WorldWideScience

Sample records for chesapeake bay estuary

  1. Chesapeake Bay under stress

    Science.gov (United States)

    According to extensive data obtained over its 13,000 km of shoreline, the Chesapeake Bay has been suffering a major, indeed unprecedented, reduction in submerged vegetation. Chesapeake Bay is alone in experiencing decline in submerged vegetation. Other estuary systems on the east coast of the United States are not so affected. These alarming results were obtained by the synthesis of the findings of numerous individual groups in addition to large consortium projects on the Chesapeake done over the past decade. R. J. Orth and R. A. Moore of the Virginia Institute of Marine Science pointed to the problem of the severe decline of submerged grasses on the Bay and along its tributaries. In a recent report, Orth and Moore note: “The decline, which began in the 1960's and accelerated in the 1970's, has affected all species in all areas. Many major river systems are now totally devoid of any rooted vegetation” (Science, 222, 51-53, 1983).

  2. Collection and analysis of remotely sensed data from the Rhode River Estuary Watershed. [ecological parameters of Chesapeake Bay

    Science.gov (United States)

    Jenkins, D. W.

    1972-01-01

    NASA chose the watershed of Rhode River, a small sub-estuary of the Bay, as a representative test area for intensive studies of remote sensing, the results of which could be extrapolated to other estuarine watersheds around the Bay. A broad program of ecological research was already underway within the watershed, conducted by the Smithsonian Institution's Chesapeake Bay Center for Environmental Studies (CBCES) and cooperating universities. This research program offered a unique opportunity to explore potential applications for remote sensing techniques. This led to a joint NASA-CBCES project with two basic objectives: to evaluate remote sensing data for the interpretation of ecological parameters, and to provide essential data for ongoing research at the CBCES. A third objective, dependent upon realization of the first two, was to extrapolate photointerpretive expertise gained at the Rhode River watershed to other portions of the Chesapeake Bay.

  3. Upriver transport of dissolved substances in an estuary and sub-estuary system of the lower James River, Chesapeake Bay

    Science.gov (United States)

    Hong, Bo; Shen, Jian; Xu, Hongzhou

    2018-01-01

    The water exchange between the James River and the Elizabeth River, an estuary and sub-estuary system in the lower Chesapeake Bay, was investigated using a 3D numerical model. The conservative passive tracers were used to represent the dissolved substances (DS) discharged from the Elizabeth River. The approach enabled us to diagnose the underlying physical processes that control the expansion of the DS, which is representative of potential transport of harmful algae blooms, pollutants from the Elizabeth River to the James River without explicitly simulating biological processes. Model simulations with realistic forcings in 2005, together with a series of processoriented numerical experiments, were conducted to explore the correlations of the transport process and external forcing. Model results show that the upriver transport depends highly on the freshwater discharge on a seasonal scale and maximum upriver transport occurs in summer with a mean transport time ranging from 15-30 days. The southerly/easterly wind, low river discharge, and neap tidal condition all act to strengthen the upriver transport. On the other hand, the northerly/westerly wind, river pulse, water level pulse, and spring tidal condition act to inhibit the upriver transport. Tidal flushing plays an important role in transporting the DS during spring tide, which shortens the travel time in the lower James River. The multivariable regression analysis of volume mean subtidal DS concentration in the mesohaline portion of the James River indicates that DS concentration in the upriver area can be explained and well predicted by the physical forcings (r = 0.858, p = 0.00001).

  4. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Science.gov (United States)

    2010-03-12

    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY...: Notice of availability of program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The... through the Chesapeake Bay Watershed Initiative for agricultural producers in the Chesapeake Bay watershed...

  5. Potential hazards of environmental contaminants to avifauna residing in the Chesapeake Bay estuary

    Science.gov (United States)

    Rattner, Barnett A.; McGowan, Peter C.

    2007-01-01

    A search of the Contaminant Exposure and Effects-Terrestrial Vertebrates (CEE-TV) database revealed that 70% of the 839 Chesapeake Bay records deal with avian species. Studies conducted on waterbirds in the past 15 years indicate that organochlorine contaminants have declined in eggs and tissues, although p,p'-DDE, total polychlorinated biphenyls (PCBs) and coplanar PCB congeners may still exert sublethal and reproductive effects in some locations. There have been numerous reports of avian die-off events related to organophosphorus and carbamate pesticides. More contemporary contaminants (e.g., alkylphenols, ethoxylates, perfluorinated compounds, polybrominated diphenyl ethers) are detectable in bird eggs in the most industrialized portions of the Bay, but interpretation of these data is difficult because adverse effect levels are incompletely known for birds. Two moderaterized oil spills resulted in the death of several hundred birds, and about 500 smaller spill events occur annually in the watershed. With the exception of lead, concentrations of cadmium, mercury, and selenium in eggs and tissues appear to be below toxic thresholds for waterbirds. Fishing tackle and discarded plastics, that can entangle and kill young and adults, are prevalent in nests in some Bay tributaries. It is apparent that exposure and potential effects of several classes of contaminants (e.g., dioxins, dibenzofurans, rodenticides, pharmaceuticals, personal care products, lead shot, and some metals) have not been systematically examined in the past 15 years, highlighting the need for toxicological evaluation of birds found dead, and perhaps an avian ecotoxicological monitoring program. Although oil spills, spent lead shot, some pesticides, and industrial pollutants occasionally harm Chesapeake avifauna, contaminants no longer evoke the population level effects that were observed in Ospreys (Pandion haliaetus) and Bald Eagles (Haliaeetus leucocephalus) through the 1970s.

  6. The sedimentary record of climatic and anthropogenic influence on the Patuxent estuary and Chesapeake Bay ecosystems

    Science.gov (United States)

    Cronin, T. M.; Vann, C.D.

    2003-01-01

    Ecological and paleoecological studies from the Patuxent River mouth reveal dynamic variations in benthic ostracode assemblages over the past 600 years due to climatic and anthropogenic factors. Prior to the late 20th century, centennial-scale changes in species dominance were influenced by climatic and hydrological factors that primarily affected salinity and at times led to oxygen depletion. Decadal-scale droughts also occurred resulting in higher salinities and migration of ostracode species from the deep channel (Loxoconcha sp., Cytheromorpha newportensis) into shallower water along the flanks of the bay. During the 19th century the abundance of Leptocythere nikraveshae and Perissocytheridea brachyforma suggest increased turbidity and decreased salinity. Unprecedented changes in benthic ostracodes at the Patuxent mouth and in the deep channel of the bay occurred after the 1960s when Cytheromorpha curta became the dominant species, reflecting seasonal anoxia. The change in benthic assemblages coincided with the appearance of deformities in foraminifers. A combination of increased nitrate loading due to greater fertilizer use and increased freshwater flow explains this shift. A review of the geochemical and paleoecological evidence for dissolved oxygen indicates that seasonal oxygen depletion in the main channel of Chesapeake Bay varies over centennial and decadal timescales. Prior to 1700 AD, a relatively wet climate and high freshwater runoff led to oxygen depletion but rarely anoxia. Between 1700 and 1900, progressive eutrophication occurred related to land dearance and increased sedimentation, but this was superimposed on the oscillatory pattern of oxygen depletion most likely driven by climatological and hydrological factors. It also seems probable that the four- to five-fold increase in sedimentation due to agricultural and timber activity could have contributed to an increased natural nutrient load, likely fueling the early periods (1700-1900) of hypoxla

  7. Spill management strategy for the Chesapeake Bay

    International Nuclear Information System (INIS)

    Butler, H.L.; Chapman, R.S.; Johnson, B.H.

    1990-01-01

    The Chesapeake Bay Program is a unique cooperative effort between state and Federal agencies to restore the health and productivity of America's largest estuary. To assist in addressing specific management issues, a comprehensive three-dimensional, time-varying hydrodynamic and water quality model has ben developed. The Bay modeling strategy will serve as an excellent framework for including submodules to predict the movement, dispersion, and weathering of accidental spills, such as for petroleum products or other chemicals. This paper presents sample results from the Bay application to illustrate the success of the model system in simulating Bay processes. Also, a review of model requirements for successful spill modeling in Chesapeake Bay is presented. Recommendations are given for implementing appropriate spill modules with the Bay model framework and establishing a strategy for model use in addressing management issues

  8. DEVELOP Chesapeake Bay Watershed Hydrology - UAV Sensor Web

    Science.gov (United States)

    Holley, S. D.; Baruah, A.

    2008-12-01

    The Chesapeake Bay is the largest estuary in the United States, with a watershed extending through six states and the nation's capital. Urbanization and agriculture practices have led to an excess runoff of nutrients and sediment into the bay. Nutrients and sediment loading stimulate the growth of algal blooms associated with various problems including localized dissolved oxygen deficiencies, toxic algal blooms and death of marine life. The Chesapeake Bay Program, among other stakeholder organizations, contributes greatly to the restoration efforts of the Chesapeake Bay. These stakeholders contribute in many ways such as monitoring the water quality, leading clean-up projects, and actively restoring native habitats. The first stage of the DEVELOP Chesapeake Bay Coastal Management project, relating to water quality, contributed to the restoration efforts by introducing NASA satellite-based water quality data products to the stakeholders as a complement to their current monitoring methods. The second stage, to be initiated in the fall 2008 internship term, will focus on the impacts of land cover variability within the Chesapeake Bay Watershed. Multiple student led discussions with members of the Land Cover team at the Chesapeake Bay Program Office in the DEVELOP GSFC 2008 summer term uncovered the need for remote sensing data for hydrological mapping in the watershed. The Chesapeake Bay Program expressed in repeated discussions on Land Cover mapping that significant portions of upper river areas, streams, and the land directly interfacing those waters are not accurately depicted in the watershed model. Without such hydrological mapping correlated with land cover data the model will not be useful in depicting source areas of nutrient loading which has an ecological and economic impact in and around the Chesapeake Bay. The fall 2008 DEVELOP team will examine the use of UAV flown sensors in connection with in-situ and Earth Observation satellite data. To maximize the

  9. Chesapeake Bay plume dynamics from LANDSAT

    Science.gov (United States)

    Munday, J. C., Jr.; Fedosh, M. S.

    1981-01-01

    LANDSAT images with enhancement and density slicing show that the Chesapeake Bay plume usually frequents the Virginia coast south of the Bay mouth. Southwestern (compared to northern) winds spread the plume easterly over a large area. Ebb tide images (compared to flood tide images) show a more dispersed plume. Flooding waters produce high turbidity levels over the shallow northern portion of the Bay mouth.

  10. Phytoplankton growth, dissipation, and succession in estuarine environments. [Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Seliger, H H

    1976-01-01

    Two major advances in a study of phytoplankton ecology in the Chesapeake Bay are reported. The annual subsurface transport of a dinoflagellate species (Prorocentrum mariae labouriae) from the mouth of the bay a distance northward of 120 nautical miles to the region of the Bay Bridge was followed. Prorocentrum is a major seasonal dinoflagellate in the Chespeake Bay and annually has been reported to form mahogany tides, dense reddish-brown patches, in the northern bay beginning in late spring and continuing through the summer. Subsequent to this annual appearance the Prorocentrum spread southward and into the western tributary estuaries. The physiological behavioral characteristics of the Prorocentrum were correlated with the physical water movements in the bay. A phytoplankton cage technique for the measurement in situ of the growth rates of natural mixed populations is described. (CH)

  11. Radionuclides and trace elements in middle Chesapeake Bay sediments

    International Nuclear Information System (INIS)

    Gavrilas, M.

    1988-01-01

    Sediments play an important role in aquatic ecology by serving as a repository for radioactive substances and for soluble chemical pollutants that they may transport over considerable distances and may pass to a higher trophic level by way of bottom-feeding biota. The Chesapeake Bay is a moderately stratified, drowned river valley estuary. The oscillatory flood and ebb of the tidal currents are the most obvious motions in the bay and its tributary estuaries. It is considered that the distribution of most of the pollutants, once diluted by the mixing action of the tidal flow, remains relatively constant for many miles up and down the bay. This paper documents the present status of the radioactivity and of trace elements in sediment samples collected in March 1986 from and extended area around the Calvert Cliffs Nuclear Power Plant

  12. U.S. Geological Survey Science—Improving the value of the Chesapeake Bay watershed

    Science.gov (United States)

    Phillips, Scott W.; Hyer, Kenneth; Goldbaum, Elizabeth

    2017-05-05

    IntroductionCongress directed the Federal Government to work with States to restore the Nation’s largest estuary.Chesapeake Bay restoration provides important economic and ecological benefits:18 million people live and work in the Bay watershed and enjoy its benefits.3,600 types of fish, wildlife, and plants underpin the economic value of the Bay ecosystem.Poor water quality and habitat loss threaten restoration and negatively impact the economy.10 Goals to meet by 2025 through the Chesapeake Bay Program, a voluntary partnership.

  13. Field guide to fishes of the chesapeake bay

    CERN Document Server

    Murdy, Edward O.

    2013-01-01

    The only comprehensive field guide to the Chesapeake’s fishes, this book is an indispensable resource for both anglers and students of the Bay. Vivid illustrations by Val Kells complement the expertise of researchers Edward O. Murdy and John A. Musick. They describe fishes that inhabit waters ranging from low-salinity estuaries to the point where the Bay meets the Atlantic Ocean. Key features of this field guide include• full-color illustrations of more than 200 species• text that is presented adjacent to illustrations for easy reference• detailed descriptions of physical characteristics, range, occurrence in the Bay, reproduction, diet, and statistics from fisheries research• spot illustrations that highlight critical features of certain fish• illustrations of juveniles when they look different from adults• appendices that include identification keys Formatted as a compact field guide for students, scientists, researchers, and fishermen, Field Guide to Fishes of the Chesapeake Bay should be a ...

  14. Composition and temporal patterns of larval fish communities in Chesapeake and Delaware Bays

    Directory of Open Access Journals (Sweden)

    Filipe Ribeiro

    2015-11-01

    Full Text Available Comparing larval fish assemblages in different estuaries provides insights about the coastal distribution of larval populations, larval transport, and adult spawning locations (Ribeiro et al. 2015. We simultaneously compared the larval fish assemblages entering two Middle Atlantic Bight (MAB estuaries (Delaware Bay and Chesapeake Bay, USA through weekly sampling from 2007 to 2009. In total, 43 taxa (32 families and 36 taxa (24 families were collected in Delaware and Chesapeake Bays, respectively. Mean taxonomic diversity, mean richness, and evenness were generally lower in Delaware Bay. Communities of both bays were dominated by Anchoa spp., Gobiosoma spp., Micropogonias undulatus, and Brevoortia tyrannus; Paralichthys spp. was more abundant in Delaware Bay and Microgobius thalassinus was more abundant in Chesapeake Bay. Inter-annual variation in the larval fish communities was low at both sites, with a relatively consistent composition across years, but strong seasonal (intra-annual variation in species composition occurred in both bays. Two groups were identified in Chesapeake Bay: a ‘winter’ group dominated by shelf-spawned species (e.g. M. undulatus and a ‘summer’ group comprising obligate estuarine species and coastal species (e.g. Gobiosoma spp. and Cynoscion regalis, respectively. In Delaware Bay, 4 groups were identified: a ‘summer’ group of mainly obligate estuarine fishes (e.g. Menidia sp. being replaced by a ‘fall’ group (e.g. Ctenogobius boleosoma and Gobionellus oceanicus; ‘winter’ and ‘spring’ groups were dominated by shelf-spawned (e.g. M. undulatus and Paralichthys spp. and obligate estuarine species (e.g. Leiostomus xanthurus and Pseudopleuronectes americanus, respectively. This study demonstrates that inexpensive and simultaneous sampling in different estuaries provides important insights into the variability in community structure of fish assemblages at large spatial scales.

  15. Chesapeake Bay baseline data acquisition, toxics in the Chesapeake Bay. Final preliminary report, 1946-78

    International Nuclear Information System (INIS)

    1978-07-01

    This report identifies researchers, research activities, and data files applicable to the Chesapeake Bay estuarine system. The identified data were generated after 1973 on the following: submerged aquatic vegetation, shellfish bed closures, eutrophication, toxics accumulation in the food chain, dredging and spoil disposal, hydrologic modifications, modification of fisheries, shoreline erosion, wetlands alterations, and the effects of boating and shipping on water quality. Major past and current program monitoring in the Bay and its tributaries are summarized according to frequency

  16. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay

    Science.gov (United States)

    Kemp, W.M.; Smith, E.M.; Marvin-DiPasquale, M.; Boynton, W.R.

    1997-01-01

    The major fluxes of organic carbon associated with physical transport and biological metabolism were compiled, analyzed and compared for the mainstem portion of Chesapeake Bay (USA). In addition, 5 independent methods were used to calculate the annual mean net ecosystem metabolism (NEM = production - respiration) for the integrated Bay. These methods, which employed biogeochemical models, nutrient mass-balances anti summation of individual organic carbon fluxes, yielded remarkably similar estimates, with a mean NEM of +50 g C m-2 yr-1 (?? SE = 751, which is approximately 8% of the estimated annual average gross primary production. These calculations suggest a strong cross-sectional pattern in NEM throughout the Bay, wherein net heterotrophic metabolism prevails in the pelagic zones of the main channel, while net autotrophy occurs in the littoral zones which flank the deeper central area. For computational purposes, the estuary was separated into 3 regions along the land-sea gradient: (1) the oligohaline Upper Bay (11% of total area); (2) the mesohaline Mid Bay (36% of area); and (3) the polyhaline Lower Bay (53% of area). A distinct regional trend in NEM was observed along this salinity gradient, with net here(atrophy (NEM = 87 g C m-2 yr-1) in the Upper Bay, balanced metabolism in the Mid Bay and net autotrophy (NEM = +92 g C m-2 yr-1) in the Lower Bay. As a consequence of overall net autotrophy, the ratio of dissolved inorganic nitrogen (DIN) to total organic nitrogen (TON) changed from DIN:TON = 5.1 for riverine inputs to DIN:TON = 0.04 for water exported to the ocean. A striking feature of this organic C mass-balance was the relative dominance of biologically mediated metabolic fluxes compared to physical transport fluxes. The overall ratio of physical TOC inputs (1) to biotic primary production (P) was 0.08 for the whole estuary, but varied dramatically from 2.3 in the Upper Bay to 0.03 in the Mid and Lower Bay regions. Similarly, ecosystem respiration was

  17. Petrographic Studies of Rocks from The Chesapeake Bay Impact ...

    African Journals Online (AJOL)

    Shock petrographic investigations were carried out on samples collected from drill cores from the Chesapeake Bay impact structure (USA). The late Eocene Chesapeake impact structure is, at 85 km diameter, currently the largest impact structure known in the United States, buried at shallow to moderate depths beneath ...

  18. Defining a data management strategy for USGS Chesapeake Bay studies

    Science.gov (United States)

    Ladino, Cassandra

    2013-01-01

    The mission of U.S. Geological Survey’s (USGS) Chesapeake Bay studies is to provide integrated science for improved understanding and management of the Chesapeake Bay ecosystem. Collective USGS efforts in the Chesapeake Bay watershed began in the 1980s, and by the mid-1990s the USGS adopted the watershed as one of its national place-based study areas. Great focus and effort by the USGS have been directed toward Chesapeake Bay studies for almost three decades. The USGS plays a key role in using “ecosystem-based adaptive management, which will provide science to improve the efficiency and accountability of Chesapeake Bay Program activities” (Phillips, 2011). Each year USGS Chesapeake Bay studies produce published research, monitoring data, and models addressing aspects of bay restoration such as, but not limited to, fish health, water quality, land-cover change, and habitat loss. The USGS is responsible for collaborating and sharing this information with other Federal agencies and partners as described under the President’s Executive Order 13508—Strategy for Protecting and Restoring the Chesapeake Bay Watershed signed by President Obama in 2009. Historically, the USGS Chesapeake Bay studies have relied on national USGS databases to store only major nationally available sources of data such as streamflow and water-quality data collected through local monitoring programs and projects, leaving a multitude of other important project data out of the data management process. This practice has led to inefficient methods of finding Chesapeake Bay studies data and underutilization of data resources. Data management by definition is “the business functions that develop and execute plans, policies, practices and projects that acquire, control, protect, deliver and enhance the value of data and information.” (Mosley, 2008a). In other words, data management is a way to preserve, integrate, and share data to address the needs of the Chesapeake Bay studies to better

  19. Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed-An empirical model

    Science.gov (United States)

    Ator, Scott W.; Brakebill, John W.; Blomquist, Joel D.

    2011-01-01

    Spatially Referenced Regression on Watershed Attributes (SPARROW) was used to provide empirical estimates of the sources, fate, and transport of total nitrogen (TN) and total phosphorus (TP) in the Chesapeake Bay watershed, and the mean annual TN and TP flux to the bay and in each of 80,579 nontidal tributary stream reaches. Restoration efforts in recent decades have been insufficient to meet established standards for water quality and ecological conditions in Chesapeake Bay. The bay watershed includes 166,000 square kilometers of mixed land uses, multiple nutrient sources, and variable hydrogeologic, soil, and weather conditions, and bay restoration is complicated by the multitude of nutrient sources and complex interacting factors affecting the occurrence, fate, and transport of nitrogen and phosphorus from source areas to streams and the estuary. Effective and efficient nutrient management at the regional scale in support of Chesapeake Bay restoration requires a comprehensive understanding of the sources, fate, and transport of nitrogen and phosphorus in the watershed, which is only available through regional models. The current models, Chesapeake Bay nutrient SPARROW models, version 4 (CBTN_v4 and CBTP_v4), were constructed at a finer spatial resolution than previous SPARROW models for the Chesapeake Bay watershed (versions 1, 2, and 3), and include an updated timeframe and modified sources and other explantory terms.

  20. Are the Chesapeake Bay waters warming up

    International Nuclear Information System (INIS)

    Brady, D.K.

    1976-01-01

    Apparently significant trends within moderately long (50-year) series of meteorological or hydrological data should be regarded with suspicion until justified on the basis of much longer term information. Extra efforts should be directed toward securing the continuance of routine observations at stations where long data histories are already available and where the termination of such records might be regretted at some future time. Mean annual air and water temperatures at different sites may be quite highly correlated even when the points of measurement are very widely separated. The annual average water temperature at one station close to the Chesapeake Bay appears to be normally distributed with a standard deviation of 0.7 0 C about a stationary overall mean value of 14.6 0 C. Its 1000-year departure is +- 2.2 0 C

  1. Radiocarbon dating, chronologic framework, and changes in accumulation rates of holocene estuarine sediments from Chesapeake Bay

    Science.gov (United States)

    Colman, Steven M.; Baucom, P.C.; Bratton, J.F.; Cronin, T. M.; McGeehin, J.P.; Willard, D.; Zimmerman, A.R.; Vogt, P.R.

    2002-01-01

    Rapidly accumulating Holocene sediments in estuaries commonly are difficult to sample and date. In Chesapeake Bay, we obtained sediment cores as much as 20 m in length and used numerous radiocarbon ages measured by accelarator mass spectrometry methods to provide the first detailed chronologies of Holocene sediment accumulation in the bay. Carbon in these sediments is a complex mixture of materials from a variety of sources. Analyses of different components of the sediments show that total organic carbon ages are largely unreliable, because much of the carbon (including coal) has been transported to the bay from upstream sources and is older than sediments in which it was deposited. Mollusk shells (clams, oysters) and foraminifera appear to give reliable results, although reworking and burrowing are potential problems. Analyses of museum specimens collected alive before atmospheric nuclear testing suggest that the standard reservoir correction for marine samples is appropriate for middle to lower Chesapeake Bay. The biogenic carbonate radiocarbon ages are compatible with 210 Pb and 137 Cs data and pollen stratigraphy from the same sites. Post-settlement changes in sediment transport and accumulation is an important environmental issue in many estuaries, including the Chesapeake. Our data show that large variations in sediment mass accumulation rates occur among sites. At shallow water sites, local factors seem to control changes in accumulation rates with time. Our two relatively deep-water sites in the axial channel of the bay have different long-term average accumulation rates, but the history of sediment accumulation at these sites appears to reflect overall conditions in the bay. Mass accumulation rates at the two deep-water sites rapidly increased by about fourfold coincident with widespread land clearance for agriculture in the Chesapeake watershed.

  2. Multi-decadal variation in size of juvenile Summer Flounder (Paralichthys dentatus) in Chesapeake Bay

    Science.gov (United States)

    Nys, Lauren N.; Fabrizio, Mary C.; Tuckey, Troy D.

    2016-01-01

    During the last quarter-century, management of Summer Flounder Paralichthys dentatus along the Atlantic coast resulted in significant increases in abundance such that rebuilding targets were recently achieved. Although spawning stock biomass is high, recruitment of young-of-the-year (YOY) Summer Flounder remains variable. Chesapeake Bay is one of the principal nursery areas for this species, but processes such as growth and survival that affect production of YOY Summer Flounder in this estuary have not been explored. Here, we investigated the relationship between abundance and size of Summer Flounder recruits from the 1988 to 2012 year classes in Chesapeake Bay. We also considered the effects of environmental factors on fish size because conditions in the bay vary spatially during the time that fish occupy nursery areas. To describe variations in Summer Flounder size, we used monthly length observations from 13,018 YOY fish captured by bottom trawl from the lower Chesapeake Bay and the James, York, and Rappahannock river subestuaries where Summer Flounder are commonly observed. We applied a generalized additive model to describe spatial, temporal, and environmental effects on observed fish size; we also considered the density of Summer Flounder and an index of productivity as factors in the model. Summer Flounder in Chesapeake Bay exhibited density-dependent and spatially related variations in mean length: larger fish were found mostly in the Bay and smaller fish in the subestuaries. Additionally, low ( 26 °C) temperatures and low salinities (indicating that individuals found in these environments were typically smaller than conspecifics inhabiting areas of moderate temperatures and higher salinities. Variable nursery habitat conditions in temperate estuaries affect fish size and, subsequently, may influence production of Summer Flounder year classes through effects on maturation and survival. As water temperatures in the mid-Atlantic region continue to increase

  3. Organic Matter Remineralization Predominates Phosphorus Cycling in the Mid-Bay Sediments in the Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Sunendra, Joshi R.; Kukkadapu, Ravi K.; Burdige, David J.; Bowden, Mark E.; Sparks, Donald L.; Jaisi, Deb P.

    2015-05-19

    The Chesapeake Bay, the largest and most productive estuary in the US, suffers from varying degrees of water quality issues fueled by both point and non–point source nutrient sources. Restoration of the bay is complicated by the multitude of nutrient sources, their variable inputs and hydrological conditions, and complex interacting factors including climate forcing. These complexities not only restrict formulation of effective restoration plans but also open up debates on accountability issues with nutrient loading. A detailed understanding of sediment phosphorus (P) dynamics enables one to identify the exchange of dissolved constituents across the sediment- water interface and aid to better constrain mechanisms and processes controlling the coupling between the sediments and the overlying waters. Here we used phosphate oxygen isotope ratios (δ18Op) in concert with sediment chemistry, XRD, and Mössbauer spectroscopy on the sediment retrieved from an organic rich, sulfidic site in the meso-haline portion of the mid-bay to identify sources and pathway of sedimentary P cycling and to infer potential feedback effect on bottom water hypoxia and surface water eutrophication. Isotope data indicate that the regeneration of inorganic P from organic matter degradation (remineralization) is the predominant, if not sole, pathway for authigenic P precipitation in the mid-bay sediments. We interpret that the excess inorganic P generated by remineralization should have overwhelmed any bottom-water and/or pore-water P derived from other sources or biogeochemical processes and exceeded saturation with respect to authigenic P precipitation. It is the first research that identifies the predominance of remineralization pathway against remobilization (coupled Fe-P cycling) pathway in the Chesapeake Bay. Therefore, these results are expected to have significant implications for the current understanding of P cycling and benthic-pelagic coupling in the bay, particularly on the

  4. Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery.

    Science.gov (United States)

    Rick, Torben C; Reeder-Myers, Leslie A; Hofman, Courtney A; Breitburg, Denise; Lockwood, Rowan; Henkes, Gregory; Kellogg, Lisa; Lowery, Darrin; Luckenbach, Mark W; Mann, Roger; Ogburn, Matthew B; Southworth, Melissa; Wah, John; Wesson, James; Hines, Anson H

    2016-06-07

    Estuaries around the world are in a state of decline following decades or more of overfishing, pollution, and climate change. Oysters (Ostreidae), ecosystem engineers in many estuaries, influence water quality, construct habitat, and provide food for humans and wildlife. In North America's Chesapeake Bay, once-thriving eastern oyster (Crassostrea virginica) populations have declined dramatically, making their restoration and conservation extremely challenging. Here we present data on oyster size and human harvest from Chesapeake Bay archaeological sites spanning ∼3,500 y of Native American, colonial, and historical occupation. We compare oysters from archaeological sites with Pleistocene oyster reefs that existed before human harvest, modern oyster reefs, and other records of human oyster harvest from around the world. Native American fisheries were focused on nearshore oysters and were likely harvested at a rate that was sustainable over centuries to millennia, despite changing Holocene climatic conditions and sea-level rise. These data document resilience in oyster populations under long-term Native American harvest, sea-level rise, and climate change; provide context for managing modern oyster fisheries in the Chesapeake Bay and elsewhere around the world; and demonstrate an interdisciplinary approach that can be applied broadly to other fisheries.

  5. Lowering Barriers to Achieving Multiple Environmental Goals in the Chesapeake Bay

    Science.gov (United States)

    In recognition of past unsuccessful restoration strategies for the Chesapeake Bay, President Obama signed Executive Order (EO) 13508 “Strategy for Protecting and Restoring the Chesapeake Bay Watershed” in 2009.

  6. Understanding nutrients in the Chesapeake Bay watershed and implications for management and restoration: the Eastern Shore

    Science.gov (United States)

    Ator, Scott W.; Denver, Judith M.

    2015-03-12

    The Eastern Shore includes only a small part of the Chesapeake Bay watershed, but contributes disproportionately large loads of the excess nitrogen and phosphorus that have contributed to ecological and economic degradation of the bay in recent decades. Chesapeake Bay is the largest estuary in the United States and a vital ecological and economic resource. The bay and its tributaries have been degraded in recent decades by excessive nitrogen and phosphorus in the water column, however, which cause harmful algal blooms and decreased water clarity, submerged aquatic vegetation, and dissolved oxygen. The disproportionately large nitrogen and phosphorus yields from the Eastern Shore to Chesapeake Bay are attributable to human land-use practices as well as natural hydrogeologic and soil conditions. Applications of nitrogen and phosphorus compounds to the Eastern Shore from human activities are intensive. More than 90 percent of nitrogen and phosphorus reaching the land in the Eastern Shore is applied as part of inorganic fertilizers or manure, or (for nitrogen) fixed directly from the atmosphere in cropland. Also, hydrogeologic and soil conditions promote the movement of these compounds from application areas on the landscape to groundwater and (or) surface waters, and the proximity of much of the Eastern Shore to tidal waters limits opportunities for natural removal of these compounds in the landscape. The Eastern Shore only includes 7 percent of the Chesapeake Bay watershed, but receives nearly twice as much nitrogen and phosphorus applications (per area) as the remainder of the watershed and yields greater nitrogen and phosphorus, on average, to the bay. Nitrogen and phosphorus commonly occur in streams at concentrations that may adversely affect aquatic ecosystems and have increased in recent decades.

  7. Behaviour of uranium during mixing in the Delaware and Chesapeake estuaries

    International Nuclear Information System (INIS)

    Sarin, M.M.; Church, T.M.

    1994-01-01

    Unequivocal evidence is presented for the removal of uranium in two major estuarine systems of the north-eastern United States: the Delaware and Chesapeake Bays. In both the estuaries, during all seasons but mostly in summer, dissolved uranium shows distinctly non-conservative behaviour at salinities ≤ 5. At salinities above 5, there are no deviations from the ideal dilution line. In these two estuaries as much as 22% of dissolved uranium is removed at low salinities, around salinity 2. This pronounced removal of uranium observed at low salinities has been investigated in terms of other chemical properties measured in the Delaware Estuary. In the zone of uranium removal, dissolved oxygen is significantly depleted and pH goes through a minimum down to 6.8. In the same low salinity regime, total alkalinity shows negative deviation from the linear dilution line and phosphate is removed. Humic acids, dissolved iron and manganese are also rapidly removed during estuarine mixing in this low salinity region. Thus, it appears that removal of uranium is most likely related to those properties of alkalinity and acid-base system of the upper estuary that may destabilize the uranium-carbonate complex. Under these conditions, uranium may associate strongly with phosphates or humic substances and be removed onto particulate phases and deposited within upper estuarine sediments. (author)

  8. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    Science.gov (United States)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  9. Chesapeake Bay Low Freshwater Inflow Study. Appendix E. Biota.

    Science.gov (United States)

    1984-09-01

    selecting representative species for study, mapping potential habitat under various conditions, using expert scientists to interpret the significance of...8217 t " TH H P CHESAPEAKE BAYE Ec LOW FRESHWATER INFLOW STUDY . htp APPENDIX E . . BIOTA TABLE OF ONTENTS...intensive manual searches of journals and other sources. Five abstract services were searched under more than 14 topics each. Journals, reports to

  10. Ospreys Use Bald Eagle Nests in Chesapeake Bay Area

    OpenAIRE

    Therres, Glenn D.; Chandler, Sheri K.

    1993-01-01

    Ospreys (Pandion haliaetus) and Bald Eagles (Haliaeetus leucocephalus) share similar breeding habitat in the Chesapeake Bay area and elsewhere. The nests of these species are similar in size and appearance. Ospreys typically build large stick nests in dead trees or on man-made structures (C.J. Henny et al. 1974, Chesapeake Sci. 15:125-133; A.F. Poole 1989, Ospreys: a natural and unnatural history, Cambridge Univ. Press, NY), while Bald Eagles usually build larger nests in live trees (P.B. Woo...

  11. BOOK REVIEW OF "CHESAPEAKE BAY BLUES: SCIENCE, POLITICS, AND THE STRUGGLE TO SAVE THE BAY"

    Science.gov (United States)

    This is a book review of "Chesapeake Bay Blues: Science, Politics, and the Struggle to Save the Bay". This book is very well written and provides an easily understandable description of the political challenges faced by those proposing new or more stringent environmental regulat...

  12. Effects of energy related activities on the plankton of the Chesapeake Bay. Section 1. Progress report, 1 August 1976--30 September 1977

    International Nuclear Information System (INIS)

    Taft, J.L.

    1977-01-01

    Progress is reported on a comprehensive study of the ecology of the Chesapeake Bay estuary system. Emphasis is placed on seasonal variations of initial energy fixation by phytoplankton primary producers and subsequent energy transfer to herbivours and becterial heterotrophs. The impact of chemical and radioactive effluents from electric power plants on the ecology of Chesapeake Bay will be assessed. Data are included on the role of plankton metabolism in regenerating nutrients, nutrient exchange with sediments, and the role of micro-zooplankton in nutrient cycling

  13. The Lower Chesapeake Bay LTAR: A coastal urban-agricultural region

    Science.gov (United States)

    Mccarty, G.; Alfieri, J. G.; Cavigelli, M.; Cosh, M. H.; Hapeman, C. J.; Kustas, W. P.; Maul, J.; Mirsky, S.; Pooler, M.; Sadeghi, A. M.; Schomberg, H.; Timlin, D. J.; Rice, C. P.

    2015-12-01

    The Chesapeake Bay, located in the mid-Atlantic region of the U.S., is the largest estuary in North America. The watershed area includes six states from New York to Virginia and is nearly 167,000 km2 in size with more than 150 rivers and streams entering the 300-km Bay main stem. Forested and agricultural lands make up 58 and 22 percent of the land use, respectively. Nearly 9 percent is urban and suburban use, and the watershed is home to over 17 million people. However, the population is expected to reach 19 million by 2025, raising the potential for conflict between the agricultural and urban communities over land and water use and in protecting natural resources, especially in the lower portion of the Chesapeake Bay watershed. The Lower Chesapeake Bay study area, part of the USDA-ARS Long-Term Agroecosystem Research (LTAR) network, will provide much-needed data to support decisions at this critical agriculture-urban interface. Current long-term projects seek to assess the economic, production, and environmental performance of conventional and organic cropping systems and to evaluate the resilience of these systems to climate change. Large-scale studies are being conducted to examine the effects of land-use and landscape characteristics on ecosystem services and on energy, water, nutrient, carbon, and pest dynamics within watersheds. New in-situ measurement and remote sensor technologies are being considered with the expectancy that the data streams will be available on-line and for use in modeling. Results and outcomes of these research efforts will greatly benefit the national LTAR network and will be applicable to other US coastal urban-agricultural regions.

  14. Chesapeake Bay impact structure: A blast from the past

    Science.gov (United States)

    Powars, David S.; Edwards, Lucy E.; Gohn, Gregory S.; Horton, J. Wright

    2015-10-28

    About 35 million years ago, a 2-mile-wide meteorite smashed into Earth in what is now the lower Chesapeake Bay in Virginia. The oceanic impact vaporized, melted, fractured, and displaced rocks and sediments and sent billions of tons of water, sediments, and rocks into the air. Glassy particles of solidified melt rock rained down as far away as Texas and the Caribbean. Large tsunamis affected most of the North Atlantic basin. The resulting impact structure is more than 53 miles wide and has a 23-mile-wide, filled central crater surrounded by collapsed sediments. Now buried by hundreds of feet of younger sediments, the Chesapeake Bay impact structure is among the 20 largest known impact structures on Earth.

  15. Scientific Guidance for Rehabilitation of the Chesapeake Bay Ecosystem under the Changing Climate.

    Science.gov (United States)

    Boesch, D. F.; Johnson, Z. P.; Li, M.

    2017-12-01

    While the Chesapeake Bay is an estuary and not a marginal sea on the scale of the Baltic Sea or the Gulf of Mexico, it has a complex set of environmental issues and multiple political jurisdictions such that it can serve as a test bed for science-informed management in larger marine systems. In particular, the Chesapeake Bay possesses a relatively advanced effort to ameliorate eutrophication, reduce toxic stresses, rehabilitate critical habitats, and sustainably utilized resources. Furthermore, both scientists and managers are addressing these challenges while now beginning to incorporate the effects of changes in temperature, precipitation and runoff, sea level, ocean boundary conditions, and pH. Increases in temperature and sea level are already apparent and future conditions can be estimated from global model projections, although sea level and ocean exchanges are also affected by variations in Gulf Stream flows and mesoscale climate. Changes in the volume, seasonality and variability in freshwater delivery from the multiple rivers discharging to the bay are harder to project with confidence, but may have pervasive consequences for circulation, reducing nutrient loads to ameliorate eutrophication, biogeochemical processes, and biotic distributions and dynamics. Science is now challenged to inform multiple adaptation strategies, including minimizing the vulnerability of humans and infrastructure, sustaining important tidal wetlands, managing sediment resources, sustaining living resources, redefining achievable ecosystem rehabilitation goals, and achieving shifting goals for nutrient load reductions. At the same time, science will also have to identify effective means to meet these challenges while also reducing greenhouse gas emissions.

  16. FY 2016 Grant Announcement: FY 2016 Technical Analysis and Programmatic Evaluation Support to the Chesapeake Bay Program Partnership

    Science.gov (United States)

    The U.S. Environmental Protection Agency’s Chesapeake Bay Program Office is announcing a Request for Proposals for applicants to provide the Chesapeake Bay Program partners with a proposal(s) for providing technical analysis and programmatic evaluation

  17. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise.

    Science.gov (United States)

    Beckett, Leah H; Baldwin, Andrew H; Kearney, Michael S

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9-15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.

  18. Sorption and bioreduction of hexavalent uranium at a military facility by the Chesapeake Bay

    International Nuclear Information System (INIS)

    Dong Wenming; Xie Guibo; Miller, Todd R.; Franklin, Mark P.; Oxenberg, Tanya Palmateer; Bouwer, Edward J.; Ball, William P.; Halden, Rolf U.

    2006-01-01

    Directly adjacent to the Chesapeake Bay lies the Aberdeen Proving Ground, a U.S. Army facility where testing of armor-piercing ammunitions has resulted in the deposition of >70,000 kg of depleted uranium (DU) to local soils and sediments. Results of previous environmental monitoring suggested limited mobilization in the impact area and no transport of DU into the nation's largest estuary. To determine if physical and biological reactions constitute mechanisms involved in limiting contaminant transport, the sorption and biotransformation behavior of the radionuclide was studied using geochemical modeling and laboratory microcosms (500 ppb U(VI) initially). An immediate decline in dissolved U(VI) concentrations was observed under both sterile and non-sterile conditions due to rapid association of U(VI) with natural organic matter in the sediment. Reduction of U(VI) to U(IV) occurred only in non-sterile microcosms. In the non-sterile samples, intrinsic bioreduction of uranium involved bacteria of the order Clostridiales and was only moderately enhanced by the addition of acetate (41% vs. 56% in 121 days). Overall, this study demonstrates that the migration of depleted uranium from the APG site into the Chesapeake Bay may be limited by a combination of processes that include rapid sorption of U(VI) species to natural organic matter, followed by slow, intrinsic bioreduction to U(IV). - At the Aberdeen Proving Ground in Maryland, USA, migration of depleted uranium into the Chesapeake Bay is limited by rapid sorption of the radionuclide to natural organic matter followed by slow biological reduction of water-soluble U(VI) to the insoluble and less toxic U(IV) species

  19. 33 CFR 162.65 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Science.gov (United States)

    2010-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary to..., which are tributary to or connected by other waterways with the Atlantic Ocean south of Chesapeake Bay...

  20. 33 CFR 334.310 - Chesapeake Bay, Lynnhaven Roads; navy amphibious training area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. 334.310 Section 334.310 Navigation and Navigable Waters CORPS OF....310 Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. (a) The restricted area. Beginning...

  1. Exploring the environmental effects of shale gas development in the Chesapeake Bay watershed

    Science.gov (United States)

    Scientific and Technical Committee [STAC]. Chesapeake Bay Program

    2013-01-01

    On April 11-12, 2012, the Chesapeake Bay Program's Scientific and Technical Advisory Committee (STAC) convened an expert workshop to investigate the environmental effects of shale gas development in the Chesapeake Bay Watershed. The purpose of this workshop was to engage scientists from across the nation in a review of the state-of-the-science regarding shale gas...

  2. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA.

    Science.gov (United States)

    Lefcheck, Jonathan S; Wilcox, David J; Murphy, Rebecca R; Marion, Scott R; Orth, Robert J

    2017-09-01

    Interactions among global change stressors and their effects at large scales are often proposed, but seldom evaluated. This situation is primarily due to lack of comprehensive, sufficiently long-term, and spatially extensive datasets. Seagrasses, which provide nursery habitat, improve water quality, and constitute a globally important carbon sink, are among the most vulnerable habitats on the planet. Here, we unite 31 years of high-resolution aerial monitoring and water quality data to elucidate the patterns and drivers of eelgrass (Zostera marina) abundance in Chesapeake Bay, USA, one of the largest and most valuable estuaries in the world, with an unparalleled history of regulatory efforts. We show that eelgrass area has declined 29% in total since 1991, with wide-ranging and severe ecological and economic consequences. We go on to identify an interaction between decreasing water clarity and warming temperatures as the primary drivers of this trend. Declining clarity has gradually reduced eelgrass cover the past two decades, primarily in deeper beds where light is already limiting. In shallow beds, however, reduced visibility exacerbates the physiological stress of acute warming, leading to recent instances of decline approaching 80%. While degraded water quality has long been known to influence underwater grasses worldwide, we demonstrate a clear and rapidly emerging interaction with climate change. We highlight the urgent need to integrate a broader perspective into local water quality management, in the Chesapeake Bay and in the many other coastal systems facing similar stressors. © 2017 John Wiley & Sons Ltd.

  3. Diurnal changes of remote sensing reflectance over Chesapeake Bay: Observations from the Airborne Compact Atmospheric Mapper

    Science.gov (United States)

    Zhang, Minwei; Hu, Chuanmin; Cannizzaro, Jennifer; Kowalewski, Matthew G.; Janz, Scott J.

    2018-01-01

    Using hyperspectral data collected by the Airborne Compact Atmospheric Mapper (ACAM) and a shipborne radiometer in Chesapeake Bay in July-August 2011, this study investigates diurnal changes of surface remote sensing reflectance (Rrs). Atmospheric correction of ACAM data is performed using the traditional "black pixel" approach through radiative transfer based look-up-tables (LUTs) with non-zero Rrs in the near-infrared (NIR) accounted for by iterations. The ACAM-derived Rrs was firstly evaluated through comparison with Rrs derived from the Moderate Resolution Imaging Spectroradiometer satellite measurements, and then validated against in situ Rrs using a time window of ±1 h or ±3 h. Results suggest that the uncertainties in ACAM-derived Rrs are generally comparable to those from MODIS satellite measurements over coastal waters, and therefore may be used to assess whether Rrs diurnal changes observed by ACAM are realistic (i.e., with changes > 2 × uncertainties). Diurnal changes observed by repeated ACAM measurements reaches up to 66.8% depending on wavelength and location and are consistent with those from the repeated in situ Rrs measurements. These findings suggest that once airborne data are processed using proper algorithms and validated using in situ data, they are suitable for assessing diurnal changes in moderately turbid estuaries such as Chesapeake Bay. The findings also support future geostationary satellite missions that are particularly useful to assess short-term changes.

  4. The exotic mute swan (Cygnus olor) in Chesapeake Bay, USA

    Science.gov (United States)

    Perry, M.C.; Perry, M.C.

    2002-01-01

    The exotic mute swan (Cygnus olor) has increased its population size in Chesapeake Bay (Maryland and Virginia) to approximately 4,500 since 1962 when five swans were released in the Bay. The Bay population of mute swans now represents 30% of the total Atlantic Flyway population (12,600) and has had a phenomenal increase of 1,200% from 1986 to 1999. Unlike the tundra swans (Cygnus columbianus) that migrate to the Bay for the winter, the mute swan is a year-long resident, and, therefore, reports of conflicts with nesting native waterbirds and the consumption of submerged aquatic vegetation (SAV) have raised concerns among resource managers. Populations of black skimmers (Rynchops niger) and least terns (Sterna antillarum) nesting on beaches and oyster shell bars have been eliminated by molting mute swans. Although data on the reduction of SAV by nesting mute swans and their offspring during the spring and summer are limited, food habits data show that mute swans rely heavily on SAV during these months. Widgeon grass (Ruppia maritima) constituted 56% and eel grass (Zostera marina) constituted 43% of the gullet food of mute swans. Other SAV and invertebrates (including bryozoans, shrimp, and amphipods) formed a much smaller amount of the food percentage (1%). Invertebrates are believed to have been selected accidently within the vegetation eaten by the swans. Corn (Zea mays) fed to swans by Bay residents during the winter probably supplement limited vegetative food resources in late winter. A program to control swan numbers by the addling of eggs and the killing of adult swans has been a contentious issue with some residents of the Bay area. A management plan is being prepared by a diverse group of citizens appointed by the Governor to advise the Maryland Department of Natural Resources on viable and optimum options to manage mute swans in the Maryland portion of Chesapeake Bay. Hopefully, the implementation of the plan will alleviate the existing conflicts to the

  5. Coastal seas as a context for science teaching: a lesson from Chesapeake Bay.

    Science.gov (United States)

    Bell, Wayne H; Fowler, Erin M; Stein, J Andrew

    2003-01-01

    Lessons that employ authentic environmental data can enhance the ability of students to understand fundamental science concepts. This differs from traditional "environmental education" in that school curricula need not set aside time for educators to teach only environmental topics. Rather, the "environment" is used to advance student learning in science and technology. The success of this approach depends on programs that encourage scientists to communicate more effectively with teachers at all education levels. The expanding diversity of research and monitoring activities on the world's marine waters constitutes an outstanding potential education resource. Many of these projects involve remote sensing with sophisticated instrumentation and employ Internet technology to compile measurements, interpret data using graphs and satellite imagery, and share the results among scientific colleagues and the general public alike. Unfortunately, these resources, which constitute a much shortened path between research findings and textbook presentation, are seldom interpreted for use by K-12 educators. We have developed an example that uses the Chesapeake Bay as a paradigm to demonstrate how such interpretation can assist educators in teaching important principles in physical oceanography and marine ecology. We present this example using PowerPoint to conduct a virtual tour of selected Internet sources. Our example begins with the conceptual "salt wedge" circulation model of Chesapeake Bay as a partially mixed estuary. Teachers have the opportunity to explore this model using salinity, temperature, and dissolved oxygen data taken from a research vessel platform during summer professional development programs. This source of authentic data, originally obtained by teachers themselves, clearly demonstrates the presence of a picnocline and deep-water anoxia. Our lesson plan proceeds to interpret these data using additional Internet-based resources at increasing scales of time and

  6. Padilla Bay: The Estuary Guide. Level 2.

    Science.gov (United States)

    Friesem, Judy; Lynn, Valerie, Ed.

    Estuaries are marine systems that serve as nurseries for animals, links in the migratory pathways, and habitat for a complex community of organisms. This curriculum guide intended for use at the middle school level is designed for use with the on-site program developed by the Padilla Bay National Esturine Research Reserve (Washington). The guide…

  7. 75 FR 54771 - Safety Zone; Thunder on the Bay, Chesapeake Bay, Buckroe Beach Park, Hampton, VA

    Science.gov (United States)

    2010-09-09

    ... navigable waters of the Chesapeake Bay within the area bounded by a 210-foot radius circle centered on... are technical standards (e.g., specifications of materials, performance, design, or operation; test... cumulatively have a significant effect on the human environment. This rule is categorically excluded, under...

  8. Forecasting system predicts presence of sea nettles in Chesapeake Bay

    Science.gov (United States)

    Brown, Christopher W.; Hood, Raleigh R.; Li, Zhen; Decker, Mary Beth; Gross, Thomas F.; Purcell, Jennifer E.; Wang, Harry V.

    Outbreaks of noxious biota, which occur in both aquatic and terrestrial systems, can have considerable negative economic impacts. For example, an increasing frequency of harmful algal blooms worldwide has negatively affected the tourism industry in many regions. Such impacts could be mitigated if the conditions that give rise to these outbreaks were known and could be monitored. Recent advances in technology and communications allow us to continuously measure and model many environmental factors that are responsible for outbreaks of certain noxious organisms. A new prototype ecological forecasting system predicts the likelihood of occurrence of the sea nettle (Chrysaora quinquecirrha), a stinging jellyfish, in the Chesapeake Bay.

  9. The regulation of bacterial production in the Chesapeake Bay

    International Nuclear Information System (INIS)

    Chin-Leo, G.

    1988-01-01

    In this study, the possibility that periods when the rates of macromolecule syntheses become uncoupled occur in natural assemblages of bacteria was examined by comparing rates of bacterial DNA and protein synthesis. A dual-label method which measures incorporation rates of [ 3 H]thymidine (TdR) into macromolecules (DNA) and of [ 14 C]leucine (Leu) into protein was developed to facilitate simultaneous estimation of these cellular activities in a single incubation. Under controlled conditions, changes in rates of Leu incorporation preceded fluctuations in TdR incorporation and the Leu:TdR ratio varied prior to shifts in growth rate indicating the uncoupling of protein and DNA synthesis which occurs during unbalanced growth. The delay between this uncoupling and a change in growth rate was always shorter than the generation time. In Chesapeake Bay, during October 1986, the Leu:TdR ratio was quite constant over a diel cycle and with depth, but during July 1987, the magnitude of this ratio and its variation through time increased with depth. Growth conditions for heterotrophic bacteria in Chesapeake Bay during summer in surface waters and throughout the water column in fall may be relatively constant leading to balanced growth. In contrast, fluctuating growth conditions in subsurface waters during summer may lead to unbalanced growth

  10. Submersed aquatic vegetation in Chesapeake Bay: Sentinel species in a changing world

    Science.gov (United States)

    Orth, Robert J.; Dennison, William C.; Lefcheck, Jonathon S.; Gurbisz, Cassie; Hannam, Michael; Keisman, Jennifer; Landry, J. Brooke; Moore, Kenneth A.; Murphy, Rebecca R.; Patrick, Christopher J.; Testa, Jeremy; Weller, Donald E.; Wilcox, David J.

    2017-01-01

    Chesapeake Bay has undergone profound changes since European settlement. Increases in human and livestock populations, associated changes in land use, increases in nutrient loadings, shoreline armoring, and depletion of fish stocks have altered the important habitats within the Bay. Submersed aquatic vegetation (SAV) is a critical foundational habitat and provides numerous benefits and services to society. In Chesapeake Bay, SAV species are also indicators of environmental change because of their sensitivity to water quality and shoreline development. As such, SAV has been deeply integrated into regional regulations and annual assessments of management outcomes, restoration efforts, the scientific literature, and popular media coverage. Even so, SAV in Chesapeake Bay faces many historical and emerging challenges. The future of Chesapeake Bay is indicated by and contingent on the success of SAV. Its persistence will require continued action, coupled with new practices, to promote a healthy and sustainable ecosystem.

  11. Spatial and temporal distribution of two diazotrophic bacteria in the Chesapeake Bay.

    Science.gov (United States)

    Short, Steven M; Jenkins, Bethany D; Zehr, Jonathan P

    2004-04-01

    The aim of this study was to initiate autecological studies on uncultivated natural populations of diazotrophic bacteria by examining the distribution of specific diazotrophs in the Chesapeake Bay. By use of quantitative PCR, the abundance of two nifH sequences (907h22 and 912h4) was quantified in water samples collected along a transect from the head to the mouth of the Chesapeake Bay during cruises in April and October 2001 and 2002. Standard curves for the quantitative PCR assays demonstrated that the relationship between gene copies and cycle threshold was linear and highly reproducible from 1 to 10(7) gene copies. The maximum number of 907h22 gene copies detected was approximately 140 ml(-1) and the maximum number of 912h4 gene copies detected was approximately 340 ml(-1). Sequence 912h4 was most abundant at the mouth of the Chesapeake Bay, and in general, its abundance increased with increasing salinity, with the highest abundances observed in April 2002. Overall, the 907h22 phylotype was most abundant at the mid-bay station. Additionally, 907h22 was most abundant in the April samples from the mid-bay and mouth of the Chesapeake Bay. Despite the fact that the Chesapeake Bay is rarely nitrogen limited, our results show that individual nitrogen-fixing bacteria have distinct nonrandom spatial and seasonal distributions in the Chesapeake Bay and are either distributed by specific physical processes or adapted to different environmental niches.

  12. 33 CFR 165.500 - Safety/Security Zones; Chesapeake Bay, Maryland.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety/Security Zones; Chesapeake... HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS... Safety/Security Zones; Chesapeake Bay, Maryland. (a) Definitions. (1) Certain Dangerous Cargo (CDC) means...

  13. Deep drilling in the Chesapeake Bay impact structure - An overview

    Science.gov (United States)

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a

  14. Willingness to Pay Survey for Chesapeake Bay Total Maximum Daily Load

    Science.gov (United States)

    A stated preference survey to collect data on households’ use of Chesapeake Bay and its watershed, and of their preferences for a variety of water quality improvements likely to follow from pollution reduction programs.

  15. Large-Scale Submerged Aquatic Vegetation Restoration in Chesapeake Bay: Status Report, 2003-2006

    National Research Council Canada - National Science Library

    Shafer, Deborah J; Bergstrom, Peter

    2008-01-01

    ...) in the Chesapeake Bay region. The effort employed an agricultural approach to restore under-water grasses by using seeds to produce new plants and mechanical equipment to plant seeds and harvest...

  16. National Status and Trends: Bioeffects Assessment Program, Chesapeake Bay Summary Database (1998-2001)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study was based on the sediment quality triad (SQT) approach. A stratified probabilistic sampling design was utilized to characterize the Chesapeake Bay system...

  17. Restoration Potential of Ruppia Maritima and Potamogeton Perfoliatus by Seed in the Mid-Chesapeake Bay

    National Research Council Canada - National Science Library

    Ailstock, Steve

    2004-01-01

    ... in the mesohaline reaches of the mid-Chesapeake Bay. Once reproductive potential by seed is defined for healthy populations of these species, their life cycles can be evaluated to identify nondestructive methods of harvesting seeds for restoration projects...

  18. Large-Scale Submerged Aquatic Vegetation Restoration in Chesapeake Bay: Status Report, 2003-2006

    National Research Council Canada - National Science Library

    Shafer, Deborah J; Bergstrom, Peter

    2008-01-01

    In 2003, the U.S. Army Engineer Research and Development Center (ERDC) and the National Oceanic and Atmospheric Administration Chesapeake Bay Office began a comprehensive research effort to restore submerged aquatic vegetation (SAV...

  19. Predator removal enhances waterbird restoration in Chesapeake Bay (Maryland)

    Science.gov (United States)

    Erwin, R. Michael; McGowan, Peter C.; Reese, Jan

    2011-01-01

    This report represents an update to an earlier report(Erwin et al. 2007a) on wildlife restoration on the largest dredge material island project in the United States underway in Talbot County, Maryland (Figure 1) in the mid–Chesapeake Bay region, referred to as the Paul Sarbanes Ecosystem Restoration Project at Poplar Island (www.nab.usace.army.mil/projects/Maryland/PoplarIsland/documents.html). An important component of this largescale restoration effort focused on water birds, as many of these species have undergone significant declines in the Chesapeake region over the past 30 years (Erwin et al. 2007b). The priority waterbird species include common terns (Sterna hirundo), least terns (S. antillarum), snowy egrets (Egretta thula), and ospreys (Pandion haliaetus). Although significant numbers of common terns (more than 800 pairs in 2003), least terns (62 pairs in 2003), snowy egrets (50 or more pairs by 2005), and ospreys (7 to 10 pairs) have nested on Poplar Island since early 2000, tern productivity especially had been strongly limited by a combination of red fox (Vulpes vulpes) and great horned owl (Bubo virginianus) predation. Fox trapping began in 2004, and four were removed that year; no more evidence of fox presence was found in 2005 or subsequently. The owls proved to be more problematic.

  20. Coordinated Field Campaigns in Chesapeake Bay and Gulf of Mexico

    Science.gov (United States)

    Mannino, Antonio; Novak, Michael; Tzortziou, Maria A.

    2015-01-01

    NASA's GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission concept recommended by the U.S. National Research Council (2007) focuses on measurements of atmospheric trace gases and aerosols and aquatic coastal ecology and biogeochemistry from geostationary orbit (35,786 km altitude). Two GEO-CAPE-sponsored multi-investigator ship-based field campaigns were conducted to coincide with the NASA Earth Venture Suborbital project DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaigns: (1) Chesapeake Bay in July 2011 and (2) northwestern Gulf of Mexico in September 2013. Goal: to evaluate whether GEO-CAPE coastal mission measurement and instrument requirements are optimized to address science objectives while minimizing ocean color satellite sensor complexity, size and cost - critical mission risk reduction activities. NASA continues to support science studies related to the analysis of data collected as part of these coordinated field campaigns and smaller efforts.

  1. Chesapeake Bay Impact Structure Deep Drilling Project Completes Coring

    Directory of Open Access Journals (Sweden)

    the Scientific Staff of the Chesapeake Bay Impact Structure Deep Drilling Project

    2006-09-01

    Full Text Available The Chesapeake Bay Impact Structure Deep Drilling Project (CBIS Project completed its coring operations during September–December 2005 and April–May 2006. Cores were collected continuously to a total depth of 1766 m. The recovered section consists of 1322 m of impactites beneath 444 m of post-impact continental shelf sediments.The CBIS Project is a joint venture of the International Continental Scientifi c Drilling Program (ICDP and the U.S. Geological Survey (USGS. Project activities began with a planning workshop in September 2003 attended by sixtythree scientists from ten countries. Field operations began with site preparation in July 2005, and coring began in September 2005. Drilling, Observation and Sampling of theEarth’s Continental Crust (DOSECC was the general contractor for the drilling operations throughout 2005.

  2. Transitioning a Chesapeake Bay Ecological Prediction System to Operations

    Science.gov (United States)

    Brown, C.; Green, D. S.; Eco Forecasters

    2011-12-01

    Ecological prediction of the impacts of physical, chemical, biological, and human-induced change on ecosystems and their components, encompass a wide range of space and time scales, and subject matter. They vary from predicting the occurrence and/or transport of certain species, such harmful algal blooms, or biogeochemical constituents, such as dissolved oxygen concentrations, to large-scale ecosystem responses and higher trophic levels. The timescales of ecological prediction, including guidance and forecasts, range from nowcasts and short-term forecasts (days), to intraseasonal and interannual outlooks (weeks to months), to decadal and century projections in climate change scenarios. The spatial scales range from small coastal inlets to basin and global scale biogeochemical and ecological forecasts. The types of models that have been used include conceptual, empirical, mechanistic, and hybrid approaches. This presentation will identify the challenges and progress toward transitioning experimental model-based ecological prediction into operational guidance and forecasting. Recent efforts are targeting integration of regional ocean, hydrodynamic and hydrological models and leveraging weather and water service infrastructure to enable the prototyping of an operational ecological forecast capability for the Chesapeake Bay and its tidal tributaries. A path finder demonstration predicts the probability of encountering sea nettles (Chrysaora quinquecirrha), a stinging jellyfish. These jellyfish can negatively impact safety and economic activities in the bay and an impact-based forecast that predicts where and when this biotic nuisance occurs may help management effects. The issuance of bay-wide nowcasts and three-day forecasts of sea nettle probability are generated daily by forcing an empirical habitat model (that predicts the probability of sea nettles) with real-time and 3-day forecasts of sea-surface temperature (SST) and salinity (SSS). In the first demonstration

  3. Rising air and stream-water temperatures in Chesapeake Bay region, USA

    Science.gov (United States)

    Rice, Karen C.; Jastram, John D.

    2015-01-01

    Monthly mean air temperature (AT) at 85 sites and instantaneous stream-water temperature (WT) at 129 sites for 1960–2010 are examined for the mid-Atlantic region, USA. Temperature anomalies for two periods, 1961–1985 and 1985–2010, relative to the climate normal period of 1971–2000, indicate that the latter period was statistically significantly warmer than the former for both mean AT and WT. Statistically significant temporal trends across the region of 0.023 °C per year for AT and 0.028 °C per year for WT are detected using simple linear regression. Sensitivity analyses show that the irregularly sampled WT data are appropriate for trend analyses, resulting in conservative estimates of trend magnitude. Relations between 190 landscape factors and significant trends in AT-WT relations are examined using principal components analysis. Measures of major dams and deciduous forest are correlated with WT increasing slower than AT, whereas agriculture in the absence of major dams is correlated with WT increasing faster than AT. Increasing WT trends are detected despite increasing trends in streamflow in the northern part of the study area. Continued warming of contributing streams to Chesapeake Bay likely will result in shifts in distributions of aquatic biota and contribute to worsened eutrophic conditions in the bay and its estuaries.

  4. Predicting potentially toxigenic Pseudo-nitzschia blooms in the Chesapeake Bay

    Science.gov (United States)

    Anderson, Clarissa R.; Sapiano, Mathew R. P.; Prasad, M. Bala Krishna; Long, Wen; Tango, Peter J.; Brown, Christopher W.; Murtugudde, Raghu

    2010-11-01

    Harmful algal blooms are now recognized as a significant threat to the Chesapeake Bay as they can severely compromise the economic viability of important recreational and commercial fisheries in the largest estuary of the United States. This study describes the development of empirical models for the potentially domoic acid-producing Pseudo-nitzschia species complex present in the Bay, developed from a 22-year time series of cell abundance and concurrent measurements of hydrographic and chemical properties. Using a logistic Generalized Linear Model (GLM) approach, model parameters and performance were compared over a range of Pseudo-nitzschia bloom thresholds relevant to toxin production by different species. Small-threshold blooms (≥10 cells mL -1) are explained by time of year, location, and variability in surface values of phosphate, temperature, nitrate plus nitrite, and freshwater discharge. Medium- (100 cells mL -1) to large- threshold (1000 cells mL -1) blooms are further explained by salinity, silicic acid, dissolved organic carbon, and light attenuation (Secchi) depth. These predictors are similar to other models for Pseudo-nitzschia blooms on the west coast, suggesting commonalities across ecosystems. Hindcasts of bloom probabilities at a 19% bloom prediction point yield a Heidke Skill Score of ~53%, a Probability of Detection ˜ 75%, a False Alarm Ratio of ˜ 52%, and a Probability of False Detection ˜9%. The implication of possible future changes in Baywide nutrient stoichiometry on Pseudo-nitzschia blooms is discussed.

  5. Species-specific accumulation of polybrominated diphenyl ether flame retardants in birds of prey from the Chesapeake Bay region, USA

    Energy Technology Data Exchange (ETDEWEB)

    Chen Da, E-mail: chen@vims.ed [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Hale, Robert C. [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Watts, Bryan D. [Center for Conservation Biology, College of William and Mary, Williamsburg, VA 23185 (United States); La Guardia, Mark J.; Harvey, Ellen [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Mojica, Elizabeth K. [Center for Conservation Biology, College of William and Mary, Williamsburg, VA 23185 (United States)

    2010-05-15

    Compared to organochlorines, little is known about polybrominated diphenyl ether (PBDE) contamination of birds of prey breeding in the Chesapeake Bay, the largest estuary in the U.S. This study examined and compared PBDE contamination in eggs of osprey, double-crested cormorant, brown pelican and peregrine falcon from this area. Several legacy persistent organic pollutants such as PCBs and DDE were also investigated. The level of urbanization of the landscape appeared to influence the level of PBDE exposure. PBDE congener distribution patterns varied between piscivorous and terrestrial-feeding birds. This suggests individual congeners may be subject to differences in bioaccumulation, biomagnification or metabolism in the aquatic and terrestrial food webs. Biomagnification of PBDEs was studied in the Bay aquatic food chains for the first time. A biomagnification factor of 25.1 was estimated for SIGMAPBDEs for the fish - osprey egg food chain. Hazard quotients, applied as a preliminary evaluation, indicated that PBDEs may pose a moderate hazard to ospreys and peregrine falcons through impairment of reproductive performance. - Birds of prey breeding in the Chesapeake Bay (USA) exhibited species-specific PBDE accumulation patterns.

  6. Species-specific accumulation of polybrominated diphenyl ether flame retardants in birds of prey from the Chesapeake Bay region, USA

    International Nuclear Information System (INIS)

    Chen Da; Hale, Robert C.; Watts, Bryan D.; La Guardia, Mark J.; Harvey, Ellen; Mojica, Elizabeth K.

    2010-01-01

    Compared to organochlorines, little is known about polybrominated diphenyl ether (PBDE) contamination of birds of prey breeding in the Chesapeake Bay, the largest estuary in the U.S. This study examined and compared PBDE contamination in eggs of osprey, double-crested cormorant, brown pelican and peregrine falcon from this area. Several legacy persistent organic pollutants such as PCBs and DDE were also investigated. The level of urbanization of the landscape appeared to influence the level of PBDE exposure. PBDE congener distribution patterns varied between piscivorous and terrestrial-feeding birds. This suggests individual congeners may be subject to differences in bioaccumulation, biomagnification or metabolism in the aquatic and terrestrial food webs. Biomagnification of PBDEs was studied in the Bay aquatic food chains for the first time. A biomagnification factor of 25.1 was estimated for ΣPBDEs for the fish - osprey egg food chain. Hazard quotients, applied as a preliminary evaluation, indicated that PBDEs may pose a moderate hazard to ospreys and peregrine falcons through impairment of reproductive performance. - Birds of prey breeding in the Chesapeake Bay (USA) exhibited species-specific PBDE accumulation patterns.

  7. Climate effects on phytoplankton floral composition in Chesapeake Bay

    Science.gov (United States)

    Harding, L. W.; Adolf, J. E.; Mallonee, M. E.; Miller, W. D.; Gallegos, C. L.; Perry, E. S.; Johnson, J. M.; Sellner, K. G.; Paerl, H. W.

    2015-09-01

    Long-term data on floral composition of phytoplankton are presented to document seasonal and inter-annual variability in Chesapeake Bay related to climate effects on hydrology. Source data consist of the abundances of major taxonomic groups of phytoplankton derived from algal photopigments (1995-2004) and cell counts (1985-2007). Algal photopigments were measured by high-performance liquid chromatography (HPLC) and analyzed using the software CHEMTAX to determine the proportions of chlorophyll-a (chl-a) in major taxonomic groups. Cell counts determined microscopically provided species identifications, enumeration, and dimensions used to obtain proportions of cell volume (CV), plasma volume (PV), and carbon (C) in the same taxonomic groups. We drew upon these two independent data sets to take advantage of the unique strengths of each method, using comparable quantitative measures to express floral composition for the main stem bay. Spatial and temporal variability of floral composition was quantified using data aggregated by season, year, and salinity zone. Both time-series were sufficiently long to encompass the drought-flood cycle with commensurate effects on inputs of freshwater and solutes. Diatoms emerged as the predominant taxonomic group, with significant contributions by dinoflagellates, cryptophytes, and cyanobacteria, depending on salinity zone and season. Our analyses revealed increased abundance of diatoms in wet years compared to long-term average (LTA) or dry years. Results are presented in the context of long-term nutrient over-enrichment of the bay, punctuated by inter-annual variability of freshwater flow that strongly affects nutrient loading, chl-a, and floral composition. Statistical analyses generated flow-adjusted diatom abundance and showed significant trends late in the time series, suggesting current and future decreases of nutrient inputs may lead to a reduction of the proportion of biomass comprised by diatoms in an increasingly diverse

  8. DNA Barcoding of Ichthyoplankton in Hampton Roads Bay Estuary

    Science.gov (United States)

    Wilkins, N.; Rodríguez, Á. E.

    2016-02-01

    Zooplankton is composed of animals that drift within the water column. The study of zooplankton biodiversity and distribution is crucial to understand oceanic ecosystems and anticipate the effects of climate change. In this study our focus is on ichthyoplankton (fish eggs and larvae). Our aim is to employ molecular genetic techniques such as DNA barcoding to begin a detailed characterization of ichthyoplankton diversity, abundance and community structure in the Hampton Roads Bay Estuary (HRBE). A sampling of zooplankton was performed on June 19, 2015. Samples were taken with a 0.5m, 200 µm mesh net in triplicates at two stations: inner shore in the mouth of Jones Creek and 5 miles off Hampton in the lower part of Chesapeake Bay. Physical parameters (dissolved oxygen, salinity, and temperature and water transparency) were measured simultaneously. Species were identified by DNA barcoding using the mitochondrial DNA (mtDNA) of the Cytochrome Oxidase 1 (CO1) gene. Fish eggs were identified from Opistonema oglinum (Atlantic Thread Herring) at the offshore stations while, Anchoa mitchilli was found at both stations. These species are common to the area and as observed, differences in species between stations were found. O. oglinum eggs were found in the offshore stations, which is their reported habitat. A. mitchilli eggs were found in both stations; both known to exhibit a wider salinity tolerance. This work indicates that using mtDNA-CO1 barcoding is suitable to identify ichthyoplankton to the species level and helped validate DNA barcoding as a faster taxonomic approach. The long term objective of this project is to provide taxonomic composition and biodiversity assessment of ichthyoplankton in HRBE. This data will be a reference for broad monitoring programs; for a better understanding and management of ecologically and commercially important species in the HRBE. Monthly samplings will be performed for a year beginning September 2015.

  9. Using Seeds to Propagate and Restore Vallisneria americana Michaux (Wild Celery) in the Chesapeake Bay

    Science.gov (United States)

    2007-12-01

    the capacity of the plants to elongate so that the leaves can reach closer to the water surface to gather adequate light for photosynthesis . When...transplant eelgrass (Zostera marina L.) in Chesapeake Bay and the Virginia Coastal Bays, In Proc. Conf. Seagrass Restoration: Success, Failure, and

  10. Resiliency of the Chesapeake Bay to Pollution Levels Following Storms and Based on Land-Use

    Science.gov (United States)

    Hasan, M.; Pavelsky, T.

    2015-12-01

    As pollution levels, transformations in land use, and ecological loss continue to increase in the Chesapeake Bay, questions arise as to whether this estuary, the largest in North America, will experience a change in the duration and levels of storm-related sediment and nutrient spikes. We use a combination of satellite data and previously-collected field measurements to study this question. We compare same-day and same-pixel NASA MODIS satellite data to in situ observations of sediment and nutrient concentrations over 20 years, and found that for at least 6 tributaries, the r2 value for a linear regression between the satellite reflectance and fieldwork measures of nitrogen, phosphorus, or suspended sediment concentrations exceeded 0.7, while for at least 12 tributaries, the r2 value exceeded 0.5. We took advantage of this relationship to estimate sediment and nutrient concentrations in the Chesapeake following major storm events, even in the absence of continuous in situ data. We studied sediment/nutrient levels daily following the storm, for every date on which a cloud-free MODIS image was available, for a month. The storms included 2003's Hurricane Isabel, 2011's Hurricane Irene, and 2012's Superstorm Sandy. The tributaries we focused on were the York and Piankatank Rivers of southern Virginia (heavily forested), the Potomac River (heavily urban), and the Nanticoke River of the Eastern Shore (heavily farmed). Results show that in the Potomac River, which over the last 15 years has experience a signifiant increase in urbanization, sediments and nutrients persist for longer periods and at higher levels compared to less urbanized rivers.

  11. Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay.

    Science.gov (United States)

    Du, Jiabi; Shen, Jian; Park, Kyeong; Wang, Ya Ping; Yu, Xin

    2018-07-15

    There are increasing concerns about the impact of worsened physical condition on hypoxia in a variety of coastal systems, especially considering the influence of changing climate. In this study, an EOF analysis of the DO data for 1985-2012, a long-term numerical simulation of vertical exchange, and statistical analysis were applied to understand the underlying mechanisms for the variation of DO condition in Chesapeake Bay. Three types of analysis consistently demonstrated that both biological and physical conditions contribute equally to seasonal and interannual variations of the hypoxic condition in Chesapeake Bay. We found the physical condition (vertical exchange+temperature) determines the spatial and seasonal pattern of the hypoxia in Chesapeake Bay. The EOF analysis showed that the first mode, which was highly related to the physical forcings and correlated with the summer hypoxia volume, can be well explained by seasonal and interannual variations of physical variables and biological activities, while the second mode is significantly correlated with the estuarine circulation and river discharge. The weakened vertical exchange and increased water temperature since the 1980s demonstrated a worsened physical condition over the past few decades. Under changing climate (e.g., warming, accelerated sea-level rise, altered precipitation and wind patterns), Chesapeake Bay is likely to experience a worsened physical condition, which will amplify the negative impact of anthropogenic inputs on eutrophication and consequently require more efforts for nutrient reduction to improve the water quality condition in Chesapeake Bay. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. 33 CFR 334.370 - Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base. 334.370 Section 334.370 Navigation and Navigable Waters CORPS... REGULATIONS § 334.370 Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base. (a...

  13. Novel psychrotolerant picocyanobacteria isolated from Chesapeake Bay in the winter.

    Science.gov (United States)

    Xu, Yongle; Jiao, Nianzhi; Chen, Feng

    2015-08-01

    Picocyanobacteria are major primary producers in the ocean, especially in the tropical or subtropical oceans or during warm seasons. Many "warm" picocyanobacterial species have been isolated and characterized. However, picocyanobacteria in cold environments or cold seasons are much less studied. In general, little is known about the taxonomy and ecophysiology of picocyanobacteria living in the winter. In this study, 17 strains of picocyanobacteria were isolated from Chesapeake Bay, a temperate estuarine ecosystem, during the winter months. These winter isolates belong to five distinct phylogenetic lineages, and are distinct from the picocyanobacteria previously isolated from the warm seasons. The vast majority of the winter isolates were closely related to picocyanobacteria isolated from other cold environments like Arctic or subalpine waters. The winter picocyanobacterial isolates were able to maintain slow growth or prolonged dormancy at 4°C. Interestingly, the phycoerythrin-rich strains outperformed the phycocyanin-rich strains at cold temperature. In addition, winter picocyanobacteria changed their morphology when cultivated at 4°C. The close phylogenetic relationship between the winter picocyanobacteria and the picocyanobacteria living in high latitude cold regions indicates that low temperature locations select specific ecotypes of picocyanobacteria. © 2015 Phycological Society of America.

  14. Brominated diphenyl ethers in the sediments, porewater, and biota of the Chesapeake Bay, USA

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K.; Klosterhaus, S.; Liebert, D.; Stapleton, H. [Maryland Univ., Solomons, MD (United States)

    2004-09-15

    Levels of brominated diphenyl ethers (BDEs) are rapidly increasing in the environment, and in a short time these chemicals have evolved from 'emerging contaminants' to globally-distributed organic pollutants. Recent research demonstrates BDEs are sufficiently stable to be transported long distances in the environment and to accumulate in higher trophic levels. Photolysis and metabolism appear to be dominant loss processes for the parent compounds, generating a variety of lower brominated diphenyl ethers, hydroxylated metabolites, and other products. BDEs are hydrophobic, and therefore their transport in aquatic systems is likely controlled by sorption to sediments and perhaps exchange across the air-water interface. To date, few studies have examined the geochemistry of BDEs in natural waters. In this paper, we review our recent measurements of BDEs in the Chesapeake Bay, a shallow, productive estuary in eastern North America. We focus on the distribution of BDE congeners sediment, porewater, and in faunal benthos along a contamination gradient downstream from a wastewater treatment plant and on the spatial distribution of BDEs in bottom-feeding and pelagic fish species.

  15. Remote sensing of particle backscattering in Chesapeake Bay: a 6-year SeaWiFS retrospective view

    Science.gov (United States)

    Zawada, D.G.; Hu, C.; Clayton, T.; Chen, Z.; Brock, J.C.; Muller-Karger, F. E.

    2007-01-01

    Traditional field techniques to monitor water quality in large estuaries, such as boat-based surveys and autonomous moored sensors, generally provide limited spatial coverage. Satellite imagery potentially can be used to address both of these limitations. Here, we show that satellite-based observations are useful for inferring total-suspended-solids (TSS) concentrations in estuarine areas. A spectra-matching optimization algorithm was used to estimate the particle backscattering coefficient at 400 nm, bbp(400), in Chesapeake Bay from Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) satellite imagery. These estimated values of bbp(400) were compared to in situ measurements of TSS for the study period of September 1997–December 2003. Contemporaneous SeaWiFS bbp(400) values and TSS concentrations were positively correlated (N = 340, r2 = 0.4, P bp(400) values served as a reasonable first-order approximation for synoptically mapping TSS. Overall, large-scale patterns of SeaWiFS bbp(400) appeared to be consistent with expectations based on field observations and historical reports of TSS. Monthly averages indicated that SeaWiFS bbp(400) was typically largest in winter (>0.049 m−1, November–February) and smallest in summer (−1, June–August), regardless of the amount of riverine discharge to the bay. The study period also included Hurricanes Floyd and Isabel, which caused large-scale turbidity events and changes in the water quality of the bay. These results demonstrate that this technique can provide frequent synoptic assessments of suspended solids concentrations in Chesapeake Bay and other coastal regions.

  16. Assessing water quality of the Chesapeake Bay by the impact of sea level rise and warming

    Science.gov (United States)

    Wang, P.; Linker, L.; Wang, H.; Bhatt, G.; Yactayo, G.; Hinson, K.; Tian, R.

    2017-08-01

    The influence of sea level rise and warming on circulation and water quality of the Chesapeake Bay under projected climate conditions in 2050 were estimated by computer simulation. Four estuarine circulation scenarios in the estuary were run using the same watershed load in 1991-2000 period. They are, 1) the Base Scenario, which represents the current climate condition, 2) a Sea Level Rise Scenario, 3) a Warming Scenario, and 4) a combined Sea Level Rise and Warming Scenario. With a 1.6-1.9°C increase in monthly air temperatures in the Warming Scenario, water temperature in the Bay is estimated to increase by 0.8-1°C. Summer average anoxic volume is estimated to increase 1.4 percent compared to the Base Scenario, because of an increase in algal blooms in the spring and summer, promotion of oxygen consumptive processes, and an increase of stratification. However, a 0.5-meter Sea Level Rise Scenario results in a 12 percent reduction of anoxic volume. This is mainly due to increased estuarine circulation that promotes oxygen-rich sea water intrusion in lower layers. The combined Sea Level Rise and Warming Scenario results in a 10.8 percent reduction of anoxic volume. Global warming increases precipitation and consequently increases nutrient loads from the watershed by approximately 5-7 percent. A scenario that used a 10 percent increase in watershed loads and current estuarine circulation patterns yielded a 19 percent increase in summer anoxic volume, while a scenario that used a 10 percent increase in watershed loads and modified estuarine circulation patterns by the aforementioned sea level rise and warming yielded a 6 percent increase in summer anoxic volume. Impacts on phytoplankton, sediments, and water clarity were also analysed.

  17. Particle-borne radionuclides as tracers for sediment in the Susquehanna River and Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Donoghue, J F [Florida State Univ., Tallahassee, FL (USA). Dept. of Geology; Bricker, O P [Geological Survey, Reston, VA (USA). Water Resources Div.; Olsen, C R [Oak Ridge National Lab., TN (USA)

    1989-10-01

    The Chesapeake Bay receives nearly 1,000,000 tonnes of sediment annually from its major tributary, the Susquehanna River. The pattern of deposition of this sediment affects the lifetime of the estuarine resource and the fate of any sediment-borne contaminants. Previous estimates of the extent to which Susquehanna River sediment is transported down the Chesapeake have differed considerably. By use of reactor-generated radionuclides adsorbed on the river sediment, a sediment budget has been compiled for the upper Chesapeake Bay and the reservoirs on the lower Susquehanna. Reservoirs impound nearly 1,400,000 tonnes of sediment annually behind the power dams on the lower Susquehanna River. Without the dams, sediment delivery to the upper bay would more than double. The uppermost Chesapeake Bay, within and above the turbidity maximum, retains virtually all of the fluvial sediment delivered to it. The result is an annual sedimentation rate of approximately 3 mm yr{sup -1} in the upper bay, an infilling rate that is nearly equal to the regional rate of sea level rise. (author).

  18. Particle-borne radionuclides as tracers for sediment in the Susquehanna River and Chesapeake Bay

    International Nuclear Information System (INIS)

    Donoghue, J.F.

    1989-01-01

    The Chesapeake Bay receives nearly 1,000,000 tonnes of sediment annually from its major tributary, the Susquehanna River. The pattern of deposition of this sediment affects the lifetime of the estuarine resource and the fate of any sediment-borne contaminants. Previous estimates of the extent to which Susquehanna River sediment is transported down the Chesapeake have differed considerably. By use of reactor-generated radionuclides adsorbed on the river sediment, a sediment budget has been compiled for the upper Chesapeake Bay and the reservoirs on the lower Susquehanna. Reservoirs impound nearly 1,400,000 tonnes of sediment annually behind the power dams on the lower Susquehanna River. Without the dams, sediment delivery to the upper bay would more than double. The uppermost Chesapeake Bay, within and above the turbidity maximum, retains virtually all of the fluvial sediment delivered to it. The result is an annual sedimentation rate of approximately 3 mm yr -1 in the upper bay, an infilling rate that is nearly equal to the regional rate of sea level rise. (author)

  19. Specific responsible environmental behavior among boaters on the Chesapeake Bay: a predictive model part II

    Science.gov (United States)

    Stuart P. Cottrell; Alan R. Graefe

    1995-01-01

    This paper examines predictors of boater behavior in a specific behavior situation, namely the percentage of raw sewage discharged from recreational vessels in a sanitation pumpout facility on the Chesapeake Bay. Results of a multiple regression analysis show knowledge predicts behavior in specific issue situations. In addition, the more specific the...

  20. Oyster Reef Communities in the Chesapeake Bay: A Brief Primer. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experience supported by multimedia instruction. This document presents an overview on the biology of…

  1. 3 CFR 13508 - Executive Order 13508 of May 12, 2009. Chesapeake Bay Protection and Restoration

    Science.gov (United States)

    2010-01-01

    ... Chesapeake Bay and its tributary waters, including resources under the Food Security Act of 1985 as amended... as possible and prior to release of a final strategy. Sec. 204. Collaboration with State Partners. In... structures at sea, such as cases of force majeure caused by stress of weather or other act of God. PART 11...

  2. Incidence of malaria in a wintering population of canvasbacks (Aythya valisineria) on Chesapeake Bay

    Science.gov (United States)

    Kocan, R.M.; Knisley, J.O.

    1970-01-01

    Canvasback ducks wintering on Chesapeake Bay had a 6% incidence of Leucocytozoon sirnondi and 2% incidence of Haemoproteus. Sub-inoculation of whole blood into Pekin ducklings produced a Plasmodium infection rate of 31%. Females were more frequently infected (12/22) than males (15/68). The parasite was identified as P. circumflexum.

  3. Cenozoic stratigraphy and structure of the Chesapeake Bay region

    Science.gov (United States)

    Powars, David S.; Edwards, Lucy E.; Kidwell, Susan M.; Schindler, J. Stephen

    2015-01-01

    The Salisbury embayment is a broad tectonic downwarp that is filled by generally seaward-thickening, wedge-shaped deposits of the central Atlantic Coastal Plain. Our two-day field trip will take us to the western side of this embayment from the Fall Zone in Washington, D.C., to some of the bluffs along Aquia Creek and the Potomac River in Virginia, and then to the Calvert Cliffs on the western shore of the Chesapeake Bay. We will see fluvial-deltaic Cretaceous deposits of the Potomac Formation. We will then focus on Cenozoic marine deposits. Transgressive and highstand deposits are stacked upon each other with unconformities separating them; rarely are regressive or lowstand deposits preserved. The Paleocene and Eocene shallow shelf deposits consist of glauconitic, silty sands that contain varying amounts of marine shells. The Miocene shallow shelf deposits consist of diatomaceous silts and silty and shelly sands. The lithology, thickness, dip, preservation, and distribution of the succession of coastal plain sediments that were deposited in our field-trip area are, to a great extent, structurally controlled. Surficial and subsurface mapping using numerous continuous cores, auger holes, water-well data, and seismic surveys has documented some folds and numerous high-angle reverse and normal faults that offset Cretaceous and Cenozoic deposits. Many of these structures are rooted in early Mesozoic and/or Paleozoic NE-trending regional tectonic fault systems that underlie the Atlantic Coastal Plain. On Day 1, we will focus on two fault systems (stops 1–2; Stafford fault system and the Skinkers Neck–Brandywine fault system and their constituent fault zones and faults). We will then see (stops 3–5) a few of the remaining exposures of largely unlithified marine Paleocene and Eocene strata along the Virginia side of the Potomac River including the Paleocene-Eocene Thermal Maximum boundary clay. These exposures are capped by fluvial-estuarine Pleistocene terrace

  4. Environmental determinants of Vibrio parahaemolyticus in the Chesapeake Bay.

    Science.gov (United States)

    Davis, Benjamin J K; Jacobs, John M; Davis, Meghan F; Schwab, Kellogg J; DePaola, Angelo; Curriero, Frank C

    2017-08-25

    Vibrio parahaemolyticus naturally-occurs in brackish and marine waters and is one of the leading causes of seafood-borne illness. Previous work studying the ecology of V. parahaemolyticus is often limited in geographic extent and lacking a full range of environmental measures. This study used a unique, large dataset of surface water samples in the Chesapeake Bay ( n =1,385) collected from 148 monitoring stations from 2007 to 2010. Water was analyzed for over 20 environmental parameters with additional meteorological and surrounding land use data. V. parahaemolyticus -specific genetic markers thermolabile hemolysin ( tlh ), thermostable direct hemolysin ( tdh ), and tdh -related hemolysin ( trh ) were assayed using quantitative PCR (qPCR), and interval-censored regression models with non-linear effects were estimated to account for limits of detection and quantitation. tlh was detected in 19.6% of water samples; tdh or trh markers were not detected. Results confirmed previously reported positive associations for V. parahaemolyticus abundance with temperature and turbidity and negative associations with high salinity (> 10-23‰). Furthermore, the salinity relationship was determined to be a function of both low temperature and turbidity, with an increase of either nullifying the high salinity effect. Associations with dissolved oxygen and phosphate also appeared stronger when samples were taken nearby human developments. Renewed focus on the V. parahaemolyticus ecological paradigm is warranted to protect public health. Importance Vibrio parahaemolyticus is one of the leading causes of seafood-borne illness in the United States and across the globe. Exposure is often through consuming raw or undercooked shellfish. Given the natural presence of the bacterium in the marine environment, improved understanding of its environmental determinants is necessary for future preventative measures. This analysis of environmental Vibrio parahaemolyticus is one of only a few that

  5. Estimating Vertical Land Motion in the Chesapeake Bay

    Science.gov (United States)

    Houttuijn Bloemendaal, L.; Hensel, P.

    2017-12-01

    This study aimed to provide a modern measurement of subsidence in the Chesapeake Bay region and establish a methodology for measuring vertical land motion using static GPS, a cheaper alternative to InSAR or classical leveling. Vertical land motion in this area is of particular concern because tide gages are showing up to 5 mm/yr of local, relative sea level rise. While a component of this rate is the actual eustatic sea level rise itself, part of the trend may also be vertical land motion, in which subsidence exacerbates the effects of actual changes in sea level. Parts of this region are already experiencing an increase in the frequency and magnitude of near-shore coastal flooding, but the last comprehensive study of vertical land motion in this area was conducted by NOAA in 1974 (Holdahl & Morrison) using repeat leveled lines. More recent measures of vertical land motion can help inform efforts on resilience to sea level rise, such as in the Hampton Roads area. This study used measured GPS-derived vertical heights in conjunction with legacy GPS data to calculate rates of vertical motion at several points in time for a selection of benchmarks scattered throughout the region. Seventeen marks in the stable Piedmont area and in the areas suspected of subsidence in the Coastal Plain were selected for the analysis. Results indicate a significant difference between the rates of vertical motion in the Piedmont and Coastal Plain, with a mean rate of -4.10 mm/yr in the Coastal Plain and 0.15 mm/yr in the Piedmont. The rates indicate particularly severe subsidence at the southern Delmarva Peninsula coast and the Hampton-Roads area, with a mean rate of -6.57 mm/yr in that region. By knowing local rates of subsidence as opposed to sea level change itself, coastal managers may make better informed decisions regarding natural resource use, such as deciding whether or not to reduce subsurface fluid withdrawals or to consider injecting treated water back into the aquifer to slow

  6. 33 CFR 165.505 - Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland. 165.505 Section 165.505 Navigation and... Areas Fifth Coast Guard District § 165.505 Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake...

  7. In plain sight: the Chesapeake Bay crater ejecta blanket

    Science.gov (United States)

    Griscom, D. L.

    2012-02-01

    The discovery nearly two decades ago of a 90 km-diameter impact crater below the lower Chesapeake Bay has gone unnoted by the general public because to date all published literature on the subject has described it as "buried". To the contrary, evidence is presented here that the so-called "upland deposits" that blanket ∼5000 km2 of the U.S. Middle-Atlantic Coastal Plain (M-ACP) display morphologic, lithologic, and stratigraphic features consistent with their being ejecta from the 35.4 Ma Chesapeake Bay Impact Structure (CBIS) and absolutely inconsistent with the prevailing belief that they are of fluvial origin. Specifically supporting impact origin are the facts that (i) a 95 %-pure iron ore endemic to the upland deposits of southern Maryland, eastern Virginia, and the District of Columbia has previously been proven to be impactoclastic in origin, (ii) this iron ore welds together a small percentage of well-rounded quartzite pebbles and cobbles of the upland deposits into brittle sheets interpretable as "spall plates" created in the interference-zone of the CBIS impact, (iii) the predominantly non-welded upland gravels have long ago been shown to be size sorted with an extreme crater-centric gradient far too large to have been the work of rivers, but well explained as atmospheric size-sorted interference-zone ejecta, (iv) new evidence is provided here that ~60 % of the non-welded quartzite pebbles and cobbles of the (lower lying) gravel member of the upland deposits display planar fractures attributable to interference-zone tensile waves, (v) the (overlying) loam member of the upland deposits is attributable to base-surge-type deposition, (vi) several exotic clasts found in a debris flow topographically below the upland deposits can only be explained as jetting-phase crater ejecta, and (vii) an allogenic granite boulder found among the upland deposits is deduced to have been launched into space and sculpted by hypervelocity air friction during reentry. An

  8. Temporal and spatial distribution of beryllium-7 in the sediments of Chesapeake Bay

    International Nuclear Information System (INIS)

    Dibb, J.E.; Rice, D.L.

    1989-01-01

    The sediment inventory of 7 Be was determined at six stations in the main stem of Chesapeake Bay nine times between April, 1986, and September, 1987. The inventories ranged from -2 . Comparison to the atmospherically supported 7 Be inventory (range 2-4 dpm cm -2 ) showed significant focusing of 7 Be in the sediments in the zone of the turbidity maximum during the summer, and suggested that the spatial distribution of 7 Be in the lower Bay apparently had a recurrence frequency greater than the sampling frequency in this investigation. The temporal pattern of 7 Be accumulation at the six stations over the first year of this investigation allowed estimation of sedimentation rates, which suggested that the processes governing the distribution of 7 Be in Chesapeake Bay sediments were similar to the processes determining sedimentation patterns over about the past 100 years. (author)

  9. Atmospheric Nitrogen Deposition Loadings to the Chesapeake Bay: An Initial Analysis of the Cost Effectiveness of Control Options (1996)

    Science.gov (United States)

    This report examines the cost effectiveness of control options which reduce nitrate deposition to the Chesapeake watershed and to the tidal Bay. The report analyzes current estimates of the reductions expected in the ozone transport region.

  10. Production and Field Planting of Vegetative Propagules for Restoration of Redhead Grass and Sago Pondweed in Chesapeake Bay

    Science.gov (United States)

    2009-08-01

    submerged aquatic vegetation (SAV) have been lost from shallow waters of Chesapeake Bay (Orth and Moore 1983) and other coastal ecosystems worldwide...a mixture of ambient estuarine water from the Choptank River (a tributary of Chesapeake Bay) and freshwater (tap) needed to maintain a salinity of 7...with a mixture of freshwater and ambient estuarine water (to maintain a salinity of 10) that was circulated through a closed- loop recirculation system

  11. Alteration in Solid State Phosphorous With Depth in Sediments Along the Salinity Transition Zone of a Major Chesapeake Bay Tributary

    Science.gov (United States)

    Hartzell, J. L.; Jordan, T. E.

    2006-05-01

    Determining the fate of particulate phosphorus in estuaries is essential for addressing the widespread problem of estuarine eutrophication, and is key to understanding P cycling and developing accurate global P budgets. Prominent reservoirs of P in surficial sediments include particulate P associated with iron or organic C. However, the importance of these reservoirs changes with the decomposition of organic matter and the reduction of iron. Also, the importance of iron bound P may decrease with increasing salinity due to the formation of iron sulfides. To investigate estuarine P burial and its relationship to salinity, we collected sediment cores of one-meter depth along the salinity gradient of the Patuxent River estuary (Maryland, USA), a major tributary of Chesapeake Bay. The sediments were analyzed using a sequential sedimentary extraction procedure that quantifies five separate reservoirs of particulate P. Total phosphorus concentrations in freshwater sediments were significantly higher than those in more saline sediments at all depths. Conversely, porewater phosphate concentrations were significantly lower in freshwater sediments than in the more saline sediments. Total P in the saline sediment cores decreased with depth, correlating to a reduction in iron-bound P. However, we did not find a concurrent increase in authigenic apatite with depth. Our findings indicate that mechanisms controlling changes in P sorption to sediments change profoundly with salinity and may contribute to increased bioavailability of phosphates with increasing salinity.

  12. 76 FR 70480 - Otay River Estuary Restoration Project, South San Diego Bay Unit of the San Diego Bay National...

    Science.gov (United States)

    2011-11-14

    ... River Estuary Restoration Project, South San Diego Bay Unit of the San Diego Bay National Wildlife...), intend to prepare an environmental impact statement (EIS) for the proposed Otay River Estuary Restoration... any one of the following methods. Email: [email protected] . Please include ``Otay Estuary NOI'' in the...

  13. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay

    Directory of Open Access Journals (Sweden)

    I. D. Irby

    2018-05-01

    Full Text Available The Chesapeake Bay region is projected to experience changes in temperature, sea level, and precipitation as a result of climate change. This research uses an estuarine-watershed hydrodynamic–biogeochemical modeling system along with projected mid-21st-century changes in temperature, freshwater flow, and sea level rise to explore the impact climate change may have on future Chesapeake Bay dissolved-oxygen (DO concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements. Results indicate that warming bay waters will decrease oxygen solubility year-round, while also increasing oxygen utilization via respiration and remineralization, primarily impacting bottom oxygen in the spring. Rising sea level will increase estuarine circulation, reducing residence time in bottom waters and increasing stratification. As a result, oxygen concentrations in bottom waters are projected to increase, while oxygen concentrations at mid-depths (3 < DO < 5 mg L−1 will typically decrease. Changes in precipitation are projected to deliver higher winter and spring freshwater flow and nutrient loads, fueling increased primary production. Together, these multiple climate impacts will lower DO throughout the Chesapeake Bay and negatively impact progress towards meeting water quality standards associated with the Chesapeake Bay Total Maximum Daily Load. However, this research also shows that the potential impacts of climate change will be significantly smaller than improvements in DO expected in response to the required nutrient reductions, especially at the anoxic and hypoxic levels. Overall, increased temperature exhibits the strongest control on the change in future DO concentrations, primarily due to decreased solubility, while sea level rise is expected to exert a small positive impact and increased winter river flow is anticipated to exert a small negative impact.

  14. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay

    Science.gov (United States)

    Irby, Isaac D.; Friedrichs, Marjorie A. M.; Da, Fei; Hinson, Kyle E.

    2018-05-01

    The Chesapeake Bay region is projected to experience changes in temperature, sea level, and precipitation as a result of climate change. This research uses an estuarine-watershed hydrodynamic-biogeochemical modeling system along with projected mid-21st-century changes in temperature, freshwater flow, and sea level rise to explore the impact climate change may have on future Chesapeake Bay dissolved-oxygen (DO) concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements. Results indicate that warming bay waters will decrease oxygen solubility year-round, while also increasing oxygen utilization via respiration and remineralization, primarily impacting bottom oxygen in the spring. Rising sea level will increase estuarine circulation, reducing residence time in bottom waters and increasing stratification. As a result, oxygen concentrations in bottom waters are projected to increase, while oxygen concentrations at mid-depths (3 < DO < 5 mg L-1) will typically decrease. Changes in precipitation are projected to deliver higher winter and spring freshwater flow and nutrient loads, fueling increased primary production. Together, these multiple climate impacts will lower DO throughout the Chesapeake Bay and negatively impact progress towards meeting water quality standards associated with the Chesapeake Bay Total Maximum Daily Load. However, this research also shows that the potential impacts of climate change will be significantly smaller than improvements in DO expected in response to the required nutrient reductions, especially at the anoxic and hypoxic levels. Overall, increased temperature exhibits the strongest control on the change in future DO concentrations, primarily due to decreased solubility, while sea level rise is expected to exert a small positive impact and increased winter river flow is anticipated to exert a small negative impact.

  15. 76 FR 9709 - Water Quality Challenges in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary

    Science.gov (United States)

    2011-02-22

    ... Water Quality Challenges in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary AGENCY... the San Francisco Bay/ Sacramento-San Joaquin Delta Estuary (Bay Delta Estuary) in California. EPA is... programs to address recent significant declines in multiple aquatic species in the Bay Delta Estuary. EPA...

  16. Modeling drivers of phosphorus loads in Chesapeake Bay tributaries and inferences about long-term change

    Science.gov (United States)

    Ryberg, Karen R.; Blomquist, Joel; Sprague, Lori A.; Sekellick, Andrew J.; Keisman, Jennifer

    2018-01-01

    Causal attribution of changes in water quality often consists of correlation, qualitative reasoning, listing references to the work of others, or speculation. To better support statements of attribution for water-quality trends, structural equation modeling was used to model the causal factors of total phosphorus loads in the Chesapeake Bay watershed. By transforming, scaling, and standardizing variables, grouping similar sites, grouping some causal factors into latent variable models, and using methods that correct for assumption violations, we developed a structural equation model to show how causal factors interact to produce total phosphorus loads. Climate (in the form of annual total precipitation and the Palmer Hydrologic Drought Index) and anthropogenic inputs are the major drivers of total phosphorus load in the Chesapeake Bay watershed. Increasing runoff due to natural climate variability is offsetting purposeful management actions that are otherwise decreasing phosphorus loading; consequently, management actions may need to be reexamined to achieve target reductions in the face of climate variability.

  17. Chesapeake Bay recovery and factors affecting trends: Long-termmonitoring, indicators, and insights

    Science.gov (United States)

    Tango, Peter J.; Batiuk, Richard A.

    2016-01-01

    Monitoring the outcome of restoration efforts is the only way to identify the status of a recovery and the most effective management strategies. In this paper, we discuss Chesapeake Bay and watershed recovery and factors influencing water quality trends. For over 30 years, the Chesapeake Bay Program Partnership’s long-term tidal and watershed water quality monitoring networks have measured physical, chemical and biological parameters throughout the bay and its surrounding watershed underpinning an adaptive management process to drive ecosystem recovery. There are many natural and anthropogenic factors operating and interacting to affect the watershed and bay water quality recovery responses to management actions. Across habitats and indicators, the bay and its watershed continue to express a diverse spatial and temporal fabric of multiscale conditions, stressors and trends that show a range of health conditions and impairments, as well as evidence of progress and degradation. Recurrent independent reviews of the monitoring program have driven a culture of continued adaptation of the monitoring networks to reflect ever evolving management information needs. The adherence to bay and watershed-wide consistent monitoring protocols provides monitoring data supporting analyses and development of scientific syntheses that underpin indicator and model development, regulatory assessments, targeting of management actions, evaluation of management effectiveness, and directing of priorities and policies.

  18. The role of power plant atmospheric emissions in the deposition of nitrogen to the Chesapeake Bay

    International Nuclear Information System (INIS)

    Miller, P.E.

    1994-01-01

    The Maryland Power Plant Research Program (PPRP) has sponsored research on several aspects of atmospheric nitrogen emissions, source attribution, deposition estimation and impact assessment since the mid-eighties. The results of these studies will be presented and discussed in the context of power plant emissions control impact on nitrogen loadings to the Chesapeake Bay and watershed. Information needs with respect to power plant contribution and emission control policy will be identified and discussed from the perspective of PPRP

  19. Chesapeake Bay Low Freshwater Inflow Study. Biota Assessment. Phase II. Main Report.

    Science.gov (United States)

    1982-05-01

    Energy, U.S. Geological Survey, Maryland Department of Natural Resources *a (Tidewater and Water Supply Divisions), Maryland Department of Health , Virginia...diverse assemblage of rooted species, including Typha spp., Phragmites, Zizania, Hibiscus , 4 Sagittaria, and many others. These plants are very important...ro(duced froshwatc’r inflow on health and productivity of key Chesapeake Bay organisms. DIRECT IMPACT (OR EFFECT) - a change in the basic physical

  20. 33 CFR 334.220 - Chesapeake Bay, south of Tangier Island, Va.; naval firing range.

    Science.gov (United States)

    2010-07-01

    ... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.220 Chesapeake Bay, south of Tangier Island, Va.; naval firing range. (a) The danger zone. Beginning... to latitude 37°45′00″, longitude 76°09′48″; thence to latitude 37°45′00″, longitude 76°08′51″; and...

  1. Changes in Stream Water Temperatures in the Chesapeake Bay Region, 1960-2014

    Science.gov (United States)

    This map shows the changes in stream water temperatures in the Chesapeake Bay region from 1960 to 2014. Blue circles represent cooling trends in stream water temperatures, and red circles represent warming trends in stream water temperatures. Data were analyzed by Mike Kolian of EPA in partnership with John Jastram and Karen Rice of the U.S. Geological Survey. For more information: www.epa.gov/climatechange/science/indicators

  2. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

    International Nuclear Information System (INIS)

    Grimm, J.W.; Lynch, J.A.

    2005-01-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8 km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8 km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate. - A linear least-squares regression approach was used to develop daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

  3. Novel Pelagic Iron-Oxidizing Zetaproteobacteria from the Chesapeake Bay Oxic–Anoxic Transition Zone

    Science.gov (United States)

    Chiu, Beverly K.; Kato, Shingo; McAllister, Sean M.; Field, Erin K.; Chan, Clara S.

    2017-01-01

    Chemolithotrophic iron-oxidizing bacteria (FeOB) could theoretically inhabit any environment where Fe(II) and O2 (or nitrate) coexist. Until recently, marine Fe-oxidizing Zetaproteobacteria had primarily been observed in benthic and subsurface settings, but not redox-stratified water columns. This may be due to the challenges that a pelagic lifestyle would pose for Zetaproteobacteria, given low Fe(II) concentrations in modern marine waters and the possibility that Fe oxyhydroxide biominerals could cause cells to sink. However, we recently cultivated Zetaproteobacteria from the Chesapeake Bay oxic–anoxic transition zone, suggesting that they can survive and contribute to biogeochemical cycling in a stratified estuary. Here we describe the isolation, characterization, and genomes of two new species, Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8, which are the first Zetaproteobacteria isolates from a pelagic environment. We looked for adaptations enabling strains CP-5 and CP-8 to overcome the challenges of living in a low Fe redoxcline with frequent O2 fluctuations due to tidal mixing. We found that the CP strains produce distinctive dreadlock-like Fe oxyhydroxide structures that are easily shed, which would help cells maintain suspension in the water column. These oxides are by-products of Fe(II) oxidation, likely catalyzed by the putative Fe(II) oxidase encoded by the cyc2 gene, present in both CP-5 and CP-8 genomes; the consistent presence of cyc2 in all microaerophilic FeOB and other FeOB genomes supports its putative role in Fe(II) oxidation. The CP strains also have two gene clusters associated with biofilm formation (Wsp system and the Widespread Colonization Island) that are absent or rare in other Zetaproteobacteria. We propose that biofilm formation enables the CP strains to attach to FeS particles and form flocs, an advantageous strategy for scavenging Fe(II) and developing low [O2] microenvironments within more oxygenated waters

  4. Modeling investigation of the nutrient and phytoplankton variability in the Chesapeake Bay outflow plume

    Science.gov (United States)

    Jiang, Long; Xia, Meng

    2018-03-01

    The Chesapeake Bay outflow plume (CBOP) is the mixing zone between Chesapeake Bay and less eutrophic continental shelf waters. Variations in phytoplankton distribution in the CBOP are critical to the fish nursery habitat quality and ecosystem health; thus, an existing hydrodynamic-biogeochemical model for the bay and the adjacent coastal ocean was applied to understand the nutrient and phytoplankton variability in the plume and the dominant environmental drivers. The simulated nutrient and chlorophyll a distribution agreed well with field data and real-time satellite imagery. Based on the model calculation, the net dissolved inorganic nitrogen (DIN) and phosphorus (DIP) flux at the bay mouth was seaward and landward during 2003-2012, respectively. The CBOP was mostly nitrogen-limited because of the relatively low estuarine DIN export. The highest simulated phytoplankton biomass generally occurred in spring in the near field of the plume. Streamflow variations could regulate the estuarine residence time, and thus modulate nutrient export and phytoplankton biomass in the plume area; in comparison, changing nutrient loading with fixed streamflow had a less extensive impact, especially in the offshore and far-field regions. Correlation analyses and numerical experiments revealed that southerly winds on the shelf were effective in promoting the offshore plume expansion and phytoplankton accumulation. Climate change including precipitation and wind pattern shifts is likely to complicate the driving mechanisms of phytoplankton variability in the plume region.

  5. Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration

    Science.gov (United States)

    Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.

    2008-01-01

    We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.

  6. Tumor prevalence and biomarkers of genotoxicity in brown bullhead (Ameiurus nebulosus) in Chesapeake Bay tributaries

    Energy Technology Data Exchange (ETDEWEB)

    Pinkney, Alfred E., E-mail: Fred_Pinkney@fws.gov [U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 177 Admiral Cochrane Drive, Annapolis, MD 21401 (United States); Harshbarger, John C., E-mail: jcharshbarger@verizon.net [Department of Pathology, George Washington University Medical Center, 2300 I Street, NW, Washington, DC 20037 (United States); Karouna-Renier, Natalie K., E-mail: nkarouna@usgs.gov [U.S. Geological Survey, Patuxent Wildlife Research Center, BARC, Bldg. 308, Beltsville, MD 20705 (United States); Jenko, Kathryn [U.S. Geological Survey, Patuxent Wildlife Research Center, BARC, Bldg. 308, Beltsville, MD 20705 (United States); Balk, Lennart, E-mail: lennart.balk@itm.su.se [Department of Applied Environmental Science (ITM), Stockholm University SE-106 91, Stockholm (Sweden); Skarphe Latin-Small-Letter-Eth insdottir, Halldora; Liewenborg, Birgitta [Department of Applied Environmental Science (ITM), Stockholm University SE-106 91, Stockholm (Sweden); Rutter, Michael A., E-mail: mar36@psu.edu [Department of Mathematics, Penn State Erie, The Behrend College, 5091 Station Road, Erie, PA 16563 (United States)

    2011-12-01

    We surveyed four Chesapeake Bay tributaries for skin and liver tumors in brown bullhead (Ameiurus nebulosus). We focused on the South River, where the highest skin tumor prevalence (53%) in the Bay watershed had been reported. The objectives were to 1) compare tumor prevalence with nearby rivers (Severn and Rhode) and a more remote river (Choptank); 2) investigate associations between tumor prevalence and polynuclear aromatic hydrocarbons (PAHs) and alkylating agents; and 3) statistically analyze Chesapeake Bay bullhead tumor data from 1992 through 2008. All four South River collections exhibited high skin tumor prevalence (19% to 58%), whereas skin tumor prevalence was 2%, 10%, and 52% in the three Severn collections; 0% and 2% in the Choptank collections; and 5.6% in the Rhode collection. Liver tumor prevalence was 0% to 6% in all but one South River collection (20%) and 0% to 6% in the three other rivers. In a subset of samples, PAH-like biliary metabolites and {sup 32}P-DNA adducts were used as biomarkers of exposure and response to polycyclic aromatic compounds (PACs). Adducts from alkylating agents were detected as O6-methyl-2 Prime -deoxyguanosine (O6Me-dG) and O6-ethyl-2 Prime -deoxyguanosine (O6Et-dG) modified DNA. Bullheads from the contaminated Anacostia River were used as a positive control for DNA adducts. {sup 32}P-DNA adduct concentrations were significantly higher in Anacostia bullhead livers compared with the other rivers. We identified alkyl DNA adducts in bullhead livers from the South and Anacostia, but not the Choptank. Neither the PAH-like bile metabolite data, sediment PAH data, nor the DNA adduct data suggest an association between liver or skin tumor prevalence and exposure to PACs or alkylating agents in the South, Choptank, Severn, or Rhode rivers. Logistic regression analysis of the Chesapeake Bay database revealed that sex and length were significant covariates for liver tumors and length was a significant covariate for skin tumors

  7. Tumor prevalence and biomarkers of genotoxicity in brown bullhead (Ameiurus nebulosus) in Chesapeake Bay tributaries

    International Nuclear Information System (INIS)

    Pinkney, Alfred E.; Harshbarger, John C.; Karouna-Renier, Natalie K.; Jenko, Kathryn; Balk, Lennart; Skarphéðinsdóttir, Halldóra; Liewenborg, Birgitta; Rutter, Michael A.

    2011-01-01

    We surveyed four Chesapeake Bay tributaries for skin and liver tumors in brown bullhead (Ameiurus nebulosus). We focused on the South River, where the highest skin tumor prevalence (53%) in the Bay watershed had been reported. The objectives were to 1) compare tumor prevalence with nearby rivers (Severn and Rhode) and a more remote river (Choptank); 2) investigate associations between tumor prevalence and polynuclear aromatic hydrocarbons (PAHs) and alkylating agents; and 3) statistically analyze Chesapeake Bay bullhead tumor data from 1992 through 2008. All four South River collections exhibited high skin tumor prevalence (19% to 58%), whereas skin tumor prevalence was 2%, 10%, and 52% in the three Severn collections; 0% and 2% in the Choptank collections; and 5.6% in the Rhode collection. Liver tumor prevalence was 0% to 6% in all but one South River collection (20%) and 0% to 6% in the three other rivers. In a subset of samples, PAH-like biliary metabolites and 32 P-DNA adducts were used as biomarkers of exposure and response to polycyclic aromatic compounds (PACs). Adducts from alkylating agents were detected as O6-methyl-2′-deoxyguanosine (O6Me-dG) and O6-ethyl-2′-deoxyguanosine (O6Et-dG) modified DNA. Bullheads from the contaminated Anacostia River were used as a positive control for DNA adducts. 32 P-DNA adduct concentrations were significantly higher in Anacostia bullhead livers compared with the other rivers. We identified alkyl DNA adducts in bullhead livers from the South and Anacostia, but not the Choptank. Neither the PAH-like bile metabolite data, sediment PAH data, nor the DNA adduct data suggest an association between liver or skin tumor prevalence and exposure to PACs or alkylating agents in the South, Choptank, Severn, or Rhode rivers. Logistic regression analysis of the Chesapeake Bay database revealed that sex and length were significant covariates for liver tumors and length was a significant covariate for skin tumors. - Highlights: ► We

  8. Bay breeze climatology at two sites along the Chesapeake bay from 1986-2010: Implications for surface ozone.

    Science.gov (United States)

    Stauffer, Ryan M; Thompson, Anne M

    Hourly surface meteorological measurements were coupled with surface ozone (O 3 ) mixing ratio measurements at Hampton, Virginia and Baltimore, Maryland, two sites along the Chesapeake Bay in the Mid-Atlantic United States, to examine the behavior of surface O 3 during bay breeze events and quantify the impact of the bay breeze on local O 3 pollution. Analyses were performed for the months of May through September for the years 1986 to 2010. The years were split into three groups to account for increasingly stringent environmental regulations that reduced regional emissions of nitrogen oxides (NO x ): 1986-1994, 1995-2002, and 2003-2010. Each day in the 25-year record was marked either as a bay breeze day, a non-bay breeze day, or a rainy/cloudy day based on the meteorological data. Mean eight hour (8-h) averaged surface O 3 values during bay breeze events were 3 to 5 parts per billion by volume (ppbv) higher at Hampton and Baltimore than on non-bay breeze days in all year periods. Anomalies from mean surface O 3 were highest in the afternoon at both sites during bay breeze days in the 2003-2010 study period. In conjunction with an overall lowering of baseline O 3 after the 1995-2002 period, the percentage of total exceedances of the Environmental Protection Agency (EPA) 75 ppbv 8-h O 3 standard that occurred on bay breeze days increased at Hampton for 2003-2010, while remaining steady at Baltimore. These results suggest that bay breeze circulations are becoming more important to causing exceedance events at particular sites in the region, and support the hypothesis of Martins et al. (2012) that highly localized meteorology increasingly drives air quality events at Hampton.

  9. Analysis of the Energy Performance of the Chesapeake Bay Foundation's Philip Merrill Environmental Center

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Deru M.; Torcellini, P.; Ellis, P.

    2005-04-01

    The Chesapeake Bay Foundation designed their new headquarters building to minimize its environmental impact on the already highly polluted Chesapeake Bay by incorporating numerous high-performance energy saving features into the building design. CBF then contacted NREL to perform a nonbiased energy evaluation of the building. Because their building attracted much attention in the sustainable design community, an unbiased evaluation was necessary to help designers replicate successes and identify and correct problem areas. This report focuses on NREL's monitoring and analysis of the overall energy performance of the building.

  10. Acquisition Of Rainfall Dataset And The Application For The Automatic Harvester In The Chesapeake Bay Region

    Science.gov (United States)

    Choi, Y.; Piasecki, M.

    2008-12-01

    The objective of this study is the preparation and indexing of rainfall data products for ingestion into the Chesapeake Bay Environmental Observatory (CBEO) node of the CUAHSI/WATERs network. Rainfall products (which are obtained and then processed based on the WSR-88D NEXRAD network) are obtained from the NOAA/NWS Advanced Hydrologic Prediction Service that combines the Multi-sensor Precipitation Estimate (MPE) data generated by the Regional River Forecast Centers and Hydro-NEXRAD rainfall data generated as a service by the University of Iowa. The former is collected on 4*4 km grid (HRAP) with a daily average temporal resolution and the latter on a 1minute*1minute degree grid with hourly values. We have generated a cut-out for the Chesapeake Bay Basin that contains about 9,300 nodes (sites) for the MPE data and about 300,000 nodes (sites) for the Hydro-NEXRAD product. Automated harvesting services have been implemented for both data products. The MPE data is harvested from its download site using ArcGIS which in turn is used to extract the data for the Chesapeake Bay watershed before a scripting program is used to scatter the data into the ODM. The Hydro-NEXRAD is downloaded from a web-based system at the University of Iowa which permits downloads for large scale watersheds organized by Hydraulic Unit Codes (HUC). The resulting ASCII is then automatically parsed and the information stored alongside the MPE data. The two data products stored side-by-side then allows a comparison between them addressing the accuracy and agreement between the methods used to arrive at rainfall data as both use the raw reflectivity data from the WSD-88D system.

  11. Chesapeake Bay fish–osprey (Pandion haliaetus) food chain: Evaluation of contaminant exposure and genetic damage

    Science.gov (United States)

    Lazarus, Rebecca S.; Rattner, Barnett A.; McGowan, Peter C.; Hale, Robert C.; Karouna-Reiner, Natalie K.; Erickson, Richard A.; Ottinger, Mary Ann

    2016-01-01

    From 2011 to 2013, a large-scale ecotoxicological study was conducted in several Chesapeake Bay (USA) tributaries (Susquehanna River and flats, the Back, Baltimore Harbor/Patapsco Rivers, Anacostia/ middle Potomac, Elizabeth and James Rivers) and Poplar Island as a mid-Bay reference site. Osprey (Pandion haliaetus) diet and the transfer of contaminants from fish to osprey eggs were evaluated. The most bioaccumulative compounds (biomagnification factor > 5) included p,p′-dichlorodiphenyldichloroethylene (DDE), total polychlorinated biphenyls (PCBs), total polybrominated diphenyl ethers (PBDEs), and bromodiphenyl ether (BDE) congeners 47, 99, 100, and 154. This analysis suggested that alternative brominated flame retardants and other compounds (methoxytriclosan) are not appreciably biomagnifying. A multivariate analysis of similarity indicated that major differences in patterns among study sites were driven by PCB congeners 105, 128, 156, 170/190, and 189, and PBDE congeners 99 and 209. An integrative redundancy analysis showed that osprey eggs from Baltimore Harbor/Patapsco River and the Elizabeth River had high residues of PCBs and p,p′-DDE, with PBDEs making a substantial contribution to overall halogenated contamination on the Susquehanna and Anacostia/middle Potomac Rivers. The redundancy analysis also suggested a potential relation between PBDE residues in osprey eggs and oxidative DNA damage in nestling blood samples. The results also indicate that there is no longer a discernible relation between halogenated contaminants in osprey eggs and their reproductive success in Chesapeake Bay. Osprey populations are thriving in much of the Chesapeake, with productivity rates exceeding those required to sustain a stable population.

  12. Evaluation of Shortwave Infrared Atmospheric Correction for Ocean Color Remote Sensing of Chesapeake Bay

    Science.gov (United States)

    Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.

    2010-01-01

    The NASA Moderate Resolution Imaging Spectroradiometer onboard the Aqua platform (MODIS-Aqua) provides a viable data stream for operational water quality monitoring of Chesapeake Bay. Marine geophysical products from MODIS-Aqua depend on the efficacy of the atmospheric correction process, which can be problematic in coastal environments. The operational atmospheric correction algorithm for MODIS-Aqua requires an assumption of negligible near-infrared water-leaving radiance, nL(sub w)(NIR). This assumption progressively degrades with increasing turbidity and, as such, methods exist to account for non-negligible nL(sub w)(NIR) within the atmospheric correction process or to use alternate radiometric bands where the assumption is satisfied, such as those positioned within shortwave infrared (SWIR) region of the spectrum. We evaluated a decade-long time-series of nL(sub w)(lambda) from MODIS-Aqua in Chesapeake Bay derived using NIR and SWIR bands for atmospheric correction. Low signal-to-noise ratios (SNR) for the SWIR bands of MODIS-Aqua added noise errors to the derived radiances, which produced broad, flat frequency distributions of nL(sub w)(lambda) relative to those produced using the NIR bands. The SWIR approach produced an increased number of negative nL(sub w)(lambda) and decreased sample size relative to the NIR approach. Revised vicarious calibration and regional tuning of the scheme to switch between the NIR and SWIR approaches may improve retrievals in Chesapeake Bay, however, poor SNR values for the MODIS-Aqua SWIR bands remain the primary deficiency of the SWIR-based atmospheric correction approach.

  13. CBEO:N, Chesapeake Bay Environmental Observatory as a Cyberinfrastructure Node

    Science.gov (United States)

    Zaslavsky, I.; Piasecki, M.; Whitenack, T.; Ball, W. P.; Murphy, R.

    2008-12-01

    Chesapeake Bay Environmental Observatory (CBEO) is an NSF-supported project focused on studying hypoxia in Chesapeake Bay using advanced cyberinfrastructure (CI) technologies. The project is organized around four concurrent and interacting activities: 1) CBEO:S provides science and management context for the use of CI technologies, focusing on hypoxia and its non-linear dynamics as affected by management and climate; 2) CBEO:T constructs a locally-accessible CBEO test bed prototype centered on spatio-temporal interpolation and advanced querying of model runs; 3) CBEO:N incorporates the test bed CI into national environmental observation networks, and 4) CBEO:E develops education and outreach components of the project that translate observational science for public consumption. CBEO:N activities, which are the focus of this paper, are four-fold: - constructing an online project portal to enable researchers to publish, discover, query, visualize and integrate project-related datasets of different types. The portal is based on the technologies developed within the GEON (the Geosciences Network) project, and has established the CBEO project data server as part of the GEON network of servers; * developing a CBEO node within the WATERS network, taking advantage of the CUAHSI Hydrologic Information System (HIS) Server technology that supports online publication of observation data as web services, and ontology-assisted data discovery; *developing new data structures and metadata in order to describe water quality observational data, and model run output, obtained for the Chesapeake Bay area, using data structures adopted and modified from the Observations Data Model of CUAHSI HIS; * prototyping CBEO tools that can be re-used through the portal, in particular implementing a portal version of R-based spatial interpolation tools. The paper describes recent accomplishments in these four development areas, and demonstrates how CI approaches transform research and data sharing

  14. Multi-Model Validation in the Chesapeake Bay Region in June 2010

    Science.gov (United States)

    2013-05-31

    ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 7030_4 X no ---~~~~~~~~~~~~~~~-~-~~-~------------ thor...US Navy at global , regional and coastal scales (Rowley 2008, 2010). The NCOM model in the Chesapeake Bay region for this exercise is configured in...derived from the NRL DBDB2 global bathymetry database. Boundary forcing and initial conditions were extracted from the East Coast NCOM which has a 3-km

  15. Food habits of mute swans in the Chesapeake Bay

    Science.gov (United States)

    Perry, M.C.; Osenton, P.C.; Lohnes, E.J.R.; Perry, Matthew C.

    2004-01-01

    Unlike the tundra swan (Cygnus columbianus) that migrate to the Bay for the winter, the mute swan (Cygnus olor) is a year long resident and therefore has raised concerns among research managers over reports of conflicts with nesting native water birds and the consumption of submerged aquatic vegetation (SAV). Although data on the reduction of SAV by nesting mute swans and their offspring during the spring and summer are limited, food-habits data show that mute swans rely heavily on SAV during these months. Analyses of the gullet and gizzard of mute swans indicate that widgeon grass (Ruppia maritima) and eelgrass (Zostera marina) were the most important food items to mute swans during the winter and spring. Other organisms were eaten by mute swans, but represent small percentages of food. Corn (Zea mays) fed to the swans by Bay residents in late winter probably supplements their limited vegetative food resources at that time of year.

  16. Food Webs in an Estuary.

    Science.gov (United States)

    Dunne, Barbara B.

    The Maryland Marine Science Education Project has produced a series of mini-units in marine science education for the junior high/middle school classroom. This unit focuses on food chains in an estuary. Although the unit specifically treats the Chesapeake Bay, it may be adapted for use with similar estuarine systems. In addition, the unit may be…

  17. Weighted Regressions on Time, Discharge, and Season (WRTDS), with an application to Chesapeake Bay River inputs

    Science.gov (United States)

    Hirsch, Robert M.; Moyer, Douglas; Archfield, Stacey A.

    2010-01-01

    A new approach to the analysis of long-term surface water-quality data is proposed and implemented. The goal of this approach is to increase the amount of information that is extracted from the types of rich water-quality datasets that now exist. The method is formulated to allow for maximum flexibility in representations of the long-term trend, seasonal components, and discharge-related components of the behavior of the water-quality variable of interest. It is designed to provide internally consistent estimates of the actual history of concentrations and fluxes as well as histories that eliminate the influence of year-to-year variations in streamflow. The method employs the use of weighted regressions of concentrations on time, discharge, and season. Finally, the method is designed to be useful as a diagnostic tool regarding the kinds of changes that are taking place in the watershed related to point sources, groundwater sources, and surface-water nonpoint sources. The method is applied to datasets for the nine large tributaries of Chesapeake Bay from 1978 to 2008. The results show a wide range of patterns of change in total phosphorus and in dissolved nitrate plus nitrite. These results should prove useful in further examination of the causes of changes, or lack of changes, and may help inform decisions about future actions to reduce nutrient enrichment in the Chesapeake Bay and its watershed.

  18. Evolution of sediment plumes in the Chesapeake bay and implications of climate variability.

    Science.gov (United States)

    Zheng, Guangming; DiGiacomo, Paul M; Kaushal, Sujay S; Yuen-Murphy, Marilyn A; Duan, Shuiwang

    2015-06-02

    Fluvial sediment transport impacts fisheries, marine ecosystems, and human health. In the upper Chesapeake Bay, river-induced sediment plumes are generally known as either a monotonic spatial shape or a turbidity maximum. Little is known about plume evolution in response to variation in streamflow and extreme discharge of sediment. Here we propose a typology of sediment plumes in the upper Chesapeake Bay using a 17 year time series of satellite-derived suspended sediment concentration. On the basis of estimated fluvial and wind contributions, we define an intermittent/wind-dominated type and a continuous type, the latter of which is further divided into four subtypes based on spatial features of plumes, which we refer to as Injection, Transport, Temporary Turbidity-Maximum, and Persistent Turbidity-Maximum. The four continuous types exhibit a consistent sequence of evolution within 1 week to 1 month following flood events. We also identify a "shift" in typology with increased frequency of Turbidity-Maximum types before and after Hurricane Ivan (2004), which implies that extreme events have longer-lasting effects upon estuarine suspended sediment than previously considered. These results can serve as a diagnostic tool to better predict distribution and impacts of estuarine suspended sediment in response to changes in climate and land use.

  19. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed.

    Science.gov (United States)

    Grimm, J W; Lynch, J A

    2005-06-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate.

  20. 33 CFR 165.1190 - Security Zone; San Francisco Bay, Oakland Estuary, Alameda, CA.

    Science.gov (United States)

    2010-07-01

    ..., Oakland Estuary, Alameda, CA. 165.1190 Section 165.1190 Navigation and Navigable Waters COAST GUARD... § 165.1190 Security Zone; San Francisco Bay, Oakland Estuary, Alameda, CA. (a) Location. The following area is a security zone: All navigable waters of the Oakland Estuary, California, from the surface to...

  1. Multi-band algorithms for the estimation of chlorophyll concentration in the Chesapeake Bay

    KAUST Repository

    Gilerson, Alexander

    2015-10-14

    Standard blue-green ratio algorithms do not usually work well in turbid productive waters because of the contamination of the blue and green bands by CDOM absorption and scattering by non-algal particles. One of the alternative approaches is based on the two- or three band ratio algorithms in the red/NIR part of the spectrum, which require 665, 708, 753 nm bands (or similar) and which work well in various waters all over the world. The critical 708 nm band for these algorithms is not available on MODIS and VIIRS sensors, which limits applications of this approach. We report on another approach where a combination of the 745nm band with blue-green-red bands was the basis for the new algorithms. A multi-band algorithm which includes ratios Rrs(488)/Rrs(551)and Rrs(671)/Rrs(745) and two band algorithm based on Rrs671/Rrs745 ratio were developed with the main focus on the Chesapeake Bay (USA) waters. These algorithms were tested on the specially developed synthetic datasets, well representing the main relationships between water parameters in the Bay taken from the NASA NOMAD database and available literature, on the field data collected by our group during a 2013 campaign in the Bay, as well as NASA SeaBASS data from the other group and on matchups between satellite imagery and water parameters measured by the Chesapeake Bay program. Our results demonstrate that the coefficient of determination can be as high as R2 > 0.90 for the new algorithms in comparison with R2 = 0.6 for the standard OC3V algorithm on the same field dataset. Substantial improvement was also achieved by applying a similar approach (inclusion of Rrs(667)/Rrs(753) ratio) for MODIS matchups. Results for VIIRS are not yet conclusive. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. Use of Principal Components Analysis to Explain Controls on Nutrient Fluxes to the Chesapeake Bay

    Science.gov (United States)

    Rice, K. C.; Mills, A. L.

    2017-12-01

    The Chesapeake Bay watershed, on the east coast of the United States, encompasses about 166,000-square kilometers (km2) of diverse land use, which includes a mixture of forested, agricultural, and developed land. The watershed is now managed under a Total Daily Maximum Load (TMDL), which requires implementation of management actions by 2025 that are sufficient to reduce nitrogen, phosphorus, and suspended-sediment fluxes to the Chesapeake Bay and restore the bay's water quality. We analyzed nutrient and sediment data along with land-use and climatic variables in nine sub watersheds to better understand the drivers of flux within the watershed and to provide relevant management implications. The nine sub watersheds range in area from 300 to 30,000 km2, and the analysis period was 1985-2014. The 31 variables specific to each sub watershed were highly statistically significantly correlated, so Principal Components Analysis was used to reduce the dimensionality of the dataset. The analysis revealed that about 80% of the variability in the whole dataset can be explained by discharge, flux, and concentration of nutrients and sediment. The first two principal components (PCs) explained about 68% of the total variance. PC1 loaded strongly on discharge and flux, and PC2 loaded on concentration. The PC scores of both PC1 and PC2 varied by season. Subsequent analysis of PC1 scores versus PC2 scores, broken out by sub watershed, revealed management implications. Some of the largest sub watersheds are largely driven by discharge, and consequently large fluxes. In contrast, some of the smaller sub watersheds are more variable in nutrient concentrations than discharge and flux. Our results suggest that, given no change in discharge, a reduction in nutrient flux to the streams in the smaller watersheds could result in a proportionately larger decrease in fluxes of nutrients down the river to the bay, than in the larger watersheds.

  3. Top-down control of phytoplankton by oysters in Chesapeake Bay, USA: Comment on Pomeroy et al. (2006)

    Science.gov (United States)

    Pomeroy et al. (2006) proposed that temporal and spatial mismatches between eastern oyster filtration and phytoplankton abundance will preclude restored stocks of eastern oysters from reducing the severity of hypoxia in the deep channel of central Chesapeake Bay. We refute this c...

  4. Integrated Geologic, Hydrologic, and Geophysical Investigations of the Chesapeake Bay Impact Structure, Virginia, USA: A Multi-Agency Program

    Science.gov (United States)

    Gohn, G. S.; Bruce, T. S.; Catchings, R. D.; Emry, S. R.; Johnson, G. H.; Levine, J. S.; McFarland, E. R.; Poag, C. W.; Powars, D. S.

    2001-01-01

    The Chesapeake Bay impact structure is the focus of an ongoing federal-state-local research program. Recent core drilling and geophysical surveys address the formative processes and hydrogeologic properties of this major "wet-target" impact. Additional information is contained in the original extended abstract.

  5. Scientific Personnel Resource Inventory: List and Index to Research Scientists Involved with the Estuarine Environment, Especially the Chesapeake Bay,

    Science.gov (United States)

    1972-06-01

    introduction of sewage from commercial or private structures -- Monthly sampling of sewage treatment effluents -- Resistance of Vibrio parahemolyticus in oyster...of microorganisms in animal diseases and the effect of V. parahemolyticus and other vibrios on recruitment of commercial mollusks and crustaceans 575...Microbiology; including a survey of areas of the Chesapeake Bay for Vibrio parahaemalyticus * 18 Barnard, Thomas Alexander MA Assistant Marine Scientist

  6. Invasive Species Guidebook for Department of Defense Installations in the Chesapeake Bay Watershed: Identification, Control, and Restoration

    Science.gov (United States)

    2007-11-01

    Crown vetch Coronilla varia MD, VA 14 Leafy spurge Euphorbia esula VA 15 Ground ivy Glechoma hederacea DC, MD, PA, VA, WV 17 Cogongrass Imperata ...INSTALLATIONS IN THE CHESAPEAKE BAY WATERSHED IDENTIFICATION AND CONTROL METHODS Cogongrass ( Imperata cylindrica) Description & Biology – A large

  7. How many people use the Three Bays estuary system for recreation?

    Science.gov (United States)

    Little is known about recreational use on estuaries like Three Bays, MA. We are testing a practical approach to quantify recreational use of the Three Bays estuary system so we can better understand how many people are affected by changes in environmental quality. This involves c...

  8. Uncertainty in model predictions of Vibrio vulnificus response to climate variability and change: a Chesapeake Bay case study.

    Directory of Open Access Journals (Sweden)

    Erin A Urquhart

    Full Text Available The effect that climate change and variability will have on waterborne bacteria is a topic of increasing concern for coastal ecosystems, including the Chesapeake Bay. Surface water temperature trends in the Bay indicate a warming pattern of roughly 0.3-0.4°C per decade over the past 30 years. It is unclear what impact future warming will have on pathogens currently found in the Bay, including Vibrio spp. Using historical environmental data, combined with three different statistical models of Vibrio vulnificus probability, we explore the relationship between environmental change and predicted Vibrio vulnificus presence in the upper Chesapeake Bay. We find that the predicted response of V. vulnificus probability to high temperatures in the Bay differs systematically between models of differing structure. As existing publicly available datasets are inadequate to determine which model structure is most appropriate, the impact of climatic change on the probability of V. vulnificus presence in the Chesapeake Bay remains uncertain. This result points to the challenge of characterizing climate sensitivity of ecological systems in which data are sparse and only statistical models of ecological sensitivity exist.

  9. Modern sedimentary environments in a large tidal estuary, Delaware Bay

    Science.gov (United States)

    Knebel, H.J.

    1989-01-01

    Data from an extensive grid of sidescan-sonar records reveal the distribution of sedimentary environments in the large, tidally dominated Delaware Bay estuary. Bathymetric features of the estuary include large tidal channels under the relatively deep (> 10 m water depth) central part of the bay, linear sand shoals (2-8 m relief) that parallel the sides of the tidal channels, and broad, low-relief plains that form the shallow bay margins. The two sedimentary environments that were identified are characterized by either (1) bedload transport and/or erosion or (2) sediment reworking and/or deposition. Sand waves and sand ribbons, composed of medium to coarse sands, define sites of active bedload transport within the tidal channels and in gaps between the linear shoals. The sand waves have spacings that vary from 1 to 70 m, amplitudes of 2 m or less, and crestlines that are usually straight. The orientations of the sand waves and ribbons indicate that bottom sediment movement may be toward either the northwest or southeast along the trends of the tidal channels, although sand-wave asymmetry indicates that the net bottom transport is directed northwestward toward the head of the bay. Gravelly, coarse-grained sediments, which appear as strongly reflective patterns on the sonographs, are also present along the axes and flanks of the tidal channels. These coarse sediments are lag deposits that have developed primarily where older strata were eroded at the bay floor. Conversely, fine sands that compose the linear shoals and muddy sands that cover the shallow bay margins appear mainly on the sonographs either as smooth featureless beds that have uniform light to moderate shading or as mosaics of light and dark patches produced by variations in grain size. These acoustic and textural characteristics are the result of sediment deposition and reworking. Data from this study (1) support the hypothesis that bed configurations under deep tidal flows are functions of current

  10. Wind-Wave Effects on Vertical Mixing in Chesapeake Bay, USA: comparing observations to second-moment closure predictions.

    Science.gov (United States)

    Fisher, A. W.; Sanford, L. P.; Scully, M. E.

    2016-12-01

    Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer

  11. Bank-derived material dominates fluvial sediment in a suburban Chesapeake Bay watershed

    Science.gov (United States)

    Cashman, M. J.; Gellis, A.; Gorman-Sanisaca, L.; Noe, G. B.; Cogliandro, V.; Baker, A.

    2017-12-01

    Excess fine sediment is a leading cause of ecological degradation within the Chesapeake Bay watershed. The Piedmont physiographic province, which includes parts of the Washington, D.C. metro area, has the highest sediment yields in the Chesapeake Bay. In order to effectively employ sediment mitigation measures, it is necessary to identify and quantify the contributions of sediments sources within rapidly urbanizing areas in the Piedmont. This sediment fingerprinting study examines the inputs of various sediment sources to Upper Difficult Run (14.2 km2; 22.6% impervious surface), an urbanized watershed in Fairfax County, Virginia. A source sediment library was constructed from collections of stream bank material, forest soils, and road dust from across the watershed. Target fluvial sediments were collected from fine channel margin deposits and from suspended sediment using an autosampler during 16 storm events from 2008 - 2012. Apportionment of the target samples to the source sediments was performed using Sed_SAT, a publically available toolkit for sediment fingerprinting. Bed sediment was found to be dominated by stream bank sources (mean: 96%), with minor contributions from forest (4%) and no detectable contribution from roads (0%). Suspended fine sediments were also found to predominantly originate from stream bank sources (SSC-weighted mean: 91%), with minor contributions from roads (8%), and negligible contributions from forests (1%). Stream bank sources dominated at all discharges, with the greatest contributions from overland sources found only at low discharges. On the rising limb of the hydrograph and at peak flow, sediment concentrations increased due to increasing contributions of bank material rather than surface erosion caused by overland flow. Results demonstrate that stream bank erosion is responsible for the vast majority of fine sediment occurring in this suburban basin of the Chesapeake Bay watershed. This is likely a consequence of storm

  12. Meteorological and surface water observations from the Chesapeake Bay Interpretive Buoy System from 2007-04-25 to 2016-12-31 (NCEI Accession 0159578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Meteorological and surface water observations from the Chesapeake Bay Interpretive Buoy System. Ten stations are located from the mouth of the Susquehanna river near...

  13. NOAA Office for Coastal Management Benthic Habitat Data, Catlett and Goodwin Islands on the York River in Chesapeake Bay, VA, 2002-2004 (NODC Accession 0090253)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a collection of benthic habitat data from studies conducted in the Catlett and Goodwin Islands on the York River in Chesapeake Bay, Virginia in GIS...

  14. Stable-isotope analysis of canvasback winter diet in upper Chesapeake Bay

    Science.gov (United States)

    Haramis, G.M.; Jorde, Dennis G.; Macko, S.A.; Walker, J.L.

    2001-01-01

    A major decline in submerged aquatic vegetation (SAV) in Chesapeake Bay has altered the diet of wintering Canvasbacks (Aythya valisineria) from historically plant to a combination of benthic animal foods, especially the ubiquitous Baltic clam (Macoma balthica), supplemented with anthropogenic corn (Zea mays). Because the isotopic signature of corn is readily discriminated from bay benthos, but not SAV, we used stable-isotope methodology to investigate the corn–SAV component of the winter diet of Canvasbacks. Feeding trials with penned Canvasbacks were conducted to establish turnover rates and fractionation end-point loci of δ13C and δ15N signatures of whole blood for individual ducks fed ad libitum diets of (1) Baltic clams, (2) Baltic clams and corn, and (3) tubers of wild celery (Vallisneria americana). Turnover time constants averaged 4.5 weeks, indicating that signatures of wild ducks would be representative of bay diets by late February. Isotopic signatures of wild Canvasbacks sampled in February fell on a continuum between end-point loci for the Baltic clam and the combination Baltic clam and corn diet. Although that finding verifies a clear dependence on corn–SAV for wintering Canvasbacks, it also reveals that not enough corn–SAV is available to establish ad libitum consumption for the 15,000+ Canvasbacks wintering in the upper bay. On the basis of mean δ13C signature of bay Canvasbacks (n = 59) and ingestion rates from feeding trials, we estimated that 258 kg corn per day would account for the observed δ13C enrichment and supply 18% of daily energetic needs for 15,000 Canvasbacks. That level of corn availability is so realistic that we conclude that SAV is likely of little dietary importance to Canvasbacks in that portion of the bay.

  15. Long-term trends in submersed aquatic vegetation (SAV) in Chesapeake Bay, USA, related to water quality

    Science.gov (United States)

    Orth, Robert J.; Williams, Michael R.; Marion, Scott R.; Wilcox, David J.; Carruthers, Tim J.B.; Moore, Kenneth A.; Kemp, W.M.; Dennison, William C.; Rybicki, Nancy B.; Peter Bergstrom,; Batiuk, Richard A.

    2010-01-01

    Chesapeake Bay supports a diverse assemblage of marine and freshwater species of submersed aquatic vegetation (SAV) whose broad distributions are generally constrained by salinity. An annual aerial SAV monitoring program and a bi-monthly to monthly water quality monitoring program have been conducted throughout Chesapeake Bay since 1984. We performed an analysis of SAV abundance and up to 22 environmental variables potentially influencing SAV growth and abundance (1984-2006). Historically, SAV abundance has changed dramatically in Chesapeake Bay, and since 1984, when SAV abundance was at historic low levels, SAV has exhibited complex changes including long-term (decadal) increases and decreases, as well as some large, single-year changes. Chesapeake Bay SAV was grouped into three broad-scale community-types based on salinity regime, each with their own distinct group of species, and detailed analyses were conducted on these three community-types as well as on seven distinct case-study areas spanning the three salinity regimes. Different trends in SAVabundance were evident in the different salinity regimes. SAV abundance has (a) continually increased in the low-salinity region; (b) increased initially in the medium-salinity region, followed by fluctuating abundances; and (c) increased initially in the high-salinity region, followed by a subsequent decline. In all areas, consistent negative correlations between measures of SAV abundance and nitrogen loads or concentrations suggest that meadows are responsive to changes in inputs of nitrogen. For smaller case-study areas, different trends in SAV abundance were also noted including correlations to water clarity in high-salinity case-study areas, but nitrogen was highly correlated in all areas. Current maximum SAV coverage for almost all areas remain below restoration targets, indicating that SAV abundance and associated ecosystem services are currently limited by continued poor water quality, and specifically high

  16. Radionuclide distributions and sorption behavior in the Susquehanna--Chesapeake Bay System

    International Nuclear Information System (INIS)

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; McLean, R.I.; Domotor, S.L.

    1989-01-01

    Radionuclides released into the Susquehanna--Chesapeake System from the Three Mile Island, Peach Bottom, and Calvert Cliffs nuclear power plants are partitioned among dissolved, particulate, and biological phases and may thus exist in a number of physical and chemical forms. In this project, we have measured the dissolved and particulate distributions of fallout 137 Cs; reactor-released 137 Cs, 134 Cs, 65 Zn, 60 Co, and 58 Co; and naturally occurring 7 Be and 210 Pb in the lower Susquehanna River and Upper Chesapeake Bay. In addition, we chemically leached suspended particles and bottom sediments in the laboratory to determine radionuclide partitioning among different particulate-sorbing phases to complement the site-specific field data. This information has been used to document the important geochemical processes that affect the transport, sorption, distribution, and fate of reactor-released radionuclides (and by analogy, other trace contaminants) in this river-estuarine system. Knowledge of the mechanisms, kinetic factors, and processes that affect radionuclide distributions is crucial for predicting their biological availability, toxicity, chemical behavior, physical transport, and accumulation in aquatic systems. The results from this project provide the information necessary for developing accurate radionuclide-transport and biological-uptake models. 76 refs., 12 figs

  17. Delineation of surf scoter habitat in Chesapeake Bay, Maryland: macrobenthic and sediment composition of surf scoter feeding sites

    Science.gov (United States)

    Kidwell, D.M.; Perry, M.C.

    2005-01-01

    Surveys of surf scoters (Melanitta perspicillata) along the Atlantic coast of the United States have shown population declines in recent decades. The Chesapeake Bay has traditionally been a key wintering area for surf scoters. Past and present research has shown that bivalves constitute a major food item for seaducks in the Chesapeake Bay, with surf scoters feeding primarily on hooked mussel (Ischadium recurvum) and dwarf surf clam (Mulinia lateralis). Degraded water quality conditions in the Chesapeake Bay have been well documented and have been shown to greatly influence the composition of benthic communities. Large concentrations of feeding surf scoters (>500 individuals) in the Bay were determined through monthly boat surveys. Locations consistently lacking surf scoters were also determined. Macrobenthos were seasonally sampled at 3 locations containing scoters and 3 locations without scoters. A 1 kilometer square grid was superimposed over each location using GIS and sampling sites within the square were randomly chosen. Benthos were sampled at each site using SCUBA and a meter square quadrat. Biomass and size class estimates were determined for all bivalves within each kilometer square. Results indicated that scoter feeding sites contained significantly greater biomass of M. lateralis, I. recurvum, and Gemma gemma than locations where no scoters were present. Substrate differences were also detected, with scoter feeding sites being composed of a sand/shell mix while non-scoter sites consisted primarily of mud. This data indicates that surf scoters in the Chesapeake Bay are selecting areas with high densities of preferred food items, potentially maximizing there foraging energetics. In addition, two scoter feeding sites also contained a patchwork of eastern oyster (Crassostrea virginica) and oyster shell, on which much of the I. recurvum was attached. This suggests the possibility that surf scoters utilize eastern oyster habitat and the dramatic depletion of

  18. Long-term decline in the calanoid copepod Acartia tonsa in central Chesapeake Bay, USA: An indirect effect of eutrophication?

    Science.gov (United States)

    Kimmel, David G.; Boynton, Walter R.; Roman, Michael R.

    2012-04-01

    A long-term abundance record of the calanoid copepod Acartia tonsa in the Maryland portion of Chesapeake Bay was compiled from 1966 to 2002. A significant downward trend in the summertime abundance of Acartia tonsa was found in central Chesapeake Bay. We propose that environmental and food web changes occurred as the Chesapeake Bay became increasingly impacted by human activity which eventually led to the overall decline of A. tonsa. Environmental changes included a long-term rise in water temperature and the volume of hypoxic water during the summer. These changes occurred during the same time period as increases in chlorophyll a concentration, declines in the landings of the eastern oyster Crassostrea virginica, and declines in abundance of the sea nettle Chrysaora quinquecirrha. A CUSUM analysis showed that each time-series experienced a change point during over the past 50 years. These changes occurred sequentially, with chlorophyll a concentration increasing beginning in 1969, water temperature and hypoxic volume increasing beginning in the early 1980s, more recent Maryland C. virginica landings begin declining in the early 1980s and A. tonsa and C. quinquecirrha declining starting in 1989. A stepwise regression analysis revealed that the reduction in A. tonsa abundance appeared to be most associated with a decreasing trend in C. quinquecirrha abundance, though only when trends in the two time-series were present. The drop in C. quinquecirrha abundance is associated with reduced predation on the ctenophore, Mnemiopsis leidyi, a key predator of A. tonsa. The long-term decline of A. tonsa has likely impacted trophic transfer to fish, particularly the zooplanktivorous bay anchovy (Anchoa mitchilli). A time-series of bay anchovy juvenile index showed a negative trend and the CUSUM analysis revealed 1993 as its starting point. Total fisheries landings, excluding menhaden (Brevoortia tyrannus), in Chesapeake Bay have also declined during the same period and this

  19. Community implementation dynamics: Nutrient management in the New York City and Chesapeake Bay Watersheds

    Directory of Open Access Journals (Sweden)

    Glenn Earl Sterner

    2015-04-01

    Full Text Available The creation of natural resource management and conservation strategies can be affected by engagement with local citizens and competing interests between agencies and stakeholders at the varying levels of governance. This paper examines the role of local engagement and the interaction between governance levels on the outcomes of nutrient management policy, a specific area of natural resource conservation and management. Presented are two case studies of the New York City and Chesapeake Bay Watersheds in the US. These case studies touch upon the themes of local citizen engagement and governance stakeholder interaction in changing nutrient management to improve water quality. An analysis of these cases leads to several key considerations for the creation and implementation of nutrient management and natural resource management more broadly, including the importance of: local citizen engagement, government brokering and cost sharing; and the need of all stakeholders to respect each other in the policy creation and implementation process.

  20. Identification of largemouth bass virus in the introduced Northern Snakehead inhabiting the Chesapeake Bay watershed.

    Science.gov (United States)

    Iwanowicz, L; Densmore, C; Hahn, C; McAllister, P; Odenkirk, J

    2013-09-01

    The Northern Snakehead Channa argus is an introduced species that now inhabits the Chesapeake Bay. During a preliminary survey for introduced pathogens possibly harbored by these fish in Virginia waters, a filterable agent was isolated from five specimens that produced cytopathic effects in BF-2 cells. Based on PCR amplification and partial sequencing of the major capsid protein (MCP), DNA polymerase (DNApol), and DNA methyltransferase (Mtase) genes, the isolates were identified as Largemouth Bass virus (LMBV). Nucleotide sequences of the MCP (492 bp) and DNApol (419 pb) genes were 100% identical to those of LMBV. The nucleotide sequence of the Mtase (206 bp) gene was 99.5% identical to that of LMBV, and the single nucleotide substitution did not lead to a predicted amino acid coding change. This is the first report of LMBV from the Northern Snakehead, and provides evidence that noncentrarchid fishes may be susceptible to this virus.

  1. Diurnal variability in carbon and nitrogen pools within Chesapeake Bay and northern Gulf of Mexico: implications for future ocean color satellite sensors

    Science.gov (United States)

    Mannino, A.; Novak, M. G.; Tzortziou, M.; Salisbury, J.

    2016-02-01

    Relative to their areal extent, estuaries and coastal ocean ecosystems contribute disproportionately more to global biogeochemical cycling of carbon, nitrogen and other elements compared to the open ocean. Applying ocean color satellite data to study biological and biogeochemical processes within coastal ecosystems is challenging due to the complex mixtures of aquatic constituents derived from terrestrial, anthropogenic, and marine sources, human-impacted atmospheric properties, presence of clouds during satellite overpass, fine-scale spatial gradients, and time-varying processes on diurnal scales that cannot be resolved with current sensors. On diurnal scales, biological, photochemical, and biogeochemical processes are regulated by the variation in solar radiation. Other physical factors, such as tides, river discharge, estuarine and coastal ocean circulation, wind-driven mixing, etc., impart further variability on biological and biogeochemical processes on diurnal to multi-day time scales. Efforts to determine the temporal frequency required from a NASA GEO-CAPE ocean color satellite sensor to discern diurnal variability C and N stocks, fluxes and productivity culminated in field campaigns in the Chesapeake Bay and northern Gulf of Mexico. Near-surface drogues were released and tracked in quasi-lagrangian space to monitor hourly changes in community production, C and N stocks, and optical properties. While only small diurnal changes were observed in dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) absorption in Chesapeake Bay, substantial variation in particulate organic carbon (POC) and nitrogen (PN), chlorophyll-a, and inorganic nitrogen (DIN) were measured. Similar or greater diurnal changes in POC, PN, chlorophyll-a and DIN were found in Gulf of Mexico nearshore and offshore sites. These results suggest that satellite observations at hourly frequency are desirable to capture diurnal variability in carbon and nitrogen stocks, fluxes

  2. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Blazer, Vicki S., E-mail: Vblazer@usgs.gov [U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430 (United States); Pinkney, Alfred E., E-mail: Fred_Pinkeny@fws.gov [U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 177 Admiral Cochrane Drive, Annapolis, MD 21401 (United States); Jenkins, Jill A., E-mail: jenkinsj@usgs.gov [U.S. Geological Survey, National Wetlands Research Center, 700 Cajundome Blvd., Lafayette, LA 70506 (United States); Iwanowicz, Luke R., E-mail: Liwanowicz@usgs.gov [U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430 (United States); Minkkinen, Steven, E-mail: steve_minkkinen@fws.gov [U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 177 Admiral Cochrane Drive, Annapolis, MD 21401 (United States); Draugelis-Dale, Rassa O., E-mail: daler@usgs.gov [U.S. Geological Survey, National Wetlands Research Center, 700 Cajundome Blvd., Lafayette, LA 70506 (United States); Uphoff, James H., E-mail: juphoff@dnr.state.md.us [Maryland Department of Natural Resources, Fisheries Service, Cooperative Oxford Laboratory, 904 South Morris Street, Oxford, MD 21654 (United States)

    2013-03-01

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007–2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed. - Highlights: ► Reduced recruitment of yellow perch has occurred in urban tributaries of Chesapeake Bay. ► We compared reproductive health biomarkers in perch from two urban, one developing, two less developed

  3. Evaluation of weather forecast systems for storm surge modeling in the Chesapeake Bay

    Science.gov (United States)

    Garzon, Juan L.; Ferreira, Celso M.; Padilla-Hernandez, Roberto

    2018-01-01

    Accurate forecast of sea-level heights in coastal areas depends, among other factors, upon a reliable coupling of a meteorological forecast system to a hydrodynamic and wave system. This study evaluates the predictive skills of the coupled circulation and wind-wave model system (ADCIRC+SWAN) for simulating storm tides in the Chesapeake Bay, forced by six different products: (1) Global Forecast System (GFS), (2) Climate Forecast System (CFS) version 2, (3) North American Mesoscale Forecast System (NAM), (4) Rapid Refresh (RAP), (5) European Center for Medium-Range Weather Forecasts (ECMWF), and (6) the Atlantic hurricane database (HURDAT2). This evaluation is based on the hindcasting of four events: Irene (2011), Sandy (2012), Joaquin (2015), and Jonas (2016). By comparing the simulated water levels to observations at 13 monitoring stations, we have found that the ADCIR+SWAN System forced by the following: (1) the HURDAT2-based system exhibited the weakest statistical skills owing to a noteworthy overprediction of the simulated wind speed; (2) the ECMWF, RAP, and NAM products captured the moment of the peak and moderately its magnitude during all storms, with a correlation coefficient ranging between 0.98 and 0.77; (3) the CFS system exhibited the worst averaged root-mean-square difference (excepting HURDAT2); (4) the GFS system (the lowest horizontal resolution product tested) resulted in a clear underprediction of the maximum water elevation. Overall, the simulations forced by NAM and ECMWF systems induced the most accurate results best accuracy to support water level forecasting in the Chesapeake Bay during both tropical and extra-tropical storms.

  4. The bioeconomic impact of different management regulations on the Chesapeake Bay blue crab fishery

    Science.gov (United States)

    Bunnell, David B.; Lipton, Douglas W.; Miller, Thomas J.

    2010-01-01

    The harvest of blue crabs Callinectes sapidus in Chesapeake Bay declined 46% between 1993 and 2001 and remained low through 2008. Because the total market value of this fishery has declined by an average of US $ 3.3 million per year since 1993, the commercial fishery has been challenged to maintain profitability. We developed a bioeconomic simulation model of the Chesapeake Bay blue crab fishery to aid managers in determining which regulations will maximize revenues while ensuring a sustainable harvest. We compared 15 different management scenarios, including those implemented by Maryland and Virginia between 2007 and 2009, that sought to reduce female crab harvest and nine others that used seasonal closures, different size regulations, or the elimination of fishing for specific market categories. Six scenarios produced the highest revenues: the 2008 and 2009 Maryland regulations, spring and fall closures for female blue crabs, and 152- and 165-mm maximum size limits for females. Our most important finding was that for each state the 2008 and 2009 scenarios that implemented early closures of the female crab fishery produced higher revenues than the 2007 scenario, in which no early female closures were implemented. We conclude that the use of maximum size limits for female crabs would not be feasible despite their potentially high revenue, given the likelihood that the soft-shell and peeler fisheries cannot be expanded beyond their current capacity and the potentially high mortality rate for culled individuals that are the incorrect size. Our model results support the current use of seasonal closures for females, which permit relatively high exploitation of males and soft-shell and peeler blue crabs (which have high prices) while keeping the female crab harvest sustainable. Further, our bioeconomic model allows for the inclusion of an economic viewpoint along with biological data when target reference points are set by managers.

  5. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay

    International Nuclear Information System (INIS)

    Blazer, Vicki S.; Pinkney, Alfred E.; Jenkins, Jill A.; Iwanowicz, Luke R.; Minkkinen, Steven; Draugelis-Dale, Rassa O.; Uphoff, James H.

    2013-01-01

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007–2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed. - Highlights: ► Reduced recruitment of yellow perch has occurred in urban tributaries of Chesapeake Bay. ► We compared reproductive health biomarkers in perch from two urban, one developing, two less developed watersheds.

  6. Concentrations of metals in blood and feathers of nestling ospreys (Pandion haliaetus) in Chesapeake and Delaware Bays

    Science.gov (United States)

    Rattner, B.A.; Golden, N.H.; Toschik, P.C.; McGowan, P.C.; Custer, T.W.

    2008-01-01

    In 2000, 2001, and 2002, blood and feather samples were collected from 40-45-day-old nestling ospreys (Pandion haliaetus) from Chesapeake Bay and Delaware Bay and River. Concentrations of 18 metals, metalloids, and other elements were determined in these samples by inductively coupled plasma-mass spectroscopy, and Hg concentrations were measured by cold vapor atomic absorption spectroscopy. When compared to concurrent reference areas (South, West, and Rhode Rivers), mean As and Hg concentrations in blood were greater (p nestlings from the highly industrialized Elizabeth River compared to the rural reference area. When compared to the concurrent reference area, mean Al, Ba, Hg, Mn, and Pb concentrations in feathers were substantially greater (p nestlings from northern Delaware Bay and River had greater concentrations (p nestling feathers from Delaware were frequently greater than in the Chesapeake. The present findings and those of related reproductive studies suggest that concentrations of several heavy metals (e.g., Cd, Hg, Pb) in nestling blood and feathers from Chesapeake and Delaware Bays were below toxicity thresholds and do not seem to be affecting chick survival during the nestling period.

  7. Modelling the transverse distribution of velocity and suspended sediment in tidal estuaries

    NARCIS (Netherlands)

    Huijts, K.M.H.

    2011-01-01

    An estuary is a semi-enclosed coastal body of water which has a free connection with the open sea and within which sea water is measurably diluted with fresh water derived from land drainage. Examples are the Western Scheldt River Estuary and the Chesapeake Bay. Within these environments complex

  8. Forecasting hypoxia in the Chesapeake Bay and Gulf of Mexico: model accuracy, precision, and sensitivity to ecosystem change

    International Nuclear Information System (INIS)

    Evans, Mary Anne; Scavia, Donald

    2011-01-01

    Increasing use of ecological models for management and policy requires robust evaluation of model precision, accuracy, and sensitivity to ecosystem change. We conducted such an evaluation of hypoxia models for the northern Gulf of Mexico and Chesapeake Bay using hindcasts of historical data, comparing several approaches to model calibration. For both systems we find that model sensitivity and precision can be optimized and model accuracy maintained within reasonable bounds by calibrating the model to relatively short, recent 3 year datasets. Model accuracy was higher for Chesapeake Bay than for the Gulf of Mexico, potentially indicating the greater importance of unmodeled processes in the latter system. Retrospective analyses demonstrate both directional and variable changes in sensitivity of hypoxia to nutrient loads.

  9. Mute swans and their Chesapeake Bay habitats: proceedings of a symposium

    Science.gov (United States)

    Perry, M.C.

    2004-01-01

    The symposium 'Mute Swans and their Chesapeake Bay Habitats,' held on June 7, 2001, provided a forum for biologists and managers to share research findings and management ideas concerning the exotic and invasive mute swan (Cygnus olar). This species has been increasing in population size and is considered by many to be a problem in regard to natural food resources in the Bay that are used by native waterfowl during the winter months. Other persons, however, feel that resource managers are attempting to create a problem to justify more killing of waterfowl by hunters. Some persons also believe that managers should focus on the larger issues causing the decline of native food resources, such as the unabated human population increase in the Bay watershed and in the immediate coastal areas of the Bay. The symposium, sponsored by the Wildfowl Trust of North America and the U.S. Geological Survey, provided the atmosphere for presentation of mute swan data and opinions in a collegial setting where discussion was welcomed and was often informative and enthusiastic. An interesting historic review of the swan in regard to the history of mankind was presented, followed by a discussion on the positive and negative effects of invasive species. Biologists from different parts of the continent discussed the population status of the species in several states in the east and in the Great Lakes area. Data on the food habits of this species were presented in regard to submerged aquatic vegetation, and an interesting discussion on the role that the food habits of Canada geese in regard to native vegetation was presented. Findings and recommendations of the Mute Swan Task Force were presented. Finally, a representative of the Friends of Animals gave a thought-provoking presentation in defense of the mute swan. The presentations, in general, provided the necessary information and recommendations to allow managers to proceed with management of this controversial species with new and

  10. North Inlet-Winyah Bay National Estuarine Research Reserve's (NERR) Estuarine Water Quality Data for the North Inlet and Winyah Bay Estuaries, Georgetown, South Carolina: 1993-2002

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The North Inlet Estuary and the adjacent lower northeastern section of the Winyah Bay Estuary were designated as part of the National Estuarine Research Reserve...

  11. Elemental composition of Chesapeake Bay oyster Crassostrea virginica in the vicinity of Calvert Cliffs Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gavrilas, M.; Munno, F.J.

    1984-01-01

    The stable element composition of the American oyster Crassostrea virginica collected between June 1978 and August 1983 in the Chesapeake Bay in the vicinity of Calvert Cliffs Nuclear Power Plant was analyzed by neutron activation. The minimum, maximum and the mean values of the elemental concentrations are given. The seasonal effect and the linear correlation between elements entering the oyster composition are shown. 7 references, 1 figure, 4 tables

  12. Robust Decision Making to Support Water Quality Climate Adaptation: a Case Study in the Chesapeake Bay Watershed

    Science.gov (United States)

    Fischbach, J. R.; Lempert, R. J.; Molina-Perez, E.

    2017-12-01

    The U.S. Environmental Protection Agency (USEPA), together with state and local partners, develops watershed implementation plans designed to meet water quality standards. Climate uncertainty, along with uncertainty about future land use changes or the performance of water quality best management practices (BMPs), may make it difficult for these implementation plans to meet water quality goals. In this effort, we explored how decision making under deep uncertainty (DMDU) methods such as Robust Decision Making (RDM) could help USEPA and its partners develop implementation plans that are more robust to future uncertainty. The study focuses on one part of the Chesapeake Bay watershed, the Patuxent River, which is 2,479 sq km in area, highly urbanized, and has a rapidly growing population. We simulated the contribution of stormwater contaminants from the Patuxent to the overall Total Maximum Daily Load (TMDL) for the Chesapeake Bay under multiple scenarios reflecting climate and other uncertainties. Contaminants considered included nitrogen, phosphorus, and sediment loads. The assessment included a large set of scenario simulations using the USEPA Chesapeake Bay Program's Phase V watershed model. Uncertainties represented in the analysis included 18 downscaled climate projections (based on 6 general circulation models and 3 emissions pathways), 12 land use scenarios with different population projections and development patterns, and alternative assumptions about BMP performance standards and efficiencies associated with different suites of stormwater BMPs. Finally, we developed cost estimates for each of the performance standards and compared cost to TMDL performance as a key tradeoff for future water quality management decisions. In this talk, we describe how this research can help inform climate-related decision support at USEPA's Chesapeake Bay Program, and more generally how RDM and other DMDU methods can support improved water quality management under climate

  13. Impact of Environmental Policies on the Adoption of Animal Waste Management Practices in the Chesapeake Bay Watershed

    OpenAIRE

    Savage, Jeff; Ribaudo, Marc

    2012-01-01

    We use data from the ERS-NASS ARMS surveys to compare the use of best management practices on poultry and livestock farms inside the watershed and outside the watershed. Animal operations within the Chesapeake Bay States were found to be adopting some important manure management practices at a greater rate than operations outside the watershed. Adoption was taking place before the implementation of the TMDL, indicating that farmers may have been acting in response to building public pressure ...

  14. Riverine discharges to Chesapeake Bay: Analysis of long-term (1927–2014) records and implications for future flows in the Chesapeake Bay basin

    Science.gov (United States)

    Rice, Karen; Moyer, Douglas; Mills, Aaron L.

    2017-01-01

    The Chesapeake Bay (CB) basin is under a total maximum daily load (TMDL) mandate to reduce nitrogen, phosphorus, and sediment loads to the bay. Identifying shifts in the hydro-climatic regime may help explain observed trends in water quality. To identify potential shifts, hydrologic data (1927–2014) for 27 watersheds in the CB basin were analyzed to determine the relationships among long-term precipitation and stream discharge trends. The amount, frequency, and intensity of precipitation increased from 1910 to 1996 in the eastern U.S., with the observed increases greater in the northeastern U.S. than the southeastern U.S. The CB watershed spans the north-to-south gradient in precipitation increases, and hydrologic differences have been observed in watersheds north relative to watersheds south of the Pennsylvania—Maryland (PA-MD) border. Time series of monthly mean precipitation data specific to each of 27 watersheds were derived from the Precipitation-elevation Regression on Independent Slopes Model (PRISM) dataset, and monthly mean stream-discharge data were obtained from U.S. Geological Survey streamgage records. All annual precipitation trend slopes in the 18 watersheds north of the PA-MD border were greater than or equal to those of the nine south of that border. The magnitude of the trend slopes for 1927–2014 in both precipitation and discharge decreased in a north-to-south pattern. Distributions of the monthly precipitation and discharge datasets were assembled into percentiles for each year for each watershed. Multivariate correlation of precipitation and discharge within percentiles among the groups of northern and southern watersheds indicated only weak associations. Regional-scale average behaviors of trends in the distribution of precipitation and discharge annual percentiles differed between the northern and southern watersheds. In general, the linkage between precipitation and discharge was weak, with the linkage weaker in the northern watersheds

  15. Wave and Hydrodynamic Modeling for Engineering Design of Jetties at Tangier Island in Chesapeake Bay, USA

    Directory of Open Access Journals (Sweden)

    Lihwa Lin

    2015-12-01

    Full Text Available The protection of a boat canal at the western entrance of Tangier Island, Virginia, located in the lower Chesapeake Bay, is investigated using different structural alternatives. The existing entrance channel is oriented 45 deg with respect to the local shoreline, and exposed directly to the lower Bay without any protection. The adjacent shoreline has experienced progressive erosion in recent decades by flooding due to severe storms and waves. To protect the western entrance of the channel and shoreline, five different jetty and spur combinations were proposed to reduce wave energy in the lee of jetties. Environmental forces affecting the proposed jettied inlet system are quantified using the Coastal Modeling System, consisting of a spectral wave model and a depth-averaged circulation model with sediment transport calculations. Numerical simulations were conducted for design wave conditions and a 50-year return period tropical storm at the project site. Model results show a low crested jetty of 170-m length connecting to the north shore at a 45-deg angle, and a short south spur of 25-m long, provide adequate wave-reduction benefits among the five proposed alternatives. The model simulation indicates this alternative has the minimum impact on sedimentation around the structured inlet and boat canal.

  16. Integrating Federal and State data records to report progress in establishing agricultural conservation practices on Chesapeake Bay farms

    Science.gov (United States)

    Hively, W. Dean; Devereux, Olivia H.; Claggett, Peter

    2013-01-01

    In response to the Executive Order for Chesapeake Bay Protection and Restoration (E.O. #13508, May 12, 2009), the U.S. Geological Survey (USGS) took on the task of acquiring and assessing agricultural conservation practice data records for U.S. Department of Agriculture (USDA) programs, and transferred those datasets in aggregated format to State jurisdictional agencies for use in reporting conservation progress to the Chesapeake Bay Program Partnership (CBP Partnership). Under the guidelines and regulations that have been developed to protect and restore water-quality in the Chesapeake Bay, the six State jurisdictions that fall within the Chesapeake Bay watershed are required to report their progress in promoting agricultural conservation practices to the CBP Partnership on an annual basis. The installation and adoption of agricultural best management practices is supported by technical and financial assistance from both Federal and State conservation programs. The farm enrollment data for USDA conservation programs are confidential, but agencies can obtain access to the privacy-protected data if they are established as USDA Conservation Cooperators. The datasets can also be released to the public if they are first aggregated to protect farmer privacy. In 2012, the USGS used its Conservation Cooperator status to obtain implementation data for conservation programs sponsored by the USDA Natural Resources Conservation Service (NRCS) and the USDA Farm Service Agency (FSA) for farms within the Chesapeake Bay watershed. Three jurisdictions (Delaware, Pennsylvania, and West Virginia) used the USGS-provided aggregated dataset to report conservation progress in 2012, whereas the remaining three jurisdictions (Maryland, New York, and Virginia) used jurisdictional Conservation Cooperator Agreements to obtain privacy-protected data directly from the USDA. This report reviews the status of conservation data sharing between the USDA and the various jurisdictions, discusses the

  17. Evaluating Aquatic Life Benefits of Reducing Nutrient Loading to Remediate Episodic and Diel Cycling Hypoxia in a Shallow Hypereutrophic Estuary

    Science.gov (United States)

    Theoretical linkages between excess nutrient loading, nutrient-enhanced community metabolism (i.e., production and respiration), and hypoxia in estuaries are well-understood. In seasonally-stratified estuaries and coastal systems (e.g., Chesapeake Bay, northern Gulf of Mexico), h...

  18. Estimates of nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology

    Science.gov (United States)

    Terziotti, Silvia; Capel, Paul D.; Tesoriero, Anthony J.; Hopple, Jessica A.; Kronholm, Scott C.

    2018-03-07

    The water quality of the Chesapeake Bay may be adversely affected by dissolved nitrate carried in groundwater discharge to streams. To estimate the concentrations, loads, and yields of nitrate from groundwater to streams for the Chesapeake Bay watershed, a regression model was developed based on measured nitrate concentrations from 156 small streams with watersheds less than 500 square miles (mi2 ) at baseflow. The regression model has three predictive variables: geologic unit, percent developed land, and percent agricultural land. Comparisons of estimated and actual values within geologic units were closely matched. The coefficient of determination (R2 ) for the model was 0.6906. The model was used to calculate baseflow nitrate concentrations at over 83,000 National Hydrography Dataset Plus Version 2 catchments and aggregated to 1,966 total 12-digit hydrologic units in the Chesapeake Bay watershed. The modeled output geospatial data layers provided estimated annual loads and yields of nitrate from groundwater into streams. The spatial distribution of annual nitrate yields from groundwater estimated by this method was compared to the total watershed yields of all sources estimated from a Chesapeake Bay SPAtially Referenced Regressions On Watershed attributes (SPARROW) water-quality model. The comparison showed similar spatial patterns. The regression model for groundwater contribution had similar but lower yields, suggesting that groundwater is an important source of nitrogen for streams in the Chesapeake Bay watershed.

  19. Characterizing the Organic Matter in Surface Sediments from the San Juan Bay Estuary,

    Science.gov (United States)

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest...

  20. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay

    Science.gov (United States)

    Blazer, Vicki; Pinkney, Alfred E.; Jenkins, Jill A.; Iwanowicz, Luke R.; Minkkinen, Steven; Draugelis-Dale, Rassa O.; Uphoff, James H.

    2013-01-01

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007–2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed.

  1. Effects of erosion control structures along a portion of the northern Chesapeake Bay shoreline

    Science.gov (United States)

    Zabawa, C.F.; Kerhin, R.T.; Bayley, S.

    1981-01-01

    A 6.500-meter reach of western Chesapeake Bay shoreline (lower Mayo Peninsula) lost about 1.1??106 cubic meters of sediment (equivalent to 170 cubic meters lost per meter of shoreline) between 1846 and 1932, when the first aerial photographs show the shoreline already substantially protected by a system of groins and intermittent bulkheading. These structures have eliminated the fastland as a source of erodable material, and have starved the supply of sand for littoral drift, thus limiting the extent of the beaches to the remaining groin fields. Volumes of sediment involved in these impacts are small in the overall sediment budget. Bulkheads produce no deficit in the budget since scouring of the beaches on their seaward sides makes up for the decreased erosion of protected fastland. Groins trap little of the potential littoral drift (computed to be about 104 cubic meters per meter of shoreline per year). The sand supply in the remaining beaches is nearly equivalent to the annual loss of sediment from the entire shoreline system due to the long-term rate of erosion of the shoreline and nearshore between 1846 and 1932. ?? 1981 Springer-Verlag New York Inc.

  2. The Chesapeake Bay bolide impact: a new view of coastal plain evolution

    Science.gov (United States)

    Poag, C. Wylie

    1998-01-01

    A spectacular geological event took place on the Atlantic margin of North America about 35 million years ago in the late part of the Eocene Epoch. Sea level was unusually high everywhere on Earth, and the ancient shoreline of the Virginia region was somewhere in the vicinity of where Richmond is today (fig. 1). Tropical rain forests covered the slopes of the Appalachians. To the east of a narrow coastal plain, a broad, lime (calcium carbonate)- covered continental shelf lay beneath the ocean. Suddenly, with an intense flash of light, that tranquil scene was transformed into a hellish cauldron of mass destruction. From the far reaches of space, a bolide (comet or asteroid), 3-5 kilometers in diameter, swooped through the Earth's atmosphere and blasted an enormous crater into the continental shelf. The crater is now approximately 200 km southeast of Washington, D.C., and is buried 300-500 meters beneath the southern part of Chesapeake Bay and the peninsulas of southeastern Virginia (fig. 1). The entire bolide event, from initial impact to the termination of breccia deposition, lasted only a few hours or days. The crater was then buried by additional sedimentary beds, which accumulated during the following 35 million years.

  3. The Medieval Climate Anomaly and Little Ice Age in Chesapeake Bay and the North Atlantic Ocean

    Science.gov (United States)

    Cronin, T. M.; Hayo, K.; Thunell, R.C.; Dwyer, G.S.; Saenger, C.; Willard, D.A.

    2010-01-01

    A new 2400-year paleoclimate reconstruction from Chesapeake Bay (CB) (eastern US) was compared to other paleoclimate records in the North Atlantic region to evaluate climate variability during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Using Mg/Ca ratios from ostracodes and oxygen isotopes from benthic foraminifera as proxies for temperature and precipitation-driven estuarine hydrography, results show that warmest temperatures in CB reached 16-17. ??C between 600 and 950. CE (Common Era), centuries before the classic European Medieval Warm Period (950-1100. CE) and peak warming in the Nordic Seas (1000-1400. CE). A series of centennial warm/cool cycles began about 1000. CE with temperature minima of ~. 8 to 9. ??C about 1150, 1350, and 1650-1800. CE, and intervening warm periods (14-15. ??C) centered at 1200, 1400, 1500 and 1600. CE. Precipitation variability in the eastern US included multiple dry intervals from 600 to 1200. CE, which contrasts with wet medieval conditions in the Caribbean. The eastern US experienced a wet LIA between 1650 and 1800. CE when the Caribbean was relatively dry. Comparison of the CB record with other records shows that the MCA and LIA were characterized by regionally asynchronous warming and complex spatial patterns of precipitation, possibly related to ocean-atmosphere processes. ?? 2010.

  4. Quantitative assessment of viable Cryptosporidium parvum load in commercial oysters (Crassostrea virginica) in the Chesapeake Bay.

    Science.gov (United States)

    Graczyk, Thaddeus K; Lewis, Earl J; Glass, Gregory; Dasilva, Alexandre J; Tamang, Leena; Girouard, Autumn S; Curriero, Frank C

    2007-01-01

    The epidemiological importance of increasing reports worldwide on Cryptosporidium contamination of oysters remains unknown in relation to foodborne cryptosporidiosis. Thirty market-size oysters (Crassostrea virginica), collected from each of 53 commercial harvesting sites in Chesapeake Bay, MD, were quantitatively tested in groups of six for Cryptosporidium sp. oocysts by immunofluorescent antibody (IFA). After IFA analysis, the samples were retrospectively retested for viable Cryptosporidium parvum oocysts by combined fluorescent in situ hybridization (FISH) and IFA. The mean cumulative numbers of Cryptosporidium sp. oocysts in six oysters (overall, 42.1+/-4.1) were significantly higher than in the numbers of viable C. parvum oocysts (overall, 28.0+/-2.9). Of 265 oyster groups, 221 (83.4%) contained viable C. parvum oocysts, and overall, from 10-32% (mean, 23%) of the total viable oocysts were identified in the hemolymph as distinct from gill washings. The amount of viable C. parvum oocysts was not related to oyster size or to the level of fecal coliforms at the sampling site. This study demonstrated that, although oysters are frequently contaminated with oocysts, the levels of viable oocysts may be too low to cause infection in healthy individuals. FISH assay for identification can be retrospectively applied to properly stored samples.

  5. Morphological variation and phylogenetic analysis of the dinoflagellate Gymnodinium aureolum from a tributary of Chesapeake Bay.

    Science.gov (United States)

    Tang, Ying Zhong; Egerton, Todd A; Kong, Lesheng; Marshall, Harold G

    2008-01-01

    Cultures of four strains of the dinoflagellate Gymnodinium aureolum (Hulburt) G. Hansen were established from the Elizabeth River, a tidal tributary of the Chesapeake Bay, USA. Light microscopy, scanning electron microscopy, nuclear-encoded large sub-unit rDNA sequencing, and culturing observations were conducted to further characterize this species. Observations of morphology included: a multiple structured apical groove; a peduncle located between the emerging points of the two flagella; pentagonal and hexagonal vesicles on the amphiesma; production and germination of resting cysts; variation in the location of the nucleus within the center of the cell; a longitudinal ventral concavity; and considerable variation in cell width/length and overall cell size. A fish bioassay using juvenile sheepshead minnows detected no ichthyotoxicity from any of the strains over a 48-h period. Molecular analysis confirmed the dinoflagellate was conspecific with G. aureolum strains from around the world, and formed a cluster along with several other Gymnodinium species. Morphological evidence suggests that further research is necessary to examine the relationship between G. aureolum and a possibly closely related species Gymnodinium maguelonnense.

  6. Proposed tethered unmanned aerial system for the detection of pollution entering the Chesapeake Bay area

    Science.gov (United States)

    Goodman, J.; McKay, J.; Evans, W.; Gadsden, S. Andrew

    2016-05-01

    This paper is based on a proposed unmanned aerial system platform that is to be outfitted with high-resolution sensors. The proposed system is to be tethered to a moveable ground station, which may be a research vessel or some form of ground vehicle (e.g., car, truck, or rover). The sensors include, at a minimum: camera, infrared sensor, thermal, normalized difference vegetation index (NDVI) camera, global positioning system (GPS), and a light-based radar (LIDAR). The purpose of this paper is to provide an overview of existing methods for pollution detection of failing septic systems, and to introduce the proposed system. Future work will look at the high-resolution data from the sensors and integrating the data through a process called information fusion. Typically, this process is done using the popular and well-published Kalman filter (or its nonlinear formulations, such as the extended Kalman filter). However, future work will look at using a new type of strategy based on variable structure estimation for the information fusion portion of the data processing. It is hypothesized that fusing data from the thermal and NDVI sensors will be more accurate and reliable for a multitude of applications, including the detection of pollution entering the Chesapeake Bay area.

  7. Derelict fishing gear in Chesapeake Bay, Virginia: spatial patterns and implications for marine fauna.

    Science.gov (United States)

    Bilkovic, Donna Marie; Havens, Kirk; Stanhope, David; Angstadt, Kory

    2014-03-15

    Derelict fishing gear is a source of mortality for target and non-target marine species. A program employing commercial watermen to remove marine debris provided a novel opportunity to collect extensive spatially-explicit information for four consecutive winters (2008-2012) on the type, distribution, and abundance of derelict fishing gear and bycatch in Virginia waters of Chesapeake Bay. The most abundant form of derelict gear recovered was blue crab pots with almost 32,000 recovered. Derelict pots were widely distributed, but with notable hotspot areas, capturing 40 species and over 31,000 marine organisms. The target species, blue crab, experienced the highest mortality from lost pots with an estimated 900,000 animals killed each year, a potential annual economic loss to the fishery of $300,000. Important fishery species were captured and killed in derelict pots including Atlantic croaker and black sea bass. While some causes of gear loss are unavoidable, others can be managed to minimize loss. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Beryllium-10 in Chesapeake Bay sediments: an indicator of sediment provenance

    International Nuclear Information System (INIS)

    Helz, G.R.; Valette-Silver, Nathalie

    1992-01-01

    In a plot of 10 Be vs. Fe, central Chesapeake Bay sediments can be segregated into distinct units. This plot reveals an unexpected, statistically significant difference between sediments on the eastern and western flanks of the main channel, implying different origins. Although the 10 Be concentrations in sediments from these two regions span as much as an order of magnitude range, the 10 Be/Fe ratios vary by an amount approximating analytical error alone. The large concentration ranges are ascribed to hydraulic sorting, which can produce variance in composition while not affecting ratios between grain surface components such as Fe and Be. On the basis of 10 Be/Fe signatures, sediments on the western flank of the main channel appear to have been derived from the Susquehanna or another Piedmont/Appalachian river. Sediments on the eastern flank may have been transported from the south, by landward flowing bottom currents, or may be relics of a Pleistocene estuarine system. Conditions under which 10 Be may prove a useful tool in sediment provenance studies elsewhere are discussed. (Author)

  9. Eastern rim of the Chesapeake Bay impact crater: Morphology, stratigraphy, and structure

    Science.gov (United States)

    Poag, C.W.

    2005-01-01

    This study reexamines seven reprocessed (increased vertical exaggeration) seismic reflection profiles that cross the eastern rim of the Chesapeake Bay impact crater. The eastern rim is expressed as an arcuate ridge that borders the crater in a fashion typical of the "raised" rim documented in many well preserved complex impact craters. The inner boundary of the eastern rim (rim wall) is formed by a series of raterfacing, steep scarps, 15-60 m high. In combination, these rim-wall scarps represent the footwalls of a system of crater-encircling normal faults, which are downthrown toward the crater. Outboard of the rim wall are several additional normal-fault blocks, whose bounding faults trend approximately parallel to the rim wall. The tops of the outboard fault blocks form two distinct, parallel, flat or gently sloping, terraces. The innermost terrace (Terrace 1) can be identified on each profile, but Terrace 2 is only sporadically present. The terraced fault blocks are composed mainly of nonmarine, poorly to moderately consolidated, siliciclastic sediments, belonging to the Lower Cretaceous Potomac Formation. Though the ridge-forming geometry of the eastern rim gives the appearance of a raised compressional feature, no compelling evidence of compressive forces is evident in the profiles studied. The structural mode, instead, is that of extension, with the clear dominance of normal faulting as the extensional mechanism. 

  10. Terrestrially derived dissolved organic matter in the chesapeake bay and the middle atlantic bight

    Science.gov (United States)

    Mitra, Siddhartha; Bianchi, Thomas S.; Guo, Laodong; Santschi, Peter H.

    2000-10-01

    Concentrations of lignin-phenols were analyzed in high molecular weight dissolved organic matter (0.2 μm > HMW DOM > 1 kDa) isolated from surface waters of the Chesapeake Bay (C. Bay), and surface and bottom waters of the Middle Atlantic Bight (MAB). The abundance of lignin-phenols in HMW DOM was higher in the C. Bay (0.128 ± 0.06 μg L -1) compared to MAB surface waters (0.016 ± 0.004 μg L -1) and MAB bottom waters (0.005 ± 0.003 μg L -1). On an organic carbon-normalized basis, lignin-phenol abundances in the HMW DOM (i.e., Λ 6), were significantly higher ( p vanillin (Ad/Al) V in HMW DOM, indicative of lignin decay, ranged from 0.611 to 1.37 in C. Bay, 0.534 to 2.62 in MAB surface waters, and 0.435 to 1.96 in MAB bottom water. Ratios of S/V and (Ad/Al) V showed no significant differences between each environment, providing no evidence of any compositionally distinct input of terrestrial organic matter into each environment. When considering depth profiles of suspended particulate matter in the MAB, with C:N ratios, and bulk radiocarbon ages and stable carbon isotopic values in HMW DOM isolated from these areas, two scenarios present themselves regarding the sources and transport of terrestrially derived HMW DOM in the MAB. Scenario #1 assumes that a low amount of refractory terrestrial organic matter and old DOC are uniformly distributed in the oceans, both in surface and bottom waters, and that primary production in surface waters increases DOC with low lignin and younger DOC which degrades easily. In this case, many of the trends in age and biomarker composition likely reflect general patterns of Atlantic Ocean surface and bottom water circulation in the area of the MAB. Scenario 2 assumes terrestrial organic matter in bottom waters of the MAB may have originated from weathered shelf and slope sediments in nearshore areas via a combination of mechanisms (e.g., diffusion, recent resuspension events, and/or desorption of DOM from riverine POM buried deep

  11. Status, trends, and changes in freshwater inflows to bay systems in the Corpus Christi Bay National Estuary Program study area

    Science.gov (United States)

    Asquith, W.H.; Mosier, J. G.; Bush, P.W.

    1997-01-01

    This report presents the results of a study to quantify current (1983–93) mean freshwater inflows to the six bay systems (open water and wetlands) in the Corpus Christi Bay National Estuary Program study area, to test for historical temporal trends in inflows, and to quantify historical and projected changes in inflows. The report also addresses the adequacy of existing data to estimate freshwater inflows.

  12. Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed, and water-quality data from a survey of springs

    Science.gov (United States)

    Focazio, Michael J.; Plummer, Niel; Bohlke, John K.; Busenberg, Eurybiades; Bachman, L. Joseph; Powars, David S.

    1998-01-01

    Knowledge of the residence times of the ground-water systems in Chesapeake Bay watershed helps resource managers anticipate potential delays between implementation of land-management practices and any improve-ments in river and estuary water quality. This report presents preliminary estimates of ground-water residence times and apparent ages of water in the shallow aquifers of the Chesapeake Bay watershed. A simple reservoir model, published data, and analyses of spring water were used to estimate residence times and apparent ages of ground-water discharge. Ranges of aquifer hydraulic characteristics throughout the Bay watershed were derived from published literature and were used to estimate ground-water residence times on the basis of a simple reservoir model. Simple combinations of rock type and physiographic province were used to delineate hydrogeomorphic regions (HGMR?s) for the study area. The HGMR?s are used to facilitate organization and display of the data and analyses. Illustrations depicting the relation of aquifer characteristics and associated residence times as a continuum for each HGMR were developed. In this way, the natural variation of aquifer characteristics can be seen graphically by use of data from selected representative studies. Water samples collected in September and November 1996, from 46 springs throughout the watershed were analyzed for chlorofluorocarbons (CFC?s) to estimate the apparent age of ground water. For comparison purposes, apparent ages of water from springs were calculated assuming piston flow. Additi-onal data are given to estimate apparent ages assuming an exponential distribution of ages in spring discharge. Additionally, results from previous studies of CFC-dating of ground water from other springs and wells in the watershed were compiled. The CFC data, and the data on major ions, nutrients, and nitrogen isotopes in the water collected from the 46 springs are included in this report. The apparent ages of water

  13. Long-Term Changes in Sediment and Nutrient Delivery from Conowingo Dam to Chesapeake Bay: Effects of Reservoir Sedimentation.

    Science.gov (United States)

    Zhang, Qian; Hirsch, Robert M; Ball, William P

    2016-02-16

    Reduction of suspended sediment (SS), total phosphorus (TP), and total nitrogen is an important focus for Chesapeake Bay watershed management. The Susquehanna River, the bay's largest tributary, has drawn attention because SS loads from behind Conowingo Dam (near the river's mouth) have been rising dramatically. To better understand these changes, we evaluated histories of concentration and loading (1986-2013) using data from sites above and below Conowingo Reservoir. First, observed concentration-discharge relationships show that SS and TP concentrations at the reservoir inlet have declined under most discharges in recent decades, but without corresponding declines at the outlet, implying recently diminished reservoir trapping. Second, best estimates of mass balance suggest decreasing net deposition of SS and TP in recent decades over a wide range of discharges, with cumulative mass generally dominated by the 75∼99.5th percentile of daily Conowingo discharges. Finally, stationary models that better accommodate effects of riverflow variability also support the conclusion of diminished trapping of SS and TP under a range of discharges that includes those well below the literature-reported scour threshold. Overall, these findings suggest that decreased net deposition of SS and TP has occurred at subscour levels of discharge, which has significant implications for the Chesapeake Bay ecosystem.

  14. Lagrangian structure of flows in the Chesapeake Bay: challenges and perspectives on the analysis of estuarine flows

    Directory of Open Access Journals (Sweden)

    M. Branicki

    2010-03-01

    Full Text Available In this work we discuss applications of Lagrangian techniques to study transport properties of flows generated by shallow water models of estuarine flows. We focus on the flow in the Chesapeake Bay generated by Quoddy (see Lynch and Werner, 1991, a finite-element (shallow water model adopted to the bay by Gross et al. (2001. The main goal of this analysis is to outline the potential benefits of using Lagrangian tools for both understanding transport properties of such flows, and for validating the model output and identifying model deficiencies. We argue that the currently available 2-D Lagrangian tools, including the stable and unstable manifolds of hyperbolic trajectories and techniques exploiting 2-D finite-time Lyapunov exponent fields, are of limited use in the case of partially mixed estuarine flows. A further development and efficient implementation of three-dimensional Lagrangian techniques, as well as improvements in the shallow-water modelling of 3-D velocity fields, are required for reliable transport analysis in such flows. Some aspects of the 3-D trajectory structure in the Chesapeake Bay, based on the Quoddy output, are also discussed.

  15. An Approach to Understanding Complex Socio-Economic Impacts and Responses to Climate Disruption in the Chesapeake Bay Region

    Science.gov (United States)

    Schaefer, R. K.; Nix, M.; Ihde, A. G.; Paxton, L. J.; Weiss, M.; Simpkins, S.; Fountain, G. H.; APl GAIA Team

    2011-12-01

    In this paper we describe the application of a proven methodology for modeling the complex social and economic interactions of a system under stress to the regional issues that are tied to global climate disruption. Under the auspices of the GAIA project (http://gaia.jhuapl.edu), we have investigated simulating the complex interplay between climate, politics, society, industry, and the environment in the Chesapeake Bay Watershed and associated geographic areas of Maryland, Virginia, and Pennsylvania. This Chesapeake Bay simulation draws on interrelated geophysical and climate models to support decision-making analysis about the Bay. In addition to physical models, however, human activity is also incorporated via input and output calculations. For example, policy implications are modeled in relation to business activities surrounding fishing, farming, industry and manufacturing, land development, and tourism. This approach fosters collaboration among subject matter experts to advance a more complete understanding of the regional impacts of climate change. Simulated interactive competition, in which teams of experts are assigned conflicting objectives in a controlled environment, allow for subject exploration which avoids trivial solutions that neglect the possible responses of affected parties. Results include improved planning, the anticipation of areas of conflict or high risk, and the increased likelihood of developing mutually acceptable solutions.

  16. 78 FR 1246 - Otay River Estuary Restoration Project; South San Diego Bay Unit and Sweetwater Marsh Unit of the...

    Science.gov (United States)

    2013-01-08

    ...-FF08RSDC00] Otay River Estuary Restoration Project; South San Diego Bay Unit and Sweetwater Marsh Unit of the... scoping with regard to the environmental impact statement (EIS) for the proposed Otay River Estuary... one of the following methods. Email: [email protected] . Please include ``Otay Estuary NOI'' in the...

  17. Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake Bay, East Coast, USA.

    Science.gov (United States)

    Rice, Karen C; Hong, Bo; Shen, Jian

    2012-11-30

    Global sea level is rising, and the relative rate in the Chesapeake Bay region of the East Coast of the United States is greater than the worldwide rate. Sea-level rise can cause saline water to migrate upstream in estuaries and rivers, threatening freshwater habitat and drinking-water supplies. The effects of future sea-level rise on two tributaries of Chesapeake Bay, the James and Chickahominy (CHK) Rivers, were evaluated in order to quantify the salinity change with respect to the magnitude of sea-level rise. Such changes are critical to: 1) local floral and faunal habitats that have limited tolerance ranges to salinity; and 2) a drinking-water supply for the City of Newport News, Virginia. By using the three-dimensional Hydrodynamic-Eutrophication Model (HEM-3D), sea-level rise scenarios of 30, 50, and 100 cm, based on the U.S. Climate Change Science Program for the mid-Atlantic region for the 21st century, were evaluated. The model results indicate that salinity increases in the entire river as sea level rises and that the salinity increase in a dry year is greater than that in a typical year. In the James River, the salinity increase in the middle-to-upper river (from 25 to 50 km upstream of the mouth) is larger than that in the lower and upper parts of the river. The maximum mean salinity increase would be 2 and 4 ppt for a sea-level rise of 50 and 100 cm, respectively. The upstream movement of the 10 ppt isohaline is much larger than the 5 and 20 ppt isohalines. The volume of water with salinity between 10 and 20 ppt would increase greatly if sea level rises 100 cm. In the CHK River, with a sea-level rise of 100 cm, the mean salinity at the drinking-water intake 34 km upstream of the mouth would be about 3 ppt in a typical year and greater than 5 ppt in a dry year, both far in excess of the U.S. Environmental Protection Agency's secondary standard for total dissolved solids for drinking water. At the drinking-water intake, the number of days of salinity

  18. A simulation of the hydrothermal response to the Chesapeake Bay bolide impact

    Science.gov (United States)

    Sanford, W.E.

    2005-01-01

    Groundwater more saline than seawater has been discovered in the tsunami breccia of the Chesapeake Bay impact Crater. One hypothesis for the origin of this brine is that it may be a liquid residual following steam separation in a hydrothermal system that evolved following the impact. Initial scoping calculations have demonstrated that it is feasible such a residual brine could have remained in the crater for the 35 million years since impact. Numerical simulations have been conducted using the code HYDROTHERM to test whether or not conditions were suitable in the millennia following the impact for the development of a steam phase in the hydrothermal system. Hydraulic and thermal parameters were estimated for the bedrock underlying the crater and the tsunami breccia that fills the crater. Simulations at three different breccia permeabilities suggest that the type of hydrothermal system that might have developed would have been very sensitive to the permeability. A relatively low breccia permeability (1 ?? 10-16 m2) results in a system partitioned into a shallow water phase and a deeper superheated steam phase. A moderate breccia permeability (1 ?? 10-15 m2 ) results in a system with regionally extensive multiphase conditions. A relatively high breccia permeability (1 ?? 10-14 m2 ) results in a system dominated by warm-water convection cells. The permeability of the crater breccia could have had any of these values at given depths and times during the hydrothermal system evolution as the sediments compacted. The simulations were not able to take into account transient permeability conditions, or equations of state that account for the salt content of seawater. Results suggest, however, that it is likely that steam conditions existed at some time in the system following impact, providing additional evidence that is consistent with a hydrothermal origin for the crater brine. ?? Blackwell Publishing Ltd.

  19. Flock sizes and sex ratios of canvasbacks in Chesapeake Bay and North Carolina

    Science.gov (United States)

    Haramis, G.M.; Derleth, E.L.; Link, W.A.

    1994-01-01

    Knowledge of the distribution, size, and sex ratios of flocks of wintering canvasbacks (Aythya valisineria) is fundamental to understanding the species' winter ecology and providing guidelines for management. Consequently, in winter 1986-87, we conducted 4 monthly aerial photographic surveys to investigate temporal changes in distribution, size, and sex ratios of canvasback flocks in traditional wintering areas of Chesapeake Bay and coastal North Carolina. Surveys yielded 35mm imagery of 194,664 canvasbacks in 842 flocks. Models revealed monthly patterns of flock size in North Carolina and Virginia, but no pattern of change in Maryland. A stepwise analysis of flock size and sex ratio fit a common positive slope (increasing proportion male) for all state-month datasets, except for North Carolina in February where the slope was larger (P lt 0.001). State and month effects on intercepts were significant (P lt 0.001) and confirmed a previously identified latitudinal gradient in sex ratio in the survey region. There was no relationship between flock purity (% canvasbacks vs. other species) and flock size except in North Carolina in January, February, and March when flock purity was related to flock size. Contrasting characteristics in North Carolina with regard to flock size (larger flocks) and flock purity suggested that proximate factors were reinforcing flocking behavior and possibly species fidelity there. Of possible factors, the need to locate foraging sites within this large, open-water environment was hypothesized to be of primary importance. Comparison of January 1981 and 1987 sex ratios indicated no change in Maryland, but lower (P lt 0.05) canvasback sex ratios (proportion male) in Virginia and North Carolina.

  20. Sediment Retention Dynamics and Vegetation Along Three Tributaries of the Chesapeake Bay

    Science.gov (United States)

    Ross, K.; Ross, K.; Hupp, C.; Alexander, L.; Alexander, L.

    2001-12-01

    Coastal Plain riparian wetlands in the Mid-Atlantic United States are the last place for sediment and contaminant storage before reaching critical estuarine and marine environments. The deteriorating health of the Chesapeake Bay has been attributed in part to elevated sediment loads. The purpose of this study is to investigate the effects of channelization and urbanization on sediment deposition and geomorphic processes along the Pocomoke and Chickahominy Rivers and Dragon Run, three Coastal Plain tributaries. Floodplain microtopography was surveyed in 100 x 100 m grids at three characteristic reaches along each river and woody vegetation analyses were conducted. Floodplain suspended sediment concentrations and short and long-term sedimentation rates were estimated at each reach using single stage sediment sampler arrays, clay pads and dendrogeomorphic techniques, respectively. Site hydroperiod and flow characteristics were determined from USGS gaging station records, floodplain water level recorders, and field observations. Channelized floodplain reaches along the Pocomoke River are flooded less frequently, have lower mineral sedimentation rates (2 mm/yr to 6 mm/yr) and woody species diversity than the unchannelized reaches. Along the Chickahominy River, floodplain wetlands close to urban centers are flooded more frequently, but have shorter hydroperiods (3.5 days/yr compared to more than 45 days/yr), lower sedimentation rates (1.8 mm/yr to 6.8 mm/yr), and lower woody species diversity (0.51 to 1.95 on the Shannon-Weiner diversity index) than floodplains further downstream. Suspended sediment delivery and deposition rates are significantly influenced by floodplain hydroperiod duration and channel-floodplain connectivity. These results suggest that understanding floodplain sediment dynamics and geomorphic processes with respect to dominant watershed landuse patterns is critical for effective water quality management and restoration efforts.

  1. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay.

    Science.gov (United States)

    Blazer, Vicki S; Pinkney, Alfred E; Jenkins, Jill A; Iwanowicz, Luke R; Minkkinen, Steven; Draugelis-Dale, Rassa O; Uphoff, James H

    2013-03-01

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007-2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed. Published by Elsevier B.V.

  2. Water quality dynamics in an urbanizing subtropical estuary(Oso Bay, Texas).

    Science.gov (United States)

    Wetz, Michael S; Hayes, Kenneth C; Fisher, Kelsey V B; Price, Lynn; Sterba-Boatwright, Blair

    2016-03-15

    Results are presented from a study of water quality dynamics in a shallow subtropical estuary, Oso Bay, Texas, which has a watershed that has undergone extensive urbanization in recent decades. High inorganic nutrient, dissolved organic matter and chlorophyll concentrations, as well as low pH (Oso Bay that receives wastewater effluent. Despite being shallow (Oso Bay, suggesting that it may be exported to adjacent Corpus Christi Bay and contribute to seasonal hypoxia development in that system as well. These results argue for wastewater nutrient input reductions in order to alleviate the symptoms of eutrophication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The contingent behavior of charter fishing participants on the Chesapeake Bay: Welfare estimates associated with water quality improvements

    Science.gov (United States)

    Poor, P.J.; Breece, M.

    2006-01-01

    Water quality in the Chesapeake Bay has deteriorated over recent years. Historically, fishing has contributed to the region's local economy in terms of commercial and recreational harvests. A contingent behavior model is used to estimate welfare measures for charter fishing participants with regard to a hypothetical improvement in water quality. Using a truncated Poisson count model corrected for endogenous stratification, it was found that charter fishers not only contribute to the local market economy, but they also place positive non-market value on preserving the Bay's water quality. Using two estimates for travels costs it is estimated that the individual consumer surplus is $200 and $117 per trip, and the average individual consumer surplus values for an improvement in water quality is $75 and $44 for two models estimated. ?? 2006 University of Newcastle upon Tyne.

  4. Assessing climate change impacts on winter cover crop nitrate uptake efficiency on the coastal plain of the Chesapeake Bay watershed using the SWAT model

    Science.gov (United States)

    Climate change is expected to exacerbate water quality degradation in the Chesapeake Bay watershed (CBW). Winter cover crops (WCCs) have been widely implemented in this region owing to their high effectiveness at reducing nitrate loads. However, little is known about climate change impacts on the ef...

  5. Effects of energy related activities on the plankton of the Chesapeake Bay. Section I. Work in progress. Progress report, 1 August 1975--31 July 1976

    International Nuclear Information System (INIS)

    Taft, J.L.

    1976-01-01

    Progress is reported on the following research projects: release of dissolved organic carbon by phytoplankton; plankton respiration and nutrient regeneration; bacterial utilization of labeled compounds; effects of heat and chlorine on natural assemblages of Chesapeake Bay phytoplankton; and nutrient flux between sediment and water

  6. OYSTER POPULATUION ESTIMATION IN SUPPORT OF THE TEN-YEAR GOAL FOR OYSTER RESOTRATION IN THE CHESAPEAKE BAY: DEVELOPING STRATEGIES FOR RESTORING AND MANAGING THE EASTERN OYSTER

    Science.gov (United States)

    Mann, Roger, Steve Jordan, Gary Smith, Kennedy Paynter, James Wesson, Mary Christman, Jessica Vanisko, Juliana Harding, Kelly Greenhawk and Melissa Southworth. 2003. Oyster Population Estimation in Support of the Ten-Year Goal for Oyster Restoration in the Chesapeake Bay: Develop...

  7. NODC Standard Product: Coastal Change Analysis Program (C-CAP) Chesapeake Bay Region Data from 1984 to 1989 on CD-ROM (NODC Accession 9200303)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set on this CD-ROM shows changes in land cover for the Chesapeake Bay region over the 5-year interval from 1984 to 1988-89. The data set was produced...

  8. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watersheds using SWAT model

    Science.gov (United States)

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrat...

  9. DIFFUSIVE EXCHANGE OF GASEOUS POLYCYCLIC AROMATIC HYDROCARBONS AND POLYCHLORINATED BIPHENYLS ACROSS THE AIR-WATER INTERFACE OF THE CHESAPEAKE BAY. (R825245)

    Science.gov (United States)

    Dissolved and gas-phase concentrations of nine polycyclic aromatic hydrocarbons and 46 polychlorinated biphenyl congeners were measured at eight sites on the Chesapeake Bay at four different times of the year to estimate net diffusive air-water gas exchange rates. Gaseous PAHs ar...

  10. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    Science.gov (United States)

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    One of the major water-quality problems in the Chesapeake Bay is an overabundance of nutrients from the streams and rivers that discharge to the Bay. Some of these nutrients are from nonpoint sources such as atmospheric deposition, agricultural manure and fertilizer, and septic systems. The effects of efforts to control nonpoint sources, however, can be difficult to quantify because of the lag time between changes at the land surface and the response in the base-flow (ground water) component of streams. To help resource managers understand the lag time between implementation of management practices and subsequent response in the nutrient concentrations in the base-flow component of streamflow, a study of ground-water discharge, residence time, and nitrate transport in springs throughout the Chesapeake Bay Watershed and in four smaller watersheds in selected hydrogeomorphic regions (HGMRs) was conducted. The four watersheds were in the Coastal Plain Uplands, Piedmont crystalline, Valley and Ridge carbonate, and Valley and Ridge siliciclastic HGMRs.A study of springs to estimate an apparent age of the ground water was based on analyses for concentrations of chlorofluorocarbons in water samples collected from 48 springs in the Chesapeake Bay Watershed. Results of the analysis indicate that median age for all the samples was 10 years, with the 25th percentile having an age of 7 years and the 75th percentile having an age of 13 years. Although the number of samples collected in each HGMR was limited, there did not appear to be distinct differences in the ages between the HGMRs. The ranges were similar between the major HGMRs above the Fall Line (modern to about 50 years), with only two HGMRs of small geographic extent (Piedmont carbonate and Mesozoic Lowland) having ranges of modern to about 10 years. The median values of all the HGMRs ranged from 7 to 11 years. Not enough samples were collected in the Coastal Plain for comparison. Spring samples showed slightly younger

  11. Geophysical mapping of oyster habitats in a shallow estuary; Apalachicola Bay, Florida

    Science.gov (United States)

    Twichell, David C.; Andrews, Brian D.; Edmiston, H. Lee; Stevenson, William R.

    2007-01-01

    This report presents high-resolution geophysical data, interpretive maps, and a preliminary discussion about the oyster habitat and estuary-floor geology within Apalachicola Bay, Florida (fig. 1). During two research cruises, conducted in 2005 and 2006, approximately 230 km² of the bay floor were surveyed using interferometric-bathymetry, sidescan-sonar, and chirp seismic-reflection techniques. The research was conducted as part of a cooperative program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (CSC), and the Apalachicola Bay National Estuarine Research Reserve. The Apalachicola Bay National Estuarine Research Reserve was established in 1979 to provide opportunities for long-term monitoring and research to provide a basis for more informed coastal management decisions for this estuary. Apalachicola Bay is the largest oyster fishery in Florida (Whitfield and Beaumariage, 1977), and the primary objective of this program is to develop a suite of maps that define oyster habitat distribution and estuary-floor geology within the bay. The resulting maps will assist in effective management of oyster resources and provide a reference geologic framework for future scientific and applied research.

  12. Trends in Surface-Water Nitrate-N Concentrations and Loads from Predominantly-Forested Watersheds of the Chesapeake Bay Basin

    Science.gov (United States)

    Eshleman, K. N.

    2011-12-01

    Water quality monitoring data from streams and rivers provide the "gold standard" by which progress toward achieving real reductions in nutrient loadings to Chesapeake Bay must ultimately be assessed. The most recent trend results posted at the Chesapeake Bay Program (CBP) website reveal that a substantial percentage of tributaries are now showing long-term declines in flow-adjusted concentrations of nutrients and sediments: 22 sites showed statistically significant (p pollution controls for improved wastewater treatment plants and practices to reduce nutrients on farms and suburban lands, have reduced concentrations of nitrogen." But could this conclusion be pre-mature? I recently undertook a comparable analysis of long-term nitrate-N trends for a different group of watersheds (all located in the Chesapeake Bay watershed with long data records); this group includes nine watersheds that are predominantly (i.e., >75%) forested, plus five other Potomac River subwatersheds added for comparison. Based on comparable data and analytical methods to those used by CBP partners and USGS, 13 of the 14 sites-including both Potomac River stations (Chain Bridge at Washington DC and Hancock, Maryland)-showed statistically significant decreasing linear trends in annual flow-weighted nitrate-N concentration. Only one station-the heavily agricultural Upper Monocacy River-did not show a statistically significant (p RIM station could be entirely explained by commensurate improvements at the upstream (Hancock) station; in fact, no trend in nitrate-N concentration associated with the eastern portion of the basin was found (after subtracting out the influence of the upstream portion). Additional research is needed to understand why nitrogen retention by forested lands may be increasing and thus helping restore water quality throughout the Chesapeake Bay watershed. The results also have obvious implications for meeting local water quality goals as well as the basin-wide goal of the

  13. Land Use and Climate Alter Carbon Dynamics in Watersheds of Chesapeake Bay

    Science.gov (United States)

    Kaushal, S.; Duan, S.; Grese, M.; Pennino, M. J.; Belt, K. T.; Findlay, S.; Groffman, P. M.; Mayer, P. M.; Murthy, S.; Blomquist, J.

    2011-12-01

    There have been long-term changes in the quantity of organic carbon in streams and rivers globally. Shifts in the quality of organic carbon due to environmental changes may also impact downstream ecosystem metabolism and fate and transport of contaminants. We investigated long-term impacts of land use and hydrologic variability on organic carbon transport in watersheds of the Baltimore Long-Term Ecological Research (LTER) site and large rivers of the Chesapeake Bay. In small and medium-sized watersheds of the Baltimore LTER site, urban land use increased organic carbon concentrations in streams several-fold compared to forest and agricultural watersheds. Enzymatic activities of stream microbes were significantly altered across watershed land use during a record wet year. During the wet year, short-term bioassays showed that bioavailable dissolved organic carbon varied seasonally, but comprised a substantial proportion of the dissolved organic carbon pool. Similarly, measurements of biochemical oxygen demand across hydrologic variability suggest that reactive organic carbon export from small and medium-sized urban watersheds during storms can be substantial. At a larger regional scale, major tributaries such as the Potomac, Susquehanna, Patuxent, and Choptank rivers also showed similar variability as smaller watersheds in quantity and quality of organic carbon based on land use and climate. There were distinct isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices for rivers influenced by different land uses. Stable isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices showed marked seasonal changes in organic matter quality during spring floods in the Potomac River at Washington D.C. Across watershed size, there appeared to be differences in seasonal cycles of organic carbon quality and this may have been based on the degree of hydrologic connectivity between watersheds and

  14. Spatial Predictive Modeling and Remote Sensing of Land Use Change in the Chesapeake Bay Watershed

    Science.gov (United States)

    Goetz, Scott J.; Bockstael, Nancy E.; Jantz, Claire A.

    2005-01-01

    This project was focused on modeling the processes by which increasing demand for developed land uses, brought about by changes in the regional economy and the socio-demographics of the region, are translated into a changing spatial pattern of land use. Our study focused on a portion of the Chesapeake Bay Watershed where the spatial patterns of sprawl represent a set of conditions generally prevalent in much of the U.S. Working in the region permitted us access to (i) a time-series of multi-scale and multi-temporal (including historical) satellite imagery and (ii) an established network of collaborating partners and agencies willing to share resources and to utilize developed techniques and model results. In addition, a unique parcel-level tax assessment database and linked parcel boundary maps exists for two counties in the Maryland portion of this region that made it possible to establish a historical cross-section time-series database of parcel level development decisions. Scenario analyses of future land use dynamics provided critical quantitative insight into the impact of alternative land management and policy decisions. These also have been specifically aimed at addressing growth control policies aimed at curbing exurban (sprawl) development. Our initial technical approach included three components: (i) spatial econometric modeling of the development decision, (ii) remote sensing of suburban change and residential land use density, including comparisons of past change from Landsat analyses and more traditional sources, and (iii) linkages between the two through variable initialization and supplementation of parcel level data. To these we added a fourth component, (iv) cellular automata modeling of urbanization, which proved to be a valuable addition to the project. This project has generated both remote sensing and spatially explicit socio-economic data to estimate and calibrate the parameters for two different types of land use change models and has

  15. The deep biosphere in terrestrial sediments in the Chesapeake Bay area, Virginia, USA

    Directory of Open Access Journals (Sweden)

    Anja eBreuker

    2011-07-01

    Full Text Available For the first time quantitative data on the abundance of Bacteria, Archaea and Eukarya in deep terrestrial sediments are provided using multiple methods (total cell counting, quantitative real-time PCR (Q-PCR and catalyzed reporter deposition – fluorescence in situ hybridization (CARD-FISH. The oligotrophic (organic carbon content of ~ 0.2 % deep terrestrial sediments in the Chesapeake Bay area at Eyreville, Virginia, USA, were drilled and sampled up to a depth of 140 m in 2006. The possibility of contamination during drilling was checked using fluorescent microspheres. Total cell counts decreased from 109 to 106 cells per g dry weight (dw within the uppermost 20 m depth, and did not further decrease with depth below. A significant proportion of the total cell counts could be detected with CARD-FISH within the uppermost 7 m depth. The CARD-FISH numbers for Bacteria were about an order of magnitude higher than those for Archaea. The dominance of Bacteria over Archaea was confirmed by Q-PCR. The down core quantitative distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes as well as functional genes involved in different biogeochemical processes was revealed by Q-PCR for the uppermost 10 m and for 80-140 m depth. Eukarya and the Fe(III- and Mn(IV-reducing bacterial group Geobacteriaceae were almost only found in the uppermost meter (arable soil, where reactive iron was detected in higher amounts. The bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi, highly abundant in marine sediments, were found up to the maximum sampling depth in high copy numbers at this terrestrial site as well. A similar high abundance of the functional gene cbbL encoding for the large subunit of RubisCO suggests that autotrophic microorganisms could be relevant in addition to heterotrophs. The functional gene aprA of sulfate reducing bacteria was found within distinct layers up to ca. 100 m depth

  16. The deep biosphere in terrestrial sediments in the chesapeake bay area, virginia, USA.

    Science.gov (United States)

    Breuker, Anja; Köweker, Gerrit; Blazejak, Anna; Schippers, Axel

    2011-01-01

    For the first time quantitative data on the abundance of Bacteria, Archaea, and Eukarya in deep terrestrial sediments are provided using multiple methods (total cell counting, quantitative real-time PCR, Q-PCR and catalyzed reporter deposition-fluorescence in situ hybridization, CARD-FISH). The oligotrophic (organic carbon content of ∼0.2%) deep terrestrial sediments in the Chesapeake Bay area at Eyreville, Virginia, USA, were drilled and sampled up to a depth of 140 m in 2006. The possibility of contamination during drilling was checked using fluorescent microspheres. Total cell counts decreased from 10(9) to 10(6) cells/g dry weight within the uppermost 20 m, and did not further decrease with depth below. Within the top 7 m, a significant proportion of the total cell counts could be detected with CARD-FISH. The CARD-FISH numbers for Bacteria were about an order of magnitude higher than those for Archaea. The dominance of Bacteria over Archaea was confirmed by Q-PCR. The down core quantitative distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes as well as functional genes involved in different biogeochemical processes was revealed by Q-PCR for the uppermost 10 m and for 80-140 m depth. Eukarya and the Fe(III)- and Mn(IV)-reducing bacterial group Geobacteriaceae were almost exclusively found in the uppermost meter (arable soil), where reactive iron was detected in higher amounts. The bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi, highly abundant in marine sediments, were found up to the maximum sampling depth in high copy numbers at this terrestrial site as well. A similar high abundance of the functional gene cbbL encoding for the large subunit of RubisCO suggests that autotrophic microorganisms could be relevant in addition to heterotrophs. The functional gene aprA of sulfate reducing bacteria was found within distinct layers up to ca. 100 m depth in low copy numbers

  17. Padilla Bay: The Estuary Guide. Level 1. Publication No. 93-108.

    Science.gov (United States)

    Friesem, Judy

    Padilla Bay National Estuarine Research Reserve in Washington is managed by the Washington State Department of Ecology, Shorelands and Coastal Zone management Program. This guide is designed for primary teachers to complement a visit to the reserve and is a useful resource to teach about estuaries, shorelands, and coastal resources. Activities are…

  18. Application of a Weighted Regression Model for Reporting Nutrient and Sediment Concentrations, Fluxes, and Trends in Concentration and Flux for the Chesapeake Bay Nontidal Water-Quality Monitoring Network, Results Through Water Year 2012

    Science.gov (United States)

    Chanat, Jeffrey G.; Moyer, Douglas L.; Blomquist, Joel D.; Hyer, Kenneth E.; Langland, Michael J.

    2016-01-13

    In the Chesapeake Bay watershed, estimated fluxes of nutrients and sediment from the bay’s nontidal tributaries into the estuary are the foundation of decision making to meet reductions prescribed by the Chesapeake Bay Total Maximum Daily Load (TMDL) and are often the basis for refining scientific understanding of the watershed-scale processes that influence the delivery of these constituents to the bay. Two regression-based flux and trend estimation models, ESTIMATOR and Weighted Regressions on Time, Discharge, and Season (WRTDS), were compared using data from 80 watersheds in the Chesapeake Bay Nontidal Water-Quality Monitoring Network (CBNTN). The watersheds range in size from 62 to 70,189 square kilometers and record lengths range from 6 to 28 years. ESTIMATOR is a constant-parameter model that estimates trends only in concentration; WRTDS uses variable parameters estimated with weighted regression, and estimates trends in both concentration and flux. WRTDS had greater explanatory power than ESTIMATOR, with the greatest degree of improvement evident for records longer than 25 years (30 stations; improvement in median model R2= 0.06 for total nitrogen, 0.08 for total phosphorus, and 0.05 for sediment) and the least degree of improvement for records of less than 10 years, for which the two models performed nearly equally. Flux bias statistics were comparable or lower (more favorable) for WRTDS for any record length; for 30 stations with records longer than 25 years, the greatest degree of improvement was evident for sediment (decrease of 0.17 in median statistic) and total phosphorus (decrease of 0.05). The overall between-station pattern in concentration trend direction and magnitude for all constituents was roughly similar for both models. A detailed case study revealed that trends in concentration estimated by WRTDS can operationally be viewed as a less-constrained equivalent to trends in concentration estimated by ESTIMATOR. Estimates of annual mean flow

  19. Wave spectra, meteorological, and other data from NOAA Ship FERREL and other platforms from the Chesapeake Bay from 1983-03-14 to 1983-11-22 (NODC Accession 8500124)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wave spectra, meteorological, and other data were collected from NOAA Ship FERREL and other platforms in the Chesapeake Bay. Data were collected by the National...

  20. Nutrient Budgets and Management Actions in the Patuxent River Estuary, Maryland

    Science.gov (United States)

    Multi-year nitrogen (N) and phosphorus (P) budgets were developed for the Patuxent River estuary, a seasonally stratified and moderately eutrophic tributary of Chesapeake Bay. Major inputs (point, diffuse, septic and direct atmospheric) were measured for 13 years during which la...

  1. Assessing development pressure in the Chesapeake Bay watershed: an evaluation of two land-use change models.

    Science.gov (United States)

    Claggett, Peter R; Jantz, Claire A; Goetz, Scott J; Bisland, Carin

    2004-06-01

    Natural resource lands in the Chesapeake Bay watershed are increasingly susceptible to conversion into developed land uses, particularly as the demand for residential development grows. We assessed development pressure in the Baltimore-Washington, DC region, one of the major urban and suburban centers in the watershed. We explored the utility of two modeling approaches for forecasting future development trends and patterns by comparing results from a cellular automata model, SLEUTH (slope, land use, excluded land, urban extent, transportation), and a supply/demand/allocation model, the Western Futures Model. SLEUTH can be classified as a land-cover change model and produces projections on the basis of historic trends of changes in the extent and patterns of developed land and future land protection scenarios. The Western Futures Model derives forecasts from historic trends in housing units, a U.S. Census variable, and exogenously supplied future population projections. Each approach has strengths and weaknesses, and combining the two has advantages and limitations.

  2. 226Ra behavior in the Pee Dee river-Winyah Bay estuary

    International Nuclear Information System (INIS)

    Elsinger, R.J.; Moore, W.S.

    1980-01-01

    Concentrations of dissolved 226 Ra in Winyah Bay, South Carolina, and in the adjacent Atlantic Ocean are augmented by the desorption of radium from sediments in the low-salinity area of the estuary and diffusion from bottom sediments. Desorption of 226 Ra is reflected by lower concentrations in suspended sediments from higher-salinity regions of the estuary. Bottom sediments from the high-salinity region have lower 226 Ra/ 230 Th activity ratios than those from the low-salinity end. (orig./ME)

  3. Bacterial biomass and heterotrophic potential in the waters of the Chesapeake Bay plume and contiguous continental shelf

    Science.gov (United States)

    Kator, H. I.; Zubkoff, P. L.

    1981-01-01

    Seasonal baseline data on bacterial biomass and heterotrophic uptake in the Chesapeake Bay plume and contiguous Atlantic Ocean shelf waters are discussed. Viable count bacterial numbers in surface water samples collected during June 1980 ranged from a maximum of 190,000 MPN (most probable number)/ml at the Bay mouth to a minimum of 7900 MPN/ml offshore. Similarly, direct count densities ranged from 1,800,000 BU (bacterial units)/ml to 24,000 BU/ml. Heterotrophic potential (V max) was largest at the Bay mouth and lowest offshore. Biomass and V max values usually decreased with depth although subsurface maxima were occasionally observed at inshore stations. Correlation of biomass and heterotrophic potential data with selected hydrographic variables was determind with a nonparametric statistic. Results indicate viable counts are positively and significantly correlated with total chlorophyll, temperature, direct count and V max during June 1980; significant negative correlations are obtained with salinity and depth. Calculations of bacterial standing crop are discussed.

  4. Sources of suspended-sediment flux in streams of the chesapeake bay watershed: A regional application of the sparrow model

    Science.gov (United States)

    Brakebill, J.W.; Ator, S.W.; Schwarz, G.E.

    2010-01-01

    We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain. ?? 2010 American Water Resources Association. No claim to original U.S. government works.

  5. Spatial and temporal trends in runoff at long-term streamgages within and near the Chesapeake Bay Watershed

    Science.gov (United States)

    Rice, Karen C.; Hirsch, Robert M.

    2012-01-01

    Long-term streamflow data within the Chesapeake Bay watershed and surrounding area were analyzed in an attempt to identify trends in streamflow. Data from 30 streamgages near and within the Chesapeake Bay watershed were selected from 1930 through 2010 for analysis. Streamflow data were converted to runoff and trend slopes in percent change per decade were calculated. Trend slopes for three runoff statistics (the 7-day minimum, the mean, and the 1-day maximum) were analyzed annually and seasonally. The slopes also were analyzed both spatially and temporally. The spatial results indicated that trend slopes in the northern half of the watershed were generally greater than those in the southern half. The temporal analysis was done by splitting the 80-year flow record into two subsets; records for 28 streamgages were analyzed for 1930 through 1969 and records for 30 streamgages were analyzed for 1970 through 2010. The mean of the data for all sites for each year were plotted so that the following datasets were analyzed: the 7-day minimum runoff for the north, the 7-day minimum runoff for the south, the mean runoff for the north, the mean runoff for the south, the 1-day maximum runoff for the north, and the 1-day maximum runoff for the south. Results indicated that the period 1930 through 1969 was statistically different from the period 1970 through 2010. For the 7-day minimum runoff and the mean runoff, the latter period had significantly higher streamflow than did the earlier period, although within those two periods no significant linear trends were identified. For the 1-day maximum runoff, no step trend or linear trend could be shown to be statistically significant for the north, although the south showed a mixture of an upward step trend accompanied by linear downtrends within the periods. In no case was a change identified that indicated an increasing rate of change over time, and no general pattern was identified of hydrologic conditions becoming "more extreme

  6. Data supporting study of Ecosystem Metabolism in Pensacola Bay estuary

    Data.gov (United States)

    U.S. Environmental Protection Agency — These files house the data collected during 2013 in lower Pensacola Bay. The data were used to estimate aquatic primary production and respiration. This dataset is...

  7. North Inlet • Winyah Bay (NIW) National Estuarine Research Reserve Meteorological Data, North Inlet Estuary, Georgetown, South Carolina: 1997 • 1999.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The North Inlet Estuary and the adjacent lower northeastern section of Winyah Bay Estuary were designated as part of the National Estuarine Research Reserve System...

  8. Synoptic volumetric variations and flushing of the Tampa Bay estuary

    Science.gov (United States)

    Wilson, M.; Meyers, S. D.; Luther, M. E.

    2014-03-01

    Two types of analyses are used to investigate the synoptic wind-driven flushing of Tampa Bay in response to the El Niño-Southern Oscillation (ENSO) cycle from 1950 to 2007. Hourly sea level elevations from the St. Petersburg tide gauge, and wind speed and direction from three different sites around Tampa Bay are used for the study. The zonal (u) and meridional (v) wind components are rotated clockwise by 40° to obtain axial and co-axial components according to the layout of the bay. First, we use the subtidal observed water level as a proxy for mean tidal height to estimate the rate of volumetric bay outflow. Second, we use wavelet analysis to bandpass sea level and wind data in the time-frequency domain to isolate the synoptic sea level and surface wind variance. For both analyses the long-term monthly climatology is removed and we focus on the volumetric and wavelet variance anomalies. The overall correlation between the Oceanic Niño Index and volumetric analysis is small due to the seasonal dependence of the ENSO response. The mean monthly climatology between the synoptic wavelet variance of elevation and axial winds are in close agreement. During the winter, El Niño (La Niña) increases (decreases) the synoptic variability, but decreases (increases) it during the summer. The difference in winter El Niño/La Niña wavelet variances is about 20 % of the climatological value, meaning that ENSO can swing the synoptic flushing of the bay by 0.22 bay volumes per month. These changes in circulation associated with synoptic variability have the potential to impact mixing and transport within the bay.

  9. Stable lead isotopic analyses of historic and contemporary lead contamination of San Francisco Bay estuary

    Science.gov (United States)

    Ritson, P.I.; Bouse, R.M.; Flegal, A.R.; Luoma, S.N.

    1999-01-01

    Variations in stable lead isotopic composition (240Pb, 206Pb, 207Pb, 208Pb) in three sediment cores from the San Francisco Bay estuary document temporal changes in sources of lead during the past two centuries. Sediment, with lead from natural geologic sources, and relatively homogeneous lead isotopic compositions are overlain by sediments whose isotopic compositions indicate change in the sources of lead associated with anthropogenic modification of the estuary. The first perturbations of lead isotopic composition in the cores occur in the late 1800s concordant with the beginning of industrialization around the estuary. Large isotopic shifts, toward lower 206Pb/207Pb, occur after the turn of the century in both Richardson and San Pablo Bays. A similar relationship among lead isotopic compositions and lead concentrations in both Bays suggest contamination from the same source (a lead smelter). The uppermost sediments (post 1980) of all cores also have a relatively homogenous lead isotopic composition distinct from pre-anthropogenic and recent aerosol signatures. Lead isotopic compositions of leachates from fourteen surface sediments and five marsh samples from the estuary were also analyzed. These analyses suggest that the lead isotopic signature identified in the upper horizons of the cores is spatially homogeneous among recently deposited sediments throughout the estuary. Current aerosol lead isotopic compositions [Smith, D.R., Niemeyer, S., Flegal, A.R., 1992. Lead sources to California sea otters: industrial inputs circumvent natural lead biodepletion mechanisms. Environmental Research 57, 163-175] are distinct from the isotopic compositions of the surface sediments, suggesting that the major source of lead is cycling of historically contaminated sediments back through the water column. Both the upper core sediments and surface sediments apparently derive their lead predominantly from sources internal to the estuary. These results support the idea that

  10. Heavy metals in tissues of water fowl from the Chesapeake Bay, USA. [Clangula hyemalis; Melanitta deglandi; Anas platyrhynchos; Anas rubripes; Anas strepera

    Energy Technology Data Exchange (ETDEWEB)

    Di Giulio, R; Scanlon, P F

    1984-01-01

    Concentrations of cadmium, lead, copper and zinc were measured in 774 livers, 266 kidneys and 271 ulnar bones from 15 species of ducks obtained from the Chesapeake Bay region. A major purpose of this study was to elucidate relationships between food habits and tissue accumulations of heavy metals in Chesapeake Bay water fowl. Liver and kidney concentrations of cadmium were highest among two carnivorous seaduck species, Clangula hyemalis and Melanitta deglandi. In contrast, lead concentrations in tissues were generally highest in largely herbivorous species, such as Anas platyrhynchos, Anas rubripes and Anas strepera. Spent shot may be an important source for tissue burdens of lead in these ducks. No marked trends were observed between food habits and tissue concentrations of the nutrient elements, copper and zinc.

  11. Detection of erosion events using 10Be profiles: Example of the impact of agriculture on soil erosion in the Chesapeake Bay area (U.S.A.)

    International Nuclear Information System (INIS)

    Valette-Silver, J.N.; Brown, L.; Pavich, M.; Klein, J.; Middleton, R.

    1986-01-01

    10 Be concentration, total carbon and grain-size were measured in cores collected in undisturbed estuarine sediments of three tributaries of the Chesapeake Bay. These cores were previously studied by Davis and Brush for pollen content, age and sedimentation rate. In this work, we compare the results obtained for these various analyses. In the cores, we observed two increases in 10 Be concentration concomitant with two major changes in the pollen composition of the sediments. These two pollen changes each correspond to well-dated agricultural horizons reflecting different stages in the introduction of European farming techniques. In the Chesapeake Bay area, the agricultural development, associated with forest clearing, appears to have triggered the erosion, transport, and sedimentation into the river mouths of large quantities of 10 Be-rich soils. This phenomenon explains the observed rise in the sedimentation rate associated with increases in agricultural land-use. (orig.)

  12. Contrasting mercury and manganese deposition in a mangrove-dominated estuary (Guaratuba Bay, Brazil)

    Science.gov (United States)

    Sanders, C. J.; Santos, I. R.; Silva-Filho, E. V.; Patchineelam, S. R.

    2008-08-01

    Sediment cores were taken at seven sites along the mangrove-bound Guaratuba Bay estuary (southern Brazil), with the purpose of assessing conditions controlling Hg deposition along a horizontal estuarine sediment gradient. The data suggest contrasting depositional patterns for Hg and Mn in this relatively pristine setting. Total Hg contents of bulk sediments ranged from 12 to 36 ng/g along the estuary, the highest values being found in muddier organic-rich sediments of the upper estuary (the corresponding mud gradient is 12 to 42 wt.%, and the organic matter gradient 4 to 10 wt.%). Thus, the deposition of fine sediments relatively enriched in mercury occurs primarily in closer proximity to the freshwater source. The data also indicate a reverse gradient in reactive Mn contents, ranging from 29 to 81 μg/g, and increasing seaward. This implies that reactive Mn is mobilized from fine-grained reducing mangrove forest sediments in the upper estuary, and deposited downstream in sandier, oxygen-rich nearshore sediments. These results suggest that mangrove-surrounded estuaries may act as barriers to mercury transport to coastal waters, but as a source of manganese. The present findings also imply that reactive Mn may be used as an indication of Hg depositional patterns in other similar coastal sedimentary settings.

  13. Earthquake and human impact on the sedimentology and geochemistry of Ahuriri Estuary, Hawke's Bay

    International Nuclear Information System (INIS)

    Chague-Goff, C.; Nichol, S.L.; Ditchburn, R.G.; Trompetter, W.J.; Sutherland, V.T.

    1998-01-01

    Three cores were collected from the intertidal and salt marsh sediments in Ahuriri Estuary, Hawke's Bay, and analysed by sedimentological, chemical and geochronological techniques. Signatures of various events, of both natural and anthropogenic origin, were identified. Evidence for the 1931 Hawke's Bay earthquake, which resulted in an uplift of one to two metres in the Napier area, is given by a change in grainsize distribution in a core from the southern shore of the Lower Estuary. The change to a high energy environment, similar to the present one in the Lower Estuary, has resulted in deposition of sand over fine silt. The data suggest increased sediment accumulation rates following the uplift event, which might be attributed to increased erosion in the upper catchment. There is no evidence of the earthquake at the two other sites sampled, which is probably due to their more sheltered location in the estuary. Post-European settlement impact is mainly restricted to the Lower Estuary, where increased concentrations of Zn, Cr, Pb and Cu may be due to industrial discharges. Evidence of agricultural runoff is given by an increase in Cu concentrations near the Poraiti Hills. The chemical data (Cl and S) suggest a change in the depositional environment in the Upper Estuary due to increased freshwater influx and/or decrease in seawater influence. Dating by 210 Pb infers that this occurred prior to 1931, but the origin and timing of the event are still to be determined. Sediment accumulation rates have averaged 2.5 mm/yr for the last 45 years in the Lower Estuary and 3.8 mm/yr for the last 70 years or so in the Upper Estuary. The variation probably reflects the difference in depositional environment, from a high energy environment dominated by tidal and wave action to a low energy environment with additional organic and fine sediment input from stream runoff. The various signatures identified are based on known events but may be used for identifying events in other less

  14. Impact of Hurricane Irene on Vibrio vulnificus and Vibrio parahaemolyticus concentrations in surface water, sediment and cultured oysters in the Chesapeake Bay, Maryland, USA

    Directory of Open Access Journals (Sweden)

    Kristi S Shaw

    2014-05-01

    Full Text Available To determine if a storm event (i.e., high winds, large volumes of precipitation could alter concentrations of Vibrio vulnificus and Vibrio parahaemolyticus in aquacultured oysters (Crassostrea virginica and associated surface water and sediment, this study followed a sampling timeline before and after Hurricane Irene impacted the Chesapeake Bay estuary in late August 2011. Aquacultured oysters were sampled from two levels in the water column: surface 0.3 m and near-bottom just above the sediment. Concentrations of each Vibrio spp. and associated virulence genes were measured in oysters with a combination of real-time PCR and most probable number enrichment methods, and in sediment and surface water with real-time PCR. While concentration shifts of each Vibrio species were apparent post-storm, statistical tests indicated no significant change in concentration change for either Vibrio species by location (surface or near bottom oysters or date sampled (oyster tissue, surface water and sediment concentrations. V. vulnificus in oyster tissue was correlated with total suspended solids (r=0.41, p=0.04, and V. vulnificus in sediment was correlated with secchi depth (r=-0.93, p< 0.01, salinity (r=-0.46, p=0.02, tidal height (r=-0.45, p=0.03, and surface water V. vulnificus (r=0.98, p< 0.01. V. parahaemolyticus in oyster tissue did not correlate with environmental measurements, but V. parahaemolyticus in sediment and surface water correlated with several measurements including secchi depth (r=-0.48, p=0.02[sediment]; r=-0.97 p< 0.01[surface water] and tidal height (r=-0.96. p< 0.01[sediment], r=-0.59,p< 0.01 [surface water]. The concentrations of Vibrio spp. were higher in oysters relative to other studies (average V. vulnificus 4x105 MPN g-1, V. parahaemolyticus 1x105 MPN g-1, and virulence-associated genes were detected in most oyster samples. This study provides a first estimate of storm-related Vibrio density changes in oyster tissues, sediment and

  15. Holocene depositional history of a large glaciated estuary, Penobscot Bay, Maine

    Science.gov (United States)

    Knebel, H.J.

    1986-01-01

    Data from seismic-reflection profiles, sidescan sonar images, and sediment samples reveal the Holocene depositional history of the large (1100 km2) glaciated Penobscot Bay estuary of coastal Maine. Previous work has shown that the late Wisconsinan ice sheet retreated from the three main passages of the bay between 12,700 and 13,500 years ago and was accompanied by a marine transgression during which ice and sea were in contact. Isostatic recovery of the crust caused the bay to emerge during the immediate postglacial period, and relative sea level fell to at least -40 m sometime between 9000 and 11,500 years ago. During lowered sea level, the ancestral Penobscot River flowed across the subaerially exposed head of the bay and debouched into Middle Passage. Organic-matter-rich mud from the river was deposited rapidly in remnant, glacially scoured depressions in the lower reaches of Middle and West Passages behind a shallow (???20 m water depth) bedrock sill across the bay mouth. East Passage was isolated from the rest of the bay system and received only small amounts of locally derived fine-grained sediments. During the Holocene transgression that accompanied the eustatic rise of sea level, the locus of sedimentation shifted to the head of the bay. Here, heterogeneous fluvial deposits filled the ancestral valley of the Penobscot River as base level rose, and the migrating surf zone created a gently dipping erosional unconformity, marked by a thin (energy conditions and the waning influence of the Penobscot River at the head of the bay. In contrast, relatively thick (up to 25 m) silty clays accumulated within a subbottom trough in the western half of the bay head. This deposit apparently developed late in the transgression after sea level had reached -20 m and after the westward transport of fine-grained sediments from the Penobscot River had been established. During and since the late Holocene transgression of sea level, waves and currents have eroded, reworked, and

  16. Large-Scale Submerged Aquatic Vegetation Restoration in Chesapeake Bay: Status Report, 2003-2006

    Science.gov (United States)

    2008-06-01

    seed injector designed by VIMS, which does not require a gel matrix, has been tested in Spider Crab Bay in Virginia’s Coastal Bays (Figures 13 and 14...seagrasses, contributing to their loss. Additionally, waters landward of restrictive breakwaters tend to be warmer ( blue and red thermometers) than those...marina), (2) wild celery (V. americana), (3) sago pondweed (S. pectinata), and (4) redhead grass (P. perfoliatus). Molecular and cultivation

  17. Zostera marina (eelgrass) growth and survival along a gradient ofnutrients and turbidity in the lower Chesapeake Bay

    Science.gov (United States)

    Moore, K.A.; Neckles, H.A.; Orth, R.J.

    1996-01-01

    Survival of transplanted Zostera marina L. (eelgrass), Z. marina growth,and environmental conditions were studied concurrently at a number of sitesin a southwestern tributary of the Chesapeake Bay to elucidate the factorslimiting macrophyte distribution in this region. Consistent differences insurvival of the transplants were observed, with no long-term survival at anyof the sites that were formerly vegetated with this species but thatcurrently remain unvegetated. Therefore, the current distribution of Z.marina likely represents the extent of suitable environmental conditions inthe region, and the lack of recovery into historically vegetated sites is notsolely due to lack of propagules. Poor long-term survival was related toseasonally high levels of water column light attenuation. Fall transplantsdied by the end of summer following exposure to levels of high springturbidity (K(d) > 3.0). Accumulation of an epiphyte matrix during the latespring (0.36 to 1.14 g g-1 dry wt) may also have contributed to thisstress. Differences in water column nutrient levels among sites during thefall and winter (10 to 15 ??M dissolved inorganic nitrogen and 1 ??Mdissolved inorganic phosphates) had no observable effect on epiphyteaccumulation or macrophyte growth. Salinity effects were minor and there wereno symptoms of disease. Although summertime conditions resulted indepressions in growth, they did not alone limit long-term survival. It issuggested that water quality conditions enhancing adequate seagrass growthduring the spring may be key to long-term Z. marina survival and successfulrecolonization in this region.

  18. NASA-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay.

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.

  19. The Effect of Dissolved Polyunsaturated Aldehydes on Microzooplankton Growth Rates in the Chesapeake Bay and Atlantic Coastal Waters

    Directory of Open Access Journals (Sweden)

    Peter J. Lavrentyev

    2015-05-01

    Full Text Available Allelopathy is wide spread among marine phytoplankton, including diatoms, which can produce cytotoxic secondary metabolites such as polyunsaturated aldehydes (PUA. Most studies on diatom-produced PUA have been dedicated to their inhibitory effects on reproduction and development of marine invertebrates. However, little information exists on their impact on key herbivores in the ocean, microzooplankton. This study examined the effects of dissolved 2E,4E-octadienal and 2E,4E-heptadienal on the growth rates of natural ciliate and dinoflagellate populations in the Chesapeake Bay and the coastal Atlantic waters. The overall effect of PUA on microzooplankton growth was negative, especially at the higher concentrations, but there were pronounced differences in response among common planktonic species. For example, the growth of Codonella sp., Leegaardiella sol, Prorodon sp., and Gyrodinium spirale was impaired at 2 nM, whereas Strombidium conicum, Cyclotrichium gigas, and Gymnodinium sp. were not affected even at 20 nM. These results indicate that PUA can induce changes in microzooplankton dynamics and species composition.

  20. The Effect of Dissolved Polyunsaturated Aldehydes on Microzooplankton Growth Rates in the Chesapeake Bay and Atlantic Coastal Waters

    Science.gov (United States)

    Lavrentyev, Peter J.; Franzè, Gayantonia; Pierson, James J.; Stoecker, Diane K.

    2015-01-01

    Allelopathy is wide spread among marine phytoplankton, including diatoms, which can produce cytotoxic secondary metabolites such as polyunsaturated aldehydes (PUA). Most studies on diatom-produced PUA have been dedicated to their inhibitory effects on reproduction and development of marine invertebrates. However, little information exists on their impact on key herbivores in the ocean, microzooplankton. This study examined the effects of dissolved 2E,4E-octadienal and 2E,4E-heptadienal on the growth rates of natural ciliate and dinoflagellate populations in the Chesapeake Bay and the coastal Atlantic waters. The overall effect of PUA on microzooplankton growth was negative, especially at the higher concentrations, but there were pronounced differences in response among common planktonic species. For example, the growth of Codonella sp., Leegaardiella sol, Prorodon sp., and Gyrodinium spirale was impaired at 2 nM, whereas Strombidium conicum, Cyclotrichium gigas, and Gymnodinium sp. were not affected even at 20 nM. These results indicate that PUA can induce changes in microzooplankton dynamics and species composition. PMID:25955757

  1. Empirical models based on the universal soil loss equation fail to predict sediment discharges from Chesapeake Bay catchments.

    Science.gov (United States)

    Boomer, Kathleen B; Weller, Donald E; Jordan, Thomas E

    2008-01-01

    The Universal Soil Loss Equation (USLE) and its derivatives are widely used for identifying watersheds with a high potential for degrading stream water quality. We compared sediment yields estimated from regional application of the USLE, the automated revised RUSLE2, and five sediment delivery ratio algorithms to measured annual average sediment delivery in 78 catchments of the Chesapeake Bay watershed. We did the same comparisons for another 23 catchments monitored by the USGS. Predictions exceeded observed sediment yields by more than 100% and were highly correlated with USLE erosion predictions (Pearson r range, 0.73-0.92; p USLE estimates (r = 0.87; p USLE model did not change the results. In ranked comparisons between observed and predicted sediment yields, the models failed to identify catchments with higher yields (r range, -0.28-0.00; p > 0.14). In a multiple regression analysis, soil erodibility, log (stream flow), basin shape (topographic relief ratio), the square-root transformed proportion of forest, and occurrence in the Appalachian Plateau province explained 55% of the observed variance in measured suspended sediment loads, but the model performed poorly (r(2) = 0.06) at predicting loads in the 23 USGS watersheds not used in fitting the model. The use of USLE or multiple regression models to predict sediment yields is not advisable despite their present widespread application. Integrated watershed models based on the USLE may also be unsuitable for making management decisions.

  2. Studies of dry deposition of trace elements and diesel soot onto Lake Michigan and the Chesapeake Bay

    International Nuclear Information System (INIS)

    Ondov, J.M.; Caffrey, P.F.; Suarez, A.E.; Han, M.; Borgoul, P.V.

    1995-01-01

    As part of the Atmospheric Exchange Over Lakes and Oceans Study (AEOLOS) study, the University of Maryland participated in four intensive field campaigns, three on Lake Michigan (LM) and one on the Chesapeake Bay (CB), to determine the size distributions of potentially toxic elemental aerosol constituents, determine their sources, and their dry deposition loadings to surface waters. The work further seeks to elucidate the relative importance of constituents of fine- and coarse particles, as differentiation of these modes is essential to the eventual formation of control strategies. Unique components of the UMCP studies include (1) resolution of toxic elemental components of aerosol particles depositing to LM and CB by particle size and by source and (2) a Lake-wide evaluation of the importance of fine and coarse particle deposition to inorganic contamination of LM surface waters. In addition, a unique component of the Baltimore Study was the application of a sensitive iridium tracer to intentionally tag emissions form the City of Baltimore's sanitation truck fleet to tag the Baltimore urban plume and to determine the atmospheric behavior of diesel soot particles, a major source of urban carbon aerosol and the principle carrier of toxic polynuclear aromatic hydrocarbons. The work encompasses results for >40 elements by X-ray fluorescence and instrumental neutron activation analyses of more than 700 individual size-segregated aerosol, deposition, urban dust, and surface-water-suspended particulate samples. An overview of the results of these studies will be presented

  3. 226Ra and 228Ra in the mixing zones of the Pee Dee River-Winyah Bay, Yangtze River and Delaware Bay Estuaries

    International Nuclear Information System (INIS)

    Elsinger, R.J.; Moore, W.S.

    1984-01-01

    226 Ra and 228 Ra have non-conservative excess concentrations in the mixing zones of the Pee Dee River-Winyah Bay estuary, the Yangtze River estuary, and the Delaware Bay estuary. Laboratory experiments, using Pee Dee River sediment, indicate desorption of 226 Ra to increase with increasing salinities up to 20 per mille. In Winyah Bay desorption from river-borne sediments could contribute almost all of the increases for both isotopes. Desorption adds only a portion of the excess 228 Ra measured in the Yangtze River and adjacent Shelf waters and Delaware Bay. In the Yangtze River the mixing zone extends over a considerable portion of the Continental Shelf where 228 Ra is added to the water column by diffusion from bottom sediments, while 226 Ra concentrations decrease from dilution. Diffusion of 228 Ra from bottom sediments in Delaware Bay primarily occurs in the upper part of the bay ( 228 Ra of 0.33 dpm cm -2 year was determined for Delaware Bay. (author)

  4. Physical processes in a coupled bay-estuary coastal system: Whitsand Bay and Plymouth Sound

    Science.gov (United States)

    Uncles, R. J.; Stephens, J. A.; Harris, C.

    2015-09-01

    Whitsand Bay and Plymouth Sound are located in the southwest of England. The Bay and Sound are separated by the ∼2-3 km-wide Rame Peninsula and connected by ∼10-20 m-deep English Channel waters. Results are presented from measurements of waves and currents, drogue tracking, surveys of salinity, temperature and turbidity during stratified and unstratified conditions, and bed sediment surveys. 2D and 3D hydrodynamic models are used to explore the generation of tidally- and wind-driven residual currents, flow separation and the formation of the Rame eddy, and the coupling between the Bay and the Sound. Tidal currents flow around the Rame Peninsula from the Sound to the Bay between approximately 3 h before to 2 h after low water and form a transport path between them that conveys lower salinity, higher turbidity waters from the Sound to the Bay. These waters are then transported into the Bay as part of the Bay-mouth limb of the Rame eddy and subsequently conveyed to the near-shore, east-going limb and re-circulated back towards Rame Head. The Simpson-Hunter stratification parameter indicates that much of the Sound and Bay are likely to stratify thermally during summer months. Temperature stratification in both is pronounced during summer and is largely determined by coastal, deeper-water stratification offshore. Small tidal stresses in the Bay are unable to move bed sediment of the observed sizes. However, the Bay and Sound are subjected to large waves that are capable of driving a substantial bed-load sediment transport. Measurements show relatively low levels of turbidity, but these respond rapidly to, and have a strong correlation with, wave height.

  5. Impact of the river Liffey discharge on nutrient and chlorophyll concentrations in the Liffey estuary and Dublin Bay (Irish Sea)

    Science.gov (United States)

    O'Higgins, T. G.; Wilson, J. G.

    2005-08-01

    Temperature, salinity, nutrients (total oxidised nitrogen (TON), ammonium (NH 4) and orthophosphate (PO 4)) and chlorophyll a were monitored in the Liffey estuary and Dublin Bay from June 2000 to June 2003. Four groups of sites were defined comprising the upper estuary (Gp. I), the outer estuary (Gp. III) with a small set (Gp. II) of sites between Groups I and III heavily influenced by the sewage treatment works outflow, and the Bay proper (Gp. IV). Riverine inputs of TON and PO 4 were calculated at an average of 826 t N y -1 and 31 t P y -1, respectively, and were largely controlled by flow rate. The sewage treatment works were identified as a major source of PO 4 and NH 4 to the system. Mixing in the upper estuary of nutrient limited saline waters with hypernutrified river water regularly (i.e. annually) produced relatively high concentrations of chlorophyll a (>10 mg chl a m -3), and also sporadic blooms with extremely high chlorophyll a values (max. 121.6 mg chl a m -3). These latter phytoplankton blooms occurred in high salinity waters and were due to mixing of nutrient limited saline waters and nutrient rich river waters. The mean annual flux of phytoplankton carbon from the river Liffey was calculated at 23.5 t C y -1, of which half was accumulated or remineralised in the estuary and did not enter the Bay. In the Bay proper (Gp. IV) summer nutrient concentrations dropped below detection limits, and chlorophyll a concentrations followed the classic pattern with a spring bloom maximum of 5.5 mg chl a m -3. This pattern in nutrients and chlorophyll a came from the advection of waters into the Bay from an offshore source. Overall while there was considerable evidence for eutrophication in the estuary, the bay itself showed little biological response to nutrient loading.

  6. 75 FR 27552 - Guidance for Federal Land Management in the Chesapeake Bay Watershed

    Science.gov (United States)

    2010-05-17

    ... will allow the federal government to lead the way in protecting the Bay and its watershed with the most effective tools and practices available to reduce water pollution from a variety of nonpoint sources... describe ``proven cost-effective tools and practices that reduce water pollution'' that are appropriate to...

  7. Decadal re-evaluation of contaminant exposure and productivity of ospreys (Pandion haliaetus) nesting in Chesapeake Bay Regions of Concern

    International Nuclear Information System (INIS)

    Lazarus, Rebecca S.; Rattner, Barnett A.; McGowan, Peter C.; Hale, Robert C.; Schultz, Sandra L.; Karouna-Renier, Natalie K.; Ottinger, Mary Ann

    2015-01-01

    The last large-scale ecotoxicological study of ospreys (Pandion haliaetus) in Chesapeake Bay was conducted in 2000–2001 and focused on U.S. EPA-designated Regions of Concern (ROCs; Baltimore Harbor/Patapsco, Anacostia/middle Potomac, and Elizabeth Rivers). In 2011–2012, ROCs were re-evaluated to determine spatial and temporal trends in productivity and contaminants. Concentrations of p,p′-DDE were low in eggs and below the threshold associated with eggshell thinning. Eggs from the Anacostia/middle Potomac Rivers had lower total PCB concentrations in 2011 than in 2000; however, concentrations remained unchanged in Baltimore Harbor. Polybrominated diphenyl ether flame retardants declined by 40%, and five alternative brominated flame retardants were detected at low levels. Osprey productivity was adequate to sustain local populations, and there was no relation between productivity and halogenated contaminants. Our findings document continued recovery of the osprey population, declining levels of many persistent halogenated compounds, and modest evidence of genetic damage in nestlings from industrialized regions. - Highlights: • This study documents the continued recovery of the Chesapeake Bay osprey population. • Osprey eggshells have nearly returned to pre-DDT-era thickness. • Organochlorine pesticides are low in eggs, but PCB levels seem unchanged in industrialized areas. • PBDE flame retardants have declined in eggs, but seem to peak near wastewater treatment plants. • There is some evidence of genetic damage in nestling blood samples in the most industrialized areas. - While the Chesapeake Bay osprey population has recovered, concentrations of some persistent contaminants in eggs remain unchanged, and there is some evidence of genetic damage in nestlings

  8. Modeling Trace Element Concentrations in the San Francisco Bay Estuary from Remote Measurement of Suspended Solids

    Science.gov (United States)

    Press, J.; Broughton, J.; Kudela, R. M.

    2014-12-01

    Suspended and dissolved trace elements are key determinants of water quality in estuarine and coastal waters. High concentrations of trace element pollutants in the San Francisco Bay estuary necessitate consistent and thorough monitoring to mitigate adverse effects on biological systems and the contamination of water and food resources. Although existing monitoring programs collect annual in situ samples from fixed locations, models proposed by Benoit, Kudela, & Flegal (2010) enable calculation of the water column total concentration (WCT) and the water column dissolved concentration (WCD) of 14 trace elements in the San Francisco Bay from a more frequently sampled metric—suspended solids concentration (SSC). This study tests the application of these models with SSC calculated from remote sensing data, with the aim of validating a tool for continuous synoptic monitoring of trace elements in the San Francisco Bay. Using HICO imagery, semi-analytical and empirical SSC algorithms were tested against a USGS dataset. A single-band method with statistically significant linear fit (p Arsenic, Iron, and Lead in the southern region of the Bay were found to exceed EPA water quality criteria for human health and aquatic life. The results of this study demonstrate the potential of monitoring programs using remote observation of trace element concentrations, and provide the foundation for investigation of pollutant sources and pathways over time.

  9. A History of Vegetation, Sediment and Nutrient Dynamics at Tivoli North Bay, Hudson Estuary, New York

    Science.gov (United States)

    Sritrairat, Sanpisa; Peteet, Dorothy M.; Kenna, Timothy C.; Sambrotto, Ray; Kurdyla, Dorothy; Guilderson, Tom

    2012-01-01

    We conduct a stratigraphic paleoecological investigation at a Hudson River National Estuarine Research Reserve (HRNERR) site, Tivoli Bays, spanning the past 1100 years. Marsh sediment cores were analyzed for ecosystem changes using multiple proxies, including pollen, spores, macrofossils, charcoal, sediment bulk chemistry, and stable carbon and nitrogen isotopes. The results reveal climatic shifts such as the warm and dry Medieval Warm Period (MWP) followed by the cooler Little Ice Age (LIA), along with significant anthropogenic influence on the watershed ecosystem. A five-fold expansion of invasive species, including Typha angustifolia and Phragmites australis, is documented along with marked changes in sediment composition and nutrient input. During the last century, a ten-fold sedimentation rate increase due to land-use changes is observed. The large magnitude of shifts in vegetation, sedimentation, and nutrients during the last few centuries suggest that human activities have made the greatest impact to the marshes of the Hudson Estuary during the last millennium. Climate variability and ecosystem changes similar to those observed at other marshes in northeastern and mid-Atlantic estuaries, attest to the widespread regional signature recorded at Tivoli Bays.

  10. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire

    Science.gov (United States)

    Caccavo, F.; Blakemore, R.P.; Lovley, D.R.

    1992-01-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing bacterium was isolated from bottom sediments of the Great Bay estuary, New Hampshire. The isolate was a facultatively anaerobic gram-negative rod which did not appear to fit into any previously described genus. It was temporarily designated strain BrY. BrY grew anaerobically in a defined medium with hydrogen or lactate as the electron donor and Fe(III) as the electron acceptor. BrY required citrate, fumarate, or malate as a carbon source for growth on H2 and Fe(III). With Fe(III) as the sole electron acceptor, BrY metabolized hydrogen to a minimum threshold at least 60-fold lower than the threshold reported for pure cultures of sulfate reducers. This finding supports the hypothesis that when Fe(III) is available, Fe(III) reducers can outcompete sulfate reducers for electron donors. Lactate was incompletely oxidized to acetate and carbon dioxide with Fe(III) as the electron acceptor. Lactate oxidation was also coupled to the reduction of Mn(IV), U(VI), fumarate, thiosulfate, or trimethylamine n-oxide under anaerobic conditions. BrY provides a model for how enzymatic metal reduction by respiratory metal-reducing microorganisms has the potential to contribute to the mobilization of iron and trace metals and to the immobilization of uranium in sediments of Great Bay Estuary.

  11. Final report for sea-level rise response modeling for San Francisco Bay estuary tidal marshes

    Science.gov (United States)

    Takekawa, John Y.; Thorne, Karen M.; Buffington, Kevin J.; Spragens, Kyle A.; Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Overton, Cory T.; Casazza, Michael L.

    2013-01-01

    The International Panel on Climate Change has identified coastal ecosystems as areas that will be disproportionally affected by climate change. Current sea-level rise projections range widely with 0.57 to 1.9 meters increase in mea sea level by 2100. The expected accelerated rate of sea-level rise through the 21st century will put many coastal ecosystems at risk, especially those in topographically low-gradient areas. We assessed marsh accretion and plant community state changes through 2100 at 12 tidal salt marshes around San Francisco Bay estuary with a sea-level rise response model. Detailed ground elevation, vegetation, and water level data were collected at all sites between 2008 and 2011 and used as model inputs. Sediment cores (taken by Callaway and others, 2012) at four sites around San Francisco Bay estuary were used to estimate accretion rates. A modification of the Callaway and others (1996) model, the Wetland Accretion Rate Model for Ecosystem Resilience (WARMER), was utilized to run sea-level rise response models for all sites. With a mean sea level rise of 1.24 m by 2100, WARMER projected that the vast majority, 95.8 percent (1,942 hectares), of marsh area in our study will lose marsh plant communities by 2100 and to transition to a relative elevation range consistent with mudflat habitat. Three marshes were projected to maintain marsh vegetation to 2100, but they only composed 4.2 percent (85 hectares) of the total marsh area surveyed.

  12. Environmental Conditions Associated with Elevated Vibrio parahaemolyticus Concentrations in Great Bay Estuary, New Hampshire.

    Directory of Open Access Journals (Sweden)

    Erin A Urquhart

    Full Text Available Reports from state health departments and the Centers for Disease Control and Prevention indicate that the annual number of reported human vibriosis cases in New England has increased in the past decade. Concurrently, there has been a shift in both the spatial distribution and seasonal detection of Vibrio spp. throughout the region based on limited monitoring data. To determine environmental factors that may underlie these emerging conditions, this study focuses on a long-term database of Vibrio parahaemolyticus concentrations in oyster samples generated from data collected from the Great Bay Estuary, New Hampshire over a period of seven consecutive years. Oyster samples from two distinct sites were analyzed for V. parahaemolyticus abundance, noting significant relationships with various biotic and abiotic factors measured during the same period of study. We developed a predictive modeling tool capable of estimating the likelihood of V. parahaemolyticus presence in coastal New Hampshire oysters. Results show that the inclusion of chlorophyll a concentration to an empirical model otherwise employing only temperature and salinity variables, offers improved predictive capability for modeling the likelihood of V. parahaemolyticus in the Great Bay Estuary.

  13. Seasonal and interannual variability of mesozooplankton in two contrasting estuaries of the Bay of Biscay: Relationship to environmental factors

    Science.gov (United States)

    Villate, Fernando; Iriarte, Arantza; Uriarte, Ibon; Sanchez, Iraide

    2017-12-01

    Seasonal and interannual variations of total mesozooplankton abundance and community variability were assessed for the period 1998-2005 at 3 salinity sites (35, 33 and 30) of the estuaries of Bilbao and Urdaibai (southeast Bay of Biscay). Spatial differences in mesozooplankton seasonality were recognized, both within and between estuaries, related to differences between sites in hydrodynamic features and anthropogenic nutrient enrichment that drive phytoplankton biomass seasonal cycles. The within estuary seasonal differences in mesozooplankton community were mainly shown through seaward time-advances in the seasonal peak from summer to spring along the salinity gradient, linked to differences in phytoplankton availability during the summer, in turn, related to nutrient availability. These differences were most marked in the estuary of Urdaibai, where zooplankton seasonal pattern at 35 salinity (high tidal flushing) resembled that of shelf waters, while at 35 of the estuary of Bilbao zooplankton showed an estuarine seasonal pattern due to the influence of the estuarine plume. Cirripede larvae contributed most to the mesozooplankton seasonal variability, except at the outer estuary of Bilbao, where cladocerans and fish eggs and larvae were the major contributors, and the inner estuary of Urdaibai, where gastropod larvae contributed most. Total mesozooplankton increased at 30 salinity of the estuary of Bilbao and 35 salinity of the estuary of Urdaibai. Interannual variability of mesozooplankton at the lowest salinity of the estuary of Bilbao was mainly accounted for by copepods due to the introduction of non-indigenous species during estuarine rehabilitation from intense pollution. However, bivalve larvae and gastropod larvae showed the highest contributions at 35 salinity of the estuary of Urdaibai. At the rest of sites, the opposite interannual trends of polychaete larvae and hydromedusae generally made the highest contribution.

  14. Optimal hydrograph separation using a recursive digital filter constrained by chemical mass balance, with application to selected Chesapeake Bay watersheds

    Science.gov (United States)

    Raffensperger, Jeff P.; Baker, Anna C.; Blomquist, Joel D.; Hopple, Jessica A.

    2017-06-26

    Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased

  15. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  16. Comparison of two regression-based approaches for determining nutrient and sediment fluxes and trends in the Chesapeake Bay watershed

    Science.gov (United States)

    Moyer, Douglas; Hirsch, Robert M.; Hyer, Kenneth

    2012-01-01

    Nutrient and sediment fluxes and changes in fluxes over time are key indicators that water resource managers can use to assess the progress being made in improving the structure and function of the Chesapeake Bay ecosystem. The U.S. Geological Survey collects annual nutrient (nitrogen and phosphorus) and sediment flux data and computes trends that describe the extent to which water-quality conditions are changing within the major Chesapeake Bay tributaries. Two regression-based approaches were compared for estimating annual nutrient and sediment fluxes and for characterizing how these annual fluxes are changing over time. The two regression models compared are the traditionally used ESTIMATOR and the newly developed Weighted Regression on Time, Discharge, and Season (WRTDS). The model comparison focused on answering three questions: (1) What are the differences between the functional form and construction of each model? (2) Which model produces estimates of flux with the greatest accuracy and least amount of bias? (3) How different would the historical estimates of annual flux be if WRTDS had been used instead of ESTIMATOR? One additional point of comparison between the two models is how each model determines trends in annual flux once the year-to-year variations in discharge have been determined. All comparisons were made using total nitrogen, nitrate, total phosphorus, orthophosphorus, and suspended-sediment concentration data collected at the nine U.S. Geological Survey River Input Monitoring stations located on the Susquehanna, Potomac, James, Rappahannock, Appomattox, Pamunkey, Mattaponi, Patuxent, and Choptank Rivers in the Chesapeake Bay watershed. Two model characteristics that uniquely distinguish ESTIMATOR and WRTDS are the fundamental model form and the determination of model coefficients. ESTIMATOR and WRTDS both predict water-quality constituent concentration by developing a linear relation between the natural logarithm of observed constituent

  17. Development of Land Segmentation, Stream-Reach Network, and Watersheds in Support of Hydrological Simulation Program-Fortran (HSPF) Modeling, Chesapeake Bay Watershed, and Adjacent Parts of Maryland, Delaware, and Virginia

    Science.gov (United States)

    Martucci, Sarah K.; Krstolic, Jennifer L.; Raffensperger, Jeff P.; Hopkins, Katherine J.

    2006-01-01

    The U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program Office, Interstate Commission on the Potomac River Basin, Maryland Department of the Environment, Virginia Department of Conservation and Recreation, Virginia Department of Environmental Quality, and the University of Maryland Center for Environmental Science are collaborating on the Chesapeake Bay Regional Watershed Model, using Hydrological Simulation Program - FORTRAN to simulate streamflow and concentrations and loads of nutrients and sediment to Chesapeake Bay. The model will be used to provide information for resource managers. In order to establish a framework for model simulation, digital spatial datasets were created defining the discretization of the model region (including the Chesapeake Bay watershed, as well as the adjacent parts of Maryland, Delaware, and Virginia outside the watershed) into land segments, a stream-reach network, and associated watersheds. Land segmentation was based on county boundaries represented by a 1:100,000-scale digital dataset. Fifty of the 254 counties and incorporated cities in the model region were divided on the basis of physiography and topography, producing a total of 309 land segments. The stream-reach network for the Chesapeake Bay watershed part of the model region was based on the U.S. Geological Survey Chesapeake Bay SPARROW (SPAtially Referenced Regressions On Watershed attributes) model stream-reach network. Because that network was created only for the Chesapeake Bay watershed, the rest of the model region uses a 1:500,000-scale stream-reach network. Streams with mean annual streamflow of less than 100 cubic feet per second were excluded based on attributes from the dataset. Additional changes were made to enhance the data and to allow for inclusion of stream reaches with monitoring data that were not part of the original network. Thirty-meter-resolution Digital Elevation Model data were used to delineate watersheds for each

  18. Radionuclides in intertidal sands and sediments from Morecambe Bay to the Dee estuary

    International Nuclear Information System (INIS)

    Carpenter, R.C.; Burton, P.J.; Strange, L.P.; Pratley, F.W.

    1991-05-01

    Surface and core samples of intertidal sediments have been collected from the coastline from Morecambe Bay to the Dee Estuary. The sampling took place between October 1987 and July 1989. Caesium-137 was determined by high resolution gamma spectrometry and plutonium isotopes and americium-241 were determined by alpha spectrometry following radiochemical separations. Samples were also sieved to obtain a particle size distribution of the deposits. A wide range of radionuclide activities have been determined depending on the distance from Sellafield and, more importantly, the proportion of clay plus silt ( 239+240 Pu and 241 Am activity discharged by Sellafield up to the end of 1988. The measured activities generally represent a small fraction of the Generalised Derived Limits (GDL's) for marine sediments. (author)

  19. Assessing the paradigm of mutually exclusive erosion and deposition of mud, with examples from upper Chesapeake Bay

    Science.gov (United States)

    Sanford, L.P.; Halka, J.P.

    1993-01-01

    A paradigm of cohesive sediment transport research is that erosion and deposition are mutually exclusive. Many laboratory studies have shown that there is a velocity/stress threshold below which erosion does not occur and a lower threshold above which deposition does not occur. In contrast, a deposition threshold is not included in standard noncohesive sediment transport models, allowing erosion and deposition to occur simultaneously. Several researchers have also modeled erosion and deposition of mud without a deposition threshold. This distinction can have important implications for suspended sediment transport predictions and for data interpretation. Model-data comparisons based on observations of in situ erosion and deposition of upper Chesapeake Bay mud indicate poor agreement when the sediments are modeled as a single resuspended particle class and mutually exclusive erosion and deposition is assumed. The total resuspended sediment load increases in conjunction with increasing bottom shear stress as anticipated, but deposition is initiated soon after the shear stress begins to decrease and long before the stress falls below the value at which erosion had previously begun. Models assuming no critical stress for deposition, with continuous deposition proportional to the near bottom resuspended sediment concentration, describe the data better. Empirical parameter values estimated from these model fits are similar to other published values for estuarine cohesive sediments, indicating significantly greater erodability for higher water content surface sediments and settling velocities appropriate for large estuarine flocs. The apparent failure of the cohesive paradigm when applied to in situ data does not mean that the concept of a critical stress for deposition is wrong. Two possibilities for explaining the observed discrepancies are that certain aspects of in situ conditions have not been replicated in the laboratory experiments underlying the cohesive paradigm

  20. Chemical characterization of soil organic matter in a Chesapeake Bay salt marsh: analyzing microbial and vegetation inputs to SOM

    Science.gov (United States)

    Bye, E.; Schreiner, K. M.; Abdulla, H. A.; Minor, E. C.; Guntenspergen, G. R.

    2017-12-01

    Coastal wetlands play a critical role in the global carbon cycle. These ecosystems sequester and store carbon, known as "blue carbon," at a rate two or three orders of magnitude larger than other terrestrial ecosystems, such as temperate, tropical, and boreal forests. Anthropogenic changes to the climate are threatening blue carbon stores in coastal wetland ecosystems. To understand and predict how these important carbon stores will be affected by anthropogenic climate changes, it is necessary to understand the formation and preservation of soil organic matter (SOM) in these ecosystems. This study will present organic geochemical data from two sediment cores collected from the Smithsonian Environmental Research Center site on a salt marsh in Maryland along the Chesapeake Bay. One core is from a location that recently transitioned from a C4 to C3 plant regime, currently dominated by the sedge Shoenplectis americanus. The second core is from a C4 plant (Spartina patens) dominated location in the marsh. The organic geochemistry of these 100 cm deep sediment cores was studied through multiple bulk analyses including stable isotopes, elemental ratios, Fourier-transform infrared spectroscopy (FTIR), solid-state magic-angle-spinning Nuclear Magnetic Resonance (NMR), and compound specific lignin-phenol analysis. By using comprehensive chemical characterization techniques, this study aims to discern between vegetation- and microbially-derived inputs to SOM in blue carbon ecosystems. The results show a general increase in the aromatic content with a concomitant decrease of carbohydrates with depth in both cores. However, substantial differences between the two cores, indicates differing inputs and/or stabilization mechanisms within SOM formed from different vegetation regimes. Further compound specific work will help to elucidate the specific source of compounds within each compound class, in surface and deep SOM, and additionally can help provide evidence for different

  1. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA.

    Science.gov (United States)

    Coxon, T M; Odhiambo, B K; Giancarlo, L C

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight (210)Pb and (137)Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. Copyright © 2016

  2. Insights into microbial communities involved in mercury methylation in the San Francisco Bay estuary

    Science.gov (United States)

    Machak, C.; Francis, C. A.

    2013-12-01

    San Francisco Bay (SFB) estuary is the largest estuary on the western coast of the United States, draining a watershed covering more than one third of the state of California. Mercury (Hg) contamination in SFB, as a result of gold and mercury mining in the Coast Range and Sierra Nevada region, has been observed for at least 150 years. Additional sources of Hg contamination to SFB come from active oil refineries, manufacturing, and wastewater treatment plants in the area. Concentrations of methylmercury in the sediment at the time of sample collection for the present study ranged from 0.011-3.88 μg/kg (dry weight). At some sites, the concentration exceeds wetland toxicity limits, posing a threat to the health of the ecosystem and potentially endangering humans that use the estuary for food and recreation. This study attempts to understand the factors that control the transformation of Hg to methylmercury by microorganisms in aquatic sediments, where the majority of Hg methylation is known to occur. Under anoxic conditions, some sulfate- and iron-reducing bacteria have the capacity to transform Hg into methylmercury. To better understand the microbial communities involved in Hg methylation, an extensive library of 16S rRNA sequences was generated (via Illumina sequencing) from sediment samples at 20 sites throughout the SFB estuary. In addition to genomic data, we have access to a massive database of geochemical measurements made by the SFB Regional Monitoring Program at the sampling locations. These measurements show that our sediment samples have varying methylmercury concentrations and span gradients in porewater sulfate and Fe(III), which are the two known alternative electron acceptors for mercury-methylating anaerobic bacteria. The sampling sites also span gradients in other geochemical factors known to influence microbial community composition (and potentially Hg mercury methylation), such as available organic carbon, pH, and salinity. We will present the

  3. Nutrient and physical profile data from four Microbial Exchanges and Coupling in Coastal Atlantic Systems (MECCAS) cruises collected aboard the R/V Gyre at the mouth of the Chesapeake Bay and northern Atlantic Ocean from February 17, 1985 to September 7, 1986 (NODC Accession 8800324)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Microbial Exchanges and Coupling in Coastal Atlantic Systems (MECCAS) cruise data collected aboard the R/V Gyre at the mouth of the Chesapeake Bay and northern...

  4. A new seamless, high-resolution digital elevation model of the San Francisco Bay-Delta Estuary, California

    Science.gov (United States)

    Fregoso, Theresa A.; Wang, Rueen-Fang; Ateljevich, Eli; Jaffe, Bruce E.

    2017-06-14

    Climate change, sea-level rise, and human development have contributed to the changing geomorphology of the San Francisco Bay - Delta (Bay-Delta) Estuary system. The need to predict scenarios of change led to the development of a new seamless, high-resolution digital elevation model (DEM) of the Bay – Delta that can be used by modelers attempting to understand potential future changes to the estuary system. This report details the three phases of the creation of this DEM. The first phase took a bathymetric-only DEM created in 2005 by the U.S. Geological Survey (USGS), refined it with additional data, and identified areas that would benefit from new surveys. The second phase began a USGS collaboration with the California Department of Water Resources (DWR) that updated a 2012 DWR seamless bathymetric/topographic DEM of the Bay-Delta with input from the USGS and modifications to fit the specific needs of USGS modelers. The third phase took the work from phase 2 and expanded the coverage area in the north to include the Yolo Bypass up to the Fremont Weir, the Sacramento River up to Knights Landing, and the American River up to the Nimbus Dam, and added back in the elevations for interior islands. The constant evolution of the Bay-Delta will require continuous updates to the DEM of the Delta, and there still are areas with older data that would benefit from modern surveys. As a result, DWR plans to continue updating the DEM.

  5. Metagenomic evidence for reciprocal particle exchange between the mainstem estuary and lateral bay sediments of the lower Columbia River

    Directory of Open Access Journals (Sweden)

    Mariya W Smith

    2015-10-01

    Full Text Available Lateral bays of the lower Columbia River estuary are areas of enhanced water retention that influence net ecosystem metabolism through activities of their diverse microbial communities. Metagenomic characterization of sediment microbiota from three disparate sites in two brackish lateral bays (Baker and Youngs produced approximately 100 Gbp of DNA sequence data analyzed subsequently for predicted SSU rRNA and peptide-coding genes. The metagenomes were dominated by Bacteria. A large component of Eukaryota was present in Youngs Bay samples, i.e. the inner bay sediment was enriched with the invasive New Zealand mudsnail, Potamopyrgus antipodarum, known for high ammonia production. The metagenome was also highly enriched with an archaeal ammonia oxidizer closely related to Nitrosoarchaeum limnia. Combined analysis of sequences and continuous, high-resolution time series of biogeochemical data from fixed and mobile platforms revealed the importance of large-scale reciprocal particle exchanges between the mainstem estuarine water column and lateral bay sediments. Deposition of marine diatom particles in sediments near Youngs Bay mouth was associated with a dramatic enrichment of Bacteroidetes (58% of total Bacteria and corresponding genes involved in phytoplankton polysaccharide degradation. The Baker Bay sediment metagenome contained abundant Archaea, including diverse methanogens, as well as functional genes for methylotrophy and taxonomic markers for syntrophic bacteria, suggesting that active methane cycling occurs at this location. Our previous work showed enrichments of similar anaerobic taxa in particulate matter of the mainstem estuarine water column. In total, our results identify the lateral bays as both sources and sinks of biogenic particles significantly impacting microbial community composition and biogeochemical activities in the estuary.

  6. Scientists and Stakeholders in the Chesapeake Bay: How the Mid-Atlantic RISA Strengthens Climate Resilience Through Participatory Decision-Making Processes

    Science.gov (United States)

    Knopman, D.; Berg, N.

    2017-12-01

    The NOAA Mid-Atlantic Regional Integrated Sciences and Assessments (MARISA) program was formed in September 2016 to increase climate resilience in the Mid-Atlantic, with an initial focus on the Chesapeake Bay Watershed. In this talk, we will discuss how the program's unique structure and approach are designed to advance resilience to a changing climate through improved data, place-based decision support, and public engagement. Emphasis will be placed on MARISA's approach to integrating stakeholder perspectives from the onset of decision scoping, through the creation of actionable data sets, and concluding with the co-development of adaptation strategies between the scientific community, decision-makers, and stakeholders. Specific examples of this process involving climate-sensitive decisions and investments regarding water resources, land management, and urban corridors will be discussed.

  7. Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary

    Science.gov (United States)

    Takekawa, John Y.; Miles, A.K.; Schoellhamer, D.H.; Athearn, N.D.; Saiki, M.K.; Duffy, W.D.; Kleinschmidt, S.; Shellenbarger, G.G.; Jannusch, C.A.

    2006-01-01

    Commercial salt evaporation ponds comprise a large proportion of baylands adjacent to the San Francisco Bay, a highly urbanized estuary. In the past two centuries, more than 79% of the historic tidal wetlands in this estuary have been lost. Resource management agencies have acquired more than 10 000 ha of commercial salt ponds with plans to undertake one of the largest wetland restoration projects in North America. However, these plans have created debate about the ecological importance of salt ponds for migratory bird communities in western North America. Salt ponds are unique mesohaline (5–18 g l−1) to hyperhaline (> 40 g l−1) wetlands, but little is known of their ecological structure or value. Thus, we studied decommissioned salt ponds in the North Bay of the San Francisco Bay estuary from January 1999 through November 2001. We measured water quality parameters (salinity, DO, pH, temperature), nutrient concentrations, primary productivity, zooplankton, macroinvertebrates, fish, and birds across a range of salinities from 24 to 264 g l−1. Our studies documented how unique limnological characteristics of salt ponds were related to nutrient levels, primary productivity rates, invertebrate biomass and taxa richness, prey fish, and avian predator numbers. Salt ponds were shown to have unique trophic and physical attributes that supported large numbers of migratory birds. Therefore, managers should carefully weigh the benefits of increasing habitat for native tidal marsh species with the costs of losing these unique hypersaline systems.

  8. Understanding Aggregation and Estimating Seasonal Abundance of Chrysaora quinquecirrha Medusae from a Fixed-station Time Series in the Choptank River, Chesapeake Bay

    Science.gov (United States)

    Tay, J.; Hood, R. R.

    2016-02-01

    Although jellyfish exert strong control over marine plankton dynamics (Richardson et al. 2009, Robison et al. 2014) and negatively impact human commercial and recreational activities (Purcell et al. 2007, Purcell 2012), jellyfish biomass is not well quantified due primarily to sampling difficulties with plankton nets or fisheries trawls (Haddock 2004). As a result, some of the longest records of jellyfish are visual shore-based surveys, such as the fixed-station time series of Chrysaora quinquecirrha that began in 1960 in the Patuxent River in Chesapeake Bay, USA (Cargo and King 1990). Time series counts from fixed-station surveys capture two signals: 1) demographic change at timescales on the order of reproductive processes and 2) spatial patchiness at shorter timescales as different parcels of water move in and out of the survey area by tidal and estuarine advection and turbulent mixing (Lee and McAlice 1979). In this study, our goal was to separate these two signals using a 4-year time series of C. quinquecirrha medusa counts from a fixed-station in the Choptank River, Chesapeake Bay. Idealized modeling of tidal and estuarine advection was used to conceptualize the sampling scheme. Change point and time series analysis was used to detect demographic changes. Indices of aggregation (Negative Binomial coefficient, Taylor's Power Law coefficient, and Morisita's Index) were calculated to describe the spatial patchiness of the medusae. Abundance estimates revealed a bloom cycle that differed in duration and magnitude for each of the study years. Indices of aggregation indicated that medusae were aggregated and that patches grew in the number of individuals, and likely in size, as abundance increased. Further inference from the conceptual modeling suggested that medusae patch structure was generally homogenous over the tidal extent. This study highlights the benefits of using fixed-station shore-based surveys for understanding the biology and ecology of jellyfish.

  9. Handbook of Techniques and Guides for the Study of the San Francisco Bay-Delta-Estuary Complex, Part 2. Key to the Phytoplankton Phyla and Genera.

    Science.gov (United States)

    Helrich, Jane

    Project MER (Marine Ecology Research) is aimed at improving environmental education in the San Francisco Bay Area schools. This document is the second of a series of guides designed to help students and teachers gather data concerning the San Francisco Bay-Delta-Estuary Complex and to organize these data to make a contribution to the literature of…

  10. Hydrochemical and isotopic characteristics of estuarial seawater and river water of Bailanghe in Laizhou Bay, China

    Science.gov (United States)

    Yang, Qiaofeng; Xu, Suning; Wang, Ruijiu; Li, Wenpeng; Wang, Zhiyi; Mei, Junjun; Ding, Zhilei; Yang, Peijie; Yu, Liangju; Lv, Tieying; Bai, Gang; Kang, Wei

    2016-04-01

    In the study of seawater intrusion, seawater is usually taken as an end-member that mixes with other source(s). However, compared to standard seawater, the coastal seawater particularly that near the estuary, can be strongly influenced by the rivers into the sea and by coastal human activities. Their composition can be thus continuously changed and redistributed with space and time. Therefore, before investigating seawater intrusion in a certain area, it is essentially important to determine the features of the estuarine seawater (e.g. the mixture percentage between standard seawater and river water). In this study, we aimed to gain a clear situation of the seawater intrusion in Laizhou Bay, Southern Bohai, China. The issue aforementioned was investigated by comparing the stable isotopic and hydrochemical composition of the marine and river water collected in this area. Samples investigated include 5 surface water samples collected at the downstream of the Bailanghe and 7 seawater samples near the estuary of Laizhou Bay. Inert tracers (δD, δ18O, Cl, Br) and reaction tracers (Na, Mg, SO4, HCO3, Ca, NO3) are particularly analyzed. The major results are as follows: 1) All the river water samples fall below the Global Meteoric Water Line in the δD - δ18O diagram, reflecting evaporation of the upstream reservoir water. The seawater samples fall on the mixing line of standard seawater and the river water in the stable isotopic diagram. 2) The Cl-δ18O diagram indicates widespread dissolution of evaporate into the river, while high concentration of Ca and HCO3-, as well as the SO42- - Cl relation of the river water samples reflect the dissolution of CO2 , carbonate and sulfate in the atmosphere and on the ground. 3) The Br/Cl ratios of seawater samples are closed to the marine ratios. This together with the plots of major ions vs. Cl suggest that the seawater samples are originated from the mixture of standard seawater and river water. Therefore, when referring to the

  11. Total petroleum hydrocarbons and trace metals in tropical estuary of Todos os Santos Bay, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Celino, Joil Jose; Oliveira, Olivia Maria Cordeiro de; Queiroz, Antonio Fernando de Souza [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Trigueis, Jorge Alberto [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil); Garcia, Karina Santos [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2008-07-01

    As part of the environmental assessment within Todos os Santos Bay, State of Bahia - Brazil, in summer of 2005, superficial water and sediments samples of the mangrove were collected at five locations to determine the spatial distribution of anthropogenic pollutants in the Dom Joao estuary at the Sao Francisco do Conde Region. Sandy sediments with low organic matter content dominate the studied area. Trace metal levels indicated that sediments were moderately polluted with Cu (overall mean: 21.48 +/- 4.76 {mu}g.g-1 dry sediment), but not with Pb (15 +/- 8), Zn (38 +/- 10), Cr (15 +/- 7), Ni (13 +/- 6) and Cd (0.4 +/- 0.2). Depending on location, total petroleum hydrocarbons ranged from 1.6 to 10.6 {mu}g.g-1. To discriminate pattern differences and similarities among samples, principal component analysis (PCA) was performed using a correlation matrix. PCA revealed the latent relationships among all the stations investigated and confirmed our analytical results. Principal components analysis confirmed two regions according to their environmental quality. The results pointed out that almost all the area presented some substances that can cause adverse biological effects, especially in the outermost region where some metals are above TEL level. (author)

  12. Downscaling future climate projections to the watershed scale: A north San Francisco Bay estuary case study

    Science.gov (United States)

    Micheli, Elisabeth; Flint, Lorraine; Flint, Alan; Weiss, Stuart; Kennedy, Morgan

    2012-01-01

    We modeled the hydrology of basins draining into the northern portion of the San Francisco Bay Estuary (North San Pablo Bay) using a regional water balance model (Basin Characterization Model; BCM) to estimate potential effects of climate change at the watershed scale. The BCM calculates water balance components, including runoff, recharge, evapotranspiration, soil moisture, and stream flow, based on climate, topography, soils and underlying geology, and the solar-driven energy balance. We downscaled historical and projected precipitation and air temperature values derived from weather stations and global General Circulation Models (GCMs) to a spatial scale of 270 m. We then used the BCM to estimate hydrologic response to climate change for four scenarios spanning this century (2000–2100). Historical climate patterns show that Marin’s coastal regions are typically on the order of 2 °C cooler and receive five percent more precipitation compared to the inland valleys of Sonoma and Napa because of marine influences and local topography. By the last 30 years of this century, North Bay scenarios project average minimum temperatures to increase by 1.0 °C to 3.1 °C and average maximum temperatures to increase by 2.1 °C to 3.4 °C (in comparison to conditions experienced over the last 30 years, 1981–2010). Precipitation projections for the 21st century vary between GCMs (ranging from 2 to 15% wetter than the 20th-century average). Temperature forcing increases the variability of modeled runoff, recharge, and stream discharge, and shifts hydrologic cycle timing. For both high- and low-rainfall scenarios, by the close of this century warming is projected to amplify late-season climatic water deficit (a measure of drought stress on soils) by 8% to 21%. Hydrologic variability within a single river basin demonstrated at the scale of subwatersheds may prove an important consideration for water managers in the face of climate change. Our results suggest that in arid

  13. Flux of nitrogen, phosphorus, and suspended sediment from the Susquehanna River Basin to the Chesapeake Bay during Tropical Storm Lee, September 2011, as an indicator of the effects of reservoir sedimentation on water quality

    Science.gov (United States)

    Hirsch, Robert M.

    2012-01-01

    Concentrations of nitrogen, phosphorus, and suspended sediment are measured at the U.S. Geological Survey streamgage at Conowingo Dam at the downstream end of the Susquehanna River Basin in Maryland, where the river flows into the Chesapeake Bay. During the period September 7-15, 2011, in the aftermath of Tropical Storm Lee, concentrations of these three constituents were among the highest ever measured at this site. These measurements indicate that sediment-storage processes behind the three dams on the lower Susquehanna River are evolving. In particular, they indicate that scouring of sediment (and the nitrogen and phosphorus attached to that sediment) may be increasing with time. Trends in flow-normalized fluxes at the Susquehanna River at Conowingo, Maryland, streamgage during 1996-2011 indicate a 3.2-percent decrease in total nitrogen, but a 55-percent increase in total phosphorus and a 97-percent increase in suspended sediment. These large increases in the flux of phosphorus and sediment from the Susquehanna River to the Chesapeake Bay have occurred despite reductions in the fluxes of these constituents from the Susquehanna River watershed upstream from the reservoirs. Although the Tropical Storm Lee flood event contributed about 1.8 percent of the total streamflow from the Susquehanna River to the Chesapeake Bay over the past decade (water years 2002-11), it contributed about 5 percent of the nitrogen, 22 percent of the phosphorus, and 39 percent of the suspended sediment during the same period. These results highlight the importance of brief high-flow events in releasing nitrogen, phosphorus, and sediment derived from the Susquehanna River watershed and stored in the Conowingo Reservoir to the Chesapeake Bay.

  14. Acoustic tag detections of green sturgeon in the Columbia River and Coos Bay estuaries, Washington and Oregon, 2010–11

    Science.gov (United States)

    Hansel, Hal C.; Romine, Jason G.; Perry, Russell W.

    2017-11-08

    The Columbia River, in Washington and Oregon, and Coos Bay, in Oregon, are economically important shipping channels that are inhabited by several fishes protected under the Endangered Species Act (ESA). Maintenance of shipping channels involves dredge operations to maintain sufficient in-channel depths to allow large ships to navigate the waterways safely. Fishes entrained by dredge equipment often die or experience delayed mortality. Other potential negative effects of dredging include increased turbidity, reductions in prey resources, and the release of harmful contaminants from the dredged sediments. One species of concern is the ESA-listed green sturgeon (Acipenser medirostris; Southern Distinct Population Segment). In this study, we used acoustic telemetry to identify habitat use, arrival and departure timing, and the extent of upstream migration of green sturgeon in the Columbia River and Coos Bay to help inform dredge operations to minimize potential take of green sturgeon. Autonomous acoustic receivers were deployed in Coos Bay from the mouth to river kilometer (rkm) 21.6 from October 2009 through October 2010. In the Columbia River Estuary, receivers were deployed between the mouth and rkm 37.8 from April to November in 2010 and 2011. A total of 29 subadult and adult green sturgeon were tagged with temperature and pressure sensor tags and released during the study, primarily in Willapa Bay and Grays Harbor, Washington, and the Klamath River, Oregon. Green sturgeon detected during the study but released by other researchers also were included in the study.The number of tagged green sturgeon detected in the two estuaries differed markedly. In Coos Bay, only one green sturgeon was detected for about 2 hours near the estuary mouth. In the Columbia River Estuary, 9 green sturgeon were detected in 2010 and 10 fish were detected in 2011. Green sturgeon entered the Columbia River from May through October during both years, with the greatest numbers of fish being

  15. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA

    International Nuclear Information System (INIS)

    Coxon, T.M.; Odhiambo, B.K.; Giancarlo, L.C.

    2016-01-01

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight "2"1"0Pb and "1"3"7Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. - Highlights:

  16. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Coxon, T.M. [Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Avenue Fredericksburg, Virginia 22401 (United States); Odhiambo, B.K., E-mail: bkisila@umw.edu [Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Avenue Fredericksburg, Virginia 22401 (United States); Giancarlo, L.C. [Department of Chemistry, University of Mary Washington, Fredericksburg, VA 22401 (United States)

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight {sup 210}Pb and {sup 137}Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments

  17. A rapid procedure for the determination of thorium, uranium, cadmium and molybdenum in small sediment samples by inductively coupled plasma-mass spectrometry: application in Chesapeake Bay

    International Nuclear Information System (INIS)

    Zheng, Y.; Weinman, B.; Cronin, T.; Fleisher, M.Q.; Anderson, R.F.

    2003-01-01

    This paper describes a rapid procedure that allows precise analysis of Mo, Cd, U and Th in sediment samples as small as 10 mg by using a novel approach that utilizes a 'pseudo' isotope dilution for Th and conventional isotope dilution for Mo, Cd and U by ICP-MS. Long-term reproducibility of the method is between 2.5 and 5% with an advantage of rapid analysis on a single digestion of sediment sample and the potential of adding other elements of interest if so desired. Application of this method to two piston cores collected near the mouth of the Patuxent River in Chesapeake Bay showed that the accumulation of authigenic Mo and Cd varied in response to the changing bottom water redox conditions, with anoxia showing consistent oscillations throughout both pre-industrial and industrial times. Accumulation of authigenic U shows consistent oscillations as well, without any apparent increase in productivity related to anoxic trends. Degrees of Mo and Cd enrichment also inversely correlate to halophilic microfaunal assemblages already established as paleoclimate proxies within the bay indicating that bottom water anoxia is driven in part by the amount of freshwater discharge that the area receives

  18. Problems and pressures, management and measures in a site of marine conservation importance: Carmarthen Bay and Estuaries

    Science.gov (United States)

    Bullimore, Blaise

    2014-10-01

    Management of anthropogenic activities that cause pressure on estuarine wildlife and biodiversity is beset by a wide range of challenges. Some, such as the differing environmental and socio-economic objectives and conflicting views and priorities, are common to many estuaries; others are site specific. The Carmarthen Bay and Estuaries European Marine Site encompasses four estuaries of European wildlife and conservation importance and considerable socio-economic value. The estuaries and their wildlife are subject to a range of pressures and threats and the statutory authorities responsible for management in and adjacent to the Site have developed a management scheme to address these. Preparation of the management scheme included an assessment of human activities known to occur in and adjacent to the Site for their potential to cause a threat to the designated habitats and species features, and identified actions the management authorities need to take to minimise or eliminate pressures and threats. To deliver the scheme the partner authorities need to accept the requirement for management actions and work together to achieve them. The Welsh Government also needs to work with these authorities because it is responsible for management of many of the most important pressure-causing activities. However, the absence of statutory obligations for partnership working has proved an impediment to successful management.

  19. The Eocene-Oligocene sedimentary record in the Chesapeake Bay impact structure: Implications for climate and sea-level changes on the western Atlantic margin

    Science.gov (United States)

    Schulte, P.; Wade, B.S.; Kontny, A.; ,

    2009-01-01

    A multidisciplinary investigation of the Eocene-Oligocene transition in the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville core from the Chesapeake Bay impact basin was conducted in order to document environmental changes and sequence stratigraphic setting. Planktonic foraminifera and calcareous nannofossil biostratigraphy indicate that the Eyreville core includes an expanded upper Eocene (Biozones E15 to E16 and NP19/20 to NP21, respectively) and a condensed Oligocene-Miocene (NP24-NN1) sedimentary sequence. The Eocene-Oligocene contact corresponds to a =3-Ma-long hiatus. Eocene- Oligocene sedimentation is dominated by great diversity and varying amounts of detrital and authigenic minerals. Four sedimentary intervals are identified by lithology and mineral content: (1) A 30-m-thick, smectite- and illite-rich interval directly overlies the Exmore Formation, suggesting long-term reworking of impact debris within the Chesapeake Bay impact structure. (2) Subsequently, an increase in kaolinite content suggests erosion from soils developed during late Eocene warm and humid climate in agreement with data derived from other Atlantic sites. However, the kaolinite increase may also be explained by change to a predominant sediment input from outside the Chesapeake Bay impact structure caused by progradation of more proximal facies belts during the highstand systems tract of the late Eocene sequence E10.Spectral analysis based on gamma-ray and magnetic susceptibility logs suggests infl uence of 1.2 Ma low-amplitude oscillation of the obliquity period during the late Eocene. (3) During the latest Eocene (Biozones NP21 and E16), several lithological contacts (clay to clayey silt) occur concomitant with a prominent change in the mineralogical composition with illite as a major component: This lithological change starts close to the Biozone NP19/20-NP21 boundary and may correspond to sequence boundary E10-E11 as observed in

  20. Population biology and distribution of the portunid crab Callinectes ornatus (Decapoda: Brachyura) in an estuary-bay complex of southern Brazil

    OpenAIRE

    Timoteo T. Watanabe; Bruno S. Sant'Anna; Gustavo Y. Hattori; Fernando J. Zara

    2014-01-01

    Trawl fisheries are associated with catches of swimming crabs, which are an important economic resource for commercial as well for small-scale fisheries. This study evaluated the population biology and distribution of the swimming crab Callinectes ornatus (Ordway, 1863) in the Estuary-Bay of São Vicente, state of São Paulo, Brazil. Crabs were collected from a shrimp fishing boat equipped with a semi-balloon otter-trawl net, on eight transects (four in the estuary and four in the bay) from Mar...

  1. From headwaters to coast: Influence of human activities on water quality of the Potomac River Estuary

    Science.gov (United States)

    Bricker, Suzanne B.; Rice, Karen C.; Bricker, Owen P.

    2014-01-01

    The natural aging process of Chesapeake Bay and its tributary estuaries has been accelerated by human activities around the shoreline and within the watershed, increasing sediment and nutrient loads delivered to the bay. Riverine nutrients cause algal growth in the bay leading to reductions in light penetration with consequent declines in sea grass growth, smothering of bottom-dwelling organisms, and decreases in bottom-water dissolved oxygen as algal blooms decay. Historically, bay waters were filtered by oysters, but declines in oyster populations from overfishing and disease have led to higher concentrations of fine-sediment particles and phytoplankton in the water column. Assessments of water and biological resource quality in Chesapeake Bay and tributaries, such as the Potomac River, show a continual degraded state. In this paper, we pay tribute to Owen Bricker’s comprehensive, holistic scientific perspective using an approach that examines the connection between watershed and estuary. We evaluated nitrogen inputs from Potomac River headwaters, nutrient-related conditions within the estuary, and considered the use of shellfish aquaculture as an in-the-water nutrient management measure. Data from headwaters, nontidal, and estuarine portions of the Potomac River watershed and estuary were analyzed to examine the contribution from different parts of the watershed to total nitrogen loads to the estuary. An eutrophication model was applied to these data to evaluate eutrophication status and changes since the early 1990s and for comparison to regional and national conditions. A farm-scale aquaculture model was applied and results scaled to the estuary to determine the potential for shellfish (oyster) aquaculture to mediate eutrophication impacts. Results showed that (1) the contribution to nitrogen loads from headwater streams is small (about 2 %) of total inputs to the Potomac River Estuary; (2) eutrophic conditions in the Potomac River Estuary have improved in

  2. EPA's Review of Concentrated Animal Feeding Operation (CAFO) Permits and Nutrient Management Plans in the Chesapeake Bay Watershed

    Science.gov (United States)

    Starting in 2013, EPA conducted reviews of Concentrated Animal Feeding Operations (CAFOs) permits and nutrient management plans (NMPs) in six of the Bay jurisdictions (Delaware, Maryland, New York, Pennsylvania, Virginia and West Virginia).

  3. Role of manganese oxides in the exposure of mute swans (Cygnus olor) to Pb and other elements in the Chesapeake Bay, USA

    International Nuclear Information System (INIS)

    Beyer, W. Nelson; Day, Daniel

    2004-01-01

    The aims of this study are to estimate exposure of waterfowl to elements in contaminated sediments in the Chesapeake Bay and to consider the potential role of Mn in influencing bioavailability and exposure. Metal concentrations were measured in livers and digesta taken from mute swans living on the Aberdeen Proving Ground, whose sediment had elevated concentrations of Cu, S, Se, Zn, As, Co, Cr, Hg and Pb. Concentrations of only the first four of these elements were elevated in swan digesta. None of the concentrations detected in the digesta or livers of the swans was considered toxic, although the concentrations of Cu and Se were high compared to concentrations of these elements reported in other waterfowl. Lead was found to be scavenged by Mn and Fe oxides from the water and deposited on the surface of vegetation at a reference site. Under some environmental chemical conditions, this is an important route of exposure to Pb in waterfowl, not previously recognized. - Lead was scavenged by Mn and Fe oxides and deposited on aquatic vegetation

  4. Role of manganese oxides in the exposure of mute swans (Cygnus olor) to Pb and other elements in the Chesapeake Bay, USA

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, W. Nelson; Day, Daniel

    2004-05-01

    The aims of this study are to estimate exposure of waterfowl to elements in contaminated sediments in the Chesapeake Bay and to consider the potential role of Mn in influencing bioavailability and exposure. Metal concentrations were measured in livers and digesta taken from mute swans living on the Aberdeen Proving Ground, whose sediment had elevated concentrations of Cu, S, Se, Zn, As, Co, Cr, Hg and Pb. Concentrations of only the first four of these elements were elevated in swan digesta. None of the concentrations detected in the digesta or livers of the swans was considered toxic, although the concentrations of Cu and Se were high compared to concentrations of these elements reported in other waterfowl. Lead was found to be scavenged by Mn and Fe oxides from the water and deposited on the surface of vegetation at a reference site. Under some environmental chemical conditions, this is an important route of exposure to Pb in waterfowl, not previously recognized. - Lead was scavenged by Mn and Fe oxides and deposited on aquatic vegetation.

  5. The distribution of phosphorus in Popes Creek, VA, and in the Pocomoke River, MD: Two watersheds with different land management practices in the Chesapeake Bay Basin

    Science.gov (United States)

    Simon, N.S.; Bricker, O.P.; Newell, W.; McCoy, J.; Morawe, R.

    2005-01-01

    This paper compares phosphorus (P) concentrations in sediments from two watersheds, one with, and one without, intensive animal agriculture. The watersheds are in the coastal plain of the Chesapeake Bay and have similar physiographic characteristics. Agriculture in the Pocomoke River, MD, watershed supplied 2.7 percent of all broiler chickens produced in the USA in 1997. Poultry litter is an abundant, local source of manure for crops. Broiler chickens are not produced in the Popes Creek, VA, watershed and poultry manure is, therefore, not a major source of fertilizer. The largest concentrations of P in sediment samples are found in floodplain and main-stem bottom sediment in both watersheds. Concentrations of total P and P extracted with 1N HCl are significantly larger in main-stem bottom sediments from the Pocomoke River than in main-stem bottom sediments from Popes Creek. Larger concentrations of P are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Pocomoke River watershed than are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Popes Creek watershed. Data for P and iron (Fe) concentrations in sediments from the Popes Creek watershed provide a numerical framework (baseline) with which to compare P and Fe concentrations in sediment from the Pocomoke River watershed. ?? Springer 2005.

  6. Impact of Environment and Ontogeny on Relative Fecundity and Egg Quality of Female Oysters (Crassostrea virginica) from Four Sites in Northern Chesapeake Bay.

    Science.gov (United States)

    Glandon, Hillary Lane; Michaelis, Adriane K; Politano, Vincent A; Alexander, Stephanie T; Vlahovich, Emily A; Reece, Kimberly S; Koopman, Heather N; Meritt, Donald W; Paynter, Kennedy T

    2016-12-01

    Resource allocation to reproduction is a primary physiological concern for individuals, and can vary with age, environment, or a combination of both factors. In this study we quantified the impact of environment and individual age on the reproductive output of female oysters Crassostrea virginica. We determined the relative fecundity, egg total lipid content, and overall and omega-3/omega-6 (ω3/ω6) fatty acid signatures (FAS) of eggs spawned by female oysters over a 2-year period (n = 32 and n = 64). Variation was quantified spatially and ontogenetically by sampling young and old oyster populations from two rivers in Chesapeake Bay, totaling four collection sites. During Year 1, when oysters underwent oogenesis in different locations, overall and ω3/ω6 egg FAS varied significantly by river, with no significant differences observed in the FAS of oysters by age in Year 1. In Year 2, when oysters from different sites underwent oogenesis in a single location, no significant differences in the overall egg FAS or ω3/ω6 egg FAS by river or age were observed. These findings suggest that oysters integrate environment into their reproductive output, but that time spent growing at a specific location (in this case, represented by oyster age) plays a relatively minor role in the biochemical composition of oyster eggs. These results have consequences for our understanding of how resources are allocated from the female oyster to eggs and, more generally, the impact of environment and ontogeny on reproductive physiology.

  7. Estuarine water quality and plankton community responses in the Pensacola Bay Estuary

    Science.gov (United States)

    Phytoplankton serve a centrally important role in estuaries forming the base of the food web. Thus factors that affect phytoplankton production and species composition cascades to higher trophic levels, ultimately affecting secondary production. Given their sensitivity to myriad ...

  8. Local Estuary Programs

    Science.gov (United States)

    This page provides information about Local Individual Estuary Programs including links to their NEP homepages, social media, Comprehensive Conservation and Management Plans, and state of the bay reports.

  9. Continuous resistivity profiling data from the Corsica River Estuary, Maryland

    Science.gov (United States)

    Cross, V.A.; Bratton, J.F.; Worley, C.R.; Crusius, J.; Kroeger, K.D.

    2011-01-01

    Submarine groundwater discharge (SGD) into Maryland's Corsica River Estuary was investigated as part of a larger study to determine its importance in nutrient delivery to the Chesapeake Bay. The Corsica River Estuary represents a coastal lowland setting typical of much of the eastern bay. An interdisciplinary U.S. Geological Survey (USGS) science team conducted field operations in the lower estuary in April and May 2007. Resource managers are concerned about nutrients that are entering the estuary via SGD that may be contributing to eutrophication, harmful algal blooms, and fish kills. Techniques employed in the study included continuous resistivity profiling (CRP), piezometer sampling of submarine groundwater, and collection of a time series of radon tracer activity in surface water. A CRP system measures electrical resistivity of saturated subestuarine sediments to distinguish those bearing fresh water (high resistivity) from those with saline or brackish pore water (low resistivity). This report describes the collection and processing of CRP data and summarizes the results. Based on a grid of 67.6 kilometers of CRP data, low-salinity (high-resistivity) groundwater extended approximately 50-400 meters offshore from estuary shorelines at depths of 5 to >12 meters below the sediment surface, likely beneath a confining unit. A band of low-resistivity sediment detected along the axis of the estuary indicated the presence of a filled paleochannel containing brackish groundwater. The meandering paleochannel likely incised through the confining unit during periods of lower sea level, allowing the low-salinity groundwater plumes originating from land to mix with brackish subestuarine groundwater along the channel margins and to discharge. A better understanding of the spatial variability and geological controls of submarine groundwater flow beneath the Corsica River Estuary could lead to improved models and mitigation strategies for nutrient over-enrichment in the

  10. Developing a Phytoplankton Biotic Index as an Indicator of Freshwater Inflow within a Subtropical Estuary

    Science.gov (United States)

    Steichen, J. L.; Quigg, A.; Lucchese, A.; Preischel, H.

    2016-02-01

    Freshwater inflows drive the water and sediment quality in coastal bays and estuaries influencing the ecosystem and health of the biological community. Phytoplankton accessory pigments (used as a proxy for major taxonomic groups) have been utilized to develop a biotic index of physical, chemical and biotic disturbances in Chesapeake Bay (USA) and other estuarine systems. In this study we have used the Chesapeake Bay - Phytoplankton Index of Biotic Integrity model as a guide in developing an index for Galveston Bay, TX (USA) as an indicator of sufficient freshwater inflow to a subtropical estuary. Multivariate statistical analyses were run using PRIMER-E+PERMANOVA to determine the correlations between phytoplankton accessory pigment concentrations and a suite of abiotic factors associated with freshwater inflow (salinity, DIN, PO4, secchi). Phytoplankton pigment concentrations and water quality parameters were collected across Galveston Bay on a monthly basis from 2008-2013. In the upper region of the bay nearest the river source Dinophyceae, Cryptophyceae (winter (Dec-Feb)) and Chlorophyceae (winter and spring (Mar-May)) were significantly correlated to freshwater inflow and nutrient concentrations PO4 (p<0.05). Increased concentrations of Bacillariophyceae and Cyanophyceae (summer (Jun-Aug)) were significantly correlated to lower concentrations of DIN (p<0.05). Near the mouth of the estuary there was a significant correlation between the increase in Bacillariophyceae, Cyanophyceae, Cryptophyceae and Dinophyceae with decreasing PO4 (p<0.05). Within the dynamic system of Galveston Bay we are working to apply a Phytoplankton Index of Biotic Integrity as a means of monitoring the biological health of this ecologically and economically important estuarine ecosystem.

  11. APPLICATION OF GIS AND SATELLITE DATA IN THE INVESTIGATION OF BAYS AND ESTUARIAL ABRASION-ACCUMULATIVE JUMPERS OF THE VOLGOGRAD RESERVOIR

    Directory of Open Access Journals (Sweden)

    M. S. Baranova

    2017-01-01

    Full Text Available The paper presents some results of Volgograd reservoir bays investigation and their abrasion-accumulative jumpers in the estuarial alignments during field expeditionary researching and with the application of geoinformation systems and satellite data. Based on the results of long-term field observations and satellite data, it was founded that most of small and medium-sized bays have natural jumpers of abrasion-accumulative genesis now. The paper contains short characteristics of such bays as Dlinniy Lipoviy, Zharkova, Korotkiy Lipoviy, Bolshoy, Rostoviy, Mostovoy, Drugalka. The authors have created bathymetric maps and graphs of longitudinal profiles for the water areas of some of the bays on the right bank, calculated the areas of estuarial jumpers and the areas of the shallow water zone inside the bays. The bays, characterized in the entry gate by depths from 9 m to 16 m, do not have a predisposition to being overlapped by jumpers, and a number of bays are currently in the stage of separation. In the course of the investigation it was determined that the maximum depth of the break-away bays does not exceed six and half meters; the active process of detachment covers both small and medium-sized bays; among the studied bays considerable areas are occupied by shallow waters with depths of up to 2 meters; geoinformation systems and satellite data allow one to analyze, complete and generalize field research data and receive visual cartographic materials. Based on the results of bathymetric survey, there was revealed a fairly active accumulation of sediments in the abrasion-accumulative forms of the underwater and above-water relief of all the investigated reservoir bays.

  12. 76 FR 26767 - Captain John Smith Chesapeake National Historic Trail Advisory Council

    Science.gov (United States)

    2011-05-09

    ... DEPARTMENT OF THE INTERIOR National Park Service Captain John Smith Chesapeake National Historic... that the Advisory Committee on the Captain John Smith Chesapeake National Historic Trail will hold a...-1609 voyages of Captain John Smith to chart the land and waterways of the Chesapeake Bay. This meeting...

  13. 77 FR 12324 - Captain John Smith Chesapeake National Historic Trail Advisory Council

    Science.gov (United States)

    2012-02-29

    ... DEPARTMENT OF THE INTERIOR National Park Service Captain John Smith Chesapeake National Historic... that the Advisory Committee on the Captain John Smith Chesapeake National Historic Trail will hold a...-1609 voyages of Captain John Smith to chart the land and waterways of the Chesapeake Bay. This meeting...

  14. 76 FR 52691 - Captain John Smith Chesapeake National Historic Trail Advisory Council

    Science.gov (United States)

    2011-08-23

    ... DEPARTMENT OF THE INTERIOR National Park Service Captain John Smith Chesapeake National Historic... that the Advisory Committee on the Captain John Smith Chesapeake National Historic Trail will hold a...-1609 voyages of Captain John Smith to chart the land and waterways of the Chesapeake Bay. This meeting...

  15. Incident wave run-up into narrow sloping bays and estuaries

    Science.gov (United States)

    Sinan Özeren, M.; Postacioglu, Nazmi; Canlı, Umut

    2015-04-01

    The problem is investigated using Carrier Greenspan hodograph transformations.We perform a quasi-one-dimensional solution well into the bay, far enough of the mouth of the bay. The linearized boundary conditions at the mouth of the bay lead to an integral equation for 2-D geometry. A semi analytical optimization method has been developed to solve this integral equation. When the wavelength of the incident wave is much larger than the width of the bay, the conformalmapping of the bay and the semi infinite sea onto upper complex plane provides a solution of the integral equation in closed form. Particular emphasis is placed on the case where the frequency of the incident waves matches the real-part of the natural frequency of the oscillation of the bay. These natural frequencies are complex because of the radiation conditions imposed at the mouth of the bay. It is found that the complex part of these natural frequencies decreases with decreasing width of the bay. Thus the trapping of the waves in narrower bays leads to a strong resonance phenomenon when the frequency of the incident wave is equal to the real part of the natural frequency.

  16. Trends in nutrients and suspended solids at the Fall Line of five tributaries to the Chesapeake Bay in Virginia, July 1988 through June 1995

    Science.gov (United States)

    Bell, C.F.; Belval, D.L.; Campbell, J.P.

    1996-01-01

    Water-quality samples were collected at the Fall Line of five tributaries to the Chesapeake Bay in Virginia during a 6- to 7-year period. The water-quality data were used to estimate loads of nutrients and suspended solids from these tributaries to the non-tidal part of Chesapeake Bay Basin and to identify trends in water quality. Knowledge of trends in water quality is required to assess the effectiveness of nutrient manage- ment strategies in the five basins. Multivariate log-linear regression and the seasonal Kendall test were used to estimate flow-adjusted trends in constituent concentration and load. Results of multivariate log-linear regression indicated a greater number of statistically significant trends than the seasonal Kendall test; how-ever, when both methods indicated a significant trend, both agreed on the direction of the trend. Interpre- tation of the trend estimates for this report was based on results of the parametric regression method. No significant trends in total nitrogen concentration were detected at the James River monitoring station from July 1988 through June 1995, though total Kjeldahl nitrogen concen- tration decreased slightly in base-flow samples. Total phosphorus concentration decreased about 29 percent at this station during the sampling period. Most of the decrease can be attributed to reductions in point-source phosphorus loads in 1988 and 1989, especially the phosphate detergent ban of 1988. No significant trends in total suspended solids were observed at the James River monitoring station, and no trends in runoff- derived constituents were interpreted for this river. Significant decreases were detected in concentrations of total nitrogen, total Kjeldahl nitrogen, dissolved nitrite-plus-nitrate nitrogen, and total suspended solids at the Rappahannock River monitoring station between July 1988 and June 1995. A similar downward trend in total phosphorus concentration was significant at the 90-percent confidence level, but not the

  17. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  18. Deficient plakophilin-1 expression due to a mutation in PKP1 causes ectodermal dysplasia-skin fragility syndrome in Chesapeake Bay retriever dogs.

    Directory of Open Access Journals (Sweden)

    Thierry Olivry

    Full Text Available In humans, congenital and hereditary skin diseases associated with epidermal cell-cell separation (acantholysis are very rare, and spontaneous animal models of these diseases are exceptional. Our objectives are to report a novel congenital acantholytic dermatosis that developed in Chesapeake Bay retriever dogs. Nine affected puppies in four different litters were born to eight closely related clinically normal dogs. The disease transmission was consistent with an autosomal recessive mode of inheritance. Clinical signs occurred immediately after birth with superficial epidermal layers sloughing upon pressure. At three month of age, dogs exhibited recurrent superficial skin sloughing and erosions at areas of friction and mucocutaneous junctions; their coat was also finer than normal and there were patches of partial hair loss. At birth, histopathology revealed severe suprabasal acantholysis, which became less severe with ageing. Electron microscopy demonstrated a reduced number of partially formed desmosomes with detached and aggregated keratin intermediate filaments. Immunostaining for desmosomal adhesion molecules revealed a complete lack of staining for plakophilin-1 and anomalies in the distribution of desmoplakin and keratins 10 and 14. Sequencing revealed a homozygous splice donor site mutation within the first intron of PKP1 resulting in a premature stop codon, thereby explaining the inability to detect plakophilin-1 in the skin. Altogether, the clinical and pathological findings, along with the PKP1 mutation, were consistent with the diagnosis of ectodermal dysplasia-skin fragility syndrome with plakophilin-1 deficiency. This is the first occurrence of ectodermal dysplasia-skin fragility syndrome in an animal species. Controlled mating of carrier dogs would yield puppies that could, in theory, be tested for gene therapy of this rare but severe skin disease of children.

  19. Geologic columns for the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure: Impactites and crystalline rocks, 1766 to 1096 m depth

    Science.gov (United States)

    Horton, J. Wright; Gibson, R.L.; Reimold, W.U.; Wittmann, A.; Gohn, G.S.; Edwards, L.E.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville drill cores from the Chesapeake Bay impact structure provide one of the most complete geologic sections ever obtained from an impact structure. This paper presents a series of geologic columns and descriptive lithologic information for the lower impactite and crystalline-rock sections in the cores. The lowermost cored section (1766-1551 m depth) is a complex assemblage of mica schists that commonly contain graphite and fibrolitic sillimanite, intrusive granite pegmatites that grade into coarse granite, and local zones of mylonitic deformation. This basement-derived section is variably overprinted by brittle cataclastic fabrics and locally cut by dikes of polymict impact breccia, including several suevite dikes. An overlying succession of suevites and lithic impact breccias (1551-1397 m) includes a lower section dominated by polymict lithic impact breccia with blocks (up to 17 m) and boulders of cataclastic gneiss and an upper section (above 1474 m) of suevites and clast-rich impact melt rocks. The uppermost suevite is overlain by 26 m (1397-1371 m) of gravelly quartz sand that contains an amphibolite block and boulders of cataclasite and suevite. Above the sand, a 275-m-thick allochthonous granite slab (1371-1096 m) includes gneissic biotite granite, fine- and medium-to-coarse-grained biotite granites, and red altered granite near the base. The granite slab is overlain by more gravelly sand, and both are attributed to debris-avalanche and/or rockslide deposition that slightly preceded or accompanied seawater-resurge into the collapsing transient crater. ?? 2009 The Geological Society of America.

  20. Myxosporean plasmodial infection associated with ulcerative lesions in young-of-the-year Atlantic menhaden in a tributary of the Chesapeake Bay, and possible links to Kudoa clupeidae

    Science.gov (United States)

    Reimschuessel, R.; Gieseker, C.M.; Driscoll, C.; Baya, A.; Kane, A.S.; Blazer, V.S.; Evans, J.J.; Kent, M.L.; Moran, J.D.W.; Poynton, S.L.

    2003-01-01

    Ulcers in Atlantic menhaden Brevoortia tyrannus (Latrobe) (Clupeidae), observed along the USA east coast, have been attributed to diverse etiologies including bacterial, fungal and, recently, harmful algal blooms. To understand the early pathogenesis of these lesions, we examined juvenile Atlantic menhaden collected during their seasonal presence in Chesapeake Bay tributaries from April to October 1999 and from March to August 2000. We conducted histopathological examinations of young-of-the-year fish from the Pocomoke River tributary, which has a history of fish mortalities and high lesion prevalence. Kudoa clupeidae (Myxozoa: Myxosporea) spores were present in the muscles of fish collected in both years. Of the fish assessed by histology in April, 5 to 14% were infected, while in May 90 to 96% were infected. Infection rates remained high during the summer. Mature spores were primarily located within myomeres and caused little or no observable pathological changes. Ultrastructure showed spores with capsulogenic cells bearing filamentous projections, and a basal crescentic nucleus with mottled nucleoplasm containing cleaved, condensed chromatin. Also, a highly invasive plasmodial stage of a myxozoan was found in the lesions of juvenile Atlantic menhaden. The plasmodia were observed in fish collected between May and July, with the maximum occurrence in late June 1999 and late May 2000. Plasmodia penetrated and surrounded muscle bundles, causing grossly observable raised lesions in 73% of all fish infected with this invasive stage. Plasmodia were also detected in the visceral organs, branchial arches, and interocular muscles of some fish. Some of the invasive extrasporogonic plasmodial lesions were associated with ulcers and chronic inflammatory infiltrates. The plasmodial stage appeared to slough out of the tissue with subsequent evidence of wound healing. Ultrastructure showed plasmodia with an elaborate irregular surface, divided into distinct ectoplasm and

  1. A 130 year record of pollution in the Suances estuary (southern Bay of Biscay): Implications for environmental management

    Energy Technology Data Exchange (ETDEWEB)

    Irabien, M.J. [Departamento de Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/EHU, Apartado 644, 48080 Bilbao (Spain)], E-mail: mariajesus.irabien@ehu.es; Cearreta, A. [Departamento de Estratigrafia y Paleontologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/EHU, Apartado 644, 48080 Bilbao (Spain); Leorri, E. [Departamento de Estratigrafia y Paleontologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/EHU, Apartado 644, 48080 Bilbao (Spain); Sociedad de Ciencias Aranzadi, Zorroagagaina kalea 11, 20014 Donostia-San Sebastian (Spain); Gomez, J. [Departamento de Ciencias Medicas y Quirurgicas, Facultad de Medicina, Universidad de Cantabria, Avda Herrera Oria s/n, 39011 Santander (Spain); Viguri, J. [Departamento de Ingenieria Quimica y Quimica Inorganica, ETSIIT, Universidad de Cantabria, Avda Los Castros s/n, 39005 Santander (Spain)

    2008-10-15

    Geochemical composition (Al, Zn, Pb, Cd, Cu, Ni, Cr and As) and foraminiferal assemblages in surface and core sediments were determined to assess the current situation and the recent environmental transformation of the Suances estuary (southern Bay of Biscay, Spain). Dating of the historical record has been achieved using isotopic analysis ({sup 210}Pb, {sup 137}Cs) and two benchmark events such as the beginning of the mineral exploitation in the Reocin Pb-Zn deposits and the evolution of the chlor-alkali industry (inputs of Hg). Concentrations of Zn, Pb and Cd in both surface and core samples are remarkably higher than background values, reflecting the existence of significant amounts of polluted materials. The dramatic environmental impact of this pollution is clearly recorded by the change of the foraminiferal assemblages that even reach an afaunal stage during recent decades. Application of two different sets of Sediment Quality Guidelines confirm that they exert potential risk to the environment, and therefore if dredged they should need specific management measures. The results provide a reference database to monitor future environmental changes in the Suances estuary, particularly as regards the contaminated sediment storage and the re-colonization by autochtonous meiofauna.

  2. A 130 year record of pollution in the Suances estuary (southern Bay of Biscay): Implications for environmental management

    International Nuclear Information System (INIS)

    Irabien, M.J.; Cearreta, A.; Leorri, E.; Gomez, J.; Viguri, J.

    2008-01-01

    Geochemical composition (Al, Zn, Pb, Cd, Cu, Ni, Cr and As) and foraminiferal assemblages in surface and core sediments were determined to assess the current situation and the recent environmental transformation of the Suances estuary (southern Bay of Biscay, Spain). Dating of the historical record has been achieved using isotopic analysis ( 210 Pb, 137 Cs) and two benchmark events such as the beginning of the mineral exploitation in the Reocin Pb-Zn deposits and the evolution of the chlor-alkali industry (inputs of Hg). Concentrations of Zn, Pb and Cd in both surface and core samples are remarkably higher than background values, reflecting the existence of significant amounts of polluted materials. The dramatic environmental impact of this pollution is clearly recorded by the change of the foraminiferal assemblages that even reach an afaunal stage during recent decades. Application of two different sets of Sediment Quality Guidelines confirm that they exert potential risk to the environment, and therefore if dredged they should need specific management measures. The results provide a reference database to monitor future environmental changes in the Suances estuary, particularly as regards the contaminated sediment storage and the re-colonization by autochtonous meiofauna

  3. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts.

    Science.gov (United States)

    Kibria, Golam; Hossain, Md Maruf; Mallick, Debbrota; Lau, T C; Wu, Rudolf

    2016-04-15

    Using artificial mussels (AMs), this study reports and compares time-integrated level of eleven trace metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, U, Zn) in Karnafuli River estuary and coastal area of the Bay of Bengal, Bangladesh. Through this study, "hot spots" of metal pollution were identified. The results may demonstrate that the Karnafuli Estuary, and adjacent coastal area of Chittagong, Bangladesh are highly polluted by high risk metals (cadmium, chromium, copper, mercury, nickel, lead, uranium). Agricultural, domestic and industrial wastes directly discharged into the waterways have been identified as the main causes of metal pollution in Chittagong, Bangladesh. The high level of metal pollution identified may impact on local water quality, and seafood catch, livelihoods of people and public health resulting from seafood consumption. There is a need for regular monitoring to ascertain that local water quality with respect to metal levels are within acceptable levels to safeguards both environmental health and public health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Distribution and risk assessment of trace metals in sediments from Yangtze River estuary and Hangzhou Bay, China.

    Science.gov (United States)

    Li, Feipeng; Mao, Lingchen; Jia, Yubao; Gu, Zhujun; Shi, Weiling; Chen, Ling; Ye, Hua

    2018-01-01

    The Yangtze River estuary (YRE) and Hangzhou Bay (HZB) is of environmental significance because of the negative impact from industrial activities and rapid development of aquaculture on the south bank of HZB (SHZB) in recent years. This study investigated the distribution and risk assessments of trace metals (Cr, Cu, Zn, Hg, Pb, and Cd) accumulated in surface sediments by sampling in YRE, outer and south HZB. Copper and Zn concentration (avg. 35.4 and 98.7 mg kg -1 , respectively) in surface sediments were generally higher than the background suggesting a widespread of Cu and Zn in the coastal area of Yangtze River Delta. High concentrations of Cu (~ 42 mg kg -1 ), Zn (~ 111 mg kg -1 ), Cd (~ 0.27 mg kg -1 ), and Hg (~ 0.047 mg kg -1 ) were found in inner estuary of YRE and decreased offshore as a result of terrestrial input and dilution effect of total metal contents by "cleaner" sediments from the adjacent sea. In outer HZB, accumulation of terrestrial derived metal has taken place near the Zhoushan Islands. Increase in sediment metal concentration from the west (inner) to the east (outer) of SHZB gave rise to the input of fine-grained sediments contaminated with metals from outer bay. According the results from geoaccumulation index, nearly 75% of samples from YRE were moderately polluted (1.0 < I geo  < 2.0) by Cd. Cadmium and Hg contributed for 80~90% to the potential ecological risk index in the YRE and HZB, with ~ 72% sites in HZB under moderate risk (150 ≤ RI < 300) especially near Zhoushan Islands.

  5. Effects of Hypoxia on Sedimentary Nitrogen Cycling in the Pensacola Bay Estuary

    Science.gov (United States)

    Eutrophic-induced hypoxic events pose a serious threat to estuaries in coastal systems. Hypoxic events are becoming more intense and widespread with changes in land use and increased anthropogenic pressures. Microbial communities involved in sedimentary nitrogen (N) cycling may h...

  6. Potential climate change impacts on a tropical estuary: Hilo Bay, Hawaii

    Science.gov (United States)

    Adolf, J.; LaPinta, J.; Marusek, J.; Pascoe, K.; Pugh, A.

    2016-02-01

    Hilo Bay is a tropical estuarine ecosystem on the northeast (windward) coast of Hawai`i Island that is potentially vulnerable to climate change effects mediated through elevated water temperatures and/or changing rainfall patterns that impact river and groundwater fluxes. Here, we document trends in water temperature, river flow and phytoplankton dynamics in Hilo Bay. Hilo Bay is fed by two major rivers, Wailuku and Honoli`i, both of which have shown long term declines in output over their 85 and 38 year monitoring periods (USGS), respectively. Time series of groundwater inputs to Hilo Bay do not exist, but the average estimated rate rivals that of average river inputs. Daily average Hilo Bay water temperatures have increased at a rate of 0.35 degrees C per year (p Hilo Bay water quality buoy began in 2010, with the warmest temperatures on record recorded Sept 2015. Salinity did not show a trend over this same time period. Phytoplankton showed a pronounced seasonal cycle in Hilo Bay with a long term average of 3.7 mg m-3 and dominance by diatoms that exploit the co-availability of silica and nitrate in this environment. On shorter time scales of days to Hilo Bay salinity, temperature and phytoplankton biomass. Coincidental atmospheric warming, SST warming in the adjacent North Pacific ocean, and declining river flows will likely work together to result in elevated SST in Hilo Bay if observed trends continue. The El Nino event that started this year is expected to exacerbate this warming through reduce river flow and warmer regional SST.

  7. Relationship of land use to water quality in the Chesapeake Bay region. [water sampling and photomapping river basins

    Science.gov (United States)

    Correll, D. L.

    1978-01-01

    Both the proportions of the various land use categories present on each watershed and the specific management practices in use in each category affect the quality of runoff waters, and the water quality of the Bay. Several permanent and portable stations on various Maryland Rivers collect volume-integrated water samples. All samples are analyzed for a series of nutrient, particulate, bacterial, herbicide, and heavy metal parameters. Each basin is mapped with respect to land use by the analysis of low-elevation aerial photos. Analyses are verified and adjusted by ground truth surveys. Data are processed and stored in the Smithsonian Institution data bank. Land use categories being investigated include forests/old fields, pastureland, row crops, residential areas, upland swamps, and tidal marshes.

  8. Chesapeake Bay Climate Study Partnership: Undergraduate Student Experiential Learning on Microclimates at the University of Hawai'i, Hilo

    Science.gov (United States)

    Ozbay, G.; Sriharan, S.; Fan, C.; Adolf, J.

    2015-12-01

    Undergraduate student experiential learning activities focused on microclimates of Hawai'i Island, Hawai'i. Six students from Virginia State University, three students from Delaware State University and faculty advisors were hosted by the University of Hawai'i at Hilo (UHH) Department of Marine Science. This partnership provided integrated, cohesive, and innovative education and research capabilities to minority students on climate change science. Activities included a summer course, instrumentation training, field and laboratory research training, sampling, data collection, logging, analysis, interpretation, report preparation, and research presentation. Most training activities used samples collected during students' field sampling in Hilo Bay. Water quality and phytoplankton data were collected along a 220 degree line transect from the mouth of the Wailuku River to the pelagic zone outside of Hilo Bay into the Pacific Ocean to a distance of 15.5 km. Water clarity, turbidity, chlorophyll, physical water quality parameters, and atmospheric CO2 levels were measured along the transect. Phytoplankton samples were collected for analysis by Scanning Electron Microscopy and Flow Cytometry. Data showed the extent of anthropogenic activity on water quality, with implications for food web dynamics. In addition, atmospheric CO2 concentration, island vegetation, and GPS points were recorded throughout the island of Hawai'i to investigate how variations in microclimate, elevation, and land development affect the amount of CO2 in the atmosphere, vegetation, and water quality. Water quality results at locations near rivers were completely different from other study sites, requiring students' critical thinking skills to find possible reasons for the difference. Our data show a correlation between population density and CO2 concentrations. Anthropogenic activities affecting CO2 and ocean conditions in Hawaiian microclimates can potentially have deleterious effects on the life

  9. Conductivity, temperature, depth, fluorescence, optical backscatter, laser in-situ scattering and transmissivity, acoustic zooplankton biomass, net zooplankton counts, and suspended particle data from the RV HUGH R. SHARP in the upper Chesapeake Bay from February 23 through 26, 2007 as part of the Bio-Physical Interaction in the Turbidity Maximum (BITMAX-II) program (NODC Accession 0062884)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data set contains Cruise Reports and CTD data from 8 main cruises in the upper Chesapeake Bay on board the R/V Hugh R. Sharp from February 2007 to October 2008 ....

  10. Distribution and pollution assessment of heavy metals in surface sediments in Xiaoqing river estuary and its adjacent sea of Laizhou bay

    Science.gov (United States)

    Wang, Li; Luo, Xianxiang; Fan, Yuqing

    2018-03-01

    In this paper, the monitoring results of four heavy metals Cu, Pb, Zn and Hg at 10 sampling stations in Xiaoqing river estuary and its adjacent sea of Laizhou Bay in November 2008 were analyzed and evaluated. The results showed that the concentrations of heavy metals in the steam channel and estuary are higher than those in the adjacent sea, and the metal concentrations were below the standard for I class of marine sediment quality, excepting the station 2 in the steam channel and station 5 in the estuary. The assessment of the single-factor pollution index showed that the overall pollution level of the study area was relatively low, but there was serious pollution phenomenon in individual station. The potential ecological risk of heavy metals in the surface sediments was generally at a low level, and Hg had the highest potential risk.

  11. Early Holocene estuary development of the Hesselø Bay area, southern Kattegat, Denmark and its implication for Ancylus Lake drainage

    DEFF Research Database (Denmark)

    Bendixen, Carina; Boldreel, Lars Ole; Jensen, Jørn Bo

    2017-01-01

    environment and a description of coastal processes associated with a river outlet into the bay are presented. Weichselian glacial deposits form the lowermost interpreted unit, covered by late glacial (LG) and postglacial (PG, Holocene) sediments. A funnel-shaped estuary existed at the mouth of channels......High-resolution shallow seismic data, sediment core information, radiocarbon dating and sequence stratigraphy have been used to interpret the late glacial to early Holocene geological evolution of Hesselø Bay in the southern Kattegat, Denmark. A reconstruction of the early Holocene coastal...... in the period 10.3–9.2 cal. ka BP; the channels drained water from south to north. The early PG is characterised by estuarine and coastal deposits. The early Holocene bars that developed in the estuary are preserved as morphological features on the present-day seabed, possibly as a result of rapid relative sea...

  12. Superstorm Sandy-related Morphologic and Sedimentologic Changes in an Estuarine System: Barnegat Bay-Little Egg Harbor Estuary, New Jersey

    Science.gov (United States)

    Miselis, J. L.; Ganju, N. K.; Navoy, A.; Nicholson, R.; Andrews, B.

    2013-12-01

    Despite the well-recognized ecological importance of back-barrier estuaries, the role of storms in their geomorphic evolution is poorly understood. Moreover, the focus of storm impact assessments is often the ocean shorelines of barrier islands rather than the exchange of sediment from barrier to estuary. In order to better understand and ultimately predict short-term morphologic and sedimentologic changes in coastal systems, a comprehensive research approach is required but is often difficult to achieve given the diversity of data required. An opportunity to use such an approach in assessing the storm-response of a barrier-estuary system occurred when Superstorm Sandy made landfall near Atlantic City, New Jersey on 29 October 2012. Since 2011, the US Geological Survey has been investigating water circulation and water-quality degradation in Barnegat Bay-Little Egg Harbor (BBLEH) Estuary, the southern end of which is approximately 25 kilometers north of the landfall location. This effort includes shallow-water geophysical surveys to map the bathymetry and sediment distribution within BBLEH, airborne topo-bathymetric lidar surveys for mapping the shallow shoals that border the estuary, and sediment sampling, all of which have provided a recent picture of the pre-storm estuarine geomorphology. We combined these pre-storm data with similar post-storm data from the estuary and pre- and post-storm topographic data from the ocean shoreline of the barrier island to begin to understand the response of the barrier-estuary system. Breaches in the barrier island resulted in water exchange between the estuary and the ocean, briefly reducing residence times in the northern part of the estuary until the breaches were closed. Few morphologic changes in water depths greater than 1.5 m were noted. However, morphologic changes observed in shallower depths along the eastern shoreline of the estuary are likely related to overwash processes. In general, surficial estuarine sediments

  13. Pre-impact tectonothermal evolution of the crystalline basement-derived rocks in the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure

    Science.gov (United States)

    Gibson, R.L.; Townsend, G.N.; Horton, J. Wright; Reimold, W.U.

    2009-01-01

    Pre-impact crystalline rocks of the lowermost 215 m of the Eyreville B drill core from the Chesapeake Bay impact structure consist of a sequence of pelitic mica schists with subsidiary metagraywackes or felsic metavolcanic rocks, amphibolite, and calc-silicate rock that is intruded by muscovite (??biotite, garnet) granite and granite pegmatite. The schists are commonly graphitic and pyritic and locally contain plagioclase porphyroblasts, fi brolitic sillimanite, and garnet that indicate middle- to upper-amphibolite-facies peak metamorphic conditions estimated at ??0.4-0.5 GPa and 600-670 ??C. The schists display an intense, shallowly dipping, S1 composite shear foliation with local micrometer- to decimeter-scale recumbent folds and S-C' shear band structures that formed at high temperatures. Zones of chaotically oriented foliation, resembling breccias but showing no signs of retrogression, are developed locally and are interpreted as shear-disrupted fold hinges. Mineral textural relations in the mica schists indicate that the metamorphic peak was attained during D1. Fabric analysis indicates, however, that subhorizontal shear deformation continued during retrograde cooling, forming mylonite zones in which high-temperature shear fabrics (S-C and S-C') are overprinted by progressively lower- temperature fabrics. Cataclasites and carbonate-cemented breccias in more competent lithologies such as the calc-silicate unit and in the felsic gneiss found as boulders in the overlying impactite succession may refl ect a fi nal pulse of low-temperature cataclastic deformation during D1. These breccias and the shear and mylonitic foliations are cut by smaller, steeply inclined anastomosing fractures with chlorite and calcite infill (interpreted as D2). This D2 event was accompanied by extensive chlorite-sericitecalcite ?? epidote retrogression and appears to predate the impact event. Granite and granite pegmatite veins display local discordance to the S1 foliation, but elsewhere

  14. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    Science.gov (United States)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  15. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watershed using SWAT model

    Science.gov (United States)

    Lee, Sangchul; Sadeghi, Ali M.; Yeo, In-Young; McCarty, Gregory W.; Hively, W. Dean

    2017-01-01

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrate loads from agriculture. Accordingly, the question remains whether WCCs are sufficient to mitigate increased nutrient loads caused by FCCs. In this study, we assessed the impacts of FCCs on WCC nitrate reduction efficiency on the Coastal Plain of the CBW using Soil and Water Assessment Tool (SWAT) model. Three FCC scenarios (2085 – 2098) were prepared using General Circulation Models (GCMs), considering three Intergovernmnental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) greenhouse gas emission scenarios. We also developed six representative WCC implementation scenarios based on the most commonly used planting dates and species of WCCs in this region. Simulation results showed that WCC biomass increased by ~ 58 % under FCC scenarios, due to climate conditions conducive to the WCC growth. Prior to implementing WCCs, annual nitrate loads increased by ~ 43 % under FCC scenarios compared to the baseline scenario (2001 – 2014). When WCCs were planted, annual nitrate loads were substantially reduced by ~ 48 % and WCC nitrate reduction efficiency water ~ 5 % higher under FCC scenarios relative to the baseline. The increase rate of WCC nitrate reduction efficiency varied by FCC scenarios and WCC planting methods. As CO2 concentration was higher and winters were warmer under FCC scenarios, WCCs had greater biomass and therefore showed higher nitrate reduction efficiency. In response to FCC scenarios, the performance of less effective WCC practices (e.g., barley, wheat, and late planting) under the baseline indicated ~ 14 % higher increase rate of nitrate reduction efficiency compared to ones with better effectiveness under the baseline (e

  16. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    Directory of Open Access Journals (Sweden)

    Sangchul Lee

    Full Text Available The adoption rate of winter cover crops (WCCs as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE reduced NO3-N loads by ~49.3% compared to the baseline (no WCC. The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean, with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  17. Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USA.

    Science.gov (United States)

    Wagena, Moges B; Collick, Amy S; Ross, Andrew C; Najjar, Raymond G; Rau, Benjamin; Sommerlot, Andrew R; Fuka, Daniel R; Kleinman, Peter J A; Easton, Zachary M

    2018-05-16

    Nutrient export from agricultural landscapes is a water quality concern and the cause of mitigation activities worldwide. Climate change impacts hydrology and nutrient cycling by changing soil moisture, stoichiometric nutrient ratios, and soil temperature, potentially complicating mitigation measures. This research quantifies the impact of climate change and climate anomalies on hydrology, nutrient cycling, and greenhouse gas emissions in an agricultural catchment of the Chesapeake Bay watershed. We force a calibrated model with seven downscaled and bias-corrected regional climate models and derived climate anomalies to assess their impact on hydrology and the export of nitrate (NO 3 -), phosphorus (P), and sediment, and emissions of nitrous oxide (N 2 O) and di-nitrogen (N 2 ). Model-average (±standard deviation) results indicate that climate change, through an increase in precipitation and temperature, will result in substantial increases in winter/spring flow (10.6 ± 12.3%), NO 3 - (17.3 ± 6.4%), dissolved P (32.3 ± 18.4%), total P (24.8 ± 16.9%), and sediment (25.2 ± 16.6%) export, and a slight increases in N 2 O (0.3 ± 4.8%) and N 2 (0.2 ± 11.8%) emissions. Conversely, decreases in summer flow (-29.1 ± 24.6%) and the export of dissolved P (-15.5 ± 26.4%), total P (-16.3 ± 20.7%), sediment (-20.7 ± 18.3%), and NO 3 - (-29.1 ± 27.8%) are driven by greater evapotranspiration from increasing summer temperatures. Decreases in N 2 O (-26.9 ± 15.7%) and N 2 (-36.6 ± 22.9%) are predicted in the summer and driven by drier soils. While the changes in flow are related directly to changes in precipitation and temperature, the changes in nutrient and sediment export are, to some extent, driven by changes in agricultural management that climate change induces, such as earlier spring tillage and altered nutrient application timing and by alterations to nutrient cycling in the soil. Copyright © 2018

  18. A Tree-Ring Reconstruction of the Salinity Gradient in the Northern Estuary of San Francisco Bay

    Directory of Open Access Journals (Sweden)

    David W. Stahle

    2011-04-01

    Full Text Available Blue oak tree-ring chronologies correlate highly with winter–spring precipitation totals over California, with Sacramento and San Joaquin river stream flow, and with seasonal variations in the salinity gradient in San Francisco Bay. The convergence of fresh and saline currents can influence turbidity, sediment accumulation, and biological productivity in the estuary. Three selected blue oak chronologies were used to develop a 625-year-long reconstruction of the seasonal salinity gradient, or low salinity zone (LSZ, which provides a unique perspective on the interannual-to-decadal variability of this important estuarine habitat indicator. The reconstruction was calibrated with instrumental LSZ data for the winter–spring season, and explains 73% of the variance in the February–June position of the LSZ from 1956 to 2003. Because this calibration period post-dates the sweeping changes that have occurred to land cover, channel morphology, and natural streamflow regimes in California, the reconstruction provides an idealized estimate for how the LSZ might have fluctuated under the seasonal precipitation variations of the past 625 years, given the modern geometry and bathymetry of the estuary and land cover across the drainage basin. The February–June season integrates precipitation and runoff variability during the cool season, and does not extend into the late-summer dry season when LSZ extremes can negatively affect Sacramento–San Joaquin Delta (Delta agriculture and some aquatic organisms. However, there is such strong inter-seasonal persistence in the instrumental LSZ data that precipitation totals during the cool season can strongly pre-condition LSZ position in late summer. The 625-year-long reconstruction indicates strong interannual and decadal variability, the frequent recurrence of consecutive 2-year LSZ maxima and minima, large-scale ocean atmospheric forcing, and an interesting asymmetrical influence of warm El Ni

  19. Quantifying contributions to light attenuation in estuaries and coastal embayments: Application to Narragansett Bay, Rhode Island

    Science.gov (United States)

    In Narragansett Bay, light attenuation by total suspended sediments (TSS), colored dissolved organic matter (CDOM), and phytoplankton chlorophyll-a (chl-a) pigment is 129, 97, and 70%, respectively, of that by pure seawater. Spatial distribution of light attenuation indicates hig...

  20. Using Remotely Sensed Data and Hydrologic Models to Evaluate the Effects of Climate Change on Shallow Aquatic Ecosystems in the Mobile Bay, AL Estuary

    Science.gov (United States)

    Estes, M. G.; Al-Hamdan, M. Z.; Thom, R.; Judd, C.; Ellis, J.; Woodruff, D.; Quattrochi, D.; Rose, K.; Swann, R.

    2012-12-01

    Coastal systems in the northern Gulf of Mexico, including the Mobile Bay, AL estuary, are subject to increasing pressure from a variety of activities including climate change. Climate changes have a direct effect on the discharge of rivers that drain into Mobile Bay and adjacent coastal water bodies. The outflows change water quality (temperature, salinity, and sediment concentrations) in the shallow aquatic areas and affect ecosystem functioning. Mobile Bay is a vital ecosystem that provides habitat for many species of fauna and flora. Historically, submerged aquatic vegetation (SAV) and seagrasses were found in this area of the northern Gulf of Mexico; however the extent of vegetation has significantly decreased over the last 60 years. The objectives of this research are to determine: how climate changes affect runoff and water quality in the estuary and how these changes will affect habitat suitability for SAV and seagrasses. Our approach is to use watershed and hydrodynamic modeling to evaluate the impact of climate change on shallow water aquatic ecosystems in Mobile Bay and adjacent coastal areas. Remotely sensed Landsat data were used for current land cover land use (LCLU) model input and the data provided by Intergovernmental Panel on Climate Change (IPCC) of the future changes in temperature, precipitation, and sea level rise were used to create the climate scenarios for the 2025 and 2050 model simulations. Project results are being shared with Gulf coast stakeholders through the Gulf of Mexico Data Atlas to benefit coastal policy and climate change adaptation strategies.

  1. Using Remotely Sensed Data and Hydrologic Models to Evaluate the Effects of Climate Change on Shallow Aquatic Ecosystems in the Mobile Bay, AL Estuary

    Science.gov (United States)

    Estes, M. G.; Al-Hamdan, M. Z.; Thom, R.; Judd, C.; Woodruff, D.; Ellis, J. T.; Quattrochi, D.; Swann, R.

    2012-01-01

    Coastal systems in the northern Gulf of Mexico, including the Mobile Bay, AL estuary, are subject to increasing pressure from a variety of activities including climate change. Climate changes have a direct effect on the discharge of rivers that drain into Mobile Bay and adjacent coastal water bodies. The outflows change water quality (temperature, salinity, and sediment concentrations) in the shallow aquatic areas and affect ecosystem functioning. Mobile Bay is a vital ecosystem that provides habitat for many species of fauna and flora. Historically, submerged aquatic vegetation (SAV) and seagrasses were found in this area of the northern Gulf of Mexico; however the extent of vegetation has significantly decreased over the last 60 years. The objectives of this research are to determine: how climate changes affect runoff and water quality in the estuary and how these changes will affect habitat suitability for SAV and seagrasses. Our approach is to use watershed and hydrodynamic modeling to evaluate the impact of climate change on shallow water aquatic ecosystems in Mobile Bay and adjacent coastal areas. Remotely sensed Landsat data were used for current land cover land use (LCLU) model input and the data provided by Intergovernmental Panel on Climate Change (IPCC) of the future changes in temperature, precipitation, and sea level rise were used to create the climate scenarios for the 2025 and 2050 model simulations. Project results are being shared with Gulf coast stakeholders through the Gulf of Mexico Data Atlas to benefit coastal policy and climate change adaptation strategies.

  2. Ecosystem responses to long-term nutrient management in an urban estuary: Tampa Bay, Florida, USA

    Science.gov (United States)

    Greening, H.; Janicki, A.; Sherwood, E. T.; Pribble, R.; Johansson, J. O. R.

    2014-12-01

    In subtropical Tampa Bay, Florida, USA, we evaluated restoration trajectories before and after nutrient management strategies were implemented using long-term trends in nutrient loading, water quality, primary production, and seagrass extent. Following citizen demands for action, reduction in wastewater nutrient loading of approximately 90% in the late 1970s lowered external total nitrogen (TN) loading by more than 50% within three years. Continuing nutrient management actions from public and private sectors were associated with a steadily declining TN load rate and with concomitant reduction in chlorophyll-a concentrations and ambient nutrient concentrations since the mid-1980s, despite an increase of more than 1 M people living within the Tampa Bay metropolitan area. Water quality (chlorophyll-a concentration, water clarity as indicated by Secchi disk depth, total nitrogen concentration and dissolved oxygen) and seagrass coverage are approaching conditions observed in the 1950s, before the large increases in human population in the watershed. Following recovery from an extreme weather event in 1997-1998, water clarity increased significantly and seagrass is expanding at a rate significantly different than before the event, suggesting a feedback mechanism as observed in other systems. Key elements supporting the nutrient management strategy and concomitant ecosystem recovery in Tampa Bay include: 1) active community involvement, including agreement about quantifiable restoration goals; 2) regulatory and voluntary reduction in nutrient loadings from point, atmospheric, and nonpoint sources; 3) long-term water quality and seagrass extent monitoring; and 4) a commitment from public and private sectors to work together to attain restoration goals. A shift from a turbid, phytoplankton-based system to a clear water, seagrass-based system that began in the 1980s following comprehensive nutrient loading reductions has resulted in a present-day Tampa Bay which looks and

  3. Avian communities in baylands and artificial salt evaporation ponds of the San Francisco Bay estuary

    Science.gov (United States)

    Takekawa, John Y.; Lu, C.T.; Pratt, R.T.

    2001-01-01

    San Francisco Bay wetlands, seasonal and tidal marshes between the historic low and high tide lines, are now highly fragmented because of development during the past 150 years. Artificial salt pond systems in the Bay are hypersaline and typically support simple assemblages of algae and invertebrates. In order to establish the value of salt ponds for migratory waterbirds, we used datasets to conduct a meta-analysis of avian communities in the baylands and salt ponds of San Pablo Bay. Fifty-three species of waterbirds in the salt ponds represented six foraging guilds: surface feeders, shallow probers, deep probers, dabblers, diving benthivores and piscivores. The total number of species and the Shannon-Weiner diversity index was higher in baylands than in salt ponds during all four seasons. However, overall bird density (number/ha) was higher in salt ponds compared with baylands in the winter and spring, primarily because of large concentrations of benthivores. Cessation of salt production in 1993 and subsequent reduction in water depth resulted in a decline of some diving duck populations that used the salt ponds.

  4. Early Holocene estuary development of the Hesselø Bay area, southern Kattegat, Denmark and its implication for Ancylus Lake drainage

    Science.gov (United States)

    Bendixen, Carina; Boldreel, Lars Ole; Jensen, Jørn Bo; Bennike, Ole; Hübscher, Christian; Clausen, Ole Rønø

    2017-12-01

    High-resolution shallow seismic data, sediment core information, radiocarbon dating and sequence stratigraphy have been used to interpret the late glacial to early Holocene geological evolution of Hesselø Bay in the southern Kattegat, Denmark. A reconstruction of the early Holocene coastal environment and a description of coastal processes associated with a river outlet into the bay are presented. Weichselian glacial deposits form the lowermost interpreted unit, covered by late glacial (LG) and postglacial (PG, Holocene) sediments. A funnel-shaped estuary existed at the mouth of channels in the period 10.3-9.2 cal. ka BP; the channels drained water from south to north. The early PG is characterised by estuarine and coastal deposits. The early Holocene bars that developed in the estuary are preserved as morphological features on the present-day seabed, possibly as a result of rapid relative sea-level rise. The estuary existed simultaneously with the occurrence and drainage of the Ancylus Lake. The drainage of this lake occurred through the Dana River (palaeo-Great Belt channel) into the southern Kattegat and then into the study area. The level of the Ancylus Lake in the Baltic Sea region dropped significantly at about 10.2 cal. ka BP at the same time as the estuary developed in the Kattegat region. One outcome of the present study is an enhanced understanding of the Ancylus Lake drainage path. No evidence of major erosion is seen, which indicates non-catastrophic continuous water flow from the south without major drainage events of the Ancylus Lake to the southern Kattegat. During the Littorina transgression, coastal estuarine conditions characterized the Hesselø Bay area where elongated ridges formed a bar system. As the Littorina transgression continued, back-stepping of the bar system and coastline occurred. When the transgression breached the Great Belt threshold, flooding caused major erosion throughout the study area.

  5. Storm surges and climate change implications for tidal marshes: Insight from the San Francisco Bay Estuary, California, USA

    Science.gov (United States)

    Thorne, Karen M.; Buffington, Kevin J.; Swanson, Kathleen; Takekawa, John Y.

    2013-01-01

    Tidal marshes are dynamic ecosystems, which are influenced by oceanic and freshwater processes and daily changes in sea level. Projected sea-level rise and changes in storm frequency and intensity will affect tidal marshes by altering suspended sediment supply, plant communities, and the inundation duration and depth of the marsh platform. The objective of this research was to evaluate if regional weather conditions resulting in low-pressure storms changed tidal conditions locally within three tidal marshes. We hypothesized that regional storms will increase sea level heights locally, resulting in increased inundation of the tidal marsh platform and plant communities. Using site-level measurements of elevation, plant communities, and water levels, we present results from two storm events in 2010 and 2011 from the San Francisco Bay Estuary (SFBE), California, USA. The January 2010 storm had the lowest recorded sea level pressure in the last 30 years for this region. During the storm episodes, the duration of tidal marsh inundation was 1.8 and 3.1 times greater than average for that time of year, respectively. At peak storm surges, over 65% in 2010 and 93% in 2011 of the plant community was under water. We also discuss the implications of these types of storms and projected sea-level rise on the structure and function of the tidal marshes and how that will impact the hydro-geomorphic processes and marsh biotic communities.

  6. Oceanography of Glacier Bay, Alaska: Implications for biological patterns in a glacial fjord estuary

    Science.gov (United States)

    Etherington, L.L.; Hooge, P.N.; Hooge, Elizabeth Ross; Hill, D.F.

    2007-01-01

    Alaska, U.S.A, is one of the few remaining locations in the world that has fjords that contain temperate idewater glaciers. Studying such estuarine systems provides vital information on how deglaciation affects oceanographic onditions of fjords and surrounding coastal waters. The oceanographic system of Glacier Bay, Alaska, is of particular interest ue to the rapid deglaciation of the Bay and the resulting changes in the estuarine environment, the relatively high oncentrations of marine mammals, seabirds, fishes, and invertebrates, and the Bay’s status as a national park, where ommercial fisheries are being phased out. We describe the first comprehensive broad-scale analysis of physical and iological oceanographic conditions within Glacier Bay based on CTD measurements at 24 stations from 1993 to 2002. easonal patterns of near-surface salinity, temperature, stratification, turbidity, and euphotic depth suggest that freshwater nput was highest in summer, emphasizing the critical role of glacier and snowmelt to this system. Strong and persistent tratification of surface waters driven by freshwater input occurred from spring through fall. After accounting for seasonal nd spatial variation, several of the external physical factors (i.e., air temperature, precipitation, day length) explained a large mount of variation in the physical properties of the surface waters. Spatial patterns of phytoplankton biomass varied hroughout the year and were related to stratification levels, euphotic depth, and day length. We observed hydrographic atterns indicative of strong competing forces influencing water column stability within Glacier Bay: high levels of freshwater ischarge promoted stratification in the upper fjord, while strong tidal currents over the Bay’s shallow entrance sill enhanced ertical mixing. Where these two processes met in the central deep basins there were optimal conditions of intermediate tratification, higher light levels, and potential nutrient renewal

  7. Polychaete assemblage of an impacted estuary, Guanabara Bay, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Leonardo Santi

    2009-12-01

    Full Text Available Thirty-eight stations were sampled in Guanabara Bay, Rio de Janeiro, Brazil, to assess the spatio-temporal diversity and biomass of sublittoral polychaetes. Samples were collected during the dry (September 2000 and rainy season (May 2001 in shallow sublittoral sediments. The polychaete spatial composition showed a heterogeneous distribution throughout the bay. A negative gradient of diversity and biomass was observed towards the inner parts of the bay and sheltered areas. A wide azoic area was found inside the bay. Some high-biomass and low-diversity spots were found near a sewage-discharge point. In these areas, the polychaete biomass increased after the rainy season. A diversified polychaete community was identified around the bay mouth, with no dramatic changes of this pattern between the two sampling periods. Deposit-feeders were dominant in the entire study area. The relative importance of carnivores and omnivores increased towards the outer sector, at stations with coarse sediment fractions. Guanabara Bay can be divided into three main zones with respect to environmental conditions and polychaete diversity and biomass patterns: A High polychaete diversity, hydrodynamically exposed areas composed of sandy, oxidized or moderately reduced sediments with normoxic conditions in the water column. B Low diversity and high biomass of deposit and suspension-feeding polychaete species in the middle part of the bay near continental inflows, comprising stations sharing similar proportions of silt, clay and fine sands. C Azoic area or an impoverished polychaete community in hydrodynamically low-energy areas of silt and clay with extremely reduced sediments, high total organic matter content and hypoxic conditions in the water column, located essentially from the mid-bay towards the north sector. High total organic matter content and hypoxic conditions combined with slow water renewal in the inner bay seemed to play a key role in the polychaete

  8. Recording of the Holocene sediment infilling in a confined tide-dominated estuary: the bay of Brest (Britanny, France)

    Science.gov (United States)

    Gregoire, Gwendoline; Le Roy, Pascal; Ehrhold, Axel; Jouet, Gwenael; Garlan, Thierry

    2016-04-01

    Modern estuaries constitute key areas for the preservation of sedimentary deposits related to the Holocene period. Several previous studies using stratigraphic reconstructions in such environments allowed to characterise the major parameters controlling the Holocene transgressive sequence and to decipher their respective role in the sedimentary infill: (1) the evolution of main hydrologic factors (wave or tide-dominated environment), (2) the sea level fluctuation and (3) the morphologies of the bedrock and the coastline. Nevertheless, the timing of the transgressive deposits and the detailed facies need to be precise in regard to the stratigraphic schemes. The Bay of Brest (Western Brittany, France) offers the opportunity to examine these points and to compare with previous studies. It constitutes an original tide-dominated estuary that communicates to the open sea (Iroise Sea) by a narrow strait. Two main rivers (Aulne and Elorn) are connected to a submerged paleovalleys network that was incised in the Paleozoic basement during lowstands and still preserved in the present morphology. It delineates the central basin surrounded by tidal flat located in sheltered area. The analysis of high and very-high resolution seismic lines recorded through the whole bay combined with sediment cores (up to 4.5 m long) and radiocarbon dating allow to precise the architecture and the timing of the thick Holocene coastal wedge. It is preserved from the valley network to the shore and presents a longitudinal variability (downstream-upstream evolution). The infill is divided into two successive stages (corresponding to the transgressive and highstand system tracts) which laterally evolve from the paleo-valley to the coast. Two units constitute the transgressive system tract. The oldest, dated from 8200 to 7000 cal B.P. is composed of fine-grained, organic-rich tidal flat deposits located in the sheltered area and organised in levees on the terrace bordering the paleo-valley. A tidal

  9. Supplemental materials for the ICDP-USGS Eyreville A, B, and C core holes, Chesapeake Bay impact structure: Core-box photographs, coring-run tables, and depth-conversion files

    Science.gov (United States)

    Durand, C.T.; Edwards, L.E.; Malinconico, M.L.; Powars, D.S.

    2009-01-01

    During 2005-2006, the International Continental Scientific Drilling Program and the U.S. Geological Survey drilled three continuous core holes into the Chesapeake Bay impact structure to a total depth of 1766.3 m. A collection of supplemental materials that presents a record of the core recovery and measurement data for the Eyreville cores is available on CD-ROM at the end of this volume and in the GSA Data Repository. The supplemental materials on the CD-ROM include digital photographs of each core box from the three core holes, tables of the three coring-run logs, as recorded on site, and a set of depth-conversion programs. In this chapter, the contents, purposes, and basic applications of the supplemental materials are briefly described. With this information, users can quickly decide if the materials will apply to their specific research needs. ?? 2009 The Geological Society of America.

  10. The Delaware Bay Estuary as a Classroom: A Research Experience for Future Elementary Grade-Level Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Shipman, H.; Ford, D.; Dagher, Z.; Brickhouse, N.

    2004-05-01

    With supplemental funding from the National Science Foundation (NSF), students from the University of Delaware's Science Semester course took part in a two-day research cruise in the Delaware Bay Estuary. The Science Semester, an NSF-funded project, is an integrated 15-credit sequence that encompasses the entire course work for the spring semester for approximately 60 sophomore-level elementary education majors. The semester includes the earth, life, and physical science content courses and the education science methods course integrated into one curriculum. In this curriculum, problem-based learning and other inquiry-based approaches are applied to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. The research cruise was conducted as part of one of the four major investigations during the course. The investigation focused on Delaware's state marine animal, Limulus polyphemus. It is one of the four remaining species of horseshoe crabs; the largest spawning population of Limulus is found in Delaware Bay. Within the problem- and inquiry-based learning approaches of the Science Semester course, the students became aware that very little data exists on the benthic habitat of Limulus polyphemus. In order to learn more about this habitat, a cohort of seven students from the course was recruited as part of the scientific party to take part in the research cruise to collect data on the floor of Delaware Bay. The data included: multibeam bathymetry/backscatter data, grab samples of bay bottom sediments, and CTD profiles. Prior to the cruise, all students in the course took part in laboratory exercises to learn about topographic maps and navigation charts using the Delaware Bay area as the region of study. While "at-sea", the cruise participants sent the ship's latitude and longitude positions as a function of time. The positions were used by the on-land students to

  11. Chesapeake Bay Sediment Flux Model

    Science.gov (United States)

    1993-06-01

    1988; Van der Molen , -88- 1991; Yoshida, 1981.) The model developed below is based on both of these approaches. It incorporates the diagenetic...288: pp. 289-333. Van der Molen , D.T. (1991): A simple, dynamic model for the simulation of the release of phosphorus from sediments in shallow...1974; Berner, 1980; van Cappellen and Berner, 1988). These relate the diagenetic production of phosphate to the resulting pore water concentration

  12. Radioanalytical assessment of sedimentation rates in Guajara Bay (Amazon Estuary, N Brazil). A study with unsupported 210Pb and 137Cs modeling

    International Nuclear Information System (INIS)

    Patricia Andrade Neves; Paulo Alves de Lima Ferreira; Marcia Caruso Bicego; Rubens Cesar Lopes Figueira

    2014-01-01

    Guajara Bay is an integral part of the Amazon Estuary system, and functions as the main receiver of urban and industrial wastes from the city of Belem, capital city of PA State (N Brazil). There is a lack of knowledge regarding quantitative measures of sedimentation, such as sedimentation rates, in the literature for this area of the Amazon Estuary. This study aimed the evaluation of recent (time range of 100 years) sedimentation rates in three sediment profiles collected in the coastal system of Guajara Bay with a radioanalytical approach of unsupported 210 Pb and 137 Cs modeling. The mean sedimentation rates for the cores obtained were 0.85 ± 0.12 cm year -1 for Anadim core, 1.02 ± 0.17 cm year -1 for Outeiro core and 0.53 ± 0.04 cm year -1 for Tucunduba core. With the use of three models of sedimentation rate models, it was observed that Anadim and Outeiro core presented constant sedimentation rates for the evaluated time range, but Tucunduba did not. This difference in sedimentation rates was probably due to their different sampling locations that present diverse hydrodynamic regime, with deposition of fine sediments in the upper area of the bay and stronger fluvial currents in the southernmost region. (author)

  13. Population biology and distribution of the portunid crab Callinectes ornatus (Decapoda: Brachyura in an estuary-bay complex of southern Brazil

    Directory of Open Access Journals (Sweden)

    Timoteo T. Watanabe

    2014-08-01

    Full Text Available Trawl fisheries are associated with catches of swimming crabs, which are an important economic resource for commercial as well for small-scale fisheries. This study evaluated the population biology and distribution of the swimming crab Callinectes ornatus (Ordway, 1863 in the Estuary-Bay of São Vicente, state of São Paulo, Brazil. Crabs were collected from a shrimp fishing boat equipped with a semi-balloon otter-trawl net, on eight transects (four in the estuary and four in the bay from March 2007 through February 2008. Specimens caught were identified, sexed and measured. Samples of bottom water were collected and the temperature and salinity measured. A total of 618 crabs were captured (332 males, 267 females and 19 ovigerous females, with a sex ratio close to 1:1. A large number of juveniles were captured (77.67%. Crab spatial distributions were positively correlated with salinity (Rs = 0.73, p = 0.0395 and temperature (Rs = 0.71, p = 0.0092. Two peaks of recruitment occurred, in summer and autumn, and ovigerous females were mostly captured during summer, showing a seasonal reproductive pattern. The results showed that C. ornatus uses the bay as a nursery area for juvenile development. Callinectes ornatus is not yet a legally protected species, and the minimum allowed size of crabs caught in the area, although already restricted, should be carefully evaluated since the removal of large numbers of juveniles could negatively impact the local population.

  14. Chesapeake Bay Tidal Flooding Study. Appendix D. Social and Cultural Resources. Appendix E. Engineering Design and Cost Estimates. Appendix F. Economics.

    Science.gov (United States)

    1984-09-01

    provided by private airline. Facilities and services include fuel, storage and outside tiedown, instruction, rental planes, unicorn radio and aircraft...project the population to grow between 41 and 44.5 percent from 1980 to 2030. The greatest increases in population are anticipated for Chesapeake and...VIRGINIA DEMOGRAPHIC CHARACTERISTICS Poquoson has been one of the fastest growing cities in Virginia over the past 20 years. While the surrounding

  15. Fate of mercury species in the coastal plume of the Adour River estuary (Bay of Biscay, SW France)

    International Nuclear Information System (INIS)

    Sharif, Abubaker; Monperrus, Mathilde; Tessier, Emmanuel; Bouchet, Sylvain; Pinaly, Hervé; Rodriguez-Gonzalez, Pablo; Maron, Philippe; Amouroux, David

    2014-01-01

    Because mercury (Hg) undergoes significant biogeochemical processes along the estuarine-coastal continuum, the objective of this work was to investigate the distribution and reactivity of methylmercury (MeHg), inorganic mercury (Hg(II)) and gaseous Hg (DGM) in plume waters of the Adour River estuary (Bay of Biscay). Vertical profiles, spatial and tidal variability of Hg species concentrations were evaluated during two campaigns (April 2007 and May 2010) characterized by significant plume extents over the coastal zone. Incubations with isotopically enriched tracers were performed on bulk and filtered waters under sunlight or dark conditions to investigate processes involved in Hg methylation, demethylation and reduction rates. Total Hg(II) concentrations were more dispersed in April 2007 (5.2 ± 4.9 pM) than in May 2010 (2.5 ± 1.1 pM) while total MeHg concentrations were similar for both seasons and averaged 0.13 ± 0.07 and 0.18 ± 0.11 pM, respectively. DGM concentrations were also similar between the two campaigns, averaging 0.26 ± 0.10 and 0.20 ± 0.09 pM, respectively. Methylation yields remained low within the estuarine plume (< 0.01–0.4% day −1 ) while MeHg was efficiently demethylated via both biotic and abiotic pathways (2.3–55.3% day −1 ), mainly photo-induced. Hg reduction was also effective in these waters (0.3–43.5% day −1 ) and was occurring in both light and dark conditions. The results suggest that the plume is overall a sink for MeHg with integrated net demethylation rates, ranging from 2.0–3.7 g (Hg) d −1 , in the same range than the estimated MeHg inputs from the estuary (respectively, 0.9 and 3.5 g (Hg) d −1 ). The large evasion of DGM from the plume waters to the atmosphere (8.8–26.9 g (Hg) d −1 ) may also limit Hg T inputs to coastal waters (33–69 g (Hg) d −1 ). These processes are thus considered to be most significant in controlling the fate of Hg transferred from the river to the coastal zone. - Highlights:

  16. Fate of mercury species in the coastal plume of the Adour River estuary (Bay of Biscay, SW France)

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, Abubaker; Monperrus, Mathilde; Tessier, Emmanuel; Bouchet, Sylvain; Pinaly, Hervé; Rodriguez-Gonzalez, Pablo [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l' Adour, Hélioparc Pau Pyrénées, 2 av. P. Angot, 64053 Pau cedex 9 (France); Maron, Philippe [Laboratoire des Sciences de l' Ingénieur Appliquées à la Mécanique et au Génie Electrique, Institut Supérieur Aquitain du Bâtiment et des Travaux Publics, Université de Pau et des Pays de l' Adour, Allée du Parc Montaury, 64600 Anglet (France); Amouroux, David, E-mail: david.amouroux@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l' Adour, Hélioparc Pau Pyrénées, 2 av. P. Angot, 64053 Pau cedex 9 (France)

    2014-10-15

    Because mercury (Hg) undergoes significant biogeochemical processes along the estuarine-coastal continuum, the objective of this work was to investigate the distribution and reactivity of methylmercury (MeHg), inorganic mercury (Hg(II)) and gaseous Hg (DGM) in plume waters of the Adour River estuary (Bay of Biscay). Vertical profiles, spatial and tidal variability of Hg species concentrations were evaluated during two campaigns (April 2007 and May 2010) characterized by significant plume extents over the coastal zone. Incubations with isotopically enriched tracers were performed on bulk and filtered waters under sunlight or dark conditions to investigate processes involved in Hg methylation, demethylation and reduction rates. Total Hg(II) concentrations were more dispersed in April 2007 (5.2 ± 4.9 pM) than in May 2010 (2.5 ± 1.1 pM) while total MeHg concentrations were similar for both seasons and averaged 0.13 ± 0.07 and 0.18 ± 0.11 pM, respectively. DGM concentrations were also similar between the two campaigns, averaging 0.26 ± 0.10 and 0.20 ± 0.09 pM, respectively. Methylation yields remained low within the estuarine plume (< 0.01–0.4% day{sup −1}) while MeHg was efficiently demethylated via both biotic and abiotic pathways (2.3–55.3% day{sup −1}), mainly photo-induced. Hg reduction was also effective in these waters (0.3–43.5% day{sup −1}) and was occurring in both light and dark conditions. The results suggest that the plume is overall a sink for MeHg with integrated net demethylation rates, ranging from 2.0–3.7 g (Hg) d{sup −1}, in the same range than the estimated MeHg inputs from the estuary (respectively, 0.9 and 3.5 g (Hg) d{sup −1}). The large evasion of DGM from the plume waters to the atmosphere (8.8–26.9 g (Hg) d{sup −1}) may also limit Hg{sub T} inputs to coastal waters (33–69 g (Hg) d{sup −1}). These processes are thus considered to be most significant in controlling the fate of Hg transferred from the river to the

  17. Seasonal estimates of DOC standing stocks in Apalachicola Bay estuary: Towards a better understanding using field, ocean color and model data

    Science.gov (United States)

    D'Sa, E. J.; Joshi, I.; Osburn, C. L.; Bianchi, T. S.; Ko, D. S.; Oviedo-Vargas, D.; Arellano, A.; Ward, N.

    2016-12-01

    Apalachicola Bay, a semi-enclosed estuary located in Florida's panhandle, is well known for its water quality and oyster yields. We present the use of combined field and ocean color satellite observations and the outputs of a high-resolution hydrodynamic model to study the influence of physical processes on the distribution and the transport of terrestrially derived CDOM and DOC to shelf waters during the spring and fall of 2015. Determination of DOC stocks were based on the development of a CDOM algorithm (R2 = 0.87, N = 9) for the VIIRS ocean color sensor, and the assessment of CDOM - DOC relationships (R2 = 0.88, N = 13 in March; R2 = 0.83, N = 24 in November) for the Apalachicola Bay. Satellite-derived CDOM and DOC maps together with model-based salinity distributions revealed their spatial extent, sources and transport to the shelf water. Furthermore, strong seasonal influence on DOM distribution in the bay was associated with inputs from Apalachicola and Carrabelle Rivers and the surrounding marshes. Estimates of DOC standing stocks in the bay obtained using ocean color data and high-resolution bathymetry showed relatively higher stocks in November ( 3.71 × 106 kg C, 560 km2) than in March ( 4.07 × 106 kg C, 560 km2) despite lower river discharge in dry season. Results of DOC flux estimates from the bay to coastal waters will also be presented.

  18. Preliminary results on the influence of river discharges on biogeochemical processes in Godavari estuary and Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    in the following dry seasons. Biological productivity was found to be very high during the retrieval period of the monsoon. These initial results suggest that the Godavari estuary ecosystem is different from what we know of its seasonal variability....

  19. Effects of small-scale hydrogeologic heterogeneity on submarine groundwater discharge (SGD) dynamics in river dominated estuaries: example of Mobile Bay, Alabama

    Science.gov (United States)

    Montiel, D.; Dimova, N.

    2017-12-01

    Submarine groundwater discharge (SGD) is known to be an important pathway for nutrients and dissolved constituents in estuarine environments worldwide. Despite its limited contribution to the total fresh water flux to the ocean (5 - 10 %), SGD-derived material loadings can rival riverine inputs. Therefore, a good understanding of the coastal hydrogeology and subsequent SGD dynamics is crucial to further investigate constituent fluxes and its implications on small and large scale coastal ecosystems. We evaluated SGD in Mobile Bay (Alabama), the fourth largest estuary in the US, using a combination of radiotracer techniques (223Ra, 226Ra, and 222Rn), stable isotopes (δ 18O and δ 2H), geophysical surveys (continuous resistivity profiling (CRP) and electrical resistivity tomography (ERT)), and seepage meters during three consecutive years. A detailed examination of the entire shoreline of Mobile Bay using CRP, ERT imaging, and multiple sediment cores collection unveiled a heterogeneous (horizontal and vertical) distribution of the surficial coastal aquifer. This was reflected and confirmed by groundwater tracer measurements and direct measurements of SGD in the coastal zone. We found that SGD occurs mainly in the northeast section of Mobile Bay with a total flux that ranged between 0.9 and 13 × 105 m3 d-1 during dry and wet periods, which represents 0.4 - 2 % of the total fresh water inputs into the Bay. While total SGD is insignificant when accounting the whole water budget of Mobile Bay, we found that small-scale geology variations produce groundwater flow preferential pathways in particular areas where SGD inputs play an important role in the water and nutrient budgets.

  20. Some Ecological characteristics with Special Reference to Heavy Metals of Two Estuaries of the North-East Bay of Bengal

    International Nuclear Information System (INIS)

    Faruk, A. S. M.; Das, N. G.; Saha, S. B.; Zaher, M.

    2007-01-01

    Physicochemical characteristics with the emphasis on load of heavy metals of the low tide water of Bakkhali river estuary and Naf river estuary were evaluated. Both the lotic environments were alkaline in nature and the levels in alkalinity were sufficient enough to support primary productivity. But the high concentration of suspended solids may impair primary productivity. The respective concentration of dissolved Cu, Zn, Fe, Mn, Cr and Cd of Bakkhali river estuary was 22.12∼45.20 μg l -1 , 75.23∼105.00 μg l -1 , 130.42∼580.61 μg l -1 , 130.25∼186.76 μg l -1 , 4.21∼11.10 μg l -1 , and 1.51∼2.00 μg l -1 , and that of Naf river estuary was 28.64∼40.64 μg l -1 , 64.28∼135.70 μg l -1 , 234.16∼425.56 μg l -1 , 22.12∼45.20 μg l -1 , 158.83∼203.08 μg l -1 , 8.20∼14.6045.20 μg l -1 , and 1.25∼1.98μg l -1 . Real indication of multicollinearity existed among different metals of naf river estuary. Considering the physicochemical characteristics and concentrations of heavy metals, low tide water of Naf rever estuary can be considered better in regard to pollution than that of Bakkhali river estuary.(author)

  1. The distribution and speciation of trace metals in surface sediments from the Pearl River Estuary and the Daya Bay, Southern China

    International Nuclear Information System (INIS)

    Yu Xiujuan; Yan Yan; Wang Wenxiong

    2010-01-01

    Surface sediments collected from the Pearl River Estuary (PRE) and the Daya Bay (DYB) were analyzed for total metal concentrations and chemical phase partitioning. The total concentrations of Cr, Cu, Ni, Pb, and Zn in the PRE were obviously higher than those in DYB. The maximum concentrations of trace metals in DYB occurred in the four sub-basins, especially in Dapeng Cove, while the concentrations of these metals in the western side of the PRE were higher than those in the east side. Such distribution pattern was primarily due to the different hydraulic conditions and inputs of anthropogenic trace metals. The chemical partitioning of metals analyzed by the BCR sequential extraction method showed that Cr, Ni, and Zn of both areas were present dominantly in the residual fraction, while Pb was found mostly in the non-residual fractions. The partitioning of Cu showed a significant difference between the two areas.

  2. Assessing toxicant effects in a complex estuary--A case study of effects of silver on reproduction in the bivalve, Potamocurbula amurensis, in San Francisco Bay

    Science.gov (United States)

    Brown, Cynthia L.; Parchaso, Francis; Thompson, Janet K.; Luoma, Samuel N.

    2003-01-01

    Contaminant exposures in natural systems can be highly variable. This variability is superimposed upon cyclic variability in biological processes. Together, these factors can confound determination of contaminant effects. Long term, multidisciplined studies with high frequency sampling can be effective in overcoming such obstacles. While studying trace metal contamination in the tissues of the clam, Potamocorbula amurensis, in the northern reach of San Francisco Bay, an episode of high Ag concentrations was identified (maximum of 5.5 µg g−1) at two mid-estuary sites. High concentrations were not seen in clams up-estuary (maximum of 1.92 µg g−1) from these sites and were reduced down-estuary (maximum of 2.67 µg g−1). Silver is not common naturally in the environment, so its elevated presence is usually indicative of anthropogenic influences such as municipal and industrial discharge. Monthly sampling of reproductive status of clams characterized the reproductive cycle and differences in the patterns of reproductive activity that corresponded to changes in Ag tissue concentrations. The proportion of reproductive clams was less than 60% during periods when tissue concentrations were high (generally >2 µg g−1). When tissue concentrations of Ag decreased (≤1 µg g−1), the proportion of reproductive clams was 80 to 100%. A comparison between the annual proportion of reproductive clams and annual Ag tissue concentrations showed a significant negative correlation. No other measured environmental variables were correlated with reproductive impairment. The weight-of-evidence approach strongly supports a cause and effect relationship between Ag contamination and reduced reproductive activity in P. amurensis.

  3. Assessing toxicant effects in a complex estuary: A case study of effects of silver on reproduction in the bivalve, Potamocorbula amurensis, in San Francisco Bay

    Science.gov (United States)

    Brown, C.L.; Parchaso, F.; Thompson, J.K.; Luoma, S.N.

    2003-01-01

    Contaminant exposures in natural systems can be highly variable. This variability is superimposed upon cyclic variability in biological processes. Together, these factors can confound determination of contaminant effects. Long term, multidisciplined studies with high frequency sampling can be effective in overcoming such obstacles. While studying trace metal contamination in the tissues of the clam, Potamocorbula amurensis, in the northern reach of San Francisco Bay, an episode of high Ag concentrations was identified (maximum of 5.5 ??g g-1) at two mid-estuary sites. High concentrations were not seen in clams up-estuary (maximum of 1.92 ??g g-1) from these sites and were reduced down-estuary (maximum of 2.67 ??g g-1). Silver is not common naturally in the environment, so its elevated presence is usually indicative of anthropogenic influences such as municipal and industrial discharge. Monthly sampling of reproductive status of clams characterized the reproductive cycle and differences in the patterns of reproductive activity that corresponded to changes in Ag tissue concentrations. The proportion of reproductive clams was less than 60% during periods when tissue concentrations were high (generally >2 ??g g-1). When tissue concentrations of Ag decreased (???1 ??g g-1), the proportion of reproductive clams was 80 to 100%. A comparison between the annual proportion of reproductive clams and annual Ag tissue concentrations showed a significant negative correlation. No other measured environmental variables were correlated with reproductive impairment. The weight-of-evidence approach strongly supports a cause and effect relationship between Ag contamination and reduced reproductive activity in P. amurensis.

  4. An integrated evaluation of molecular marker indices and linear alkylbenzenes (LABs) to measure sewage input in a subtropical estuary (Babitonga Bay, Brazil)

    International Nuclear Information System (INIS)

    Martins, César C.; Cabral, Ana Caroline; Barbosa-Cintra, Scheyla C.T.; Dauner, Ana Lúcia L.; Souza, Fernanda M.

    2014-01-01

    Babitonga Bay is a South Atlantic estuary with significant ecological function; it is part of the last remaining areas of mangrove communities in the Southern Hemisphere. The aim of this study was to determine the spatial distribution of the faecal sterols and linear alkylbenzenes (LABs) in surface sediments and to perform an integrated evaluation of several molecular marker indices to assess the sewage contamination status in the study area. The highest observed concentrations of faecal sterols (coprostanol + epicoprostanol) and LABs were 6.65 μg g −1 and 413.3 ng g −1 , respectively. Several faecal sterol indices were calculated and correlated with coprostanol levels; these analyses showed that the index limits presented in the current literature could underestimate the sewage contamination in this study area. For the overall estuarine system, a low sewage impact may be assumed based on the low total mass inventories calculated for coprostanol (between 1.4% and 4.8%). - Highlights: • Sewage contamination in a South Atlantic estuary was confirmed by molecular markers. • Faecal sterol indices were established as indicators of sewage contamination. • Estimates of the total mass inventory of coprostanol and LABs are presented. • Faecal sterols are preferable to LABs for the evaluation of sewage inputs in this study area. - Faecal sterols index limits has been established to a subtropical environment as way to ensure reliability for a more precise assessment of sewage contamination

  5. Characterizing the parent and alkyl polycyclic aromatic hydrocarbons in the Pearl River Estuary, Daya Bay and northern South China Sea: Influence of riverine input

    International Nuclear Information System (INIS)

    Yuan, Ke; Wang, Xiaowei; Lin, Li; Zou, Shichun; Li, Yan; Yang, Qingshu; Luan, Tiangang

    2015-01-01

    Distributions of 31 parent polycyclic aromatic hydrocarbons (PAHs) and 29 alkyl PAHs in surface sediments of the Pearl River Estuary (PRE), Daya Bay (DYB) and northern South China Sea (SCS) were examined to study the influence of riverine input. It was found that the contributions of riverine input to sediment PAHs in PRE was much higher than other areas. However, higher proportion of alkyl PAHs and low molecular weight PAHs in DYB and the northern SCS was observed, indicating their different sources. Nevertheless, the sediment PAHs in PRE were heterogeneous and affected by the hydrodynamic conditions. The high molecular weight PAHs were dominant in PRE and enriched in the depositional area of suspended particular matter (SPM). Moreover, the concentration of PAHs in SPM was similar to those in surface sediments and dominated in water columns. Therefore, SPM played a very important role in transportation and distribution of PAHs in PRE. - Highlights: • EPA 16 PAHs contributed a small amount of total PAHs. • Alkyl PAHs showed different behaviors from parent PAHs. • High weight PAHs preferably indicated riverine input. • PAHs distribution in sediment was related with the suspended particle deposition. - Suspended particular matter played a very important role in distribution of PAHs in tide-dominated estuary and alkyl PAHs showed different behavior from parent PAHs

  6. Tampa Bay as a model estuary for examining the impact of human activities on biogeochemical processes: an introduction

    Science.gov (United States)

    Swarzenski, Peter W.; Baskaran, Mark; Henderson, Carl S.; Yates, Kim

    2007-01-01

    Tampa Bay is a shallow, Y-shaped coastal embayment that is located along the center of the Florida Platform – an expansive accumulation of Cretaceous–Tertiary shallow-water carbonates and evaporites that were periodically exposed during glacio–eustatic sea level fluctuations. As a consequence, extensive karstification likely had a controlling impact on the geologic evolution of Tampa Bay. Despite its large aerial size (∼ 1000 km2), Tampa Bay is relatively shallow (mean depth = 4 m) and its watershed (6700 km2) is among the smallest in the Gulf of Mexico. About 85% of all freshwater inflow (mean = 63 m3 s-1) to the bay is carried by four principal tributaries (Orlando et al., 1993). Groundwater makes up an important component of baseflow of these coastal streams and may also be important in delivering nutrients and other constituents to the bay proper by submarine groundwater discharge.

  7. WET DEPOSITION AND AIR-WATER GAS EXCHANGE OF CURRENTLY USED PESTICIDES TO A SUB-ESTUARY OF THE CHESAPEAKE BAY. (R825245)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Flood Tide Transport of Blue Crab Postlarvae: Limitations in a Lagoonal Estuary

    Science.gov (United States)

    Cudaback, C.; Eggleston, D.

    2005-05-01

    Blue crabs, an important commercial species, spend much of their life in estuaries along the east coast. The larvae spawn at or near the ocean, but the juveniles mature in the lower salinity waters of the estuary. It is generally believed that blue crab postlarvae migrate into near surface waters on flood, possibly cued by increasing salinity, and return to the bottom on ebb. Over several tidal cycles, the postlarvae travel a significant distance up-estuary. This model applies quite well to Chesapeake Bay, which has a strong along-estuary salinity gradient and large tides, but may not apply as well to Pamlico Sound, where circulation and salinity are more wind-driven than tidal. A recently completed study (N. Reyns, PhD), indicates that postlarval blue crabs use flood tides and wind-driven currents to cross Pamlico Sound. This study was based on observations with good spatial coverage, but limited vertical and temporal resolution. We have recently completed a complementary study, sampling crab larvae around the clock at four depths at a single location. Preliminary results from the new study suggest that the crab postlarvae do swim all the way to the surface, on flood only, and that flood currents are strongest slightly below the surface. These observations suggest the utility of flood tide transport in this system. However, near bottom salinity does not seem to be driven by tides; at this point it is unclear what cue might trigger the vertical migration of the postlarvae.

  9. Optical Proxies for Terrestrial Dissolved Organic Matter in Estuaries and Coastal Waters

    Directory of Open Access Journals (Sweden)

    Christopher L. Osburn

    2016-01-01

    Full Text Available Optical proxies, especially DOM fluorescence, were used to track terrestrial DOM fluxes through estuaries and coastal waters by comparing models developed for several coastal ecosystems. Key to using optical properties is validating and calibrating them with chemical measurements, such as lignin-derived phenols - a proxy to quantify terrestrial DOM. Utilizing parallel factor analysis (PARAFAC, and comparing models statistically using the OpenFluor database (http://www.openfluor.org we have found common, ubiquitous fluorescing components which correlate most strongly with lignin phenol concentrations in several estuarine and coastal environments. Optical proxies for lignin were computed for the following regions: Mackenzie River Estuary, Atchafalaya River Estuary, Charleston Harbor, Chesapeake Bay, and Neuse River Estuary. The slope of linear regression models relating CDOM absorption at 350 nm (a350 to DOC and to lignin, varied 5 to 10 fold among systems. Where seasonal observations were available from a region, there were distinct seasonal differences in equation parameters for these optical proxies. Despite variability, overall models using single linear regression were developed that related dissolved organic carbon (DOC concentration to CDOM (DOC = 40×a350+138; R2 = 0.77; N = 130 and lignin (Σ8 to CDOM (Σ8 = 2.03×a350-0.5; R2 = 0.87; N = 130. This wide variability suggested that local or regional optical models should be developed for predicting terrestrial DOM flux into coastal oceans and taken into account when upscaling to remote sensing observations and calibrations.

  10. Morphodynamic evolution of Laida beach (Oka estuary, Urdaibai Biosphere Reserve, southeastern Bay of Biscay) in response to supratidal beach nourishment actions

    Science.gov (United States)

    Monge-Ganuzas, M.; Gainza, J.; Liria, P.; Epelde, I.; Uriarte, A.; Garnier, R.; González, M.; Nuñez, P.; Jaramillo, C.; Medina, R.

    2017-12-01

    Laida beach, located at the Oka estuary mouth (Urdaibai Biosphere Reserve) in the southeastern region of the Bay of Biscay, suffered the impact of a severe succession of storms during the first months of 2014. As a result of the erosion induced by these events, the beach lost its supratidal zone almost completely. The absence of a supratidal beach generated an impact on the recreational use of the beach during the summer 2014, and represented a potential impact for the coming summer 2015. Furthermore, it resulted in an overexposure and damage of adjacent infrastructures due to impinging strong waves. Therefore, the competent authorities, in coordination, decided to take action in order to nourish the supratidal zone of this beach. The solution adopted combined two different actions. The first one accomplished in spring of 2015, consisted in the mobilization of 44,800 m3 of sand from an area of 35,200 m2 equal to the 7% of the intertidal zone of Laida beach interpreted as the existing surface between the average low and high tidal limits, to the zone next to the eastern rocky beach contour. This action successfully resulted in an increase of the supratidal beach for the entire summer 2015 without negatively perturbing the morphological system. The second action was somewhat experimental and consisted in the mechanical plough of the previously existing intertidal low-amplitude ridges with the aim of increasing the sand transport toward the supratidal beach. Although this action did not lead to the increase of the supratidal beach, it seems to have resulted in an acceleration of the natural onshore migration of the bars. The objective of this contribution is to describe the morphodynamical response of the estuarine mouth after the performed actions with special emphasis on the evolution of extracted sites and the supratidal Laida beach area. The information here presented represents an innovative step in the understanding of the complex mechanisms driving the

  11. Reconnaissance of chemical and physical characteristics of selected bottom sediments of the Caloosahatchee River and estuary, tributaries, and contiguous bays, Lee County, Florida, July 20-30, 1998

    Science.gov (United States)

    Fernandez, Mario; Marot, M.E.; Holmes, C.W.

    1999-01-01

    This report summarizes a reconnaissance study, conducted July 20-30, 1998, of chemical and physical characteristics of recently deposited bottom sediments in the Caloosahatchee River and Estuary. Recently deposited sediments were identified using an isotopic chronometer, Beryllium-7 (7Be), a short-lived radioisotope. Fifty-nine sites were sampled in an area that encompasses the Caloosahatchee River (River) about three miles upstream from the Franklin Lock (S-79), the entire tidally affected length of the river (estuary), and the contiguous water bodies of Matlacha Pass, San Carlos Bay, Estero Bay, Tarpon Bay, and Pine Island Sound in Lee County, Florida. Bottom sediments were sampled for 7Be at 59 sites. From the results of the 7Be analysis, 30 sites were selected for physical and chemical analysis. Sediments were analyzed for particle size, total organic carbon (TOC), trace elements, and toxic organic compounds, using semiquantitative methods for trace elements and organic compounds. The semiquantitative scans of trace elements indicated that cadmium, copper, lead, and zinc concentrations, when normalized to aluminum, were above the natural background range at 24 of 30 sites. Particle size and TOC were used to characterize sediment deposition patterns and organic content. Pesticides, polychlorinated biphenyls (PCBs), and carcinogenic polycyclic aromatic hydrocarbons (CaPAHs) were determined at 30 sites using immunoassay analysis. The semiquantitative immunoassay analyses of toxic organic compounds indicated that all of the samples contained DDT, cyclodienes as chlordane (pesticides), and CaPAHs. PCBs were not detected. Based on analyses of the 30 sites, sediments at 10 of these sites were analyzed for selected trace elements and toxic organic compounds, including pesticides, PCBs, and PAHs, using quantitative laboratory procedures. No arsenic or cadmium was detected. Zinc was detected at two sites with concentrations greater than the lower limit of the range of

  12. Macrobenthic communities of the Vellar Estuary in the Bay of Bengal in Tamil-Nadu in South India

    Science.gov (United States)

    Chertoprud, M. V.; Chertoprud, E. S.; Saravanakumar, A.; Thangaradjou, T.; Mazei, Yu. A.

    2013-03-01

    The macrobenthic fauna and communities of the Vellar Estuary located at the southeast cost of India (11°30' N, 79°45' E) and the adjacent marine and river habitats are described on the basis of original data (70 samples over 10 transects). The fauna consists of 115 macrobenthic species and 79 species in estuarine habitats. We described 14 types of macrobenthic communities with different compositions of the dominant species. The leading ecological factors of the distribution of the communities are the salinity, depth, and bottom type. The Vellar estuary consists of two longitudinal zones of macrobenthos. The polyhalinic area is populated by the marine species, but it is related not to a salinity decrease but to the protection from waves and silt on the bottom in this area. The polyhalinic communities are most abundant in terms of the biomass and species richness. The mesohalinic area is inhabited by brackish water species and communities with low abundance. The sublittoral estuarine area is dominated by filter-feeders—the bivalves Crassostrea madrasensis, Meretrix casta, Modiolus metcalfei, and Scapharca inaequivalves—and the littoral zone is dominated by the gastropods Cerithidea cingulata, some crabs, and polychaetes. The ecosystem function of the Vellar estuary can be defined as a filter for the fine organic particles transported by the river.

  13. Principles and concepts in designing tropical-shore settlement in estuary ecosystem, case study: Weriagar District, Bintuni Bay

    Science.gov (United States)

    Firmansyah; Nidia Kusuma, Bintang; Prayuni, Ira; Fernando, Aldo

    2017-12-01

    Weriagar District is located in estuary area and is prone to land loss, due to river and coastal erosion. This paper will describe about tropical-shore settlement design and house design in estuary area. The results from analysis phase shows that it's necessary to design a house and settlement that can fulfil the needs of indigenous people, both functionally and aesthetically. Functionally, the house is designed to provide spaces for both private and public needs of the family. It can be used either as a family private space or as a public gathering space between family and their neighbours. Aesthetically, house’ architectural form is designed into that identifies the locality of Weriagar District. The houses’ design feature highlighted in using local material, rainwater harvesting system, high pitched roof feature as response to hot-humid climate, and elevated-floor feature as response to tidal condition in estuary area. The houses design also considered daily activity pattern and community culture, including appropriate structure, construction, and material availability. The expected result was that the settlement improvement and house design would meet suitable standards and needs of inhabitants in Weriagar District.

  14. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville B core, Chesapeake Bay impact structure, USA

    Science.gov (United States)

    Townsend, G.N.; Gibson, R.L.; Horton, J. Wright; Reimold, W.U.; Schmitt, R.T.; Bartosova, K.

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ?? fibrolite ?? garnet ?? tourmaline ?? pyrite ?? rutile ?? pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite- K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase- quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ?? biotite ?? garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ?? muscovite ?? pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ?? epidote ?? amphibole. The lower basement-derived section and both megablocks exhibit similar middleto upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafi c source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites. ?? 2009 The Geological Society of America.

  15. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville-B core, Chesapeake Bay impact structure

    Science.gov (United States)

    Townsend, Gabrielle N.; Gibson, Roger L.; Horton, J. Wright; Reimold, Wolf Uwe; Schmitt, Ralf T.; Bartosova, Katerina

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ± fibrolite ± garnet ± tourmaline ± pyrite ± rutile ± pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite-K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase-quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ± biotite ± garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ± muscovite ± pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ± epidote ± amphibole. The lower basement-derived section and both megablocks exhibit similar middle- to upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafic source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites.

  16. Optical Proxies for Dissolved Organic Matter in Estuaries and Coastal Waters

    Science.gov (United States)

    Osburn, C. L.; Montgomery, M. T.; Boyd, T. J.; Bianchi, T. S.; Coffin, R. B.; Paerl, H. W.

    2016-02-01

    The flux of terrestrial dissolved organic carbon (DOC) into the coastal ocean from rivers and estuaries is a major part of the ocean's carbon cycle. Absorbing and fluorescing properties of chromophoric dissolved organic matter (CDOM) often are used to fingerprint its sources and to track fluxes of terrestrial DOM into the ocean. They also are used as proxies for organic matter to calibrate remote sensing observations from air and space and from in situ platforms. In general, strong relationships hold for large river dominated estuaries (e.g., the Mississippi River) but little is known about how widely such relationships can be developed in estuaries that have relatively small or multiple riverine inputs. Results are presented from a comparison of six diverse estuarine systems: the Atchafalaya River (ARE), the Mackenzie River (MRE), the Chesapeake Bay (CBE), Charleston Harbor (CHE), Puget Sound (PUG), and the Neuse River (NRE). Mean DOM concentrations ranged from 100 to 700 µM and dissolved lignin concentrations ranged from ca. 3-30 µg L-1. Overall trends were linear between CDOM measured at 350 nm (a350) and DOC concentration (R2=0.77) and between a350 and lignin (R2=0.87). Intercepts of a350 vs lignin were not significantly different from zero (P=0.43) suggesting that most of the CDOM was terrestrial in nature. Deviations from these regressions were strongest in the Neuse River Estuary, the most eutrophic of the six estuaries studied. After this calibration procedure, fluorescence modeling via parallel factor analysis (PARAFAC) was used to make estimates of terrigenous and planktonic DOC in these estuaries.

  17. Alterations in the organic carbon pool recorded in sediments of Guanabara Bay, Brazil, a fertilized tropical estuary

    International Nuclear Information System (INIS)

    Carreira, R.S.; Kalas, F.A.; Santos, E.S.; Lima, A.L.; Godoy, J.M.; Wagener, A.L.R.

    1999-01-01

    We designed a core project in Guanabara Bay aimed at studying the possible anthropogenic impact on early diagenesis of sedimentary organic matter deposited in this system over the last century. The basic approach has been to look for the molecular, elemental (C, N and P) and isotopic compositions of organic matter in order to obtain the necessary information. The present work presents data on C, P and isotopic composition of organic matter, as well as the results of polyaromatic hydrocarbons, sedimentation rates and humic acids so far obtained for cores collected at several stations in the bay

  18. Abundance, distribution and bioavailability of major and trace elements in surface sediments from the Cai River estuary and Nha Trang Bay (South China Sea, Vietnam)

    Science.gov (United States)

    Koukina, S. E.; Lobus, N. V.; Peresypkin, V. I.; Dara, O. M.; Smurov, A. V.

    2017-11-01

    Major (Si, Al, Fe, Ti, Mg, Ca, Na, K, S, P), minor (Mn) and trace (Li, V, Cr, Co, Ni, Cu, Zn, As, Sr, Zr, Mo, Cd, Ag, Sn, Sb, Cs, Ba, Hg, Pb, Bi and U) elements, their chemical forms and the mineral composition, organic matter (TOC) and carbonates (TIC) in surface sediments from the Cai River estuary and Nha Trang Bay were first determined along the salinity gradient. The abundance and ratio of major and trace elements in surface sediments are discussed in relation to the mineralogy, grain size, depositional conditions, reference background and SQG values. Most trace-element contents are at natural levels and are derived from the composition of rocks and soils in the watershed. A severe enrichment of Ag is most likely derived from metal-rich detrital heavy minerals such as Ag-sulfosalts. Along the salinity gradient, several zones of metal enrichment occur in surface sediments because of the geochemical fractionation of the riverine material. The parts of actually and potentially bioavailable forms (isolated by four single chemical reagent extractions) are most elevated for Mn and Pb (up to 36% and 32% of total content, respectively). The possible anthropogenic input of Pb in the region requires further study. Overall, the most bioavailable parts of trace elements are associated with easily soluble amorphous Fe and Mn oxyhydroxides. The sediments are primarily enriched with bioavailable metal forms in the riverine part of the estuary. Natural (such as turbidities) and human-generated (such as urban and industrial activities) pressures are shown to influence the abundance and speciation of potential contaminants and therefore change their bioavailability in this estuarine system.

  19. Comparative analysis of long-term chlorophyll data with generalized additive model - San Francisco Bay and St. Lucie Estuary

    Science.gov (United States)

    The health of estuarine ecosystems is often influenced by hydraulic and nutrient loading from upstream watersheds. We examined four decades of monitoring data of nutrient export into the Indian River Lagoon and San Francisco Bay, both of which have received considerable attentio...

  20. Concerns in assessing radiological releases to a major estuary

    International Nuclear Information System (INIS)

    Foldesi, Leslie P.

    1989-01-01

    Full text: In the State of Virginia, the James River flows into the Chesapeake Bay and from the mouth of the James River to the fall line the river is under the influence of tidal forces. There are several centers of commerce along the river including an international port of call at the mouth of the James. Associated with the centers of commerce are potential sources of radioactive materials for being released to the river. Two hundred miles inland, the Babcock and Wilcox nuclear fuels processing plants are situated along-side the James River, which has been known to flood its banks quickly in the mountainous regions of Virginia. Storage tanks have been swept downstream from this facility in a previous flood. Fortunately, the tanks were not destroyed. Another source of a possible release is the Suny Nuclear Power Station located on the James River about fifty miles from the Chesapeake Bay. In the cities of Norfolk and Newport News, shipyards are fueling and defueling the Navy's nuclear powered fleet. In addition, many of the Navy's ships are carrying nuclear weapons. These activities may also result in an inadvertent release. In assessing the radiological release from any one of the previously mentioned activities, it is obvious that dilution of the material released into the river is a major factor in dose assessment, as well as the fact that the water is brackish and not suitable as a source of potable water. However, dilution in this case may not be the simple solution. We also have to remember that this estuary is under tidal effects, which means that the materials may not be going out to sea to be further diluted as quickly as we would like to think. It may be possible that the material will be carried up river as far as the fall line and deposited, or deposited along the river's banks. From Virginia's experience with the pesticide, Kepone, materials may be deposited along the estuary and enter the food chain thereby necessitating the limitation of taking

  1. Concerns in assessing radiological releases to a major estuary

    Energy Technology Data Exchange (ETDEWEB)

    Foldesi, Leslie P [Virginia Department of Health, Bureau of Radiological Health, Richmond, VA (United States)

    1989-09-01

    Full text: In the State of Virginia, the James River flows into the Chesapeake Bay and from the mouth of the James River to the fall line the river is under the influence of tidal forces. There are several centers of commerce along the river including an international port of call at the mouth of the James. Associated with the centers of commerce are potential sources of radioactive materials for being released to the river. Two hundred miles inland, the Babcock and Wilcox nuclear fuels processing plants are situated along-side the James River, which has been known to flood its banks quickly in the mountainous regions of Virginia. Storage tanks have been swept downstream from this facility in a previous flood. Fortunately, the tanks were not destroyed. Another source of a possible release is the Suny Nuclear Power Station located on the James River about fifty miles from the Chesapeake Bay. In the cities of Norfolk and Newport News, shipyards are fueling and defueling the Navy's nuclear powered fleet. In addition, many of the Navy's ships are carrying nuclear weapons. These activities may also result in an inadvertent release. In assessing the radiological release from any one of the previously mentioned activities, it is obvious that dilution of the material released into the river is a major factor in dose assessment, as well as the fact that the water is brackish and not suitable as a source of potable water. However, dilution in this case may not be the simple solution. We also have to remember that this estuary is under tidal effects, which means that the materials may not be going out to sea to be further diluted as quickly as we would like to think. It may be possible that the material will be carried up river as far as the fall line and deposited, or deposited along the river's banks. From Virginia's experience with the pesticide, Kepone, materials may be deposited along the estuary and enter the food chain thereby necessitating the limitation of taking

  2. Leven estuary project. Fisheries Department final report

    OpenAIRE

    Bayliss, B.D.

    1997-01-01

    This is the report on the Leven estuary project: Fisheries Department final report produced by the Environment Agency North West in 1997. This report contains information about Leven estuary, river Leven catchment, river Crake catchment and the Ulverston Discharges. The Leven estuary is characterised by being very shallow, and shares the extremely variable tides and currents that characterize the whole of Morecambe Bay. There was little detailed knowledge of the impact on the Leven estuary, a...

  3. Pollution induced tidal variability in water quality of Mahim Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Sabnis, M.M.

    Variability of water quality due to release of wastewater in Mahim Estuary (Maharashtra, India) and associated nearshore waters is discussed. The mixing of low salinity contaminated estuary water with high salinity bay water was considerably...

  4. Levels of chromium contamination in the estuary of the Iraja river (Guanabara Bay) and experimental incorporation of 51Cr in barnacles (Balanus sp)

    International Nuclear Information System (INIS)

    Weerelt, M.D.M.V.

    1982-01-01

    Levels were determined of chromium contamination in the estuary of Iraja River, produced by an electroplating industry located 3 km upstream the study area. Uptake-and release kinetics of Cr(VI) and Cr(III) in barnacles (Balanus sp.) were studied. Samples of barnacles and suspended particles from Guanabara Bay were analysed. Chromium concentrations (dry weight) ranged from not detectable (ND) to 154,66 μg/g for soft tissues and from ND to 423,76 μg/g for suspended particles. Mean of maximum concentrations of chromium in samples from Guanabara Bay are 3 and 4 times above those of identical samples from control area (Coroa Grande). Soft tissues presented a concentration factor (CF) of 10 3 related to chromium available in suspended particles. 51 Cr(VI) is preferentiably incorparated by soft tissues (biological half life being 100 days). Chromium uptake by Balanus sp from solution is as significant as it is from particulate matter available in sea water from experimental sets. CF for Cr(VI) in soft tissues in laboratory conditions was 10 2 related to 51 Cr present in sea water. Environmental chromium contamination was found to be of the same order of magnitude or above levels reported for other areas subjected to industrial impacts. Barnacles appear to be able to accumulate chromium in soft tissues from the available metal in the environment. Cr(VI) is the critical form, being greatly accumulated in soft tissues of barnacles, that act as a long-term integrator of this metal. For Cr(III), this organism can only be regarded as an instantaneous indicator of environmental contamination of chromium attached to suspended particles. (M.A.) [pt

  5. Agricultural Chemical Concentrations and Loads in Rivers Draining the Central Valley, California, to the San Francisco Bay-Delta Estuary: Before and During an Extended Drought

    Science.gov (United States)

    Domagalski, J. L.

    2016-12-01

    Drought or near drought conditions have occurred in California since 2012. Although some parts of the State received near normal precipitation in water year 2016, other locations were still below average. Extended drought can impact aquatic organisms in a variety of ways because of decreased flows and elevated water temperature. However, lower precipitation and availability of irrigation water may limit subsequent runoff, resulting in reduced concentrations and loads of certain environmental toxicants, such as pesticides and ammonia, thereby limiting their toxic effects. In this study, funded by the U.S. Geological Survey National Water Quality Program, the occurrence of 227 pesticides and degradation products, and nutrients was assessed before and during this current drought in the two largest rivers draining to the San Francisco Bay: the Sacramento and San Joaquin Rivers. The watersheds of both rivers include substantial agricultural and urban land use. Herbicides, insecticides, fungicides, and ammonia were detected throughout the study (2010 to 2016) and models of daily concentration using the seasonal wave model (rloadest) were formulated to assess the amount of time that concentrations may have exceeded benchmark levels known to be toxic to aquatic organisms. Frequently detected pesticides included the fungicide azoxystrobin, herbicides or their degradation products such as diuron, glyphosate, and metolachlor, and insecticides such as imidacloprid. Compounds that are transported primarily by surface runoff generally showed decreasing concentrations as the drought progressed, especially in the San Joaquin River. Compounds mainly transported by groundwater, as indicated by seasonal concentration profiles, had more stable concentrations in the rivers. Mass loads to the Bay all decreased, as expected, because of the lower river discharge. When compared to aquatic-life benchmarks, modeled concentrations indicated that individual compounds were not contributing to

  6. Bioaccumulation of hydrocarbons derived from terrestrial and anthropogenic sources in the Asian clam, Potamocorbula amurensis, in San Francisco Bay estuary

    Science.gov (United States)

    Pereira, Wilfred E.; Hostettler, Frances D.; Rapp, John B.

    1992-01-01

    An assessment was made in Suisun Bay, California, of the distributions of hydrocarbons in estuarine bed and suspended sediments and in the recently introduced asian clam, Potamocorbula amurensis. Sediments and clams were contaminated with hydrocarbons derived from petrogenic and pyrogenic sources. Distributions of alkanes and of hopane and sterane biomarkers in sediments and clams were similar, indicating that petroleum hydrocarbons associated with sediments are bioavailable to Potamocorbula amurensis. Polycyclic aromatic hydrocarbons in the sediments and clams were derived mainly from combustion sources. Potamocorbula amurensis is therefore a useful bioindicator of hydrocarbon contamination, and may be used as a biomonitor of hydrocarbon pollution in San Francisco Bay.

  7. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): Field data and reactive transport modeling

    Science.gov (United States)

    Spiteri, Claudette; Slomp, Caroline P.; Charette, Matthew A.; Tuncay, Kagan; Meile, Christof

    2008-07-01

    A two-dimensional (2D) reactive transport model is used to investigate the controls on nutrient ( NO3-, NH4+, PO 4) dynamics in a coastal aquifer. The model couples density-dependent flow to a reaction network which includes oxic degradation of organic matter, denitrification, iron oxide reduction, nitrification, Fe 2+ oxidation and sorption of PO 4 onto iron oxides. Porewater measurements from a well transect at Waquoit Bay, MA, USA indicate the presence of a reducing plume with high Fe 2+, NH4+, DOC (dissolved organic carbon) and PO 4 concentrations overlying a more oxidizing NO3--rich plume. These two plumes travel nearly conservatively until they start to overlap in the intertidal coastal sediments prior to discharge into the bay. In this zone, the aeration of the surface beach sediments drives nitrification and allows the precipitation of iron oxide, which leads to the removal of PO 4 through sorption. Model simulations suggest that removal of NO3- through denitrification is inhibited by the limited overlap between the two freshwater plumes, as well as by the refractory nature of terrestrial DOC. Submarine groundwater discharge is a significant source of NO3- to the bay.

  8. Levels and bioaccumulation of organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) in fishes from the Pearl River estuary and Daya Bay, South China

    International Nuclear Information System (INIS)

    Guo Lingli; Qiu Yaowen; Zhang Gan; Zheng, Gene J.; Lam, Paul K.S.; Li Xiangdong

    2008-01-01

    Fifty fish samples were collected from the Pearl River estuary (PRE) and Daya Bay, South China and were analyzed for DDTs, HCHs, chlordanes and polybrominated biphenyl ethers (PBDEs). Except the high concentrations of DDT observed in fishes, the concentrations of HCHs, chlordanes and PBDEs were low when compared to other regions. BDE-47 was the predominant PBDE congener and the BDE-209 concentrations were relatively low, despite its high concentration in surface sediments. The absence of significant increase of DDT, HCH, chlordane and PBDE concentrations towards higher δ 15 N values, as well as the lack of a significant correlation (p 15 N, may indicate a weak biomagnification of these chemicals in the food webs. Good agreement was observed between their concentrations and lipid contents of the organisms. Bioconcentration was suggested to be responsible for the accumulation of OCPs and PBDEs in the lower trophic organisms in the studied subtropical waters. - Bioconcentration was suggested to be responsible for the accumulation of OCPs and PBDEs in the lower trophic organisms of subtropical waters

  9. Distribution of trace metals in surface seawater and zooplankton of the Bay of Bengal, off Rushikulya estuary, East Coast of India.

    Science.gov (United States)

    Srichandan, Suchismita; Panigrahy, R C; Baliarsingh, S K; Rao B, Srinivasa; Pati, Premalata; Sahu, Biraja K; Sahu, K C

    2016-10-15

    Concentrations of trace metals such as iron (Fe), copper (Cu), zinc (Zn), cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), vanadium (V), and selenium (Se) were determined in seawater and zooplankton from the surface waters off Rushikulya estuary, north-western Bay of Bengal. During the study period, the concentration of trace metals in seawater and zooplankton showed significant spatio-temporal variation. Cu and Co levels in seawater mostly remained non-detectable. Other elements were found at higher concentrations and exhibited marked variations. The rank order distribution of trace metals in terms of their average concentration in seawater was observed as Fe>Ni>Mn>Pb>As>Zn>Cr>V>Se>Cd while in zooplankton it was Fe>Mn>Cd>As>Pb>Ni>Cr>Zn>V>Se. The bioaccumulation factor (BAF) of Fe was highest followed by Zn and the lowest value was observed with Ni. Results of correlation analysis discerned positive affinity and good relationship among the majority of the trace metals, both in seawater and zooplankton suggesting their strong affinity and coexistence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Examining the role of SGD on the nitrogen budget of the fourth largest estuary in the USA, Mobile Bay, Alabama

    Science.gov (United States)

    Dimova, N. T.; Montiel, D.; Lu, Y.; Adyasari, D.

    2017-12-01

    The present study aims to help understand further the importance of submarine groundwater discharge (SGD) to Mobile Bay, Alabama with respect to associated nitrogen (N-) fluxes. Based on a three-year long study we found that on a large scale, when comparing Mobile River discharge to SGD, during the dry season, the SGD flux is only 2.5% of Mobile River discharge, whereas, during the wet season, this contribution is less than 1%. However, when examining the nitrogen budget of MB, we found that during the dry season, SGD delivers about half of the fluxes to the Bay. Furthermore, we found that the distribution of these SGD-derived inputs along the MB shoreline is very heterogeneous. Shallow geophysical electrical resistivity imaging and multiple sediment cores recovered in the examined areas reveal a rich organic sediment layer (up to 80 cm thick at some locations) which is perhaps responsible for the observed enhanced N-fluxes. Ongoing microbial, DOM and stable isotope sediment examination aim to explain the geochemical processes responsible for the disproportionally large SGD-delivered nitrogen fluxes in the identified impacted coastal areas.

  11. Pairing Coral Geochemical Analyses with an Ecosystem Services Model to Assess Drivers and Impacts of Sediment Delivery within Micronesia's Largest Estuary, Ngeremeduu Bay

    Science.gov (United States)

    Lewis, S.; Dunbar, R. B.; Mucciarone, D.; Barkdull, M.

    2017-12-01

    Scientific tools assessing impacts to watershed and coastal ecosystem services, like those from land-use land conversion (LULC), are critical for sustainable land management strategies. Small island nations are particularly vulnerable to LULC threats, especially sediment delivery, given their small spatial size and reliance on natural resources. In the Republic of Palau, a small Pacific island country, three major land-use activities—construction, fires, and agriculture— have increased sediment delivery to important estuarine and coastal habitats (i.e., rivers, mangroves, coral reefs) over the past 30 years. This project examines the predictive capacity of an ecosystem services model, Natural Capital Project's InVEST, for sediment delivery using historic land-use and coral geochemical analysis. These refined model projections are used to assess ecosystem services tradeoffs under different future land development and management scenarios. Coral cores (20-41cm in length) were sampled along a high-to-low sedimentation gradient (i.e., near major rivers (high-impact) and ocean (low-impact)) in Micronesia's largest estuary, Ngeremeduu Bay. Isotopic indicators of seasonality (δ18O and δ13C values (% VPDB)) were used to construct the age model for each core. Barium, Manganese, and Yttrium were used as trace metal proxies for sedimentation and measured in each core using a laser ablation ICP-MS. Finally, the Natural Capital Project's InVEST sediment delivery model was paired with Geospatial data to examine the drivers of sediment delivery (i.e., construction, farms and fires) within these two watersheds. A thirty-year record of trace metal to calcium ratios in coral skeletons show a peak in sedimentation during 2006 and 2007, and in 2012. These results suggest historic peaks in sediment delivery correlating to large-scale road construction and support previous findings that Ngeremeduu Bay has reached a tipping point of retaining sediment. Natural Capital's project In

  12. Distribution of trace metals in surface seawater and zooplankton of the Bay of Bengal, off Rushikulya estuary, East Coast of India

    International Nuclear Information System (INIS)

    Srichandan, Suchismita; Panigrahy, R.C.; Baliarsingh, S.K.; Srinivasa, Rao B.; Pati, Premalata; Sahu, Biraja K.; Sahu, K.C.

    2016-01-01

    Concentrations of trace metals such as iron (Fe), copper (Cu), zinc (Zn), cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), vanadium (V), and selenium (Se) were determined in seawater and zooplankton from the surface waters off Rushikulya estuary, north-western Bay of Bengal. During the study period, the concentration of trace metals in seawater and zooplankton showed significant spatio-temporal variation. Cu and Co levels in seawater mostly remained non-detectable. Other elements were found at higher concentrations and exhibited marked variations. The rank order distribution of trace metals in terms of their average concentration in seawater was observed as Fe > Ni > Mn > Pb > As > Zn > Cr > V > Se > Cd while in zooplankton it was Fe > Mn > Cd > As > Pb > Ni > Cr > Zn > V > Se. The bioaccumulation factor (BAF) of Fe was highest followed by Zn and the lowest value was observed with Ni. Results of correlation analysis discerned positive affinity and good relationship among the majority of the trace metals, both in seawater and zooplankton suggesting their strong affinity and coexistence. - Highlights: • First-hand report on trace metal concentration in zooplankton and seawater covering 2 years from this eco-sensitive region. • In seawater trace metals followed the rank order of Fe > Ni > Mn > Pb > As > Zn > Cr > V > Se > Cd. • In zooplankton the rank order was Fe > Mn > Cd > As > Pb > Ni > Cr > Zn > V > Se. • The bioaccumulation factor of Fe was highest followed by Zn. • Strong affinity, coexistence, and similar source of trace metals in the study area.

  13. Physico-chemical characterization of surface waters of the west coast of Algeria: Bay of Mostaganem and Cheliff estuary

    Directory of Open Access Journals (Sweden)

    Fatima Kies

    2014-12-01

    Full Text Available A follow-up in 2013 of the indicators of pollution (temperature, hydrogen potential, salinity, dissolved oxygen, ammonium, nitrites, nitrates, orthophosphates, ortho silicates, biological oxygen demand, chemical oxygen demand, suspended solids in surface water was performed, in order to estimate the physicochemical quality of the west coast of Algeria. The results obtained revealed the existence of a water contamination by domestic and industrial waste water conveyed to the north by the Cheliff River for discharge into the Bay of Mostaganem, marked by significant space-time variations. In January (24 mg / l, the values of nitrates recorded west of the mouth of Cheliff exceed norms. Ammonium records strong concentrations in January (1.2 mg NH4+/ l and in February (0.8 mg /l. Nitrites such lagging of high contents in January (NO2- 0.99 mg / l and February (NO2- 0.59 mg /l, respectively. The ortho phosphates post a maximum concentration in January (6.6mg PO43-/ l. In addition, the organic matter rate measured in surface water is maximum during periods of flooding especially in January (7.51 mg / l and lowest in the exceptionally dry season in August (2.19 mg / l.

  14. Climate Ready Estuaries Partner Projects Map

    Science.gov (United States)

    CRE partners with the National Estuary Program to develop climate change projects in coastal U.S. areas, such as bays and harbors; to develop adaptation action plans, identify climate impacts and indicators, and more. This map shows project locations.

  15. Humboldt Bay, California Benthic Habitats 2009 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Humboldt Bay is the largest estuary in California north of San Francisco Bay and represents a significant resource for the north coast region. Beginning in 2007 the...

  16. Humboldt Bay Benthic Habitats 2009 Aquatic Setting

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Humboldt Bay is the largest estuary in California north of San Francisco Bay and represents a significant resource for the north coast region. Beginning in 2007 the...

  17. Humboldt Bay, California Benthic Habitats 2009 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Humboldt Bay is the largest estuary in California north of San Francisco Bay and represents a significant resource for the north coast region. Beginning in 2007 the...

  18. Humboldt Bay, California Benthic Habitats 2009 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Humboldt Bay is the largest estuary in California north of San Francisco Bay and represents a significant resource for the north coast region. Beginning in 2007 the...

  19. Study of Circulation in the Tillamook Bay and the Surrounding Wetland Applying Triple-Nested Models Downscaling from Global Ocean to Estuary

    Science.gov (United States)

    To study the circulation and water quality in the Tillamook Bay, Oregon, a high-resolution estuarine model that covers the shallow bay and the surrounding wetland has been developed. The estuarine circulation at Tillamook Bay is mainly driven by the tides and the river flows and ...

  20. Influence of Wind Strength and Duration on Relative Hypoxia Reductions by Opposite Wind Directions in an Estuary with an Asymmetric Channel

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2016-09-01

    Full Text Available Computer model experiments are applied to analyze hypoxia reductions for opposing wind directions under various speeds and durations in the north–south oriented, two-layer-circulated Chesapeake estuary. Wind’s role in destratification is the main mechanism in short-term reduction of hypoxia. Hypoxia can also be reduced by wind-enhanced estuarine circulation associated with winds that have down-estuary straining components that promote bottom-returned oxygen-rich seawater intrusion. The up-bay-ward along-channel component of straining by the southerly or easterly wind induces greater destratification than the down-bay-ward straining by the opposite wind direction, i.e., northerly or westerly winds. While under the modulation of the west-skewed asymmetric cross-channel bathymetry in the Bay’s hypoxic zone, the westward cross-channel straining by easterly or northerly winds causes greater destratification than its opposite wind direction. The wind-induced cross-channel circulation can be completed much more rapidly than the wind-induced along-channel circulation, and the former is usually more effective than the latter in destratification and hypoxia reduction in an early wind period. The relative importance of cross-channel versus along-channel circulation for a particular wind direction can change with wind speed and duration. The existence of month-long prevailing unidirectional winds in the Chesapeake is explored, and the relative hypoxia reductions among different prevailing directions are analyzed. Scenarios of wind with intermittent calm or reversing directions on an hourly scale are also simulated and compared.

  1. 77 FR 15323 - Special Local Regulations and Safety Zone; War of 1812 Bicentennial Commemorations, Chesapeake...

    Science.gov (United States)

    2012-03-15

    ... National Technology Transfer and Advancement Act (NTTAA) (15 U.S.C. 272 note) directs agencies to use...] RIN 1625-AA08, AA00 Special Local Regulations and Safety Zone; War of 1812 Bicentennial Commemorations... Chesapeake Bay and Port of Baltimore, Maryland for War of 1812 Bicentennial Commemorations activities. This...

  2. Vulnerability Assessments in Support of the Climate Ready Estuaries Program: A Novel Approach Using Expert Judgement, Volume II: Results for the Massachusetts Bays Program (Final Report)

    Science.gov (United States)

    As part of the Climate Ready Estuaries (CRE) program, the Global Change Research Program (GCRP) in the National Center for Environmental Assessment, Office of Research and Development at the U.S. Environmental Protection Agency has prepared a report exploring a new methodology fo...

  3. Seasonal effects on the air-water carbon dioxide exchange in the Hooghly estuary, NE coast of Bay of Bengal, India.

    Science.gov (United States)

    Mukhopadhyay, S K; Biswas, H; De, T K; Sen, S; Jana, T K

    2002-08-01

    Monthly variation of CO2 fugacity (fCO2) in surface water and related atmospheric exchanges were measured in the Hooghly estuary which is one of the most important estuaries, since it is fed by one of the world's largest rivers, the Ganges with a flow of 15,646 m3 s-1 (1.6% of the world's combined river flow). Carbon dioxide fluxes averaged over the entire estuary are in the range of -2.78 to 84.4 mmol m-2 d-1. This estuary acts as a sink for CO2 during monsoon months and seasonal variation of its flux is controlled by dilution of seawater by river water. Since the solubility of CO2 and the disassociation of carbonic acid in estuarine water are controlled by temperature and salinity, the observed variations of CO2 fluxes are compared with those predicted from seasonal changes in temperature, salinity and the ratio of gross primary production to community respiration using empirical equations with an explained variability of 55%.

  4. Over 100 years of environmental change recorded by foraminifers and sediments in a large Gulf of Mexico estuary, Mobile Bay, AL, USA

    Science.gov (United States)

    Osterman, Lisa E.; Smith, Christopher G.

    2012-01-01

    The marine microfauna of Mobile Bay has been profoundly influenced by the development and expansion of the primary shipping channel over the last ˜100 years. Foraminifers and sediments from seven box cores with excess lead-210 chronology document that channel dredging and spoil disposal have altered circulation, reduced estuarine mixing, changed sedimentation patterns, and caused a faunal turnover within the bay. Beginning in the late 1800s, changes in estuarine mixing allowed for greater low-pH freshwater influence in the bay, and ultimately began environmental changes that resulted in the loss of calcareous foraminifers. By the early 1900s, box cores throughout Mobile Bay record a ˜ 100-year trend of increasing calcareous test dissolution that continues to the present. Since the completion of the current shipping channel in the 1950s, restricted tidal flushing and increased terrestrial organic matter, documented by carbon-to-nitrogen ratios, stimulated an increase in agglutinated foraminiferal densities. However, in deeper areas of the bay, hypoxic water has negatively impacted the marine microfauna. Comparisons of the present-day foraminiferal assemblage with foraminifers collected in the early 1970s indicate that the continued biologic loss of calcareous foraminifers in the bay has allowed the introduction of a new agglutinated foraminiferal species into the bay.

  5. Transgressive systems tract development and incised-valley fills within a quaternary estuary-shelf system: Virginia inner shelf, USA

    Science.gov (United States)

    Foyle, A.M.; Oertel, G.F.

    1997-01-01

    , and occur within large, coast-oblique trending depressions (paleo-estuaries). Style 1 is dominated by fluvial through estuary-mouth depositional systems (Seismic Facies 1-4). Style 2 sequence preservation, represented by Sequences III and II, is dominantly an inner shelf and shoreface succession with a seaward-thickening tabular wedge geometry that does not exceed 15 m in thickness. These shoreface and inner shelf depositional systems of the upper transgressive systems tract (Seismic Facies 9) and highstand systems tract (Seismic Facies 7 and 11) are not associated with paleo-estuaries. Style 3 sequence preservation is represented by Sequence 1, the Holocene Sequence. It consists of lower transgressive systems tract fluvial-estuarine, lagoonal, and tidal-inlet fill deposits (Seismic Facies 1-6, and 8) overlain by upper transgressive systems tract shelf and shoreface sands (Seismic Facies 9). Style 3 has a crenulated wedge geometry, and is thickest beneath and seaward of the modern Chesapeake Bay mouth. It thins northward and landward onto Late Pleistocene interfluvial highs on the basinward side of the southern Delmarva Peninsula.

  6. Assessment of surface water chemistry and algale biodiversity in the Bay of Mostaganem and the Cheliff estuary: North-western Algeria

    Directory of Open Access Journals (Sweden)

    Fatima kies

    2015-03-01

    Full Text Available Anthropogenic activities have led to water quality deterioration in many parts of the word, especially in Northwest Algeria. The current work investigated the spatiotemporal variations of water quality in the Cheliff River, samples for physico-chemical were performed at different periods from 2004 to 2007, the results chowed that nitrate (NO3- intake is very high especially in the month of February 2006 (26 mg/l and February 2007 (37 mg/l, nitrite (NO2- values also exceed the standard for samples taken at the estuary (and the sea, ie 0.96 mg/l in the month of February 2006 and 0.98 mg/l in April 2007;the Ammonium (NH4+ contributions are due to the River because the value recorded at the estuary (4.22 in February 2006 ;silicate (SiO2 varies greatly depending on the River flow resulting from soil leaching SOUR to the estuary where we see the maximum values of 20.10 mg/l in the month of February 2007 and 19.1 mg/l in March 2005. The recorded values of elements phosphorus (PO4--- are high and very variable from 0.01 to 1.90 mg/l for the River, 0.01- 0.80 mg/l for the estuary and 0- 0.49 mg/l for the sea. The analyzed biological confirmed a total of 41 phytoplankton speciesand31 macroalgae species. So, Aquatic ecosystems are particulury vulnerable to environmental change and many are, at present, severely degraded.

  7. Variation in tidal wetland plant diversity and composition within and among coastal estuaries: assessing the relative importance of environmental gradients

    Science.gov (United States)

    Question: Does wetland plant composition vary more by estuarine type (differentiated by the degree of riverine versus oceanic influence) or habitat type within estuaries (defined by US National Wetlands Inventory [NWI] marsh classes)? Location: Oregon estuaries: Netarts Bay, ...

  8. Estuary 2100 Project, Phase 2: Building Partnerships for Resilient Watersheds

    Science.gov (United States)

    Information about the SFBWQP Estuary 2100 Project, Phase 2: Building Partnerships for Resilient Watersheds, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquat

  9. Microbial Community Structure in Relation to Water Quality in a Eutrophic Gulf of Mexico Estuary

    Science.gov (United States)

    Weeks Bay is a shallow, microtidal, eutrophic sub-estuary of Mobile Bay, AL. High watershed nutrient inputs to the estuary contribute to a eutrophic condition characterized by frequent summertime diel-cycling hypoxia and dissolved oxygen (DO) oversaturation. Spatial and seasonal ...

  10. Potential Climate-Induced Runoff Changes and Associated Uncertainty in Four Pacific Northwest Estuaries

    Science.gov (United States)

    As part of a larger investigation into potential impacts of climate change on estuarine habitats in the Pacific Northwest (PNW), we estimated changes in freshwater inputs into four estuaries. These were the Coquille River estuary, the South Slough of Coos Bay, and the Yaquina Bay...

  11. Modeling Diel Oxygen Dynamics and Ecosystem Metabolism in a Shallow, Eutrophic Estuary

    Science.gov (United States)

    Weeks Bay is a shallow eutrophic estuary that exhibits frequent summertime diel-cycling hypoxia and periods of dissolved oxygen (DO) oversaturation during the day. Diel DO dynamics in shallow estuaries like Weeks Bay are complex, and may be influenced by wind forcing, vertical an...

  12. The Coastal Dynamics of Heterogeneous Sedimentary Environments: Numerical Modeling of Hydrodynamics and Mass Transport in Estuaries

    Science.gov (United States)

    2010-08-12

    Medina, et al. (2006). "The Prestige oil spill in Cantabria (Bay of Biscay). Part I: Operational forecasting system for quick response, risk assessment...estuaries (Kostoglidis, Pattiaratchi et al. 2005), macrotidal estuaries (Yang, Eisma et al. 2000), and estuaries with fringing mangrove swamps...the Atchafalaya Bay system (Cobb, Keen et al. 2008), and Patos Lagoon, Brazil . The model current fields used in the Papua New Guinea study (Keen, Ko

  13. Willapa Bay, Washington Benthic Habitats 1995 Biotic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 1995, the Columbia River Estuary Study Taskforce (CREST) acquired 295 true color aerial photographs (1:12,000) of Willapa Bay, Washington, from the State of...

  14. Willapa Bay, Washington Benthic Habitats 1995 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 1995, the Columbia River Estuary Study Taskforce (CREST) acquired 295 true color aerial photographs (1:12,000) of Willapa Bay, Washington, from the State of...

  15. San Francisco Bay Interferometric Bathymetry: Area B

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — High resolution sonar data were collected over ultra-shallow areas of the San Francisco Bay estuary system. Bathymetric and acoustic backscatter data were collected...

  16. Willapa Bay, Washington Benthic Habitats 1995 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 1995, the Columbia River Estuary Study Taskforce (CREST) acquired 295 true color aerial photographs (1:12,000) of Willapa Bay, Washington, from the State of...

  17. Biscayne Bay Florida Bottlenose Dolphin Studies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data sets include a compilation of small vessel based studies of bottlenose dolphins that reside within Biscayne Bay, Florida, adjacent estuaries and nearshore...

  18. Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations

    Science.gov (United States)

    Le, Chengfeng; Hu, Chuanmin; English, David; Cannizzaro, Jennifer; Chen, Zhiqiang; Feng, Lian; Boler, Richard; Kovach, Charles

    2013-02-01

    and June. These spatial and temporal distributions appear to be regulated primarily by wind and river discharge, which also explain the significant declining trend in Chla since 2005. The established 10-year MODIS-based Chla data record provides complementary information to existing field-based monitoring programs, helping to make nutrient reduction management decisions. Furthermore, preliminary tests of the algorithm for the Chesapeake Bay and for Sea-viewing Wide Field-of-view Sensor (SeaWiFS) measurements suggest possible applicability of the proposed approach to other estuaries and satellite ocean color sensors.

  19. Examination of contaminant exposure and reproduction of ospreys (Pandion haliaetus) nesting in Delaware Bay and River in 2015.

    Science.gov (United States)

    Rattner, Barnett A; Lazarus, Rebecca S; Bean, Thomas G; McGowan, Peter C; Callahan, Carl R; Erickson, Richard A; Hale, Robert C

    2018-05-22

    A study of ospreys (Pandion haliaetus) nesting in the coastal Inland Bays of Delaware, and the Delaware Bay and Delaware River in 2015 examined spatial and temporal trends in contaminant exposure, food web transfer and reproduction. Concentrations of organochlorine pesticides and metabolites, polychlorinated biphenyls (PCBs), coplanar PCB toxic equivalents, polybrominated diphenyl ethers (PBDEs) and other flame retardants in sample eggs were generally greatest in the Delaware River. Concentrations of legacy contaminants in 2015 Delaware Bay eggs were lower than values observed in the 1970s through early 2000s. Several alternative brominated flame retardants were rarely detected, with only TBPH [bis(2-ethylhexyl)-tetrabromophthalate)] present in 5 of 27 samples at <5 ng/g wet weight. No relation was found between p,p'-DDE, total PCBs or total PBDEs in eggs with egg hatching, eggs lost from nests, nestling loss, fledging and nest success. Osprey eggshell thickness recovered to pre-DDT era values, and productivity was adequate to sustain a stable population. Prey fish contaminant concentrations were generally less than those in osprey eggs, with detection frequencies and concentrations greatest in white perch (Morone americana) from Delaware River compared to the Bay. Biomagnification factors from fish to eggs for p,p'-DDE and total PCBs were generally similar to findings from several Chesapeake Bay tributaries. Overall, findings suggest that there have been improvements in Delaware Estuary waterbird habitat compared to the second half of the 20th century. This trend is in part associated with mitigation of some anthropogenic contaminant threats. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Intensive use of an intertidal mudflat by foraging adult American horseshoe crabs Limulus polyphemus in the Great Bay estuary, New Hampshire

    Directory of Open Access Journals (Sweden)

    Wan-Jean LEE

    2010-10-01

    Full Text Available Although concerns about harvesting levels of the American Horseshoe Crab, Limulus polyphemus have prompted increased research into its ecology, current understanding of the species’ foraging ecology is mostly limited to mid-Atlantic populations. This study elucidates the spatial and temporal pattern of Limulus foraging on an intertidal mudflat of a northern New England estuary. A novel survey method was used to monitor Limulus foraging activity without disturbing the sediment. A fixed 50 m´2 m transect was monitored with monthly surveys of the number of Limulus feeding pits from June to October 2009, May and June 2010. Snorkelling surveys were also carried out to observe individual behavior and examine the spatial scale of activity of individual animals. Results showed frequent and intensive use of the mudflat by foraging Limulus. Limulus were actively foraging within the survey area during all months surveyed. Foraging patterns exhibited a seasonal pattern with activity levels peaking in August 2009 and increased significantly towards the end of the study in June 2010. It was also shown that Limulus intertidal foraging persisted and peaked after the spring breeding season. Observations of foraging Limulus revealed that individual predators dig multiple pits within a single high tide, with little disturbance to the sediment in between. In addition to altering the perception of Limulus as a subtidal predator outside of the breeding season, findings from this study suggests a segregation of spawning and feeding habitats, thus underscoring the need to consider a wider range of critical habitats in the management of Limulus populations [Current Zoology 56 (5: 611–617, 2010].

  1. USGS Tampa Bay Pilot Study

    Science.gov (United States)

    Yates, K.K.; Cronin, T. M.; Crane, M.; Hansen, M.; Nayeghandi, A.; Swarzenski, P.; Edgar, T.; Brooks, G.R.; Suthard, B.; Hine, A.; Locker, S.; Willard, D.A.; Hastings, D.; Flower, B.; Hollander, D.; Larson, R.A.; Smith, K.

    2007-01-01

    Many of the nation's estuaries have been environmentally stressed since the turn of the 20th century and will continue to be impacted in the future. Tampa Bay, one the Gulf of Mexico's largest estuaries, exemplifies the threats that our estuaries face (EPA Report 2001, Tampa Bay Estuary Program-Comprehensive Conservation and Management Plan (TBEP-CCMP)). More than 2 million people live in the Tampa Bay watershed, and the population constitutes to grow. Demand for freshwater resources, conversion of undeveloped areas to resident and industrial uses, increases in storm-water runoff, and increased air pollution from urban and industrial sources are some of the known human activities that impact Tampa Bay. Beginning on 2001, additional anthropogenic modifications began in Tampa Bat including construction of an underwater gas pipeline and a desalinization plant, expansion of existing ports, and increased freshwater withdrawal from three major tributaries to the bay. In January of 2001, the Tampa Bay Estuary Program (TBEP) and its partners identifies a critical need for participation from the U.S. Geological Survey (USGS) in providing multidisciplinary expertise and a regional-scale, integrated science approach to address complex scientific research issue and critical scientific information gaps that are necessary for continued restoration and preservation of Tampa Bay. Tampa Bay stakeholders identified several critical science gaps for which USGS expertise was needed (Yates et al. 2001). These critical science gaps fall under four topical categories (or system components): 1) water and sediment quality, 2) hydrodynamics, 3) geology and geomorphology, and 4) ecosystem structure and function. Scientists and resource managers participating in Tampa Bay studies recognize that it is no longer sufficient to simply examine each of these estuarine system components individually, Rather, the interrelation among system components must be understood to develop conceptual and

  2. Ecomorphodynamic Response of Foreshore Saltmarsh to the Implementation of Flood and Erosion Mitigation and Adaptation Structures in a Hypertidal Estuary: Minas Basin, Bay of Fundy, Canada.

    Science.gov (United States)

    Matheson, G.; van Proosdij, D.; Ross, C.

    2017-12-01

    Flood and erosion mitigations and adaptation structures are often implemented in anthropogenically modified coastal regions, such as dykelands, to protect against coastal hazards. If saltmarshes are to be incorporated into a coastal management plan as a source of coastal defence, it is paramount to understand how ecomorphodynamic feedbacks triggered by implementing these structures can impact saltmarshes. This study examines how these structures, in combination with natural drivers, have precipitated changes in foreshore saltmarsh erosion and progradation rates over varying spatial scales in the hypertidal Minas Basin, located in the upper Bay of Fundy, during the past 80 years. Foreshore change rates (in 25m segments) are obtained using empirical field measurements, geomatics techniques in a geographical information system (GIS), as well as imagery and digital surface models (DSMs) derived from an unmanned aerial vehicle (UAV). Furthermore, UAV DSMs were used to determine infill rates and short-term sediment budgets in saltmarsh borrow pits. Natural cyclical foreshore change rates are observed in the Minas Basin, but are often augmented by the presence of anthropogenic structures. Erosion and progradation rates in individual transects have been observed to be as much as -14.9m/yr and 20.1m/yr, respectively. In individual saltmarsh communities, average change rates have been observed to be as much -3.4m/yr and 2.1m/yr across the entire foreshore. Furthermore, results suggest that under specific environmental conditions some structures (e.g. kickers) work in tandem with saltmarshes to protect the upland by precipitating ecomorphodynamic feedbacks that promote saltmarsh progradation. Conversely, other structures (e.g. foreshore rocking) can exacerbate natural cycles of erosion, locally. Borrow pit studies reveal that although local suspended sediment concentrations, which can vary from 50mg/l to 50000mg/l, play an integral role in pit sedimentation, channel geometry

  3. Wastewater and Saltwater: Studying the Biogeochemistry and Microbial Activity Associated with Wastewater Inputs to San Francisco Bay

    Science.gov (United States)

    Challenor, T.; Menendez, A. D.; Damashek, J.; Francis, C. A.; Casciotti, K. L.

    2014-12-01

    to estuarine sediment found at other sites in the San Francisco Bay as well as the Chesapeake Bay, China East Sea, and Pearl River Estuary. Our data provide evidence for the path that N takes once entering the estuary and also further characterize the behavior of nitrifying microorganisms in extremely high-nutrient aquatic environments.

  4. Habitat Scale Mapping of Fisheries Ecosystem Service Values in Estuaries

    Directory of Open Access Journals (Sweden)

    Timothy G. O'Higgins

    2010-12-01

    Full Text Available Little is known about the variability of ecosystem service values at spatial scales most relevant to local decision makers. Competing definitions of ecosystem services, the paucity of ecological and economic information, and the lack of standardization in methodology are major obstacles to applying the ecosystem-services approach at the estuary scale. We present a standardized method that combines habitat maps and habitat-faunal associations to estimate ecosystem service values for recreational and commercial fisheries in estuaries. Three case studies in estuaries on the U.S. west coast (Yaquina Bay, Oregon, east coast (Lagoon Pond, Massachusetts, and the Gulf of Mexico (Weeks Bay, Alabama are presented to illustrate our method's rigor and limitations using available data. The resulting spatially explicit maps of fisheries ecosystem service values show within and between estuary variations in the value of estuarine habitat types that can be used to make better informed resource-management decisions.

  5. Some Challenges of an “Upside Down” Nitrogen Budget – Science and Management in Greenwich Bay, RI (USA)

    Science.gov (United States)

    When nutrients impact estuarine water quality, scientists and managers instinctively focus on quantifying and controlling land-based sources. However, in Greenwich Bay, RI, the estuary opens onto a larger and more intensively fertilized coastal water body (Narragansett Bay). Prev...

  6. Estuary 2100 Project, Phase 1: Resilient Watersheds for a Changing Climate

    Science.gov (United States)

    Information about the SFBWQP Estuary 2100 Project, Phase 1: Resilient Watersheds for a Changing Climate , part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  7. Temporal variability of macrofauna from a disturbed habitat in Zuari estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sivadas, S.; Ingole, B.S.; Nanajkar, M.

    of macrofaunal community from Mormugao Bay, Zuari estuary, (Goa) on the west coast of India was examined from 2003 to 2004 at seven stations. Environmental variability was assessed through physicochemical parameters of water and sediment. The changes...

  8. San Francisco Bay Multi-beam Bathymetry: Area A

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These multi-beam bathymetric data were collected over shallow subtidal areas in the San Francisco Bay estuary system. Bathymetric and acoustic backscatter data were...

  9. San Francisco Bay Interferometric Side Scan Imagery: Area A

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Backscatter imagery data were collected over shallow subtidal areas in the San Francisco Bay estuary system. Bathymetric and acoustic backscatter data were collected...

  10. Concentration and Distribution of Hydrophobic Organic Contaminants and Metals in the Estuaries of Ukraine

    Science.gov (United States)

    In this baseline study of Ukrainian estuaries, sediments and organisms from the Dnieper and Boh estuaries and Danube Delta on the mainland, Sevastopol and Balaklava Bays on the Crimean Peninsula, and coastal Black Sea along the Crimean Peninsula were collected in 2006. Contamina...

  11. Development of an integrated ecosystem model to determine effectiveness of potential watershed management projects on improving Old Tampa Bay

    Science.gov (United States)

    Edward T. Sherwood; Holly Greening; Lizanne Garcia; Kris Kaufman; Tony Janicki; Ray Pribble; Brett Cunningham; Steve Peene; Jim Fitzpatrick; Kellie Dixon; Mike Wessel

    2016-01-01

    The Tampa Bay estuary has undergone a remarkable ecosystem recovery since the 1980s despite continued population growth within the region. However during this time, the Old Tampa Bay (OTB) segment has lagged behind the rest of the Bay’s recovery relative to improvements in overall water quality and seagrass coverage. In 2011, the Tampa Bay Estuary Program, in...

  12. Estuary Data Mapper (EDM)

    Science.gov (United States)

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions

  13. Climate Ready Estuaries

    Science.gov (United States)

    Information on climate change impacts to different estuary regions, tools and resources to monitor changes, and information to help managers develop adaptation plans for risk management of estuaries and coastal communities.

  14. Chesapeake Bay Future Conditions Report. Volume 11. Biota.

    Science.gov (United States)

    1977-12-01

    vertebrates , the cattle egret , glossy ibis and nutr ia are highly success ful new- comers , with an ecological impact yet to be assessed. Eurasian wa...Horned grebe Podiceps aur i tus Protected Cattle egret Bubulcus ibis Protected Great blue heron Ardea herodias Protected Glossy ibis Plegadis...xanthid crabs but not R. harrisii. Non-nutritional Role of Other Species Fertilization: Loxothylacus castrates the sexual organs. Appendix 15 119

  15. Petrographic Studies of Rocks from The Chesapeake Bay Impact ...

    African Journals Online (AJOL)

    The Exmore breccia contains angular clasts of older sedimentary material, and ... structure, stratigraphy and ground-water quality in the area. .... breccia, but not into the deeper crater filling, which was recently intersected by the 2005/6.

  16. Chesapeake Bay Water Quality Monitoring Using Satellite Imagery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Work done at Water Resources Center, University of Minnesota has demonstrated the feasibility of performing regional assessment of lake water quality using Landsat...

  17. Task 0715: Army Chesapeake Bay Total Maximum Daily Load Pilots

    Science.gov (United States)

    2011-05-01

    NDCEE/CTC The NDCEE is operated by: Office of the Assistant Sec etary of the Army for Installations, E ergy and Enviro ment Technology Transition...stockpiles of soils and sands; – Air emissions with deposition potential; – Construction projects; – Existence of septic systems/sewage holding tanks

  18. The Baltimore Engineers and the Chesapeake Bay, 1961-1987

    Science.gov (United States)

    1988-01-01

    Army Engineer Waterways Experiment Station: David F. Bastian and Norman W. Scheffner. At the University of Maryland Baltimore County: Howard E...Howard, Smallwood and Armisted. By the time of the Civil War, Baltimore was one of the best defended ports in the world. The forts at Hampton Roads and...Marine Sciences. The salinity and current velocity data were collected at 199 and 205 stations respectively. Norman Scheffner of WES de- veloped a

  19. Management case study: Tampa Bay, Florida

    Science.gov (United States)

    Morrison, G.; Greening, H.S.; Yates, K.K.

    2012-01-01

    Tampa Bay, Florida,USA, is a shallow,subtropical estuary that experienced severe cultural eutrophication between the 1940s and 1980s, a period when the human population of its watershed quadrupled. In response, citizen action led to the formation of a public- and private-sector partnership (the Tampa Bay Estuary Program), which adopted a number of management objectives to support the restoration and protection of the bay’s living resources. These included numeric chlorophyll a and water-clarity targets, as well as long-term goals addressing the spatial extent of sea grasses and other selected habitat types, to support estuarine-dependent faunal guilds.

  20. Chesapeake Bay Study. Supplement A. Problem Identification. Supplement B. Public Involvement. Supplement C. The Chesapeake Bay Hydraulic Model.

    Science.gov (United States)

    1984-09-01

    Amphipod (5 genera) Canvasback Sand flea Lesser scaup Cnidaria 4’ Grass shrimp 4’ Bufflehead 4 Sand shrimp ** Osprey " Stinging nettle 4’ Xanthid crab (2...thereby decreasing the amounts of available oxygen in the water and, in extreme cases, causing fish kills. In addition, the use of insecticides in...where demands are the greatest. The stinging sea nettle and the closely related comb A-79 f. . . . . . • _ . . ... . .. jellies or ctenophores which

  1. The zooplankton of Mgazana, a mangrove estuary in Transkei

    African Journals Online (AJOL)

    continent. The estuary is in an excellent state of preservation and all three species of mangrove trees which occur south of K.osi Bay (260 54' S) are recorded here (Avicennia marina, Bruguieria gymnorhiza .... of Heron Island a shallow ford or drift occurs where depth may be less than 0,25 m at low tide. Above the island the ...

  2. Long-term morphologic evolution of the Hangzhou Bay, China

    Science.gov (United States)

    Wen, W.; Zhijun, D.; Hualiang, X.

    2013-12-01

    Estuaries are the most productive ecosystems of coastal zones in the world, which are significant to mankind as places of navigation, recreation and commerce as well as extensive and diverse habitats for wildlife. However, most estuary environments in the world had occurred greatly changes in recent decades. These estuaries have suffered from impacts of forcing factors including wave climate, mean sea level change and storm surge, especial to the intensive human activities such as training wall construction, channel dredging, sand mining and dam constructions. Thus, there have been increasing concerns about estuary environment changes under effects of different factors. Riverine loads into the Changjiang Estuary have declined dramatically with the construction of Three Gorges Dam (TGD) in 2003. The morphological evolution of the Hangzhou bay that located the southern proximity of the Yangtze estuary starts to attract increasing attentions due to most material of the Hangzhou bay received from Yangtze estuary. In this paper, historical bathymetric charts were digitized and analyzed within a GIS to provide quantitative estimate of changes in volumes in different regions below 0 m elevation. The results show that Hangzhou bay has experienced a major loss in estuarine volume of about 15% with annual mean sediment deposition rate of 80 million m3/a during the last 75 years. However, there is a large-scale spatial adjustment in Hangzhou bay: Bathymetric changes of the Hangzhou bay can be rapidly shifted within the range of 8-10 classes. Volume of the Jinshanzui upstream of the Hangzhou bay has obviously decreased in the last 75 years, especially during 2003-2008. However, Volume of the southern Hangzhou bay has experienced slowly decrease with minor deposition. The northern Hangzhou bay had largely volume changes with rapidly decrease during 1931-1981, and drastically increase since 2003. Further analysis of the bathymetric data relating to possible factors indicates

  3. Tampa Bay Ecosystem Services Demonstration Pilot Phase 2 web site

    Science.gov (United States)

    The value of nature's benefits is difficult to consider in environmental decision-making since ecosystem goods and services are usually not well measured or quantified in economic terms. The Tampa Bay Estuary Program, Tampa Bay Regional Planning Council, the U.S. Environmental Pr...

  4. Evaluating the potential effects of hurricanes on long-term sediment accumulation in two micro-tidal sub-estuaries: Barnegat Bay and Little Egg Harbor, New Jersey, U.S.A.

    Science.gov (United States)

    Marot, Marci E.; Smith, Christopher G.; Ellis, Alisha M.; Wheaton, Cathryn J.

    2016-06-23

    Barnegat Bay, located along the eastern shore of New Jersey, was significantly impacted by Hurricane Sandy in October 2012. Scientists from the U.S. Geological Survey (USGS) developed a multidisciplinary study of sediment transport and hydrodynamics to understand the mechanisms that govern estuarine and wetland responses to storm forcing. This report details the physical and chemical characteristics of surficial and downcore sediments from two areas within the bay. Eleven sites were sampled in both the central portion of the bay near Barnegat Inlet and in the southern portion of the bay in Little Egg Harbor. Laboratory analyses include Be-7, Pb-210, bulk density, porosity, x-radiographs, and grain-size distribution. These data will serve as a critical baseline dataset for understanding the current sedimentological regime and can be applied to future storms for understanding estuarine and wetland evolution.

  5. Morphodynamics, sedimentary and anthropogenic influences in the San Vicente de la Barquera estuary (North coast of Spain)

    OpenAIRE

    FLOR-BLANCO, G.; FLOR, G.; PANDO, L.; ABANADES, J.

    2015-01-01

    The estuary of San Vicente de la Barquera (Cantabria, Spain) occupies two fluvial valleys that have incised into soft sedimentary rocks (Lower Mesozoic) and are controlled by inactive faults. These two estuary subsystems, the Escudo (main valley) and Gandarilla, share outer estuarine zones, i.e., a sandy bay and an estuary-mouth complex. The complexity of the system lies in the presence of a confining barrier formed by an aeolian dune/ beach system that is currently enclosed by a jetty, which...

  6. Managed nutrient reduction impacts on nutrient concentrations, water clarity, primary production, and hypoxia in a north temperate estuary

    Science.gov (United States)

    Oviatt, Candace; Smith, Leslie; Krumholz, Jason; Coupland, Catherine; Stoffel, Heather; Keller, Aimee; McManus, M. Conor; Reed, Laura

    2017-12-01

    Except for the Providence River and side embayments like Greenwich Bay, Narragansett Bay can no longer be considered eutrophic. In summer 2012 managed nitrogen treatment in Narragansett Bay achieved a goal of reducing effluent dissolved inorganic nitrogen inputs by over 50%. Narragansett Bay represents a small northeast US estuary that had been heavily loaded with sewage effluent nutrients since the late 1800s. The input reduction was reflected in standing stock nutrients resulting in a statistically significant 60% reduction in concentration. In the Providence River estuary, total nitrogen decreased from 100 μm to about 40 μm, for example. We tested four environmental changes that might be associated with the nitrogen reduction. System apparent production was significantly decreased by 31% and 45% in the upper and mid Bay. Nutrient reductions resulted in statistically improved water clarity in the mid and upper Bay and in a 34% reduction in summer hypoxia. Nitrogen reduction also reduced the winter spring diatom bloom; winter chlorophyll levels after nutrient reduction have been significantly lower than before the reduction. The impact on the Bay will continue to evolve over the next few years and be a natural experiment for other temperate estuaries that will be experiencing nitrogen reduction. To provide perspective we review factors effecting hypoxia in other estuaries with managed nutrient reduction and conclude that, as in Narragansett Bay, physical factors can be as important as nutrients. On a positive note managed nutrient reduction has mitigated further deterioration in most estuaries.

  7. Milwaukee Estuary AOC

    Science.gov (United States)

    The rivers in the Milwaukee estuary in Wisconsin drain into Lake Michigan. Wastewater treatment plants and combined sewer overflows contribute pollution which affects fish and wildlife and recreation.

  8. Meteorological, biological, and hydrographic data collected from Middle Bay Lighthouse in Mobile Bay, AL from 05/23/2005 - 12/31/2013 (NODC Accession 0117376)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Abstract: Dauphin Island Sea Lab and the Mobile Bay National Estuary Program have partnered with the University of South Alabama, the Alabama Department of...

  9. Preventing Pollution to Local Waters, Bay; Preserving Historic Natural Bridge in Virginia

    Science.gov (United States)

    In helping to preserve one of the oldest tourist destinations in the country – a spectacular natural land bridge in Virginia – EPA funding is protecting the surrounding land from development that would have impacted local waters and the Chesapeake Bay.

  10. Colored Dissolved Organic Matter in Shallow Estuaries: The Effects of Source and Transport on Light Attenuation and Measurement

    Science.gov (United States)

    Oestreich, W. K.; Ganju, N. K.; Pohlman, J.; Suttles, S. E.

    2014-12-01

    Light is of great importance to the health and ecological function of shallow estuaries. Primary production in such estuaries, which is typically dominated by seagrass, is contingent upon light penetration to the deeper part of the estuarine water column. A major component contributing to light attenuation in these systems is colored dissolved organic matter (CDOM). CDOM is most often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of taking rapid, accurate fDOM measurements. Fluorescence data can then be converted to absorbance by CDOM for use in light attenuation models. However, this fDOM-CDOM conversion has proven to be quite variable between estuaries, and even between sites along a given estuary. We displayed and attempted to explain this variability through the study of three diverse estuaries: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from wastewater treatment to agricultural operations and residential communities. Measurements of fDOM and absorbance by CDOM (quantified via spectrophotometer measurement of 0.2μm-filtered samples) were taken along a gradient from terrestrial to oceanic end-members. These measurements yielded highly variable fDOM-CDOM relationships between estuaries. The mean ratio of absorption coefficient at 340nm (m-1) to fDOM (QSU) was much higher in West Falmouth Harbor (0.874) than in Barnegat Bay (0.227) and Chincoteague Bay (0.173). This fDOM-CDOM relationship was also observed to be variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent throughout sites along Chincoteague Bay. This variability, both within and between estuaries, is likely due to differing CDOM sources as a result of differences in land use in the areas surrounding these estuaries. Stable carbon isotope analysis of DOC from each site and hydrodynamic model results will be used to differentiate sources and further elucidate the

  11. Spatial and temporal variation of stream chemistry associated with contrasting geology and land-use patterns in the Chesapeake Bay watershed—Summary of results from Smith Creek, Virginia; Upper Chester River, Maryland; Conewago Creek, Pennsylvania; and Difficult Run, Virginia, 2010–2013

    Science.gov (United States)

    Hyer, Kenneth E.; Denver, Judith M.; Langland, Michael J.; Webber, James S.; Böhlke, J.K.; Hively, W. Dean; Clune, John W.

    2016-11-17

    Despite widespread and ongoing implementation of conservation practices throughout the Chesapeake Bay watershed, water quality continues to be degraded by excess sediment and nutrient inputs. While the Chesapeake Bay Program has developed and maintains a large-scale and long-term monitoring network to detect improvements in water quality throughout the watershed, fewer resources have been allocated for monitoring smaller watersheds, even though water-quality improvements that may result from the implementation of conservation practices are likely to be first detected at smaller watershed scales.In 2010, the U.S. Geological Survey partnered with the U.S. Environmental Protection Agency and the U.S. Department of Agriculture to initiate water-quality monitoring in four selected small watersheds that were targeted for increased implementation of conservation practices. Smith Creek watershed is an agricultural watershed in the Shenandoah Valley of Virginia that is dominated by cattle and poultry production, and the Upper Chester River watershed is an agricultural watershed on the Eastern Shore of Maryland that is dominated by row-cropping activities. The Conewago Creek watershed is an agricultural watershed in southeastern Pennsylvania that is characterized by mixed agricultural activities. The fourth watershed, Difficult Run, is a suburban watershed in northern Virginia that is dominated by medium density residential development. The objective of this study was to investigate spatial and temporal variations in water chemistry and suspended sediment in these four relatively small watersheds that represent a range of land-use patterns and underlying geology to (1) characterize current water-quality conditions in these watersheds, and (2) identify the dominant sources, sinks, and transport processes in each watershed.The general study design involved two components. The first included intensive routine water-quality monitoring at an existing streamgage within each study

  12. Climate, Clams, and a Changing Watershed: A time series analysis to quantify the impact of management and climate on water quality in the Potomac Estuary

    Science.gov (United States)

    The Potomac River is the largest tributary of the Chesapeake Bay and has been a key study site in water quality research, beginning with work to address public health concerns such as safe drinking water and waterborne disease during periods of population growth and urbanization ...

  13. Instrument packages to study long-term sediment transport processes in a shallow bay

    Science.gov (United States)

    Strahle, William J.; Martini, Marinna A.; Davis, Ray E.

    1994-01-01

    Pressure and near-surface and near-bottom measurements of current, temperature, salinity and light transmission were required in Mobile Bay, a 3 m deep estuary on the Gulf of Mexico. This environment presented several obstacles to obtaining long term observations. Boat traffic, soft estuary bottom, heavy biofouling, rapid sample rates and large data storage were overcome by using instrumentation techniques that are applicable to other estuary systems. Nearly two years of continuous data was collected.

  14. Wind Wave Behavior in Fetch and Depth Limited Estuaries

    Science.gov (United States)

    Karimpour, Arash; Chen, Qin; Twilley, Robert R.

    2017-01-01

    Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design.

  15. Keurbooms Estuary floods and sedimentation

    Directory of Open Access Journals (Sweden)

    Eckart H. Schumann

    2015-11-01

    Full Text Available The Keurbooms Estuary at Plettenberg Bay lies on a wave-dominated, microtidal coast. It has a dune-topped sandy barrier, or barrier dune, almost 4 km long, with a narrow back-barrier lagoon connected to its source rivers, the Keurbooms and Bitou. The estuary exits to the sea through this barrier dune, and it is the geomorphology and mouth position in relation to floods, which is the subject of this paper. Measurements of rainfall, water level, waves and high- and low-tide water lines were used to analyse the mouth variability over the years 2006–2012. Two major floods occurred during this time, with the first in November 2007 eroding away more than 500 000 m3 of sediment. The new mouth was established at the Lookout Rocks limit – the first time since 1915. The second flood occurred in July 2012 and opened up a new mouth about 1 km to the north-east; high waves also affected the position of the breach. The mouth has a tendency to migrate southwards against the longshore drift, but at any stage this movement can be augmented or reversed. The effectiveness of floods in breaching a new mouth through the barrier dune depends on the flood size and the nature of the exit channel in the back-barrier lagoon. Other factors such as ocean waves, sea level, vegetative state of the dune and duration of the flood are also important and can determine where the breach occurs, and if the new mouth will dominate the old mouth.

  16. Penobscot Estuary (Maine) Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's NEFSC collects fisheries data from the Penobscot Estuary using several types of fishing gear. The data is used to determine species presence, relative...

  17. IMPORTANCE OF "GREEN TIDES" IN A PACIFIC NORTHWEST ESTUARY: PRODUCTION DYNAMICS OF EELGRASS (ZOSTERA MARINA), DWARF EELGRASS (Z. JAPONICA) AND ENTEROMORPHA SPP.

    Science.gov (United States)

    Benthic macrophytes play a large role in the ecology and biogeochemistry of estuaries. I examine the relative contribution of macrophytes (seagrass and macroalgae) to overall productivity of a macrotidal system. Biomass data from Yaquina Bay suggests that although these seagras...

  18. Estuary-ocean connectivity: fast physics, slow biology.

    Science.gov (United States)

    Raimonet, Mélanie; Cloern, James E

    2017-06-01

    Estuaries are connected to both land and ocean so their physical, chemical, and biological dynamics are influenced by climate patterns over watersheds and ocean basins. We explored climate-driven oceanic variability as a source of estuarine variability by comparing monthly time series of temperature and chlorophyll-a inside San Francisco Bay with those in adjacent shelf waters of the California Current System (CCS) that are strongly responsive to wind-driven upwelling. Monthly temperature fluctuations inside and outside the Bay were synchronous, but their correlations weakened with distance from the ocean. These results illustrate how variability of coastal water temperature (and associated properties such as nitrate and oxygen) propagates into estuaries through fast water exchanges that dissipate along the estuary. Unexpectedly, there was no correlation between monthly chlorophyll-a variability inside and outside the Bay. However, at the annual scale Bay chlorophyll-a was significantly correlated with the Spring Transition Index (STI) that sets biological production supporting fish recruitment in the CCS. Wind forcing of the CCS shifted in the late 1990s when the STI advanced 40 days. This shift was followed, with lags of 1-3 years, by 3- to 19-fold increased abundances of five ocean-produced demersal fish and crustaceans and 2.5-fold increase of summer chlorophyll-a in the Bay. These changes reflect a slow biological process of estuary-ocean connectivity operating through the immigration of fish and crustaceans that prey on bivalves, reduce their grazing pressure, and allow phytoplankton biomass to build. We identified clear signals of climate-mediated oceanic variability in this estuary and discovered that the response patterns vary with the process of connectivity and the timescale of ocean variability. This result has important implications for managing nutrient inputs to estuaries connected to upwelling systems, and for assessing their responses to changing

  19. Understanding the fate of iron in a modern temperate estuary: Leirarvogur, Iceland

    International Nuclear Information System (INIS)

    Byrne, Gemma M.; Worden, Richard H.; Hodgson, David M.; Polya, David A.; Lythgoe, Paul R.; Barrie, Craig D.; Boyce, Adrian J.

    2011-01-01

    Highlights: → Fluvial Fe (aq) and Fe (total) concentrations drop upon mixing with seawater in estuaries. → The majority of Fe in estuaries is lost in the bay-head delta. → Our results suggest that the bay-head delta is a key location in Fe-mineral formation. → Isotopic variation in estuarine waters may play a role in the formation of Fe-minerals. - Abstract: Fluvial dissolved Fe concentrations decrease upon mixing with seawater, resulting in the formation of Fe-floccules. However, a clear understanding of the fate of these floccules has yet to be established. Assessing how tidal processes affect the formation of Fe-colloids in the Leirarvogur estuary, SW Iceland, is an important step in understanding the formation and potential deposition of estuarine Fe-rich minerals within this estuarine system. The Leirarvogur estuary drains predominately Fe-rich basalt, increasing the likelihood of detecting changes in Fe-phases. Fluvial waters and local lake waters that drain into the estuary were compared and the effects of seasonal changes were considered, in an attempt to understand how varying end-members and external factors play a role in Fe-rich mineral formation. Aqueous and colloidal Fe concentrations were found to be greater towards the head of the Leirarvogur estuary, suggesting that potential Fe-rich minerals and complexes are forming at sites of fluvial input. Increasing suspended colloidal Fe towards the estuary mouth suggests that Fe-colloids are readily transported seaward.

  20. Impact of climate change on Gironde estuary

    International Nuclear Information System (INIS)

    Laborie, Vanessya; Hissel, Francois; Sergent, Philippe

    2014-01-01

    Within the THESEUS European project, a simplified mathematical model for storm surge levels in the Bay of Biscay was adjusted on 10 events at Le Verdon using wind and pressure fields from CLM/SGA, so that the water levels at Le Verdon have the same statistic quantiles as observed tide records for the period [1960-2000]. A numerical model of the Gironde Estuary was used to evaluate future water levels at 6 locations of the estuary from Le Verdon to Bordeaux and to assess the changes in the quantiles of water levels during the 21. century using ONERC's pessimistic scenario for sea level rise (60 cm). The analysis of future storm surge levels shows a decrease in their quantiles at Le Verdon,, whereas there is an increase of the quantiles of total water levels. This increase is smaller than the sea level rise and gets even smaller as one enters farther upstream in the estuary. A series of flood maps for different return periods between 2 and 100 years and for four time periods ([1960-1999], [2010-2039], [2040-2069] and [2070-2099]) have been built for the region of Bordeaux. Quantiles of water levels in the flood plain have also been calculated. The impact of climate change on the evolution of flooded areas in the Gironde Estuary and on quantiles of water levels in the flood plain mainly depends on the sea level rise. Areas which are not currently flooded for low return periods will be inundated in 2100. The influence of river discharges and dike breaching should also be taken into account for more accurate results. (authors)

  1. Impact of climate change on Gironde Estuary

    Science.gov (United States)

    Laborie, Vanessya; Hissel, François; Sergent, Philippe

    2014-05-01

    Within the THESEUS European project, a simplified mathematical model for storm surge levels in the Bay of Biscay was adjusted on 10 events at Le Verdon using wind and pressure fields from CLM/SGA, so that the water levels at Le Verdon have the same statistic quantiles as observed tide records for the period [1960-2000]. The analysis of future storm surge levels shows a decrease in their quantiles at Le Verdon, whereas there is an increase of the quantiles of total water levels. This increase is smaller than the sea level rise and gets even smaller as one enters farther upstream in the estuary. A numerical model of the Gironde Estuary was then used to evaluate future water levels at 6 locations of the estuary from Le Verdon to Bordeaux and to assess the changes in the quantiles of water levels during the XXIst century using ONERC's pessimistic scenario for sea level rise (60 cm). The model was fed by several data sources : wind fields at Royan and Mérignac interpolated from the grid of the European Climatolologic Model CLM/SGA, a tide signal at Le Verdon, the discharges of Garonne (at La Réole), the Dordogne (at Pessac) and Isle (at Libourne). A series of flood maps for different return periods between 2 and 100 years and for four time periods ([1960-1999], [2010-2039], [2040-2069] and [2070-2099]) have been built for the region of Bordeaux. Quantiles of water levels in the floodplain have also been calculated. The impact of climate change on the evolution of flooded areas in the Gironde Estuary and on quantiles of water levels in the floodplain mainly depends on the sea level rise. Areas which are not currently flooded for low return periods will be inundated in 2100. The influence of river discharges and dike breaching should also be taken into account for more accurate results.

  2. About Estuary Data Mapper (EDM)

    Science.gov (United States)

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions.

  3. Discharge between San Antonio Bay and Aransas Bay, southern Gulf Coast, Texas, May-September 1999

    Science.gov (United States)

    East, Jeffery W.

    2001-01-01

    Along the Gulf Coast of Texas, many estuaries and bays are important habitat and nurseries for aquatic life. San Antonio Bay and Aransas Bay, located about 50 and 30 miles northeast, respectively, of Corpus Christi, are two important estuarine nurseries on the southern Gulf Coast of Texas (fig. 1). According to the Texas Parks and Wildlife Department, “Almost 80 percent of the seagrasses [along the Texas Gulf Coast] are located in the Laguna Madre, an estuary that begins just south of Corpus Christi Bay and runs southward 140 miles to South Padre Island. Most of the remaining seagrasses, about 45,000 acres, are located in the heavily traveled San Antonio, Aransas and Corpus Christi Bay areas” (Shook, 2000).Population growth has led to greater demands on water supplies in Texas. The Texas Water Development Board, the Texas Parks and Wildlife Department, and the Texas Natural Resource Conservation Commission have the cooperative task of determining inflows required to maintain the ecological health of the State’s streams, rivers, bays, and estuaries. To determine these inflow requirements, the three agencies collect data and conduct studies on the need for instream flows and freshwater/ saline water inflows to Texas estuaries.To assist in the determination of freshwater inflow requirements, the U.S. Geological Survey (USGS), in cooperation with the Texas Water Development Board, conducted a hydrographic survey of discharge (flow) between San Antonio Bay and Aransas Bay during the period May–September 1999. Automated instrumentation and acoustic technology were used to maximize the amount and quality of data that were collected, while minimizing personnel requirements. This report documents the discharge measured at two sites between the bays during May–September 1999 and describes the influences of meteorologic (wind and tidal) and hydrologic (freshwater inflow) conditions on discharge between the two bays. The movement of water between the bays is

  4. Diversidade e abundância sazonal da avifauna em duas planícies de maré no estuário da baía da Babitonga, norte de Santa Catarina Diversity and abundance of birds in two tidal flat in Babitonga Bay estuary, north of Santa Catarina state, Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre V. Grose

    2013-03-01

    Full Text Available Informações sobre a ocorrência de aves nos ambientes estuarinos de Santa Catarina ainda são escassas. O objetivo deste trabalho foi registrar a diversidade, abundância e variação sazonal das aves em duas planícies de maré na baía da Babitonga. As amostragens foram realizadas durante um ano (maio de 2006 a abril 2007. No total foram identificadas 25 espécies, sendo 15 no Linguado (LG e 24 na desembocadura do Monte de Trigo (MT. Apenas uma espécie foi exclusiva no LG Himantopus melanurus (Vieillot, 1817, enquanto dez espécies ocorreram apenas no MT. O número de espécies em MT foi superior ao encontrado em LG. A espécie mais abundante em MT foi Rynchops niger (Linnaeus, 1758 e em LG foi Egretta caerulea (Linnaeus, 1758. Durante alguns meses foram registradas espécies migratórias neárticas em ambas as áreas, o que representou um acréscimo na diversidade. A extensa planície de maré formada pelo fechamento do canal do Linguado tem sido muito ocupada por aves, possivelmente pela maior disponibilidade de alimento.Information of birds in estuaries of Santa Catarina is scarce. This work aimed to collect data on diversity, abundance and seasonal variation on this community. Sampling of birds in two tidal flats in Babitonga Bay estuary was carried out during one year (May 2006 to April 2007. A total of 25 species were identified, being 15 in Linguado (LG and 24 in Monte de Trigo (MT. Only one species was unique in LG (Himantopus melanurus Vieillot, 1817 and 10 in MT. The number of species in MT was higher than in LG due to the conservation condition. The most abundant species on MT was the Black Skimmer [Rynchops niger (Linnaeus, 1758] and in the LG was the Little Blue Heron [Egretta caerulea (Linnaeus, 1758]. During some months Nearctic migratory species were recorded in both areas, representing an increase in diversity. The extensive tidal flat formed by the closure of the channel in LG is widely used by birds, possibly because of

  5. Review and synthesis of historical Tampa Bay water quality data. Final technical report

    International Nuclear Information System (INIS)

    Vargo, G.; Weisberg, R.; Bendis, B.; Rutherford, E.H.

    1992-11-01

    The review and synthesis of historical water quality data was one of the first characterization projects administered by the Tampa Bay National Estuary Program (NEP). The objective of the project was to describe the physical, chemical and biological characteristics of Tampa Bay. The report examines the spatial and temporal trends from the acquired data for possible interrelationships and develops them statistically

  6. Recovery of Data from the Narragansett Bay Project, 1985-1992: User's Manual and CD-ROM

    Science.gov (United States)

    Data from the 1985-1992 era of the Narragansett Bay Project, an estuary of the National Estuary Program, were recovered from numerous storage media, updated to modern software, and burned to CD-ROM. The data will be used by, among others, EPA researchers working on long-term tren...

  7. Development of an estuarine assessment scheme for the management of a highly urbanised catchment/estuary system, Sydney estuary, Australia.

    Science.gov (United States)

    Birch, G F; Gunns, T J; Chapman, D; Harrison, D

    2016-05-01

    As coastal populations increase, considerable pressures are exerted on estuarine environments. Recently, there has been a trend towards the development and use of estuarine assessment schemes as a decision support tool in the management of these environments. These schemes offer a method by which complex environmental data is converted into a readily understandable and communicable format for informed decision making and effective distribution of limited management resources. Reliability and effectiveness of these schemes are often limited due to a complex assessment framework, poor data management and use of ineffective environmental indicators. The current scheme aims to improve reliability in the reporting of estuarine condition by including a concise assessment framework, employing high-value indicators and, in a unique approach, employing fuzzy logic in indicator evaluation. Using Sydney estuary as a case study, each of the 15 sub-catchment/sub-estuary systems were assessed using the current scheme. Results identified that poor sediment quality was a significant issue in Blackwattle/Rozelle Bay, Iron Cove and Hen and Chicken Bay while poor water quality was of particular concern in Duck River, Homebush Bay and the Parramatta River. Overall results of the assessment scheme were used to prioritise the management of each sub-catchment/sub-estuary assessed with Blackwattle/Rozelle Bay, Homebush Bay, Iron Cove and Duck River considered to be in need of a high priority management response. A report card format, using letter grades, was employed to convey the results of the assessment in a readily understood manner to estuarine managers and members of the public. Letter grades also provide benchmarking and performance monitoring ability, allowing estuarine managers to set improvement targets and assesses the effectiveness of management strategies. The current assessment scheme provides an effective, integrated and consistent assessment of estuarine health and

  8. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    Science.gov (United States)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; hide

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  9. Evolution of mid-Atlantic coastal and back-barrier estuary environments in response to a hurricane: Implications for barrier-estuary connectivity

    Science.gov (United States)

    Miselis, Jennifer L.; Andrews, Brian D.; Nicholson, Robert S.; Defne, Zafer; Ganju, Neil K.; Navoy, Anthony S.

    2016-01-01

    Assessments of coupled barrier island-estuary storm response are rare. Hurricane Sandy made landfall during an investigation in Barnegat Bay-Little Egg Harbor estuary that included water quality monitoring, geomorphologic characterization, and numerical modeling; this provided an opportunity to characterize the storm response of the barrier island-estuary system. Barrier island morphologic response was characterized by significant changes in shoreline position, dune elevation, and beach volume; morphologic changes within the estuary were less dramatic with a net gain of only 200,000 m3 of sediment. When observed, estuarine deposition was adjacent to the back-barrier shoreline or collocated with maximum estuary depths. Estuarine sedimentologic changes correlated well with bed shear stresses derived from numerically simulated storm conditions, suggesting that change is linked to winnowing from elevated storm-related wave-current interactions rather than deposition. Rapid storm-related changes in estuarine water level, turbidity, and salinity were coincident with minima in island and estuarine widths, which may have influenced the location of two barrier island breaches. Barrier-estuary connectivity, or the transport of sediment from barrier island to estuary, was influenced by barrier island land use and width. Coupled assessments like this one provide critical information about storm-related coastal and estuarine sediment transport that may not be evident from investigations that consider only one component of the coastal system.

  10. The distribution of 4-nonylphenol in marine organisms of North American Pacific Coast estuaries.

    Science.gov (United States)

    Diehl, Jennifer; Johnson, Sarah E; Xia, Kang; West, Amy; Tomanek, Lars

    2012-04-01

    One of the chemical breakdown products of nonylphenol ethoxylates, 4-nonylphenol (4-NP), accumulates in organisms and is of concern as an environmental pollutant due to its endocrine disrupting effects. We measured 4-NP levels in the seawater, sediment, and twelve organisms within the California estuary, Morro Bay, and examined biomagnification of 4-NP using stable isotope abundances (δ(15)N and δ(13)C) to quantify trophic position. 4-NP concentrations in organisms from Morro Bay included 25000±8600 ng g(-1) lw in liver of California sea lion, 14000±5600 ng g(-1) lw in liver of harbor porpoise, 138000±55000 ng g(-1) lw in liver of sea otters, 15700±3600 ng g(-1) lw in liver of seabirds, 36100±6100 ng g(-1) lw in arrow goby fish, 62800±28400 ng g(-1) lw in oysters, and 12700±1300 ng g(-1) lw in mussels. 4-NP levels generally showed a pattern of trophic dilution among organisms in Morro Bay, with exceptions of biomagnification observed between three trophic links: mussel to sea otter (BMF 10.9), oyster to sea otter (BMF 2.2), and arrow goby to staghorn sculpin (BMF 2.7). Our examination of other west coast estuaries of USA and Canada revealed that mean 4-NP concentrations in gobies and mussels from Morro Bay were significantly higher than those from a more urbanized estuary, San Francisco Bay (goby: 11100±3800 ng g(-1) lw) and from a remote estuary, Bamfield Inlet, Canada (goby: 9000±900 ng g(-1) lw, mussel: 6100±700 ng g(-1) lw). Relative to other estuaries worldwide, 4-NP levels in seawater (0.42±0.16 μg L(-1)) and sediment (53±14 ng g(-1) dw) of Morro Bay are low, but gobies and oysters have higher 4-NP levels than comparable fauna. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Gulf of Mexico Integrated Science - Tampa Bay Study - Data Information Management System (DIMS)

    Science.gov (United States)

    Johnston, James

    2004-01-01

    The Tampa Bay Integrated Science Study is an effort by the U.S. Geological Survey (USGS) that combines the expertise of federal, state and local partners to address some of the most pressing ecological problems of the Tampa Bay estuary. This project serves as a template for the application of integrated research projects in other estuaries in the Gulf of Mexico. Efficient information and data distribution for the Tampa Bay Study has required the development of a Data Information Management System (DIMS). This information system is being used as an outreach management tool, providing information to scientists, decision makers and the public on the coastal resources of the Gulf of Mexico.

  12. Analysis of Suspended-Sediment Dynamics in Gulf of Mexico Estuaries Using MODIS/Terra 250-m Imagery

    Science.gov (United States)

    McCarthy, M. J.; Otis, D. B.; Muller-Karger, F. E.; Mendez-Lazaro, P.; Chen, F. R.

    2016-02-01

    Suspended sediments in coastal ecosystems reduce light penetration, degrade water quality, and inhibit primary production. In this study, a 15-year Moderate Resolution Imaging Spectroradiometer (MODIS/Terra) turbidity time-series was developed for use in the estuaries of the Gulf of Mexico (GOM). Remote-sensing reflectance (Rrs) at 645 nm and 250-m resolution was validated with in-situ turbidity measurements in these estuaries: Coastal Bend Bays (TX), Galveston Bay (TX), Barataria and Terrebonne Bays (LA), Mobile Bay (AL), Tampa Bay (FL), Sarasota Bay (FL), and Charlotte Harbor (FL). Mean values of turbidity over the time-series ranged from 2.5 NTU to over 10 NTU. Turbidity patterns exhibited seasonal cycles with peak values generally found during spring months, although there is considerable variability in the timing of peak turbidity. Episodes of elevated turbidity ranged from 6 episodes in Galveston Bay to 15 in Mobile Bay. The spatial extent of elevated turbidity within estuaries, frequency and duration of turbidity events, and potential driving factors behind episodes of elevated turbidity were also examined.

  13. The benthic regeneration of N and P in the Great Brak estuary ...

    African Journals Online (AJOL)

    2015-10-05

    Oct 5, 2015 ... modification of coastal environments, in particular the rise in inorganic and .... estuary is artificially breached at 2 m mean sea level (MSL) in order to prevent the ...... in a shallow subtropical bay in Florida. Mar. Ecol. Prog. Ser.

  14. Below the Disappearing Marshes of an Urban Estuary: Historic Nitrogen Trends and Soil Structure

    Science.gov (United States)

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wa...

  15. Lessons learned using water quality models to develop numeric nutrient criteria for a Gulf coast estuary

    Science.gov (United States)

    Pensacola Bay is a shallow, mesotrophic estuary located in the north-central coast of the Gulf of Mexico, US. In November 2012, the US Environmental Protection Agency (US EPA) proposed numeric total nitrogen (TN), total phosphorus (TP), and chlorophyll-a (chl-a) water quality cr...

  16. Vibracore locations collected in 2014 from Barnegat Bay, New Jersey

    Data.gov (United States)

    Department of the Interior — In response to the 2010 Governor’s Action Plan to clean up the Barnegat Bay–Little Egg Harbor (BBLEH) estuary in New Jersey, the U.S. Geological Survey (USGS)...

  17. 33 CFR 162.40 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware Canal).

    Science.gov (United States)

    2010-07-01

    ...., between Reedy Point, Delaware River, and Old Town Point Wharf, Elk River. (b) Speed. No vessel in the..., are required to travel at all times at a safe speed throughout the canal and its approaches so as to... Point and Welch Point. (f) Sailboats. Transiting the canal by vessels under sail is not permitted...

  18. 33 CFR 207.100 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware...

    Science.gov (United States)

    2010-07-01

    ... enter or pass through any part of the waterway will be contingent on the vessel's having adequate... facilities are of limited capacity, and permission to occupy them for periods exceeding 24 hours must be...

  19. Aggregate Settling Velocities in San Francisco Estuary Margins

    Science.gov (United States)

    Allen, R. M.; Stacey, M. T.; Variano, E. A.

    2015-12-01

    One way that humans impact aquatic ecosystems is by adding nutrients and contaminants, which can propagate up the food web and cause blooms and die-offs, respectively. Often, these chemicals are attached to fine sediments, and thus where sediments go, so do these anthropogenic influences. Vertical motion of sediments is important for sinking and burial, and also for indirect effects on horizontal transport. The dynamics of sinking sediment (often in aggregates) are complex, thus we need field data to test and validate existing models. San Francisco Bay is well studied and is often used as a test case for new measurement and model techniques (Barnard et al. 2013). Settling velocities for aggregates vary between 4*10-5 to 1.6*10-2 m/s along the estuary backbone (Manning and Schoellhamer 2013). Model results from South San Francisco Bay shoals suggest two populations of settling particles, one fast (ws of 9 to 5.8*10-4 m/s) and one slow (ws of Brand et al. 2015). While the open waters of San Francisco Bay and other estuaries are well studied and modeled, sediment and contaminants often originate from the margin regions, and the margins remain poorly characterized. We conducted a 24 hour field experiment in a channel slough of South San Francisco Bay, and measured settling velocity, turbulence and flow, and suspended sediment concentration. At this margin location, we found average settling velocities of 4-5*10-5 m/s, and saw settling velocities decrease with decreasing suspended sediment concentration. These results are consistent with, though at the low end of, those seen along the estuary center, and they suggest that the two population model that has been successful along the shoals may also apply in the margins.

  20. A note on the comparative turbidity of some estuaries of the Americas

    Science.gov (United States)

    Uncles, R.J.; Smith, R.E.

    2005-01-01

    Field data from 27 estuaries of the Americas are used to show that, in broad terms, there is a large difference in turbidity between the analyzed east and west-coast estuaries and that tidal range and tidal length have an important influence on that turbidity. Generic, numerical sediment-transport modeling is used to illustrate this influence, which exists over a range of space scales from, e.g., the Rogue River Estuary (few km, few mg l-1) to the Bay of Fundy (hundreds of km, few g l-1). The difference in Pacific and Atlantic seaboard estuarine turbidity for the analyzed estuaries is ultimately related to the broad-scale geomorphology of the two continents.

  1. The Mandovi and Zuari estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; DileepKumar, M.; Shankar, D.

    of their extensive use for fisheries, agriculture, transportation, dumping of waste, etc. The two estuaries have since continued to attract scientific curiosity over the years, thanks in large measure to support from national and local funding agencies. As a... made so far to simulate them in numerical models, and characteristics of stratification and mixing. These are followed by chapters that examine the fun- damentals of biology and chemistry of the estuaries. A distinct characteristic of the estuaries...

  2. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    Science.gov (United States)

    Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.

    2016-02-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : f

  3. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    Science.gov (United States)

    Oestreich, W.K.; Ganju, Neil K.; Pohlman, John; Suttles, Steven E.

    2016-01-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of

  4. Ecology of estuaries

    International Nuclear Information System (INIS)

    Kennish, M.J.

    1992-01-01

    Ecology of Estuaries: Anthropogenic Effects represents the most definitive and comprehensive source of reference information available on the human impact on estuarine ecosystems. The book discusses both acute and insidious pollution problems plaguing these coastal ecotones. It also provides a detailed examination of the deleterious and pervasive effects of human activities on biotic communities and sensitive habitat areas in estuaries. Specific areas covered include organic loading, oil pollution, polynuclear aromatic hydrocarbons, chlorinated hydrocarbons, heavy metals, dredging and dredge-spoil disposal, radionuclides, as well as other contaminants and processes. The diverse components of these anthropogenic influences are assembled in an organized framework and presented in a clear and concise style that will facilitate their understanding

  5. Sediment Trapping in Estuaries

    Science.gov (United States)

    Burchard, Hans; Schuttelaars, Henk M.; Ralston, David K.

    2018-01-01

    Estuarine turbidity maxima (ETMs) are generated by a large suite of hydrodynamic and sediment dynamic processes, leading to longitudinal convergence of cross-sectionally integrated and tidally averaged transport of cohesive and noncohesive suspended particulate matter (SPM). The relative importance of these processes for SPM trapping varies substantially among estuaries depending on topography, fluvial and tidal forcing, and SPM composition. The high-frequency dynamics of ETMs are constrained by interactions with the low-frequency dynamics of the bottom pool of easily erodible sediments. Here, we use a transport decomposition to present processes that lead to convergent SPM transport, and review trapping mechanisms that lead to ETMs at the landward limit of the salt intrusion, in the freshwater zone, at topographic transitions, and by lateral processes within the cross section. We use model simulations of example estuaries to demonstrate the complex concurrence of ETM formation mechanisms. We also discuss how changes in SPM trapping mechanisms, often caused by direct human interference, can lead to the generation of hyperturbid estuaries.

  6. Study of polonium and lead in shellfish (Mytilus Edulis) from NORM discharge area of Aberdeen Bay and Ythan Estuary of Scotland and radiological impact to the local people and environment

    International Nuclear Information System (INIS)

    Satyajit Ghose; Brian Heaton

    2005-01-01

    can be made it is essential that the release rates of the nuclides from the discharges are known. If polonium becomes available in the marine environment from these discharges they will contribute to the impact on the environment. In order to evaluate the possible radiological impact to the local people and the environment, a comprehensive study was set up in order to determine the full extent of TENORM and NORM outputs and the impact that these radionuclides were having on the environment. The main aim of this study concerned the quantification of the levels of 210 Po and 210 Pb in shellfish species and other environmental samples taken from around Aberdeen, and use them as bio-indicators for the analysis of Polonium-210 and Lead-210 with particular emphasis on the seasonal variation in Mytilus edulis at one site of Ythan estuary. There was a supplementary programme undertaken to some dose assessment work relevant to human consumption of shellfish. Additionally, the study of the distribution of 210 Pb and 210 Pb between the filtered, particulate phases, sediment and mussels can provide interesting in formation about their behaviour in this aquatic system. Experimental Radiochemical separation and α Spectrometer with Dual surface barrier detector was used to count the polonium a particles. A Perspex disc holder for polonium deposition was specially designed to be held in a stirrer and to fit inside a 150-200 ml breaker. The holder provides positive protection to one face of the silver disc. Silver disc with a thickness of 0.2 mm and 25 mm in diameter was used for 210 Po spontaneous deposition. Results: The measured 210 Po and 210 Pb concentrations and 210 Po/ 210 Pb activity ratio in filtrate water, sediment, particulate matter and mussel samples are reported. Some results are presented in Figure 1 and Table 1. Correlations between 210 Po and 210 Pb concentrations in mussel and related environmental samples, mussel wet weight and size are presented. The Condition

  7. Studies of movement of sediments in Santos bay

    International Nuclear Information System (INIS)

    Bandeira, J.V.; Aun, P.E.; Bomtempo, V.L.; Salim, L.H.; Minardi, P.S.P.; Santos, J.A.

    1990-01-01

    In the years of 1973, 74, 80, 81 and 85 several studies were performed at Santos bay, using radioactive tracers, with the following main objectives: to evaluate the behaviour (on the bottom and in suspension) of the mixture of silt and clay which is dredged from the estuary and from its access channel and dumped at pre-determined sites, in the bay and surrounding regions, with the objective of optimizing dredging disposal operations; to quantify the movement of sandy sediments on the bottom, in 3 areas of the bay, in summer and winter conditions, to obtain pertinent information related to the siltation of the access channel. As results of these studies, it was found that: the ancient dumping site, near Itaipu Point, in the western limit of the bay, was inadequate, since the material could return to the bay and to the estuary. The dumping site was moved to a region at the south of Moela Island, located eastwards relative to the bay, which brought substantial economies in dredging works; the bottom sediment transport was quantified, following clouds of tagged materials for about 8 months, thus obtaining important conclusions about transport rates in different regions of the bay. An analysis of the intervening hydrodynamic agents is also presented. (author) (L.J.C.)

  8. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    Science.gov (United States)

    The Grand Bay National Estuarine Research Reserve has the highest biotic diversity of habitats and offer a reserve of food resources and commercially significant species. Rapid human civilization has led to accumulation of heavy metals and trace elements in estuaries. The Grand Bay National Estuarin...

  9. Tidal Mixing Box Submodel for Tampa Bay: Calibration of Tidal Exchange Flows with the Parameter Estimation Tool (PEST)

    Science.gov (United States)

    In the mid-1990s the Tampa Bay Estuary Program proposed a nutrient reduction strategy focused on improving water clarity to promote seagrass expansion within Tampa Bay. A System Dynamics Model is being developed to evaluate spatially and temporally explicit impacts of nutrient r...

  10. Phosphorus fractionation distribution in Guapimirim estuary: SE Brazil.

    Science.gov (United States)

    Vicente, Michel Arthur Faria; de Melo, Gustavo Vaz; Baptista Neto, José Antonio; de Oliveira, Allan Sandes

    2016-01-01

    The Guapimirim estuary is the main tributary of Guanabara bay and is located in the northeast portion. Although it is protected, this estuary has been experiencing strong anthropogenic pressure, which has led to changes in the natural characteristics. Large amounts of sewage are dumped into the bay through tributaries, thereby changing the water and bottom sediment quality. One of the main elements of sewage is phosphorus. Despite its importance to life, a high concentration of this nutrient in the environment can result in eutrophication. This work describes the phosphorus distribution in its different fractions in the bottom sediment at 16 stations located in the main channel of the Guapimirim estuary. These results are correlated with data on grain size, organic matter and calcium carbonate content in the bottom sediment and with physicochemical parameters of the bottom water. The grain size decreases toward the mouth of the estuary, whereas the organic matter and carbonate content increase. The salinity increases significantly at 3.5 km upstream from the mouth, where there is also a notable increase in fine sediments; the same site is the mean position of the salinity front. The temperature and pH increase in the same direction. The Pinorg-total ranges between 3.18 and 7.13 µmol g(-1), increasing toward the mouth. The same trend is observed for the other phosphorus fractions P-Ca, P-Fe and P-f.a., which range from 0.68 to 1.91, 0.79 to 1.71 and 0.03 to 0.93 µmol g(-1), respectively. The P-Ca and P-Fe fractions are the most representative in the Pinorg-total, occurring at 26.3 and 26.0 %, respectively.

  11. Toxic phytoplankton in San Francisco Bay

    Science.gov (United States)

    Rodgers, Kristine M.; Garrison, David L.; Cloern, James E.

    1996-01-01

    The Regional Monitoring Program (RMP) was conceived and designed to document the changing distribution and effects of trace substances in San Francisco Bay, with focus on toxic contaminants that have become enriched by human inputs. However, coastal ecosystems like San Francisco Bay also have potential sources of naturally-produced toxic substances that can disrupt food webs and, under extreme circumstances, become threats to public health. The most prevalent source of natural toxins is from blooms of algal species that can synthesize metabolites that are toxic to invertebrates or vertebrates. Although San Francisco Bay is nutrient-rich, it has so far apparently been immune from the epidemic of harmful algal blooms in the world’s nutrient-enriched coastal waters. This absence of acute harmful blooms does not imply that San Francisco Bay has unique features that preclude toxic blooms. No sampling program has been implemented to document the occurrence of toxin-producing algae in San Francisco Bay, so it is difficult to judge the likelihood of such events in the future. This issue is directly relevant to the goals of RMP because harmful species of phytoplankton have the potential to disrupt ecosystem processes that support animal populations, cause severe illness or death in humans, and confound the outcomes of toxicity bioassays such as those included in the RMP. Our purpose here is to utilize existing data on the phytoplankton community of San Francisco Bay to provide a provisional statement about the occurrence, distribution, and potential threats of harmful algae in this Estuary.

  12. Long-term changes in primary production and mineralization of organic matter in the Neva Estuary (Baltic Sea)

    Science.gov (United States)

    Golubkov, Sergey; Golubkov, Mikhail; Tiunov, Alexei; Nikulina, Vera

    2017-07-01

    The Neva Estuary situated in the eastern part of the Gulf of Finland is one of the largest estuaries of the Baltic Sea. At present, heavy nutrient and organic matter loading, mainly from the Neva River and point sources in the upper estuary are the most serious environmental problem for the Neva Estuary and adjacent parts of the eastern Gulf of Finland. Long-term studies of mid-summer primary production and mineralization of organic matter were conducted in upper and middle parts of the Neva Estuary. A considerable increase of production and biomass of phytoplankton was observed in the middle part of the estuary during the last decades mainly due to an increase in biomass of cyanobacteria. However, they are mostly concentrated in the upper water layers and only a small part of them reached the near bottom water layers and may be used as a food by zoobenthos. The mineralization of organic matter in the water column was twice higher than primary production that indicates the importance of allochthonous organic matter in the carbon budget of the both parts of the estuary. The carbon isotope signature of seston and most of the zoobenthic species in the upper part of the estuary was close to the signature of allochthonous carbon leaking from watershed (- 27‰). Higher values of δ13C of seston in the upper mix layer of the Middle estuary indicate intensive primary production in mid-summer. The carbon isotopic signature of zoobenthos in this part of the estuary was also in general lower than in the Neva Bay reflected higher importance of autochthonous organic matter in food webs of the estuary.

  13. Seasonality in the Mesozooplankton Community of Delaware Bay, USA

    Science.gov (United States)

    Wickline, A.; Cohen, J.

    2016-02-01

    Zooplankton communities in temperate estuaries undergo seasonal shifts in abundance and species composition, though the physical/biological mechanisms behind these shifts vary among systems. Delaware Bay is a well-mixed estuary on the mid-Atlantic coast with predictable seasonal variation in environmental conditions and circulation. To understand factors influencing mesozooplankton community dynamics in this system, we conducted seasonal sampling at 16 stations over the estuary's salinity range in 2014-2015. Sampling paralleled the last similar investigation into Delaware Bay zooplankton, conducted in the early 1950s. Biomass, measured as dry weight and totaled for all stations, was low in late summer and high in spring and fall. Bio-volume, measured either as displacement volume or calculated from ZooScan processing to exclude detritus, also showed a similar pattern. Across seasons, the mesozooplankton community was dominated by copepods, representing over 60% of the relative abundance at each station. Acartia tonsa was the dominant calanoid species in summer and fall, with abundances up to 7,353 ind. m-3, which is similar to the 1950s. In spring, Centropages hamatus and C. typicus were dominant at densities up to 2,550 ind. m-3 throughout the estuary, which is an increase from the 1950s. Environmental data suggest the seasonal shift in dominance from neritic Centropages to estuarine Acartia could be driven by increased stratification of the estuary during periods of high river discharge in spring, creating a two-layer system with a bottom advection current fed by the coastal ocean, bringing coastal species into the estuary. As river discharge decreases, the advection current is reduced, creating a well-mixed estuary and allowing Acartia to dominante. As river discharge is ultimately determined by precipitation, which is predicted to increase during winter with climate change in this region, the phenology of mesozooplankton species dynamics could shift as well.

  14. Eutrophication influence on phytoplankton community composition in three bays on the eastern Adriatic coast

    Directory of Open Access Journals (Sweden)

    Mia Bužančić

    2016-10-01

    Full Text Available This study shows the influence of eutrophication pressure on the phytoplankton community structure, abundance and biodiversity in the investigated bays with different hydromorphological features. Šibenik Bay is a highly stratified estuary of the karstic river Krka; Kaštela Bay is a semi-enclosed coastal bay, which is influenced by the relatively small river Jadro; and Mali Ston Bay is located at the Neretva River estuary, the largest river on the eastern part of the Adriatic Sea. All of the areas are affected by urban pressure, which is reflected in the trophic status of the waters. The greatest anthropogenic influence was found in Kaštela Bay while the lowest influence was found in Mali Ston Bay. In this study, the highest biomass concentration and maximum abundance of phytoplankton were recorded at the stations under the strongest anthropogenic influence. Those stations show a dominance of abundance compared to the biomass and a dominance of opportunistic species, which is reflected in the lower biodiversity of phytoplankton community. Diatoms were the most represented group of the phytoplankton community in all three bays, followed by the dinoflagellates. Diatoms that were highlighted as significant for the difference between the bays were Skeletonema marinoi in Šibenik Bay, Leptocylindrus minimus in Kaštela Bay and the genus Chaetoceros spp. in Mali Ston Bay. Dinoflagellates were more abundant at the stations under the strongest anthropogenic influence, and most significant were Prorocentrum triestinum in Kaštela Bay and Gymnodinium spp. in Šibenik Bay and Mali Ston Bay.

  15. Mex Bay

    African Journals Online (AJOL)

    user

    2015-02-23

    Feb 23, 2015 ... surveys to assess the vulnerability of the most important physical and eutrophication parameters along. El- Mex Bay coast. As a result of increasing population and industrial development, poorly untreated industrial waste, domestic sewage, shipping industry and agricultural runoff are being released to the.

  16. Hydrodynamic Aspects at Vitória Bay Mouth, ES

    Directory of Open Access Journals (Sweden)

    FLÁVIA A.A. GARONCE

    2014-06-01

    Full Text Available Understading the hydrodynamic behavior and suspended particulated matter (SPM transport are of great importance in port regions such as Vitória Harbor, which is located at Vitória Bay, Vitória – ES, Brazil. Vitória Bay is an estuary that has not been systematically assessed through a temporal analysis in order to identify its hydrodynamics characteristics and SPM exchange. This study aims to investigate salt and suspended particulate matter flux at the estuarine mouth of Vitória Bay by understanding the temporal variation of salinity, temperature and tidal currents within the water column and at the channel crosssection. Results showed that the estuarine mouth tended to present partial stratification periods during neap tides and little stratification in spring tides. The circulation pattern was mainly influenced by the tide, with little influence from river discharge. With regard to the SPM, the mouth of the estuary tended to show low concentrations, with the highest values occurring during the dry season. A close relationship between momentary discharge, SPM and salt fluxes was observed. Despite all the data was collected at the mouth of the estuary, the system showed an importation trend of salt in all cycles and SPM importation for three of the four studied tidal cycles. Thus, Vitoria Bay is not exporting SPM to the adjacent inner shelf.

  17. Florida Bay: A history of recent ecological changes

    Science.gov (United States)

    Fourqurean, J.W.; Robblee, M.B.

    1999-01-01

    Florida Bay is a unique subtropical estuary at the southern tip of the Florida peninsula. Recent ecological changes (seagrass die-off, algal blooms, increased turbidity) to the Florida Bay ecosystem have focused the attention of the public, commercial interests, scientists, and resource managers on the factors influencing the structure and function of Florida Bay. Restoring Florida Bay to some historic condition is the goal of resource managers, but what is not clear is what an anthropogenically-unaltered Florida Bay would look like. While there is general consensus that human activities have contributed to the changes occurring in the Florida Bay ecosystem, a high degree of natural system variability has made elucidation of the links between human activity and Florida Bay dynamics difficult. Paleoecological analyses, examination of long-term datasets, and directed measurements of aspects of the ecology of Florida Bay all contribute to our understanding of the behavior of the bay, and allow quantification of the magnitude of the recent ecological changes with respect to historical variability of the system.

  18. Stable Isotopic Composition of Dissolved Organic Nitrogen Fueling Brown Tide in a Semi-Arid Texas Estuary

    Science.gov (United States)

    Campbell, J.; Felix, J. D. D.; Wetz, M.; Cira, E.

    2017-12-01

    Harmful algal blooms (HABs) have the potential to adversely affect the water quality of estuaries and, consequently, their ability to support healthy and diverse ecosystems. Since the early 1990s, Baffin Bay, a semi-arid south Texas estuary, has progressively experienced harmful algal blooms. The primary species of HAB native to the Baffin Bay region, Aureoumbra lagunensis, is unable to utilize nitrate as a nutrient source, but instead relies on forms of reduced nitrogen (such as dissolved organic nitrogen (DON) and ammonium (NH4+)) for survival. DON levels in Baffin Bay (77 ± 10 µM) exceed the DON concentrations of not only typical Texas estuaries, but estuaries worldwide. Additionally, DON accounts for 90% of the total dissolved nitrogen (TDN) in Baffin Bay, followed by NH4+ at 8%, and NO3-+NO2- contributing 2%. Due to the dependence of A. lagunensis on the reduced forms of nitrogen as an energy source and the elevated concentrations of DON throughout the bay, it is important to identify the origin of this nitrogen as well as how it's being processed as it cycles through the ecosystem. The presented work investigates the stable isotopic composition of reactive nitrogen (Nr) (δ15N-DON, δ15N-NH4+, and δ15N-NO3-) in Baffin Bay samples collected monthly at nine stations over the period of one year. The work provides preliminary evidence of Nr sources and mechanisms driving favorable conditions for HAB proliferation. This information can be useful and applicable to estuarine ecosystems in various settings, advancing scientific progress towards mitigating blooms. Additionally, since the elevated concentrations of DON make Baffin Bay uniquely suited to investigate its sources and processing, this project will aid in characterizing the role of this largely unstudied form of Nr, which could provide insight and change perceptions about the role of DON in nitrogen dynamics.

  19. Site-specific probabilistic ecological risk assessment of a volatile chlorinated hydrocarbon-contaminated tidal estuary.

    Science.gov (United States)

    Hunt, James; Birch, Gavin; Warne, Michael St J

    2010-05-01

    Groundwater contaminated with volatile chlorinated hydrocarbons (VCHs) was identified as discharging to Penrhyn Estuary, an intertidal embayment of Botany Bay, New South Wales, Australia. A screening-level hazard assessment of surface water in Penrhyn Estuary identified an unacceptable hazard to marine organisms posed by VCHs. Given the limitations of hazard assessments, the present study conducted a higher-tier, quantitative probabilistic risk assessment using the joint probability curve (JPC) method that accounted for variability in exposure and toxicity profiles to quantify risk (delta). Risk was assessed for 24 scenarios, including four areas of the estuary based on three exposure scenarios (low tide, high tide, and both low and high tides) and two toxicity scenarios (chronic no-observed-effect concentrations [NOEC] and 50% effect concentrations [EC50]). Risk (delta) was greater at low tide than at high tide and varied throughout the tidal cycle. Spatial distributions of risk in the estuary were similar using both NOEC and EC50 data. The exposure scenario including data combined from both tides was considered the most accurate representation of the ecological risk in the estuary. When assessing risk using data across both tides, the greatest risk was identified in the Springvale tributary (delta=25%)-closest to the source area-followed by the inner estuary (delta=4%) and the Floodvale tributary (delta=2%), with the lowest risk in the outer estuary (delta=0.1%), farthest from the source area. Going from the screening level ecological risk assessment (ERA) to the probabilistic ERA changed the risk from unacceptable to acceptable in 50% of exposure scenarios in two of the four areas within the estuary. The probabilistic ERA provided a more realistic assessment of risk than the screening-level hazard assessment. Copyright (c) 2010 SETAC.

  20. Plutonium in Atlantic coastal estuaries in the southeastern United States of America

    International Nuclear Information System (INIS)

    Hayes, D.W.; LeRoy, J.H.; Cross, F.A.

    1976-01-01

    A survey was made to begin to provide baseline information on the plutonium distribution of representative estuarine and coastal areas of the southeastern United States of America. Sediments and marsh grass (Spartina) were collected and analysed from three locations within a tidal marsh. In the three estuaries (Savannah, Neuse and Newport) the suspended particulate matter (1μm and greater) was filtered from waters with different salinities and the plutonium content of the particulates determined. The Savannah river estuary, in addition to fall-out plutonium, has received up to 0.3Ci of plutonium from the Savannah River Plant (SRP) of the US Energy Research and Development Administration. The SRP plutonium has a variable isotopic composition that can influence plutonium isotopic ratios in the estuarine system. The other estuaries do not have nuclear installations upstream. Plutonium contents in surface marsh sediment from the Savannah River estuary are lower than those found in nearby bay sediments. In fact, total plutonium concentrations of sediments showed increases from the upper to lower portions of the estuary; however, higher contributions of 238 Pu in the upper portions indicate that releases from the Savannah River Plant do contribute plutonium to the Savannah river estuary. Plutonium concentrations in Spartina were less than 10fCi/g dry weight but are higher than plutonium contents of terrestrial plants ( 238 Pu to the total plutonium activities in the sediment and the Spartina. Plutonium concentrations were about three times higher in the Newport river estuary than in the Neuse and Savannah river estuaries. (author)

  1. FLORA OF MOLOCHNYI ESTUARY COASTS

    Directory of Open Access Journals (Sweden)

    Kolomiychuk V.P.

    2013-09-01

    Full Text Available Present-day characteristic of the coastal flora of Molochnyi eastury is given, that is one of the largest estuaries in Ukraine, the shores and waters of which in 2009 became a part of the Pryazov’ya National Nature Park. The analysis of the main parameters of the flora is made. Rare component of the estuary coastal flora is characterized, further steps to conserve the nature of Pryazov’ya are proposed.

  2. Dengue fever in the San Juan Bay Estuary: Evaluating the ...

    Science.gov (United States)

    Dengue is transmitted by Aedes aegypti, a species that thrives in cities. Here we ask which elements within the urban environment could be managed to reduce the potential for Dengue occurrence. In particular, we study the potential of wetlands in the SJBE to buffer from vector proliferation. Wetlands provide ecosystem services such as heat and water hazard mitigation, water purification and habitat for a diversity of species, all of which are factors that have been shown to affect Dengue vectors. As such, we hypothesize that within coastal neighborhoods in the SJBE wetlands, ecosystem services lead to lower Dengue occurrence. We test this hypothesis using Dengue data from 2010-2013, which includes the largest epidemic in PR history. Our analytical model includes relevant socio-economic factors and environmental controls that may also affect Dengue dynamics. Results indicated a negative effect of neighborhood mangrove cover and a positive effect of percent flood area on Dengue prevalence. Moreover, heat hazards were positively correlated with dengue prevalence and negatively correlated with neighborhood mangrove cover. Dengue prevalence did not correlate with herbaceous wetlands, or with the ecosystem services of water quality or vertebrate species richness. Mosquito borne diseases are an increasingly important health concern, which pose great challenges for safe and sustainable control and eradication. This reality calls for management approaches that consider m

  3. Effects of urbanisation on macroalgae and sessile invertebrates in southeast Australian estuaries

    Science.gov (United States)

    Fowles, Amelia E.; Stuart-Smith, Rick D.; Stuart-Smith, Jemina F.; Hill, Nicole A.; Kirkpatrick, Jamie B.; Edgar, Graham J.

    2018-05-01

    The influence of anthropogenic and environmental factors on the composition, cover and dominance of macroalgae and sessile invertebrates was assessed in three capital city estuaries in south-eastern Australia. Heavy metals and proximity to ports showed the strongest relationships to the distribution of sessile reef biota after accounting for natural environmental gradients. The densities of laminarian, fucoid, brown and red foliose algae were negatively correlated with heavy metals, both in Port Phillip Bay (Melbourne) and the Derwent (Hobart), while turf, filamentous algae and some invertebrates were favoured. Sydney Harbour possessed a different pattern, with the laminarian kelp Ecklonia radiata most abundant near the main shipping port, probably because of biotic interactions involving urchin grazing in the lower estuary. Identifying drivers of benthic community pattern represents a key challenge for effective conservation management, particularly for estuaries affected by multiple anthropogenic impacts.

  4. Upstream Freshwater and Terrestrial Sources Are Differentially Reflected in the Bacterial Community Structure along a Small Arctic River and Its Estuary

    DEFF Research Database (Denmark)

    Hauptmann, Aviaja Zenia Edna Lyberth; Markussen, Thor N; Stibal, Marek

    2016-01-01

    of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N). Samples were taken in August when there is maximum precipitation...... and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity...

  5. A Marriage Of Larval Modeling And Empirical Data: Linking Adult, Larval And Juvenile Scallops In An Estuary

    Science.gov (United States)

    Bayer, S.; Wahle, R.; Brooks, D. A.; Brady, D. C.

    2016-02-01

    The giant sea scallop, Placopecten magellanicus, is a commercially valuable sedentary broadcast spawner that occupies offshore banks and coastal bays and estuaries in the Northwest Atlantic. Although area closures have helped repopulate depleted scallop populations, little is known about whether populations at densities that yield larvae supply local or distant populations. Surveying scallop populations in the Damariscotta River estuary in Maine during the 2013 and 2014 spawning seasons, and settling out spat bags to collect settling larvae along the gradient of the estuary, we were able to compare adult densities to newly settled juvenile (`spat') abundance. Using the location where we found a high density of adults, we incorporated previously published behavior, pelagic larval duration, wind and current data into a particle dispersal model within the estuary to determine likely sinks for larvae from the 2013 and 2014 spawning seasons. Preliminary model simulations demonstrate where in the estuary swimming is effective in affecting water column position for larvae, and that most larvae are retained much closer to the mouth of the estuary than previously expected. Combining larval dispersal modeling with empirical data on adult densities and spat settlement on the scale of an embayment or estuary may be helpful in determining sources, sinks and areas that are both sources and sinks for shellfish species that are endangered or economically critical. This may aid in determining small area closures or Marine Protected Areas along coastal regions in the Gulf of Maine and beyond.

  6. Application of Computer-Aided Tomography (CT) Technology to Visually Compare Belowground Components of Salt Marshes in Jamaica Bay and Long Island, New York

    Science.gov (United States)

    Using CT imaging, we found that rapidly deteriorating marshes in Jamaica Bay had significantly less belowground mass and abundance of coarse roots and rhizomes at depth (< 10 cm) compared to more stable areas in the Jamaica Bay Estuary. In addition, the rhizome diameters and pea...

  7. Potential for Increased Mercury Accumulation in the Estuary Food Web

    Directory of Open Access Journals (Sweden)

    Jay A Davis

    2003-10-01

    Full Text Available Present concentrations of mercury in large portions of San Francisco Bay (Bay, the Sacramento-San Joaquin Delta (Delta, and the Sacramento and San Joaquin rivers are high enough to warrant concern for the health of humans and wildlife. Large scale tidal wetland restoration is currently under consideration as a means of increasing populations of fish species of concern. Tidal wetland restoration activities may lead to increased concentrations of mercury in the estuarine food web and exacerbate the existing mercury problem. This paper evaluates our present ability to predict the local and regional effects of restoration actions on mercury accumulation in aquatic food webs. A sport fish consumption advisory is in place for the Bay, and an advisory is under consideration for the Delta and lower Sacramento and San Joaquin rivers. Mercury concentrations in eggs of several water bird species from the Bay have exceeded the lowest observed effect level. A variety of mercury sources, largely related to historic mercury and gold mining, is present in the watershed and has created a spatially heterogeneous distribution of mercury in the Bay-Delta Estuary. Mercury exists in the environment in a variety of forms and has a complex biogeochemical cycle. The most hazardous form, methylmercury, is produced at a relatively high rate in wetlands and newly flooded aquatic habitats. It is likely that distinct spatial variation on multiple spatial scales exists in net methylmercury production in Bay-Delta tidal wetlands, including variation within each tidal wetland, among tidal wetlands in the same region, and among tidal wetlands in different regions. Understanding this spatial variation and its underlying causes will allow environmental managers to minimize the negative effects of mercury bioaccumulation as a result of restoration activities. Actions needed to reduce the uncertainty associated with this issue include a long term, multifaceted research effort, long

  8. Inputs and spatial distribution patterns of Cr in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Miao, Zhenqing; Huang, Xinmin; Wei, Linzhen; Feng, Ming

    2018-03-01

    Cr pollution in marine bays has been one of the critical environmental issues, and understanding the input and spatial distribution patterns is essential to pollution control. In according to the source strengths of the major pollution sources, the input patterns of pollutants to marine bay include slight, moderate and heavy, and the spatial distribution are corresponding to three block models respectively. This paper analyzed input patterns and distributions of Cr in Jiaozhou Bay, eastern China based on investigation on Cr in surface waters during 1979-1983. Results showed that the input strengths of Cr in Jiaozhou Bay could be classified as moderate input and slight input, and the input strengths were 32.32-112.30 μg L-1 and 4.17-19.76 μg L-1, respectively. The input patterns of Cr included two patterns of moderate input and slight input, and the horizontal distributions could be defined by means of Block Model 2 and Block Model 3, respectively. In case of moderate input pattern via overland runoff, Cr contents were decreasing from the estuaries to the bay mouth, and the distribution pattern was parallel. In case of moderate input pattern via marine current, Cr contents were decreasing from the bay mouth to the bay, and the distribution pattern was parallel to circular. The Block Models were able to reveal the transferring process of various pollutants, and were helpful to understand the distributions of pollutants in marine bay.

  9. Estuary-wide genetic stock distribution and salmon habitat use, tidal-fluvial estuary - Columbia River Estuary Tidal Habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the tidal-fluvial estuary study is to determine the estuary's contribution to the spatial structure and life history diversity of Columbia River salmon...

  10. Shifting shoals and shattered rocks : How man has transformed the floor of west-central San Francisco Bay

    Science.gov (United States)

    Chin, John L.; Wong, Florence L.; Carlson, Paul R.

    2004-01-01

    San Francisco Bay, one of the world's finest natural harbors and a major center for maritime trade, is referred to as the 'Gateway to the Pacific Rim.' The bay is an urbanized estuary that is considered by many to be the major estuary in the United States most modified by man's activities. The population around the estuary has grown rapidly since the 1850's and now exceeds 7 million people. The San Francisco Bay area's economy ranks as one of the largest in the world, larger even than that of many countries. More than 10 million tourists are estimated to visit the bay region each year. The bay area's population and associated development have increasingly changed the estuary and its environment. San Francisco Bay and the contiguous Sacramento-San Joaquin Delta encompass roughly 1,600 square miles (4,100 km2) and are the outlet of a major watershed that drains more than 40 percent of the land area of the State of California. This watershed provides drinking water for 20 million people (two thirds of the State's population) and irrigates 4.5 million acres of farmland and ranchland. During the past several decades, much has been done to clean up the environment and waters of San Francisco Bay. Conservationist groups have even bought many areas on the margins of the bay with the intention of restoring them to a condition more like the natural marshes they once were. However, many of the major manmade changes to the bay's environment occurred so long ago that the nature of them has been forgotten. In addition, many changes continue to occur today, such as the introduction of exotic species and the loss of commercial and sport fisheries because of declining fish populations. The economy and population of the nine counties that surround the bay continue to grow and put increasing pressure on the bay, both direct and indirect. Therefore, there are mixed signals for the future health and welfare of San Francisco Bay. The San Francisco Bay estuary consists of three

  11. Mercury in birds of San Francisco Bay-Delta, California: trophic pathways, bioaccumulation, and ecotoxicological risk to avian reproduction

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Heinz, Gary; De La Cruz, Susan E. W.; Takekawa, John Y.; Miles, A. Keith; Adelsbach, Terrence L.; Herzog, Mark P.; Bluso-Demers, Jill D.; Demers, Scott A.; Herring, Garth; Hoffman, David J.; Hartman, Christopher A.; Willacker, James J.; Suchanek, Thomas H.; Schwarzbach, Steven E.; Maurer, Thomas C.

    2014-01-01

    San Francisco Bay Estuary in northern California has a legacy of mercury contamination, which could reduce the health and reproductive success of waterbirds in the estuary. The goal of this study was to use an integrated field and laboratory approach to evaluate the risks of mercury exposure to birds in the estuary. We examined mercury bioaccumulation, and other contaminants of concern, in five waterbird species that depend heavily on San Francisco Bay Estuary for foraging and breeding habitat: American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster’s terns (Sterna forsteri), Caspian terns (Hydroprogne caspia), and surf scoters (Melanitta perspicillata). These species have different foraging habitats and diets that represent three distinct foraging guilds within the estuary’s food web. In this report, we provide an integrated synthesis of the primary findings from this study and results are synthesized from 54 peer-reviewed publications generated to date with other unpublished results.

  12. Phytoplankton and nutrient dynamics in Winyah Bay, SC.

    Science.gov (United States)

    Boneillo, G. E.; Brooks, S. S.; Brown, S. L.; Woodford, K. M.; Wright, C. R.

    2016-02-01

    Winyah Bay is a coastal plain estuary located in South Carolina that has been classified for a moderate risk of Eutrophication by NOAA. Winyah Bay receives freshwater input from four rivers, the Waccamaw, Sampit, Black, and Pee Dee Rivers. The Waccamaw, Sampit and Black River are blackwater systems that discharge elevated amounts of colored dissolved organic matter. During the summer and fall of 2015, bioassay experiments were performed to simultaneously examine both light and nutrient (nitrogen & phosphate) limitation throughout Winyah Bay. Sampling stations near the mouth of the Waccamaw and Sampit Rivers showed that phytoplankton were light limited in the late summer instead of nutrient limited. These stations were located in the industrialized area of the bay and typically had the highest nutrient concentrations and highest turbidity, with Secchi depths typically less than 0.5 meters. Results indicated that phytoplankton may be nitrogen limited near the mouth of Winyah Bay, where nutrient concentrations and turbidity were observed to be lower than locations further upstream. There was also an observed dissolved oxygen and pH gradient during the summer of 2015. Dissolved oxygen levels less than 4.0 mg/L were routinely observed near the industrialized head of the estuary and corresponded with lower pH values.

  13. 75 FR 34975 - Notice of Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration...

    Science.gov (United States)

    2010-06-21

    ... Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration Strategy; Request... interagency Estuary Habitat Restoration Council, is providing notice of the Council's intent to revise the ''Estuary Habitat Restoration Strategy'' and requesting public comments to guide its revision. DATES...

  14. Tidal and spatial variability of nitrous oxide (N2O) in Sado estuary (Portugal)

    Science.gov (United States)

    Gonçalves, Célia; Brogueira, Maria José; Nogueira, Marta

    2015-12-01

    The estimate of the nitrous oxide (N2O) fluxes is fundamental to assess its impact on global warming. The tidal and spatial variability of N2O and the air-sea fluxes in the Sado estuary in July/August 2007 are examined. Measurements of N2O and other relevant environmental parameters (temperature, salinity, dissolved oxygen and dissolved inorganic nitrogen - nitrate plus nitrite and ammonium) were recorded during two diurnal tidal cycles performed in the Bay and Marateca region and along the estuary during ebb, at spring tide. N2O presented tidal and spatial variability and varied spatially from 5.0 nmol L-1 in Marateca region to 12.5 nmol L-1 in Sado river input. Although the Sado river may constitute a considerable N2O source to the estuary, the respective chemical signal discharge was rapidly lost in the main body of the estuary due to the low river flow during the sampling period. N2O varied with tide similarly between 5.2 nmol L-1 (Marateca) and 10.0 nmol L-1 (Sado Bay), with the maximum value reached two hours after flooding period. The influence of N2O enriched upwelled seawater (˜10.0 nmol L-1) was well visible in the estuary mouth and apparently represented an important contribution of N2O in the main body of Sado estuary. Despite the high water column oxygen saturation in most of Sado estuary, nitrification did not seem a relevant process for N2O production, probably as the concentration of the substrate, NH4+, was not adequate for this process to occur. Most of the estuary functioned as a N2O source, and only Marateca zone has acted as N2O sink. The N2O emission from Sado estuary was estimated to be 3.7 Mg N-N2O yr-1 (FC96) (4.4 Mg N-N2O yr-1, FRC01). These results have implications for future sampling and scaling strategies for estimating greenhouse gases (GHGs) fluxes in tidal ecosystems.

  15. Integrating science and resource management in Tampa Bay, Florida

    Science.gov (United States)

    Yates, Kimberly K.; Greening, Holly; Morrison, Gerold

    2011-01-01

    Tampa Bay is recognized internationally for its remarkable progress towards recovery since it was pronounced "dead" in the late 1970s. Due to significant efforts by local governments, industries and private citizens throughout the watershed, water clarity in Tampa Bay is now equal to what it was in 1950, when population in the watershed was less than one-quarter of what it is today. Seagrass extent has increased by more than 8,000 acres since the mid-1980s, and fish and wildlife populations are increasing. Central to this successful turn-around has been the Tampa Bay resource management community's long-term commitment to development and implementation of strong science-based management strategies. Research institutions and agencies, including Eckerd College, the Florida Wildlife Commission Fish and Wildlife Research Institute, Mote Marine Laboratory, National Oceanic and Atmospheric Administration, the Southwest Florida Water Management District, University of South Florida, U.S. Environmental Protection Agency, U.S. Geological Survey, local and State governments, and private companies contribute significantly to the scientific basis of our understanding of Tampa Bay's structure and ecological function. Resource management agencies, including the Tampa Bay Regional Planning Council's Agency on Bay Management, the Southwest Florida Water Management District's Surface Water Improvement and Management Program, and the Tampa Bay Estuary Program, depend upon this scientific basis to develop and implement regional adaptive management programs. The importance of integrating science with management has become fully recognized by scientists and managers throughout the region, State and Nation. Scientific studies conducted in Tampa Bay over the past 10–15 years are increasingly diverse and complex, and resource management programs reflect our increased knowledge of geology, hydrology and hydrodynamics, ecology and restoration techniques. However, a synthesis of this

  16. Frequent Questions about Estuary Data Mapper (EDM)

    Science.gov (United States)

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions

  17. Downloading and Installing Estuary Data Mapper (EDM)

    Science.gov (United States)

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions

  18. Influence of estuaries on shelf foraminiferal species

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.

    Dabhol-bhatkal stretch of the west coast of India is marked by a number of estuaries. Cavarotalia annectens is selected to monitor the influence of these estuaries on the inner shelf foraminiferal fauna. The percentage distribution of this species...

  19. SANCOR estuaries programme 1982-1986

    CSIR Research Space (South Africa)

    SANCOR

    1983-02-01

    Full Text Available , such research will also aid in the rational management of estuaries. Estuaries on which research should be concentrated are identified and guidelines are given for project proposals and reporting....

  20. Nutrients in some estuaries of Kerala

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, K.S.; Venugopal, P.; Remani, K.N.; Zacharias, D.; Unnithan, R.V.

    phosphate and ammonia were high at Kallai compared to other three estuaries. All the estuaries showed an increase in nitrate content during monsoon. Nitrite values were high in postmonsoon. Ammonia levels were generally high except at Korapuzha. Nutrient...

  1. 77 FR 2317 - Captain John Smith Chesapeake National Historic Trail Advisory Council

    Science.gov (United States)

    2012-01-17

    ... DEPARTMENT OF THE INTERIOR National Park Service Captain John Smith Chesapeake National Historic... that the Advisory Committee on the Captain John Smith Chesapeake National Historic Trail will hold a... Columbia,'' tracing the 1607-1609 voyages of Captain John Smith to chart the land and waterways of the...

  2. 77 FR 64980 - Chesapeake Renewable Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2012-10-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-28-000] Chesapeake Renewable Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding of Chesapeake Renewable Energy LLC's application for market-based rate authority, with an...

  3. Use of Geographic Information Systems to examine cumulative impacts of development on Mobile Bay, AL and Galveston Bay, TX

    International Nuclear Information System (INIS)

    Rosigno, P.F.; McNiff, M.E.; Watzin, M.C.; Ji, W.

    1993-01-01

    Databases from Mobile Bay, Alabama and Galveston Bay, Texas were compiled using ARC/INFO Geographic Information Systems (GIS) to examine the cumulative impacts from urbanization and industrialization on these two Gulf of Mexico estuaries. The databases included information on wetland habitats, pollution sources, metal contamination, bird-nesting sites, and oyster reefs, among others. A series of maps were used to represent the impacts within and between each ecosystem. These two estuaries share many similarities in the types of developmental pressures that each experience. However, difference in the magnitude of industrial activity, pollution loading, and urban growth coupled with distinct hydrodynamic and geochemical differences in sediment mineralogy, freshwater inflows and salinity regimens results in differing responses. With growing human population and extensive oil and gas development, the demands on Galveston Bay are quite different than those placed on Mobile Bay which has lower growth and less extensive oil and gas infrastructure. Mobile Bay tends to retain whatever contamination enters into the system because of the high levels of clay and organic carbon found in its sediment. Some of these chemicals bioaccumulate, posing an extra risk to natural resources. Geographic Information Systems provide natural resource managers with the technology to manage complex databases. The analytical and mapping capabilities of GIS can be used to consider cumulative effects in a regional context and to develop plans to protect ecologically sensitive areas

  4. Influence of net freshwater supply on salinity in Florida Bay

    Science.gov (United States)

    Nuttle, William K.; Fourqurean, James W.; Cosby, Bernard J.; Zieman, Joseph C.; Robblee, Michael B.

    2000-01-01

    An annual water budget for Florida Bay, the large, seasonally hypersaline estuary in the Everglades National Park, was constructed using physically based models and long‐term (31 years) data on salinity, hydrology, and climate. Effects of seasonal and interannual variations of the net freshwater supply (runoff plus rainfall minus evaporation) on salinity variation within the bay were also examined. Particular attention was paid to the effects of runoff, which are the focus of ambitious plans to restore and conserve the Florida Bay ecosystem. From 1965 to 1995 the annual runoff from the Everglades into the bay was less than one tenth of the annual direct rainfall onto the bay, while estimated annual evaporation slightly exceeded annual rainfall. The average net freshwater supply to the bay over a year was thus approximately zero, and interannual variations in salinity appeared to be affected primarily by interannual fluctuations in rainfall. At the annual scale, runoff apparently had little effect on the bay as a whole during this period. On a seasonal basis, variations in rainfall, evaporation, and runoff were not in phase, and the net freshwater supply to the bay varied between positive and negative values, contributing to a strong seasonal pattern in salinity, especially in regions of the bay relatively isolated from exchanges with the Gulf of Mexico and Atlantic Ocean. Changes in runoff could have a greater effect on salinity in the bay if the seasonal patterns of rainfall and evaporation and the timing of the runoff are considered. One model was also used to simulate spatial and temporal patterns of salinity responses expected to result from changes in net freshwater supply. Simulations in which runoff was increased by a factor of 2 (but with no change in spatial pattern) indicated that increased runoff will lower salinity values in eastern Florida Bay, increase the variability of salinity in the South Region, but have little effect on salinity in the Central

  5. Indian estuaries: Dynamics, ecosystems, and threats

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.

    the tide pulls the mixed water out of the estuary through its mouth. Different processes within an estuary contribute to mixing of the two waters, the important among these in the Mandovi estuary are: influence of the tide on the advective field within...

  6. The Role of Tidal Marsh Restoration in Fish Management in the San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Bruce Herbold

    2014-03-01

    Full Text Available   Tidal marsh restoration is an important management issue in the San Francisco Estuary (estuary. Restoration of large areas of tidal marsh is ongoing or planned in the lower estuary (up to 6,000 ha, Callaway et al. 2011. Large areas are proposed for restoration in the upper estuary under the Endangered Species Act biological opinions (3,237 ha and the Bay Delta Conservation Plan (26,305 ha. In the lower estuary, tidal marsh has proven its value to a wide array of species that live within it (Palaima 2012. In the Sacramento–San Joaquin Delta (Delta, one important function ascribed to restoration of freshwater tidal marshes is that they make large contributions to the food web of fish in open waters (BDCP 2013. The Ecosystem Restoration Program ascribed a suite of ecological functions to tidal marsh restoration, including habitat and food web benefits to native fish (CDFW 2010. This background was the basis for a symposium, Tidal Marshes and Native Fishes in the Delta: Will Restoration Make a Difference? held at the University of California, Davis, on June 10, 2013. This paper summarizes conclusions the authors drew from the symposium. 

  7. Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-tide simulations

    Science.gov (United States)

    Shelby, Michael; Grilli, Stéphan T.; Grilli, Annette R.

    2016-12-01

    This work is part of a tsunami inundation mapping activity carried out along the US East Coast since 2010, under the auspice of the National Tsunami Hazard Mitigation program (NTHMP). The US East Coast features two main estuaries with significant tidal forcing, which are bordered by numerous critical facilities (power plants, major harbors,...) as well as densely built low-level areas: Chesapeake Bay and the Hudson River Estuary (HRE). HRE is the object of this work, with specific focus on assessing tsunami hazard in Manhattan, the Hudson and East River areas. In the NTHMP work, inundation maps are computed as envelopes of maximum surface elevation along the coast and inland, by simulating the impact of selected probable maximum tsunamis (PMT) in the Atlantic ocean margin and basin. At present, such simulations assume a static reference level near shore equal to the local mean high water (MHW) level. Here, instead we simulate maximum inundation in the HRE resulting from dynamic interactions between the incident PMTs and a tide, which is calibrated to achieve MHW at its maximum level. To identify conditions leading to maximum tsunami inundation, each PMT is simulated for four different phases of the tide and results are compared to those obtained for a static reference level. We first separately simulate the tide and the three PMTs that were found to be most significant for the HRE. These are caused by: (1) a flank collapse of the Cumbre Vieja Volcano (CVV) in the Canary Islands (with a 80 km3 volume representing the most likely extreme scenario); (2) an M9 coseismic source in the Puerto Rico Trench (PRT); and (3) a large submarine mass failure (SMF) in the Hudson River canyon of parameters similar to the 165 km3 historical Currituck slide, which is used as a local proxy for the maximum possible SMF. Simulations are performed with the nonlinear and dispersive long wave model FUNWAVE-TVD, in a series of nested grids of increasing resolution towards the coast, by one

  8. Indirect Effects and Potential Cumulative Impacts of Dredging in an Urbanized Estuary

    Science.gov (United States)

    Sommerfield, C. K.; Chen, J.; Ralston, D. K.; Geyer, W. R.

    2016-02-01

    For over two centuries, the Delaware River and Bay estuary has supported one of the most economically important ports in the United States. To accommodate ships of ever-increasing size, the 165-km axial shipping channel has been deepened to over twice the natural depth of the estuary. While it is known that the channel has modified tides and sedimentation patterns in the estuary, unknown are the impacts on the ecosystem as a whole. A concern is the influence of channelization on sediment movement to the tidal wetland coast, which is eroding at rates on the order of meters per year. Tidal wetlands frame the entire estuary and provide vital ecosystem services ranging from recreation to carbon sequestration. To identify shifts in baseline conditions, we are performing a retrospective analysis of estuarine dynamics using historical bathymetry, numerical modeling, and observational studies. The period of interest extends from 1848 (50 years prior to channel construction) to present. During this period the channel was progressively deepened from its natural depth of 5.5 m to the current depth of 14 m. Preliminary modeling results support independent evidence that the salt intrusion and zone of rapid sediment deposition migrated several 10s of kilometers up-estuary as an indirect effect of deepening. Ironically, the locus of intense deposition now falls squarely within the Wilmington-Philadelphia port complex; river sediment that initially settles in this area is removed by maintenance dredging before it can disperse seaward. Sediment budgetary analysis indicates that the mass of sediment dredged from the upper estuary on average exceeds the mass of the new sediment supplied from the drainage basin. Hence, a probable cumulative impact of dredging is a reduction in sediment delivery to the lower estuary and fringing wetlands. Connections among the shipping channel, wave-tide interactions, and marsh edge erosion are a topic of ongoing modeling and observational research.

  9. Contribution of Cultural Eutrophication to Marsh Loss in Jamaica Bay (NY)

    Science.gov (United States)

    Loss of salt marsh area in the Jamaica Bay Estuary (NY) has accelerated in recent years, with loss rates as high as 45 acres per year. A contributing factor to this acceleration is likely cultural eutrophication due to over 6 decades of sewage effluent inputs. We examined marsh...

  10. Grain-size data from vibracores collected in 2014 from Barnegat Bay, New Jersey

    Data.gov (United States)

    Department of the Interior — In response to the 2010 Governor’s Action Plan to clean up the Barnegat Bay–Little Egg Harbor (BBLEH) estuary in New Jersey, the U.S. Geological Survey (USGS)...

  11. Using sediment profile imagery to quantify water quality and benthic condition relationships in Pensacola Bay

    Science.gov (United States)

    We present results from a monthly study in the Pensacola Bay estuary (FL) designed to evaluate the response and recovery in benthic habitats to intermittent, seasonal hypoxia (DO < 2 mg L-1). Samples were collected monthly from June 2015 through October 2017 at seven to nine s...

  12. Spatial and temporal variation in seagrass coverage in Southwest Florida: assessing the relative effects of anthropogenic nutrient load reductions and rainfall in four contiguous estuaries.

    Science.gov (United States)

    Tomasko, D A; Corbett, C A; Greening, H S; Raulerson, G E

    2005-08-01

    The estuaries of Tampa Bay, Sarasota Bay, Lemon Bay, and Upper Charlotte Harbor ar