesapeake Bay watershed which stretches across 64,000 square miles and encompasses the entire District of Columbia. Educational components address habitats, tributaries and, the estuary system. The projects being highlighted in the poster will include: Trout to Streams Project: This 4th grade project focuses on the natural filtration system that area trout provide to the local and global waterways. As students learn about the importance of various fish to the watershed, they come to understand the effect of changes in the population of fish species due to consumption and pollution. The service learning project highlighted teaches students about water quality as they raise trout eggs and monitor their development into hatching and later stream release. Buffer Streams Tree Planting Projects: This 5th grade science service learning project allows students to investigate the water quality and conditions of local area streams. This project teaches students the positive

  4. Distribution of perfluoroalkyl compounds in Osaka Bay and coastal waters of Western Japan.

    Science.gov (United States)

    Beškoski, Vladimir P; Yamamoto, Katsuya; Yamamoto, Atsushi; Okamura, Hideo; Hayashi, Mitsuru; Nakano, Takeshi; Matsumura, Chisato; Fukushi, Keiichi; Wada, Shinpei; Inui, Hideyuki

    2017-03-01

    Perfluoroalkyl acids (PFAAs) including perfluoroalkyl sulfonates (PFSAs) and perfluoroalkyl carboxylates (PFCAs) were analyzed in sediment samples taken from Ajifu Waterway in Osaka city, from Osaka Bay, and from Kagoshima Bay, as well as in fifteen seawater samples collected from Osaka Bay and coastal waters of Western Japan. In all sediment samples, only PFCAs were detected, and the highest concentration was determined in Ajifu Waterway, where ΣPFAA was 58990 ng kg -1 dry weight. The total concentrations of PFAAs in sea water samples ranged between the limit of quantification and 53.4 ng L -1 , and perfluorohexanoic acid was the most prevalent and had the highest concentration of 37 ng L -1 . The changes in the patterns and concentrations of PFAAs in Osaka Bay and coastal waters of Western Japan indicate that the PFAAs in surface waters are influenced by sources from Keihanshin Metropolitan Area, mainly the Yodo River basin, and the dilution effect which naturally occurs during their transport to the Pacific Ocean. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Observation on Heavy Metals in Sediment of Jakarta Bay Waters

    Directory of Open Access Journals (Sweden)

    Abdul Rozak

    2007-04-01

    Full Text Available Observation on heavy metals in Jakarta Bay, from June and September 2003. Heavy metals Pb in sediment at the West have been conductet of Jakarta Bay Waters varied between Pb = 8,49-31,22 ppm, Cd = <0,001-0,47 ppm, Cu = 13,81-193,75 ppm, Zn = 82,18-533,59 ppm and Ni = 0,99-35,38 ppm,while those at the Center of Jakarta Bay, varied between Pb = 2,21-69,22 ppm, Cd = <0,001-0,28 ppm, Cu = 3,36-50,65 ppm, Zn = 71,13-230,54 ppm and Ni = 0,42-15,58 ppm and at the East of Jakarta Bay, Pb content varied between 0,25-77,42 ppm, Cd = <0,001-0,42 ppm, Cu = 0,79-44,94 ppm, Zn = 93,21-289,00 ppm and Ni = 0,42-128,47 ppm. Hevy metals content in sediment the West of Jakarta Bay was high of equivalent the Center and East of Jakarta Bay. At than those composition sediment at the west was black, that indicated high heavy metals content.

  6. Chesapeake Bay Climate Study Partnership: Undergraduate Student Experiential Learning on Microclimates at the University of Hawai'i, Hilo

    Science.gov (United States)

    Ozbay, G.; Sriharan, S.; Fan, C.; Adolf, J.

    2015-12-01

    Undergraduate student experiential learning activities focused on microclimates of Hawai'i Island, Hawai'i. Six students from Virginia State University, three students from Delaware State University and faculty advisors were hosted by the University of Hawai'i at Hilo (UHH) Department of Marine Science. This partnership provided integrated, cohesive, and innovative education and research capabilities to minority students on climate change science. Activities included a summer course, instrumentation training, field and laboratory research training, sampling, data collection, logging, analysis, interpretation, report preparation, and research presentation. Most training activities used samples collected during students' field sampling in Hilo Bay. Water quality and phytoplankton data were collected along a 220 degree line transect from the mouth of the Wailuku River to the pelagic zone outside of Hilo Bay into the Pacific Ocean to a distance of 15.5 km. Water clarity, turbidity, chlorophyll, physical water quality parameters, and atmospheric CO2 levels were measured along the transect. Phytoplankton samples were collected for analysis by Scanning Electron Microscopy and Flow Cytometry. Data showed the extent of anthropogenic activity on water quality, with implications for food web dynamics. In addition, atmospheric CO2 concentration, island vegetation, and GPS points were recorded throughout the island of Hawai'i to investigate how variations in microclimate, elevation, and land development affect the amount of CO2 in the atmosphere, vegetation, and water quality. Water quality results at locations near rivers were completely different from other study sites, requiring students' critical thinking skills to find possible reasons for the difference. Our data show a correlation between population density and CO2 concentrations. Anthropogenic activities affecting CO2 and ocean conditions in Hawaiian microclimates can potentially have deleterious effects on the life

  7. Retrospective Evaluation of the Protocol for US Army Corps of Engineers Aquatic Ecosystem Restoration Projects. Part 2. Database Content and Data Entry Guidelines

    Science.gov (United States)

    2014-01-01

    Chesapeake Bay Program, Gulf of Mexico Program, etc…)  State: (State Water Quality Regulations, State Fish and Wildlife Management Plans, etc...entered into the performance table. Water quality components (D.O., salinity, turbidity , etc…) with specific performance targets are listed

  8. Water Reuse Project in Virginia Providing Multiple Benefits

    Science.gov (United States)

    More than 500 million gallons a year of treated wastewater that would otherwise be discharged into a tributary of the Chesapeake Bay are instead being put to beneficial reuse to cool a waste-to-energy plant and irrigate a golf course and ball fields.

  9. The geochemistry of coprostanol in waters and surface sediments from Narragansett Bay

    Science.gov (United States)

    LeBlanc, Lawrence A.; Latimer, James S.; Ellis, John T.; Quinn, James G.

    1992-05-01

    A geochemical study of coprostanol (5β-Cholestan-3β-ol) was undertaken, to examine the transport and fate of a compound of moderate polarity and reactivity in the marine environment, and also because of the interest in coprostanol for use as a sewage tracer. During 1985-86, 20 sites in Narragansett Bay, including the major point sources and rivers discharging into the bay estuary, were sampled at four different times. In addition, surface sediments from 26 stations in the bay were collected. The large number and diversity of samples allowed for an assessment of major inputs of sewage into the bay as well as the recent fate of sewage-derived particles in surface sediments. Results from the study revealed that 50% of the total particulate coprostanol entering the bay was discharged into the Providence River, primarily due to inputs from the wastewater treatment facility (WWTF) at Fields Point, as well as input from the Pawtuxet and Blackstone Rivers. In the lower bay, the Newport WWTF was the largest single source of coprostanol (37% of the total particulate coprostanol) to the bay. Effluent concentrations of coprostanol from secondary WWTFs were consistently lower than those of primary treatment facilities, demonstrating the usefulness of corporstanol as an indicator of treatment plant efficiency. The distribution of coprostanol in waters and surface sediments showed a gradient of decreasing concentration downbay. When coprostanol concentrations in surface sediments were normalized to organic carbon (OC) concentrations, elevated levels were seen only in the Providence River, with a more or less even distribution throughout the rest of the bay. Results also suggest that coprostanol degrades more rapidly in the water column compared to the petroleum hydrocarbons (PHCs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), however, it is relatively stable once it is buried in the sediments. Coprostanol concentrations in waters (0·02-0·22

  10. 76 FR 9709 - Water Quality Challenges in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary

    Science.gov (United States)

    2011-02-22

    ... Water Quality Challenges in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary AGENCY... the San Francisco Bay/ Sacramento-San Joaquin Delta Estuary (Bay Delta Estuary) in California. EPA is... programs to address recent significant declines in multiple aquatic species in the Bay Delta Estuary. EPA...

  11. Long-Term Water Temperature Variations in Daya Bay, China Using Satellite and In Situ Observations

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2010-01-01

    Full Text Available Daya Bay is a shallow, semi-en closed bay in the northern section of the South China Sea. The present study analyzed variations of water temperature in Daya Bay over the past 21 years (1985 - 2005 using Advanced Very High Resolution Radiometer (AVHRR satellite remote sensing data and in situ observations. Results showed that AVHRR readings of sea surface temperature (SST increased by 0.07°C y-1. Linear regression anal y sis for monthly SST anomalies (SSTA showed a shift from negative to positive from 1995 - 1996, when the Daya Bay nuclear power station commenced operations in 1994. The slope of linear regression analysis for SSTA nearly doubled from 0.05 (1985 - 1993 to 0.09 (1994 - 2005. Monthly AVHRR images showed a thermal plume from the power station and revealed the in crease of SST over 21 years. In situ observations in water temperature also showed an in creasing trend for the same period (1985 - 2005. Variations in water temperature in Daya Bay were connected with climatic perturbations and in creasing human activity including thermal discharge from nuclear power stations and the rapid economic development around the bay area.

  12. Modelling the transverse distribution of velocity and suspended sediment in tidal estuaries

    NARCIS (Netherlands)

    Huijts, K.M.H.

    2011-01-01

    An estuary is a semi-enclosed coastal body of water which has a free connection with the open sea and within which sea water is measurably diluted with fresh water derived from land drainage. Examples are the Western Scheldt River Estuary and the Chesapeake Bay. Within these environments complex

  13. 33 CFR 100.919 - International Bay City River Roar, Bay City, MI.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false International Bay City River Roar, Bay City, MI. 100.919 Section 100.919 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Bay City River Roar, Bay City, MI. (a) Regulated Area. A regulated area is established to include all...

  14. Monitoring coastal water properties and current circulation with ERTS-1. [Delaware Bay

    Science.gov (United States)

    Klemas, V.; Otley, M.; Wethe, C.; Rogers, R.

    1974-01-01

    Imagery and digital tapes from nine successful ERTS-1 passes over Delaware Bay during different portions of the tidal cycle have been analyzed with special emphasis on turbidity, current circulation, waste disposal plumes and convergent boundaries between different water masses. ERTS-1 image radiance correlated well with Secchi depth and suspended sediment concentration. Circulation patterns observed by ERTS-1 during different parts of the tidal cycle, agreed well with predicted and measured currents throughout Delaware Bay. Convergent shear boundaries between different water masses were observed from ERTS-1. In several ERTS-1 frames, waste disposal plumes have been detected 36 miles off Delaware's Atlantic coast. The ERTS-1 results are being used to extend and verify hydrodynamic models of the bay, developed for predicting oil slick movement and estimating sediment transport.

  15. Chesapeake Bay Sediment Flux Model

    Science.gov (United States)

    1993-06-01

    1988; Van der Molen , -88- 1991; Yoshida, 1981.) The model developed below is based on both of these approaches. It incorporates the diagenetic...288: pp. 289-333. Van der Molen , D.T. (1991): A simple, dynamic model for the simulation of the release of phosphorus from sediments in shallow...1974; Berner, 1980; van Cappellen and Berner, 1988). These relate the diagenetic production of phosphate to the resulting pore water concentration

  16. Dissolved oxygen content as an index of water quality in San Vicente Bay, Chile (36 degrees 45'S).

    Science.gov (United States)

    Rudolph, Anny; Ahumada, Ramón; Pérez, Claudio

    2002-08-01

    The present report describes some effects of industrial and municipal effluents on the waters of San Vicente Bay. Analyses of the main substances contained in the fishing industry effluent suggest rating criteria based on the oxygen saturation of the water as an assessment of organic pollution. Six cruises were carried out throughout the Bay, from June to December 1996. Water samples were analyzed for dissolved oxygen, oil and grease content, and sediment samples for organic matter content. Water parameters (salinity, temperature) were used to characterize the Bay's hydrography, and to calculate values for oxygen saturation. The measurements demonstrated a local broad range of oxygen deficit, with a maximum of 45% in the winter to 95% in the spring. In November more than 65% of the Bay's area showed oxygen deficits greater than 40%. Organic matter was unusually high in sediments along the northern sector of the Bay. The results suggest that the oxygen depletion was a representative parameter for establishing a relative scale of water quality in this Bay.

  17. Pb’s high sedimentation inside the bay mouth of Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Miao, Zhenqing; Huang, Xinmin; Wei, Linzhen; Feng, Ming

    2017-12-01

    Sedimentation is one of the key environmental behaviors of pollutants in the ocean. This paper analyzed the seasonal and temporal variations of Pb’s sedimentation process in Jiaozhou Bay in 1987. Results showed that Pb contents in bottom waters in Jiaozhou Bay in May, July and November 1987 were 1.87-2.60 μg L-1, 15.11-19.68 μg L-1 and 11.08-15.18 μg L-1, and the pollution levels of Pb in May, July and November 1987 were slight, heavy and heavy, respectively. In May 1987, there was low sedimentation process in waters in the outside of the bay mouth, yet were high sedimentation process in waters in the middle and inside of the bay mouth. In July and November 1987, there was low sedimentation process in waters in the outside of the bay mouth, yet were high sedimentation process in waters in the inside of the bay mouth. The seasonal-temporal variation of sedimentation processes of Pb were determined by the variations of sources input and the vertical water’s effect.

  18. Change of water environment in the inner bay in consideration of heat balance

    International Nuclear Information System (INIS)

    Wada, Akira; Miyaike, Katsuto

    1983-01-01

    The study on the effect of warm water discharged from large capacity thermal and nuclear power stations on the local climate around the power stations is necessary for promoting the development of power resources in harmony with natural environment. In this study, Mikawa Bay was selected as the object of research, and the simulation analysis of water temperature was carried out by the water column model, based on the result of analysis of the local weather and sea observation data. Thus, the amount of heat exchange between the atmosphere and sea water in natural sea area was grasped, and how the change in the amount of heat exchange when the thermal load due to warm water discharge was imposed is ranked in natural sea environment was examined. The variation of surface water temperature in Mikawa Bay tended to be large in summer and small in winter. It was clarified that the factor controlling the water temperature in the bay was the variation of climatic factors. In the sea area where the effect of open sea water was relatively small, the variation of water temperature was able to be expressed by the water column model. The change in the amount of heat exchange in the range of warm water diffusion with 2 deg C temperature rise was determined. (Kato, I.)

  19. Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USA.

    Science.gov (United States)

    Wagena, Moges B; Collick, Amy S; Ross, Andrew C; Najjar, Raymond G; Rau, Benjamin; Sommerlot, Andrew R; Fuka, Daniel R; Kleinman, Peter J A; Easton, Zachary M

    2018-05-16

    Nutrient export from agricultural landscapes is a water quality concern and the cause of mitigation activities worldwide. Climate change impacts hydrology and nutrient cycling by changing soil moisture, stoichiometric nutrient ratios, and soil temperature, potentially complicating mitigation measures. This research quantifies the impact of climate change and climate anomalies on hydrology, nutrient cycling, and greenhouse gas emissions in an agricultural catchment of the Chesapeake Bay watershed. We force a calibrated model with seven downscaled and bias-corrected regional climate models and derived climate anomalies to assess their impact on hydrology and the export of nitrate (NO 3 -), phosphorus (P), and sediment, and emissions of nitrous oxide (N 2 O) and di-nitrogen (N 2 ). Model-average (±standard deviation) results indicate that climate change, through an increase in precipitation and temperature, will result in substantial increases in winter/spring flow (10.6 ± 12.3%), NO 3 - (17.3 ± 6.4%), dissolved P (32.3 ± 18.4%), total P (24.8 ± 16.9%), and sediment (25.2 ± 16.6%) export, and a slight increases in N 2 O (0.3 ± 4.8%) and N 2 (0.2 ± 11.8%) emissions. Conversely, decreases in summer flow (-29.1 ± 24.6%) and the export of dissolved P (-15.5 ± 26.4%), total P (-16.3 ± 20.7%), sediment (-20.7 ± 18.3%), and NO 3 - (-29.1 ± 27.8%) are driven by greater evapotranspiration from increasing summer temperatures. Decreases in N 2 O (-26.9 ± 15.7%) and N 2 (-36.6 ± 22.9%) are predicted in the summer and driven by drier soils. While the changes in flow are related directly to changes in precipitation and temperature, the changes in nutrient and sediment export are, to some extent, driven by changes in agricultural management that climate change induces, such as earlier spring tillage and altered nutrient application timing and by alterations to nutrient cycling in the soil. Copyright © 2018

  20. Three-dimensional distributions of sewage markers in Tokyo Bay water-fluorescent whitening agents (FWAs)

    International Nuclear Information System (INIS)

    Managaki, Satoshi; Takada, Hideshige; Kim, Dong-Myung; Horiguchi, Toshihiro; Shiraishi, Hiroaki

    2006-01-01

    Three-dimensional distributions of fluorescent whitening agents (FWAs: more specifically, DSBP and DAS1), which are sewage-derived water-soluble markers, were observed in Tokyo Bay water through multi-layer sampling of water at 20 locations. In summer, FWAs predominated in the surface layers, with trace but significant concentration of FWAs in bottom water due to stratification of seawater. In winter, on the other hand, FWAs were extensively mixed into the bottom layers because of the vertical mixing of seawater. In the surface layer, FWA concentrations and the DSBP/DAS1 ratio (the concentration ratio of DSBP to DAS1) were lower in summer than in winter, suggesting more efficient photodegradation of FWAs in euphotic zones during the summer due to stronger solar radiation. Horizontally, FWAs were widely distributed over the surface layer of Tokyo Bay. Surface water with DSBP concentrations above 50 ng/L, corresponding to <200 times dilution of sewage effluent, was found to have spread up to 10 km from the coastline. In addition, an offshore decline in FWA concentrations was observed, showing a half-distance of 10-20 km. The decrease was caused by dilution by seawater of fresh water containing FWAs. The eastern part of the bay was different with respect to surface layers, with higher concentrations seen in northeastern parts. Furthermore, dispersion of combined sewer overflow (CSO)-derived water mass was observed in Tokyo Bay after heavy rain

  1. Geologic columns for the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure: Impactites and crystalline rocks, 1766 to 1096 m depth

    Science.gov (United States)

    Horton, J. Wright; Gibson, R.L.; Reimold, W.U.; Wittmann, A.; Gohn, G.S.; Edwards, L.E.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville drill cores from the Chesapeake Bay impact structure provide one of the most complete geologic sections ever obtained from an impact structure. This paper presents a series of geologic columns and descriptive lithologic information for the lower impactite and crystalline-rock sections in the cores. The lowermost cored section (1766-1551 m depth) is a complex assemblage of mica schists that commonly contain graphite and fibrolitic sillimanite, intrusive granite pegmatites that grade into coarse granite, and local zones of mylonitic deformation. This basement-derived section is variably overprinted by brittle cataclastic fabrics and locally cut by dikes of polymict impact breccia, including several suevite dikes. An overlying succession of suevites and lithic impact breccias (1551-1397 m) includes a lower section dominated by polymict lithic impact breccia with blocks (up to 17 m) and boulders of cataclastic gneiss and an upper section (above 1474 m) of suevites and clast-rich impact melt rocks. The uppermost suevite is overlain by 26 m (1397-1371 m) of gravelly quartz sand that contains an amphibolite block and boulders of cataclasite and suevite. Above the sand, a 275-m-thick allochthonous granite slab (1371-1096 m) includes gneissic biotite granite, fine- and medium-to-coarse-grained biotite granites, and red altered granite near the base. The granite slab is overlain by more gravelly sand, and both are attributed to debris-avalanche and/or rockslide deposition that slightly preceded or accompanied seawater-resurge into the collapsing transient crater. ?? 2009 The Geological Society of America.

  2. Muon reconstruction in the Daya Bay water pools

    International Nuclear Information System (INIS)

    Hackenburg, R. W.

    2017-01-01

    Muon reconstruction in the Daya Bay water pools would serve to verify the simulated muon fluxes and offer the possibility of studying cosmic muons in general. This reconstruction is, however, complicated by many optical obstacles and the small coverage of photomultiplier tubes (PMTs) as compared to other large water Cherenkov detectors. The PMTs’ timing information is useful only in the case of direct, unreflected Cherenkov light. This requires PMTs to be added and removed as an hypothesized muon trajectory is iteratively improved, to account for the changing effects of obstacles and direction of light. Therefore, muon reconstruction in the Daya Bay water pools does not lend itself to a general fitting procedure employing smoothly varying functions with continuous derivatives. Here, we describe an algorithm which overcomes these complications. It employs the method of Least Mean Squares to determine an hypothesized trajectory from the PMTs’ charge-weighted positions. This initially hypothesized trajectory is then iteratively refined using the PMTs’ timing information. Reconstructions with simulated data reproduce the simulated trajectory to within about 5° in direction and about 45 cm in position at the pool surface, with a bias that tends to pull tracks away from the vertical by about 3°.

  3. Water characteristics, mixing and circulation in the Bay of Bengal during southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Sarma, Y.V.B.; Rao, D.P.; Murty, C.S.

    in the western, central and southeastern regions of the Bay respectively. The wind-stress-curl-induced upwelling effect is confined to depth limits of 50-100 m as is supportEd. by a band of cold (24 degrees -19 degrees C) water in the central Bay. In the southern...

  4. Iodate in inshore and offshore waters of Central Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.

    Biological stripping of iodate in the surface waters is noticed in the inshore and offshore waters of Bay of Bengal. A good correlation is observed between iodate and phosphate and nitrate and the molar ratios determined being NO3: PO4: IO3 = 88...

  5. 33 CFR 162.125 - Sturgeon Bay and the Sturgeon Bay Ship Canal, Wisc.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Sturgeon Bay and the Sturgeon Bay Ship Canal, Wisc. 162.125 Section 162.125 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS § 162.125 Sturgeon Bay and the Sturgeon Bay Ship...

  6. Use of Nutrient Balances in Comprehensive Watershed Water Quality Modeling of Chesapeake Bay

    National Research Council Canada - National Science Library

    Donigian, Anthony

    1998-01-01

    ... state of-the-art watershed modeling capability that includes detailed soil process simulation for agricultural areas, linked to an instream water quality and nutrient model capable of representing...

  7. Optical investigations of CDOM-rich coastal waters in Pärnu Bay

    Directory of Open Access Journals (Sweden)

    Birgot Paavel

    2011-06-01

    Full Text Available Pärnu Bay in the Eastern Baltic Sea was chosen for studying the spatial-temporal variability of water parameters as an optically complex and semi-enclosed coastal area. The water properties of Pärnu Bay are influenced by the town of Pärnu with its 70 000 inhabitants and by the high inflow from the Pärnu River. The in situ database was collected during the ice-free period of 2006–2007 (11 sampling stations, 10 series of field trips. According to the results, the main factor influencing the light attenuation in the water was coloured dissolved organic matter (CDOM which overshadows the relationships between the radiation characteristics and organic/inorganic particles. In April and May, when the freshwater discharge of the Pärnu River was highest, the values of aCDOM(380 were between 4.6 and 31.8 m–1, while in September they varied only within 2.52–10.2 m–1. The concentrations of chlorophyll a (including its metabolite phaeophytin a generally ranged from 4 to 12 mg m–3 but during algal blooms they rapidly increased to 31.8 mg m–3. The temporal and spatial irregularity of suspended matter concentrations was caused by the loading of unpacked peat at the Pärnu River mouth as well as by undulation and ship traffic in Pärnu Bay. MODIS level 1 data with 250 m resolution were used for illustrative comparison of spatial and temporal variations in the water properties in Pärnu Bay and the Gulf of Riga. An attempt to perform the quantitative analysis with the purpose of estimating the concentrations of different optically significant substances separately gave statistically incorrect results.

  8. 33 CFR 334.778 - Pensacola Bay and waters contiguous to the Naval Air Station, Pensacola, FL; restricted area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pensacola Bay and waters... Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.778 Pensacola Bay and waters contiguous to the Naval Air Station, Pensacola...

  9. Investigation of Spatial and Temporal Trends in Water Quality in Daya Bay, South China Sea

    Science.gov (United States)

    Wu, Mei-Lin; Wang, You-Shao; Dong, Jun-De; Sun, Cui-Ci; Wang, Yu-Tu; Sun, Fu-Lin; Cheng, Hao

    2011-01-01

    The objective is to identify the spatial and temporal variability of the hydrochemical quality of the water column in a subtropical coastal system, Daya Bay, China. Water samples were collected in four seasons at 12 monitoring sites. The Southeast Asian monsoons, northeasterly from October to the next April and southwesterly from May to September have also an important influence on water quality in Daya Bay. In the spatial pattern, two groups have been identified, with the help of multidimensional scaling analysis and cluster analysis. Cluster I consisted of the sites S3, S8, S10 and S11 in the west and north coastal parts of Daya Bay. Cluster I is mainly related to anthropogenic activities such as fish-farming. Cluster II consisted of the rest of the stations in the center, east and south parts of Daya Bay. Cluster II is mainly related to seawater exchange from South China Sea. PMID:21776234

  10. Numerical simulation of hydrodynamic and water quality effects of shoreline changes in Bohai Bay

    Science.gov (United States)

    Jia, Han; Shen, Yongming; Su, Meirong; Yu, Chunxue

    2018-02-01

    This study uses the HD and Ecolab modules of MIKE to simulate the hydrodynamic and water quality and predict the influence of shoreline changes in Bohai Bay, China. The study shows that shoreline changes weaken the residual current and generate a counter-clockwise circulation south of Huanghua Port, thereby resulting in weak water exchange capacity and low pollutant-diffusing capacity. Shoreline changes reduce the area of Bohai Bay, resulting in a smaller tidal prism and further weakening the water exchange capacity. This situation is not conducive to the diffusion of pollutants, and therefore may lead to increased water pollution in the bay. Shoreline changes hinder the spread of runoff, weaken the dilution effect of the river on seawater, and block the spread of coastal residual current, thereby resulting in increased salinity near the reclamation area. Shoreline changes lead to an increase in PO4-P concentration and decrease in DIN concentration. The value of N/P near the project decreases, thereby weakening the phosphorus-limited effect.

  11. Hindcasting of Storm Surges, Currents, and Waves at Lower Delaware Bay during Hurricane Isabel

    Science.gov (United States)

    Salehi, M.

    2017-12-01

    Hurricanes are a major threat to coastal communities and infrastructures including nuclear power plants located in low-lying coastal zones. In response, their sensitive elements should be protected by smart design to withstand against drastic impact of such natural phenomena. Accurate and reliable estimate of hurricane attributes is the first step to that effort. Numerical models have extensively grown over the past few years and are effective tools in modeling large scale natural events such as hurricane. The impact of low probability hurricanes on the lower Delaware Bay is investigated using dynamically coupled meteorological, hydrodynamic, and wave components of Delft3D software. Efforts are made to significantly reduce the computational overburden of performing such analysis for the industry, yet keeping the same level of accuracy at the area of study (AOS). The model is comprised of overall and nested domains. The overall model domain includes portion of Atlantic Ocean, Delaware, and Chesapeake bays. The nested model domain includes Delaware Bay, its floodplain, and portion of the continental shelf. This study is portion of a larger modeling effort to study the impact of low probability hurricanes on sensitive infrastructures located at the coastal zones prone to hurricane activity. The AOS is located on the east bank of Delaware Bay almost 16 miles upstream of its mouth. Model generated wind speed, significant wave height, water surface elevation, and current are calibrated for hurricane Isabel (2003). The model calibration results agreed reasonably well with field observations. Furthermore, sensitivity of surge and wave responses to various hurricane parameters was tested. In line with findings from other researchers, accuracy of wind field played a major role in hindcasting the hurricane attributes.

  12. Development and validation of a predictive model for the growth of Vibrio parahaemolyticus in post-harvest shellstock oysters.

    Science.gov (United States)

    Parveen, Salina; DaSilva, Ligia; DePaola, Angelo; Bowers, John; White, Chanelle; Munasinghe, Kumudini Apsara; Brohawn, Kathy; Mudoh, Meshack; Tamplin, Mark

    2013-01-15

    Information is limited about the growth and survival of naturally-occurring Vibrio parahaemolyticus in live oysters under commercially relevant storage conditions harvested from different regions and in different oyster species. This study produced a predictive model for the growth of naturally-occurring V. parahaemolyticus in live Eastern oysters (Crassostrea virginica) harvested from the Chesapeake Bay, MD, USA and stored at 5-30 °C until oysters gapped. The model was validated with model-independent data collected from Eastern oysters harvested from the Chesapeake Bay and Mobile Bay, AL, USA and Asian (C. ariakensis) oysters from the Chesapeake Bay, VA, USA. The effect of harvest season, region and water condition on growth rate (GR) was also tested. At each time interval, two samples consisting of six oysters each were analyzed by a direct-plating method for total V. parahaemolyticus. The Baranyi D-model was fitted to the total V. parahaemolyticus growth and survival data. A secondary model was produced using the square root model. V. parahaemolyticus slowly inactivated at 5 and 10 °C with average rates of -0.002 and -0.001 log cfu/h, respectively. The average GRs at 15, 20, 25, and 30 °C were 0.038, 0.082, 0.228, and 0.219 log cfu/h, respectively. The bias and accuracy factors of the secondary model for model-independent data were 1.36 and 1.46 for Eastern oysters from Mobile Bay and the Chesapeake Bay, respectively. V. parahaemolyticus GRs were markedly lower in Asian oysters. Harvest temperature, salinity, region and season had no effect on GRs. The observed GRs were less than those predicted by the U.S. Food and Drug Administration's V. parahaemolyticus quantitative risk assessment. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Water quality of the inner Puno Bay, Titicaca Lake, during summer 2011

    Directory of Open Access Journals (Sweden)

    Diana F. Beltrán Farfán

    2015-12-01

    Full Text Available Water quality of the inner Puno Bay was evaluated; we established 12 stations, and were assessed monthly from December 2010 to April 2011. Physicochemical water parameters were determined with EPA and APHA standard methods. Nutrients were determined spectrophotometrically. The parameters of temperature, dissolved oxygen, pH, phosphates, nitrates and nitrites of water show that the outlet of the stabilization lagoon of Puno City (Espinar Island is a critical area of contamination at the inner Puno Bay. Transparency values were low. The electrical conductivity of water showed high values. Alkalinity values were high (75 - 150 mg/L and very high (> 150 mg/L, indicating a high content of carbonates and bicarbonates. Water hardness were high (121-180 mg/L and very high (> 180 mg/L. High levels of fecal coliform in waters near the island Espinar would be the result of wastewater discharges from the Puno city, without proper treatment.

  14. 33 CFR 334.635 - Hillsborough Bay and waters contiguous to MacDill Air Force Base, Fla.; restricted area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Hillsborough Bay and waters... Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.635 Hillsborough Bay and waters contiguous to MacDill Air Force Base, Fla.; restricted area...

  15. THE EFFECT OF PCBS ON GLYCOGEN RESERVES IN THE EASTERN OYSTER CRASSOSTREA VIRGINICA. (R825349)

    Science.gov (United States)

    Recent declines in Chesapeake Bay oyster populations have been attributed to disease, and reduced water quality from pollution. The stress associated with pollutant exposure may reduce energy available for growth and reproduction. Polychlorinated biphenyls (PCBs) are lipophilic c...

  16. Identification of largemouth bass virus in the introduced Northern snakehead inhabiting the Cheasapeake Bay watershed

    Science.gov (United States)

    Iwanowicz, Luke R.; Densmore, Christine L.; Hahn, Cassidy M.; McAllister, Phillip; Odenkirk, John

    2013-01-01

    The Northern Snakehead Channa argus is an introduced species that now inhabits the Chesapeake Bay. During a preliminary survey for introduced pathogens possibly harbored by these fish in Virginia waters, a filterable agent was isolated from five specimens that produced cytopathic effects in BF-2 cells. Based on PCR amplification and partial sequencing of the major capsid protein (MCP), DNA polymerase (DNApol), and DNA methyltransferase (Mtase) genes, the isolates were identified as Largemouth Bass virus (LMBV). Nucleotide sequences of the MCP (492 bp) and DNApol (419 pb) genes were 100% identical to those of LMBV. The nucleotide sequence of the Mtase (206 bp) gene was 99.5% identical to that of LMBV, and the single nucleotide substitution did not lead to a predicted amino acid coding change. This is the first report of LMBV from the Northern Snakehead, and provides evidence that noncentrarchid fishes may be susceptible to this virus.

  17. The distribution of phosphorus in Popes Creek, VA, and in the Pocomoke River, MD: Two watersheds with different land management practices in the Chesapeake Bay Basin

    Science.gov (United States)

    Simon, N.S.; Bricker, O.P.; Newell, W.; McCoy, J.; Morawe, R.

    2005-01-01

    This paper compares phosphorus (P) concentrations in sediments from two watersheds, one with, and one without, intensive animal agriculture. The watersheds are in the coastal plain of the Chesapeake Bay and have similar physiographic characteristics. Agriculture in the Pocomoke River, MD, watershed supplied 2.7 percent of all broiler chickens produced in the USA in 1997. Poultry litter is an abundant, local source of manure for crops. Broiler chickens are not produced in the Popes Creek, VA, watershed and poultry manure is, therefore, not a major source of fertilizer. The largest concentrations of P in sediment samples are found in floodplain and main-stem bottom sediment in both watersheds. Concentrations of total P and P extracted with 1N HCl are significantly larger in main-stem bottom sediments from the Pocomoke River than in main-stem bottom sediments from Popes Creek. Larger concentrations of P are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Pocomoke River watershed than are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Popes Creek watershed. Data for P and iron (Fe) concentrations in sediments from the Popes Creek watershed provide a numerical framework (baseline) with which to compare P and Fe concentrations in sediment from the Pocomoke River watershed. ?? Springer 2005.

  18. Impact of Environment and Ontogeny on Relative Fecundity and Egg Quality of Female Oysters (Crassostrea virginica) from Four Sites in Northern Chesapeake Bay.

    Science.gov (United States)

    Glandon, Hillary Lane; Michaelis, Adriane K; Politano, Vincent A; Alexander, Stephanie T; Vlahovich, Emily A; Reece, Kimberly S; Koopman, Heather N; Meritt, Donald W; Paynter, Kennedy T

    2016-12-01

    Resource allocation to reproduction is a primary physiological concern for individuals, and can vary with age, environment, or a combination of both factors. In this study we quantified the impact of environment and individual age on the reproductive output of female oysters Crassostrea virginica. We determined the relative fecundity, egg total lipid content, and overall and omega-3/omega-6 (ω3/ω6) fatty acid signatures (FAS) of eggs spawned by female oysters over a 2-year period (n = 32 and n = 64). Variation was quantified spatially and ontogenetically by sampling young and old oyster populations from two rivers in Chesapeake Bay, totaling four collection sites. During Year 1, when oysters underwent oogenesis in different locations, overall and ω3/ω6 egg FAS varied significantly by river, with no significant differences observed in the FAS of oysters by age in Year 1. In Year 2, when oysters from different sites underwent oogenesis in a single location, no significant differences in the overall egg FAS or ω3/ω6 egg FAS by river or age were observed. These findings suggest that oysters integrate environment into their reproductive output, but that time spent growing at a specific location (in this case, represented by oyster age) plays a relatively minor role in the biochemical composition of oyster eggs. These results have consequences for our understanding of how resources are allocated from the female oyster to eggs and, more generally, the impact of environment and ontogeny on reproductive physiology.

  19. 76 FR 76950 - Endangered Species; File No. 16134

    Science.gov (United States)

    2011-12-09

    ... Kemp's ridley sea turtle abundance, distribution, health, and nutrition in Chesapeake Bay and nearshore Virginia waters, (2) compare the relative abundance, size distribution, sex ratio, health parameters and... passive integrated transponder tags, measure, photograph, oral swab, weigh, and sample blood, feces...

  20. Use of ERTS imagery in air pollution and marine biology studies, tasks 1 through 3

    Science.gov (United States)

    Copeland, G. E.; Ludwick, J. C.; Marshall, H. G. (Principal Investigator); Bandy, A. R.; Fleischer, P.; Hanna, W. J.; Gosink, T. A.; Bowker, D. W.

    1972-01-01

    There are no author-identified significant results in this report. The general suitability of ERTS imagery in detecting ground originated air pollution has proved to be excellent. The quality and resolution exceeded expectations and has permitted in some instances location of point sources to within a thousand feet. Suitable techniques have not yet been developed for determining or measuring area and line sources of air pollution. A major problem has been cloud cover that has persisted over the area of primary interest, the Chesapeake Bay. Work has been completed on mounting the shipboard transmissometer which will be used for investigations to relate the chlorophyll and suspended sediment content in the waters of the Lower Chesapeake Bay to ERTS-1 imagery. Water sampling, plankton analysis, and preparations for sea collection of water truth along the eastern continental shelf of the U.S. have been completed for use in comparisons with ERTS-1 data.

  1. The Pennsylvania Phosphorus Index and TopoSWAT: A comparison of transport components and approaches

    Science.gov (United States)

    The regional Chesapeake Bay Conservation Innovation Grant Initiative includes comparison of TopoSWAT results and Phosphorus Index (P Index) evaluations of eight study watersheds throughout the Chesapeake Bay watershed. While similarities exist between the P Index and TopoSWAT, further comparison of ...

  2. Chesapeake Bay Tidal Flooding Study. Appendix D. Social and Cultural Resources. Appendix E. Engineering Design and Cost Estimates. Appendix F. Economics.

    Science.gov (United States)

    1984-09-01

    provided by private airline. Facilities and services include fuel, storage and outside tiedown, instruction, rental planes, unicorn radio and aircraft...project the population to grow between 41 and 44.5 percent from 1980 to 2030. The greatest increases in population are anticipated for Chesapeake and...VIRGINIA DEMOGRAPHIC CHARACTERISTICS Poquoson has been one of the fastest growing cities in Virginia over the past 20 years. While the surrounding

  3. DNA Barcoding of Ichthyoplankton in Hampton Roads Bay Estuary

    Science.gov (United States)

    Wilkins, N.; Rodríguez, Á. E.

    2016-02-01

    Zooplankton is composed of animals that drift within the water column. The study of zooplankton biodiversity and distribution is crucial to understand oceanic ecosystems and anticipate the effects of climate change. In this study our focus is on ichthyoplankton (fish eggs and larvae). Our aim is to employ molecular genetic techniques such as DNA barcoding to begin a detailed characterization of ichthyoplankton diversity, abundance and community structure in the Hampton Roads Bay Estuary (HRBE). A sampling of zooplankton was performed on June 19, 2015. Samples were taken with a 0.5m, 200 µm mesh net in triplicates at two stations: inner shore in the mouth of Jones Creek and 5 miles off Hampton in the lower part of Chesapeake Bay. Physical parameters (dissolved oxygen, salinity, and temperature and water transparency) were measured simultaneously. Species were identified by DNA barcoding using the mitochondrial DNA (mtDNA) of the Cytochrome Oxidase 1 (CO1) gene. Fish eggs were identified from Opistonema oglinum (Atlantic Thread Herring) at the offshore stations while, Anchoa mitchilli was found at both stations. These species are common to the area and as observed, differences in species between stations were found. O. oglinum eggs were found in the offshore stations, which is their reported habitat. A. mitchilli eggs were found in both stations; both known to exhibit a wider salinity tolerance. This work indicates that using mtDNA-CO1 barcoding is suitable to identify ichthyoplankton to the species level and helped validate DNA barcoding as a faster taxonomic approach. The long term objective of this project is to provide taxonomic composition and biodiversity assessment of ichthyoplankton in HRBE. This data will be a reference for broad monitoring programs; for a better understanding and management of ecologically and commercially important species in the HRBE. Monthly samplings will be performed for a year beginning September 2015.

  4. Deficient plakophilin-1 expression due to a mutation in PKP1 causes ectodermal dysplasia-skin fragility syndrome in Chesapeake Bay retriever dogs.

    Directory of Open Access Journals (Sweden)

    Thierry Olivry

    Full Text Available In humans, congenital and hereditary skin diseases associated with epidermal cell-cell separation (acantholysis are very rare, and spontaneous animal models of these diseases are exceptional. Our objectives are to report a novel congenital acantholytic dermatosis that developed in Chesapeake Bay retriever dogs. Nine affected puppies in four different litters were born to eight closely related clinically normal dogs. The disease transmission was consistent with an autosomal recessive mode of inheritance. Clinical signs occurred immediately after birth with superficial epidermal layers sloughing upon pressure. At three month of age, dogs exhibited recurrent superficial skin sloughing and erosions at areas of friction and mucocutaneous junctions; their coat was also finer than normal and there were patches of partial hair loss. At birth, histopathology revealed severe suprabasal acantholysis, which became less severe with ageing. Electron microscopy demonstrated a reduced number of partially formed desmosomes with detached and aggregated keratin intermediate filaments. Immunostaining for desmosomal adhesion molecules revealed a complete lack of staining for plakophilin-1 and anomalies in the distribution of desmoplakin and keratins 10 and 14. Sequencing revealed a homozygous splice donor site mutation within the first intron of PKP1 resulting in a premature stop codon, thereby explaining the inability to detect plakophilin-1 in the skin. Altogether, the clinical and pathological findings, along with the PKP1 mutation, were consistent with the diagnosis of ectodermal dysplasia-skin fragility syndrome with plakophilin-1 deficiency. This is the first occurrence of ectodermal dysplasia-skin fragility syndrome in an animal species. Controlled mating of carrier dogs would yield puppies that could, in theory, be tested for gene therapy of this rare but severe skin disease of children.

  5. Spatial Predictive Modeling and Remote Sensing of Land Use Change in the Chesapeake Bay Watershed

    Science.gov (United States)

    Goetz, Scott J.; Bockstael, Nancy E.; Jantz, Claire A.

    2005-01-01

    This project was focused on modeling the processes by which increasing demand for developed land uses, brought about by changes in the regional economy and the socio-demographics of the region, are translated into a changing spatial pattern of land use. Our study focused on a portion of the Chesapeake Bay Watershed where the spatial patterns of sprawl represent a set of conditions generally prevalent in much of the U.S. Working in the region permitted us access to (i) a time-series of multi-scale and multi-temporal (including historical) satellite imagery and (ii) an established network of collaborating partners and agencies willing to share resources and to utilize developed techniques and model results. In addition, a unique parcel-level tax assessment database and linked parcel boundary maps exists for two counties in the Maryland portion of this region that made it possible to establish a historical cross-section time-series database of parcel level development decisions. Scenario analyses of future land use dynamics provided critical quantitative insight into the impact of alternative land management and policy decisions. These also have been specifically aimed at addressing growth control policies aimed at curbing exurban (sprawl) development. Our initial technical approach included three components: (i) spatial econometric modeling of the development decision, (ii) remote sensing of suburban change and residential land use density, including comparisons of past change from Landsat analyses and more traditional sources, and (iii) linkages between the two through variable initialization and supplementation of parcel level data. To these we added a fourth component, (iv) cellular automata modeling of urbanization, which proved to be a valuable addition to the project. This project has generated both remote sensing and spatially explicit socio-economic data to estimate and calibrate the parameters for two different types of land use change models and has

  6. Chemical characterization of soil organic matter in a Chesapeake Bay salt marsh: analyzing microbial and vegetation inputs to SOM

    Science.gov (United States)

    Bye, E.; Schreiner, K. M.; Abdulla, H. A.; Minor, E. C.; Guntenspergen, G. R.

    2017-12-01

    Coastal wetlands play a critical role in the global carbon cycle. These ecosystems sequester and store carbon, known as "blue carbon," at a rate two or three orders of magnitude larger than other terrestrial ecosystems, such as temperate, tropical, and boreal forests. Anthropogenic changes to the climate are threatening blue carbon stores in coastal wetland ecosystems. To understand and predict how these important carbon stores will be affected by anthropogenic climate changes, it is necessary to understand the formation and preservation of soil organic matter (SOM) in these ecosystems. This study will present organic geochemical data from two sediment cores collected from the Smithsonian Environmental Research Center site on a salt marsh in Maryland along the Chesapeake Bay. One core is from a location that recently transitioned from a C4 to C3 plant regime, currently dominated by the sedge Shoenplectis americanus. The second core is from a C4 plant (Spartina patens) dominated location in the marsh. The organic geochemistry of these 100 cm deep sediment cores was studied through multiple bulk analyses including stable isotopes, elemental ratios, Fourier-transform infrared spectroscopy (FTIR), solid-state magic-angle-spinning Nuclear Magnetic Resonance (NMR), and compound specific lignin-phenol analysis. By using comprehensive chemical characterization techniques, this study aims to discern between vegetation- and microbially-derived inputs to SOM in blue carbon ecosystems. The results show a general increase in the aromatic content with a concomitant decrease of carbohydrates with depth in both cores. However, substantial differences between the two cores, indicates differing inputs and/or stabilization mechanisms within SOM formed from different vegetation regimes. Further compound specific work will help to elucidate the specific source of compounds within each compound class, in surface and deep SOM, and additionally can help provide evidence for different

  7. Review and synthesis of historical Tampa Bay water quality data. Final technical report

    International Nuclear Information System (INIS)

    Vargo, G.; Weisberg, R.; Bendis, B.; Rutherford, E.H.

    1992-11-01

    The review and synthesis of historical water quality data was one of the first characterization projects administered by the Tampa Bay National Estuary Program (NEP). The objective of the project was to describe the physical, chemical and biological characteristics of Tampa Bay. The report examines the spatial and temporal trends from the acquired data for possible interrelationships and develops them statistically

  8. Long time-series of turbid coastal water using AVHRR: an example from Florida Bay, USA

    Science.gov (United States)

    Stumpf, Richard P.; Frayer, M. L.

    1997-02-01

    The AVHRR can provide information on the reflectance of turbid case II water, permitting examination of large estuaries and plumes from major rivers. The AVHRR has been onboard several NOAA satellites, with afternoon overpasses since 1981, offering a long time-series to examine changes in coastal water. We are using AVHRR data starting in December 1989, to examine water clarity in Florida Bay, which has undergone a decline since the late 1980's. The processing involves obtaining a nominal reflectance for red light with standard corrections including those for Rayleigh and aerosol path radiances. Established relationships between reflectance and the water properties being measured in the Bay provide estimates of diffuse attenuation and light limitation for phytoplankton and seagrass productivity studies. Processing also includes monthly averages of reflectance and attenuation. The AVHRR data set describes spatial and temporal patterns, including resuspension of bottom sediments in the winter, and changes in water clarity. The AVHRR also indicates that Florida Bay has much higher reflectivity relative to attenuation than other southeastern US estuaries.

  9. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities

    International Nuclear Information System (INIS)

    Zou Shichun; Xu Weihai; Zhang Ruijie; Tang Jianhui; Chen Yingjun; Zhang Gan

    2011-01-01

    The presence of 21 antibiotics in six different groups was investigated in coastal water of the Bohai Bay. Meantime, to illuminate the potential effects caused by the river discharge and aquaculture activities, wastewater from three breeding plants and surface water from six rivers flowing into the Bohai Bay were also analyzed for the selected antibiotics. The result revealed that measured antibiotics in the North Bobai Bay were generally higher than those in the South, highlighting the remarkable effects of high density of human activities on the exposure of antibiotics in environment. The antibiotics found in the six rivers were generally higher than those in the Bohai Bay reflecting the important antibiotics source of river discharge. This study reveals that the high consumption of some antibiotics in aquaculture activities may pose high ecological risk to the bay. - Highlights: → Some antibiotics were ubiquitous with high concentration in the Bohai bay, North China. → The antibiotics were mainly from the six rivers discharge around the Bay. → Antibiotics are commonly used in aquaculture activities around the Bay. → Aquaculture was suggested to be an important antibiotics source in the Bay. - River discharge and aquaculture were suggested to be important sources for antibiotics occurred in the coastal water of the Bohai Bay, North China.

  10. Assessing wetland loss impacts on watershed hydrology using an improved modeling approach

    Science.gov (United States)

    Despite the importance of wetland impacts on water cycling, the Chesapeake Bay Watershed (CBW) has experienced significant wetland losses. The resultant environmental degradation has not been fully characterized. Our aim is to assess wetland loss impacts on watershed hydrology for an agricultural wa...

  11. Shallow-water Benthic Habitat Map (2013) for Coral Bay, St. John

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This shapefile contains information about the shallow-water (<40 meters) geology and biology of the seafloor in Coral Bay, St. John in the U.S. Virgin Islands...

  12. Forewarning model for water pollution risk based on Bayes theory.

    Science.gov (United States)

    Zhao, Jun; Jin, Juliang; Guo, Qizhong; Chen, Yaqian; Lu, Mengxiong; Tinoco, Luis

    2014-02-01

    In order to reduce the losses by water pollution, forewarning model for water pollution risk based on Bayes theory was studied. This model is built upon risk indexes in complex systems, proceeding from the whole structure and its components. In this study, the principal components analysis is used to screen out index systems. Hydrological model is employed to simulate index value according to the prediction principle. Bayes theory is adopted to obtain posterior distribution by prior distribution with sample information which can make samples' features preferably reflect and represent the totals to some extent. Forewarning level is judged on the maximum probability rule, and then local conditions for proposing management strategies that will have the effect of transforming heavy warnings to a lesser degree. This study takes Taihu Basin as an example. After forewarning model application and vertification for water pollution risk from 2000 to 2009 between the actual and simulated data, forewarning level in 2010 is given as a severe warning, which is well coincide with logistic curve. It is shown that the model is rigorous in theory with flexible method, reasonable in result with simple structure, and it has strong logic superiority and regional adaptability, providing a new way for warning water pollution risk.

  13. Physical processes in a coupled bay-estuary coastal system: Whitsand Bay and Plymouth Sound

    Science.gov (United States)

    Uncles, R. J.; Stephens, J. A.; Harris, C.

    2015-09-01

    Whitsand Bay and Plymouth Sound are located in the southwest of England. The Bay and Sound are separated by the ∼2-3 km-wide Rame Peninsula and connected by ∼10-20 m-deep English Channel waters. Results are presented from measurements of waves and currents, drogue tracking, surveys of salinity, temperature and turbidity during stratified and unstratified conditions, and bed sediment surveys. 2D and 3D hydrodynamic models are used to explore the generation of tidally- and wind-driven residual currents, flow separation and the formation of the Rame eddy, and the coupling between the Bay and the Sound. Tidal currents flow around the Rame Peninsula from the Sound to the Bay between approximately 3 h before to 2 h after low water and form a transport path between them that conveys lower salinity, higher turbidity waters from the Sound to the Bay. These waters are then transported into the Bay as part of the Bay-mouth limb of the Rame eddy and subsequently conveyed to the near-shore, east-going limb and re-circulated back towards Rame Head. The Simpson-Hunter stratification parameter indicates that much of the Sound and Bay are likely to stratify thermally during summer months. Temperature stratification in both is pronounced during summer and is largely determined by coastal, deeper-water stratification offshore. Small tidal stresses in the Bay are unable to move bed sediment of the observed sizes. However, the Bay and Sound are subjected to large waves that are capable of driving a substantial bed-load sediment transport. Measurements show relatively low levels of turbidity, but these respond rapidly to, and have a strong correlation with, wave height.

  14. Waste water discharge and its effect on the quality of water of Mahim creek and bay

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Desai, B.N.

    Coastal environment around Mahim was monitored to evaluate the effects of domestic and industrial waste water discharge in Mahim Creek, Maharashtra, India. Vertical salinity and DO gradient occasionally observed in the Mahim Bay during postmonsoon...

  15. Metals content in surface waters of an upwelling system of the northern Humboldt Current (Mejillones Bay, Chile)

    Science.gov (United States)

    Valdés, Jorge; Román, Domingo; Alvarez, Gabriel; Ortlieb, Luc; Guiñez, Marcos

    Physical-chemical parameters (temperature, salinity, dissolved oxygen, nutrients, and chlorophyll concentration) of surface waters were used to evaluate the influence of biological and physical processes over the metal concentrations (Cd, Ni, V, Mo, Mn, and Fe) in different periods of a normal annual cycle (June 2002 and April 2003), in Mejillones Bay (23° S), one of northern Chile's strongest upwelling cells. Two points were sampled every 2 months, but statistical analysis of these parameters did not show any spatial differences in surface water composition (annual average) in this bay. The order of total and dissolved metals by abundance (annual mean) in the Mejillones Bay surface waters during the sampling period was Cd Oxygen Minimum Zone which characterizes the Mejillones bay should have an important influence on surface distribution of trace metals and can explain the high temporal variability observed in most of the metals analyzed in this work. A two-box conceptual model is proposed to suggest possible influences on metals in surface waters of this coastal ecosystem.

  16. 77 FR 2317 - Captain John Smith Chesapeake National Historic Trail Advisory Council

    Science.gov (United States)

    2012-01-17

    ... DEPARTMENT OF THE INTERIOR National Park Service Captain John Smith Chesapeake National Historic... that the Advisory Committee on the Captain John Smith Chesapeake National Historic Trail will hold a... Columbia,'' tracing the 1607-1609 voyages of Captain John Smith to chart the land and waterways of the...

  17. 33 CFR 165.1182 - Safety/Security Zone: San Francisco Bay, San Pablo Bay, Carquinez Strait, and Suisun Bay, CA.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety/Security Zone: San... Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY... Areas Eleventh Coast Guard District § 165.1182 Safety/Security Zone: San Francisco Bay, San Pablo Bay...

  18. Watershed Outreach Professionals' Behavior Change Practices, Challenges, and Needs

    Science.gov (United States)

    Kelly, Meghan; Little, Samuel; Phelps, Kaitlin; Roble, Carrie; Zint, Michaela

    2012-01-01

    This study investigated the practices, challenges, and needs of Chesapeake Bay watershed outreach professionals, as related to behavior change strategies and best outreach practices. Data were collected through a questionnaire e-mailed to applicants to the Chesapeake Bay Trust's environmental outreach grant program (n = 108, r = 56%). Almost all…

  19. Remote Sensing of Dissolved Oxygen and Nitrogen in Water Using Raman Spectroscopy

    Science.gov (United States)

    Ganoe, Rene; DeYoung, Russell J.

    2013-01-01

    The health of an estuarine ecosystem is largely driven by the abundance of dissolved oxygen and nitrogen available for maintenance of plant and animal life. An investigation was conducted to quantify the concentration of dissolved molecular oxygen and nitrogen in water by means of Raman spectroscopy. This technique is proposed for the remote sensing of dissolved oxygen in the Chesapeake Bay, which will be utilized by aircraft in order to survey large areas in real-time. A proof of principle system has been developed and the specifications are being honed to maximize efficiency for the final application. The theoretical criteria of the research, components of the experimental system, and key findings are presented in this report

  20. A numerical model investigation of the impacts of Hurricane Sandy on water level variability in Great South Bay, New York

    Science.gov (United States)

    Bennett, Vanessa C. C.; Mulligan, Ryan P.; Hapke, Cheryl J.

    2018-06-01

    Hurricane Sandy was a large and intense storm with high winds that caused total water levels from combined tides and storm surge to reach 4.0 m in the Atlantic Ocean and 2.5 m in Great South Bay (GSB), a back-barrier bay between Fire Island and Long Island, New York. In this study the impact of the hurricane winds and waves are examined in order to understand the flow of ocean water into the back-barrier bay and water level variations within the bay. To accomplish this goal, a high resolution hurricane wind field is used to drive the coupled Delft3D-SWAN hydrodynamic and wave models over a series of grids with the finest resolution in GSB. The processes that control water levels in the back-barrier bay are investigated by comparing the results of four cases that include: (i) tides only; (ii) tides, winds and waves with no overwash over Fire Island allowed; (iii) tides, winds, waves and limited overwash at the east end of the island; (iv) tides, winds, waves and extensive overwash along the island. The results indicate that strong local wind-driven storm surge along the bay axis had the largest influence on the total water level fluctuations during the hurricane. However, the simulations allowing for overwash have higher correlation with water level observations in GSB and suggest that island overwash provided a significant contribution of ocean water to eastern GSB during the storm. The computations indicate that overwash of 7500-10,000 m3s-1 was approximately the same as the inflow from the ocean through the major existing inlet. Overall, the model results indicate the complex variability in total water levels driven by tides, ocean storm surge, surge from local winds, and overwash that had a significant impact on the circulation in Great South Bay during Hurricane Sandy.

  1. Presence of selected chemicals of emerging concern in water and bottom sediment from the St. Louis River, St. Louis Bay, and Superior Bay, Minnesota and Wisconsin, 2010

    Science.gov (United States)

    Christensen, Victoria G.; Lee, Kathy E.; Kieta, Kristen A.; Elliott, Sarah M.

    2012-01-01

    The St. Louis Bay of Lake Superior receives substantial urban runoff, wastewater treatment plant effluent, and industrial effluent. In 1987, the International Joint Commission designated the St. Louis Bay portion of the lower St. Louis River as one of the Great Lakes Areas of Concern. Concerns exist about the potential effects of chemicals of emerging concern on aquatic biota because many of these chemicals, including endocrine active chemicals, have been shown to affect the endocrine systems of fish. To determine the occurrence of chemicals of emerging concern in the St. Louis River, the St. Louis Bay, and Superior Bay, the U.S. Geological Survey in cooperation with the Minnesota Pollution Control Agency and the Wisconsin Department of Natural Resources collected water and bottom-sediment samples from 40 sites from August through October 2010. The objectives of this study were to (1) identify the extent to which chemicals of emerging concern, including pharmaceuticals, hormones, and other organic chemicals, occur in the St. Louis River, St. Louis Bay, and Superior Bay, and (2) identify the extent to which the chemicals may have accumulated in bottom sediment of the study area. Samples were analyzed for selected wastewater indicators, hormones, sterols, bisphenol A, and human-health pharmaceuticals. During this study, 33 of 89 chemicals of emerging concern were detected among all water samples collected and 56 of 104 chemicals of emerging concern were detected in bottom-sediment samples. The chemical N,N-diethyl-meta-toluamide (DEET) was the most commonly detected chemical in water samples and 2,6-dimethylnaphthalene was the most commonly detected chemical in bottom-sediment samples. In general, chemicals of emerging concern were detected at a higher frequency in bottom-sediment samples than in water samples. Estrone (a steroid hormone) and hexahydrohexamethyl cyclopentabensopyran (a synthetic fragrance) were the most commonly detected endocrine active chemicals in

  2. Is delta sup(15)N of sedimentary organic matter a good proxy for paleodenitrification in coastal waters of the eastern Arabian Sea?

    Digital Repository Service at National Institute of Oceanography (India)

    Agnihotri, R.; Naqvi, S.W.A.; Kurian, S.; Altabet, M.A.; Bratton, J.F.

    over the last few decades were examined. In systems that are significantly affected by an enhanced inventory of nutrients from organic matter in soils due to continental erosion following colonial land clearing (e.g., Chesapeake Bay), fertilizer...

  3. Scientific and technical advisory committee review of the nutrient inputs to the watershed model

    Science.gov (United States)

    The following is a report by a STAC Review Team concerning the methods and documentation used by the Chesapeake Bay Partnership for evaluation of nutrient inputs to Phase 6 of the Chesapeake Bay Watershed Model. The “STAC Review of the Nutrient Inputs to the Watershed Model” (previously referred to...

  4. Molecular Approach to Microbiological Examination of Water Quality in the Grand Bay National Estuarine Research Reserve (NERR) in Mississippi, USA.

    Science.gov (United States)

    Kishinhi, Stephen S; Tchounwou, Paul B; Farah, Ibrahim O

    2013-01-01

    Grand Bay National Estuarine Research Reserve (NERR) is an important ecosystem in the Mississippi Gulf Coast. It serves as important nursery areas for juveniles of many species of fish. The bay is also used for fishing, crabbing, oyster togging, boating as well as recreation. Like in other aquatic environments, this bay may be contaminated by microorganisms including pathogenic bacteria. The objective of this study was to evaluate the microbiological quality of water in the Grand Bay NERR and determine the levels and potential source(s) of human fecal pollution. To achieve this goal, water samples were collected aseptically every month in Bayou Heron, Bayou Cumbest, Point Aux Chenes Bay and Bangs Lake. Enterococci were concentrated from water samples by membrane filtration according to the methodology outlined in USEPA Method 1600. After incubation, DNA was extracted from bacteria colonies on the membrane filters by using QIAamp DNA extraction kit. Water samples were also tested for the presence of traditional indicator bacteria including: heterotrophic plate count, total coliforms, fecal coliforms, and Enterococcus bacteria. The marker esp gene was detected in one site of Bayou Cumbest, an area where human populations reside. Data from this study indicates higher concentrations of indicator bacteria compared to the recommended acceptable levels. Presence of esp marker and high numbers of indicator bacteria suggest a public health concern for shellfish and water contact activities. Hence, control strategies should be developed and implemented to prevent further contamination of the Grand bay NERR waters.

  5. Future trends in urbanization and coastal water pollution in the Bay of Bengal: the lived experience

    NARCIS (Netherlands)

    Zinia, N.J.; Kroeze, C.

    2015-01-01

    The Bay of Bengal includes coastal seas of several countries, including Bangladesh, India, and Myanmar. We present scenarios for future river export of eutrophying nutrients into the Bay of Bengal, and the role of urbanization therein. We used NEWS (Nutrient Export from WaterSheds) model to analyze

  6. Spatial variation in sediment-water exchange of phosphorus in Florida Bay: AMP as a model organic compound.

    Science.gov (United States)

    Huang, Xiao-Lan; Zhang, Jia-Zhong

    2010-10-15

    Dissolved organic phosphorus (DOP) has been recognized as dominant components in total dissolved phosphorus (TDP) pools in many coastal waters, and its exchange between sediment and water is an important process in biogeochemical cycle of phosphorus. Adenosine monophosphate (AMP) was employed as a model DOP compound to simulate phosphorus exchange across sediment-water interface in Florida Bay. The sorption data from 40 stations were fitted to a modified Freundlich equation and provided a detailed spatial distribution both of the sediment's zero equilibrium phosphorus concentration (EPC(0-T)) and of the distribution coefficient (K(d-T)) with respect to TDP. The K(d-T) was found to be a function of the index of phosphorus saturation (IPS), a molar ratio of the surface reactive phosphorus to the surface reactive iron oxide content in the sediment, across the entire bay. However, the EPC(0-T) was found to correlate to the contents of phosphorus in the eastern bay only. Sediment in the western bay might act as a source of the phosphorus in the exchange process due to their high EPC(0-T) and low K(d-T), whereas sediments in the eastern bay might act as a sink because of their low EPC(0-T) and high K(d-T). These results strongly support the hypothesis that both phosphorus and iron species in calcareous marine sediments play a critical role in governing the sediment-water exchange of both phosphate and DOP in the coastal and estuarine ecosystems.

  7. Discharge between San Antonio Bay and Aransas Bay, southern Gulf Coast, Texas, May-September 1999

    Science.gov (United States)

    East, Jeffery W.

    2001-01-01

    Along the Gulf Coast of Texas, many estuaries and bays are important habitat and nurseries for aquatic life. San Antonio Bay and Aransas Bay, located about 50 and 30 miles northeast, respectively, of Corpus Christi, are two important estuarine nurseries on the southern Gulf Coast of Texas (fig. 1). According to the Texas Parks and Wildlife Department, “Almost 80 percent of the seagrasses [along the Texas Gulf Coast] are located in the Laguna Madre, an estuary that begins just south of Corpus Christi Bay and runs southward 140 miles to South Padre Island. Most of the remaining seagrasses, about 45,000 acres, are located in the heavily traveled San Antonio, Aransas and Corpus Christi Bay areas” (Shook, 2000).Population growth has led to greater demands on water supplies in Texas. The Texas Water Development Board, the Texas Parks and Wildlife Department, and the Texas Natural Resource Conservation Commission have the cooperative task of determining inflows required to maintain the ecological health of the State’s streams, rivers, bays, and estuaries. To determine these inflow requirements, the three agencies collect data and conduct studies on the need for instream flows and freshwater/ saline water inflows to Texas estuaries.To assist in the determination of freshwater inflow requirements, the U.S. Geological Survey (USGS), in cooperation with the Texas Water Development Board, conducted a hydrographic survey of discharge (flow) between San Antonio Bay and Aransas Bay during the period May–September 1999. Automated instrumentation and acoustic technology were used to maximize the amount and quality of data that were collected, while minimizing personnel requirements. This report documents the discharge measured at two sites between the bays during May–September 1999 and describes the influences of meteorologic (wind and tidal) and hydrologic (freshwater inflow) conditions on discharge between the two bays. The movement of water between the bays is

  8. A numerical model investigation of the impacts of Hurricane Sandy on water level variability in Great South Bay, New York

    Science.gov (United States)

    Bennett, Vanessa C. C.; Mulligan, Ryan P.; Hapke, Cheryl J.

    2018-01-01

    Hurricane Sandy was a large and intense storm with high winds that caused total water levels from combined tides and storm surge to reach 4.0 m in the Atlantic Ocean and 2.5 m in Great South Bay (GSB), a back-barrier bay between Fire Island and Long Island, New York. In this study the impact of the hurricane winds and waves are examined in order to understand the flow of ocean water into the back-barrier bay and water level variations within the bay. To accomplish this goal, a high resolution hurricane wind field is used to drive the coupled Delft3D-SWAN hydrodynamic and wave models over a series of grids with the finest resolution in GSB. The processes that control water levels in the back-barrier bay are investigated by comparing the results of four cases that include: (i) tides only; (ii) tides, winds and waves with no overwash over Fire Island allowed; (iii) tides, winds, waves and limited overwash at the east end of the island; (iv) tides, winds, waves and extensive overwash along the island. The results indicate that strong local wind-driven storm surge along the bay axis had the largest influence on the total water level fluctuations during the hurricane. However, the simulations allowing for overwash have higher correlation with water level observations in GSB and suggest that island overwash provided a significant contribution of ocean water to eastern GSB during the storm. The computations indicate that overwash of 7500–10,000 m3s−1 was approximately the same as the inflow from the ocean through the major existing inlet. Overall, the model results indicate the complex variability in total water levels driven by tides, ocean storm surge, surge from local winds, and overwash that had a significant impact on the circulation in Great South Bay during Hurricane Sandy.

  9. Developing a Phytoplankton Biotic Index as an Indicator of Freshwater Inflow within a Subtropical Estuary

    Science.gov (United States)

    Steichen, J. L.; Quigg, A.; Lucchese, A.; Preischel, H.

    2016-02-01

    Freshwater inflows drive the water and sediment quality in coastal bays and estuaries influencing the ecosystem and health of the biological community. Phytoplankton accessory pigments (used as a proxy for major taxonomic groups) have been utilized to develop a biotic index of physical, chemical and biotic disturbances in Chesapeake Bay (USA) and other estuarine systems. In this study we have used the Chesapeake Bay - Phytoplankton Index of Biotic Integrity model as a guide in developing an index for Galveston Bay, TX (USA) as an indicator of sufficient freshwater inflow to a subtropical estuary. Multivariate statistical analyses were run using PRIMER-E+PERMANOVA to determine the correlations between phytoplankton accessory pigment concentrations and a suite of abiotic factors associated with freshwater inflow (salinity, DIN, PO4, secchi). Phytoplankton pigment concentrations and water quality parameters were collected across Galveston Bay on a monthly basis from 2008-2013. In the upper region of the bay nearest the river source Dinophyceae, Cryptophyceae (winter (Dec-Feb)) and Chlorophyceae (winter and spring (Mar-May)) were significantly correlated to freshwater inflow and nutrient concentrations PO4 (p<0.05). Increased concentrations of Bacillariophyceae and Cyanophyceae (summer (Jun-Aug)) were significantly correlated to lower concentrations of DIN (p<0.05). Near the mouth of the estuary there was a significant correlation between the increase in Bacillariophyceae, Cyanophyceae, Cryptophyceae and Dinophyceae with decreasing PO4 (p<0.05). Within the dynamic system of Galveston Bay we are working to apply a Phytoplankton Index of Biotic Integrity as a means of monitoring the biological health of this ecologically and economically important estuarine ecosystem.

  10. Distribution of polycyclic aromatic hydrocarbons in water and surface sediments from Daya Bay, China

    International Nuclear Information System (INIS)

    Zhou, J.L.; Maskaoui, K.

    2003-01-01

    Findings indicate an urgent need to establish a monitoring program for persistent organic pollutants in water and sediment. - Marine culture is thriving in China and represents a major component of the regional economy in coastal zones, yet the environmental quality of many of those areas has never been studied. This paper attempts to investigate the quality status of Daya Bay, a key aquaculture area in China. The levels of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in water and sediment samples of the bay. The total concentrations of 16 PAHs varied from 4228 to 29325 ng l -1 in water, and from 115 to 1134 ng g -1 dry weight in sediments. In comparison to many other marine systems studied, the PAH levels in Daya Bay waters were relatively high, and at six sites they were sufficiently high (>10 μg l -1 ) to cause acute toxicity. The PAH composition pattern in sediments suggest dominance by medium to high molecular weight compounds, and the ratio of certain related PAHs indicate important pyrolytic and petrogenic sources. Further analysis showed that the distribution coefficient (K D ) increased with the particular organic carbon content of sediments, consistent with the PAH partition theory. The organic carbon normalised distribution coefficient (K oc ) also increased with the compounds' octanol/water partition coefficient (K ow ), confirming the potential applicability of the linear free energy relationships in the modelling and prediction of PAH behaviour in marine environments

  11. Bio-optical water quality dynamics observed from MERIS in Pensacola Bay, Florida

    Science.gov (United States)

    Observed bio-optical water quality data collected from 2009 to 2011 in Pensacola Bay, Florida were used to develop empirical remote sensing retrieval algorithms for chlorophyll a (Chla), colored dissolved organic matter (CDOM), and suspended particulate matter (SPM). Time-series ...

  12. Degradation of tributyltin in San Diego Bay, California, waters

    International Nuclear Information System (INIS)

    Seligman, P.F.; Valkirs, A.O.; Lee, R.F.

    1986-01-01

    Several experiments were carried out to determine the degradation rate of tributyltin (TBT) in microcosms containing harbor water. Unlabeled or 14 C-labeled tributyltin was added to water samples collected from two stations in San Diego Bay, CA. Degradation rates were determined by calculating the rate of loss of the added parent TBT compound. Calculated half-lives in water collected from a yacht harbor (ambient concentration was 0.5 μg of TBT/L) were 6 and 7 days for light and dark treatments, respectively. Half-lives from a clean-water site ( 14 CO 2 , proceeded slowly with a half-life of 50-75 days. Tributyltin at high concentrations (744 μg/L) was not degraded in sunlight, indicating that photolysis was not taking place and that biological degradation was the primary degradative process for TBT at low ambient concentrations

  13. Time series monitoring of water quality and microalgal diversity in a tropical bay under intense anthropogenic interference (SW coast of the Bay of Bengal, India)

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Aziz ur Rahman [CSIR — National Institute of Oceanography, Regional Centre, 176 Lawson' s Bay Colony, Visakhapatnam, AP 530017 (India); Biswas, Haimanti, E-mail: haimanti.biswas@nio.org [CSIR — National Institute of Oceanography, Regional Centre, 176 Lawson' s Bay Colony, Visakhapatnam, AP 530017 (India); Reddy, N.P.C.; Srinivasa Rao, V. [CSIR — National Institute of Oceanography, Regional Centre, 176 Lawson' s Bay Colony, Visakhapatnam, AP 530017 (India); Bharathi, M.D. [Present address: ICMAM Project Directorate, 2nd Floor, NIOT Campus, Velacherry-Tambaram Main Road, Pallikkaranai, Chennai 600100 (India); Subbaiah, Ch.V. [CSIR — National Institute of Oceanography, Regional Centre, 176 Lawson' s Bay Colony, Visakhapatnam, AP 530017 (India)

    2015-11-15

    In recent decades, material fluxes to coastal waters from various land based anthropogenic activities have significantly been enhanced around the globe which can considerably impact the coastal water quality and ecosystem health. Hence, there is a critical need to understand the links between anthropogenic activities in watersheds and its health. Kakinada Bay is situated at the SW part of the Bay of Bengal, near to the second largest mangrove cover in India with several fertilizer industries along its bank and could be highly vulnerable to different types of pollutants. However, virtually, no data is available so far reporting its physicochemical status and microalgal diversity at this bay. In order to fill this gap, we conducted three time series observations at a fixed station during January, December and June 2012, at this bay measuring more than 15 physical, chemical and biological parameters in every 3 h over a period of 36 h in both surface (0 m) and subsurface (4.5 m) waters. Our results clearly depict a strong seasonality between three sampling months; however, any abnormal values of nutrients, biological oxygen demand or dissolved oxygen level was not observed. A Skeletonema costatum bloom was observed in December which was probably influenced by low saline, high turbid and high Si input through the river discharge. Otherwise, smaller diatoms like Thalassiosira decipiens, Thalassiothrix frauenfeldii, and Thalassionema nitzschioides dominated the bay. It is likely that the material loading can be high at the point sources due to intense anthropogenic activities, however, gets diluted with biological, chemical and physical processes in the offshore waters. - Highlights: • No signature of enormous nutrient loading was observed over the diel cycle • Dissolved oxygen and BOD concentrations did not show any exceptional trend • Diatoms dominated more than 90% of the total phytoplankton communities • A Skeletonema Costatum (a centric diatom) bloom was

  14. Time series monitoring of water quality and microalgal diversity in a tropical bay under intense anthropogenic interference (SW coast of the Bay of Bengal, India)

    International Nuclear Information System (INIS)

    Shaik, Aziz ur Rahman; Biswas, Haimanti; Reddy, N.P.C.; Srinivasa Rao, V.; Bharathi, M.D.; Subbaiah, Ch.V.

    2015-01-01

    In recent decades, material fluxes to coastal waters from various land based anthropogenic activities have significantly been enhanced around the globe which can considerably impact the coastal water quality and ecosystem health. Hence, there is a critical need to understand the links between anthropogenic activities in watersheds and its health. Kakinada Bay is situated at the SW part of the Bay of Bengal, near to the second largest mangrove cover in India with several fertilizer industries along its bank and could be highly vulnerable to different types of pollutants. However, virtually, no data is available so far reporting its physicochemical status and microalgal diversity at this bay. In order to fill this gap, we conducted three time series observations at a fixed station during January, December and June 2012, at this bay measuring more than 15 physical, chemical and biological parameters in every 3 h over a period of 36 h in both surface (0 m) and subsurface (4.5 m) waters. Our results clearly depict a strong seasonality between three sampling months; however, any abnormal values of nutrients, biological oxygen demand or dissolved oxygen level was not observed. A Skeletonema costatum bloom was observed in December which was probably influenced by low saline, high turbid and high Si input through the river discharge. Otherwise, smaller diatoms like Thalassiosira decipiens, Thalassiothrix frauenfeldii, and Thalassionema nitzschioides dominated the bay. It is likely that the material loading can be high at the point sources due to intense anthropogenic activities, however, gets diluted with biological, chemical and physical processes in the offshore waters. - Highlights: • No signature of enormous nutrient loading was observed over the diel cycle • Dissolved oxygen and BOD concentrations did not show any exceptional trend • Diatoms dominated more than 90% of the total phytoplankton communities • A Skeletonema Costatum (a centric diatom) bloom was

  15. California State Waters Map Series: offshore of Half Moon Bay, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Johnson, Samuel Y.; Golden, Nadine E.; Hartwell, Stephen R.; Dieter, Bryan E.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Watt, Janet T.; Endris, Charles A.; Kvitek, Rikk G.; Phillips, Eleyne L.; Erdey, Mercedes D.; Chin, John L.; Bretz, Carrie K.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Half Moon Bay map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 40 kilometers south of the Golden Gate. The city of Half Moon Bay, which is situated on the east side of the Half Moon Bay embayment, is the nearest significant onshore cultural center in the map area, with a population of about 11,000. The Pillar Point Harbor at the north edge of Half Moon Bay offers a protected landing for boats and provides other marine infrastructure. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The flat coastal area, which is the most recent of numerous marine terraces, was formed by wave erosion about 105 thousand years ago. The higher elevation of this same terrace west of the Half Moon Bay Airport is caused by uplift on the Seal Cove Fault, a splay of the San Gregorio Fault Zone. Although originally incised into the rising terrain horizontally, the ancient terrace surface has been gently folded into a northwest-plunging syncline by

  16. Radium isotopes in Port Phillip Bay: estimation of the rate of bio irrigation of sediments, and water residence time

    International Nuclear Information System (INIS)

    Hancock, G.J.; Webster, I.T.

    1998-01-01

    Recent work has shown that estuarine sediments are a source of radium (Ra) to coastal waters (Bollinger and Moore, 1982, Webster et al., 1994; Hancock et al., 1997). Ra is soluble in saline water (Moore, 1992, Webster et al., 1995) and is rapidly desorbed into porewater from deposited fluvial sediments where it is continuously generated by insoluble Th parents. The rate at which Ra effuses into surface water has been used to determine the rate of surface-water pore water exchange (Hancock and Murray, 1996). Once in the water column, the behaviour of Ra is essentially conservative, enabling the determination of water residence time in a semi-enclosed estuary (Turekian et al., 1996). Here we use measurements of Ra in an estuary to estimate two water mixing processes. Port Phillip Bay (PPB) is a semi-enclosed estuary adjacent to the city of Melbourne, one of the highest density population centres in Australia. The Bay is approximately 50 km in diameter, and has an average depth of 14 m. A recent study found that the potential for eutrophication and algal blooms in the Bay was intricately linked to the fate of nutrients, particularly nitrogen, discharged into the Bay from rivers, drains, and sewage treatment plants (Harris et al. 1996). Two of the most important processes controlling the levels of inorganic N in the water column were identified as bio irrigation of bottom sediments, and the rate of exchange of Bay water with ocean water via Bass Strait. In this paper we describe how Ra isotopes can be used to estimate the rates of these processes, and we compare these rates with estimates made using conventional techniques. Water and sediment samples were collected from five sites in February 1996. Sediment cores were collected by divers, frozen, and sectioned in the laboratory. Surface, mid depth and bottom water samples were collected using a Niskin bottle. Radionuclide activities were determined by alpha spectrometry (Martin and Hancock, 1992) and gamma spectrometry

  17. Chesapeake Bay Study. Supplement A. Problem Identification. Supplement B. Public Involvement. Supplement C. The Chesapeake Bay Hydraulic Model.

    Science.gov (United States)

    1984-09-01

    Amphipod (5 genera) Canvasback Sand flea Lesser scaup Cnidaria 4’ Grass shrimp 4’ Bufflehead 4 Sand shrimp ** Osprey " Stinging nettle 4’ Xanthid crab (2...thereby decreasing the amounts of available oxygen in the water and, in extreme cases, causing fish kills. In addition, the use of insecticides in...where demands are the greatest. The stinging sea nettle and the closely related comb A-79 f. . . . . . • _ . . ... . .. jellies or ctenophores which

  18. Studies on Anthropogenic Impact on Water Quality in Hilo (Hawaii) Bay and Mapping the Study Stations Using Geospatial Technologies

    Science.gov (United States)

    Cartier, A. J.; Williams, M. S.; Adolf, J.; Sriharan, S.

    2015-12-01

    Hilo Bay has uncharacteristically brown waters compared to other waters found in Hawai'i. The majority of the freshwater entering Hilo Bay is from storm and surface water runoff. The anthropogenic impact on water quality at Hilo Bay is due to sediment entrance, cesspools (Bacteria), and invasive species (Albizia). This poster presentation will focus on the water quality and phytoplankton collected on a weekly basis at a buoy positioned one meter from the shore of Hilo Bay, preserving the phytoplankton intact, concentrating and dehydrating the sample with ethanol, and viewing the phytoplankton with a scanning electron microscope (Hitachi S-3400NII). The GPS (Global Positioning System) points were collected at the sampling stations. Three transects on three separate dates were performed in Hilo Bay with salinity, percent dissolved oxygen, turbidity, secchi depth, temperature, and chlorophyll fluorescence data collected at each sampling station. A consistent trend observed in all transects was as distance from the river increased turbidity decreased and salinity increased. The GPS data on June 30, 2015 showed a major correlation between stations and their distance from shore. There is a decrease in the turbidity but not the temperature for these stations. The GPS points collected on July 7, 2015 at thirteen stations starting with station one being at the shore to the water, showed that the salinity concentration fluctuate noticeably at the first 6 stations. As we proceed further away from the shore, the salinity concentration increases from stations seven through thirteen. The water temperature shows little variation throughout the thirteen stations. The turbidity level was high at the shore and shows a noticeable drop at station thirteen.

  19. Tetrachlorodibenzo-p-dioxins and tetrachlorodibenzofurans in Atlantic coast striped bass and in selected Hudson River fish, waterfowl and sediments

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, P; Hilker, D; Meyer, C; Aldous, K; Shane, L; Donnelly, R; Smith, R; Sloan, R; Skinner, L; Horn, E

    1884-01-01

    In striped bass samples from the lower Hudson River and its estuary 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) was found at concentrations from 16 to 120 pg/g (ppt). Striped bass from two other locations (Rhode Island coastal waters and Chesapeake Bay, Maryland) had <5 ppt, 2,3,7,8-TCDD. The contaminant, 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF), was found in striped bass from all three locations with concentrations varying from 6 ppt in Chesapeake Bay to 78 ppt in the Hudson River. Results from a limited number of non-migratory fish (carp and goldfish) and sediments suggest that the upper Hudson River is not a source for 2,3,7,8-TCDD/2,3,7,8-TCDF contamination of striped bass. 26 references, 3 tables.

  20. Fusion of multisource and multiscale remote sensing data for water availability assessment in a metropolitan region

    Science.gov (United States)

    Chang, N. B.; Yang, Y. J.; Daranpob, A.

    2009-09-01

    Recent extreme hydroclimatic events in the United States alone include, but are not limited to, the droughts in Maryland and the Chesapeake Bay area in 2001 through September 2002; Lake Mead in Las Vegas in 2000 through 2004; the Peace River and Lake Okeechobee in South Florida in 2006; and Lake Lanier in Atlanta, Georgia in 2007 that affected the water resources distribution in three states - Alabama, Florida and Georgia. This paper provides evidence from previous work and elaborates on the future perspectives that will collectively employ remote sensing and in-situ observations to support the implementation of the water availability assessment in a metropolitan region. Within the hydrological cycle, precipitation, soil moisture, and evapotranspiration can be monitored by using WSR-88D/NEXRAD data, RADARSAT-1 images, and GEOS images collectively to address the spatiotemporal variations of quantitative availability of waters whereas the MODIS images may be used to track down the qualitative availability of waters in terms of turbidity, Chlorophyll-a and other constitutes of concern. Tampa Bay in Florida was selected as a study site in this analysis, where the water supply infrastructure covers groundwater, desalination plant, and surface water at the same time. Research findings show that through the proper fusion of multi-source and multi-scale remote sensing data for water availability assessment in metropolitan region, a new insight of water infrastructure assessment can be gained to support sustainable planning region wide.

  1. Radionuclides in sediments from Port Phillip Bay, Australia

    International Nuclear Information System (INIS)

    Smith, J.D.; Tinker, R.A.; Towler, P.H.

    1998-01-01

    Full text: Sediment cores were collected from two sites in Port Phillip Bay, Australia, in 1994 and 1995. The concentration of 210 Pb and parameters including water content were measured. The sites chosen were near the centre of the bay where fine sediment accumulates, and towards the northern end of the bay closer to the mouth of the Yarra River. The mid-bay sediment had a high water content (about 1.8 g water per g dry sediment) and a supported 210 Pb activity of about 22 mBq per g of dry sediment. The sediments from further north in the bay were more consolidated, with a lower water content (about 0.6 g water per g dry sediment), and had a supported 210 Pb activity of about 6 mBq per g of dry sediment. Unsupported 210 Pb occurred to depths of about 10 cm in the mid-bay sediment and about 20 cm in sediment from further north in the bay. Models incorporating the water and 210 Pb contents of the sediments were used to calculate possible rates of sediment accumulation and mixing. The distribution of other radionuclides was used as an aid in understanding the sediment behaviour in Port Phillip Bay

  2. Petroleum Hydrocarbon Profiles of Water and Sediment of Algoa Bay, Eastern Cape, South Africa

    Directory of Open Access Journals (Sweden)

    Abiodun O. Adeniji

    2017-10-01

    Full Text Available Petroleum hydrocarbon profiles of water and sediment samples of Algoa Bay in the Eastern Cape Province of South Africa were assessed using standard analytical procedures. Water (from surface and bottom levels and sediment samples were collected from five locations in the bay from February to June 2016. Extraction of the petroleum hydrocarbons from the water and sediment samples collected was achieved using liquid-liquid and Soxhlet extraction techniques, respectively, followed by column clean up. Target compounds were analytically determined with gas chromatography–flame ionization detector (GC-FID and quantified by integrating the areas of both the resolved and unresolved components. Physicochemical properties of the water samples were also determined on site using a SeaBird 19plusV2 CTD SBE 55 device. Estimated limit of detection, limit of quantitation and relative standard deviation for the 35 n-alkane standards ranged from 0.06 to 0.13 μg/L, 0.30 to 0.69 μg/L and 3.61 to 8.32%, respectively. Results showed that total petroleum hydrocarbon (TPH varied from 45.07 to 307 μg/L in the water and 0.72 to 27.03 mg/kg in the sediments. The mean concentrations of TPH in both the water and sediment samples from Algoa Bay revealed a slight level of pollution. The diagnostic indices used showed that the hydrocarbons in the area were from both biogenic and anthropogenic sources. Hence, there is need for adequate regulation and control of all activities contributing to the levels of petroleum hydrocarbon in the marine environment for the safety of human, aquatic and wild lives in the area.

  3. Petroleum Hydrocarbon Profiles of Water and Sediment of Algoa Bay, Eastern Cape, South Africa.

    Science.gov (United States)

    Adeniji, Abiodun O; Okoh, Omobola O; Okoh, Anthony I

    2017-10-20

    Petroleum hydrocarbon profiles of water and sediment samples of Algoa Bay in the Eastern Cape Province of South Africa were assessed using standard analytical procedures. Water (from surface and bottom levels) and sediment samples were collected from five locations in the bay from February to June 2016. Extraction of the petroleum hydrocarbons from the water and sediment samples collected was achieved using liquid-liquid and Soxhlet extraction techniques, respectively, followed by column clean up. Target compounds were analytically determined with gas chromatography-flame ionization detector (GC-FID) and quantified by integrating the areas of both the resolved and unresolved components. Physicochemical properties of the water samples were also determined on site using a SeaBird 19plusV2 CTD SBE 55 device. Estimated limit of detection, limit of quantitation and relative standard deviation for the 35 n -alkane standards ranged from 0.06 to 0.13 μg/L, 0.30 to 0.69 μg/L and 3.61 to 8.32%, respectively. Results showed that total petroleum hydrocarbon (TPH) varied from 45.07 to 307 μg/L in the water and 0.72 to 27.03 mg/kg in the sediments. The mean concentrations of TPH in both the water and sediment samples from Algoa Bay revealed a slight level of pollution. The diagnostic indices used showed that the hydrocarbons in the area were from both biogenic and anthropogenic sources. Hence, there is need for adequate regulation and control of all activities contributing to the levels of petroleum hydrocarbon in the marine environment for the safety of human, aquatic and wild lives in the area.

  4. Characterization of water and lake sediments in Laguna de Bay

    International Nuclear Information System (INIS)

    San Diego, Cherry Ann; Francisco, Pattrice Armynne; Navoa, Joshua Antonio; Johnson, Bryan; Dave, Harshil; Cryer, Karl; Panemanglor, Rajeev; Rama, Mariecar; Sucgang, Raymond J.

    2011-01-01

    In this work we studied elemental distributions of trace elements, dissolved oxygen and microbiological allotment (total plate count, Coliform, and E. coli) in sediment and surface water from 3 sites in Laguna de Bay. The measured parameters were associated with the quality of the water and to anthropogenic and geogenic processes taking place in the lake. In all cases sediment samples were collected and analyzed for elemental composition using an X-ray fluorescence technique. Water samples were collected and analyzed for nitrate, chloride, and sulfate ions using selective electrodes. Bicarbonate ions in the lake water were determined by titration. The microbial load (total plate count, total coliform and E,. Coli) were determined using Simplate. Field parameters such as pH and conductivity were likewise measured. Preliminary assumptions suggest that proximity to anthropogenic sources has substantially contributed to the combined loads of major ions pollution in the lake. Laguna de Bay is classified as Class C (DENR Administrative Order No. 34). For all the sites, the conductivity of the water were considerably elevated, which ranged from 929 to 933 uS/cm; Site 1 water exceeded the permissible range for pH for Class C water which is 6.5 to 8.5 for the support and rearing of fish. None of the lake waters exceeded the limits for the ions, chloride (set at 350 mg/L) and nitrate (set at 10 mg/L), for Class C water criteria. All the sites meet the dissolved oxygen, DO, criterion for Class C waters which is set at 5 mg/L. In terms of microbiological load, Site 1 had the least most probable number per ml of water, MPN/ml: total plate count (6720), Coliform (less that detection limit) and E. coli (less than LLD); Site 3 was the most contaminated: total plate count (greater than 70,000), Coliform(48768) and E. Coli (23808). X-ray fluorescence analyses of sediments allowed the determination of elements Na, Mg, Al, P, Si, Cl, K. Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Br, Rb

  5. 77 FR 64980 - Chesapeake Renewable Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2012-10-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-28-000] Chesapeake Renewable Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding of Chesapeake Renewable Energy LLC's application for market-based rate authority, with an...

  6. Sustainable development in the Hudson Bay/James Bay bioregion

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    An overview is presented of projects planned for the James Bay/Hudson Bay region, and the expected environmental impacts of these projects. The watershed of James Bay and Hudson Bay covers well over one third of Canada, from southern Alberta to central Ontario to Baffin Island, as well as parts of north Dakota and Minnesota in the U.S.A. Hydroelectric power developments that change the timing and rate of flow of fresh water may cause changes in the nature and duration of ice cover, habitats of marine mammals, fish and migratory birds, currents into and out of Hudson Bay/James Bay, seasonal and annual loads of sediments and nutrients to marine ecosystems, and anadromous fish populations. Hydroelectric projects are proposed for the region by Quebec, Ontario and Manitoba. In January 1992, the Canadian Arctic Resources Committee (CARC), the Environmental Committee of Sanikuluaq, and the Rawson Academy of Arctic Science will launch the Hudson Bay/James Bay Bioregion Program, an independent initiative to apply an ecosystem approach to the region. Two main objectives are to provide a comprehensive assessment of the cumulative impacts of human activities on the marine and freshwater ecosystems of the Hudson Bay/James Bay bioregion, and to foster sustainable development by examining and proposing cooperative processes for decision making among governments, developers, aboriginal peoples and other stakeholders. 1 fig

  7. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: impacts of river discharge and aquaculture activities.

    Science.gov (United States)

    Zou, Shichun; Xu, Weihai; Zhang, Ruijie; Tang, Jianhui; Chen, Yingjun; Zhang, Gan

    2011-10-01

    The presence of 21 antibiotics in six different groups was investigated in coastal water of the Bohai Bay. Meantime, to illuminate the potential effects caused by the river discharge and aquaculture activities, wastewater from three breeding plants and surface water from six rivers flowing into the Bohai Bay were also analyzed for the selected antibiotics. The result revealed that measured antibiotics in the North Bobai Bay were generally higher than those in the South, highlighting the remarkable effects of high density of human activities on the exposure of antibiotics in environment. The antibiotics found in the six rivers were generally higher than those in the Bohai Bay reflecting the important antibiotics source of river discharge. This study reveals that the high consumption of some antibiotics in aquaculture activities may pose high ecological risk to the bay. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area's water system and adjustments during a major drought.

    Science.gov (United States)

    Tipple, Brett J; Jameel, Yusuf; Chau, Thuan H; Mancuso, Christy J; Bowen, Gabriel J; Dufour, Alexis; Chesson, Lesley A; Ehleringer, James R

    2017-08-01

    Water availability and sustainability in the Western United States is a major flashpoint among expanding communities, growing industries, and productive agricultural lands. This issue came to a head in 2015 in the State of California, when the State mandated a 25% reduction in urban water use following a multi-year drought that significantly depleted water resources. Water demands and challenges in supplying water are only expected to intensify as climate perturbations, such as the 2012-2015 California Drought, become more common. As a consequence, there is an increased need to understand linkages between urban centers, water transport and usage, and the impacts of climate change on water resources. To assess if stable hydrogen and oxygen isotope ratios could increase the understanding of these relationships within a megalopolis in the Western United States, we collected and analyzed 723 tap waters across the San Francisco Bay Area during seven collection campaigns spanning 21 months during 2013-2015. The San Francisco Bay Area was selected as it has well-characterized water management strategies and the 2012-2105 California Drought dramatically affected its water resources. Consistent with known water management strategies and previously collected isotope data, we found large spatiotemporal variations in the δ 2 H and δ 18 O values of tap waters within the Bay Area. This is indicative of complex water transport systems and varying municipality-scale management decisions. We observed δ 2 H and δ 18 O values of tap water consistent with waters originating from snowmelt from the Sierra Nevada Mountains, local precipitation, ground water, and partially evaporated reservoir sources. A cluster analysis of the isotope data collected in this study grouped waters from 43 static sampling sites that were associated with specific water utility providers within the San Francisco Bay Area and known management practices. Various management responses to the drought, such as

  9. Urban Greening Bay Area

    Science.gov (United States)

    Information about the San Francisco Bay Water Quality Project (SFBWQP) Urban Greening Bay Area, a large-scale effort to re-envision urban landscapes to include green infrastructure (GI) making communities more livable and reducing stormwater runoff.

  10. San Francisco Bay Water Quality Improvement Fund Map Service, San Francisco CA, 2012, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — The San Francisco Bay Water Quality Improvement Fund is a competitive grant program that is helping implement TMDLs to improve water quality, protect wetlands, and...

  11. San Francisco Bay Water Quality Improvement Fund Project Locations, San Francisco CA, 2017, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — The San Francisco Bay Water Quality Improvement Fund is a competitive grant program that is helping implement TMDLs to improve water quality, protect wetlands, and...

  12. Spatial and seasonal patterns of ichthyoplankton assemblages in the Haizhou Bay and its adjacent waters of China

    Science.gov (United States)

    Li, Zengguang; Ye, Zhenjiang; Wan, Rong

    2015-12-01

    Surveys were conducted in five voyages in Haizhou Bay and its adjacent coastal area from March to December 2011 during full moon spring tides. The ichthyoplankton assemblages and the environmental factors that affect their spatial and seasonal patterns were determined. Totally 35 and 12 fish egg and larvae taxa were identified, respectively. Over the past several decades, the egg and larval species composition has significantly changed in Haizhou Bay and its adjacent waters, most likely corresponding with the alteration of fishery resources, which are strongly affected by anthropogenic activities and climate change. The Bray-Curtis dissimilarity index identified four assemblages: near-shore bay assemblage, middle bay assemblage and two closely related assemblages (near-shore/middle bay assemblage and middle/edge of bay assemblage). The primary species of each assemblage principally reflected the spawning strategies of adult fish. The near-shore bay assemblage generally occurred in near-shore bay, with depths measuring ichthyoplankton in each assemblage were determined by interactions between biological behavioral traits and oceanographic features, particularly the variation of local conditions within the constraint of a general reproductive strategy. The results of Spearman's rank correlation analysis indicated that both fish egg and larval abundance were positively correlated with depth, which is critical to the oceanographic features in Haizhou Bay.

  13. Wastewater and Saltwater: Studying the Biogeochemistry and Microbial Activity Associated with Wastewater Inputs to San Francisco Bay

    Science.gov (United States)

    Challenor, T.; Menendez, A. D.; Damashek, J.; Francis, C. A.; Casciotti, K. L.

    2014-12-01

    Nitrification is the process of converting ammonium (NH­­4+) into nitrate (NO3-), and is a crucial step in removing nitrogen (N) from aquatic ecosystems. This process is governed by ammonia-oxidizing bacteria (AOB) and archaea (AOA) that utilize the ammonia monooxygenase gene (amoA). Studying the rates of nitrification and the abundances of ammonia-oxidizing microorganisms in south San Francisco Bay's Artesian Slough, which receives treated effluent from the massive San Jose-Santa Clara Regional Wastewater Facility, are important for understanding the cycling of nutrients in this small but complex estuary. Wastewater inputs can have negative environmental impacts, such as the release of nitrous oxide, a byproduct of nitrification and a powerful greenhouse gas. Nutrient inputs can also increase productivity and sometimes lead to oxygen depletion. Assessing the relative abundance and diversity of AOA and AOB, along with measuring nitrification rates gives vital information about the biology and biogeochemistry of this important N-cycling process. To calculate nitrification rates, water samples were spiked with 15N-labeled ammonium and incubated in triplicate for 24 hours. Four time-points were extracted across the incubation and the "denitrifier" method was used to measure the isotopic ratio of nitrate in the samples over time. In order to determine relative ratios of AOB to AOA, DNA was extracted from water samples and used in clade-specific amoA PCR assays. Nitrification rates were detectable in all locations sampled and were higher than in other regions of the bay, as were concentrations of nitrate and ammonium. Rates were highest in the regions of Artesian Slough most directly affected by wastewater effluent. AOB vastly outnumbered AOA, which is consistent with other studies showing that AOB prefer high nutrient environments. AOB diversity includes clades of Nitrosospira and Nitrosomonas prevalent in estuarine settings. Many of the sequenced genes are related

  14. Escherichia coli in the surface waters and in oysters of two cultivations of Guaratuba Bay - Paraná - Brazil

    OpenAIRE

    Forcelini,Helenita Catharina Dalla-Lana; Kolm,Hedda Elisabeth; Absher,Theresinha Monteiro

    2013-01-01

    The present work aimed to evaluate the contamination of Escherichia coli in the surface waters and oysters from two cultivations of Guaratuba Bay and to analyze the correlation patterns among the concentrations of E. coli in the waters and in the oysters with the local physical-chemical parameters. Samples were collected in the spring of 2007 and summer, autumn and winter of 2008 from two points of the bay (internal point and external point). From each cultivation and sampling period, 18 oyst...

  15. 78 FR 62293 - Safety Zone, Oyster Festival 30th Anniversary Fireworks Display, Oyster Bay; Oyster Bay, NY

    Science.gov (United States)

    2013-10-15

    ... Safety Zone, Oyster Festival 30th Anniversary Fireworks Display, Oyster Bay; Oyster Bay, NY AGENCY: Coast... zone on the navigable waters of Oyster Bay near Oyster Bay, NY for the Oyster Festival 30th Anniversary... Oyster Festival 30th Anniversary Fireworks Display is scheduled for October 19, 2013 and is one of...

  16. Modeling the fate of p,p'-DDT in water and sediment of two typical estuarine bays in South China: Importance of fishing vessels' inputs.

    Science.gov (United States)

    Fang, Shu-Ming; Zhang, Xianming; Bao, Lian-Jun; Zeng, Eddy Y

    2016-05-01

    Antifouling paint applied to fishing vessels is the primary source of dichloro-diphenyl-trichloroethane (DDT) to the coastal marine environments of China. With the aim to provide science-based support of potential regulations on DDT use in antifouling paint, we utilized a fugacity-based model to evaluate the fate and impact of p,p'-DDT, the dominant component of DDT mixture, in Daya Bay and Hailing Bay, two typical estuarine bays in South China. The emissions of p,p'-DDT from fishing vessels to the aquatic environments of Hailing Bay and Daya Bay were estimated as 9.3 and 7.7 kg yr(-1), respectively. Uncertainty analysis indicated that the temporal variability of p,p'-DDT was well described by the model if fishing vessels were considered as the only direct source, i.e., fishing vessels should be the dominant source of p,p'-DDT in coastal bay areas of China. Estimated hazard quotients indicated that sediment in Hailing Bay posed high risk to the aquatic system, and it would take at least 21 years to reduce the hazards to a safe level. Moreover, p,p'-DDT tends to migrate from water to sediment in the entire Hailing Bay and Daya Bay. On the other hand, our previous research indicated that p,p'-DDT was more likely to migrate from sediment to water in the maricultured zones located in shallow waters of these two bays, where fishing vessels frequently remain. These findings suggest that relocating mariculture zones to deeper waters would reduce the likelihood of farmed fish contamination by p,p'-DDT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Estuarine turbidity, flushing, salinity, and circulation

    Science.gov (United States)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  18. Validation of Ocean Color Sensors Using a Profiling Hyperspectral Radiometer

    Science.gov (United States)

    2014-01-01

    Chesapeake Bay, South Florida, Hawaii, and the Gulf of Mexico . Typical data collected for each station include Hyperpro in-water measurements, ASD above...K., Demer, K., Fishe,r K.M., Davis, E., Urizar, C, and Merlini, R., "Assessment of the Eastern Gulf of Mexico Harmful Algal Bloom Operational...conducted in turbid and blue water conditions. Examples of validation matchups with VIIRS ocean color data are presented. With careful data collection

  19. South Bay Salt Pond Mercury Studies Project

    Science.gov (United States)

    Information about the SFBWQP South Bay Salt Pond Mercury Studies Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  20. Studies and research concerning BNFP: transportation of radioactive material by water

    International Nuclear Information System (INIS)

    Anderson, R.T.

    1980-11-01

    Currently there are many limitations imposed on the shipment of radioactive material from nuclear power plants. In this regard, many questions have arisen related to the feasibility of substituting water transportation of these materials as a backup or supplement to the highway and rail modes which are now in use. This study addresses the results of studies performed by Allied-General Nuclear Services concerning the water transportation of spent nuclear fuel and radwaste materials. The report presents both an overview of the possible applications, problems, and means of solution, and specific information related to one particular site. In particular, a detailed case study of a nuclear plant site located on a navigable waterway (Chesapeake Bay) was made. The study concludes that there are some real advantages in using water transport, which are particularly evident if a site is not served by rail or its primary transport route lies near populous areas. Whereas, water transport has been used extensively in Europe and Japan, it has been virtually bypassed in the United States. A recommendation is made to continue examination of water transport, including the development of necessary standards for possible future operations

  1. 78 FR 39608 - Safety Zone; Summer in the City Water Ski Show; Fox River, Green Bay, WI

    Science.gov (United States)

    2013-07-02

    ...-AA00 Safety Zone; Summer in the City Water Ski Show; Fox River, Green Bay, WI AGENCY: Coast Guard, DHS... River in Green Bay, WI. This safety zone is intended to restrict vessels from a portion of the Fox River... Waterboard Warrior Ski Team will perform two 30-minute shows on the Fox River between the Hwy 141 Bridge and...

  2. The impact of water loading on postglacial decay times in Hudson Bay

    Science.gov (United States)

    Han, Holly Kyeore; Gomez, Natalya

    2018-05-01

    Ongoing glacial isostatic adjustment (GIA) due to surface loading (ice and water) variations during the last glacial cycle has been contributing to sea-level changes globally throughout the Holocene, especially in regions like Canada that were heavily glaciated during the Last Glacial Maximum (LGM). The spatial and temporal distribution of GIA, as manifested in relative sea-level (RSL) change, are sensitive to the ice history and the rheological structure of the solid Earth, both of which are uncertain. It has been shown that RSL curves near the center of previously glaciated regions with no ongoing surface loading follow an exponential-like form, with the postglacial decay times associated with that form having a weak sensitivity to the details of the ice loading history. Postglacial decay time estimates thus provide a powerful datum for constraining the Earth's viscous structure and improving GIA predictions. We explore spatial patterns of postglacial decay time predictions in Hudson Bay by decomposing numerically modeled RSL changes into contributions from water and ice loading effects, and computing their relative impact on the decay times. We demonstrate that ice loading can contribute a strong geographic trend on the decay time estimates if the time window used to compute decay times includes periods that are temporally close to (i.e. contemporaneous with, or soon after) periods of active loading. This variability can be avoided by choosing a suitable starting point for the decay time window. However, more surprisingly, we show that across any adopted time window, water loading effects associated with inundation into, and postglacial flux out of, Hudson Bay and James Bay will impart significant geographic variability onto decay time estimates. We emphasize this issue by considering both maps of predicted decay times across the region and site-specific estimates, and we conclude that variability in observed decay times (whether based on existing or future data

  3. Microbial processes in the Kanda Bay, a meromictic water body artifically separated from the White Sea.

    Science.gov (United States)

    Savvichev, A S; Demidenko, N A; Krasnova, E D; Kalmatskaya, O V; Kharcheva, A N; Ivanov, M V

    2017-05-01

    Sings of meromixis are found by means of microbiological and biogeochemical investigations in the southernn part of the Kanda Bay, an artificial water body separated front the White Sea with a railway dam. The concentration of oxygen in the bottom layer attained 1.9 mmol/L, intensity of the process of microbial sulfate reduction, 3.0 μmol of sulfur/(L day). The concentration of dissolved methane, 3.7 μmol/L. Isotopic composition of carbon in methane (δ 13 C (CH 4 ) =-79.2‰) indicates to its microbial genesis. At present, Kanda Bay is a sole in Russia man-made marine water body for which there are data on the rate of microbial processes responsible for formation of bottom water layer containing hydrogen sulfide and methane.

  4. Physical and chemical properties of San Francisco Bay waters, 1969-1976 (NODC Accession 8400194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — One magnetic tape containing the physical and chemical properties of San Francisco Bay waters was forwarded to NODC by Mr. Richard Smith of the U.S Geological Survey...

  5. Experimental study of water desorption isotherms and thin-layer convective drying kinetics of bay laurel leaves

    Science.gov (United States)

    Ghnimi, Thouraya; Hassini, Lamine; Bagane, Mohamed

    2016-12-01

    The aim of this work is to determine the desorption isotherms and the drying kinetics of bay laurel leaves ( Laurus Nobilis L.). The desorption isotherms were performed at three temperature levels: 50, 60 and 70 °C and at water activity ranging from 0.057 to 0.88 using the statistic gravimetric method. Five sorption models were used to fit desorption experimental isotherm data. It was found that Kuhn model offers the best fitting of experimental moisture isotherms in the mentioned investigated ranges of temperature and water activity. The Net isosteric heat of water desorption was evaluated using The Clausius-Clapeyron equation and was then best correlated to equilibrium moisture content by the empirical Tsami's equation. Thin layer convective drying curves of bay laurel leaves were obtained for temperatures of 45, 50, 60 and 70 °C, relative humidity of 5, 15, 30 and 45 % and air velocities of 1, 1.5 and 2 m/s. A non linear regression procedure of Levenberg-Marquardt was used to fit drying curves with five semi empirical mathematical models available in the literature, The R2 and χ2 were used to evaluate the goodness of fit of models to data. Based on the experimental drying curves the drying characteristic curve (DCC) has been established and fitted with a third degree polynomial function. It was found that the Midilli Kucuk model was the best semi-empirical model describing thin layer drying kinetics of bay laurel leaves. The bay laurel leaves effective moisture diffusivity and activation energy were also identified.

  6. Biological effect on removal of Th-234, Po-210 and Pb-210 from surface water in Funka Bay, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, N; Takeda, Y; Tsunogai, S [Hokkaido Univ., Hakodate (Japan). Dept. of Chemistry

    1983-10-01

    Vertical and temporal variations in the radioactivities of Th-234, Pb-210 and Po-210 were measured at a station in Funka Bay from April 1979 to February 1980. The inventory of Th-234 showed a minimum in early spring, when a spring bloom of phytoplankton was observed, then a steady increase to a maximum value in late summer, just before open sea water invaded the bay and a secondary phytoplankton bloom started. The inventories of Pb-210 and Po-210 also showed minima in early spring. These results suggest that the removal of these nuclides from sea water is accelerated by biological activity. The concentration of Th-234 decreased with depth, but those of Po-210 and Pb-210 were higher in the bottom water in August 1979 when the bay water was strongly stratified. This may be due to the supply of Pb-210 and Po-210 from the bottom. However, if the supply of these nuclides is expected in sediment particles, the concentrations of these nuclides in suspended matter were not sufficient to explain their increments in the bottom water. Residence times of Th, Pb and Po were estimated.

  7. Distribution characteristics of radium isotopes and their influence factors in the water of Jiaozhou Bay area

    International Nuclear Information System (INIS)

    Wang Bo; Guo Zhanrong; Yuan Xiaojie; Zhang Bin; Ma Zhiyong; Liu Jie

    2014-01-01

    Background: The interaction between continental and oceanic process is much intense in coastal region. The terrestrial freshwater mixes with seawater here which leads to the chemical constituents in water undergo rapid change. Purpose: The aim is to analyze and study the distribution characteristics of 224 Ra and 226 Ra and their influence factors in the water of Jiaozhou Bay area. Methods: The water samples of 224 Ra and 226 Ra were collected from groundwater, river water and seawater around the Jiaozhou Bay from April to May, 2012. In the laboratory, the activities of 224 Ra absorbed on the Mn-fiber were measured through the continuous emanation method. Finally, the Mn-fiber was sealed for more than 7 days, and the activities of 226 Ra absorbed on the Mn-fiber were measured through the direct emanation method. Results: The results show that the activities of 224 Ra and 226 Ra in groundwater and river water are much higher in the granitic area which has higher concentration of 232 Th and 238 U. Because of mixing with seawater, the salinity of groundwater and river water in coastal region rises which leads to the increasing amounts of 224 Ra and 226 Ra desorbed from the particles, resulting in higher activities of 224 Ra and 226 Ra in coastal region. Affected by the input of river (dissolved and desorbed from suspended particles) and submarine groundwater discharge (SGD), the activities of 224 Ra and 226 Ra are relatively higher in nearshore seawater, then with the decay of 224 Ra and mixing dilution effect of the offshore seawater, the activities of 224 Ra gradually decrease from nearshore region to the open ocean. The activities of 226 Ra in the seawater of Jiaozhou Bay remain high-level values, and there are only a few zones of low 226 Ra activities. The main reasons are that the activities of 226 Ra from terrestrial freshwater are close to those from offshore seawater and the half-life of 226 Ra is very long. Conclusion: The activities of 224 Ra and 226 Ra in

  8. Isotope geochemistry of waters affected by mining activities in Sierra Minera and Portman Bay (SE, Spain)

    International Nuclear Information System (INIS)

    García-Lorenzo, Mari Luz; Martínez-Sánchez, María José; Pérez-Sirvent, Carmen; Agudo, Inés; Recio, Clemente

    2014-01-01

    Highlights: • Waters have a meteoric origin even in samples located near the shore. • Marine infiltration only takes place in the deepest layers. • Sulfate enrichment was caused by oxidative dissolution of pyrite by ferric iron. - Abstract: The objective of this work was to evaluate processes affecting waters from Portman Bay by way of stable isotopic analysis, particularly H and O stable isotopes from water and S and O from dissolved sulfates. In addition, surface waters from Sierra Minera were examined for the purpose of determining if these waters are affected by similar processes. The results obtained indicate that Portman Bay waters are meteoric, and marine infiltration only takes place in the deepest layers near the shore or if water remains stagnated in sediments with low permeability. The main source of sulfate was the oxidation of sulfides, resulting in the liberation of acid, sulfate and metals. In order to assess the mechanism responsible for sulfide oxidation, the stoichiometric isotope balance model and the general isotope balance model were tested, suggesting that the oxidation via Fe 3+ was predominant in the surface, and controlled by Acidithiobacillus ferrooxidans, while at depth, sulfate reduction occurred

  9. WATER QUALITY AND ITS EFFECT ON GROWTH AND SURVIVAL RATE OF LOBSTER REARED IN FLOATING NET CAGE IN EKAS BAY, WEST NUSA TENGGARA PROVINCE

    Directory of Open Access Journals (Sweden)

    Muhammad Junaidi

    2015-02-01

    Full Text Available ABSTRACT The development of lobster farming in floating net cage in Ekas Bay caused an environmental degradation such as decrease water quality due to some aquaculture wastes. The purposes of this study were to determine the status of water quality and their effect on growth and survival rate of lobster reared in floating net cages (FNC in the Ekas Bay, West Nusa Tenggara Province. Water sample collection and handling referred to the APHA (1992. Analyses of water quality data were conducted using Principal Component Analysis. Determination of the water quality status of Ekas Bay was performed with STORET system. Multivariate analyses were used to determine the relationship between water quality, growth, and survival rate of lobster reared in FNC. Results showed that Ekas Bay water quality status was categorized in class C (medium contaminated, which exceeded some quality standard parameters such as ammonia (0.3 mg/l, nitrate (0.008 mg/l, and phosphate (0.015 mg/l. During lobster farming activities feeding with trash fish for 270 days, we obtained daily growth rate of  0.74% (lower than normal growth rate of 0.86%, survival rate of 66% (lower than normal survival rate of 86.7%, and feed conversion ratio of 11.15. Ammonia was found as a dominant factor reducing growth  and survival rate of lobster reared in FNC. Keywords: water quality, lobsters, growth, survival, Ekas Bay

  10. On watermass mixing ratios and regenerated silicon in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.P.; Sarma, V.V.; Rao, V.S.; Sudhakar, U.; Gupta, G.V.M.

    Regeneration of silicon on mixing in the Bay of Bengal have been computed from six water masses [Bay of Bengal low saline water (BBLS), Bay of Bengal subsurface water (BBSS), northern southeast high salinity water (NSEHS), north Indian intermediate...

  11. 78 FR 79312 - Security Zone; On the Waters in Kailua Bay, Oahu, HI

    Science.gov (United States)

    2013-12-30

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket Number USCG-2013-0934] RIN 1625-AA87 Security Zone; On the Waters in Kailua Bay, Oahu, HI AGENCY: Coast Guard, DHS. ACTION..., Oahu, HI. (a) Location. The following area, within the COTP Honolulu Zone (see 33 CFR 3.70-10), from...

  12. The numbers of ringed seals (Phoca hispida in Baffin Bay and associated waters

    Directory of Open Access Journals (Sweden)

    Michael C S Kingsley

    1998-06-01

    Full Text Available The size of the population of ringed seals (Phoca hispida inhabiting Baffin Bay and associated waters was estimated by two methods. An approximate model of the energetics of the polar bear (Ursus maritimus estimated an energetic need of about 16,000 MJ/bear per year. Modelled estimates of the energetic yield of a ringed seal population showed that a stable standing population of 140-170 ringed seals per bear would be needed to provide that much energy, assuming that all mortalities were due to polar bear predation. This result was sensitive to assumptions about the Field Metabolic Rate (FMR of the bears and the energetic yield of individual ringed seals, but less sensitive to assumptions about relative incidence of predation on different age classes of seal or the age structure of the polar bear population. Estimated sizes of polar bear populations in Baffin Bay and associated waters (total about 4,025, and of the standing population needed to support an estimated hunter kill of 100,000 yielded a population estimate of, very roughly, 1.2 million ringed seals. Estimates of ice areas and of the density of hauled out seals from aerial surveys were used to generate another approximate figure for the ringed seal population, which was about the same. The density of seals in the pack-ice area of Baffin Bay, which is imperfectly known, has a large influence on the latter estimate.

  13. 76 FR 12 - Security Zone; On the Waters in Kailua Bay, Oahu, HI

    Science.gov (United States)

    2011-01-03

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2010-1111] RIN 1625-AA87 Security Zone; On the Waters in Kailua Bay, Oahu, HI AGENCY: Coast Guard, DHS. ACTION: Temporary..., Oahu, HI. (a) Location. The following area, within the Honolulu Captain of the Port Zone (See 33 CFR 3...

  14. 76 FR 80251 - Security Zone; On the Waters in Kailua Bay, Oahu, HI

    Science.gov (United States)

    2011-12-23

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2011-1142] RIN 1625-AA87 Security Zone; On the Waters in Kailua Bay, Oahu, HI AGENCY: Coast Guard, DHS. ACTION: Temporary..., HI. (a) Location. The following area, within the Honolulu Captain of the Port Zone (See 33 CFR 3.70...

  15. Fecal indicator bacteria at Havana Bay

    International Nuclear Information System (INIS)

    Lopez Perez, Lisse; Gomez D'Angelo, Yamiris; Beltran Gonzalez, Jesus; Alvarez Valiente, Reinaldo

    2013-01-01

    Aims: Fecal indicator bacteria concentrations were evaluated in Havana Bay. Methods: Concentrations of traditional fecal indicator bacteria were calculated between April 2010 and February 2011, by MPN methods. Concentrations of thermo tolerant coliform (CTT), Escherichia coli, fecal streptococci (EF), intestinal enterococci (ENT) in seawater, and Clostridium perfringens in sediment surface, were determined. Results: CTT and E. coli levels were far above Cuban water quality standard for indirect contact with water, showing the negative influence of sewage and rivers on the bay. The EF and ENT were measured during sewage spills at the discharge site and they were suitable indicators of fecal contamination, but these indicators didn't show the same behavior in other selected sites. This result comes from its well-known inactivation by solar light in tropical zones and the presumable presence of humid acids in the waters of the bay. Conclusion: Fecal indicator bacteria and its statistical relationships reflect recent and chronic fecal contamination at the bay and near shores.

  16. A New Small Drifter for Shallow Water Basins: Application to the Study of Surface Currents in the Muggia Bay (Italy

    Directory of Open Access Journals (Sweden)

    Carmelo Nasello

    2016-01-01

    Full Text Available A new small drifter prototype for measuring current immediately below the free surface in a water basin is proposed in this paper. The drifter dimensions make it useful for shallow water applications. The drifter transmits its GPS location via GSM phone network. The drifter was used to study the trajectory of the surface current in the Muggia bay, the latter containing the industrial harbor of the city of Trieste (Italy. The analysis has been carried out under a wide variety of wind conditions. As regards the behavior of the drifter, the analysis has shown that it is well suited to detect the water current since its motion is marginally affected by the wind. The study has allowed detecting the main features of the surface circulation within the Muggia bay under different meteorological conditions. Also, the study has shown that the trajectory of the surface current within the bay is weakly affected by the Coriolis force.

  17. Behaviour of uranium during mixing in the Delaware and Chesapeake estuaries

    International Nuclear Information System (INIS)

    Sarin, M.M.; Church, T.M.

    1994-01-01

    Unequivocal evidence is presented for the removal of uranium in two major estuarine systems of the north-eastern United States: the Delaware and Chesapeake Bays. In both the estuaries, during all seasons but mostly in summer, dissolved uranium shows distinctly non-conservative behaviour at salinities ≤ 5. At salinities above 5, there are no deviations from the ideal dilution line. In these two estuaries as much as 22% of dissolved uranium is removed at low salinities, around salinity 2. This pronounced removal of uranium observed at low salinities has been investigated in terms of other chemical properties measured in the Delaware Estuary. In the zone of uranium removal, dissolved oxygen is significantly depleted and pH goes through a minimum down to 6.8. In the same low salinity regime, total alkalinity shows negative deviation from the linear dilution line and phosphate is removed. Humic acids, dissolved iron and manganese are also rapidly removed during estuarine mixing in this low salinity region. Thus, it appears that removal of uranium is most likely related to those properties of alkalinity and acid-base system of the upper estuary that may destabilize the uranium-carbonate complex. Under these conditions, uranium may associate strongly with phosphates or humic substances and be removed onto particulate phases and deposited within upper estuarine sediments. (author)

  18. Present status of grouper fisheries at waters of Kotania Bay, Western Seram District Maluku Province

    Science.gov (United States)

    Huliselan, N. V.; Wawo, M.; Tuapattinaja, M. A.; Sahetapy, D.

    2017-10-01

    Study on present status of groupers fishes at waters of Kotania Bay was conducted from 2016 to 2017. Survey and Participatory Rural Appraisal (PRA) method were used to collect and examine data and information concerning species potential and utilization of these species. The result shows that there are 35 species of grouper fishes inhabit Kotania Bay waters. From six genera recorded, Epinephelus found to have more varieties species richness compared to other five genera. In general, main habitat of adult grouper is coral reef, whilst mangrove and seagrass are habitat for nursery and grow out. The potency of the Epinephelus, Cephalopholis and Plectropomus genus tend to decrease started in 2000 up to 2017. At the same period, the production of these genera was also declined. Species potency and production declined was attributable to habitat (coral reef) degradation and high fishing intensity as a result of high market demand. Hand line, bottom long line and trap net are general fishing gear used in harvesting of theses fishes. Fishing activities took place all year round except for bottom long line which only lasted from June to October (East monsoon). Spatial fishing ground distribution is predominantly at coral reef ecosystem of Kotania Bay.

  19. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville-B core, Chesapeake Bay impact structure

    Science.gov (United States)

    Townsend, Gabrielle N.; Gibson, Roger L.; Horton, J. Wright; Reimold, Wolf Uwe; Schmitt, Ralf T.; Bartosova, Katerina

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ± fibrolite ± garnet ± tourmaline ± pyrite ± rutile ± pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite-K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase-quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ± biotite ± garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ± muscovite ± pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ± epidote ± amphibole. The lower basement-derived section and both megablocks exhibit similar middle- to upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafic source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites.

  20. Satellite Derived Water Quality Observations Are Related to River Discharge and Nitrogen Loads in Pensacola Bay, Florida

    Directory of Open Access Journals (Sweden)

    John C. Lehrter

    2017-09-01

    Full Text Available Relationships between satellite-derived water quality variables and river discharges, concentrations and loads of nutrients, organic carbon, and sediments were investigated over a 9-year period (2003–2011 in Pensacola Bay, Florida, USA. These analyses were conducted to better understand which river forcing factors were the primary drivers of estuarine variability in several water quality variables. Remote sensing reflectance time-series data were retrieved from the MEdium Resolution Imaging Spectrometer (MERIS and used to calculate monthly and annual estuarine time-series of chlorophyll a (Chla, colored dissolved organic matter (CDOM, and total suspended sediments (TSS. Monthly MERIS Chla varied from 2.0 mg m−3 in the lower region of the bay to 17.2 mg m−3 in the upper bay. MERIS CDOM and TSS exhibited similar patterns with ranges of 0.51–2.67 (m−1 and 0.11–8.9 (g m−3. Variations in the MERIS-derived monthly and annual Chla, CDOM, and TSS time-series were significantly related to monthly and annual river discharge and loads of nitrogen, organic carbon, and suspended sediments from the Escambia and Yellow rivers. Multiple regression models based on river loads (independent variables and MERIS Chla, CDOM, or TSS (dependent variables explained significant fractions of the variability (up to 62% at monthly and annual scales. The most significant independent variables in the regressions were river nitrogen loads, which were associated with increased MERIS Chla, CDOM, and TSS concentrations, and river suspended sediment loads, which were associated with decreased concentrations. In contrast, MERIS water quality variations were not significantly related to river total phosphorus loads. The spatially synoptic, nine-year satellite record expanded upon the spatial extent of past field studies to reveal previously unseen system-wide responses to river discharge and loading variation. The results indicated that variations in Pensacola Bay Chla

  1. Pre-impact tectonothermal evolution of the crystalline basement-derived rocks in the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure

    Science.gov (United States)

    Gibson, R.L.; Townsend, G.N.; Horton, J. Wright; Reimold, W.U.

    2009-01-01

    Pre-impact crystalline rocks of the lowermost 215 m of the Eyreville B drill core from the Chesapeake Bay impact structure consist of a sequence of pelitic mica schists with subsidiary metagraywackes or felsic metavolcanic rocks, amphibolite, and calc-silicate rock that is intruded by muscovite (??biotite, garnet) granite and granite pegmatite. The schists are commonly graphitic and pyritic and locally contain plagioclase porphyroblasts, fi brolitic sillimanite, and garnet that indicate middle- to upper-amphibolite-facies peak metamorphic conditions estimated at ??0.4-0.5 GPa and 600-670 ??C. The schists display an intense, shallowly dipping, S1 composite shear foliation with local micrometer- to decimeter-scale recumbent folds and S-C' shear band structures that formed at high temperatures. Zones of chaotically oriented foliation, resembling breccias but showing no signs of retrogression, are developed locally and are interpreted as shear-disrupted fold hinges. Mineral textural relations in the mica schists indicate that the metamorphic peak was attained during D1. Fabric analysis indicates, however, that subhorizontal shear deformation continued during retrograde cooling, forming mylonite zones in which high-temperature shear fabrics (S-C and S-C') are overprinted by progressively lower- temperature fabrics. Cataclasites and carbonate-cemented breccias in more competent lithologies such as the calc-silicate unit and in the felsic gneiss found as boulders in the overlying impactite succession may refl ect a fi nal pulse of low-temperature cataclastic deformation during D1. These breccias and the shear and mylonitic foliations are cut by smaller, steeply inclined anastomosing fractures with chlorite and calcite infill (interpreted as D2). This D2 event was accompanied by extensive chlorite-sericitecalcite ?? epidote retrogression and appears to predate the impact event. Granite and granite pegmatite veins display local discordance to the S1 foliation, but elsewhere

  2. Distribution characteristics of volatile methylsiloxanes in Tokyo Bay watershed in Japan: Analysis of surface waters by purge and trap method.

    Science.gov (United States)

    Horii, Yuichi; Minomo, Kotaro; Ohtsuka, Nobutoshi; Motegi, Mamoru; Nojiri, Kiyoshi; Kannan, Kurunthachalam

    2017-05-15

    Surface waters including river water and effluent from sewage treatment plants (STPs) were collected from Tokyo Bay watershed, Japan, and analyzed for seven cyclic and linear volatile methylsiloxanes (VMSs), i.e., D3, D4, D5, D6, L3, L4, and L5 by an optimized purge and trap extraction method. The total concentrations of seven VMSs (ΣVMS) in river water ranged from watershed was estimated at 2300kg. Our results indicate widespread distribution of VMSs in Tokyo Bay watershed and the influence of domestic wastewater discharges as a source of VMSs in the aquatic environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Salinity maxima associated with some sub-surface water masses in the upper layers of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Murty, C.S.; Reddy, C.V.G.

    The distribution of some sub-surface water masses in the western bay of Bengal during the south-west monsoon period is presented. Based on the salinity maxima and sigma t values the existence of waters of Persian Gulf and Red Sea origin could...

  4. Ambient water and sediment quality of Galveston Bay: Present status and historical trends. Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ward, G.H.; Armstrong, N.E.

    1992-08-01

    For many years, data relating to the quality of water and sediment have been collected in the Galveston Bay system by a variety of organizations and individuals. The purpose of the project was to compile these data, and to perform a quantitative assessment of water and sediment quality of Galveston Bay and its evolution over time. The study focused on the following categories of parameters: temperature, salinity and related parameters, suspended sediments and turbidity, pH, dissolved oxygen, nutrients as measured by nitrogen, phosphorous and organic carbon, organics as measured by oil and grease, volatile solids and biochemical oxygen demand, chlorophyll-a, coliforms, metals (total and dissolved), and trace organics, including pesticides, herbicides, PAH's, PCB's, and priority pollutants.

  5. Spectral Wave Characteristics in the Nearshore Waters of Northwestern Bay of Bengal

    Science.gov (United States)

    Anjali Nair, M.; Sanil Kumar, V.; Amrutha, M. M.

    2018-03-01

    The spectral wave characteristics in the nearshore waters of northwestern Bay of Bengal are presented based on the buoy-measured data from February 2013 to December 2015 off Gopalpur at 15-m water depth. The mean seasonal significant wave height and mean wave period indicate that the occurrence of higher wave heights and wave periods is during the southwest monsoon period (June-September). 74% of the sea surface height variance in a year is a result of waves from 138 to 228° and 16% are from 48 to 138°. Strong inter-annual variability is observed in the monthly average wave parameters due to the occurrence of tropical cyclones. Due to the influence of the tropical cyclone Phailin, maximum significant wave height of 6.7 m is observed on 12 October 2013 and that due to tropical cyclone Hudhud whose track is 250 southwest of the study location is 5.84 m on 12 October 2014. Analysis revealed that a single tropical cyclone influenced the annual maximum significant wave height and not the annual average value which is almost same ( 1 m) in 2014 and 2015. The waves in the northwestern Bay of Bengal are influenced by the southwest and northeast monsoons, southern ocean swells and cyclones.

  6. Overview of the Ozone Water-Land Environmental Transition Study: Summary of Observations and Initial Results

    Science.gov (United States)

    Berkoff, T.; Sullivan, J.; Pippin, M. R.; Gronoff, G.; Knepp, T. N.; Twigg, L.; Schroeder, J.; Carrion, W.; Farris, B.; Kowalewski, M. G.; Nino, L.; Gargulinski, E.; Rodio, L.; Sanchez, P.; Desorae Davis, A. A.; Janz, S. J.; Judd, L.; Pusede, S.; Wolfe, G. M.; Stauffer, R. M.; Munyan, J.; Flynn, J.; Moore, B.; Dreessen, J.; Salkovitz, D.; Stumpf, K.; King, B.; Hanisco, T. F.; Brandt, J.; Blake, D. R.; Abuhassan, N.; Cede, A.; Tzortziou, M.; Demoz, B.; Tsay, S. C.; Swap, R.; Holben, B. N.; Szykman, J.; McGee, T. J.; Neilan, J.; Allen, D.

    2017-12-01

    The monitoring of ozone (O3) in the troposphere is of pronounced interest due to its known toxicity and health hazard as a photo-chemically generated pollutant. One of the major difficulties for the air quality modeling, forecasting and satellite communities is the validation of O3 levels in sharp transition regions, as well as near-surface vertical gradients. Land-water gradients of O3 near coastal regions can be large due to differences in surface deposition, boundary layer height, and cloud coverage. Observations in horizontal and vertical directions over the Chesapeake Bay are needed to better understand O3 formation and redistribution within regional recirculation patterns. The O3 Water-Land Environmental Transition Study (OWLETS) was a field campaign conducted in the summer 2017 in the VA Tidewater region to better characterize O3 across the coastal boundary. To obtain over-water measurements, the NASA Langley Ozone Lidar as well as supplemental measurements from other sensors (e.g. Pandora, AERONET) were deployed on the Chesapeake Bay Bridge Tunnel (CBBT) 7-8 miles offshore. These observations were complimented by NASA Goddard's Tropospheric Ozone Lidar along with ground-based measurements over-land at the NASA Langley Research Center (LaRC) in Hampton, VA. On measurement days, time-synchronized data were collected, including launches of ozonesondes from CBBT and LaRC sites that provided additional O3, wind, and temperature vertical distribution differences between land and water. These measurements were complimented with: in-situ O3 sensors on two mobile cars, a micro-pulse lidar at Hampton University, an in-situ O3 sensor on a small UAV-drone, and Virginia DEQ air-quality sites. Two aircraft and a research vessel also contributed to OWLETS at various points during the campaign: the NASA UC-12B with the GeoTASO passive remote sensor, the NASA C-23 with an in-situ chemistry analysis suite, and a SERC research vessel with both remote and in-situ sensors. This

  7. Hydrochemistry of the Bay of Bengal: Possible reasons for a different water-column cycling of carbon and nitrogen from the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, C.K.; Naqvi, S.W.A.; DileepKumar, M.; Varaprasad, S.J.D.; Jayakumar, D.A.; George, M.D.; Singbal, S.Y.S.

    of the Arabian Sea, firmly indicating that the Bay of Bengal is not an active denitrification site. The absence of denitrification in the Bay appears to be incompatible with a slower renewal of intermediate waters and a higher sinking flux of particulate organic...

  8. Effect of water temperature on survival of early-life stages of marbled flounder Pseudopleuronectes yokohamae in Tokyo Bay, Japan.

    Science.gov (United States)

    Lee, Jeong-Hoon; Kodama, Keita; Oyama, Masaaki; Shiraishi, Hiroaki; Horiguchi, Toshihiro

    2017-07-01

    We investigated factors that might have disturbed the stock recovery of marbled flounder in Tokyo Bay by focusing on the early life stages. Field surveys in Tokyo Bay from 2006 to 2011 revealed that mature adult biomass increased from 2006 to 2008 and decreased thereafter. Meanwhile, larval and juvenile densities were high in 2006 and 2008 but low in other years. Discrepancies in the yearly trends of these parameters suggest that mortality during life stages between spawning and early larval phases might have affected the abundance of the subsequent life stages. Monthly mean water temperature between January and February, in which hatching and pelagic larvae occur in the bay, was lower in 2006 (8.6 °C) and 2008 (9.6 °C) than was observed in other years (10.4-11.4 °C). Significant negative correlation between water temperature and larval density implies that mortality during pre- and post-larval stages would be higher in warmer winter years (>10 °C). To test this hypothesis, we examined the effects of water temperature on mortality and development in egg and larval stages under controlled laboratory conditions. Hatching rate was high in a water temperature range of 9.2-12.7 °C (66.6-82.5%), whereas it decreased in cooler (3.7% at 5.9 °C) or warmer (33.9% at 14.8 °C) conditions. Meanwhile, days from fertilization to hatching, size of larvae at hatching and survival rate of larvae after 18 d from hatching were monotonically and significantly decreased as water temperature was elevated. Combined evidence of the field and laboratory studies suggests that a warmer reproductive season (>10 °C) might induce mortalities of marbled flounder larvae in Tokyo Bay. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Examination of contaminant exposure and reproduction of ospreys (Pandion haliaetus) nesting in Delaware Bay and River in 2015.

    Science.gov (United States)

    Rattner, Barnett A; Lazarus, Rebecca S; Bean, Thomas G; McGowan, Peter C; Callahan, Carl R; Erickson, Richard A; Hale, Robert C

    2018-05-22

    A study of ospreys (Pandion haliaetus) nesting in the coastal Inland Bays of Delaware, and the Delaware Bay and Delaware River in 2015 examined spatial and temporal trends in contaminant exposure, food web transfer and reproduction. Concentrations of organochlorine pesticides and metabolites, polychlorinated biphenyls (PCBs), coplanar PCB toxic equivalents, polybrominated diphenyl ethers (PBDEs) and other flame retardants in sample eggs were generally greatest in the Delaware River. Concentrations of legacy contaminants in 2015 Delaware Bay eggs were lower than values observed in the 1970s through early 2000s. Several alternative brominated flame retardants were rarely detected, with only TBPH [bis(2-ethylhexyl)-tetrabromophthalate)] present in 5 of 27 samples at <5 ng/g wet weight. No relation was found between p,p'-DDE, total PCBs or total PBDEs in eggs with egg hatching, eggs lost from nests, nestling loss, fledging and nest success. Osprey eggshell thickness recovered to pre-DDT era values, and productivity was adequate to sustain a stable population. Prey fish contaminant concentrations were generally less than those in osprey eggs, with detection frequencies and concentrations greatest in white perch (Morone americana) from Delaware River compared to the Bay. Biomagnification factors from fish to eggs for p,p'-DDE and total PCBs were generally similar to findings from several Chesapeake Bay tributaries. Overall, findings suggest that there have been improvements in Delaware Estuary waterbird habitat compared to the second half of the 20th century. This trend is in part associated with mitigation of some anthropogenic contaminant threats. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Influence of strong monsoon winds on the water quality around a marine cage-culture zone in a shallow and semi-enclosed bay in Taiwan.

    Science.gov (United States)

    Huang, Yuan-Chao Angelo; Huang, Shou-Chung; Meng, Pei-Jie; Hsieh, Hernyi Justin; Chen, Chaolun Allen

    2012-04-01

    Influences of marine cage culture and monsoonal disturbances, northeasterly (NE) and southwesterly (SW) monsoons on the proximal marine environment were investigated across a gradient of sites in a semi-enclosed bay, Magong Bay (Penghu Islands, Taiwan). Elevated levels of ammonia produced by the cages were the main pollutant and distinguished the cage-culture and intermediary zones (1000 m away from the cages) from the reference zone in the NE monsoon, indicating currents produced by the strong monsoon may have extended the spread of nutrient-enriched waters without necessarily flushing such effluents outside Magong Bay. Moreover, the levels of chlorophyll-a, dissolved oxygen, and turbidity were distinguishable between two seasons, suggesting that resuspension caused by the NE monsoon winds may also influence the water quality across this bay. It indicated that the impacts of marine cage culture vary as a function of distance, and also in response to seasonal movements of water driven by local climatic occurrences. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. South Bay Salt Pond Restoration, Phase II at Ravenswood

    Science.gov (United States)

    Information about the South Bay Salt Pond Restoration Project: Phase II Construction at Ravenswood, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  12. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville B core, Chesapeake Bay impact structure, USA

    Science.gov (United States)

    Townsend, G.N.; Gibson, R.L.; Horton, J. Wright; Reimold, W.U.; Schmitt, R.T.; Bartosova, K.

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ?? fibrolite ?? garnet ?? tourmaline ?? pyrite ?? rutile ?? pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite- K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase- quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ?? biotite ?? garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ?? muscovite ?? pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ?? epidote ?? amphibole. The lower basement-derived section and both megablocks exhibit similar middleto upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafi c source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites. ?? 2009 The Geological Society of America.

  13. Social-Ecological System in Seagrass Ecosystem Management at Kotania Bay Waters, Western Seram, Indonesia

    Science.gov (United States)

    Wawo, Mintje

    2017-10-01

    The concept of the Social-Ecological System (SES) of the coastal region, can be found in the seagrass ecosystem in the Kotania Bay Waters. Seagrass ecosystem as one of the productive ecosystem is part of an ecological system that can influence and influenced social system, in this case by people living around the seagrass ecosystem. This aim to estimating the socio-ecological vulnerability system of the seagrass ecosystem in the Kotania Bay Waters, the Linkage Matrix is used (de Chazal et al., 2008). This linkage matrix was created to determine the perception and understanding of the community on the ecosystem services provided by the seagrass ecosystem through the appraisal of various stakeholders. The results show that social values are rooted in the public perception of ecosystem goods and services, which are rarely considered. The ecological and economic value of natural resources is increasingly being used to determine the priority areas in the planning and management of coastal areas. The social value that exists in natural resources is highly recognized in conservation.

  14. 226Ra and 228Ra in the mixing zones of the Pee Dee River-Winyah Bay, Yangtze River and Delaware Bay Estuaries

    International Nuclear Information System (INIS)

    Elsinger, R.J.; Moore, W.S.

    1984-01-01

    226 Ra and 228 Ra have non-conservative excess concentrations in the mixing zones of the Pee Dee River-Winyah Bay estuary, the Yangtze River estuary, and the Delaware Bay estuary. Laboratory experiments, using Pee Dee River sediment, indicate desorption of 226 Ra to increase with increasing salinities up to 20 per mille. In Winyah Bay desorption from river-borne sediments could contribute almost all of the increases for both isotopes. Desorption adds only a portion of the excess 228 Ra measured in the Yangtze River and adjacent Shelf waters and Delaware Bay. In the Yangtze River the mixing zone extends over a considerable portion of the Continental Shelf where 228 Ra is added to the water column by diffusion from bottom sediments, while 226 Ra concentrations decrease from dilution. Diffusion of 228 Ra from bottom sediments in Delaware Bay primarily occurs in the upper part of the bay ( 228 Ra of 0.33 dpm cm -2 year was determined for Delaware Bay. (author)

  15. Petrographic Studies of Rocks from The Chesapeake Bay Impact ...

    African Journals Online (AJOL)

    The Exmore breccia contains angular clasts of older sedimentary material, and ... structure, stratigraphy and ground-water quality in the area. .... breccia, but not into the deeper crater filling, which was recently intersected by the 2005/6.

  16. EPA's Review of Concentrated Animal Feeding Operation (CAFO) Permits and Nutrient Management Plans in the Chesapeake Bay Watershed

    Science.gov (United States)

    Starting in 2013, EPA conducted reviews of Concentrated Animal Feeding Operations (CAFOs) permits and nutrient management plans (NMPs) in six of the Bay jurisdictions (Delaware, Maryland, New York, Pennsylvania, Virginia and West Virginia).

  17. 33 CFR 165.501 - Chesapeake Bay entrance and Hampton Roads, VA and adjacent waters-Regulated Navigation Area.

    Science.gov (United States)

    2010-07-01

    ... eastern side of the Ocean View Avenue (U.S. Route 60) Bridge, Norfolk, Virginia. (xii) A line drawn across... other person on board with previous experience navigating vessels on the waters of the Regulated...

  18. Impact of the large-scale Arctic circulation and the North Water Polynya on nutrient inventories in Baffin Bay

    Science.gov (United States)

    Tremblay, Jean-Éric; Gratton, Yves; Carmack, Eddy C.; Payne, Christopher D.; Price, Neil M.

    2002-08-01

    The distributions of nitrate, phosphate, and silicate in northern Baffin Bay were determined from 90 bottle casts taken between April 11 and July 21, 1998. During late spring, low-salinity Arctic water entered northern Smith Sound and mixed with Baffin Bay water (BBW) within the North Water Polynya. The Arctic water originated from the Bering Sea and contained high concentrations of phosphate and silicate (referred to as silicate-rich Arctic water (SRAW)). The distribution of the two water masses was established using a new tracer, Siex, which showed moderate penetration of SRAW into Smith Sound during April and a very strong incursion in May and June, consistent with the intensification of southward current velocities. Biological depletion of macronutrients in BBW began in April and continued until nitrate was exhausted from the upper mixed layer in early June. Beneath the Polynya the deep waters (>450 m) showed a marked increase in nutrient concentration toward the bottom, which was most pronounced in the south and much stronger for silicate than nitrate and phosphate. The silicate enrichment was consistent with dissolution of diatom-derived biogenic silica in deep waters. The results indicate that the North Water acts as a silicate trap in which the biota differentially transports surface silicate to depth, thereby influencing local and downstream nutrient signatures.

  19. 33 CFR 80.1430 - Kaneohe Bay, Oahu, HI.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kaneohe Bay, Oahu, HI. 80.1430 Section 80.1430 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1430 Kaneohe Bay, Oahu, HI. A straight line...

  20. 33 CFR 80.1420 - Mamala Bay, Oahu, HI.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mamala Bay, Oahu, HI. 80.1420 Section 80.1420 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1420 Mamala Bay, Oahu, HI. A line drawn from...

  1. Integrating science and resource management in Tampa Bay, Florida

    Science.gov (United States)

    Yates, Kimberly K.; Greening, Holly; Morrison, Gerold

    2011-01-01

    Tampa Bay is recognized internationally for its remarkable progress towards recovery since it was pronounced "dead" in the late 1970s. Due to significant efforts by local governments, industries and private citizens throughout the watershed, water clarity in Tampa Bay is now equal to what it was in 1950, when population in the watershed was less than one-quarter of what it is today. Seagrass extent has increased by more than 8,000 acres since the mid-1980s, and fish and wildlife populations are increasing. Central to this successful turn-around has been the Tampa Bay resource management community's long-term commitment to development and implementation of strong science-based management strategies. Research institutions and agencies, including Eckerd College, the Florida Wildlife Commission Fish and Wildlife Research Institute, Mote Marine Laboratory, National Oceanic and Atmospheric Administration, the Southwest Florida Water Management District, University of South Florida, U.S. Environmental Protection Agency, U.S. Geological Survey, local and State governments, and private companies contribute significantly to the scientific basis of our understanding of Tampa Bay's structure and ecological function. Resource management agencies, including the Tampa Bay Regional Planning Council's Agency on Bay Management, the Southwest Florida Water Management District's Surface Water Improvement and Management Program, and the Tampa Bay Estuary Program, depend upon this scientific basis to develop and implement regional adaptive management programs. The importance of integrating science with management has become fully recognized by scientists and managers throughout the region, State and Nation. Scientific studies conducted in Tampa Bay over the past 10–15 years are increasingly diverse and complex, and resource management programs reflect our increased knowledge of geology, hydrology and hydrodynamics, ecology and restoration techniques. However, a synthesis of this

  2. Spectral Dependence of the Scattering Coefficient in Case 1 and Case 2 Waters

    Science.gov (United States)

    Gould, Richard W., Jr.; Arnone, Robert A.; Martinolich, Paul M.

    1999-04-01

    An approximate linear relationship between the scattering coefficient and the wavelength of light in the visible is found in case 1 and case 2 waters. From this relationship, we estimate scattering at an unknown wavelength from scattering at a single measured wavelength. This approximation is based on measurements in a 1.5-m-thick surface layer collected with an AC9 instrument at 63 stations in the Arabian Sea, northern Gulf of Mexico, and coastal North Carolina. The light-scattering coefficient at 412 nm ranged from 0.2 to 15.1 m 1 in these waters, and the absorption coefficient at 412 nm ranged from 0.2 to 4.0 m 1 . A separate data set for 100 stations from Oceanside, California, and Chesapeake Bay, Virginia, was used to validate the relationship. Although the Oceanside waters were considerably different from the developmental data set (based on absorption-to-scattering ratios and single-scattering albedos), the average error between modeled and measured scattering values was 6.0% for the entire test data set over all wavelengths (without regard to sign). The slope of the spectral scattering relationship decreases progressively from high-scattering, turbid waters dominated by suspended sediments to lower-scattering, clear waters dominated by phytoplankton.

  3. Function, Design, and Establishment of Riparian Forest Buffers: A Review

    OpenAIRE

    Klapproth, Julia Caldwell

    1999-01-01

    Through the interaction of their soils, hydrology, and biotic communities, riparian forests protect and improve water quality, provide habitat for plants and animals, support aquatic communities, and provide many benefits to humans. Virginia, along with other states in the Chesapeake Bay region, has recognized the importance of riparian forests by implementing a plan to restore forested buffers along streams, rivers, and lakes. This project reviews selected literature on riparian forest bu...

  4. Ground Water is a Chronic Source of Chloride to Surface Water of an Urban Stream Exposed to Road Salt in a Chesapeake Bay Watershed

    Science.gov (United States)

    Mayer, P.; Doheny, E.; Kaushal, S.; Groffman, P.; Striz, E.

    2006-05-01

    Recent evidence from the mid-Atlantic suggests that freshwater supplies are threatened by chronic chloride inputs from road salts applied to improve highway safety. Elevated chloride levels also may limit the ability of aquatic systems to microbially process nitrate nitrogen, a nutrient whose elevated levels pose human and ecological threats. Understanding the behavior of chloride in urban watersheds where road salts are applied is critical to predicting subsequent impacts to ecosystem health and drinking water supplies. Here we report on a long-term study of water chemistry in Minebank Run, a recently restored stream in an urban watershed of Towson, MD that receives chronic chloride inputs from the 695 Beltway highway and connecting arteries. Chloride, sodium, and specific conductance were greatly elevated in the both surface water and ground water of Minebank Run, spiking in correspondence to road salt application in the winter. Chloride levels were consistently higher in ground water of the bank side of a minor roadway and downstream of the 695 Beltway. Surface water chloride levels remained elevated throughout the year apparently because ground water continued to supply surface water with chloride even after road salt application ceased. Thus, ground water may represent a chronic source of chloride to surface water, thereby contributing to the upward trend in freshwater salinity in urbanizing areas. Stream susceptibility to road salt impacts may depend upon ground water hydrology and stream geomorphology. However, geomorphic stream restoration practices widely used in the mid-Atlantic are not designed to address salinity effects. Source control of road salts may be necessary to reduce environmental risk.

  5. Evaluation of coastal waters receiving fish processing waste: Lota Bay as a case study.

    Science.gov (United States)

    Ahumada, Ramón; Rudolph, Anny; Contreras, Sergio

    2004-01-01

    Liquid wastes from the fish meal and oil processing industries produce serious environmental impacts in coastal embayments on the coasts of Chile and Peru. This article presents an analysis of an environmental monitoring program at Lota Bay, a shallow coastal indentation in central Chile (37 degrees S) exposed to industrial fishing activity. The study of the environmental impact produced by waste effluents permitted making an evaluation of the bay's capacity for seasonal recovery from this impact. Seasonal cruises were carried out during 1994 and in 1996, 1997, and 1998. Variables analyzed included salinity, temperature, dissolved oxygen, ammonium concentration and surface oil and grease. The hydrographic regime of Lota Bay follows a seasonal pattern, where, typical of most SE pacific embayments, waters from subsuperficial oxygen minimum zones moved into the bay. The percentages of dissolved oxygen were critical in the area of organic waste discharge. The impact of wastewater is related to the type and status of the fishery, including: (i) overloads of plant production lines, (ii) maintenance and cleaning of installations, and (iii) degree of shipboard fishing conservation. Major alterations were observed in summer, when the highest discharge of organic load occurred. In winter, an improvement in the re-aeration conditions reduced the impact. Remedial measures implemented beginning in 1997 arose from the monitoring program and had to be separated into two recovery factors including (a) internal management of plants and (b) treatment of plant effluents.

  6. Mobile Bay turbidity plume study

    Science.gov (United States)

    Crozier, G. F.

    1976-01-01

    Laboratory and field transmissometer studies on the effect of suspended particulate material upon the appearance of water are reported. Quantitative correlations were developed between remotely sensed image density, optical sea truth data, and actual sediment load. Evaluation of satellite image sea truth data for an offshore plume projects contours of transmissivity for two different tidal phases. Data clearly demonstrate the speed of change and movement of the optical plume for water patterns associated with the mouth of Mobile bay in which relatively clear Gulf of Mexico water enters the bay on the eastern side. Data show that wind stress in excess of 15 knots has a marked impact in producing suspended sediment loads.

  7. South Bay Salt Pond Tidal Wetland Restoration Phase II Planning

    Science.gov (United States)

    Information about the SFBWQP South Bay Salt Pond Tidal Wetland Restoration Phase II Planning project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic re

  8. Evaluation of effects of changes in canal management and precipitation patterns on salinity in Biscayne Bay, Florida, using an integrated surface-water/groundwater model

    Science.gov (United States)

    Lohmann, Melinda A.; Swain, Eric D.; Wang, John D.; Dixon, Joann

    2012-01-01

    Biscayne National Park, located in Biscayne Bay in southeast Florida, is one of the largest marine parks in the country and sustains a large natural marine fishery where numerous threatened and endangered species reproduce. In recent years, the bay has experienced hypersaline conditions (salinity greater than 35 practical salinity units) of increasing magnitude and duration. Hypersalinity events were particularly pronounced during April to August 2004 in nearshore areas along the southern and middle parts of the bay. Prolonged hypersaline conditions can cause degradation of water quality and permanent damage to, or loss of, brackish nursery habitats for multiple species of fish and crustaceans as well as damage to certain types of seagrasses that are not tolerant of extreme changes in salinity. To evaluate the factors that contribute to hypersalinity events and to test the effects of possible changes in precipitation patterns and canal flows into Biscayne Bay on salinity in the bay, the U.S. Geological Survey constructed a coupled surface-water/groundwater numerical flow model. The model is designed to account for freshwater flows into Biscayne Bay through the canal system, leakage of salty bay water into the underlying Biscayne aquifer, discharge of fresh and salty groundwater from the Biscayne aquifer into the bay, direct effects of precipitation on bay salinity, indirect effects of precipitation on recharge to the Biscayne aquifer, direct effects of evapotranspiration (ET) on bay salinity, indirect effects of ET on recharge to the Biscayne aquifer, and maintenance of mass balance of both water and solute. The model was constructed using the Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) simulator, version 3.3, which couples the two-dimensional, surface-water flow and solute-transport simulator SWIFT2D with the density-dependent, groundwater flow an solute-transport simulator SEAWAT. The model was calibrated by a trial

  9. Derivation of Delaware Bay tidal parameters from space shuttle photography

    International Nuclear Information System (INIS)

    Zheng, Quanan; Yan, Xiaohai; Klemas, V.

    1993-01-01

    The tide-related parameters of the Delaware Bay are derived from space shuttle time-series photographs. The water areas in the bay are measured from interpretation maps of the photographs with a CALCOMP 9100 digitizer and ERDAS Image Processing System. The corresponding tidal levels are calculated using the exposure time annotated on the photographs. From these data, an approximate function relating the water area to the tidal level at a reference point is determined. Based on the function, the water areas of the Delaware Bay at mean high water (MHW) and mean low water (MLW), below 0 m, and for the tidal zone are inferred. With MHW and MLW areas and the mean tidal range, the authors calculate the tidal influx of the Delaware Bay, which is 2.76 x 1O 9 m 3 . Furthermore, the velocity of flood tide at the bay mouth is determined using the tidal flux and an integral of the velocity distribution function at the cross section between Cape Henlopen and Cape May. The result is 132 cm/s, which compares well with the data on tidal current charts

  10. Chemistry of Hot Spring Pool Waters in Calamba and Los Banos and Potential Effect on the Water Quality of Laguna De Bay

    Science.gov (United States)

    Balangue, M. I. R. D.; Pena, M. A. Z.; Siringan, F. P.; Jago-on, K. A. B.; Lloren, R. B.; Taniguchi, M.

    2014-12-01

    Since the Spanish Period (1600s), natural hot spring waters have been harnessed for balneological purposes in the municipalities of Calamba and Los Banos, Laguna, south of Metro Manila. There are at more than a hundred hot spring resorts in Brgy. Pansol, Calamba and Tadlac, Los Banos. These two areas are found at the northern flanks of Mt. Makiling facing Laguna de Bay. This study aims to provide some insights on the physical and chemical characteristics of hot spring resorts and the possible impact on the lake water quality resulting from the disposal of used water. Initial ocular survey of the resorts showed that temperature of the pool water ranges from ambient (>300C) to as high as 500C with an average pool size of 80m3. Water samples were collected from a natural hot spring and pumped well in Los Banos and another pumped well in Pansol to determine the chemistry. The field pH ranges from 6.65 to 6.87 (Pansol springs). Cation analysis revealed that the thermal waters belonged to the Na-K-Cl-HCO3 type with some trace amount of heavy metals. Methods for waste water disposal are either by direct discharge down the drain of the pool or by discharge in the public road canal. Both methods will dump the waste water directly into Laguna de Bay. Taking in consideration the large volume of waste water used especially during the peak season, the effect on the lake water quality would be significant. It is therefore imperative for the environmental authorities in Laguna to regulate and monitor the chemistry of discharges from the pool to protect both the lake water as well as groundwater quality.

  11. Assessment of a Mega-Float on water quality and ecosystem in Tokyo bay; Choogata futaishiki kaiyo kozobutsu ga Tokyowan no suishitsu to seitaikei ni oyobosu eikyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kyozuka, Y.; Hu, C.; Hasemi, H. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Hikai, A.

    1997-08-01

    The effect on the marine environment in the bay when a Mega-Float is installed in a bay was investigated. The physical process such as a residual flow (including tidal currents, water temperature, salt, density, and density currents), and the ecosystem model for which floating organic matter and plankton are handled were incorporated to develop a program for water quality calculation in a bay. The program was used for Tokyo Bay and compared with the conventional calculation result and the oceanograhpic observation result. Simultaneously, the effect on the Mega-Float was considered. On the flow in Tokyo Bay in summer, the calculation result that comparatively coincided with the observation value in a residual flow level was obtained. The horizontal distribution of COD comparatively coincides with the existing observation result. The influence that the Mega-Float exerts on the flow, water temperature, water quality, and ecosystem in the ambient sea area was little and local in the calculation scale (L {times} B {times} d = 6 km {times} 3 km {times} 2 m) of this time. However, the difference occurring due to the design position must also be investigated in future. 12 refs., 8 figs., 5 tabs.

  12. Magnitude and Distribution of Flows into Northeastern Florida Bay

    Science.gov (United States)

    Patino, Eduardo; Hittle, Clinton D.

    2000-01-01

    Changes in water-management practices have been made to accommodate a large and rapidly growing urban population along the Atlantic Coast and to meet the demand for intensive agricultural activities. These changes have resulted in a highly managed hydrologic system consisting of numerous canals, levees, control structures, and pumping stations that have altered the hydrology of the Everglades and Florida Bay ecosystems. Over the past decade, Florida Bay has experienced sea-grass die-off and algal blooms, which are indicators of ecological change attributed primarily to the increase in salinity and nutrient content of bay waters. Because plans are to restore sheetflow in the Everglades wetlands to its natural state, water managers anticipate a change in the magnitude and timing of freshwater exiting the mainland through the creeks that cut through the embankment or as sheetflow into Florida Bay.

  13. Evolution of extreme high waters along the east coast of India and at the head of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, C.; Unnikrishnan, A.S.; Woodworth, P.L.

    . The highest water levels above mean sea level have the greatest magnitude towards the northern part of the Bay, which decreases towards its south-west. Extreme high waters were observed to result from a combination of moderate, or even small, surges with large...

  14. Changing Salinity Patterns in Biscayne Bay, Florida

    Science.gov (United States)

    ,

    2004-01-01

    Biscayne Bay, Fla., is a 428-square-mile (1,109-square-kilometer) subtropical estuarine ecosystem that includes Biscayne National Park, the largest marine park in the U.S. national park system (fig. 1). The bay began forming between 5,000 and 3,000 years ago as sea level rose and southern Florida was flooded. Throughout most of its history, the pristine waters of the bay supported abundant and diverse fauna and flora, and the bay was a nursery for the adjacent coral-reef and marine ecosystems. In the 20th century, urbanization of the Miami-Dade County area profoundly affected the environment of the bay. Construction of powerplants, water-treatment plants, and solid-waste sites and large-scale development along the shoreline stressed the ecosystem. Biscayne National Monument was established in 1968 to ?preserve and protect for the education, inspiration, recreation and enjoyment of present and future generations a rare combination of terrestrial, marine, and amphibious life in a tropical setting of great natural beauty? (Public Law 90?606). The monument was enlarged in 1980 and designated a national park.

  15. Algal Turf Scrubbers: Cleaning Water while Capturing Solar Energy for Bio fuel Production

    International Nuclear Information System (INIS)

    Jeffrey Bannon, J.; Adey, W.

    2010-01-01

    Algal Turfs are bio diverse communities of unicellular to filamentous algae of all major algal phyla. Algal Turf Scrubbers (ATS) are bioengineered ecosystems dominated by algal turfs. They clean water to very high quality, and remove CO 2 from the atmosphere by capturing solar energy at rates 10 times that of agriculture and 50 times that of forestry. Since they are controlled ecosystems, using local algae, ATS does not suffer the major disadvantages of agricultural crops, which for maximum efficiency require fertilizers, herbicides and pesticides. ATS removes CO 2 from water and the atmosphere, and can be configured to remove CO 2 from power plant stack gases. As a normal part of operations, ATS removes heavy metals, break down toxic hydrocarbons, and oxygenates treated waters. ATS systems are capable of removing nitrogen and phosphorous from surface waters in the mid latitude US at $0.60/kg and $10.60/kg respectively (10% of the cost certified by the Chesapeake Bay Commission), and independently producing an energy product at $0.85/gallon. Given a nutrient credit system for rewarding nutrient removal from rivers and lakes, this price can be driven down to below $.40/gallon. Conservatively ATS can produce the equivalent of US imported oil on less than 30 M acres of land along major rivers

  16. Potential climate change impacts on a tropical estuary: Hilo Bay, Hawaii

    Science.gov (United States)

    Adolf, J.; LaPinta, J.; Marusek, J.; Pascoe, K.; Pugh, A.

    2016-02-01

    Hilo Bay is a tropical estuarine ecosystem on the northeast (windward) coast of Hawai`i Island that is potentially vulnerable to climate change effects mediated through elevated water temperatures and/or changing rainfall patterns that impact river and groundwater fluxes. Here, we document trends in water temperature, river flow and phytoplankton dynamics in Hilo Bay. Hilo Bay is fed by two major rivers, Wailuku and Honoli`i, both of which have shown long term declines in output over their 85 and 38 year monitoring periods (USGS), respectively. Time series of groundwater inputs to Hilo Bay do not exist, but the average estimated rate rivals that of average river inputs. Daily average Hilo Bay water temperatures have increased at a rate of 0.35 degrees C per year (p Hilo Bay water quality buoy began in 2010, with the warmest temperatures on record recorded Sept 2015. Salinity did not show a trend over this same time period. Phytoplankton showed a pronounced seasonal cycle in Hilo Bay with a long term average of 3.7 mg m-3 and dominance by diatoms that exploit the co-availability of silica and nitrate in this environment. On shorter time scales of days to Hilo Bay salinity, temperature and phytoplankton biomass. Coincidental atmospheric warming, SST warming in the adjacent North Pacific ocean, and declining river flows will likely work together to result in elevated SST in Hilo Bay if observed trends continue. The El Nino event that started this year is expected to exacerbate this warming through reduce river flow and warmer regional SST.

  17. Coastal Acidification as Nutrients Over Enrichment Impact: A Case Study in Ambon Bay, Indonesia

    Directory of Open Access Journals (Sweden)

    Idha Yulia Ikhsani

    2017-05-01

    Full Text Available Ambon Bay is a silled bay on Ambon Island consisting of two regions, Inner Ambon Bay (IAB and Outer Ambon Bay (OAB that are separated by shallow sill. Ambon bay and its surrounding have economically important ecosystem since the utilization for many activities. The bay is affected by anthropogenic impacts associated with urbanization, climate change, and nutrients over enrichment. The “deep water-rich nutrients” from Banda Sea that enter the bay during Southeast monsoon also contribute to this enrichment as well as the nutrients transport from the land. The high concentration of nutrients increases carbon dioxide level and promotes acidifications. There are literatures about nutrients over enrichment in Ambon Bay, however, little is known about coastal acidification as nutrients over enrichment impact. In order to study the effect of nutrients distribution on the acidity of Ambon Bay, the researchers measured pH and concentrations of nutrients {nitrate + nitrite (N+N and Soluble Reactive Phosphate (SRP} from water samples collected in 7 stations on both IAB and OAB during Southeast monsoon. The results showed that in surface water, nutrients concentrations is increased from May to June due to the “deep water flushing” occurrence on May and increased precipitations from May to June. From July to August, the nutrients concentrations on surface layer decreased, due to the decreased precipitations. In column and bottom water, the nutrients concentrations were increased from May to August. While the acidity have reverse pattern from the nutrients, when nutrient concentrations increased the acidity was decreased. From correlation test, pH was not significantly correlated with the concentrations of nutrients on surface water, but showed significantly correlated on column and bottom water. The results indicated that the distribution of nutrients on column and bottom water might be an important environmental factor affecting the acidification of

  18. Myxosporean plasmodial infection associated with ulcerative lesions in young-of-the-year Atlantic menhaden in a tributary of the Chesapeake Bay, and possible links to Kudoa clupeidae

    Science.gov (United States)

    Reimschuessel, R.; Gieseker, C.M.; Driscoll, C.; Baya, A.; Kane, A.S.; Blazer, V.S.; Evans, J.J.; Kent, M.L.; Moran, J.D.W.; Poynton, S.L.

    2003-01-01

    Ulcers in Atlantic menhaden Brevoortia tyrannus (Latrobe) (Clupeidae), observed along the USA east coast, have been attributed to diverse etiologies including bacterial, fungal and, recently, harmful algal blooms. To understand the early pathogenesis of these lesions, we examined juvenile Atlantic menhaden collected during their seasonal presence in Chesapeake Bay tributaries from April to October 1999 and from March to August 2000. We conducted histopathological examinations of young-of-the-year fish from the Pocomoke River tributary, which has a history of fish mortalities and high lesion prevalence. Kudoa clupeidae (Myxozoa: Myxosporea) spores were present in the muscles of fish collected in both years. Of the fish assessed by histology in April, 5 to 14% were infected, while in May 90 to 96% were infected. Infection rates remained high during the summer. Mature spores were primarily located within myomeres and caused little or no observable pathological changes. Ultrastructure showed spores with capsulogenic cells bearing filamentous projections, and a basal crescentic nucleus with mottled nucleoplasm containing cleaved, condensed chromatin. Also, a highly invasive plasmodial stage of a myxozoan was found in the lesions of juvenile Atlantic menhaden. The plasmodia were observed in fish collected between May and July, with the maximum occurrence in late June 1999 and late May 2000. Plasmodia penetrated and surrounded muscle bundles, causing grossly observable raised lesions in 73% of all fish infected with this invasive stage. Plasmodia were also detected in the visceral organs, branchial arches, and interocular muscles of some fish. Some of the invasive extrasporogonic plasmodial lesions were associated with ulcers and chronic inflammatory infiltrates. The plasmodial stage appeared to slough out of the tissue with subsequent evidence of wound healing. Ultrastructure showed plasmodia with an elaborate irregular surface, divided into distinct ectoplasm and

  19. POTENTIAL HAZARDS OF SEDIMENT IN KENDARI BAY, SOUTHEAST SULAWESI

    Directory of Open Access Journals (Sweden)

    Nur Adi Kristanto

    2017-07-01

    Full Text Available Kendari bay is located in front of Kendari city. There are two harbors in the inner part of bay which very important to support economic activities such as shipping and passenger transportation. The result of coastal characteristic mapping and physical oceanography survey show various coastal morphology, vegetation, weathering processes, sedimentation, currents, and water depth and sea floor morphology. Kendari bay is an enclosed bay; the area is wide in the inner part and narrow in mouth of bay (outlet, the morphology look like a bottle’s neck. Numerous mouth rivers are concentrate around the bay. The rivers load material from land since erosion on land is intensive enough. There is indication that sediment supplies from land trough river mouth not equivalent with outlet capacity. Sediment load is trapped in the inner bay caused the outlet morphology. So high sediment rate play an important role in the process of shallow of water depth in Kendari bay. This condition make the Kendari bay is a prone area of sediment hazard due to height rate of sedimentary process. Therefore, to anticipate the hazards, precaution should be taken related to the Kendari bay as the center of activities in southeast of Sulawesi. The further survey is needed such as marine geotechnique and on land environmental to collect data, which can be used as database for development planning. Key words: Potential hazard, sediment, Kendari Bay Teluk

  20. 33 CFR 80.1130 - San Luis Obispo Bay, CA.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Luis Obispo Bay, CA. 80.1130 Section 80.1130 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1130 San Luis Obispo Bay, CA. A line drawn from...

  1. Improved Storm Monitoring and Prediction for the San Francisco Bay Area

    Science.gov (United States)

    Cifelli, R.; Chandrasekar, V.; Anderson, M.; Davis, G.

    2017-12-01

    The Advanced Quantitative Precipitation Information (AQPI) System is a multi-faceted project to improve precipitation and hydrologic monitoring, prediction, and decision support for the San Francisco Bay Area. The Bay Area faces a multitude of threats from extreme events, including disrupted transportation from flooded roads and railroad lines, water management challenges related to storm water, river and reservoir management and storm-related damage demanding emergency response. The threats occur on spatial scales ranging from local communities to the entire region and time scales ranging from hours to days. These challenges will be exacerbated by future sea level rise, more extreme weather events and increased vulnerabilities. AQPI is a collaboration of federal, state and local governments with assistance from the research community. Led by NOAA's Earth System Research Laboratory, in partnership with the Cooperative Institute for Research in the Atmosphere, USGS, and Scripps, AQPI is a four-year effort funded in part by a grant from the California Department of Water Resource's Integrated Regional Water Management Program. The Sonoma County Water Agency is serving as the local sponsor of the project. Other local participants include the Santa Clara Valley Water District, San Francisco Public Utilities Commission, and the Bay Area Flood Protection Agencies Association. AQPI will provide both improved observing capabilities and a suite of numerical forecast models to produce accurate and timely information for benefit of flood management, emergency response, water quality, ecosystem services, water supply and transportation management for the Bay Area. The resulting information will support decision making to mitigate flood risks, secure water supplies, minimize water quality impacts to the Bay from combined sewer overflows, and have improved lead-time on coastal and Bay inundation from extreme storms like Atmospheric Rivers (ARs). The project is expected to

  2. PRIMARILY RESULTS OF PHYTOPLANKTON DNA AND VARIATION TO ENVIRONMENTAL FACTORS IN DURRES`S BAY COASTAL WATERS (ALBANIA

    Directory of Open Access Journals (Sweden)

    Laura Gjyli

    2013-10-01

    Full Text Available After isolation of phytoplankton DNA in coastal waters of Durres Bay, Albania, quantification and analysis of quality were investigated with spectrophotometric analysis. Analysis of UV absorption by the nucleotides provides a simple and accurate estimation of the concentration of nucleic acids in a sample. This method is however limited by the quantity of DNA and the purity of the preparation. Also biotic environment factors as Chlorophyll a and abiotic environment factors as temperature, salinity, pH, dissolved oxygen, turbidity, nitrate, phosphate were investigated to assess DNA quantities in different environment conditions. The Chlorophyll a was studied also to access the level of trophy. The sample stations were: Golem Beach (GB, Channel of Plepa (ChP, Hekurudha Beach (HB, Ex-Fuel Quay in Marine Durres Harbour (EFQ, Water Channel of Durres City (WChDC and Currila Beach (CB. Samples are taken in one meter depth from the water surface. Water samples were collected monthly from April to October 2011. The most abundant stations with phytoplankton DNA are Channel of Plepa and Water Channel of Durres City. This confirms that there are spills of fresh waters, sewage or agricultural water spills, often discharge in coastal waters. Referring Mutliple Regression Analysis and single regression analysis, the association between phytoplankton DNA and environment factors was strong (R2 = 0.75. Basing in single correlation and statistically significance (p-value ≤ 0.05, the enviroment factors that correlated to phytoplankton DNA were pH, salinity and phosphate; explaining thus the variation of total phytoplankton in Durres Bay coastal waters.

  3. Algae Reefs in Shark Bay, Western Australia, Australia

    Science.gov (United States)

    1990-01-01

    Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.

  4. Safety assessment of a dry storage container drop into irradiated fuel bays

    International Nuclear Information System (INIS)

    Parlatan, Y.; Oh, D.; Arguner, D.; Lei, Q.M.; Kulpa, T.; Bayoumi, M.H.

    2004-01-01

    In Pickering nuclear stations, Dry Storage Containers (DSCs) are employed to transfer used (irradiated) fuel from an irradiated fuel bay to a dry storage facility for interim storage. Each DSC is wet-loaded in the bay water with 4 fuel modules containing up to a total of 384 used fuel bundles that have been out of the reactor core for at least 10 years. Once the DSC is fully loaded, the crane in the bay raises the DSC for spray-wash such that the bottom of the DSC is never more than 2 m above the bay water surface. This paper presents a safety assessment of consequences of an unlikely event that a fully loaded DSC is accidentally dropped into an irradiated fuel bay from the highest possible elevation. Experiments and analyses performed elsewhere show that the DSC drop-generated shock waves will not threaten the structural integrity of an irradiated fuel bay. Therefore, this assessment only assesses the potential damage to the spent fuel bundles in the bay due to pressure transients generated by an accidental DSC drop. A bounding estimate approach has been used to calculate the upper limit of the pressure pulse and the resulting static and dynamic stresses on the fuel sheath. The bounding calculations and relevant experimental results demonstrate that an accidental drop of a fully loaded DSC into an irradiated fuel bay will not cause additional failures of the main fuel inventories stored in modules in the bay water, thus no consequential release of fission products into the bay water. (author)

  5. USGS Tampa Bay Pilot Study

    Science.gov (United States)

    Yates, K.K.; Cronin, T. M.; Crane, M.; Hansen, M.; Nayeghandi, A.; Swarzenski, P.; Edgar, T.; Brooks, G.R.; Suthard, B.; Hine, A.; Locker, S.; Willard, D.A.; Hastings, D.; Flower, B.; Hollander, D.; Larson, R.A.; Smith, K.

    2007-01-01

    Many of the nation's estuaries have been environmentally stressed since the turn of the 20th century and will continue to be impacted in the future. Tampa Bay, one the Gulf of Mexico's largest estuaries, exemplifies the threats that our estuaries face (EPA Report 2001, Tampa Bay Estuary Program-Comprehensive Conservation and Management Plan (TBEP-CCMP)). More than 2 million people live in the Tampa Bay watershed, and the population constitutes to grow. Demand for freshwater resources, conversion of undeveloped areas to resident and industrial uses, increases in storm-water runoff, and increased air pollution from urban and industrial sources are some of the known human activities that impact Tampa Bay. Beginning on 2001, additional anthropogenic modifications began in Tampa Bat including construction of an underwater gas pipeline and a desalinization plant, expansion of existing ports, and increased freshwater withdrawal from three major tributaries to the bay. In January of 2001, the Tampa Bay Estuary Program (TBEP) and its partners identifies a critical need for participation from the U.S. Geological Survey (USGS) in providing multidisciplinary expertise and a regional-scale, integrated science approach to address complex scientific research issue and critical scientific information gaps that are necessary for continued restoration and preservation of Tampa Bay. Tampa Bay stakeholders identified several critical science gaps for which USGS expertise was needed (Yates et al. 2001). These critical science gaps fall under four topical categories (or system components): 1) water and sediment quality, 2) hydrodynamics, 3) geology and geomorphology, and 4) ecosystem structure and function. Scientists and resource managers participating in Tampa Bay studies recognize that it is no longer sufficient to simply examine each of these estuarine system components individually, Rather, the interrelation among system components must be understood to develop conceptual and

  6. Satellite Derived Water Quality Observations Are Related to River Discharge and Nitrogen Loads in Pensacola Bay, Florida

    OpenAIRE

    John C. Lehrter; John C. Lehrter; Chengfeng Le

    2017-01-01

    Relationships between satellite-derived water quality variables and river discharges, concentrations and loads of nutrients, organic carbon, and sediments were investigated over a 9-year period (2003–2011) in Pensacola Bay, Florida, USA. These analyses were conducted to better understand which river forcing factors were the primary drivers of estuarine variability in several water quality variables. Remote sensing reflectance time-series data were retrieved from the MEdium Resolution Imaging ...

  7. Temporal changes in TBT pollution in water, sediment, and oyster from Jinhae Bay after the total ban in South Korea.

    Science.gov (United States)

    Kim, Nam Sook; Hong, Sang Hee; Yim, Un Hyuk; Shin, Kyung-Hoon; Shim, Won Joon

    2014-09-15

    Temporal change in tributyltin (TBT) levels in Jinhae Bay, which has various TBT sources, was investigated in water, sediments, and oysters from 2003 to 2013 after its total ban in South Korea. The seawater TBT levels decreased over 500-fold from 1995/97 to 2008/09. The oyster TBT levels were about fourfold lower in 2012/13 than in 1995/97. However, the sediment TBT levels did not significantly change, even 10 years after the partial TBT ban on small ships and 7 years after the total TBT ban on all oceangoing vessels in Korea. The total ban of TBT use effectively reduced water and oyster TBT levels in Jinhae Bay, but TBT levels in water, oysters, and sediment remained above the global environmental quality standards established to protect marine organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Mid-Atlantic Wind - Overcoming the Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Daniel F. Ancona III; Kathryn E. George; Richard P. Bowers; Dr. Lynn Sparling; Bruce Buckheit; Daniel LoBue

    2012-05-31

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  9. Mid-Atlantic Wind - Overcoming the Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Daniel F. Ancona III; Kathryn E. George; Lynn Sparling; Bruce C. Buckheit; Daniel LoBue; and Richard P. Bowers

    2012-06-29

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  10. From research to management: A remote sensing based water quality decision matrix (WQDM) for Tampa Bay, Florida

    Science.gov (United States)

    Hu, C.; Le, C.; English, D.; Cannizzaro, J.; Kovach, C.

    2012-12-01

    Significant advances have been made in ocean color remote sensing of water turbidity and water clarity of estuarine waters, yet accurate estimate of the water column chlorophyll-a concentrations (Chla in mg m-3) has been problematic. Here, a novel empirical Chla algorithm was developed and validated for MODIS and SeaWiFS observations between 1998 and 2011 for Tampa Bay, the largest estuary (~1000 km2) in the state of Florida, USA. The algorithm showed robust performance with two independent datasets, with relative mean uncertainties of ~30% and ~50% and RMS uncertainties of ~40% and ~65%,respectively, for Chla ranging between 1.0 and > 30.0 mg m-3. Together with other bio-optical parameters measured from this moderately turbid estuary, these data showed that although the total light absorption in the blue-green wavelengths is dominated by dissolved organic matter, the variability in light penetration (or water clarity) is mainly determined by particulate absorption rather than CDOM absorption. Thus, nutrient reduction management actions that reduce phytoplankton blooms can effectively increase the light availability on the bottom. Long-term Chla time series from SeaWiFS and MODIS observations showed both seasonal and inter-annual variations. On average, river discharge could explain ~60% of the seasonal changes and ~90% of the inter-annual changes, with the latter mainly driven by climate variability (e.g. El Niño and La Niño years) and anomaly events (e.g. tropical cyclones). Significant correlation was found between monthly mean Chla anomalies and monthly Multivariate ENSO Index (MEI) (Pearson correlation coefficient = 0.43, p<0.01, N=147), with high Chla associated with El Niño and lower Chla associated with La Niño. Further, a Water Quality Decision Matrix (WQDM) has been established from the satellite-based Chla and water clarity estimates. The WQDM provides complementary and more reliable information to the existing WQDM based on less synoptic and less

  11. 33 CFR 110.120 - San Luis Obispo Bay, Calif.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Luis Obispo Bay, Calif. 110... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.120 San Luis Obispo Bay, Calif. (a) Area A-1. Area A-1 is the water area bounded by the San Luis Obispo County wharf, the shoreline, a line drawn...

  12. Habitats used by black and surf scoters in eastern North America as determined by satellite radio telemetry

    Science.gov (United States)

    Perry, M.C.; Kidwell, D.M.; Wells-Berlin, A. M.; Lohnes, E.J.R.; Olsen, Glenn H.; Osenton, P.C.

    2005-01-01

    Satellite radio telemetry was used to determine the movements and habitats of black scoters (Melanitta nigra) and surf scoters (Melanitta perspicillata) in eastern North America. A total of 21 surf scoters were instrumented during five years (2001-05) and 32 black scoters were instrumented during three years (2002-04) with implanted PTT 100 satellite transmitters (39 g) with external antenna. Nesting habitat of black scoters was more open than surf scoters (44% vs. 11%), whereas nesting habitat for surf scoters was located in more forested areas (66% vs. 20%). Locations of black scoters in breeding areas on average were at significantly higher latitude and lower elevations than sites used by surf scoters. Satellite telemetry determined that James Bay was the major molting area for male black and surf scoters, although some males molted along the coast of Labrador-Newfoundland. Black scoters instrumented on the Restigouche River, which is a major staging area, were widely distributed along the Atlantic Coast from Cape Cod to Georgia during winter. Major wintering areas for black scoters were Cape Cod (Martha's Vineyard and Nantucket Island), Long Island, and New Jersey. In these northern marine wintering areas, black scoters were located farther from shore (4.2 km) and in deeper water (8.3 m) than black scoters in more southern estuarine areas, where distance from shore was 3.1 km and water depth was 5.2 m. Surf scoters instrumented in Chesapeake Bay in late winter showed a strong tendency to return to the Bay the following winter after they had migrated to and from breeding areas. In Chesapeake Bay, black scoters and surf scoters were located mostly in mesohaline areas that had similar water depths (5.1 m vs. 7.5 m) and distances from shore (3.0 km vs. 2.9 km). Distance from shore and depth of water increased over time during the winter for both species. Updated information from the ARGOS Systems aboard the NOAA satellites on scoter movements was made accessible on

  13. Escherichia coli in the surface waters and in oysters of two cultivations of Guaratuba Bay - Paraná - Brazil

    Directory of Open Access Journals (Sweden)

    Helenita Catharina Dalla-Lana Forcelini

    2013-04-01

    Full Text Available The present work aimed to evaluate the contamination of Escherichia coli in the surface waters and oysters from two cultivations of Guaratuba Bay and to analyze the correlation patterns among the concentrations of E. coli in the waters and in the oysters with the local physical-chemical parameters. Samples were collected in the spring of 2007 and summer, autumn and winter of 2008 from two points of the bay (internal point and external point. From each cultivation and sampling period, 18 oysters were collected. The samples of surface water were collected for the measurement of physical-chemical parameters (pH, salinity, temperature, dissolved oxygen, seston, particulate organic matter and quantification of E. coli. The surface water analyzed in the summer presented the largest most probable number of E. coli, (1,659.22 MPN.100 ml-1 and 958,55 MPN.100 ml-1 at external and internal points, respectively. The oysters from the internal point presented more E. coli, except in the winter sampling. The largest contamination was observed in the spring, at the internal point (979,78 MPN.g-1. The Principal Components Analysis showed direct correlation among the amount of E. coli in the oysters and in the surface water.

  14. NUMERICAL MODELS AS TOOLS TO UNDERSTAND THE DYNAMICS IN BAYS: CASE OF STUDY CHETUMAL BAY, QUINTANA ROO

    Directory of Open Access Journals (Sweden)

    David Avalos-Cueva

    2017-07-01

    Full Text Available In this study performed the simulation of currents generated by the wind on the Bay of Chetumal, Quintana Roo through the use of a stationary shallow-water model. A homogeneous climatic wind was used for the entire Bay, with a velocity of 3m·s-1 , and directions North, South, Northeast, Northwest, East, Southeast, Southwest and West. The results showed a rather complex dynamics in Chetumal Bay, in which important turns were observed in deep areas, with speeds reaching up to 13 cm·s-1 .

  15. Cathodic protection of mild steel and copper in deep waters of the Arabian Sea and Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Venkat, K.; Wagh, A.B.

    Performance of cathodic protection system to mild steel and copper in deep (> 1000 m) oceanic waters of the Arabian Sea and Bay of Bengal has been assessed using aluminium and mild steel sacrificial anodes. The corrosion rates of unprotected metals...

  16. Are extreme hydro-meteorological events a prerequisite for extreme water quality impacts? Exploring climate impacts on inland and coastal waters

    Science.gov (United States)

    Michalak, A. M.; Balaji, V.; Del Giudice, D.; Sinha, E.; Zhou, Y.; Ho, J. C.

    2017-12-01

    Questions surrounding water sustainability, climate change, and extreme events are often framed around water quantity - whether too much or too little. The massive impacts of extreme water quality impairments are equally compelling, however. Recent years have provided a host of compelling examples, with unprecedented harmful algal blooms developing along the West coast, in Utah Lake, in Lake Erie, and off the Florida coast, and huge hypoxic dead zones continuing to form in regions such as Lake Erie, the Chesapeake Bay, and the Gulf of Mexico. Linkages between climate change, extreme events, and water quality impacts are not well understood, however. Several factors explain this lack of understanding, including the relative complexity of underlying processes, the spatial and temporal scale mismatch between hydrologists and climatologists, and observational uncertainty leading to ambiguities in the historical record. Here, we draw on a number of recent studies that aim to quantitatively link meteorological variability and water quality impacts to test the hypothesis that extreme water quality impairments are the result of extreme hydro-meteorological events. We find that extreme hydro-meteorological events are neither always a necessary nor a sufficient condition for the occurrence of extreme water quality impacts. Rather, extreme water quality impairments often occur in situations where multiple contributing factors compound, which complicates both attribution of historical events and the ability to predict the future incidence of such events. Given the critical societal importance of water quality projections, a concerted program of uncertainty reduction encompassing observational and modeling components will be needed to examine situations where extreme weather plays an important, but not solitary, role in the chain of cause and effect.

  17. What caused the rise of water level in the battle of Luermen bay in 1661? Tsunami, Storm surge, or Tide?

    Science.gov (United States)

    Wu, Tso-Ren; Wu, Han; Tsai, Yu-Lin

    2016-04-01

    In 1661, Chinese navy led by General Zheng Chenggong at the end of Ming Dynasty had a naval battle against Netherlands. This battle was not only the first official sea warfare that China confronted the Western world, but also the only naval battle won by Chinese Navy so far. This event was important because it changed the fate of Taiwan until today. One of the critical points that General Zheng won the battle was entering Luermen bay unexpected. Luermen bay was and is an extreme shallow bay with a 2.1m maximum water depth during the high tide, which was not possible for a fleet of 20,000 marines to across. Therefore, no defense was deployed from the Netherlands side. However, plenty of historical literatures mentioned a strange phenomenon that helped Chinese warships entered the Luermen bay, the rise of water level. In this study, we will discuss the possible causes that might rise the water level, e.g. Tsunami, storm surge, and high tide. We analyzed it based on the knowledge of hydrodynamics. We performed the newly developed Impact Intensify Analysis (IIA) for finding the potential tsunami sources, and the COMCOT tsunami model was adopted for the nonlinear scenario simulations, associated with the high resolution bathymetry data. Both earthquake and mudslide tsunamis were inspected. Other than that, we also collected the information of tide and weather for identifying the effects form high tide and storm surge. After the thorough study, a scenario that satisfy most of the descriptions in the historical literatures will be presented. The results will explain the cause of mysterious event that changed the destiny of Taiwan.

  18. Diffusion of Nitrogen and Phosphorus Across the Sediment-Water Interface and In Seawater at Aquaculture Areas of Daya Bay, China

    Directory of Open Access Journals (Sweden)

    Xiangju Cheng

    2014-01-01

    Full Text Available With the yearly increasing marine culture activities in floating cages in Daya Bay, China, the effects of pollution may overlap and lead to more severe water environmental problems. In order to track the impacts of the marine culture in floating cages on water environment, sediments and overlying water were sampled by cylindrical samplers at three representative aquaculture areas of Daya Bay. The water content, porosity, density of sediments as well as the vertical distributions of ammonia nitrogen and active phosphate in pore water along sediments depth were measured. The release rate and annual released quantity of the nutrients across sediment-water interface were calculated using Fick’s Law. A horizontal two-dimensional mathematical model was developed to compute the spatial and temporal distributions of the nutrients in seawater after being released across the sediment-water interface. The results showed that the sediments, with a high content and a large annual released quantity of nitrogen and phosphorus, constitute a potential inner source of seawater pollution. Influenced by tide and water depth, the scope of diffusion and migration of the nutrients appears as a long belt which is about 1 km long and 50 m wide. Seawater in this area is vulnerable to eutrophication.

  19. A review on the sources and spatial-temporal distributions of Pb in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Zhang, Jie; Wang, Ming; Zhu, Sixi; Wu, Yunjie

    2017-12-01

    This paper provided a review on the source, spatial-distribution, temporal variations of Pb in Jiaozhou Bay based on investigation of Pb in surface and waters in different seasons during 1979-1983. The source strengths of Pb sources in Jiaozhou Bay were showing increasing trends, and the pollution level of Pb in this bay was slight or moderate in the early stage of reform and opening-up. Pb contents in the marine bay were mainly determined by the strength and frequency of Pb inputs from human activities, and Pb could be moving from high content areas to low content areas in the ocean interior. Surface waters in the ocean was polluted by human activities, and bottom waters was polluted by means of vertical water’s effect. The process of spatial distribution of Pb in waters was including three steps, i.e., 1), Pb was transferring to surface waters in the bay, 2) Pb was transferring to surface waters, and 3) Pb was transferring to and accumulating in bottom waters.

  20. Proceedings of the Workshop on Aquatic Ecosystem Modeling and Assessment Techniques for Application within the U.S. Army Corps of Engineers.

    Science.gov (United States)

    1998-04-01

    endangered birds, plants, mammals, insects , reptiles, and fish. We can successfully model much of the physical, some of the chemical, and a small part of the...in Chesapeake Bay The third example is based on a model that predicts larval fish survival exposed to juvenile fish and sea nettle predators under...predators simulated are sea nettles , and a fish predator sensitive to low DO and tolerant to low DO. The water column is divided into 3 layers (surface

  1. [Pollution by heavy metals in the petrochemical sewage waters of the sea area of Daya Bay and assessment on potential ecological risks].

    Science.gov (United States)

    Xu, Shan-Nan; Li, Chun-Hou; Xu, Jiao-Jiao; Xiao, Ya-Yuan; Lin, Lin; Huang, Xiao-Ping

    2014-06-01

    This study aimed to gain a clear understanding on the status of pollution by heavy metals in the petrochemical sewage and the potential ecological risk caused by heavy metal pollution in the sea area of Daya Bay. The contents and spatial distributions of heavy metals including Zn, Pb, Cu, Cd, Cr, As and Hg in seawater, sediment and fishes collected from Daya Bay were analyzed. The comprehensive pollution index (CPI) and ecological risk indexes (ERIs) were used to evaluate the contaminated severity and potential ecological risks of heavy metals in seawater and sediment. The results showed that the contents of these heavy metals, except for those of Zn and Pb, in several stations set in Daya Bay from 2011 to 2012 were relatively low, which were lower than the quality standard of class I according to the China National Standard Criteria for Seawater Quality, suggesting that the seawater in Daya Bay has not been polluted yet by these heavy metals. The average CPI of heavy metals in seawater during flooding season (0.72) was higher than that during dry season (0.38) whereas the average CPI of heavy metals in sediment during dry season (7.77) was higher than that during flooding season (5.70). Hg was found to be the primary contaminating heavy metal in sediment during dry season, which was followed by As and Zn whereas during flooding season, Hg was the primary contaminating metal in sediment, followed by Zn and Cu. The contents of these 7 heavy metals in fishes collected from the surveyed areas were lower than those of the standard requirements. A correlation analysis indicated that there were significant differences in the correlations between the midst of the heavy metals in sea water and the different periods. The ERIs of heavy metals in sediment during dry season (129.20) was higher than that during flooding season (102.86), and 25% of the sampling sites among all stations were under the risk of high-level alarm. The potential ERIs of heavy metals in sediment in

  2. South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project

    Science.gov (United States)

    Information about the SFBWQP South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  3. Nutrient fluxes across sediment-water interface in Bohai Bay Coastal Zone, China.

    Science.gov (United States)

    Mu, Di; Yuan, Dekui; Feng, Huan; Xing, Fangwei; Teo, Fang Yenn; Li, Shuangzhao

    2017-01-30

    Sediment cores and overlying water samples were collected at four sites in Tianjin Coastal Zone, Bohai Bay, to investigate nutrient (N, P and Si) exchanges across the sediment-water interface. The exchange fluxes of each nutrient species were estimated based on the porewater profiles and laboratory incubation experiments. The results showed significant differences between the two methods, which implied that molecular diffusion alone was not the dominant process controlling nutrient exchanges at these sites. The impacts of redox conditions and bioturbation on the nutrient fluxes were confirmed by the laboratory incubation experiments. The results from this study showed that the nutrient fluxes measured directly from the incubation experiment were more reliable than that predicted from the porewater profiles. The possible impacts causing variations in the nutrient fluxes include sewage discharge and land reclamation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Topobathymetric model of Mobile Bay, Alabama

    Science.gov (United States)

    Danielson, Jeffrey J.; Brock, John C.; Howard, Daniel M.; Gesch, Dean B.; Bonisteel-Cormier, Jamie M.; Travers, Laurinda J.

    2013-01-01

    Topobathymetric Digital Elevation Models (DEMs) are a merged rendering of both topography (land elevation) and bathymetry (water depth) that provides a seamless elevation product useful for inundation mapping, as well as for other earth science applications, such as the development of sediment-transport, sea-level rise, and storm-surge models. This 1/9-arc-second (approximately 3 meters) resolution model of Mobile Bay, Alabama was developed using multiple topographic and bathymetric datasets, collected on different dates. The topographic data were obtained primarily from the U.S. Geological Survey (USGS) National Elevation Dataset (NED) (http://ned.usgs.gov/) at 1/9-arc-second resolution; USGS Experimental Advanced Airborne Research Lidar (EAARL) data (2 meters) (http://pubs.usgs.gov/ds/400/); and topographic lidar data (2 meters) and Compact Hydrographic Airborne Rapid Total Survey (CHARTS) lidar data (2 meters) from the U.S. Army Corps of Engineers (USACE) (http://www.csc.noaa.gov/digitalcoast/data/coastallidar/). Bathymetry was derived from digital soundings obtained from the National Oceanic and Atmospheric Administration’s (NOAA) National Geophysical Data Center (NGDC) (http://www.ngdc.noaa.gov/mgg/geodas/geodas.html) and from water-penetrating lidar sources, such as EAARL and CHARTS. Mobile Bay is ecologically important as it is the fourth largest estuary in the United States. The Mobile and Tensaw Rivers drain into the bay at the northern end with the bay emptying into the Gulf of Mexico at the southern end. Dauphin Island (a barrier island) and the Fort Morgan Peninsula form the mouth of Mobile Bay. Mobile Bay is 31 miles (50 kilometers) long by a maximum width of 24 miles (39 kilometers) with a total area of 413 square miles (1,070 square kilometers). The vertical datum of the Mobile Bay topobathymetric model is the North American Vertical Datum of 1988 (NAVD 88). All the topographic datasets were originally referenced to NAVD 88 and no transformations

  5. 33 CFR 117.753 - Ship Channel, Great Egg Harbor Bay.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ship Channel, Great Egg Harbor Bay. 117.753 Section 117.753 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.753 Ship Channel, Great Egg Harbor Bay. The draw of the S52 (Ship...

  6. Predicting redox conditions in groundwater at a regional scale

    Science.gov (United States)

    Tesoriero, Anthony J.; Terziotti, Silvia; Abrams, Daniel B.

    2015-01-01

    Defining the oxic-suboxic interface is often critical for determining pathways for nitrate transport in groundwater and to streams at the local scale. Defining this interface on a regional scale is complicated by the spatial variability of reaction rates. The probability of oxic groundwater in the Chesapeake Bay watershed was predicted by relating dissolved O2 concentrations in groundwater samples to indicators of residence time and/or electron donor availability using logistic regression. Variables that describe surficial geology, position in the flow system, and soil drainage were important predictors of oxic water. The probability of encountering oxic groundwater at a 30 m depth and the depth to the bottom of the oxic layer were predicted for the Chesapeake Bay watershed. The influence of depth to the bottom of the oxic layer on stream nitrate concentrations and time lags (i.e., time period between land application of nitrogen and its effect on streams) are illustrated using model simulations for hypothetical basins. Regional maps of the probability of oxic groundwater should prove useful as indicators of groundwater susceptibility and stream susceptibility to contaminant sources derived from groundwater.

  7. Climate relationships to fecal bacterial densities in Maryland shellfish harvest waters.

    Science.gov (United States)

    Leight, A K; Hood, R; Wood, R; Brohawn, K

    2016-02-01

    Coastal states of the United States (US) routinely monitor shellfish harvest waters for types of bacteria that indicate the potential presence of fecal pollution. The densities of these indicator bacteria in natural waters may be related to climate in several ways, including through runoff from precipitation and survival related to water temperatures. The relationship between interannual precipitation and air temperature patterns and the densities of fecal indicator bacteria in shellfish harvest waters in Maryland's portion of the Chesapeake Bay was quantified using 34 years of data (1979-2013). Annual and seasonal precipitation totals had a strong positive relationship with average fecal coliform levels (R(2) = 0.69) and the proportion of samples with bacterial densities above the FDA regulatory criteria (R(2) = 0.77). Fecal coliform levels were also significantly and negatively related to average annual air temperature (R(2) = -0.43) and the average air temperature of the warmest month (R(2) = -0.57), while average seasonal air temperature was only significantly related to fecal coliform levels in the summer. River and regional fecal coliform levels displayed a wide range of relationships with precipitation and air temperature patterns, with stronger relationships in rural areas and mainstem Bay stations. Fecal coliform levels tended to be higher in years when the bulk of precipitation occurred throughout the summer and/or fall (August to September). Fecal coliform levels often peaked in late fall and winter, with precipitation peaking in summer and early fall. Continental-scale sea level pressure (SLP) analysis revealed an association between atmospheric patterns that influence both extratropical and tropical storm tracks and very high fecal coliform years, while regional precipitation was found to be significantly correlated with the Atlantic Multidecadal Oscillation and the Pacific North American Pattern. These findings indicate that management of

  8. The dynamics of İzmir Bay under the effects of wind and thermohaline forces

    Science.gov (United States)

    Sayın, Erdem; Eronat, Canan

    2018-04-01

    The dominant circulation pattern of İzmir Bay on the Aegean Sea coast of Turkey is studied taking into consideration the influence of wind and thermohaline forces. İzmir Bay is discussed by subdividing the bay into outer, middle and inner areas. Wind is the most important driving force in the İzmir coastal area. There are also thermohaline forces due to the existence of water types of different physical properties in the bay. In contrast to the two-layer stratification during summer, a homogeneous water column exists in winter. The free surface version of the Princeton model (Killworth's 3-D general circulation model) is applied, with the input data obtained through the measurements made by the research vessel K. Piri Reis. As a result of the simulations with artificial wind, the strong consistent wind generates circulation patterns independent of the seasonal stratification in the bay. Wind-driven circulation causes cyclonic or anticyclonic movements in the middle bay where the distinct İzmir Bay Water (IBW) forms. Cyclonic movement takes place under the influence of southerly and westerly winds. On the other hand, northerly and easterly winds cause an anticyclonic movement in the middle bay. The outer and inner bay also have the wind-driven recirculation patterns expected.

  9. Measuring Macrobenthos Biodiversity at Oyster Aquaculture Sites in the Delaware Inland Bays

    Science.gov (United States)

    Fuoco, M. J.; Ozbay, G.

    2016-12-01

    The Delaware Inland Bays consists of three shallow coastal bays located in the southern portion of Delaware. Anthropogenic activities have led to the degradation of water quality, because the bays are surrounded by highly developed areas and have low flushing rates. This results in loss of biodiversity and abundance of organisms. Ongoing degradation of the bays has led to a dramatic decline in local oyster populations since the late 1800s. Oysters are keystone species, which provide habitats for organisms and help to improve water quality. This study aims to find if the introduction of oyster aquaculture improves local biodiversity and abundance of macrobenthos. The study was conducted in Rehoboth Bay, Indian River Bay and Little Assawoman Bay. Aquaculture gear was placed at one location in each of the bays and 24 sediment core samples were taken once a month. From these core samples all worms were fixed and stained in a 10% Formalin Rose Bengal solution and preserved in 70% Ethanol for later identification. Stable carbon and nitrogen isotope analysis of oyster tissue will also be performed to assess the health of the bay. The goals of this research are to better understand the role of oyster aquaculture in restoring the viability and health of the Delaware Inland Bays.

  10. Variable influx of West Greenland Current water into the Labrador Current through the last 8000 years, based on a multiproxy study from Trinity Bay, NE Newfoundland

    DEFF Research Database (Denmark)

    Sheldon, Christina; Seidenkrantz, Marit-Solveig; Frandsen, Paul

    2015-01-01

    This multi-proxy study of marine sediment gravity core AI07-06G from Trinity Bay, Newfoundland, recorded changes in the strength of the Labrador Current (LC) during the Holocene. From ca. 8-5 cal kyr BP, Trinity Bay's seafloor was influenced by cooled Atlantic water derived from the West Greenland...

  11. Summary of oceanographic and water-quality measurements in Barnegat Bay, New Jersey, 2014–15

    Science.gov (United States)

    Suttles, Steven E.; Ganju, Neil K.; Montgomery, Ellyn T.; Dickhudt, Patrick J.; Borden, Jonathan; Brosnahan, Sandra M.; Martini, Marinna A.

    2016-09-26

    Scientists and technical support staff from the U.S. Geological Survey measured suspended-sediment concentrations, currents, pressure, and water temperature in two tidal creeks, Reedy Creek and Dinner Creek, in Barnegat Bay, New Jersey, from August 11, 2014, to July 10, 2015 as part of the Estuarine Physical Response to Storms project (GS2–2D). The oceanographic and water-quality data quantify suspended-sediment transport in Reedy Creek and Dinner Creek, which are part of a tidal marsh wetland complex in the Edwin B. Forsythe National Wildlife Refuge. All deployed instruments were removed between January 7, 2015, and April 14, 2015, to avoid damage by ice.

  12. Pilot Water Quality Monitoring Station in Dublin Bay : North Bank Station (NBMS), MATSIS Project Part I

    OpenAIRE

    O'Donnell, Garvan; Joyce, Eileen; Silke, Joe; O'Boyle, Shane; McGovern, Evin

    2008-01-01

    This report describes the pilot development of an autonomous monitoring station in Dublin Bay and validation of the system. It presents results from initial deployments. Sensors were deployed for testing, including an optical sensor for measuring nitrate and sensors for measurement of salinity, temperature, fluorescence and dissolved oxygen. Automated water samplers enabled periodic, remote triggered and event triggered sampling for nutrient and phytoplankton samples.

  13. Analysis of Level of Technogenic Impact on Water Area of Uglovoy Bay

    Science.gov (United States)

    Petukhov, V. I.; Petrova, E. A.; Losev, O. V.

    2017-11-01

    Industrial effluent discharge and man-induced soil fills play a decisive role in increased pollutant concentrations. Several areas which are unfavorable in terms of the heavy metal and oil product content have been identified by the environmental monitoring results in the Uglovoy Bay in February 2015. Maximum permissible concentrations (MPC) of heavy metals and oil products were exceeded in the northeastern part of the Uglovoy Bay in locations where the Peschanka River and the Aerodromnaya River drain into the sea. Integral heavy-metal index calculations showed that this area is the most polluted in the Uglovoy Bay. Other significantly polluted areas were identified off the Zima Yuzhnaya settlement in the mouth of the bay and in vicinity of the low-level bridge.

  14. Metal concentrations in Kandalaksha Bay, White Sea (Russia) following the spring snowmelt

    International Nuclear Information System (INIS)

    Cobelo-Garcia, A.; Millward, G.E.; Prego, R.; Lukashin, V.

    2006-01-01

    Elevated concentrations of dissolved and particulate Cd, Cu, Pb and Zn have been determined in the waters of Kandalaksha Bay (White Sea, Russia), following the ice melt in the spring of 2000. Dissolved metal maxima in the surface waters were observed at some stations and concentrations generally decreased with depth. The suspended particulate matter (SPM) comprised a non-lithogenic fraction in the range 12-83%, and had elevated metal concentrations that showed no trend with depth or salinity and was compositionally distinct from the sediments. A log-linear relationship existed between the concentrations of metals in sediments and in SPM and their respective Al concentrations, indicating a source of metal-rich particles, with low Al content, to the Bay. The results suggest that Kandalaksha Bay has been impacted by industrial activity on the Kola Peninsula and that restricted water exchange will hinder its recovery from metal contamination. - Elevated dissolved and particulate metal concentrations have been determined in the water column of Kandalaksha Bay, White Sea (Russia)

  15. Wind-Driven Waves in Tampa Bay, Florida

    Science.gov (United States)

    Gilbert, S. A.; Meyers, S. D.; Luther, M. E.

    2002-12-01

    Turbidity and nutrient flux due to sediment resuspension by waves and currents are important factors controlling water quality in Tampa Bay. During December 2001 and January 2002, four Sea Bird Electronics SeaGauge wave and tide recorders were deployed in Tampa Bay in each major bay segment. Since May 2002, a SeaGauge has been continuously deployed at a site in middle Tampa Bay as a component of the Bay Regional Atmospheric Chemistry Experiment (BRACE). Initial results for the summer 2002 data indicate that significant wave height is linearly dependent on wind speed and direction over a range of 1 to 12 m/s. The data were divided into four groups according to wind direction. Wave height dependence on wind speed was examined for each group. Both northeasterly and southwesterly winds force significant wave heights that are about 30% larger than those for northwesterly and southeasterly winds. This difference is explained by variations in fetch due to basin shape. Comparisons are made between these observations and the results of a SWAN-based model of Tampa Bay. The SWAN wave model is coupled to a three-dimensional circulation model and computes wave spectra at each model grid cell under observed wind conditions and modeled water velocity. When SWAN is run without dissipation, the model results are generally similar in wave period but about 25%-50% higher in significant wave height than the observations. The impact of various dissipation mechanisms such as bottom drag and whitecapping on the wave state is being investigated. Preliminary analyses on winter data give similar results.

  16. Recent research on the hydrodynamics of the Sacramento - San Joaquin River Delta and north San Francisco Bay

    Science.gov (United States)

    Burau, J.R.; Monismith, S.G.; Stacey, M.T.; Oltmann, R.N.; Lacy, J.R.; Schoellhamer, D.H.

    1999-01-01

    This article presents an overview of recent findings from hydrodynamic research on circulation and mixing in the Sacramento-San Joaquin Delta (Delta) (Figure 1) and North San Francisco Bay (North Bay) (Figure 2). For the purposes of this article, North Bay includes San Pablo Bay, Carquinez Strait, and Suisun Bay. The findings presented are those gained from field studies carried out by the U.S. Geological Survey (USGS), as part of the Interagency Ecological Program (IEP), and Stanford University beginning about 1993. The premise behind these studies was that a basic understanding of circulation and mixing patterns in the Bay and Delta is an essential part of understanding how biota and water quality are affected by natural hydrologic variability, water appropriation, and development activities. Data collected for the field studies described in this article have significantly improved our understanding of Bay and Delta hydrodynamics. Measured flows ,in the Delta have provided valuable information on how water moves through the Delta's network of channels and how export pumping affects flows. Studies of the shallows and shallow-channel exchange processes conducted in Honker Bay have shown that the water residence time in Honker Bay is much shorter than previously reported (on the order of hours to several tidal cycles instead ofweeks). Suisun Bay studies have provided data on hydrodynamic transport and accumulation mechanisms that operate primarily in the channels. The Suisun Bay studies have caused us to revise our understanding of residual circulation in the channels of North Bay and of "entrapment" mechanisms in the low salinity zone. Finally, detailed tidal and residual (tidally averaged) time-scale studies of the mechanisms that control gravitational circulation in the estuary show that density-driven transport in the channels is governed by turbulence time-scale (seconds) interactions between the mean flow and stratification. The hydrodynamic research

  17. Nelson River and Hudson Bay

    Science.gov (United States)

    2002-01-01

    Rivers that empty into large bodies of water can have a significant impact on the thawing of nearshore winter ice. This true-color Moderate Resolution Imaging Spectroradiometer (MODIS) image from May 18, 2001, shows the Nelson River emptying spring runoff from the Manitoba province to the south into the southwestern corner of Canada's Hudson Bay. The warmer waters from more southern latitudes hasten melting of ice near the shore, though some still remained, perhaps because in shallow coastal waters, the ice could have been anchored to the bottom. High volumes of sediment in the runoff turned the inflow brown, and the rim of the retreating ice has taken on a dirty appearance even far to the east of the river's entrance into the Bay. The sediment would have further hastened the melting of the ice because its darker color would have absorbed more solar radiation than cleaner, whiter ice. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  18. Gas exchange rates across the sediment-water andd air-water interfaces in south San Francisco Bay

    International Nuclear Information System (INIS)

    Hartman, B.; Hammond, D.E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainity of the determinations, about 20%. The annual average of bethic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water inteface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2--6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models

  19. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    Science.gov (United States)

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  20. Coincident patterns of waste water suspended solids reduction, water transparency increase and chlorophyll decline in Narragansett Bay.

    Science.gov (United States)

    Borkman, David G; Smayda, Theodore J

    2016-06-15

    Dramatic changes occurred in Narragansett Bay during the 1980s: water clarity increased, while phytoplankton abundance and chlorophyll concentration decreased. We examine how changes in total suspended solids (TSS) loading from wastewater treatment plants may have influenced this decline in phytoplankton chlorophyll. TSS loading, light and phytoplankton observations were compiled and a light- and temperature-dependent Skeletonema-based phytoplankton growth model was applied to evaluate chlorophyll supported by TSS nitrogen during 1983-1995. TSS loading declined 75% from ~0.60×10(6)kgmonth(-1) to ~0.15×10(6)kgmonth(-1) during 1983-1995. Model results indicate that nitrogen reduction related to TSS reduction was minor and explained a small fraction (~15%) of the long-term chlorophyll decline. The decline in NBay TSS loading appears to have increased water clarity and in situ irradiance and contributed to the long-term chlorophyll decline by inducing a physiological response of a ~20% reduction in chlorophyll per cell. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. 33 CFR 110.31 - Hull Bay and Allerton Harbor at Hull, Mass.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hull Bay and Allerton Harbor at Hull, Mass. 110.31 Section 110.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.31 Hull Bay and Allerton Harbor at...

  2. San Antonio Bay 1986-1989

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The effect of salinity on utilization of shallow-water nursery habitats by aquatic fauna was assessed in San Antonio Bay, Texas. Overall, 272 samples were collected...

  3. Development of a Hydrodynamic and Transport model of Bellingham Bay in Support of Nearshore Habitat Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang

    2010-04-22

    In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratory’s high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric light detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of

  4. Intense Undular Bores on the Autumn Pycnocline of Shelf Waters of the Peter the Great Bay (Sea of Japan)

    Science.gov (United States)

    Dolgikh, G. I.; Novotryasov, V. V.; Yaroshchuk, I. O.; Permyakov, M. S.

    2018-03-01

    The results of field observations of an internal undular bore that were performed in a coastal zone of constant depth in the Sea of Japan are presented. A hydrodynamic model of undular bores is discussed according to which the recorded disturbances of the water medium are an experimental prototype of strongly nonlinear (intense) internal undular bores on the pycnocline of shelf waters of Peter the Great Bay with an intensity close to the limit.

  5. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model

    Science.gov (United States)

    Jantz, Claire A.; Goetz, Scott J.; Donato, David I.; Claggett, Peter

    2010-01-01

    This paper presents a fine-scale (30 meter resolution) regional land cover modeling system, based on the SLEUTH cellular automata model, that was developed for a 257000 km2 area comprising the Chesapeake Bay drainage basin in the eastern United States. As part of this effort, we developed a new version of the SLEUTH model (SLEUTH-3r), which introduces new functionality and fit metrics that substantially increase the performance and applicability of the model. In addition, we developed methods that expand the capability of SLEUTH to incorporate economic, cultural and policy information, opening up new avenues for the integration of SLEUTH with other land-change models. SLEUTH-3r is also more computationally efficient (by a factor of 5) and uses less memory (reduced 65%) than the original software. With the new version of SLEUTH, we were able to achieve high accuracies at both the aggregate level of 15 sub-regional modeling units and at finer scales. We present forecasts to 2030 of urban development under a current trends scenario across the entire Chesapeake Bay drainage basin, and three alternative scenarios for a sub-region within the Chesapeake Bay watershed to illustrate the new ability of SLEUTH-3r to generate forecasts across a broad range of conditions.

  6. Corrosion of metals and alloys in the coastal and deep waters of the Arabian Sea and the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Venkat, K.; Wagh, A.B.

    Corrosion rate of mild steel (MS), stainless steel (SS), copper, brass and cupro-nickel has been determinEd. by exposing metallic coupons in coastal and oceanic waters of the Arabian Sea and Bay of Bengal. Amongst the metals and alloys under study...

  7. Intrusion of the Bay of Bengal water into the Arabian Sea during winter monsoon and associated chemical and biological response

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Narvekar, J.; Kumar, A.; Shaji, C.; Anand, P.; Sabu, P.; Rijomon, G.; Josia, J.; Jayaraj, K.A.; Radhika, A.; Nair, K.K.C.

    off. The hydrological imbalance thus created on an annual scale will have to be balanced by the inter-basin exchange. In winter this happens through the intrusion of Bay of Bengal waters into the Arabian Sea, when the southward flowing East India...

  8. Contaminant profiles for surface water, sediment, flora and fauna associated with the mangrove fringe along middle and lower East Tampa Bay

    Science.gov (United States)

    Contaminant concentrations are reported for surface water, sediment, seagrass, mangroves, Florida Crown conch, blue crabs and fish collected during 2010-2011 from the mangrove fringe along eastern Tampa Bay. Concentrations of trace metals, chlorinated pesticides, atrazine, total ...

  9. Mussels as a bio-indicator of the environmental quality of the coastal water of the Boka Kotorska Bay (Montenegro

    Directory of Open Access Journals (Sweden)

    MIHAJLO JOVIĆ

    2011-06-01

    Full Text Available The Mediterranean blue mussel Mytilus galloprovincialis was used as a pollution level indicator in the Boka Kotorska Bay of the southeastern Adriatic on the Montenegrin coast. The ever-increasing urbanization and industrialization, combined with a poor sewage system, an increase in both marine and inland traffic, as well as insufficient water circulation in the Bay itself have resulted in some level of pollution. Since heavy metals are extremely toxic and do not easily undergo biodecomposition, the results of this study supply valuable information concerning the metal pollution of the marine environment in Boka Kotorska Bay. The concentrations of the investigated metals and non-metals accumulated in the mussels were determined during the fall of 2007 using Atomic Absorption Spectroscopy (AAS for Cr, Mn, Co, Ni, Cu, Cd, Hg, Pb, Sn and V, and Energy Dispersive X-ray Fluorescence (ED–XRF to determine the concentrations of Fe, Zn, Si, P, S, Cl, K and Ca. ED–XRF was also used to determine the levels of non-metals and elements present in high concentrations. Comparing the data from this study in relation to data from other regions for Mytilus galloprovincialis, the mussel sampled from the Boka Kotorska Bay showed a moderate level of pollution.

  10. Cold seeps in Monterey Bay, California: Geochemistry of pore waters and relationship to benthic foraminiferal calcite

    International Nuclear Information System (INIS)

    Gieskes, Joris; Rathburn, Anthony E.; Martin, Jonathan B.; Perez, M. Elena; Mahn, Chris; Bernhard, Joan M.; Day, Shelley

    2011-01-01

    Highlights: → We describe the geochemistry of pore waters in the Clam Flats area of Monterey Bay. → The geochemical data are compared with the δ 13 C chemistry of benthic foraminifera. → Living foraminifera indicate little effects of pore water low δ 13 C (DIC) in the clam bed. → This phenomenon and its implications are discussed in detail. → Implications with regards to paleo-methane seepage are discussed. - Abstract: An extensive geochemical and biogeochemical examination of CH 4 seeps in the Clam Flats area of Monterey Bay provides insight into the character of relationships between seep geochemistry and benthic foraminiferal geochemistry. The area is characterized by sulfide-rich fluids. Sulfide increases are associated with large increases in alkalinity, as well as small decreases in dissolved Ca and Mg. In addition, only small increases in NH 4 are observed, but values of δ 13 C of dissolved inorganic C are as low as -60 per mille at shallow depths ( 4 , which is transported upward by slow seepage of pore fluids. The geochemistry of the pore fluids should be relevant to the geochemistry of the carbonate tests of living and dead foraminifera. However, a profound disequilibrium of approximately an order of magnitude occurs between the δ 13 C values of stained (cytoplasm-containing) foraminiferal carbonate and the C isotope values of ambient pore water dissolved inorganic C. Reasons are unclear for this isotopic disequilibrium, but have important implications for interpretations of foraminiferal carbonate as a paleoenvironmental proxy. Much fine scale work is needed to fully understand the relationships between the biogeochemistry of benthic foraminifera and the geochemistry of the pore waters where they live.

  11. Perryman Nuclear Power Plant. Site suitability--site safety report, volume I: chapters-sections 1.1, 1.2, 1.4, 1.6; 2.1, 2.2

    International Nuclear Information System (INIS)

    1977-01-01

    A site suitability report is submitted in support of the Baltimore Gas and Electric Company application for a limited early site review of a potential nuclear power plant. The Perryman Nuclear Power Plant site is located in northeastern Maryland on an arm of the Chesapeake Bay estuary approximately 17 miles east--northeast of Baltimore. The proposed plant is a two-unit light water reactor with a 3800 MW(t) power level for each unit. General descriptions of the site geography, demography, nearby facilities, and meteorology are presented

  12. Sediment Pore Water Ammonium Concentrations in Old Tampa Bay as Determined by the Diffusive Equilibration in Thin Films (DET) Technique

    Science.gov (United States)

    Increased nitrogen loading, associated with rapid human population growth, was thought to be a major driver of Tampa Bay water quality degradation in the decades immediately after the Second World War. Improvements in wastewater treatment in the early 1980s led to marked reductio...

  13. Water quality and hydrology in the Fort Belvoir area, Virginia, 1954-55

    Science.gov (United States)

    Durfor, Charles N.

    1961-01-01

    This report summarizes the results of an investigation of water quality and hydrology in the Fort Belvoir, Va., area for the period August 1954 to September 1955. It summarizes and evaluates information about the water resources of this area that are pertinent to the choice of location and operation of an Army nuclear power reactor. The quantity, quality, nature, and use of the local water that might be affected by the location and operation of a reactor in the area were subjects of investigation. Variations in the quality of the water caused by variation in streamflow, tidal effects, and pollution were important facets of the investigation. During extended periods of low streamflow in the Potomac River (usually in the late summer months), salty water moves upstream from Chesapeake Bay and increases the dissolved solids content of the surface waters adjacent to Fort Belvoir. When the streamflow is low the concentration of dissolved solids in the water near the river bottom exceeds that near the surface. The waters in Gunston Cove usually contain more dissolved oxygen than those in the Potomac River. During the summer, the content of dissolved oxygen in the cove waters frequently exceeds 100 percent of saturation. Surface floats that were released on a flood tide in Gunston Cove moved toward the inner portion of the cove in the same direction as the wind and the tide. The maximum average velocity of these floats was 0.65 feet per second. On an ebb tide, many surface floats that were released in Gunston Cove moved toward the inner portion of the cove in the direction of the wind, in opposition to the direction of the tidal movement. Floats released near the mouth of the cove on the same tide, moved with the tide out of the cove through a narrow pass at the end of a submerged sandbar extending from the Fort Belvoir shoreline. The maximum average velocity of the floats in the pass on this ebb tide was 0.85 feet per second. Measurements of subsurface flow direction

  14. Spatial-temporal migration laws of Cd in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Li, Haixia; Zhang, Xiaolong; Wang, Qi; Miao, Zhenqing

    2018-02-01

    Many marine bays have been polluted by various pollutants, and understanding the migration laws is essential to scientific research and pollution control. This paper analyzed the spatial and temporal migration laws of Cd in waters in Jiaozhou Bay during 1979—1983. Results showed that there were twenty spatial-temporal migration law for the migration processes of Cd. These laws were helpful for better understanding the migration of Cd in marine bay, providing basis for scientific research and pollution control.

  15. Atlantic Seaduck Project

    Science.gov (United States)

    Perry, M.C.; Hanson, Alan; Kerekes, Joseph; Paquet, Julie

    2006-01-01

    Atlantic Seaduck Project is being conducted to learn more about the breeding and moulting areas of seaducks in northern Canada and more about their feeding ecology on wintering areas, especially Chesapeake Bay. Satellite telemetry is being used to track surf scoters wintering in Chesapeake Bay, Maryland and black scoters on migrational staging areas in New Brunswick, Canada to breeding and moulting areas in northern Canada. Various techniques used to capture the scoters included mist netting, night-lighting, and net capture guns. All captured ducks were transported to a veterinary hospital where surgery was conducted following general anaesthesia procedures. A PTT100 transmitter (39 g) manufactured by Microwave, Inc., Columbia, Maryland was implanted into the duck?s abdominal cavity with an external (percutaneous) antenna. Eight of the surf scoters from Chesapeake Bay successfully migrated to possible breeding areas in Canada and all 13 of the black scoters migrated to suspected breeding areas. Ten of the 11 black scoter males migrated to James Bay presumably for moulting. Updated information from the ARGOS Systems aboard the NOAA satellites on scoter movements was made accessible on the Patuxent Website. Habitat cover types of locations using GIS (Geographical Information Systems) and aerial photographs (in conjunction with remote sensing software) are currently being analyzed to build thematic maps with varying cosmetic layer applications. Many factors related to human population increases have been implicated in causing changes in the distribution and abundance of wintering seaducks. Analyses of the gullet (oesophagus and proventriculus) and the gizzard of seaducks are currently being conducted to determine if changes from historical data have occurred. Scoters in the Bay feed predominantly on the hooked mussel and several species of clams. The long-tailed duck appears to select the gem clam in greater amounts than other seaducks, but exhibits a diverse diet of

  16. Implementation of Wetting and Drying in NCOM: Description and Validation Test Report

    Science.gov (United States)

    2015-08-04

    inundation in Charleston Harbor during Hurricane Hugo 1989, Ocean Modelling, 20, 252– 269. Zimmermann, M., and M.M. Prescott (2014). Smooth Sheet...against, (c) several coastal regions that have notable WAD areas, i.e., San Francisco Bay, Chesapeake Bay, and Cook Inlet in Alaska, and (d) Hurricane ...Inlet, Alaska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.8 Hurricane Ike

  17. Transport and potential vorticity in the Bay of Bengal during the southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Murty, C.S.; Sarma, Y.V.B.; Rao, D.P.; Sastry, J.S.; Rao, G.R.L.

    Current (EBC) contributed to an influx of 3.5 x 10 sup(6 m sup(3/s water respectively. The influence of overlying less saline, fresher water at the northern Bay: Ekman suction due to the wind stress curl in the central Bay; and the east-flowing IMC...

  18. Coastal upwelling by wind-driven forcing in Jervis Bay, New South Wales: A numerical study for 2011

    Science.gov (United States)

    Sun, Youn-Jong; Jalón-Rojas, Isabel; Wang, Xiao Hua; Jiang, Donghui

    2018-06-01

    The Princeton Ocean Model (POM) was used to investigate an upwelling event in Jervis Bay, New South Wales (SE Australia), with varying wind directions and strengths. The POM was adopted with a downscaling approach for the regional ocean model one-way nested to a global ocean model. The upwelling event was detected from the observed wind data and satellite sea surface temperature images. The validated model reproduced the upwelling event showing the input of bottom cold water driven by wind to the bay, its subsequent deflection to the south, and its outcropping to the surface along the west and south coasts. Nevertheless, the behavior of the bottom water that intruded into the bay varied with different wind directions and strengths. Upwelling-favorable wind directions for flushing efficiency within the bay were ranked in the following order: N (0°; northerly) > NNE (30°; northeasterly) > NW (315°; northwesterly) > NE (45°; northeasterly) > ENE (60°; northeasterly). Increasing wind strengths also enhance cold water penetration and water exchange. It was determined that wind-driven downwelling within the bay, which occurred with NNE, NE and ENE winds, played a key role in blocking the intrusion of the cold water upwelled through the bay entrance. A northerly wind stress higher than 0.3 N m-2 was required for the cold water to reach the northern innermost bay.

  19. Interaction between continental and estuarine waters in the wetlands of the northern coastal plain of Samborombón Bay, Argentina

    International Nuclear Information System (INIS)

    Carol, Eleonora; Mas-Pla, Josep; Kruse, Eduardo

    2013-01-01

    Highlights: • Inland and estuarine water flows define wetland hydrology on the Samborombón Bay. • Hydrochemistry in shell-ridges and tidal plains is due to water–rock interaction. • Mixing, evaporation and halite dissolution determine salinity in marshes. • Water flow from the shell-ridges control the overall wetland water quality. • These wetlands are complex hydrological systems with vulnerable water resources. - Abstract: On the Samborombón Bay coastline, located in the Río de la Plata estuary in Buenos Aires province (Argentina), a complex hydrological system has developed at the interface between continental and estuarine water, where significant wetlands develop. The main hydrogeological units, namely the shell ridges, the tidal plain and the marsh areas, have been identified using geomorphological criteria. Water table, hydrochemical and isotopic data have been used to determine their hydrological features, as well as those of the streams and canals. Evaporation processes, in particular, have been considered when depicting chemical and isotopic changes in surface waters in streams and marsh areas. The shell ridges represent a hydrogeological unit in which rainwater is stored, constituting a lens-shaped freshwater aquifer. In this unit, just as in the tidal plain, carbonate dissolution and ion exchange are the main processes regulating water chemistry. On the other hand, in the marsh and surface waters, processes such as mixing with estuarine water and evaporation predominate. These processes control water fluxes and the salinity of the wetland areas and, consequently, their ability to preserve the existing biodiversity. This study shows the importance of knowledge of hydrochemical processes in any proposal concerning the management and preservation of this type of wetland

  20. Geoelectric imaging for saline water intrusion in Geopark zone of Ciletuh Bay, Indonesia

    Science.gov (United States)

    Ardi, N. D.; Iryanti, M.; Asmoro, C. P.; Yusuf, A.; Sundana, A. N. A.; Safura, H. Y.; Fitri, M.; Anggraeni, M.; Kurniawan, R.; Afrianti, R.; Sumarni

    2018-05-01

    Saline water intrusion in estuary is an urgent ecological encounter across the world. The Ciletuh Bay, located in the southern Sukabumi district, is an area with high cultivated potential becoming one of the most important geology tourism zones in Indonesia. However, salt water intrusion along the creek is a natural spectacle that disturbs the economic growth of the whole region. This research was intended at plotting the subsurface level of saltwater interventions into aquifers at the northern part of Ciletuh creek, Indonesia. The study implemented geoelectric imaging methods. 37 imaging datum were acquired using Wenner array configuration. The saline water were identified across the study area. The result of two dimensional cross-sectional resistivity shows that there is an indication of sea content in our measured soil, i.e. the smallest resistivity value is 0.579 Ωm found at a depth of 12.4 m to 19.8 m at a track length of 35 m to 60 m is categorized in the clayey which shows low groundwater quality. However, when compared with the results of direct observation of groundwater from the wells of residents, the water obtained is brackish water. A water chemistry test is conducted to ascertain the initial results of this method so that a potential sea intrusion potential map can be interpreted more clearly. This can consequently help as an extrapolative model to define depth to saline water at any site within the saline water zone in the study area.