WorldWideScience

Sample records for chesapeake bay drainage

  1. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Science.gov (United States)

    2010-03-12

    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY...: Notice of availability of program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The... through the Chesapeake Bay Watershed Initiative for agricultural producers in the Chesapeake Bay watershed...

  2. Chesapeake Bay under stress

    Science.gov (United States)

    According to extensive data obtained over its 13,000 km of shoreline, the Chesapeake Bay has been suffering a major, indeed unprecedented, reduction in submerged vegetation. Chesapeake Bay is alone in experiencing decline in submerged vegetation. Other estuary systems on the east coast of the United States are not so affected. These alarming results were obtained by the synthesis of the findings of numerous individual groups in addition to large consortium projects on the Chesapeake done over the past decade. R. J. Orth and R. A. Moore of the Virginia Institute of Marine Science pointed to the problem of the severe decline of submerged grasses on the Bay and along its tributaries. In a recent report, Orth and Moore note: “The decline, which began in the 1960's and accelerated in the 1970's, has affected all species in all areas. Many major river systems are now totally devoid of any rooted vegetation” (Science, 222, 51-53, 1983).

  3. DEVELOP Chesapeake Bay Watershed Hydrology - UAV Sensor Web

    Science.gov (United States)

    Holley, S. D.; Baruah, A.

    2008-12-01

    The Chesapeake Bay is the largest estuary in the United States, with a watershed extending through six states and the nation's capital. Urbanization and agriculture practices have led to an excess runoff of nutrients and sediment into the bay. Nutrients and sediment loading stimulate the growth of algal blooms associated with various problems including localized dissolved oxygen deficiencies, toxic algal blooms and death of marine life. The Chesapeake Bay Program, among other stakeholder organizations, contributes greatly to the restoration efforts of the Chesapeake Bay. These stakeholders contribute in many ways such as monitoring the water quality, leading clean-up projects, and actively restoring native habitats. The first stage of the DEVELOP Chesapeake Bay Coastal Management project, relating to water quality, contributed to the restoration efforts by introducing NASA satellite-based water quality data products to the stakeholders as a complement to their current monitoring methods. The second stage, to be initiated in the fall 2008 internship term, will focus on the impacts of land cover variability within the Chesapeake Bay Watershed. Multiple student led discussions with members of the Land Cover team at the Chesapeake Bay Program Office in the DEVELOP GSFC 2008 summer term uncovered the need for remote sensing data for hydrological mapping in the watershed. The Chesapeake Bay Program expressed in repeated discussions on Land Cover mapping that significant portions of upper river areas, streams, and the land directly interfacing those waters are not accurately depicted in the watershed model. Without such hydrological mapping correlated with land cover data the model will not be useful in depicting source areas of nutrient loading which has an ecological and economic impact in and around the Chesapeake Bay. The fall 2008 DEVELOP team will examine the use of UAV flown sensors in connection with in-situ and Earth Observation satellite data. To maximize the

  4. Defining a data management strategy for USGS Chesapeake Bay studies

    Science.gov (United States)

    Ladino, Cassandra

    2013-01-01

    The mission of U.S. Geological Survey’s (USGS) Chesapeake Bay studies is to provide integrated science for improved understanding and management of the Chesapeake Bay ecosystem. Collective USGS efforts in the Chesapeake Bay watershed began in the 1980s, and by the mid-1990s the USGS adopted the watershed as one of its national place-based study areas. Great focus and effort by the USGS have been directed toward Chesapeake Bay studies for almost three decades. The USGS plays a key role in using “ecosystem-based adaptive management, which will provide science to improve the efficiency and accountability of Chesapeake Bay Program activities” (Phillips, 2011). Each year USGS Chesapeake Bay studies produce published research, monitoring data, and models addressing aspects of bay restoration such as, but not limited to, fish health, water quality, land-cover change, and habitat loss. The USGS is responsible for collaborating and sharing this information with other Federal agencies and partners as described under the President’s Executive Order 13508—Strategy for Protecting and Restoring the Chesapeake Bay Watershed signed by President Obama in 2009. Historically, the USGS Chesapeake Bay studies have relied on national USGS databases to store only major nationally available sources of data such as streamflow and water-quality data collected through local monitoring programs and projects, leaving a multitude of other important project data out of the data management process. This practice has led to inefficient methods of finding Chesapeake Bay studies data and underutilization of data resources. Data management by definition is “the business functions that develop and execute plans, policies, practices and projects that acquire, control, protect, deliver and enhance the value of data and information.” (Mosley, 2008a). In other words, data management is a way to preserve, integrate, and share data to address the needs of the Chesapeake Bay studies to better

  5. Spill management strategy for the Chesapeake Bay

    International Nuclear Information System (INIS)

    Butler, H.L.; Chapman, R.S.; Johnson, B.H.

    1990-01-01

    The Chesapeake Bay Program is a unique cooperative effort between state and Federal agencies to restore the health and productivity of America's largest estuary. To assist in addressing specific management issues, a comprehensive three-dimensional, time-varying hydrodynamic and water quality model has ben developed. The Bay modeling strategy will serve as an excellent framework for including submodules to predict the movement, dispersion, and weathering of accidental spills, such as for petroleum products or other chemicals. This paper presents sample results from the Bay application to illustrate the success of the model system in simulating Bay processes. Also, a review of model requirements for successful spill modeling in Chesapeake Bay is presented. Recommendations are given for implementing appropriate spill modules with the Bay model framework and establishing a strategy for model use in addressing management issues

  6. Lowering Barriers to Achieving Multiple Environmental Goals in the Chesapeake Bay

    Science.gov (United States)

    In recognition of past unsuccessful restoration strategies for the Chesapeake Bay, President Obama signed Executive Order (EO) 13508 “Strategy for Protecting and Restoring the Chesapeake Bay Watershed” in 2009.

  7. Chesapeake Bay plume dynamics from LANDSAT

    Science.gov (United States)

    Munday, J. C., Jr.; Fedosh, M. S.

    1981-01-01

    LANDSAT images with enhancement and density slicing show that the Chesapeake Bay plume usually frequents the Virginia coast south of the Bay mouth. Southwestern (compared to northern) winds spread the plume easterly over a large area. Ebb tide images (compared to flood tide images) show a more dispersed plume. Flooding waters produce high turbidity levels over the shallow northern portion of the Bay mouth.

  8. Spatial and temporal distribution of two diazotrophic bacteria in the Chesapeake Bay.

    Science.gov (United States)

    Short, Steven M; Jenkins, Bethany D; Zehr, Jonathan P

    2004-04-01

    The aim of this study was to initiate autecological studies on uncultivated natural populations of diazotrophic bacteria by examining the distribution of specific diazotrophs in the Chesapeake Bay. By use of quantitative PCR, the abundance of two nifH sequences (907h22 and 912h4) was quantified in water samples collected along a transect from the head to the mouth of the Chesapeake Bay during cruises in April and October 2001 and 2002. Standard curves for the quantitative PCR assays demonstrated that the relationship between gene copies and cycle threshold was linear and highly reproducible from 1 to 10(7) gene copies. The maximum number of 907h22 gene copies detected was approximately 140 ml(-1) and the maximum number of 912h4 gene copies detected was approximately 340 ml(-1). Sequence 912h4 was most abundant at the mouth of the Chesapeake Bay, and in general, its abundance increased with increasing salinity, with the highest abundances observed in April 2002. Overall, the 907h22 phylotype was most abundant at the mid-bay station. Additionally, 907h22 was most abundant in the April samples from the mid-bay and mouth of the Chesapeake Bay. Despite the fact that the Chesapeake Bay is rarely nitrogen limited, our results show that individual nitrogen-fixing bacteria have distinct nonrandom spatial and seasonal distributions in the Chesapeake Bay and are either distributed by specific physical processes or adapted to different environmental niches.

  9. Submersed aquatic vegetation in Chesapeake Bay: Sentinel species in a changing world

    Science.gov (United States)

    Orth, Robert J.; Dennison, William C.; Lefcheck, Jonathon S.; Gurbisz, Cassie; Hannam, Michael; Keisman, Jennifer; Landry, J. Brooke; Moore, Kenneth A.; Murphy, Rebecca R.; Patrick, Christopher J.; Testa, Jeremy; Weller, Donald E.; Wilcox, David J.

    2017-01-01

    Chesapeake Bay has undergone profound changes since European settlement. Increases in human and livestock populations, associated changes in land use, increases in nutrient loadings, shoreline armoring, and depletion of fish stocks have altered the important habitats within the Bay. Submersed aquatic vegetation (SAV) is a critical foundational habitat and provides numerous benefits and services to society. In Chesapeake Bay, SAV species are also indicators of environmental change because of their sensitivity to water quality and shoreline development. As such, SAV has been deeply integrated into regional regulations and annual assessments of management outcomes, restoration efforts, the scientific literature, and popular media coverage. Even so, SAV in Chesapeake Bay faces many historical and emerging challenges. The future of Chesapeake Bay is indicated by and contingent on the success of SAV. Its persistence will require continued action, coupled with new practices, to promote a healthy and sustainable ecosystem.

  10. Chesapeake Bay baseline data acquisition, toxics in the Chesapeake Bay. Final preliminary report, 1946-78

    International Nuclear Information System (INIS)

    1978-07-01

    This report identifies researchers, research activities, and data files applicable to the Chesapeake Bay estuarine system. The identified data were generated after 1973 on the following: submerged aquatic vegetation, shellfish bed closures, eutrophication, toxics accumulation in the food chain, dredging and spoil disposal, hydrologic modifications, modification of fisheries, shoreline erosion, wetlands alterations, and the effects of boating and shipping on water quality. Major past and current program monitoring in the Bay and its tributaries are summarized according to frequency

  11. 33 CFR 334.310 - Chesapeake Bay, Lynnhaven Roads; navy amphibious training area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. 334.310 Section 334.310 Navigation and Navigable Waters CORPS OF....310 Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. (a) The restricted area. Beginning...

  12. Petrographic Studies of Rocks from The Chesapeake Bay Impact ...

    African Journals Online (AJOL)

    Shock petrographic investigations were carried out on samples collected from drill cores from the Chesapeake Bay impact structure (USA). The late Eocene Chesapeake impact structure is, at 85 km diameter, currently the largest impact structure known in the United States, buried at shallow to moderate depths beneath ...

  13. 33 CFR 165.500 - Safety/Security Zones; Chesapeake Bay, Maryland.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety/Security Zones; Chesapeake... HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS... Safety/Security Zones; Chesapeake Bay, Maryland. (a) Definitions. (1) Certain Dangerous Cargo (CDC) means...

  14. U.S. Geological Survey Science—Improving the value of the Chesapeake Bay watershed

    Science.gov (United States)

    Phillips, Scott W.; Hyer, Kenneth; Goldbaum, Elizabeth

    2017-05-05

    IntroductionCongress directed the Federal Government to work with States to restore the Nation’s largest estuary.Chesapeake Bay restoration provides important economic and ecological benefits:18 million people live and work in the Bay watershed and enjoy its benefits.3,600 types of fish, wildlife, and plants underpin the economic value of the Bay ecosystem.Poor water quality and habitat loss threaten restoration and negatively impact the economy.10 Goals to meet by 2025 through the Chesapeake Bay Program, a voluntary partnership.

  15. Particle-borne radionuclides as tracers for sediment in the Susquehanna River and Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Donoghue, J F [Florida State Univ., Tallahassee, FL (USA). Dept. of Geology; Bricker, O P [Geological Survey, Reston, VA (USA). Water Resources Div.; Olsen, C R [Oak Ridge National Lab., TN (USA)

    1989-10-01

    The Chesapeake Bay receives nearly 1,000,000 tonnes of sediment annually from its major tributary, the Susquehanna River. The pattern of deposition of this sediment affects the lifetime of the estuarine resource and the fate of any sediment-borne contaminants. Previous estimates of the extent to which Susquehanna River sediment is transported down the Chesapeake have differed considerably. By use of reactor-generated radionuclides adsorbed on the river sediment, a sediment budget has been compiled for the upper Chesapeake Bay and the reservoirs on the lower Susquehanna. Reservoirs impound nearly 1,400,000 tonnes of sediment annually behind the power dams on the lower Susquehanna River. Without the dams, sediment delivery to the upper bay would more than double. The uppermost Chesapeake Bay, within and above the turbidity maximum, retains virtually all of the fluvial sediment delivered to it. The result is an annual sedimentation rate of approximately 3 mm yr{sup -1} in the upper bay, an infilling rate that is nearly equal to the regional rate of sea level rise. (author).

  16. Particle-borne radionuclides as tracers for sediment in the Susquehanna River and Chesapeake Bay

    International Nuclear Information System (INIS)

    Donoghue, J.F.

    1989-01-01

    The Chesapeake Bay receives nearly 1,000,000 tonnes of sediment annually from its major tributary, the Susquehanna River. The pattern of deposition of this sediment affects the lifetime of the estuarine resource and the fate of any sediment-borne contaminants. Previous estimates of the extent to which Susquehanna River sediment is transported down the Chesapeake have differed considerably. By use of reactor-generated radionuclides adsorbed on the river sediment, a sediment budget has been compiled for the upper Chesapeake Bay and the reservoirs on the lower Susquehanna. Reservoirs impound nearly 1,400,000 tonnes of sediment annually behind the power dams on the lower Susquehanna River. Without the dams, sediment delivery to the upper bay would more than double. The uppermost Chesapeake Bay, within and above the turbidity maximum, retains virtually all of the fluvial sediment delivered to it. The result is an annual sedimentation rate of approximately 3 mm yr -1 in the upper bay, an infilling rate that is nearly equal to the regional rate of sea level rise. (author)

  17. Exploring the environmental effects of shale gas development in the Chesapeake Bay watershed

    Science.gov (United States)

    Scientific and Technical Committee [STAC]. Chesapeake Bay Program

    2013-01-01

    On April 11-12, 2012, the Chesapeake Bay Program's Scientific and Technical Advisory Committee (STAC) convened an expert workshop to investigate the environmental effects of shale gas development in the Chesapeake Bay Watershed. The purpose of this workshop was to engage scientists from across the nation in a review of the state-of-the-science regarding shale gas...

  18. Chesapeake Bay impact structure: A blast from the past

    Science.gov (United States)

    Powars, David S.; Edwards, Lucy E.; Gohn, Gregory S.; Horton, J. Wright

    2015-10-28

    About 35 million years ago, a 2-mile-wide meteorite smashed into Earth in what is now the lower Chesapeake Bay in Virginia. The oceanic impact vaporized, melted, fractured, and displaced rocks and sediments and sent billions of tons of water, sediments, and rocks into the air. Glassy particles of solidified melt rock rained down as far away as Texas and the Caribbean. Large tsunamis affected most of the North Atlantic basin. The resulting impact structure is more than 53 miles wide and has a 23-mile-wide, filled central crater surrounded by collapsed sediments. Now buried by hundreds of feet of younger sediments, the Chesapeake Bay impact structure is among the 20 largest known impact structures on Earth.

  19. Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed-An empirical model

    Science.gov (United States)

    Ator, Scott W.; Brakebill, John W.; Blomquist, Joel D.

    2011-01-01

    Spatially Referenced Regression on Watershed Attributes (SPARROW) was used to provide empirical estimates of the sources, fate, and transport of total nitrogen (TN) and total phosphorus (TP) in the Chesapeake Bay watershed, and the mean annual TN and TP flux to the bay and in each of 80,579 nontidal tributary stream reaches. Restoration efforts in recent decades have been insufficient to meet established standards for water quality and ecological conditions in Chesapeake Bay. The bay watershed includes 166,000 square kilometers of mixed land uses, multiple nutrient sources, and variable hydrogeologic, soil, and weather conditions, and bay restoration is complicated by the multitude of nutrient sources and complex interacting factors affecting the occurrence, fate, and transport of nitrogen and phosphorus from source areas to streams and the estuary. Effective and efficient nutrient management at the regional scale in support of Chesapeake Bay restoration requires a comprehensive understanding of the sources, fate, and transport of nitrogen and phosphorus in the watershed, which is only available through regional models. The current models, Chesapeake Bay nutrient SPARROW models, version 4 (CBTN_v4 and CBTP_v4), were constructed at a finer spatial resolution than previous SPARROW models for the Chesapeake Bay watershed (versions 1, 2, and 3), and include an updated timeframe and modified sources and other explantory terms.

  20. BOOK REVIEW OF "CHESAPEAKE BAY BLUES: SCIENCE, POLITICS, AND THE STRUGGLE TO SAVE THE BAY"

    Science.gov (United States)

    This is a book review of "Chesapeake Bay Blues: Science, Politics, and the Struggle to Save the Bay". This book is very well written and provides an easily understandable description of the political challenges faced by those proposing new or more stringent environmental regulat...

  1. 33 CFR 162.65 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Science.gov (United States)

    2010-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary to..., which are tributary to or connected by other waterways with the Atlantic Ocean south of Chesapeake Bay...

  2. Composition and temporal patterns of larval fish communities in Chesapeake and Delaware Bays

    Directory of Open Access Journals (Sweden)

    Filipe Ribeiro

    2015-11-01

    Full Text Available Comparing larval fish assemblages in different estuaries provides insights about the coastal distribution of larval populations, larval transport, and adult spawning locations (Ribeiro et al. 2015. We simultaneously compared the larval fish assemblages entering two Middle Atlantic Bight (MAB estuaries (Delaware Bay and Chesapeake Bay, USA through weekly sampling from 2007 to 2009. In total, 43 taxa (32 families and 36 taxa (24 families were collected in Delaware and Chesapeake Bays, respectively. Mean taxonomic diversity, mean richness, and evenness were generally lower in Delaware Bay. Communities of both bays were dominated by Anchoa spp., Gobiosoma spp., Micropogonias undulatus, and Brevoortia tyrannus; Paralichthys spp. was more abundant in Delaware Bay and Microgobius thalassinus was more abundant in Chesapeake Bay. Inter-annual variation in the larval fish communities was low at both sites, with a relatively consistent composition across years, but strong seasonal (intra-annual variation in species composition occurred in both bays. Two groups were identified in Chesapeake Bay: a ‘winter’ group dominated by shelf-spawned species (e.g. M. undulatus and a ‘summer’ group comprising obligate estuarine species and coastal species (e.g. Gobiosoma spp. and Cynoscion regalis, respectively. In Delaware Bay, 4 groups were identified: a ‘summer’ group of mainly obligate estuarine fishes (e.g. Menidia sp. being replaced by a ‘fall’ group (e.g. Ctenogobius boleosoma and Gobionellus oceanicus; ‘winter’ and ‘spring’ groups were dominated by shelf-spawned (e.g. M. undulatus and Paralichthys spp. and obligate estuarine species (e.g. Leiostomus xanthurus and Pseudopleuronectes americanus, respectively. This study demonstrates that inexpensive and simultaneous sampling in different estuaries provides important insights into the variability in community structure of fish assemblages at large spatial scales.

  3. 33 CFR 334.370 - Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base. 334.370 Section 334.370 Navigation and Navigable Waters CORPS... REGULATIONS § 334.370 Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base. (a...

  4. Ospreys Use Bald Eagle Nests in Chesapeake Bay Area

    OpenAIRE

    Therres, Glenn D.; Chandler, Sheri K.

    1993-01-01

    Ospreys (Pandion haliaetus) and Bald Eagles (Haliaeetus leucocephalus) share similar breeding habitat in the Chesapeake Bay area and elsewhere. The nests of these species are similar in size and appearance. Ospreys typically build large stick nests in dead trees or on man-made structures (C.J. Henny et al. 1974, Chesapeake Sci. 15:125-133; A.F. Poole 1989, Ospreys: a natural and unnatural history, Cambridge Univ. Press, NY), while Bald Eagles usually build larger nests in live trees (P.B. Woo...

  5. Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery.

    Science.gov (United States)

    Rick, Torben C; Reeder-Myers, Leslie A; Hofman, Courtney A; Breitburg, Denise; Lockwood, Rowan; Henkes, Gregory; Kellogg, Lisa; Lowery, Darrin; Luckenbach, Mark W; Mann, Roger; Ogburn, Matthew B; Southworth, Melissa; Wah, John; Wesson, James; Hines, Anson H

    2016-06-07

    Estuaries around the world are in a state of decline following decades or more of overfishing, pollution, and climate change. Oysters (Ostreidae), ecosystem engineers in many estuaries, influence water quality, construct habitat, and provide food for humans and wildlife. In North America's Chesapeake Bay, once-thriving eastern oyster (Crassostrea virginica) populations have declined dramatically, making their restoration and conservation extremely challenging. Here we present data on oyster size and human harvest from Chesapeake Bay archaeological sites spanning ∼3,500 y of Native American, colonial, and historical occupation. We compare oysters from archaeological sites with Pleistocene oyster reefs that existed before human harvest, modern oyster reefs, and other records of human oyster harvest from around the world. Native American fisheries were focused on nearshore oysters and were likely harvested at a rate that was sustainable over centuries to millennia, despite changing Holocene climatic conditions and sea-level rise. These data document resilience in oyster populations under long-term Native American harvest, sea-level rise, and climate change; provide context for managing modern oyster fisheries in the Chesapeake Bay and elsewhere around the world; and demonstrate an interdisciplinary approach that can be applied broadly to other fisheries.

  6. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    Science.gov (United States)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  7. FY 2016 Grant Announcement: FY 2016 Technical Analysis and Programmatic Evaluation Support to the Chesapeake Bay Program Partnership

    Science.gov (United States)

    The U.S. Environmental Protection Agency’s Chesapeake Bay Program Office is announcing a Request for Proposals for applicants to provide the Chesapeake Bay Program partners with a proposal(s) for providing technical analysis and programmatic evaluation

  8. Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay.

    Science.gov (United States)

    Du, Jiabi; Shen, Jian; Park, Kyeong; Wang, Ya Ping; Yu, Xin

    2018-07-15

    There are increasing concerns about the impact of worsened physical condition on hypoxia in a variety of coastal systems, especially considering the influence of changing climate. In this study, an EOF analysis of the DO data for 1985-2012, a long-term numerical simulation of vertical exchange, and statistical analysis were applied to understand the underlying mechanisms for the variation of DO condition in Chesapeake Bay. Three types of analysis consistently demonstrated that both biological and physical conditions contribute equally to seasonal and interannual variations of the hypoxic condition in Chesapeake Bay. We found the physical condition (vertical exchange+temperature) determines the spatial and seasonal pattern of the hypoxia in Chesapeake Bay. The EOF analysis showed that the first mode, which was highly related to the physical forcings and correlated with the summer hypoxia volume, can be well explained by seasonal and interannual variations of physical variables and biological activities, while the second mode is significantly correlated with the estuarine circulation and river discharge. The weakened vertical exchange and increased water temperature since the 1980s demonstrated a worsened physical condition over the past few decades. Under changing climate (e.g., warming, accelerated sea-level rise, altered precipitation and wind patterns), Chesapeake Bay is likely to experience a worsened physical condition, which will amplify the negative impact of anthropogenic inputs on eutrophication and consequently require more efforts for nutrient reduction to improve the water quality condition in Chesapeake Bay. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The Lower Chesapeake Bay LTAR: A coastal urban-agricultural region

    Science.gov (United States)

    Mccarty, G.; Alfieri, J. G.; Cavigelli, M.; Cosh, M. H.; Hapeman, C. J.; Kustas, W. P.; Maul, J.; Mirsky, S.; Pooler, M.; Sadeghi, A. M.; Schomberg, H.; Timlin, D. J.; Rice, C. P.

    2015-12-01

    The Chesapeake Bay, located in the mid-Atlantic region of the U.S., is the largest estuary in North America. The watershed area includes six states from New York to Virginia and is nearly 167,000 km2 in size with more than 150 rivers and streams entering the 300-km Bay main stem. Forested and agricultural lands make up 58 and 22 percent of the land use, respectively. Nearly 9 percent is urban and suburban use, and the watershed is home to over 17 million people. However, the population is expected to reach 19 million by 2025, raising the potential for conflict between the agricultural and urban communities over land and water use and in protecting natural resources, especially in the lower portion of the Chesapeake Bay watershed. The Lower Chesapeake Bay study area, part of the USDA-ARS Long-Term Agroecosystem Research (LTAR) network, will provide much-needed data to support decisions at this critical agriculture-urban interface. Current long-term projects seek to assess the economic, production, and environmental performance of conventional and organic cropping systems and to evaluate the resilience of these systems to climate change. Large-scale studies are being conducted to examine the effects of land-use and landscape characteristics on ecosystem services and on energy, water, nutrient, carbon, and pest dynamics within watersheds. New in-situ measurement and remote sensor technologies are being considered with the expectancy that the data streams will be available on-line and for use in modeling. Results and outcomes of these research efforts will greatly benefit the national LTAR network and will be applicable to other US coastal urban-agricultural regions.

  10. Multi-decadal variation in size of juvenile Summer Flounder (Paralichthys dentatus) in Chesapeake Bay

    Science.gov (United States)

    Nys, Lauren N.; Fabrizio, Mary C.; Tuckey, Troy D.

    2016-01-01

    During the last quarter-century, management of Summer Flounder Paralichthys dentatus along the Atlantic coast resulted in significant increases in abundance such that rebuilding targets were recently achieved. Although spawning stock biomass is high, recruitment of young-of-the-year (YOY) Summer Flounder remains variable. Chesapeake Bay is one of the principal nursery areas for this species, but processes such as growth and survival that affect production of YOY Summer Flounder in this estuary have not been explored. Here, we investigated the relationship between abundance and size of Summer Flounder recruits from the 1988 to 2012 year classes in Chesapeake Bay. We also considered the effects of environmental factors on fish size because conditions in the bay vary spatially during the time that fish occupy nursery areas. To describe variations in Summer Flounder size, we used monthly length observations from 13,018 YOY fish captured by bottom trawl from the lower Chesapeake Bay and the James, York, and Rappahannock river subestuaries where Summer Flounder are commonly observed. We applied a generalized additive model to describe spatial, temporal, and environmental effects on observed fish size; we also considered the density of Summer Flounder and an index of productivity as factors in the model. Summer Flounder in Chesapeake Bay exhibited density-dependent and spatially related variations in mean length: larger fish were found mostly in the Bay and smaller fish in the subestuaries. Additionally, low ( 26 °C) temperatures and low salinities (indicating that individuals found in these environments were typically smaller than conspecifics inhabiting areas of moderate temperatures and higher salinities. Variable nursery habitat conditions in temperate estuaries affect fish size and, subsequently, may influence production of Summer Flounder year classes through effects on maturation and survival. As water temperatures in the mid-Atlantic region continue to increase

  11. Long-term trends in submersed aquatic vegetation (SAV) in Chesapeake Bay, USA, related to water quality

    Science.gov (United States)

    Orth, Robert J.; Williams, Michael R.; Marion, Scott R.; Wilcox, David J.; Carruthers, Tim J.B.; Moore, Kenneth A.; Kemp, W.M.; Dennison, William C.; Rybicki, Nancy B.; Peter Bergstrom,; Batiuk, Richard A.

    2010-01-01

    Chesapeake Bay supports a diverse assemblage of marine and freshwater species of submersed aquatic vegetation (SAV) whose broad distributions are generally constrained by salinity. An annual aerial SAV monitoring program and a bi-monthly to monthly water quality monitoring program have been conducted throughout Chesapeake Bay since 1984. We performed an analysis of SAV abundance and up to 22 environmental variables potentially influencing SAV growth and abundance (1984-2006). Historically, SAV abundance has changed dramatically in Chesapeake Bay, and since 1984, when SAV abundance was at historic low levels, SAV has exhibited complex changes including long-term (decadal) increases and decreases, as well as some large, single-year changes. Chesapeake Bay SAV was grouped into three broad-scale community-types based on salinity regime, each with their own distinct group of species, and detailed analyses were conducted on these three community-types as well as on seven distinct case-study areas spanning the three salinity regimes. Different trends in SAVabundance were evident in the different salinity regimes. SAV abundance has (a) continually increased in the low-salinity region; (b) increased initially in the medium-salinity region, followed by fluctuating abundances; and (c) increased initially in the high-salinity region, followed by a subsequent decline. In all areas, consistent negative correlations between measures of SAV abundance and nitrogen loads or concentrations suggest that meadows are responsive to changes in inputs of nitrogen. For smaller case-study areas, different trends in SAV abundance were also noted including correlations to water clarity in high-salinity case-study areas, but nitrogen was highly correlated in all areas. Current maximum SAV coverage for almost all areas remain below restoration targets, indicating that SAV abundance and associated ecosystem services are currently limited by continued poor water quality, and specifically high

  12. Willingness to Pay Survey for Chesapeake Bay Total Maximum Daily Load

    Science.gov (United States)

    A stated preference survey to collect data on households’ use of Chesapeake Bay and its watershed, and of their preferences for a variety of water quality improvements likely to follow from pollution reduction programs.

  13. Understanding nutrients in the Chesapeake Bay watershed and implications for management and restoration: the Eastern Shore

    Science.gov (United States)

    Ator, Scott W.; Denver, Judith M.

    2015-03-12

    The Eastern Shore includes only a small part of the Chesapeake Bay watershed, but contributes disproportionately large loads of the excess nitrogen and phosphorus that have contributed to ecological and economic degradation of the bay in recent decades. Chesapeake Bay is the largest estuary in the United States and a vital ecological and economic resource. The bay and its tributaries have been degraded in recent decades by excessive nitrogen and phosphorus in the water column, however, which cause harmful algal blooms and decreased water clarity, submerged aquatic vegetation, and dissolved oxygen. The disproportionately large nitrogen and phosphorus yields from the Eastern Shore to Chesapeake Bay are attributable to human land-use practices as well as natural hydrogeologic and soil conditions. Applications of nitrogen and phosphorus compounds to the Eastern Shore from human activities are intensive. More than 90 percent of nitrogen and phosphorus reaching the land in the Eastern Shore is applied as part of inorganic fertilizers or manure, or (for nitrogen) fixed directly from the atmosphere in cropland. Also, hydrogeologic and soil conditions promote the movement of these compounds from application areas on the landscape to groundwater and (or) surface waters, and the proximity of much of the Eastern Shore to tidal waters limits opportunities for natural removal of these compounds in the landscape. The Eastern Shore only includes 7 percent of the Chesapeake Bay watershed, but receives nearly twice as much nitrogen and phosphorus applications (per area) as the remainder of the watershed and yields greater nitrogen and phosphorus, on average, to the bay. Nitrogen and phosphorus commonly occur in streams at concentrations that may adversely affect aquatic ecosystems and have increased in recent decades.

  14. Chesapeake Bay recovery and factors affecting trends: Long-termmonitoring, indicators, and insights

    Science.gov (United States)

    Tango, Peter J.; Batiuk, Richard A.

    2016-01-01

    Monitoring the outcome of restoration efforts is the only way to identify the status of a recovery and the most effective management strategies. In this paper, we discuss Chesapeake Bay and watershed recovery and factors influencing water quality trends. For over 30 years, the Chesapeake Bay Program Partnership’s long-term tidal and watershed water quality monitoring networks have measured physical, chemical and biological parameters throughout the bay and its surrounding watershed underpinning an adaptive management process to drive ecosystem recovery. There are many natural and anthropogenic factors operating and interacting to affect the watershed and bay water quality recovery responses to management actions. Across habitats and indicators, the bay and its watershed continue to express a diverse spatial and temporal fabric of multiscale conditions, stressors and trends that show a range of health conditions and impairments, as well as evidence of progress and degradation. Recurrent independent reviews of the monitoring program have driven a culture of continued adaptation of the monitoring networks to reflect ever evolving management information needs. The adherence to bay and watershed-wide consistent monitoring protocols provides monitoring data supporting analyses and development of scientific syntheses that underpin indicator and model development, regulatory assessments, targeting of management actions, evaluation of management effectiveness, and directing of priorities and policies.

  15. Field guide to fishes of the chesapeake bay

    CERN Document Server

    Murdy, Edward O.

    2013-01-01

    The only comprehensive field guide to the Chesapeake’s fishes, this book is an indispensable resource for both anglers and students of the Bay. Vivid illustrations by Val Kells complement the expertise of researchers Edward O. Murdy and John A. Musick. They describe fishes that inhabit waters ranging from low-salinity estuaries to the point where the Bay meets the Atlantic Ocean. Key features of this field guide include• full-color illustrations of more than 200 species• text that is presented adjacent to illustrations for easy reference• detailed descriptions of physical characteristics, range, occurrence in the Bay, reproduction, diet, and statistics from fisheries research• spot illustrations that highlight critical features of certain fish• illustrations of juveniles when they look different from adults• appendices that include identification keys Formatted as a compact field guide for students, scientists, researchers, and fishermen, Field Guide to Fishes of the Chesapeake Bay should be a ...

  16. Temporal and spatial distribution of beryllium-7 in the sediments of Chesapeake Bay

    International Nuclear Information System (INIS)

    Dibb, J.E.; Rice, D.L.

    1989-01-01

    The sediment inventory of 7 Be was determined at six stations in the main stem of Chesapeake Bay nine times between April, 1986, and September, 1987. The inventories ranged from -2 . Comparison to the atmospherically supported 7 Be inventory (range 2-4 dpm cm -2 ) showed significant focusing of 7 Be in the sediments in the zone of the turbidity maximum during the summer, and suggested that the spatial distribution of 7 Be in the lower Bay apparently had a recurrence frequency greater than the sampling frequency in this investigation. The temporal pattern of 7 Be accumulation at the six stations over the first year of this investigation allowed estimation of sedimentation rates, which suggested that the processes governing the distribution of 7 Be in Chesapeake Bay sediments were similar to the processes determining sedimentation patterns over about the past 100 years. (author)

  17. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay

    Science.gov (United States)

    Irby, Isaac D.; Friedrichs, Marjorie A. M.; Da, Fei; Hinson, Kyle E.

    2018-05-01

    The Chesapeake Bay region is projected to experience changes in temperature, sea level, and precipitation as a result of climate change. This research uses an estuarine-watershed hydrodynamic-biogeochemical modeling system along with projected mid-21st-century changes in temperature, freshwater flow, and sea level rise to explore the impact climate change may have on future Chesapeake Bay dissolved-oxygen (DO) concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements. Results indicate that warming bay waters will decrease oxygen solubility year-round, while also increasing oxygen utilization via respiration and remineralization, primarily impacting bottom oxygen in the spring. Rising sea level will increase estuarine circulation, reducing residence time in bottom waters and increasing stratification. As a result, oxygen concentrations in bottom waters are projected to increase, while oxygen concentrations at mid-depths (3 < DO < 5 mg L-1) will typically decrease. Changes in precipitation are projected to deliver higher winter and spring freshwater flow and nutrient loads, fueling increased primary production. Together, these multiple climate impacts will lower DO throughout the Chesapeake Bay and negatively impact progress towards meeting water quality standards associated with the Chesapeake Bay Total Maximum Daily Load. However, this research also shows that the potential impacts of climate change will be significantly smaller than improvements in DO expected in response to the required nutrient reductions, especially at the anoxic and hypoxic levels. Overall, increased temperature exhibits the strongest control on the change in future DO concentrations, primarily due to decreased solubility, while sea level rise is expected to exert a small positive impact and increased winter river flow is anticipated to exert a small negative impact.

  18. Phytoplankton growth, dissipation, and succession in estuarine environments. [Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Seliger, H H

    1976-01-01

    Two major advances in a study of phytoplankton ecology in the Chesapeake Bay are reported. The annual subsurface transport of a dinoflagellate species (Prorocentrum mariae labouriae) from the mouth of the bay a distance northward of 120 nautical miles to the region of the Bay Bridge was followed. Prorocentrum is a major seasonal dinoflagellate in the Chespeake Bay and annually has been reported to form mahogany tides, dense reddish-brown patches, in the northern bay beginning in late spring and continuing through the summer. Subsequent to this annual appearance the Prorocentrum spread southward and into the western tributary estuaries. The physiological behavioral characteristics of the Prorocentrum were correlated with the physical water movements in the bay. A phytoplankton cage technique for the measurement in situ of the growth rates of natural mixed populations is described. (CH)

  19. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

    International Nuclear Information System (INIS)

    Grimm, J.W.; Lynch, J.A.

    2005-01-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8 km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8 km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate. - A linear least-squares regression approach was used to develop daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

  20. Chesapeake Bay Low Freshwater Inflow Study. Appendix E. Biota.

    Science.gov (United States)

    1984-09-01

    selecting representative species for study, mapping potential habitat under various conditions, using expert scientists to interpret the significance of...8217 t " TH H P CHESAPEAKE BAYE Ec LOW FRESHWATER INFLOW STUDY . htp APPENDIX E . . BIOTA TABLE OF ONTENTS...intensive manual searches of journals and other sources. Five abstract services were searched under more than 14 topics each. Journals, reports to

  1. 75 FR 54771 - Safety Zone; Thunder on the Bay, Chesapeake Bay, Buckroe Beach Park, Hampton, VA

    Science.gov (United States)

    2010-09-09

    ... navigable waters of the Chesapeake Bay within the area bounded by a 210-foot radius circle centered on... are technical standards (e.g., specifications of materials, performance, design, or operation; test... cumulatively have a significant effect on the human environment. This rule is categorically excluded, under...

  2. Uncertainty in model predictions of Vibrio vulnificus response to climate variability and change: a Chesapeake Bay case study.

    Directory of Open Access Journals (Sweden)

    Erin A Urquhart

    Full Text Available The effect that climate change and variability will have on waterborne bacteria is a topic of increasing concern for coastal ecosystems, including the Chesapeake Bay. Surface water temperature trends in the Bay indicate a warming pattern of roughly 0.3-0.4°C per decade over the past 30 years. It is unclear what impact future warming will have on pathogens currently found in the Bay, including Vibrio spp. Using historical environmental data, combined with three different statistical models of Vibrio vulnificus probability, we explore the relationship between environmental change and predicted Vibrio vulnificus presence in the upper Chesapeake Bay. We find that the predicted response of V. vulnificus probability to high temperatures in the Bay differs systematically between models of differing structure. As existing publicly available datasets are inadequate to determine which model structure is most appropriate, the impact of climatic change on the probability of V. vulnificus presence in the Chesapeake Bay remains uncertain. This result points to the challenge of characterizing climate sensitivity of ecological systems in which data are sparse and only statistical models of ecological sensitivity exist.

  3. Concentrations of metals in blood and feathers of nestling ospreys (Pandion haliaetus) in Chesapeake and Delaware Bays

    Science.gov (United States)

    Rattner, B.A.; Golden, N.H.; Toschik, P.C.; McGowan, P.C.; Custer, T.W.

    2008-01-01

    In 2000, 2001, and 2002, blood and feather samples were collected from 40-45-day-old nestling ospreys (Pandion haliaetus) from Chesapeake Bay and Delaware Bay and River. Concentrations of 18 metals, metalloids, and other elements were determined in these samples by inductively coupled plasma-mass spectroscopy, and Hg concentrations were measured by cold vapor atomic absorption spectroscopy. When compared to concurrent reference areas (South, West, and Rhode Rivers), mean As and Hg concentrations in blood were greater (p nestlings from the highly industrialized Elizabeth River compared to the rural reference area. When compared to the concurrent reference area, mean Al, Ba, Hg, Mn, and Pb concentrations in feathers were substantially greater (p nestlings from northern Delaware Bay and River had greater concentrations (p nestling feathers from Delaware were frequently greater than in the Chesapeake. The present findings and those of related reproductive studies suggest that concentrations of several heavy metals (e.g., Cd, Hg, Pb) in nestling blood and feathers from Chesapeake and Delaware Bays were below toxicity thresholds and do not seem to be affecting chick survival during the nestling period.

  4. 33 CFR 165.505 - Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland. 165.505 Section 165.505 Navigation and... Areas Fifth Coast Guard District § 165.505 Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake...

  5. Production and Field Planting of Vegetative Propagules for Restoration of Redhead Grass and Sago Pondweed in Chesapeake Bay

    Science.gov (United States)

    2009-08-01

    submerged aquatic vegetation (SAV) have been lost from shallow waters of Chesapeake Bay (Orth and Moore 1983) and other coastal ecosystems worldwide...a mixture of ambient estuarine water from the Choptank River (a tributary of Chesapeake Bay) and freshwater (tap) needed to maintain a salinity of 7...with a mixture of freshwater and ambient estuarine water (to maintain a salinity of 10) that was circulated through a closed- loop recirculation system

  6. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay

    Directory of Open Access Journals (Sweden)

    I. D. Irby

    2018-05-01

    Full Text Available The Chesapeake Bay region is projected to experience changes in temperature, sea level, and precipitation as a result of climate change. This research uses an estuarine-watershed hydrodynamic–biogeochemical modeling system along with projected mid-21st-century changes in temperature, freshwater flow, and sea level rise to explore the impact climate change may have on future Chesapeake Bay dissolved-oxygen (DO concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements. Results indicate that warming bay waters will decrease oxygen solubility year-round, while also increasing oxygen utilization via respiration and remineralization, primarily impacting bottom oxygen in the spring. Rising sea level will increase estuarine circulation, reducing residence time in bottom waters and increasing stratification. As a result, oxygen concentrations in bottom waters are projected to increase, while oxygen concentrations at mid-depths (3 < DO < 5 mg L−1 will typically decrease. Changes in precipitation are projected to deliver higher winter and spring freshwater flow and nutrient loads, fueling increased primary production. Together, these multiple climate impacts will lower DO throughout the Chesapeake Bay and negatively impact progress towards meeting water quality standards associated with the Chesapeake Bay Total Maximum Daily Load. However, this research also shows that the potential impacts of climate change will be significantly smaller than improvements in DO expected in response to the required nutrient reductions, especially at the anoxic and hypoxic levels. Overall, increased temperature exhibits the strongest control on the change in future DO concentrations, primarily due to decreased solubility, while sea level rise is expected to exert a small positive impact and increased winter river flow is anticipated to exert a small negative impact.

  7. CBEO:N, Chesapeake Bay Environmental Observatory as a Cyberinfrastructure Node

    Science.gov (United States)

    Zaslavsky, I.; Piasecki, M.; Whitenack, T.; Ball, W. P.; Murphy, R.

    2008-12-01

    Chesapeake Bay Environmental Observatory (CBEO) is an NSF-supported project focused on studying hypoxia in Chesapeake Bay using advanced cyberinfrastructure (CI) technologies. The project is organized around four concurrent and interacting activities: 1) CBEO:S provides science and management context for the use of CI technologies, focusing on hypoxia and its non-linear dynamics as affected by management and climate; 2) CBEO:T constructs a locally-accessible CBEO test bed prototype centered on spatio-temporal interpolation and advanced querying of model runs; 3) CBEO:N incorporates the test bed CI into national environmental observation networks, and 4) CBEO:E develops education and outreach components of the project that translate observational science for public consumption. CBEO:N activities, which are the focus of this paper, are four-fold: - constructing an online project portal to enable researchers to publish, discover, query, visualize and integrate project-related datasets of different types. The portal is based on the technologies developed within the GEON (the Geosciences Network) project, and has established the CBEO project data server as part of the GEON network of servers; * developing a CBEO node within the WATERS network, taking advantage of the CUAHSI Hydrologic Information System (HIS) Server technology that supports online publication of observation data as web services, and ontology-assisted data discovery; *developing new data structures and metadata in order to describe water quality observational data, and model run output, obtained for the Chesapeake Bay area, using data structures adopted and modified from the Observations Data Model of CUAHSI HIS; * prototyping CBEO tools that can be re-used through the portal, in particular implementing a portal version of R-based spatial interpolation tools. The paper describes recent accomplishments in these four development areas, and demonstrates how CI approaches transform research and data sharing

  8. Radiocarbon dating, chronologic framework, and changes in accumulation rates of holocene estuarine sediments from Chesapeake Bay

    Science.gov (United States)

    Colman, Steven M.; Baucom, P.C.; Bratton, J.F.; Cronin, T. M.; McGeehin, J.P.; Willard, D.; Zimmerman, A.R.; Vogt, P.R.

    2002-01-01

    Rapidly accumulating Holocene sediments in estuaries commonly are difficult to sample and date. In Chesapeake Bay, we obtained sediment cores as much as 20 m in length and used numerous radiocarbon ages measured by accelarator mass spectrometry methods to provide the first detailed chronologies of Holocene sediment accumulation in the bay. Carbon in these sediments is a complex mixture of materials from a variety of sources. Analyses of different components of the sediments show that total organic carbon ages are largely unreliable, because much of the carbon (including coal) has been transported to the bay from upstream sources and is older than sediments in which it was deposited. Mollusk shells (clams, oysters) and foraminifera appear to give reliable results, although reworking and burrowing are potential problems. Analyses of museum specimens collected alive before atmospheric nuclear testing suggest that the standard reservoir correction for marine samples is appropriate for middle to lower Chesapeake Bay. The biogenic carbonate radiocarbon ages are compatible with 210 Pb and 137 Cs data and pollen stratigraphy from the same sites. Post-settlement changes in sediment transport and accumulation is an important environmental issue in many estuaries, including the Chesapeake. Our data show that large variations in sediment mass accumulation rates occur among sites. At shallow water sites, local factors seem to control changes in accumulation rates with time. Our two relatively deep-water sites in the axial channel of the bay have different long-term average accumulation rates, but the history of sediment accumulation at these sites appears to reflect overall conditions in the bay. Mass accumulation rates at the two deep-water sites rapidly increased by about fourfold coincident with widespread land clearance for agriculture in the Chesapeake watershed.

  9. Large-Scale Submerged Aquatic Vegetation Restoration in Chesapeake Bay: Status Report, 2003-2006

    National Research Council Canada - National Science Library

    Shafer, Deborah J; Bergstrom, Peter

    2008-01-01

    ...) in the Chesapeake Bay region. The effort employed an agricultural approach to restore under-water grasses by using seeds to produce new plants and mechanical equipment to plant seeds and harvest...

  10. Analysis of the Energy Performance of the Chesapeake Bay Foundation's Philip Merrill Environmental Center

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Deru M.; Torcellini, P.; Ellis, P.

    2005-04-01

    The Chesapeake Bay Foundation designed their new headquarters building to minimize its environmental impact on the already highly polluted Chesapeake Bay by incorporating numerous high-performance energy saving features into the building design. CBF then contacted NREL to perform a nonbiased energy evaluation of the building. Because their building attracted much attention in the sustainable design community, an unbiased evaluation was necessary to help designers replicate successes and identify and correct problem areas. This report focuses on NREL's monitoring and analysis of the overall energy performance of the building.

  11. Organic Matter Remineralization Predominates Phosphorus Cycling in the Mid-Bay Sediments in the Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Sunendra, Joshi R.; Kukkadapu, Ravi K.; Burdige, David J.; Bowden, Mark E.; Sparks, Donald L.; Jaisi, Deb P.

    2015-05-19

    The Chesapeake Bay, the largest and most productive estuary in the US, suffers from varying degrees of water quality issues fueled by both point and non–point source nutrient sources. Restoration of the bay is complicated by the multitude of nutrient sources, their variable inputs and hydrological conditions, and complex interacting factors including climate forcing. These complexities not only restrict formulation of effective restoration plans but also open up debates on accountability issues with nutrient loading. A detailed understanding of sediment phosphorus (P) dynamics enables one to identify the exchange of dissolved constituents across the sediment- water interface and aid to better constrain mechanisms and processes controlling the coupling between the sediments and the overlying waters. Here we used phosphate oxygen isotope ratios (δ18Op) in concert with sediment chemistry, XRD, and Mössbauer spectroscopy on the sediment retrieved from an organic rich, sulfidic site in the meso-haline portion of the mid-bay to identify sources and pathway of sedimentary P cycling and to infer potential feedback effect on bottom water hypoxia and surface water eutrophication. Isotope data indicate that the regeneration of inorganic P from organic matter degradation (remineralization) is the predominant, if not sole, pathway for authigenic P precipitation in the mid-bay sediments. We interpret that the excess inorganic P generated by remineralization should have overwhelmed any bottom-water and/or pore-water P derived from other sources or biogeochemical processes and exceeded saturation with respect to authigenic P precipitation. It is the first research that identifies the predominance of remineralization pathway against remobilization (coupled Fe-P cycling) pathway in the Chesapeake Bay. Therefore, these results are expected to have significant implications for the current understanding of P cycling and benthic-pelagic coupling in the bay, particularly on the

  12. Large-Scale Submerged Aquatic Vegetation Restoration in Chesapeake Bay: Status Report, 2003-2006

    National Research Council Canada - National Science Library

    Shafer, Deborah J; Bergstrom, Peter

    2008-01-01

    In 2003, the U.S. Army Engineer Research and Development Center (ERDC) and the National Oceanic and Atmospheric Administration Chesapeake Bay Office began a comprehensive research effort to restore submerged aquatic vegetation (SAV...

  13. National Status and Trends: Bioeffects Assessment Program, Chesapeake Bay Summary Database (1998-2001)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study was based on the sediment quality triad (SQT) approach. A stratified probabilistic sampling design was utilized to characterize the Chesapeake Bay system...

  14. Estimates of nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology

    Science.gov (United States)

    Terziotti, Silvia; Capel, Paul D.; Tesoriero, Anthony J.; Hopple, Jessica A.; Kronholm, Scott C.

    2018-03-07

    The water quality of the Chesapeake Bay may be adversely affected by dissolved nitrate carried in groundwater discharge to streams. To estimate the concentrations, loads, and yields of nitrate from groundwater to streams for the Chesapeake Bay watershed, a regression model was developed based on measured nitrate concentrations from 156 small streams with watersheds less than 500 square miles (mi2 ) at baseflow. The regression model has three predictive variables: geologic unit, percent developed land, and percent agricultural land. Comparisons of estimated and actual values within geologic units were closely matched. The coefficient of determination (R2 ) for the model was 0.6906. The model was used to calculate baseflow nitrate concentrations at over 83,000 National Hydrography Dataset Plus Version 2 catchments and aggregated to 1,966 total 12-digit hydrologic units in the Chesapeake Bay watershed. The modeled output geospatial data layers provided estimated annual loads and yields of nitrate from groundwater into streams. The spatial distribution of annual nitrate yields from groundwater estimated by this method was compared to the total watershed yields of all sources estimated from a Chesapeake Bay SPAtially Referenced Regressions On Watershed attributes (SPARROW) water-quality model. The comparison showed similar spatial patterns. The regression model for groundwater contribution had similar but lower yields, suggesting that groundwater is an important source of nitrogen for streams in the Chesapeake Bay watershed.

  15. Using Seeds to Propagate and Restore Vallisneria americana Michaux (Wild Celery) in the Chesapeake Bay

    Science.gov (United States)

    2007-12-01

    the capacity of the plants to elongate so that the leaves can reach closer to the water surface to gather adequate light for photosynthesis . When...transplant eelgrass (Zostera marina L.) in Chesapeake Bay and the Virginia Coastal Bays, In Proc. Conf. Seagrass Restoration: Success, Failure, and

  16. The exotic mute swan (Cygnus olor) in Chesapeake Bay, USA

    Science.gov (United States)

    Perry, M.C.; Perry, M.C.

    2002-01-01

    The exotic mute swan (Cygnus olor) has increased its population size in Chesapeake Bay (Maryland and Virginia) to approximately 4,500 since 1962 when five swans were released in the Bay. The Bay population of mute swans now represents 30% of the total Atlantic Flyway population (12,600) and has had a phenomenal increase of 1,200% from 1986 to 1999. Unlike the tundra swans (Cygnus columbianus) that migrate to the Bay for the winter, the mute swan is a year-long resident, and, therefore, reports of conflicts with nesting native waterbirds and the consumption of submerged aquatic vegetation (SAV) have raised concerns among resource managers. Populations of black skimmers (Rynchops niger) and least terns (Sterna antillarum) nesting on beaches and oyster shell bars have been eliminated by molting mute swans. Although data on the reduction of SAV by nesting mute swans and their offspring during the spring and summer are limited, food habits data show that mute swans rely heavily on SAV during these months. Widgeon grass (Ruppia maritima) constituted 56% and eel grass (Zostera marina) constituted 43% of the gullet food of mute swans. Other SAV and invertebrates (including bryozoans, shrimp, and amphipods) formed a much smaller amount of the food percentage (1%). Invertebrates are believed to have been selected accidently within the vegetation eaten by the swans. Corn (Zea mays) fed to swans by Bay residents during the winter probably supplement limited vegetative food resources in late winter. A program to control swan numbers by the addling of eggs and the killing of adult swans has been a contentious issue with some residents of the Bay area. A management plan is being prepared by a diverse group of citizens appointed by the Governor to advise the Maryland Department of Natural Resources on viable and optimum options to manage mute swans in the Maryland portion of Chesapeake Bay. Hopefully, the implementation of the plan will alleviate the existing conflicts to the

  17. Trends in Surface-Water Nitrate-N Concentrations and Loads from Predominantly-Forested Watersheds of the Chesapeake Bay Basin

    Science.gov (United States)

    Eshleman, K. N.

    2011-12-01

    Water quality monitoring data from streams and rivers provide the "gold standard" by which progress toward achieving real reductions in nutrient loadings to Chesapeake Bay must ultimately be assessed. The most recent trend results posted at the Chesapeake Bay Program (CBP) website reveal that a substantial percentage of tributaries are now showing long-term declines in flow-adjusted concentrations of nutrients and sediments: 22 sites showed statistically significant (p pollution controls for improved wastewater treatment plants and practices to reduce nutrients on farms and suburban lands, have reduced concentrations of nitrogen." But could this conclusion be pre-mature? I recently undertook a comparable analysis of long-term nitrate-N trends for a different group of watersheds (all located in the Chesapeake Bay watershed with long data records); this group includes nine watersheds that are predominantly (i.e., >75%) forested, plus five other Potomac River subwatersheds added for comparison. Based on comparable data and analytical methods to those used by CBP partners and USGS, 13 of the 14 sites-including both Potomac River stations (Chain Bridge at Washington DC and Hancock, Maryland)-showed statistically significant decreasing linear trends in annual flow-weighted nitrate-N concentration. Only one station-the heavily agricultural Upper Monocacy River-did not show a statistically significant (p RIM station could be entirely explained by commensurate improvements at the upstream (Hancock) station; in fact, no trend in nitrate-N concentration associated with the eastern portion of the basin was found (after subtracting out the influence of the upstream portion). Additional research is needed to understand why nitrogen retention by forested lands may be increasing and thus helping restore water quality throughout the Chesapeake Bay watershed. The results also have obvious implications for meeting local water quality goals as well as the basin-wide goal of the

  18. The regulation of bacterial production in the Chesapeake Bay

    International Nuclear Information System (INIS)

    Chin-Leo, G.

    1988-01-01

    In this study, the possibility that periods when the rates of macromolecule syntheses become uncoupled occur in natural assemblages of bacteria was examined by comparing rates of bacterial DNA and protein synthesis. A dual-label method which measures incorporation rates of [ 3 H]thymidine (TdR) into macromolecules (DNA) and of [ 14 C]leucine (Leu) into protein was developed to facilitate simultaneous estimation of these cellular activities in a single incubation. Under controlled conditions, changes in rates of Leu incorporation preceded fluctuations in TdR incorporation and the Leu:TdR ratio varied prior to shifts in growth rate indicating the uncoupling of protein and DNA synthesis which occurs during unbalanced growth. The delay between this uncoupling and a change in growth rate was always shorter than the generation time. In Chesapeake Bay, during October 1986, the Leu:TdR ratio was quite constant over a diel cycle and with depth, but during July 1987, the magnitude of this ratio and its variation through time increased with depth. Growth conditions for heterotrophic bacteria in Chesapeake Bay during summer in surface waters and throughout the water column in fall may be relatively constant leading to balanced growth. In contrast, fluctuating growth conditions in subsurface waters during summer may lead to unbalanced growth

  19. Radionuclides and trace elements in middle Chesapeake Bay sediments

    International Nuclear Information System (INIS)

    Gavrilas, M.

    1988-01-01

    Sediments play an important role in aquatic ecology by serving as a repository for radioactive substances and for soluble chemical pollutants that they may transport over considerable distances and may pass to a higher trophic level by way of bottom-feeding biota. The Chesapeake Bay is a moderately stratified, drowned river valley estuary. The oscillatory flood and ebb of the tidal currents are the most obvious motions in the bay and its tributary estuaries. It is considered that the distribution of most of the pollutants, once diluted by the mixing action of the tidal flow, remains relatively constant for many miles up and down the bay. This paper documents the present status of the radioactivity and of trace elements in sediment samples collected in March 1986 from and extended area around the Calvert Cliffs Nuclear Power Plant

  20. Collection and analysis of remotely sensed data from the Rhode River Estuary Watershed. [ecological parameters of Chesapeake Bay

    Science.gov (United States)

    Jenkins, D. W.

    1972-01-01

    NASA chose the watershed of Rhode River, a small sub-estuary of the Bay, as a representative test area for intensive studies of remote sensing, the results of which could be extrapolated to other estuarine watersheds around the Bay. A broad program of ecological research was already underway within the watershed, conducted by the Smithsonian Institution's Chesapeake Bay Center for Environmental Studies (CBCES) and cooperating universities. This research program offered a unique opportunity to explore potential applications for remote sensing techniques. This led to a joint NASA-CBCES project with two basic objectives: to evaluate remote sensing data for the interpretation of ecological parameters, and to provide essential data for ongoing research at the CBCES. A third objective, dependent upon realization of the first two, was to extrapolate photointerpretive expertise gained at the Rhode River watershed to other portions of the Chesapeake Bay.

  1. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay

    Science.gov (United States)

    Kemp, W.M.; Smith, E.M.; Marvin-DiPasquale, M.; Boynton, W.R.

    1997-01-01

    The major fluxes of organic carbon associated with physical transport and biological metabolism were compiled, analyzed and compared for the mainstem portion of Chesapeake Bay (USA). In addition, 5 independent methods were used to calculate the annual mean net ecosystem metabolism (NEM = production - respiration) for the integrated Bay. These methods, which employed biogeochemical models, nutrient mass-balances anti summation of individual organic carbon fluxes, yielded remarkably similar estimates, with a mean NEM of +50 g C m-2 yr-1 (?? SE = 751, which is approximately 8% of the estimated annual average gross primary production. These calculations suggest a strong cross-sectional pattern in NEM throughout the Bay, wherein net heterotrophic metabolism prevails in the pelagic zones of the main channel, while net autotrophy occurs in the littoral zones which flank the deeper central area. For computational purposes, the estuary was separated into 3 regions along the land-sea gradient: (1) the oligohaline Upper Bay (11% of total area); (2) the mesohaline Mid Bay (36% of area); and (3) the polyhaline Lower Bay (53% of area). A distinct regional trend in NEM was observed along this salinity gradient, with net here(atrophy (NEM = 87 g C m-2 yr-1) in the Upper Bay, balanced metabolism in the Mid Bay and net autotrophy (NEM = +92 g C m-2 yr-1) in the Lower Bay. As a consequence of overall net autotrophy, the ratio of dissolved inorganic nitrogen (DIN) to total organic nitrogen (TON) changed from DIN:TON = 5.1 for riverine inputs to DIN:TON = 0.04 for water exported to the ocean. A striking feature of this organic C mass-balance was the relative dominance of biologically mediated metabolic fluxes compared to physical transport fluxes. The overall ratio of physical TOC inputs (1) to biotic primary production (P) was 0.08 for the whole estuary, but varied dramatically from 2.3 in the Upper Bay to 0.03 in the Mid and Lower Bay regions. Similarly, ecosystem respiration was

  2. Delineation of surf scoter habitat in Chesapeake Bay, Maryland: macrobenthic and sediment composition of surf scoter feeding sites

    Science.gov (United States)

    Kidwell, D.M.; Perry, M.C.

    2005-01-01

    Surveys of surf scoters (Melanitta perspicillata) along the Atlantic coast of the United States have shown population declines in recent decades. The Chesapeake Bay has traditionally been a key wintering area for surf scoters. Past and present research has shown that bivalves constitute a major food item for seaducks in the Chesapeake Bay, with surf scoters feeding primarily on hooked mussel (Ischadium recurvum) and dwarf surf clam (Mulinia lateralis). Degraded water quality conditions in the Chesapeake Bay have been well documented and have been shown to greatly influence the composition of benthic communities. Large concentrations of feeding surf scoters (>500 individuals) in the Bay were determined through monthly boat surveys. Locations consistently lacking surf scoters were also determined. Macrobenthos were seasonally sampled at 3 locations containing scoters and 3 locations without scoters. A 1 kilometer square grid was superimposed over each location using GIS and sampling sites within the square were randomly chosen. Benthos were sampled at each site using SCUBA and a meter square quadrat. Biomass and size class estimates were determined for all bivalves within each kilometer square. Results indicated that scoter feeding sites contained significantly greater biomass of M. lateralis, I. recurvum, and Gemma gemma than locations where no scoters were present. Substrate differences were also detected, with scoter feeding sites being composed of a sand/shell mix while non-scoter sites consisted primarily of mud. This data indicates that surf scoters in the Chesapeake Bay are selecting areas with high densities of preferred food items, potentially maximizing there foraging energetics. In addition, two scoter feeding sites also contained a patchwork of eastern oyster (Crassostrea virginica) and oyster shell, on which much of the I. recurvum was attached. This suggests the possibility that surf scoters utilize eastern oyster habitat and the dramatic depletion of

  3. Robust Decision Making to Support Water Quality Climate Adaptation: a Case Study in the Chesapeake Bay Watershed

    Science.gov (United States)

    Fischbach, J. R.; Lempert, R. J.; Molina-Perez, E.

    2017-12-01

    The U.S. Environmental Protection Agency (USEPA), together with state and local partners, develops watershed implementation plans designed to meet water quality standards. Climate uncertainty, along with uncertainty about future land use changes or the performance of water quality best management practices (BMPs), may make it difficult for these implementation plans to meet water quality goals. In this effort, we explored how decision making under deep uncertainty (DMDU) methods such as Robust Decision Making (RDM) could help USEPA and its partners develop implementation plans that are more robust to future uncertainty. The study focuses on one part of the Chesapeake Bay watershed, the Patuxent River, which is 2,479 sq km in area, highly urbanized, and has a rapidly growing population. We simulated the contribution of stormwater contaminants from the Patuxent to the overall Total Maximum Daily Load (TMDL) for the Chesapeake Bay under multiple scenarios reflecting climate and other uncertainties. Contaminants considered included nitrogen, phosphorus, and sediment loads. The assessment included a large set of scenario simulations using the USEPA Chesapeake Bay Program's Phase V watershed model. Uncertainties represented in the analysis included 18 downscaled climate projections (based on 6 general circulation models and 3 emissions pathways), 12 land use scenarios with different population projections and development patterns, and alternative assumptions about BMP performance standards and efficiencies associated with different suites of stormwater BMPs. Finally, we developed cost estimates for each of the performance standards and compared cost to TMDL performance as a key tradeoff for future water quality management decisions. In this talk, we describe how this research can help inform climate-related decision support at USEPA's Chesapeake Bay Program, and more generally how RDM and other DMDU methods can support improved water quality management under climate

  4. Evaluation of Shortwave Infrared Atmospheric Correction for Ocean Color Remote Sensing of Chesapeake Bay

    Science.gov (United States)

    Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.

    2010-01-01

    The NASA Moderate Resolution Imaging Spectroradiometer onboard the Aqua platform (MODIS-Aqua) provides a viable data stream for operational water quality monitoring of Chesapeake Bay. Marine geophysical products from MODIS-Aqua depend on the efficacy of the atmospheric correction process, which can be problematic in coastal environments. The operational atmospheric correction algorithm for MODIS-Aqua requires an assumption of negligible near-infrared water-leaving radiance, nL(sub w)(NIR). This assumption progressively degrades with increasing turbidity and, as such, methods exist to account for non-negligible nL(sub w)(NIR) within the atmospheric correction process or to use alternate radiometric bands where the assumption is satisfied, such as those positioned within shortwave infrared (SWIR) region of the spectrum. We evaluated a decade-long time-series of nL(sub w)(lambda) from MODIS-Aqua in Chesapeake Bay derived using NIR and SWIR bands for atmospheric correction. Low signal-to-noise ratios (SNR) for the SWIR bands of MODIS-Aqua added noise errors to the derived radiances, which produced broad, flat frequency distributions of nL(sub w)(lambda) relative to those produced using the NIR bands. The SWIR approach produced an increased number of negative nL(sub w)(lambda) and decreased sample size relative to the NIR approach. Revised vicarious calibration and regional tuning of the scheme to switch between the NIR and SWIR approaches may improve retrievals in Chesapeake Bay, however, poor SNR values for the MODIS-Aqua SWIR bands remain the primary deficiency of the SWIR-based atmospheric correction approach.

  5. Restoration Potential of Ruppia Maritima and Potamogeton Perfoliatus by Seed in the Mid-Chesapeake Bay

    National Research Council Canada - National Science Library

    Ailstock, Steve

    2004-01-01

    ... in the mesohaline reaches of the mid-Chesapeake Bay. Once reproductive potential by seed is defined for healthy populations of these species, their life cycles can be evaluated to identify nondestructive methods of harvesting seeds for restoration projects...

  6. Modeling investigation of the nutrient and phytoplankton variability in the Chesapeake Bay outflow plume

    Science.gov (United States)

    Jiang, Long; Xia, Meng

    2018-03-01

    The Chesapeake Bay outflow plume (CBOP) is the mixing zone between Chesapeake Bay and less eutrophic continental shelf waters. Variations in phytoplankton distribution in the CBOP are critical to the fish nursery habitat quality and ecosystem health; thus, an existing hydrodynamic-biogeochemical model for the bay and the adjacent coastal ocean was applied to understand the nutrient and phytoplankton variability in the plume and the dominant environmental drivers. The simulated nutrient and chlorophyll a distribution agreed well with field data and real-time satellite imagery. Based on the model calculation, the net dissolved inorganic nitrogen (DIN) and phosphorus (DIP) flux at the bay mouth was seaward and landward during 2003-2012, respectively. The CBOP was mostly nitrogen-limited because of the relatively low estuarine DIN export. The highest simulated phytoplankton biomass generally occurred in spring in the near field of the plume. Streamflow variations could regulate the estuarine residence time, and thus modulate nutrient export and phytoplankton biomass in the plume area; in comparison, changing nutrient loading with fixed streamflow had a less extensive impact, especially in the offshore and far-field regions. Correlation analyses and numerical experiments revealed that southerly winds on the shelf were effective in promoting the offshore plume expansion and phytoplankton accumulation. Climate change including precipitation and wind pattern shifts is likely to complicate the driving mechanisms of phytoplankton variability in the plume region.

  7. Long-term decline in the calanoid copepod Acartia tonsa in central Chesapeake Bay, USA: An indirect effect of eutrophication?

    Science.gov (United States)

    Kimmel, David G.; Boynton, Walter R.; Roman, Michael R.

    2012-04-01

    A long-term abundance record of the calanoid copepod Acartia tonsa in the Maryland portion of Chesapeake Bay was compiled from 1966 to 2002. A significant downward trend in the summertime abundance of Acartia tonsa was found in central Chesapeake Bay. We propose that environmental and food web changes occurred as the Chesapeake Bay became increasingly impacted by human activity which eventually led to the overall decline of A. tonsa. Environmental changes included a long-term rise in water temperature and the volume of hypoxic water during the summer. These changes occurred during the same time period as increases in chlorophyll a concentration, declines in the landings of the eastern oyster Crassostrea virginica, and declines in abundance of the sea nettle Chrysaora quinquecirrha. A CUSUM analysis showed that each time-series experienced a change point during over the past 50 years. These changes occurred sequentially, with chlorophyll a concentration increasing beginning in 1969, water temperature and hypoxic volume increasing beginning in the early 1980s, more recent Maryland C. virginica landings begin declining in the early 1980s and A. tonsa and C. quinquecirrha declining starting in 1989. A stepwise regression analysis revealed that the reduction in A. tonsa abundance appeared to be most associated with a decreasing trend in C. quinquecirrha abundance, though only when trends in the two time-series were present. The drop in C. quinquecirrha abundance is associated with reduced predation on the ctenophore, Mnemiopsis leidyi, a key predator of A. tonsa. The long-term decline of A. tonsa has likely impacted trophic transfer to fish, particularly the zooplanktivorous bay anchovy (Anchoa mitchilli). A time-series of bay anchovy juvenile index showed a negative trend and the CUSUM analysis revealed 1993 as its starting point. Total fisheries landings, excluding menhaden (Brevoortia tyrannus), in Chesapeake Bay have also declined during the same period and this

  8. Chesapeake Bay Low Freshwater Inflow Study. Biota Assessment. Phase II. Main Report.

    Science.gov (United States)

    1982-05-01

    Energy, U.S. Geological Survey, Maryland Department of Natural Resources *a (Tidewater and Water Supply Divisions), Maryland Department of Health , Virginia...diverse assemblage of rooted species, including Typha spp., Phragmites, Zizania, Hibiscus , 4 Sagittaria, and many others. These plants are very important...ro(duced froshwatc’r inflow on health and productivity of key Chesapeake Bay organisms. DIRECT IMPACT (OR EFFECT) - a change in the basic physical

  9. Sorption and bioreduction of hexavalent uranium at a military facility by the Chesapeake Bay

    International Nuclear Information System (INIS)

    Dong Wenming; Xie Guibo; Miller, Todd R.; Franklin, Mark P.; Oxenberg, Tanya Palmateer; Bouwer, Edward J.; Ball, William P.; Halden, Rolf U.

    2006-01-01

    Directly adjacent to the Chesapeake Bay lies the Aberdeen Proving Ground, a U.S. Army facility where testing of armor-piercing ammunitions has resulted in the deposition of >70,000 kg of depleted uranium (DU) to local soils and sediments. Results of previous environmental monitoring suggested limited mobilization in the impact area and no transport of DU into the nation's largest estuary. To determine if physical and biological reactions constitute mechanisms involved in limiting contaminant transport, the sorption and biotransformation behavior of the radionuclide was studied using geochemical modeling and laboratory microcosms (500 ppb U(VI) initially). An immediate decline in dissolved U(VI) concentrations was observed under both sterile and non-sterile conditions due to rapid association of U(VI) with natural organic matter in the sediment. Reduction of U(VI) to U(IV) occurred only in non-sterile microcosms. In the non-sterile samples, intrinsic bioreduction of uranium involved bacteria of the order Clostridiales and was only moderately enhanced by the addition of acetate (41% vs. 56% in 121 days). Overall, this study demonstrates that the migration of depleted uranium from the APG site into the Chesapeake Bay may be limited by a combination of processes that include rapid sorption of U(VI) species to natural organic matter, followed by slow, intrinsic bioreduction to U(IV). - At the Aberdeen Proving Ground in Maryland, USA, migration of depleted uranium into the Chesapeake Bay is limited by rapid sorption of the radionuclide to natural organic matter followed by slow biological reduction of water-soluble U(VI) to the insoluble and less toxic U(IV) species

  10. Bank-derived material dominates fluvial sediment in a suburban Chesapeake Bay watershed

    Science.gov (United States)

    Cashman, M. J.; Gellis, A.; Gorman-Sanisaca, L.; Noe, G. B.; Cogliandro, V.; Baker, A.

    2017-12-01

    Excess fine sediment is a leading cause of ecological degradation within the Chesapeake Bay watershed. The Piedmont physiographic province, which includes parts of the Washington, D.C. metro area, has the highest sediment yields in the Chesapeake Bay. In order to effectively employ sediment mitigation measures, it is necessary to identify and quantify the contributions of sediments sources within rapidly urbanizing areas in the Piedmont. This sediment fingerprinting study examines the inputs of various sediment sources to Upper Difficult Run (14.2 km2; 22.6% impervious surface), an urbanized watershed in Fairfax County, Virginia. A source sediment library was constructed from collections of stream bank material, forest soils, and road dust from across the watershed. Target fluvial sediments were collected from fine channel margin deposits and from suspended sediment using an autosampler during 16 storm events from 2008 - 2012. Apportionment of the target samples to the source sediments was performed using Sed_SAT, a publically available toolkit for sediment fingerprinting. Bed sediment was found to be dominated by stream bank sources (mean: 96%), with minor contributions from forest (4%) and no detectable contribution from roads (0%). Suspended fine sediments were also found to predominantly originate from stream bank sources (SSC-weighted mean: 91%), with minor contributions from roads (8%), and negligible contributions from forests (1%). Stream bank sources dominated at all discharges, with the greatest contributions from overland sources found only at low discharges. On the rising limb of the hydrograph and at peak flow, sediment concentrations increased due to increasing contributions of bank material rather than surface erosion caused by overland flow. Results demonstrate that stream bank erosion is responsible for the vast majority of fine sediment occurring in this suburban basin of the Chesapeake Bay watershed. This is likely a consequence of storm

  11. Chesapeake Bay fish–osprey (Pandion haliaetus) food chain: Evaluation of contaminant exposure and genetic damage

    Science.gov (United States)

    Lazarus, Rebecca S.; Rattner, Barnett A.; McGowan, Peter C.; Hale, Robert C.; Karouna-Reiner, Natalie K.; Erickson, Richard A.; Ottinger, Mary Ann

    2016-01-01

    From 2011 to 2013, a large-scale ecotoxicological study was conducted in several Chesapeake Bay (USA) tributaries (Susquehanna River and flats, the Back, Baltimore Harbor/Patapsco Rivers, Anacostia/ middle Potomac, Elizabeth and James Rivers) and Poplar Island as a mid-Bay reference site. Osprey (Pandion haliaetus) diet and the transfer of contaminants from fish to osprey eggs were evaluated. The most bioaccumulative compounds (biomagnification factor > 5) included p,p′-dichlorodiphenyldichloroethylene (DDE), total polychlorinated biphenyls (PCBs), total polybrominated diphenyl ethers (PBDEs), and bromodiphenyl ether (BDE) congeners 47, 99, 100, and 154. This analysis suggested that alternative brominated flame retardants and other compounds (methoxytriclosan) are not appreciably biomagnifying. A multivariate analysis of similarity indicated that major differences in patterns among study sites were driven by PCB congeners 105, 128, 156, 170/190, and 189, and PBDE congeners 99 and 209. An integrative redundancy analysis showed that osprey eggs from Baltimore Harbor/Patapsco River and the Elizabeth River had high residues of PCBs and p,p′-DDE, with PBDEs making a substantial contribution to overall halogenated contamination on the Susquehanna and Anacostia/middle Potomac Rivers. The redundancy analysis also suggested a potential relation between PBDE residues in osprey eggs and oxidative DNA damage in nestling blood samples. The results also indicate that there is no longer a discernible relation between halogenated contaminants in osprey eggs and their reproductive success in Chesapeake Bay. Osprey populations are thriving in much of the Chesapeake, with productivity rates exceeding those required to sustain a stable population.

  12. Incidence of malaria in a wintering population of canvasbacks (Aythya valisineria) on Chesapeake Bay

    Science.gov (United States)

    Kocan, R.M.; Knisley, J.O.

    1970-01-01

    Canvasback ducks wintering on Chesapeake Bay had a 6% incidence of Leucocytozoon sirnondi and 2% incidence of Haemoproteus. Sub-inoculation of whole blood into Pekin ducklings produced a Plasmodium infection rate of 31%. Females were more frequently infected (12/22) than males (15/68). The parasite was identified as P. circumflexum.

  13. Coastal seas as a context for science teaching: a lesson from Chesapeake Bay.

    Science.gov (United States)

    Bell, Wayne H; Fowler, Erin M; Stein, J Andrew

    2003-01-01

    Lessons that employ authentic environmental data can enhance the ability of students to understand fundamental science concepts. This differs from traditional "environmental education" in that school curricula need not set aside time for educators to teach only environmental topics. Rather, the "environment" is used to advance student learning in science and technology. The success of this approach depends on programs that encourage scientists to communicate more effectively with teachers at all education levels. The expanding diversity of research and monitoring activities on the world's marine waters constitutes an outstanding potential education resource. Many of these projects involve remote sensing with sophisticated instrumentation and employ Internet technology to compile measurements, interpret data using graphs and satellite imagery, and share the results among scientific colleagues and the general public alike. Unfortunately, these resources, which constitute a much shortened path between research findings and textbook presentation, are seldom interpreted for use by K-12 educators. We have developed an example that uses the Chesapeake Bay as a paradigm to demonstrate how such interpretation can assist educators in teaching important principles in physical oceanography and marine ecology. We present this example using PowerPoint to conduct a virtual tour of selected Internet sources. Our example begins with the conceptual "salt wedge" circulation model of Chesapeake Bay as a partially mixed estuary. Teachers have the opportunity to explore this model using salinity, temperature, and dissolved oxygen data taken from a research vessel platform during summer professional development programs. This source of authentic data, originally obtained by teachers themselves, clearly demonstrates the presence of a picnocline and deep-water anoxia. Our lesson plan proceeds to interpret these data using additional Internet-based resources at increasing scales of time and

  14. Deep drilling in the Chesapeake Bay impact structure - An overview

    Science.gov (United States)

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a

  15. Are the Chesapeake Bay waters warming up

    International Nuclear Information System (INIS)

    Brady, D.K.

    1976-01-01

    Apparently significant trends within moderately long (50-year) series of meteorological or hydrological data should be regarded with suspicion until justified on the basis of much longer term information. Extra efforts should be directed toward securing the continuance of routine observations at stations where long data histories are already available and where the termination of such records might be regretted at some future time. Mean annual air and water temperatures at different sites may be quite highly correlated even when the points of measurement are very widely separated. The annual average water temperature at one station close to the Chesapeake Bay appears to be normally distributed with a standard deviation of 0.7 0 C about a stationary overall mean value of 14.6 0 C. Its 1000-year departure is +- 2.2 0 C

  16. Integrating Federal and State data records to report progress in establishing agricultural conservation practices on Chesapeake Bay farms

    Science.gov (United States)

    Hively, W. Dean; Devereux, Olivia H.; Claggett, Peter

    2013-01-01

    In response to the Executive Order for Chesapeake Bay Protection and Restoration (E.O. #13508, May 12, 2009), the U.S. Geological Survey (USGS) took on the task of acquiring and assessing agricultural conservation practice data records for U.S. Department of Agriculture (USDA) programs, and transferred those datasets in aggregated format to State jurisdictional agencies for use in reporting conservation progress to the Chesapeake Bay Program Partnership (CBP Partnership). Under the guidelines and regulations that have been developed to protect and restore water-quality in the Chesapeake Bay, the six State jurisdictions that fall within the Chesapeake Bay watershed are required to report their progress in promoting agricultural conservation practices to the CBP Partnership on an annual basis. The installation and adoption of agricultural best management practices is supported by technical and financial assistance from both Federal and State conservation programs. The farm enrollment data for USDA conservation programs are confidential, but agencies can obtain access to the privacy-protected data if they are established as USDA Conservation Cooperators. The datasets can also be released to the public if they are first aggregated to protect farmer privacy. In 2012, the USGS used its Conservation Cooperator status to obtain implementation data for conservation programs sponsored by the USDA Natural Resources Conservation Service (NRCS) and the USDA Farm Service Agency (FSA) for farms within the Chesapeake Bay watershed. Three jurisdictions (Delaware, Pennsylvania, and West Virginia) used the USGS-provided aggregated dataset to report conservation progress in 2012, whereas the remaining three jurisdictions (Maryland, New York, and Virginia) used jurisdictional Conservation Cooperator Agreements to obtain privacy-protected data directly from the USDA. This report reviews the status of conservation data sharing between the USDA and the various jurisdictions, discusses the

  17. Changes in Stream Water Temperatures in the Chesapeake Bay Region, 1960-2014

    Science.gov (United States)

    This map shows the changes in stream water temperatures in the Chesapeake Bay region from 1960 to 2014. Blue circles represent cooling trends in stream water temperatures, and red circles represent warming trends in stream water temperatures. Data were analyzed by Mike Kolian of EPA in partnership with John Jastram and Karen Rice of the U.S. Geological Survey. For more information: www.epa.gov/climatechange/science/indicators

  18. Effects of energy related activities on the plankton of the Chesapeake Bay. Section 1. Progress report, 1 August 1976--30 September 1977

    International Nuclear Information System (INIS)

    Taft, J.L.

    1977-01-01

    Progress is reported on a comprehensive study of the ecology of the Chesapeake Bay estuary system. Emphasis is placed on seasonal variations of initial energy fixation by phytoplankton primary producers and subsequent energy transfer to herbivours and becterial heterotrophs. The impact of chemical and radioactive effluents from electric power plants on the ecology of Chesapeake Bay will be assessed. Data are included on the role of plankton metabolism in regenerating nutrients, nutrient exchange with sediments, and the role of micro-zooplankton in nutrient cycling

  19. Modeling drivers of phosphorus loads in Chesapeake Bay tributaries and inferences about long-term change

    Science.gov (United States)

    Ryberg, Karen R.; Blomquist, Joel; Sprague, Lori A.; Sekellick, Andrew J.; Keisman, Jennifer

    2018-01-01

    Causal attribution of changes in water quality often consists of correlation, qualitative reasoning, listing references to the work of others, or speculation. To better support statements of attribution for water-quality trends, structural equation modeling was used to model the causal factors of total phosphorus loads in the Chesapeake Bay watershed. By transforming, scaling, and standardizing variables, grouping similar sites, grouping some causal factors into latent variable models, and using methods that correct for assumption violations, we developed a structural equation model to show how causal factors interact to produce total phosphorus loads. Climate (in the form of annual total precipitation and the Palmer Hydrologic Drought Index) and anthropogenic inputs are the major drivers of total phosphorus load in the Chesapeake Bay watershed. Increasing runoff due to natural climate variability is offsetting purposeful management actions that are otherwise decreasing phosphorus loading; consequently, management actions may need to be reexamined to achieve target reductions in the face of climate variability.

  20. Forecasting hypoxia in the Chesapeake Bay and Gulf of Mexico: model accuracy, precision, and sensitivity to ecosystem change

    International Nuclear Information System (INIS)

    Evans, Mary Anne; Scavia, Donald

    2011-01-01

    Increasing use of ecological models for management and policy requires robust evaluation of model precision, accuracy, and sensitivity to ecosystem change. We conducted such an evaluation of hypoxia models for the northern Gulf of Mexico and Chesapeake Bay using hindcasts of historical data, comparing several approaches to model calibration. For both systems we find that model sensitivity and precision can be optimized and model accuracy maintained within reasonable bounds by calibrating the model to relatively short, recent 3 year datasets. Model accuracy was higher for Chesapeake Bay than for the Gulf of Mexico, potentially indicating the greater importance of unmodeled processes in the latter system. Retrospective analyses demonstrate both directional and variable changes in sensitivity of hypoxia to nutrient loads.

  1. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed.

    Science.gov (United States)

    Grimm, J W; Lynch, J A

    2005-06-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate.

  2. Tumor prevalence and biomarkers of genotoxicity in brown bullhead (Ameiurus nebulosus) in Chesapeake Bay tributaries

    Energy Technology Data Exchange (ETDEWEB)

    Pinkney, Alfred E., E-mail: Fred_Pinkney@fws.gov [U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 177 Admiral Cochrane Drive, Annapolis, MD 21401 (United States); Harshbarger, John C., E-mail: jcharshbarger@verizon.net [Department of Pathology, George Washington University Medical Center, 2300 I Street, NW, Washington, DC 20037 (United States); Karouna-Renier, Natalie K., E-mail: nkarouna@usgs.gov [U.S. Geological Survey, Patuxent Wildlife Research Center, BARC, Bldg. 308, Beltsville, MD 20705 (United States); Jenko, Kathryn [U.S. Geological Survey, Patuxent Wildlife Research Center, BARC, Bldg. 308, Beltsville, MD 20705 (United States); Balk, Lennart, E-mail: lennart.balk@itm.su.se [Department of Applied Environmental Science (ITM), Stockholm University SE-106 91, Stockholm (Sweden); Skarphe Latin-Small-Letter-Eth insdottir, Halldora; Liewenborg, Birgitta [Department of Applied Environmental Science (ITM), Stockholm University SE-106 91, Stockholm (Sweden); Rutter, Michael A., E-mail: mar36@psu.edu [Department of Mathematics, Penn State Erie, The Behrend College, 5091 Station Road, Erie, PA 16563 (United States)

    2011-12-01

    We surveyed four Chesapeake Bay tributaries for skin and liver tumors in brown bullhead (Ameiurus nebulosus). We focused on the South River, where the highest skin tumor prevalence (53%) in the Bay watershed had been reported. The objectives were to 1) compare tumor prevalence with nearby rivers (Severn and Rhode) and a more remote river (Choptank); 2) investigate associations between tumor prevalence and polynuclear aromatic hydrocarbons (PAHs) and alkylating agents; and 3) statistically analyze Chesapeake Bay bullhead tumor data from 1992 through 2008. All four South River collections exhibited high skin tumor prevalence (19% to 58%), whereas skin tumor prevalence was 2%, 10%, and 52% in the three Severn collections; 0% and 2% in the Choptank collections; and 5.6% in the Rhode collection. Liver tumor prevalence was 0% to 6% in all but one South River collection (20%) and 0% to 6% in the three other rivers. In a subset of samples, PAH-like biliary metabolites and {sup 32}P-DNA adducts were used as biomarkers of exposure and response to polycyclic aromatic compounds (PACs). Adducts from alkylating agents were detected as O6-methyl-2 Prime -deoxyguanosine (O6Me-dG) and O6-ethyl-2 Prime -deoxyguanosine (O6Et-dG) modified DNA. Bullheads from the contaminated Anacostia River were used as a positive control for DNA adducts. {sup 32}P-DNA adduct concentrations were significantly higher in Anacostia bullhead livers compared with the other rivers. We identified alkyl DNA adducts in bullhead livers from the South and Anacostia, but not the Choptank. Neither the PAH-like bile metabolite data, sediment PAH data, nor the DNA adduct data suggest an association between liver or skin tumor prevalence and exposure to PACs or alkylating agents in the South, Choptank, Severn, or Rhode rivers. Logistic regression analysis of the Chesapeake Bay database revealed that sex and length were significant covariates for liver tumors and length was a significant covariate for skin tumors

  3. Tumor prevalence and biomarkers of genotoxicity in brown bullhead (Ameiurus nebulosus) in Chesapeake Bay tributaries

    International Nuclear Information System (INIS)

    Pinkney, Alfred E.; Harshbarger, John C.; Karouna-Renier, Natalie K.; Jenko, Kathryn; Balk, Lennart; Skarphéðinsdóttir, Halldóra; Liewenborg, Birgitta; Rutter, Michael A.

    2011-01-01

    We surveyed four Chesapeake Bay tributaries for skin and liver tumors in brown bullhead (Ameiurus nebulosus). We focused on the South River, where the highest skin tumor prevalence (53%) in the Bay watershed had been reported. The objectives were to 1) compare tumor prevalence with nearby rivers (Severn and Rhode) and a more remote river (Choptank); 2) investigate associations between tumor prevalence and polynuclear aromatic hydrocarbons (PAHs) and alkylating agents; and 3) statistically analyze Chesapeake Bay bullhead tumor data from 1992 through 2008. All four South River collections exhibited high skin tumor prevalence (19% to 58%), whereas skin tumor prevalence was 2%, 10%, and 52% in the three Severn collections; 0% and 2% in the Choptank collections; and 5.6% in the Rhode collection. Liver tumor prevalence was 0% to 6% in all but one South River collection (20%) and 0% to 6% in the three other rivers. In a subset of samples, PAH-like biliary metabolites and 32 P-DNA adducts were used as biomarkers of exposure and response to polycyclic aromatic compounds (PACs). Adducts from alkylating agents were detected as O6-methyl-2′-deoxyguanosine (O6Me-dG) and O6-ethyl-2′-deoxyguanosine (O6Et-dG) modified DNA. Bullheads from the contaminated Anacostia River were used as a positive control for DNA adducts. 32 P-DNA adduct concentrations were significantly higher in Anacostia bullhead livers compared with the other rivers. We identified alkyl DNA adducts in bullhead livers from the South and Anacostia, but not the Choptank. Neither the PAH-like bile metabolite data, sediment PAH data, nor the DNA adduct data suggest an association between liver or skin tumor prevalence and exposure to PACs or alkylating agents in the South, Choptank, Severn, or Rhode rivers. Logistic regression analysis of the Chesapeake Bay database revealed that sex and length were significant covariates for liver tumors and length was a significant covariate for skin tumors. - Highlights: ► We

  4. Specific responsible environmental behavior among boaters on the Chesapeake Bay: a predictive model part II

    Science.gov (United States)

    Stuart P. Cottrell; Alan R. Graefe

    1995-01-01

    This paper examines predictors of boater behavior in a specific behavior situation, namely the percentage of raw sewage discharged from recreational vessels in a sanitation pumpout facility on the Chesapeake Bay. Results of a multiple regression analysis show knowledge predicts behavior in specific issue situations. In addition, the more specific the...

  5. Multi-Model Validation in the Chesapeake Bay Region in June 2010

    Science.gov (United States)

    2013-05-31

    ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 7030_4 X no ---~~~~~~~~~~~~~~~-~-~~-~------------ thor...US Navy at global , regional and coastal scales (Rowley 2008, 2010). The NCOM model in the Chesapeake Bay region for this exercise is configured in...derived from the NRL DBDB2 global bathymetry database. Boundary forcing and initial conditions were extracted from the East Coast NCOM which has a 3-km

  6. Predator removal enhances waterbird restoration in Chesapeake Bay (Maryland)

    Science.gov (United States)

    Erwin, R. Michael; McGowan, Peter C.; Reese, Jan

    2011-01-01

    This report represents an update to an earlier report(Erwin et al. 2007a) on wildlife restoration on the largest dredge material island project in the United States underway in Talbot County, Maryland (Figure 1) in the mid–Chesapeake Bay region, referred to as the Paul Sarbanes Ecosystem Restoration Project at Poplar Island (www.nab.usace.army.mil/projects/Maryland/PoplarIsland/documents.html). An important component of this largescale restoration effort focused on water birds, as many of these species have undergone significant declines in the Chesapeake region over the past 30 years (Erwin et al. 2007b). The priority waterbird species include common terns (Sterna hirundo), least terns (S. antillarum), snowy egrets (Egretta thula), and ospreys (Pandion haliaetus). Although significant numbers of common terns (more than 800 pairs in 2003), least terns (62 pairs in 2003), snowy egrets (50 or more pairs by 2005), and ospreys (7 to 10 pairs) have nested on Poplar Island since early 2000, tern productivity especially had been strongly limited by a combination of red fox (Vulpes vulpes) and great horned owl (Bubo virginianus) predation. Fox trapping began in 2004, and four were removed that year; no more evidence of fox presence was found in 2005 or subsequently. The owls proved to be more problematic.

  7. 3 CFR 13508 - Executive Order 13508 of May 12, 2009. Chesapeake Bay Protection and Restoration

    Science.gov (United States)

    2010-01-01

    ... Chesapeake Bay and its tributary waters, including resources under the Food Security Act of 1985 as amended... as possible and prior to release of a final strategy. Sec. 204. Collaboration with State Partners. In... structures at sea, such as cases of force majeure caused by stress of weather or other act of God. PART 11...

  8. Top-down control of phytoplankton by oysters in Chesapeake Bay, USA: Comment on Pomeroy et al. (2006)

    Science.gov (United States)

    Pomeroy et al. (2006) proposed that temporal and spatial mismatches between eastern oyster filtration and phytoplankton abundance will preclude restored stocks of eastern oysters from reducing the severity of hypoxia in the deep channel of central Chesapeake Bay. We refute this c...

  9. Invasive Species Guidebook for Department of Defense Installations in the Chesapeake Bay Watershed: Identification, Control, and Restoration

    Science.gov (United States)

    2007-11-01

    Crown vetch Coronilla varia MD, VA 14 Leafy spurge Euphorbia esula VA 15 Ground ivy Glechoma hederacea DC, MD, PA, VA, WV 17 Cogongrass Imperata ...INSTALLATIONS IN THE CHESAPEAKE BAY WATERSHED IDENTIFICATION AND CONTROL METHODS Cogongrass ( Imperata cylindrica) Description & Biology – A large

  10. Oyster Reef Communities in the Chesapeake Bay: A Brief Primer. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experience supported by multimedia instruction. This document presents an overview on the biology of…

  11. Development of Land Segmentation, Stream-Reach Network, and Watersheds in Support of Hydrological Simulation Program-Fortran (HSPF) Modeling, Chesapeake Bay Watershed, and Adjacent Parts of Maryland, Delaware, and Virginia

    Science.gov (United States)

    Martucci, Sarah K.; Krstolic, Jennifer L.; Raffensperger, Jeff P.; Hopkins, Katherine J.

    2006-01-01

    The U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program Office, Interstate Commission on the Potomac River Basin, Maryland Department of the Environment, Virginia Department of Conservation and Recreation, Virginia Department of Environmental Quality, and the University of Maryland Center for Environmental Science are collaborating on the Chesapeake Bay Regional Watershed Model, using Hydrological Simulation Program - FORTRAN to simulate streamflow and concentrations and loads of nutrients and sediment to Chesapeake Bay. The model will be used to provide information for resource managers. In order to establish a framework for model simulation, digital spatial datasets were created defining the discretization of the model region (including the Chesapeake Bay watershed, as well as the adjacent parts of Maryland, Delaware, and Virginia outside the watershed) into land segments, a stream-reach network, and associated watersheds. Land segmentation was based on county boundaries represented by a 1:100,000-scale digital dataset. Fifty of the 254 counties and incorporated cities in the model region were divided on the basis of physiography and topography, producing a total of 309 land segments. The stream-reach network for the Chesapeake Bay watershed part of the model region was based on the U.S. Geological Survey Chesapeake Bay SPARROW (SPAtially Referenced Regressions On Watershed attributes) model stream-reach network. Because that network was created only for the Chesapeake Bay watershed, the rest of the model region uses a 1:500,000-scale stream-reach network. Streams with mean annual streamflow of less than 100 cubic feet per second were excluded based on attributes from the dataset. Additional changes were made to enhance the data and to allow for inclusion of stream reaches with monitoring data that were not part of the original network. Thirty-meter-resolution Digital Elevation Model data were used to delineate watersheds for each

  12. Evolution of sediment plumes in the Chesapeake bay and implications of climate variability.

    Science.gov (United States)

    Zheng, Guangming; DiGiacomo, Paul M; Kaushal, Sujay S; Yuen-Murphy, Marilyn A; Duan, Shuiwang

    2015-06-02

    Fluvial sediment transport impacts fisheries, marine ecosystems, and human health. In the upper Chesapeake Bay, river-induced sediment plumes are generally known as either a monotonic spatial shape or a turbidity maximum. Little is known about plume evolution in response to variation in streamflow and extreme discharge of sediment. Here we propose a typology of sediment plumes in the upper Chesapeake Bay using a 17 year time series of satellite-derived suspended sediment concentration. On the basis of estimated fluvial and wind contributions, we define an intermittent/wind-dominated type and a continuous type, the latter of which is further divided into four subtypes based on spatial features of plumes, which we refer to as Injection, Transport, Temporary Turbidity-Maximum, and Persistent Turbidity-Maximum. The four continuous types exhibit a consistent sequence of evolution within 1 week to 1 month following flood events. We also identify a "shift" in typology with increased frequency of Turbidity-Maximum types before and after Hurricane Ivan (2004), which implies that extreme events have longer-lasting effects upon estuarine suspended sediment than previously considered. These results can serve as a diagnostic tool to better predict distribution and impacts of estuarine suspended sediment in response to changes in climate and land use.

  13. Multi-band algorithms for the estimation of chlorophyll concentration in the Chesapeake Bay

    KAUST Repository

    Gilerson, Alexander

    2015-10-14

    Standard blue-green ratio algorithms do not usually work well in turbid productive waters because of the contamination of the blue and green bands by CDOM absorption and scattering by non-algal particles. One of the alternative approaches is based on the two- or three band ratio algorithms in the red/NIR part of the spectrum, which require 665, 708, 753 nm bands (or similar) and which work well in various waters all over the world. The critical 708 nm band for these algorithms is not available on MODIS and VIIRS sensors, which limits applications of this approach. We report on another approach where a combination of the 745nm band with blue-green-red bands was the basis for the new algorithms. A multi-band algorithm which includes ratios Rrs(488)/Rrs(551)and Rrs(671)/Rrs(745) and two band algorithm based on Rrs671/Rrs745 ratio were developed with the main focus on the Chesapeake Bay (USA) waters. These algorithms were tested on the specially developed synthetic datasets, well representing the main relationships between water parameters in the Bay taken from the NASA NOMAD database and available literature, on the field data collected by our group during a 2013 campaign in the Bay, as well as NASA SeaBASS data from the other group and on matchups between satellite imagery and water parameters measured by the Chesapeake Bay program. Our results demonstrate that the coefficient of determination can be as high as R2 > 0.90 for the new algorithms in comparison with R2 = 0.6 for the standard OC3V algorithm on the same field dataset. Substantial improvement was also achieved by applying a similar approach (inclusion of Rrs(667)/Rrs(753) ratio) for MODIS matchups. Results for VIIRS are not yet conclusive. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  14. Scientific Guidance for Rehabilitation of the Chesapeake Bay Ecosystem under the Changing Climate.

    Science.gov (United States)

    Boesch, D. F.; Johnson, Z. P.; Li, M.

    2017-12-01

    While the Chesapeake Bay is an estuary and not a marginal sea on the scale of the Baltic Sea or the Gulf of Mexico, it has a complex set of environmental issues and multiple political jurisdictions such that it can serve as a test bed for science-informed management in larger marine systems. In particular, the Chesapeake Bay possesses a relatively advanced effort to ameliorate eutrophication, reduce toxic stresses, rehabilitate critical habitats, and sustainably utilized resources. Furthermore, both scientists and managers are addressing these challenges while now beginning to incorporate the effects of changes in temperature, precipitation and runoff, sea level, ocean boundary conditions, and pH. Increases in temperature and sea level are already apparent and future conditions can be estimated from global model projections, although sea level and ocean exchanges are also affected by variations in Gulf Stream flows and mesoscale climate. Changes in the volume, seasonality and variability in freshwater delivery from the multiple rivers discharging to the bay are harder to project with confidence, but may have pervasive consequences for circulation, reducing nutrient loads to ameliorate eutrophication, biogeochemical processes, and biotic distributions and dynamics. Science is now challenged to inform multiple adaptation strategies, including minimizing the vulnerability of humans and infrastructure, sustaining important tidal wetlands, managing sediment resources, sustaining living resources, redefining achievable ecosystem rehabilitation goals, and achieving shifting goals for nutrient load reductions. At the same time, science will also have to identify effective means to meet these challenges while also reducing greenhouse gas emissions.

  15. 33 CFR 334.220 - Chesapeake Bay, south of Tangier Island, Va.; naval firing range.

    Science.gov (United States)

    2010-07-01

    ... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.220 Chesapeake Bay, south of Tangier Island, Va.; naval firing range. (a) The danger zone. Beginning... to latitude 37°45′00″, longitude 76°09′48″; thence to latitude 37°45′00″, longitude 76°08′51″; and...

  16. Forecasting system predicts presence of sea nettles in Chesapeake Bay

    Science.gov (United States)

    Brown, Christopher W.; Hood, Raleigh R.; Li, Zhen; Decker, Mary Beth; Gross, Thomas F.; Purcell, Jennifer E.; Wang, Harry V.

    Outbreaks of noxious biota, which occur in both aquatic and terrestrial systems, can have considerable negative economic impacts. For example, an increasing frequency of harmful algal blooms worldwide has negatively affected the tourism industry in many regions. Such impacts could be mitigated if the conditions that give rise to these outbreaks were known and could be monitored. Recent advances in technology and communications allow us to continuously measure and model many environmental factors that are responsible for outbreaks of certain noxious organisms. A new prototype ecological forecasting system predicts the likelihood of occurrence of the sea nettle (Chrysaora quinquecirrha), a stinging jellyfish, in the Chesapeake Bay.

  17. Lagrangian structure of flows in the Chesapeake Bay: challenges and perspectives on the analysis of estuarine flows

    Directory of Open Access Journals (Sweden)

    M. Branicki

    2010-03-01

    Full Text Available In this work we discuss applications of Lagrangian techniques to study transport properties of flows generated by shallow water models of estuarine flows. We focus on the flow in the Chesapeake Bay generated by Quoddy (see Lynch and Werner, 1991, a finite-element (shallow water model adopted to the bay by Gross et al. (2001. The main goal of this analysis is to outline the potential benefits of using Lagrangian tools for both understanding transport properties of such flows, and for validating the model output and identifying model deficiencies. We argue that the currently available 2-D Lagrangian tools, including the stable and unstable manifolds of hyperbolic trajectories and techniques exploiting 2-D finite-time Lyapunov exponent fields, are of limited use in the case of partially mixed estuarine flows. A further development and efficient implementation of three-dimensional Lagrangian techniques, as well as improvements in the shallow-water modelling of 3-D velocity fields, are required for reliable transport analysis in such flows. Some aspects of the 3-D trajectory structure in the Chesapeake Bay, based on the Quoddy output, are also discussed.

  18. Transitioning a Chesapeake Bay Ecological Prediction System to Operations

    Science.gov (United States)

    Brown, C.; Green, D. S.; Eco Forecasters

    2011-12-01

    Ecological prediction of the impacts of physical, chemical, biological, and human-induced change on ecosystems and their components, encompass a wide range of space and time scales, and subject matter. They vary from predicting the occurrence and/or transport of certain species, such harmful algal blooms, or biogeochemical constituents, such as dissolved oxygen concentrations, to large-scale ecosystem responses and higher trophic levels. The timescales of ecological prediction, including guidance and forecasts, range from nowcasts and short-term forecasts (days), to intraseasonal and interannual outlooks (weeks to months), to decadal and century projections in climate change scenarios. The spatial scales range from small coastal inlets to basin and global scale biogeochemical and ecological forecasts. The types of models that have been used include conceptual, empirical, mechanistic, and hybrid approaches. This presentation will identify the challenges and progress toward transitioning experimental model-based ecological prediction into operational guidance and forecasting. Recent efforts are targeting integration of regional ocean, hydrodynamic and hydrological models and leveraging weather and water service infrastructure to enable the prototyping of an operational ecological forecast capability for the Chesapeake Bay and its tidal tributaries. A path finder demonstration predicts the probability of encountering sea nettles (Chrysaora quinquecirrha), a stinging jellyfish. These jellyfish can negatively impact safety and economic activities in the bay and an impact-based forecast that predicts where and when this biotic nuisance occurs may help management effects. The issuance of bay-wide nowcasts and three-day forecasts of sea nettle probability are generated daily by forcing an empirical habitat model (that predicts the probability of sea nettles) with real-time and 3-day forecasts of sea-surface temperature (SST) and salinity (SSS). In the first demonstration

  19. Atmospheric Nitrogen Deposition Loadings to the Chesapeake Bay: An Initial Analysis of the Cost Effectiveness of Control Options (1996)

    Science.gov (United States)

    This report examines the cost effectiveness of control options which reduce nitrate deposition to the Chesapeake watershed and to the tidal Bay. The report analyzes current estimates of the reductions expected in the ozone transport region.

  20. Acquisition Of Rainfall Dataset And The Application For The Automatic Harvester In The Chesapeake Bay Region

    Science.gov (United States)

    Choi, Y.; Piasecki, M.

    2008-12-01

    The objective of this study is the preparation and indexing of rainfall data products for ingestion into the Chesapeake Bay Environmental Observatory (CBEO) node of the CUAHSI/WATERs network. Rainfall products (which are obtained and then processed based on the WSR-88D NEXRAD network) are obtained from the NOAA/NWS Advanced Hydrologic Prediction Service that combines the Multi-sensor Precipitation Estimate (MPE) data generated by the Regional River Forecast Centers and Hydro-NEXRAD rainfall data generated as a service by the University of Iowa. The former is collected on 4*4 km grid (HRAP) with a daily average temporal resolution and the latter on a 1minute*1minute degree grid with hourly values. We have generated a cut-out for the Chesapeake Bay Basin that contains about 9,300 nodes (sites) for the MPE data and about 300,000 nodes (sites) for the Hydro-NEXRAD product. Automated harvesting services have been implemented for both data products. The MPE data is harvested from its download site using ArcGIS which in turn is used to extract the data for the Chesapeake Bay watershed before a scripting program is used to scatter the data into the ODM. The Hydro-NEXRAD is downloaded from a web-based system at the University of Iowa which permits downloads for large scale watersheds organized by Hydraulic Unit Codes (HUC). The resulting ASCII is then automatically parsed and the information stored alongside the MPE data. The two data products stored side-by-side then allows a comparison between them addressing the accuracy and agreement between the methods used to arrive at rainfall data as both use the raw reflectivity data from the WSD-88D system.

  1. Species-specific accumulation of polybrominated diphenyl ether flame retardants in birds of prey from the Chesapeake Bay region, USA

    Energy Technology Data Exchange (ETDEWEB)

    Chen Da, E-mail: chen@vims.ed [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Hale, Robert C. [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Watts, Bryan D. [Center for Conservation Biology, College of William and Mary, Williamsburg, VA 23185 (United States); La Guardia, Mark J.; Harvey, Ellen [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Mojica, Elizabeth K. [Center for Conservation Biology, College of William and Mary, Williamsburg, VA 23185 (United States)

    2010-05-15

    Compared to organochlorines, little is known about polybrominated diphenyl ether (PBDE) contamination of birds of prey breeding in the Chesapeake Bay, the largest estuary in the U.S. This study examined and compared PBDE contamination in eggs of osprey, double-crested cormorant, brown pelican and peregrine falcon from this area. Several legacy persistent organic pollutants such as PCBs and DDE were also investigated. The level of urbanization of the landscape appeared to influence the level of PBDE exposure. PBDE congener distribution patterns varied between piscivorous and terrestrial-feeding birds. This suggests individual congeners may be subject to differences in bioaccumulation, biomagnification or metabolism in the aquatic and terrestrial food webs. Biomagnification of PBDEs was studied in the Bay aquatic food chains for the first time. A biomagnification factor of 25.1 was estimated for SIGMAPBDEs for the fish - osprey egg food chain. Hazard quotients, applied as a preliminary evaluation, indicated that PBDEs may pose a moderate hazard to ospreys and peregrine falcons through impairment of reproductive performance. - Birds of prey breeding in the Chesapeake Bay (USA) exhibited species-specific PBDE accumulation patterns.

  2. Species-specific accumulation of polybrominated diphenyl ether flame retardants in birds of prey from the Chesapeake Bay region, USA

    International Nuclear Information System (INIS)

    Chen Da; Hale, Robert C.; Watts, Bryan D.; La Guardia, Mark J.; Harvey, Ellen; Mojica, Elizabeth K.

    2010-01-01

    Compared to organochlorines, little is known about polybrominated diphenyl ether (PBDE) contamination of birds of prey breeding in the Chesapeake Bay, the largest estuary in the U.S. This study examined and compared PBDE contamination in eggs of osprey, double-crested cormorant, brown pelican and peregrine falcon from this area. Several legacy persistent organic pollutants such as PCBs and DDE were also investigated. The level of urbanization of the landscape appeared to influence the level of PBDE exposure. PBDE congener distribution patterns varied between piscivorous and terrestrial-feeding birds. This suggests individual congeners may be subject to differences in bioaccumulation, biomagnification or metabolism in the aquatic and terrestrial food webs. Biomagnification of PBDEs was studied in the Bay aquatic food chains for the first time. A biomagnification factor of 25.1 was estimated for ΣPBDEs for the fish - osprey egg food chain. Hazard quotients, applied as a preliminary evaluation, indicated that PBDEs may pose a moderate hazard to ospreys and peregrine falcons through impairment of reproductive performance. - Birds of prey breeding in the Chesapeake Bay (USA) exhibited species-specific PBDE accumulation patterns.

  3. Integrated Geologic, Hydrologic, and Geophysical Investigations of the Chesapeake Bay Impact Structure, Virginia, USA: A Multi-Agency Program

    Science.gov (United States)

    Gohn, G. S.; Bruce, T. S.; Catchings, R. D.; Emry, S. R.; Johnson, G. H.; Levine, J. S.; McFarland, E. R.; Poag, C. W.; Powars, D. S.

    2001-01-01

    The Chesapeake Bay impact structure is the focus of an ongoing federal-state-local research program. Recent core drilling and geophysical surveys address the formative processes and hydrogeologic properties of this major "wet-target" impact. Additional information is contained in the original extended abstract.

  4. Bay breeze climatology at two sites along the Chesapeake bay from 1986-2010: Implications for surface ozone.

    Science.gov (United States)

    Stauffer, Ryan M; Thompson, Anne M

    Hourly surface meteorological measurements were coupled with surface ozone (O 3 ) mixing ratio measurements at Hampton, Virginia and Baltimore, Maryland, two sites along the Chesapeake Bay in the Mid-Atlantic United States, to examine the behavior of surface O 3 during bay breeze events and quantify the impact of the bay breeze on local O 3 pollution. Analyses were performed for the months of May through September for the years 1986 to 2010. The years were split into three groups to account for increasingly stringent environmental regulations that reduced regional emissions of nitrogen oxides (NO x ): 1986-1994, 1995-2002, and 2003-2010. Each day in the 25-year record was marked either as a bay breeze day, a non-bay breeze day, or a rainy/cloudy day based on the meteorological data. Mean eight hour (8-h) averaged surface O 3 values during bay breeze events were 3 to 5 parts per billion by volume (ppbv) higher at Hampton and Baltimore than on non-bay breeze days in all year periods. Anomalies from mean surface O 3 were highest in the afternoon at both sites during bay breeze days in the 2003-2010 study period. In conjunction with an overall lowering of baseline O 3 after the 1995-2002 period, the percentage of total exceedances of the Environmental Protection Agency (EPA) 75 ppbv 8-h O 3 standard that occurred on bay breeze days increased at Hampton for 2003-2010, while remaining steady at Baltimore. These results suggest that bay breeze circulations are becoming more important to causing exceedance events at particular sites in the region, and support the hypothesis of Martins et al. (2012) that highly localized meteorology increasingly drives air quality events at Hampton.

  5. Chesapeake Bay Impact Structure Deep Drilling Project Completes Coring

    Directory of Open Access Journals (Sweden)

    the Scientific Staff of the Chesapeake Bay Impact Structure Deep Drilling Project

    2006-09-01

    Full Text Available The Chesapeake Bay Impact Structure Deep Drilling Project (CBIS Project completed its coring operations during September–December 2005 and April–May 2006. Cores were collected continuously to a total depth of 1766 m. The recovered section consists of 1322 m of impactites beneath 444 m of post-impact continental shelf sediments.The CBIS Project is a joint venture of the International Continental Scientifi c Drilling Program (ICDP and the U.S. Geological Survey (USGS. Project activities began with a planning workshop in September 2003 attended by sixtythree scientists from ten countries. Field operations began with site preparation in July 2005, and coring began in September 2005. Drilling, Observation and Sampling of theEarth’s Continental Crust (DOSECC was the general contractor for the drilling operations throughout 2005.

  6. Radionuclide distributions and sorption behavior in the Susquehanna--Chesapeake Bay System

    International Nuclear Information System (INIS)

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; McLean, R.I.; Domotor, S.L.

    1989-01-01

    Radionuclides released into the Susquehanna--Chesapeake System from the Three Mile Island, Peach Bottom, and Calvert Cliffs nuclear power plants are partitioned among dissolved, particulate, and biological phases and may thus exist in a number of physical and chemical forms. In this project, we have measured the dissolved and particulate distributions of fallout 137 Cs; reactor-released 137 Cs, 134 Cs, 65 Zn, 60 Co, and 58 Co; and naturally occurring 7 Be and 210 Pb in the lower Susquehanna River and Upper Chesapeake Bay. In addition, we chemically leached suspended particles and bottom sediments in the laboratory to determine radionuclide partitioning among different particulate-sorbing phases to complement the site-specific field data. This information has been used to document the important geochemical processes that affect the transport, sorption, distribution, and fate of reactor-released radionuclides (and by analogy, other trace contaminants) in this river-estuarine system. Knowledge of the mechanisms, kinetic factors, and processes that affect radionuclide distributions is crucial for predicting their biological availability, toxicity, chemical behavior, physical transport, and accumulation in aquatic systems. The results from this project provide the information necessary for developing accurate radionuclide-transport and biological-uptake models. 76 refs., 12 figs

  7. Remote sensing of particle backscattering in Chesapeake Bay: a 6-year SeaWiFS retrospective view

    Science.gov (United States)

    Zawada, D.G.; Hu, C.; Clayton, T.; Chen, Z.; Brock, J.C.; Muller-Karger, F. E.

    2007-01-01

    Traditional field techniques to monitor water quality in large estuaries, such as boat-based surveys and autonomous moored sensors, generally provide limited spatial coverage. Satellite imagery potentially can be used to address both of these limitations. Here, we show that satellite-based observations are useful for inferring total-suspended-solids (TSS) concentrations in estuarine areas. A spectra-matching optimization algorithm was used to estimate the particle backscattering coefficient at 400 nm, bbp(400), in Chesapeake Bay from Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) satellite imagery. These estimated values of bbp(400) were compared to in situ measurements of TSS for the study period of September 1997–December 2003. Contemporaneous SeaWiFS bbp(400) values and TSS concentrations were positively correlated (N = 340, r2 = 0.4, P bp(400) values served as a reasonable first-order approximation for synoptically mapping TSS. Overall, large-scale patterns of SeaWiFS bbp(400) appeared to be consistent with expectations based on field observations and historical reports of TSS. Monthly averages indicated that SeaWiFS bbp(400) was typically largest in winter (>0.049 m−1, November–February) and smallest in summer (−1, June–August), regardless of the amount of riverine discharge to the bay. The study period also included Hurricanes Floyd and Isabel, which caused large-scale turbidity events and changes in the water quality of the bay. These results demonstrate that this technique can provide frequent synoptic assessments of suspended solids concentrations in Chesapeake Bay and other coastal regions.

  8. Potential hazards of environmental contaminants to avifauna residing in the Chesapeake Bay estuary

    Science.gov (United States)

    Rattner, Barnett A.; McGowan, Peter C.

    2007-01-01

    A search of the Contaminant Exposure and Effects-Terrestrial Vertebrates (CEE-TV) database revealed that 70% of the 839 Chesapeake Bay records deal with avian species. Studies conducted on waterbirds in the past 15 years indicate that organochlorine contaminants have declined in eggs and tissues, although p,p'-DDE, total polychlorinated biphenyls (PCBs) and coplanar PCB congeners may still exert sublethal and reproductive effects in some locations. There have been numerous reports of avian die-off events related to organophosphorus and carbamate pesticides. More contemporary contaminants (e.g., alkylphenols, ethoxylates, perfluorinated compounds, polybrominated diphenyl ethers) are detectable in bird eggs in the most industrialized portions of the Bay, but interpretation of these data is difficult because adverse effect levels are incompletely known for birds. Two moderaterized oil spills resulted in the death of several hundred birds, and about 500 smaller spill events occur annually in the watershed. With the exception of lead, concentrations of cadmium, mercury, and selenium in eggs and tissues appear to be below toxic thresholds for waterbirds. Fishing tackle and discarded plastics, that can entangle and kill young and adults, are prevalent in nests in some Bay tributaries. It is apparent that exposure and potential effects of several classes of contaminants (e.g., dioxins, dibenzofurans, rodenticides, pharmaceuticals, personal care products, lead shot, and some metals) have not been systematically examined in the past 15 years, highlighting the need for toxicological evaluation of birds found dead, and perhaps an avian ecotoxicological monitoring program. Although oil spills, spent lead shot, some pesticides, and industrial pollutants occasionally harm Chesapeake avifauna, contaminants no longer evoke the population level effects that were observed in Ospreys (Pandion haliaetus) and Bald Eagles (Haliaeetus leucocephalus) through the 1970s.

  9. Heavy metals in tissues of water fowl from the Chesapeake Bay, USA. [Clangula hyemalis; Melanitta deglandi; Anas platyrhynchos; Anas rubripes; Anas strepera

    Energy Technology Data Exchange (ETDEWEB)

    Di Giulio, R; Scanlon, P F

    1984-01-01

    Concentrations of cadmium, lead, copper and zinc were measured in 774 livers, 266 kidneys and 271 ulnar bones from 15 species of ducks obtained from the Chesapeake Bay region. A major purpose of this study was to elucidate relationships between food habits and tissue accumulations of heavy metals in Chesapeake Bay water fowl. Liver and kidney concentrations of cadmium were highest among two carnivorous seaduck species, Clangula hyemalis and Melanitta deglandi. In contrast, lead concentrations in tissues were generally highest in largely herbivorous species, such as Anas platyrhynchos, Anas rubripes and Anas strepera. Spent shot may be an important source for tissue burdens of lead in these ducks. No marked trends were observed between food habits and tissue concentrations of the nutrient elements, copper and zinc.

  10. Long-Term Changes in Sediment and Nutrient Delivery from Conowingo Dam to Chesapeake Bay: Effects of Reservoir Sedimentation.

    Science.gov (United States)

    Zhang, Qian; Hirsch, Robert M; Ball, William P

    2016-02-16

    Reduction of suspended sediment (SS), total phosphorus (TP), and total nitrogen is an important focus for Chesapeake Bay watershed management. The Susquehanna River, the bay's largest tributary, has drawn attention because SS loads from behind Conowingo Dam (near the river's mouth) have been rising dramatically. To better understand these changes, we evaluated histories of concentration and loading (1986-2013) using data from sites above and below Conowingo Reservoir. First, observed concentration-discharge relationships show that SS and TP concentrations at the reservoir inlet have declined under most discharges in recent decades, but without corresponding declines at the outlet, implying recently diminished reservoir trapping. Second, best estimates of mass balance suggest decreasing net deposition of SS and TP in recent decades over a wide range of discharges, with cumulative mass generally dominated by the 75∼99.5th percentile of daily Conowingo discharges. Finally, stationary models that better accommodate effects of riverflow variability also support the conclusion of diminished trapping of SS and TP under a range of discharges that includes those well below the literature-reported scour threshold. Overall, these findings suggest that decreased net deposition of SS and TP has occurred at subscour levels of discharge, which has significant implications for the Chesapeake Bay ecosystem.

  11. An Approach to Understanding Complex Socio-Economic Impacts and Responses to Climate Disruption in the Chesapeake Bay Region

    Science.gov (United States)

    Schaefer, R. K.; Nix, M.; Ihde, A. G.; Paxton, L. J.; Weiss, M.; Simpkins, S.; Fountain, G. H.; APl GAIA Team

    2011-12-01

    In this paper we describe the application of a proven methodology for modeling the complex social and economic interactions of a system under stress to the regional issues that are tied to global climate disruption. Under the auspices of the GAIA project (http://gaia.jhuapl.edu), we have investigated simulating the complex interplay between climate, politics, society, industry, and the environment in the Chesapeake Bay Watershed and associated geographic areas of Maryland, Virginia, and Pennsylvania. This Chesapeake Bay simulation draws on interrelated geophysical and climate models to support decision-making analysis about the Bay. In addition to physical models, however, human activity is also incorporated via input and output calculations. For example, policy implications are modeled in relation to business activities surrounding fishing, farming, industry and manufacturing, land development, and tourism. This approach fosters collaboration among subject matter experts to advance a more complete understanding of the regional impacts of climate change. Simulated interactive competition, in which teams of experts are assigned conflicting objectives in a controlled environment, allow for subject exploration which avoids trivial solutions that neglect the possible responses of affected parties. Results include improved planning, the anticipation of areas of conflict or high risk, and the increased likelihood of developing mutually acceptable solutions.

  12. Stable-isotope analysis of canvasback winter diet in upper Chesapeake Bay

    Science.gov (United States)

    Haramis, G.M.; Jorde, Dennis G.; Macko, S.A.; Walker, J.L.

    2001-01-01

    A major decline in submerged aquatic vegetation (SAV) in Chesapeake Bay has altered the diet of wintering Canvasbacks (Aythya valisineria) from historically plant to a combination of benthic animal foods, especially the ubiquitous Baltic clam (Macoma balthica), supplemented with anthropogenic corn (Zea mays). Because the isotopic signature of corn is readily discriminated from bay benthos, but not SAV, we used stable-isotope methodology to investigate the corn–SAV component of the winter diet of Canvasbacks. Feeding trials with penned Canvasbacks were conducted to establish turnover rates and fractionation end-point loci of δ13C and δ15N signatures of whole blood for individual ducks fed ad libitum diets of (1) Baltic clams, (2) Baltic clams and corn, and (3) tubers of wild celery (Vallisneria americana). Turnover time constants averaged 4.5 weeks, indicating that signatures of wild ducks would be representative of bay diets by late February. Isotopic signatures of wild Canvasbacks sampled in February fell on a continuum between end-point loci for the Baltic clam and the combination Baltic clam and corn diet. Although that finding verifies a clear dependence on corn–SAV for wintering Canvasbacks, it also reveals that not enough corn–SAV is available to establish ad libitum consumption for the 15,000+ Canvasbacks wintering in the upper bay. On the basis of mean δ13C signature of bay Canvasbacks (n = 59) and ingestion rates from feeding trials, we estimated that 258 kg corn per day would account for the observed δ13C enrichment and supply 18% of daily energetic needs for 15,000 Canvasbacks. That level of corn availability is so realistic that we conclude that SAV is likely of little dietary importance to Canvasbacks in that portion of the bay.

  13. Evaluation of weather forecast systems for storm surge modeling in the Chesapeake Bay

    Science.gov (United States)

    Garzon, Juan L.; Ferreira, Celso M.; Padilla-Hernandez, Roberto

    2018-01-01

    Accurate forecast of sea-level heights in coastal areas depends, among other factors, upon a reliable coupling of a meteorological forecast system to a hydrodynamic and wave system. This study evaluates the predictive skills of the coupled circulation and wind-wave model system (ADCIRC+SWAN) for simulating storm tides in the Chesapeake Bay, forced by six different products: (1) Global Forecast System (GFS), (2) Climate Forecast System (CFS) version 2, (3) North American Mesoscale Forecast System (NAM), (4) Rapid Refresh (RAP), (5) European Center for Medium-Range Weather Forecasts (ECMWF), and (6) the Atlantic hurricane database (HURDAT2). This evaluation is based on the hindcasting of four events: Irene (2011), Sandy (2012), Joaquin (2015), and Jonas (2016). By comparing the simulated water levels to observations at 13 monitoring stations, we have found that the ADCIR+SWAN System forced by the following: (1) the HURDAT2-based system exhibited the weakest statistical skills owing to a noteworthy overprediction of the simulated wind speed; (2) the ECMWF, RAP, and NAM products captured the moment of the peak and moderately its magnitude during all storms, with a correlation coefficient ranging between 0.98 and 0.77; (3) the CFS system exhibited the worst averaged root-mean-square difference (excepting HURDAT2); (4) the GFS system (the lowest horizontal resolution product tested) resulted in a clear underprediction of the maximum water elevation. Overall, the simulations forced by NAM and ECMWF systems induced the most accurate results best accuracy to support water level forecasting in the Chesapeake Bay during both tropical and extra-tropical storms.

  14. Meteorological and surface water observations from the Chesapeake Bay Interpretive Buoy System from 2007-04-25 to 2016-12-31 (NCEI Accession 0159578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Meteorological and surface water observations from the Chesapeake Bay Interpretive Buoy System. Ten stations are located from the mouth of the Susquehanna river near...

  15. DIFFUSIVE EXCHANGE OF GASEOUS POLYCYCLIC AROMATIC HYDROCARBONS AND POLYCHLORINATED BIPHENYLS ACROSS THE AIR-WATER INTERFACE OF THE CHESAPEAKE BAY. (R825245)

    Science.gov (United States)

    Dissolved and gas-phase concentrations of nine polycyclic aromatic hydrocarbons and 46 polychlorinated biphenyl congeners were measured at eight sites on the Chesapeake Bay at four different times of the year to estimate net diffusive air-water gas exchange rates. Gaseous PAHs ar...

  16. Decadal re-evaluation of contaminant exposure and productivity of ospreys (Pandion haliaetus) nesting in Chesapeake Bay Regions of Concern

    International Nuclear Information System (INIS)

    Lazarus, Rebecca S.; Rattner, Barnett A.; McGowan, Peter C.; Hale, Robert C.; Schultz, Sandra L.; Karouna-Renier, Natalie K.; Ottinger, Mary Ann

    2015-01-01

    The last large-scale ecotoxicological study of ospreys (Pandion haliaetus) in Chesapeake Bay was conducted in 2000–2001 and focused on U.S. EPA-designated Regions of Concern (ROCs; Baltimore Harbor/Patapsco, Anacostia/middle Potomac, and Elizabeth Rivers). In 2011–2012, ROCs were re-evaluated to determine spatial and temporal trends in productivity and contaminants. Concentrations of p,p′-DDE were low in eggs and below the threshold associated with eggshell thinning. Eggs from the Anacostia/middle Potomac Rivers had lower total PCB concentrations in 2011 than in 2000; however, concentrations remained unchanged in Baltimore Harbor. Polybrominated diphenyl ether flame retardants declined by 40%, and five alternative brominated flame retardants were detected at low levels. Osprey productivity was adequate to sustain local populations, and there was no relation between productivity and halogenated contaminants. Our findings document continued recovery of the osprey population, declining levels of many persistent halogenated compounds, and modest evidence of genetic damage in nestlings from industrialized regions. - Highlights: • This study documents the continued recovery of the Chesapeake Bay osprey population. • Osprey eggshells have nearly returned to pre-DDT-era thickness. • Organochlorine pesticides are low in eggs, but PCB levels seem unchanged in industrialized areas. • PBDE flame retardants have declined in eggs, but seem to peak near wastewater treatment plants. • There is some evidence of genetic damage in nestling blood samples in the most industrialized areas. - While the Chesapeake Bay osprey population has recovered, concentrations of some persistent contaminants in eggs remain unchanged, and there is some evidence of genetic damage in nestlings

  17. 76 FR 26767 - Captain John Smith Chesapeake National Historic Trail Advisory Council

    Science.gov (United States)

    2011-05-09

    ... DEPARTMENT OF THE INTERIOR National Park Service Captain John Smith Chesapeake National Historic... that the Advisory Committee on the Captain John Smith Chesapeake National Historic Trail will hold a...-1609 voyages of Captain John Smith to chart the land and waterways of the Chesapeake Bay. This meeting...

  18. 77 FR 12324 - Captain John Smith Chesapeake National Historic Trail Advisory Council

    Science.gov (United States)

    2012-02-29

    ... DEPARTMENT OF THE INTERIOR National Park Service Captain John Smith Chesapeake National Historic... that the Advisory Committee on the Captain John Smith Chesapeake National Historic Trail will hold a...-1609 voyages of Captain John Smith to chart the land and waterways of the Chesapeake Bay. This meeting...

  19. 76 FR 52691 - Captain John Smith Chesapeake National Historic Trail Advisory Council

    Science.gov (United States)

    2011-08-23

    ... DEPARTMENT OF THE INTERIOR National Park Service Captain John Smith Chesapeake National Historic... that the Advisory Committee on the Captain John Smith Chesapeake National Historic Trail will hold a...-1609 voyages of Captain John Smith to chart the land and waterways of the Chesapeake Bay. This meeting...

  20. Elemental composition of Chesapeake Bay oyster Crassostrea virginica in the vicinity of Calvert Cliffs Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gavrilas, M.; Munno, F.J.

    1984-01-01

    The stable element composition of the American oyster Crassostrea virginica collected between June 1978 and August 1983 in the Chesapeake Bay in the vicinity of Calvert Cliffs Nuclear Power Plant was analyzed by neutron activation. The minimum, maximum and the mean values of the elemental concentrations are given. The seasonal effect and the linear correlation between elements entering the oyster composition are shown. 7 references, 1 figure, 4 tables

  1. Use of Principal Components Analysis to Explain Controls on Nutrient Fluxes to the Chesapeake Bay

    Science.gov (United States)

    Rice, K. C.; Mills, A. L.

    2017-12-01

    The Chesapeake Bay watershed, on the east coast of the United States, encompasses about 166,000-square kilometers (km2) of diverse land use, which includes a mixture of forested, agricultural, and developed land. The watershed is now managed under a Total Daily Maximum Load (TMDL), which requires implementation of management actions by 2025 that are sufficient to reduce nitrogen, phosphorus, and suspended-sediment fluxes to the Chesapeake Bay and restore the bay's water quality. We analyzed nutrient and sediment data along with land-use and climatic variables in nine sub watersheds to better understand the drivers of flux within the watershed and to provide relevant management implications. The nine sub watersheds range in area from 300 to 30,000 km2, and the analysis period was 1985-2014. The 31 variables specific to each sub watershed were highly statistically significantly correlated, so Principal Components Analysis was used to reduce the dimensionality of the dataset. The analysis revealed that about 80% of the variability in the whole dataset can be explained by discharge, flux, and concentration of nutrients and sediment. The first two principal components (PCs) explained about 68% of the total variance. PC1 loaded strongly on discharge and flux, and PC2 loaded on concentration. The PC scores of both PC1 and PC2 varied by season. Subsequent analysis of PC1 scores versus PC2 scores, broken out by sub watershed, revealed management implications. Some of the largest sub watersheds are largely driven by discharge, and consequently large fluxes. In contrast, some of the smaller sub watersheds are more variable in nutrient concentrations than discharge and flux. Our results suggest that, given no change in discharge, a reduction in nutrient flux to the streams in the smaller watersheds could result in a proportionately larger decrease in fluxes of nutrients down the river to the bay, than in the larger watersheds.

  2. The role of power plant atmospheric emissions in the deposition of nitrogen to the Chesapeake Bay

    International Nuclear Information System (INIS)

    Miller, P.E.

    1994-01-01

    The Maryland Power Plant Research Program (PPRP) has sponsored research on several aspects of atmospheric nitrogen emissions, source attribution, deposition estimation and impact assessment since the mid-eighties. The results of these studies will be presented and discussed in the context of power plant emissions control impact on nitrogen loadings to the Chesapeake Bay and watershed. Information needs with respect to power plant contribution and emission control policy will be identified and discussed from the perspective of PPRP

  3. Climate effects on phytoplankton floral composition in Chesapeake Bay

    Science.gov (United States)

    Harding, L. W.; Adolf, J. E.; Mallonee, M. E.; Miller, W. D.; Gallegos, C. L.; Perry, E. S.; Johnson, J. M.; Sellner, K. G.; Paerl, H. W.

    2015-09-01

    Long-term data on floral composition of phytoplankton are presented to document seasonal and inter-annual variability in Chesapeake Bay related to climate effects on hydrology. Source data consist of the abundances of major taxonomic groups of phytoplankton derived from algal photopigments (1995-2004) and cell counts (1985-2007). Algal photopigments were measured by high-performance liquid chromatography (HPLC) and analyzed using the software CHEMTAX to determine the proportions of chlorophyll-a (chl-a) in major taxonomic groups. Cell counts determined microscopically provided species identifications, enumeration, and dimensions used to obtain proportions of cell volume (CV), plasma volume (PV), and carbon (C) in the same taxonomic groups. We drew upon these two independent data sets to take advantage of the unique strengths of each method, using comparable quantitative measures to express floral composition for the main stem bay. Spatial and temporal variability of floral composition was quantified using data aggregated by season, year, and salinity zone. Both time-series were sufficiently long to encompass the drought-flood cycle with commensurate effects on inputs of freshwater and solutes. Diatoms emerged as the predominant taxonomic group, with significant contributions by dinoflagellates, cryptophytes, and cyanobacteria, depending on salinity zone and season. Our analyses revealed increased abundance of diatoms in wet years compared to long-term average (LTA) or dry years. Results are presented in the context of long-term nutrient over-enrichment of the bay, punctuated by inter-annual variability of freshwater flow that strongly affects nutrient loading, chl-a, and floral composition. Statistical analyses generated flow-adjusted diatom abundance and showed significant trends late in the time series, suggesting current and future decreases of nutrient inputs may lead to a reduction of the proportion of biomass comprised by diatoms in an increasingly diverse

  4. Weighted Regressions on Time, Discharge, and Season (WRTDS), with an application to Chesapeake Bay River inputs

    Science.gov (United States)

    Hirsch, Robert M.; Moyer, Douglas; Archfield, Stacey A.

    2010-01-01

    A new approach to the analysis of long-term surface water-quality data is proposed and implemented. The goal of this approach is to increase the amount of information that is extracted from the types of rich water-quality datasets that now exist. The method is formulated to allow for maximum flexibility in representations of the long-term trend, seasonal components, and discharge-related components of the behavior of the water-quality variable of interest. It is designed to provide internally consistent estimates of the actual history of concentrations and fluxes as well as histories that eliminate the influence of year-to-year variations in streamflow. The method employs the use of weighted regressions of concentrations on time, discharge, and season. Finally, the method is designed to be useful as a diagnostic tool regarding the kinds of changes that are taking place in the watershed related to point sources, groundwater sources, and surface-water nonpoint sources. The method is applied to datasets for the nine large tributaries of Chesapeake Bay from 1978 to 2008. The results show a wide range of patterns of change in total phosphorus and in dissolved nitrate plus nitrite. These results should prove useful in further examination of the causes of changes, or lack of changes, and may help inform decisions about future actions to reduce nutrient enrichment in the Chesapeake Bay and its watershed.

  5. Diurnal changes of remote sensing reflectance over Chesapeake Bay: Observations from the Airborne Compact Atmospheric Mapper

    Science.gov (United States)

    Zhang, Minwei; Hu, Chuanmin; Cannizzaro, Jennifer; Kowalewski, Matthew G.; Janz, Scott J.

    2018-01-01

    Using hyperspectral data collected by the Airborne Compact Atmospheric Mapper (ACAM) and a shipborne radiometer in Chesapeake Bay in July-August 2011, this study investigates diurnal changes of surface remote sensing reflectance (Rrs). Atmospheric correction of ACAM data is performed using the traditional "black pixel" approach through radiative transfer based look-up-tables (LUTs) with non-zero Rrs in the near-infrared (NIR) accounted for by iterations. The ACAM-derived Rrs was firstly evaluated through comparison with Rrs derived from the Moderate Resolution Imaging Spectroradiometer satellite measurements, and then validated against in situ Rrs using a time window of ±1 h or ±3 h. Results suggest that the uncertainties in ACAM-derived Rrs are generally comparable to those from MODIS satellite measurements over coastal waters, and therefore may be used to assess whether Rrs diurnal changes observed by ACAM are realistic (i.e., with changes > 2 × uncertainties). Diurnal changes observed by repeated ACAM measurements reaches up to 66.8% depending on wavelength and location and are consistent with those from the repeated in situ Rrs measurements. These findings suggest that once airborne data are processed using proper algorithms and validated using in situ data, they are suitable for assessing diurnal changes in moderately turbid estuaries such as Chesapeake Bay. The findings also support future geostationary satellite missions that are particularly useful to assess short-term changes.

  6. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA.

    Science.gov (United States)

    Lefcheck, Jonathan S; Wilcox, David J; Murphy, Rebecca R; Marion, Scott R; Orth, Robert J

    2017-09-01

    Interactions among global change stressors and their effects at large scales are often proposed, but seldom evaluated. This situation is primarily due to lack of comprehensive, sufficiently long-term, and spatially extensive datasets. Seagrasses, which provide nursery habitat, improve water quality, and constitute a globally important carbon sink, are among the most vulnerable habitats on the planet. Here, we unite 31 years of high-resolution aerial monitoring and water quality data to elucidate the patterns and drivers of eelgrass (Zostera marina) abundance in Chesapeake Bay, USA, one of the largest and most valuable estuaries in the world, with an unparalleled history of regulatory efforts. We show that eelgrass area has declined 29% in total since 1991, with wide-ranging and severe ecological and economic consequences. We go on to identify an interaction between decreasing water clarity and warming temperatures as the primary drivers of this trend. Declining clarity has gradually reduced eelgrass cover the past two decades, primarily in deeper beds where light is already limiting. In shallow beds, however, reduced visibility exacerbates the physiological stress of acute warming, leading to recent instances of decline approaching 80%. While degraded water quality has long been known to influence underwater grasses worldwide, we demonstrate a clear and rapidly emerging interaction with climate change. We highlight the urgent need to integrate a broader perspective into local water quality management, in the Chesapeake Bay and in the many other coastal systems facing similar stressors. © 2017 John Wiley & Sons Ltd.

  7. NODC Standard Product: Coastal Change Analysis Program (C-CAP) Chesapeake Bay Region Data from 1984 to 1989 on CD-ROM (NODC Accession 9200303)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set on this CD-ROM shows changes in land cover for the Chesapeake Bay region over the 5-year interval from 1984 to 1988-89. The data set was produced...

  8. Scientific Personnel Resource Inventory: List and Index to Research Scientists Involved with the Estuarine Environment, Especially the Chesapeake Bay,

    Science.gov (United States)

    1972-06-01

    introduction of sewage from commercial or private structures -- Monthly sampling of sewage treatment effluents -- Resistance of Vibrio parahemolyticus in oyster...of microorganisms in animal diseases and the effect of V. parahemolyticus and other vibrios on recruitment of commercial mollusks and crustaceans 575...Microbiology; including a survey of areas of the Chesapeake Bay for Vibrio parahaemalyticus * 18 Barnard, Thomas Alexander MA Assistant Marine Scientist

  9. Impact of Environmental Policies on the Adoption of Animal Waste Management Practices in the Chesapeake Bay Watershed

    OpenAIRE

    Savage, Jeff; Ribaudo, Marc

    2012-01-01

    We use data from the ERS-NASS ARMS surveys to compare the use of best management practices on poultry and livestock farms inside the watershed and outside the watershed. Animal operations within the Chesapeake Bay States were found to be adopting some important manure management practices at a greater rate than operations outside the watershed. Adoption was taking place before the implementation of the TMDL, indicating that farmers may have been acting in response to building public pressure ...

  10. Coordinated Field Campaigns in Chesapeake Bay and Gulf of Mexico

    Science.gov (United States)

    Mannino, Antonio; Novak, Michael; Tzortziou, Maria A.

    2015-01-01

    NASA's GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission concept recommended by the U.S. National Research Council (2007) focuses on measurements of atmospheric trace gases and aerosols and aquatic coastal ecology and biogeochemistry from geostationary orbit (35,786 km altitude). Two GEO-CAPE-sponsored multi-investigator ship-based field campaigns were conducted to coincide with the NASA Earth Venture Suborbital project DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaigns: (1) Chesapeake Bay in July 2011 and (2) northwestern Gulf of Mexico in September 2013. Goal: to evaluate whether GEO-CAPE coastal mission measurement and instrument requirements are optimized to address science objectives while minimizing ocean color satellite sensor complexity, size and cost - critical mission risk reduction activities. NASA continues to support science studies related to the analysis of data collected as part of these coordinated field campaigns and smaller efforts.

  11. NOAA Office for Coastal Management Benthic Habitat Data, Catlett and Goodwin Islands on the York River in Chesapeake Bay, VA, 2002-2004 (NODC Accession 0090253)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a collection of benthic habitat data from studies conducted in the Catlett and Goodwin Islands on the York River in Chesapeake Bay, Virginia in GIS...

  12. Bacterial biomass and heterotrophic potential in the waters of the Chesapeake Bay plume and contiguous continental shelf

    Science.gov (United States)

    Kator, H. I.; Zubkoff, P. L.

    1981-01-01

    Seasonal baseline data on bacterial biomass and heterotrophic uptake in the Chesapeake Bay plume and contiguous Atlantic Ocean shelf waters are discussed. Viable count bacterial numbers in surface water samples collected during June 1980 ranged from a maximum of 190,000 MPN (most probable number)/ml at the Bay mouth to a minimum of 7900 MPN/ml offshore. Similarly, direct count densities ranged from 1,800,000 BU (bacterial units)/ml to 24,000 BU/ml. Heterotrophic potential (V max) was largest at the Bay mouth and lowest offshore. Biomass and V max values usually decreased with depth although subsurface maxima were occasionally observed at inshore stations. Correlation of biomass and heterotrophic potential data with selected hydrographic variables was determind with a nonparametric statistic. Results indicate viable counts are positively and significantly correlated with total chlorophyll, temperature, direct count and V max during June 1980; significant negative correlations are obtained with salinity and depth. Calculations of bacterial standing crop are discussed.

  13. Predicting potentially toxigenic Pseudo-nitzschia blooms in the Chesapeake Bay

    Science.gov (United States)

    Anderson, Clarissa R.; Sapiano, Mathew R. P.; Prasad, M. Bala Krishna; Long, Wen; Tango, Peter J.; Brown, Christopher W.; Murtugudde, Raghu

    2010-11-01

    Harmful algal blooms are now recognized as a significant threat to the Chesapeake Bay as they can severely compromise the economic viability of important recreational and commercial fisheries in the largest estuary of the United States. This study describes the development of empirical models for the potentially domoic acid-producing Pseudo-nitzschia species complex present in the Bay, developed from a 22-year time series of cell abundance and concurrent measurements of hydrographic and chemical properties. Using a logistic Generalized Linear Model (GLM) approach, model parameters and performance were compared over a range of Pseudo-nitzschia bloom thresholds relevant to toxin production by different species. Small-threshold blooms (≥10 cells mL -1) are explained by time of year, location, and variability in surface values of phosphate, temperature, nitrate plus nitrite, and freshwater discharge. Medium- (100 cells mL -1) to large- threshold (1000 cells mL -1) blooms are further explained by salinity, silicic acid, dissolved organic carbon, and light attenuation (Secchi) depth. These predictors are similar to other models for Pseudo-nitzschia blooms on the west coast, suggesting commonalities across ecosystems. Hindcasts of bloom probabilities at a 19% bloom prediction point yield a Heidke Skill Score of ~53%, a Probability of Detection ˜ 75%, a False Alarm Ratio of ˜ 52%, and a Probability of False Detection ˜9%. The implication of possible future changes in Baywide nutrient stoichiometry on Pseudo-nitzschia blooms is discussed.

  14. The bioeconomic impact of different management regulations on the Chesapeake Bay blue crab fishery

    Science.gov (United States)

    Bunnell, David B.; Lipton, Douglas W.; Miller, Thomas J.

    2010-01-01

    The harvest of blue crabs Callinectes sapidus in Chesapeake Bay declined 46% between 1993 and 2001 and remained low through 2008. Because the total market value of this fishery has declined by an average of US $ 3.3 million per year since 1993, the commercial fishery has been challenged to maintain profitability. We developed a bioeconomic simulation model of the Chesapeake Bay blue crab fishery to aid managers in determining which regulations will maximize revenues while ensuring a sustainable harvest. We compared 15 different management scenarios, including those implemented by Maryland and Virginia between 2007 and 2009, that sought to reduce female crab harvest and nine others that used seasonal closures, different size regulations, or the elimination of fishing for specific market categories. Six scenarios produced the highest revenues: the 2008 and 2009 Maryland regulations, spring and fall closures for female blue crabs, and 152- and 165-mm maximum size limits for females. Our most important finding was that for each state the 2008 and 2009 scenarios that implemented early closures of the female crab fishery produced higher revenues than the 2007 scenario, in which no early female closures were implemented. We conclude that the use of maximum size limits for female crabs would not be feasible despite their potentially high revenue, given the likelihood that the soft-shell and peeler fisheries cannot be expanded beyond their current capacity and the potentially high mortality rate for culled individuals that are the incorrect size. Our model results support the current use of seasonal closures for females, which permit relatively high exploitation of males and soft-shell and peeler blue crabs (which have high prices) while keeping the female crab harvest sustainable. Further, our bioeconomic model allows for the inclusion of an economic viewpoint along with biological data when target reference points are set by managers.

  15. Assessing climate change impacts on winter cover crop nitrate uptake efficiency on the coastal plain of the Chesapeake Bay watershed using the SWAT model

    Science.gov (United States)

    Climate change is expected to exacerbate water quality degradation in the Chesapeake Bay watershed (CBW). Winter cover crops (WCCs) have been widely implemented in this region owing to their high effectiveness at reducing nitrate loads. However, little is known about climate change impacts on the ef...

  16. Detection of erosion events using 10Be profiles: Example of the impact of agriculture on soil erosion in the Chesapeake Bay area (U.S.A.)

    International Nuclear Information System (INIS)

    Valette-Silver, J.N.; Brown, L.; Pavich, M.; Klein, J.; Middleton, R.

    1986-01-01

    10 Be concentration, total carbon and grain-size were measured in cores collected in undisturbed estuarine sediments of three tributaries of the Chesapeake Bay. These cores were previously studied by Davis and Brush for pollen content, age and sedimentation rate. In this work, we compare the results obtained for these various analyses. In the cores, we observed two increases in 10 Be concentration concomitant with two major changes in the pollen composition of the sediments. These two pollen changes each correspond to well-dated agricultural horizons reflecting different stages in the introduction of European farming techniques. In the Chesapeake Bay area, the agricultural development, associated with forest clearing, appears to have triggered the erosion, transport, and sedimentation into the river mouths of large quantities of 10 Be-rich soils. This phenomenon explains the observed rise in the sedimentation rate associated with increases in agricultural land-use. (orig.)

  17. Rising air and stream-water temperatures in Chesapeake Bay region, USA

    Science.gov (United States)

    Rice, Karen C.; Jastram, John D.

    2015-01-01

    Monthly mean air temperature (AT) at 85 sites and instantaneous stream-water temperature (WT) at 129 sites for 1960–2010 are examined for the mid-Atlantic region, USA. Temperature anomalies for two periods, 1961–1985 and 1985–2010, relative to the climate normal period of 1971–2000, indicate that the latter period was statistically significantly warmer than the former for both mean AT and WT. Statistically significant temporal trends across the region of 0.023 °C per year for AT and 0.028 °C per year for WT are detected using simple linear regression. Sensitivity analyses show that the irregularly sampled WT data are appropriate for trend analyses, resulting in conservative estimates of trend magnitude. Relations between 190 landscape factors and significant trends in AT-WT relations are examined using principal components analysis. Measures of major dams and deciduous forest are correlated with WT increasing slower than AT, whereas agriculture in the absence of major dams is correlated with WT increasing faster than AT. Increasing WT trends are detected despite increasing trends in streamflow in the northern part of the study area. Continued warming of contributing streams to Chesapeake Bay likely will result in shifts in distributions of aquatic biota and contribute to worsened eutrophic conditions in the bay and its estuaries.

  18. OYSTER POPULATUION ESTIMATION IN SUPPORT OF THE TEN-YEAR GOAL FOR OYSTER RESOTRATION IN THE CHESAPEAKE BAY: DEVELOPING STRATEGIES FOR RESTORING AND MANAGING THE EASTERN OYSTER

    Science.gov (United States)

    Mann, Roger, Steve Jordan, Gary Smith, Kennedy Paynter, James Wesson, Mary Christman, Jessica Vanisko, Juliana Harding, Kelly Greenhawk and Melissa Southworth. 2003. Oyster Population Estimation in Support of the Ten-Year Goal for Oyster Restoration in the Chesapeake Bay: Develop...

  19. Effects of energy related activities on the plankton of the Chesapeake Bay. Section I. Work in progress. Progress report, 1 August 1975--31 July 1976

    International Nuclear Information System (INIS)

    Taft, J.L.

    1976-01-01

    Progress is reported on the following research projects: release of dissolved organic carbon by phytoplankton; plankton respiration and nutrient regeneration; bacterial utilization of labeled compounds; effects of heat and chlorine on natural assemblages of Chesapeake Bay phytoplankton; and nutrient flux between sediment and water

  20. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    A. D. Wickert

    2016-11-01

    Full Text Available Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins – the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  1. Wave spectra, meteorological, and other data from NOAA Ship FERREL and other platforms from the Chesapeake Bay from 1983-03-14 to 1983-11-22 (NODC Accession 8500124)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wave spectra, meteorological, and other data were collected from NOAA Ship FERREL and other platforms in the Chesapeake Bay. Data were collected by the National...

  2. Mute swans and their Chesapeake Bay habitats: proceedings of a symposium

    Science.gov (United States)

    Perry, M.C.

    2004-01-01

    The symposium 'Mute Swans and their Chesapeake Bay Habitats,' held on June 7, 2001, provided a forum for biologists and managers to share research findings and management ideas concerning the exotic and invasive mute swan (Cygnus olar). This species has been increasing in population size and is considered by many to be a problem in regard to natural food resources in the Bay that are used by native waterfowl during the winter months. Other persons, however, feel that resource managers are attempting to create a problem to justify more killing of waterfowl by hunters. Some persons also believe that managers should focus on the larger issues causing the decline of native food resources, such as the unabated human population increase in the Bay watershed and in the immediate coastal areas of the Bay. The symposium, sponsored by the Wildfowl Trust of North America and the U.S. Geological Survey, provided the atmosphere for presentation of mute swan data and opinions in a collegial setting where discussion was welcomed and was often informative and enthusiastic. An interesting historic review of the swan in regard to the history of mankind was presented, followed by a discussion on the positive and negative effects of invasive species. Biologists from different parts of the continent discussed the population status of the species in several states in the east and in the Great Lakes area. Data on the food habits of this species were presented in regard to submerged aquatic vegetation, and an interesting discussion on the role that the food habits of Canada geese in regard to native vegetation was presented. Findings and recommendations of the Mute Swan Task Force were presented. Finally, a representative of the Friends of Animals gave a thought-provoking presentation in defense of the mute swan. The presentations, in general, provided the necessary information and recommendations to allow managers to proceed with management of this controversial species with new and

  3. The contingent behavior of charter fishing participants on the Chesapeake Bay: Welfare estimates associated with water quality improvements

    Science.gov (United States)

    Poor, P.J.; Breece, M.

    2006-01-01

    Water quality in the Chesapeake Bay has deteriorated over recent years. Historically, fishing has contributed to the region's local economy in terms of commercial and recreational harvests. A contingent behavior model is used to estimate welfare measures for charter fishing participants with regard to a hypothetical improvement in water quality. Using a truncated Poisson count model corrected for endogenous stratification, it was found that charter fishers not only contribute to the local market economy, but they also place positive non-market value on preserving the Bay's water quality. Using two estimates for travels costs it is estimated that the individual consumer surplus is $200 and $117 per trip, and the average individual consumer surplus values for an improvement in water quality is $75 and $44 for two models estimated. ?? 2006 University of Newcastle upon Tyne.

  4. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watersheds using SWAT model

    Science.gov (United States)

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrat...

  5. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise.

    Science.gov (United States)

    Beckett, Leah H; Baldwin, Andrew H; Kearney, Michael S

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9-15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.

  6. Flux of nitrogen, phosphorus, and suspended sediment from the Susquehanna River Basin to the Chesapeake Bay during Tropical Storm Lee, September 2011, as an indicator of the effects of reservoir sedimentation on water quality

    Science.gov (United States)

    Hirsch, Robert M.

    2012-01-01

    Concentrations of nitrogen, phosphorus, and suspended sediment are measured at the U.S. Geological Survey streamgage at Conowingo Dam at the downstream end of the Susquehanna River Basin in Maryland, where the river flows into the Chesapeake Bay. During the period September 7-15, 2011, in the aftermath of Tropical Storm Lee, concentrations of these three constituents were among the highest ever measured at this site. These measurements indicate that sediment-storage processes behind the three dams on the lower Susquehanna River are evolving. In particular, they indicate that scouring of sediment (and the nitrogen and phosphorus attached to that sediment) may be increasing with time. Trends in flow-normalized fluxes at the Susquehanna River at Conowingo, Maryland, streamgage during 1996-2011 indicate a 3.2-percent decrease in total nitrogen, but a 55-percent increase in total phosphorus and a 97-percent increase in suspended sediment. These large increases in the flux of phosphorus and sediment from the Susquehanna River to the Chesapeake Bay have occurred despite reductions in the fluxes of these constituents from the Susquehanna River watershed upstream from the reservoirs. Although the Tropical Storm Lee flood event contributed about 1.8 percent of the total streamflow from the Susquehanna River to the Chesapeake Bay over the past decade (water years 2002-11), it contributed about 5 percent of the nitrogen, 22 percent of the phosphorus, and 39 percent of the suspended sediment during the same period. These results highlight the importance of brief high-flow events in releasing nitrogen, phosphorus, and sediment derived from the Susquehanna River watershed and stored in the Conowingo Reservoir to the Chesapeake Bay.

  7. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Blazer, Vicki S., E-mail: Vblazer@usgs.gov [U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430 (United States); Pinkney, Alfred E., E-mail: Fred_Pinkeny@fws.gov [U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 177 Admiral Cochrane Drive, Annapolis, MD 21401 (United States); Jenkins, Jill A., E-mail: jenkinsj@usgs.gov [U.S. Geological Survey, National Wetlands Research Center, 700 Cajundome Blvd., Lafayette, LA 70506 (United States); Iwanowicz, Luke R., E-mail: Liwanowicz@usgs.gov [U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430 (United States); Minkkinen, Steven, E-mail: steve_minkkinen@fws.gov [U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 177 Admiral Cochrane Drive, Annapolis, MD 21401 (United States); Draugelis-Dale, Rassa O., E-mail: daler@usgs.gov [U.S. Geological Survey, National Wetlands Research Center, 700 Cajundome Blvd., Lafayette, LA 70506 (United States); Uphoff, James H., E-mail: juphoff@dnr.state.md.us [Maryland Department of Natural Resources, Fisheries Service, Cooperative Oxford Laboratory, 904 South Morris Street, Oxford, MD 21654 (United States)

    2013-03-01

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007–2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed. - Highlights: ► Reduced recruitment of yellow perch has occurred in urban tributaries of Chesapeake Bay. ► We compared reproductive health biomarkers in perch from two urban, one developing, two less developed

  8. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay

    International Nuclear Information System (INIS)

    Blazer, Vicki S.; Pinkney, Alfred E.; Jenkins, Jill A.; Iwanowicz, Luke R.; Minkkinen, Steven; Draugelis-Dale, Rassa O.; Uphoff, James H.

    2013-01-01

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007–2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed. - Highlights: ► Reduced recruitment of yellow perch has occurred in urban tributaries of Chesapeake Bay. ► We compared reproductive health biomarkers in perch from two urban, one developing, two less developed watersheds.

  9. Novel psychrotolerant picocyanobacteria isolated from Chesapeake Bay in the winter.

    Science.gov (United States)

    Xu, Yongle; Jiao, Nianzhi; Chen, Feng

    2015-08-01

    Picocyanobacteria are major primary producers in the ocean, especially in the tropical or subtropical oceans or during warm seasons. Many "warm" picocyanobacterial species have been isolated and characterized. However, picocyanobacteria in cold environments or cold seasons are much less studied. In general, little is known about the taxonomy and ecophysiology of picocyanobacteria living in the winter. In this study, 17 strains of picocyanobacteria were isolated from Chesapeake Bay, a temperate estuarine ecosystem, during the winter months. These winter isolates belong to five distinct phylogenetic lineages, and are distinct from the picocyanobacteria previously isolated from the warm seasons. The vast majority of the winter isolates were closely related to picocyanobacteria isolated from other cold environments like Arctic or subalpine waters. The winter picocyanobacterial isolates were able to maintain slow growth or prolonged dormancy at 4°C. Interestingly, the phycoerythrin-rich strains outperformed the phycocyanin-rich strains at cold temperature. In addition, winter picocyanobacteria changed their morphology when cultivated at 4°C. The close phylogenetic relationship between the winter picocyanobacteria and the picocyanobacteria living in high latitude cold regions indicates that low temperature locations select specific ecotypes of picocyanobacteria. © 2015 Phycological Society of America.

  10. Beryllium-10 in Chesapeake Bay sediments: an indicator of sediment provenance

    International Nuclear Information System (INIS)

    Helz, G.R.; Valette-Silver, Nathalie

    1992-01-01

    In a plot of 10 Be vs. Fe, central Chesapeake Bay sediments can be segregated into distinct units. This plot reveals an unexpected, statistically significant difference between sediments on the eastern and western flanks of the main channel, implying different origins. Although the 10 Be concentrations in sediments from these two regions span as much as an order of magnitude range, the 10 Be/Fe ratios vary by an amount approximating analytical error alone. The large concentration ranges are ascribed to hydraulic sorting, which can produce variance in composition while not affecting ratios between grain surface components such as Fe and Be. On the basis of 10 Be/Fe signatures, sediments on the western flank of the main channel appear to have been derived from the Susquehanna or another Piedmont/Appalachian river. Sediments on the eastern flank may have been transported from the south, by landward flowing bottom currents, or may be relics of a Pleistocene estuarine system. Conditions under which 10 Be may prove a useful tool in sediment provenance studies elsewhere are discussed. (Author)

  11. Riverine discharges to Chesapeake Bay: Analysis of long-term (1927–2014) records and implications for future flows in the Chesapeake Bay basin

    Science.gov (United States)

    Rice, Karen; Moyer, Douglas; Mills, Aaron L.

    2017-01-01

    The Chesapeake Bay (CB) basin is under a total maximum daily load (TMDL) mandate to reduce nitrogen, phosphorus, and sediment loads to the bay. Identifying shifts in the hydro-climatic regime may help explain observed trends in water quality. To identify potential shifts, hydrologic data (1927–2014) for 27 watersheds in the CB basin were analyzed to determine the relationships among long-term precipitation and stream discharge trends. The amount, frequency, and intensity of precipitation increased from 1910 to 1996 in the eastern U.S., with the observed increases greater in the northeastern U.S. than the southeastern U.S. The CB watershed spans the north-to-south gradient in precipitation increases, and hydrologic differences have been observed in watersheds north relative to watersheds south of the Pennsylvania—Maryland (PA-MD) border. Time series of monthly mean precipitation data specific to each of 27 watersheds were derived from the Precipitation-elevation Regression on Independent Slopes Model (PRISM) dataset, and monthly mean stream-discharge data were obtained from U.S. Geological Survey streamgage records. All annual precipitation trend slopes in the 18 watersheds north of the PA-MD border were greater than or equal to those of the nine south of that border. The magnitude of the trend slopes for 1927–2014 in both precipitation and discharge decreased in a north-to-south pattern. Distributions of the monthly precipitation and discharge datasets were assembled into percentiles for each year for each watershed. Multivariate correlation of precipitation and discharge within percentiles among the groups of northern and southern watersheds indicated only weak associations. Regional-scale average behaviors of trends in the distribution of precipitation and discharge annual percentiles differed between the northern and southern watersheds. In general, the linkage between precipitation and discharge was weak, with the linkage weaker in the northern watersheds

  12. Community implementation dynamics: Nutrient management in the New York City and Chesapeake Bay Watersheds

    Directory of Open Access Journals (Sweden)

    Glenn Earl Sterner

    2015-04-01

    Full Text Available The creation of natural resource management and conservation strategies can be affected by engagement with local citizens and competing interests between agencies and stakeholders at the varying levels of governance. This paper examines the role of local engagement and the interaction between governance levels on the outcomes of nutrient management policy, a specific area of natural resource conservation and management. Presented are two case studies of the New York City and Chesapeake Bay Watersheds in the US. These case studies touch upon the themes of local citizen engagement and governance stakeholder interaction in changing nutrient management to improve water quality. An analysis of these cases leads to several key considerations for the creation and implementation of nutrient management and natural resource management more broadly, including the importance of: local citizen engagement, government brokering and cost sharing; and the need of all stakeholders to respect each other in the policy creation and implementation process.

  13. Derelict fishing gear in Chesapeake Bay, Virginia: spatial patterns and implications for marine fauna.

    Science.gov (United States)

    Bilkovic, Donna Marie; Havens, Kirk; Stanhope, David; Angstadt, Kory

    2014-03-15

    Derelict fishing gear is a source of mortality for target and non-target marine species. A program employing commercial watermen to remove marine debris provided a novel opportunity to collect extensive spatially-explicit information for four consecutive winters (2008-2012) on the type, distribution, and abundance of derelict fishing gear and bycatch in Virginia waters of Chesapeake Bay. The most abundant form of derelict gear recovered was blue crab pots with almost 32,000 recovered. Derelict pots were widely distributed, but with notable hotspot areas, capturing 40 species and over 31,000 marine organisms. The target species, blue crab, experienced the highest mortality from lost pots with an estimated 900,000 animals killed each year, a potential annual economic loss to the fishery of $300,000. Important fishery species were captured and killed in derelict pots including Atlantic croaker and black sea bass. While some causes of gear loss are unavoidable, others can be managed to minimize loss. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Identification of largemouth bass virus in the introduced Northern Snakehead inhabiting the Chesapeake Bay watershed.

    Science.gov (United States)

    Iwanowicz, L; Densmore, C; Hahn, C; McAllister, P; Odenkirk, J

    2013-09-01

    The Northern Snakehead Channa argus is an introduced species that now inhabits the Chesapeake Bay. During a preliminary survey for introduced pathogens possibly harbored by these fish in Virginia waters, a filterable agent was isolated from five specimens that produced cytopathic effects in BF-2 cells. Based on PCR amplification and partial sequencing of the major capsid protein (MCP), DNA polymerase (DNApol), and DNA methyltransferase (Mtase) genes, the isolates were identified as Largemouth Bass virus (LMBV). Nucleotide sequences of the MCP (492 bp) and DNApol (419 pb) genes were 100% identical to those of LMBV. The nucleotide sequence of the Mtase (206 bp) gene was 99.5% identical to that of LMBV, and the single nucleotide substitution did not lead to a predicted amino acid coding change. This is the first report of LMBV from the Northern Snakehead, and provides evidence that noncentrarchid fishes may be susceptible to this virus.

  15. Spatial and temporal trends in runoff at long-term streamgages within and near the Chesapeake Bay Watershed

    Science.gov (United States)

    Rice, Karen C.; Hirsch, Robert M.

    2012-01-01

    Long-term streamflow data within the Chesapeake Bay watershed and surrounding area were analyzed in an attempt to identify trends in streamflow. Data from 30 streamgages near and within the Chesapeake Bay watershed were selected from 1930 through 2010 for analysis. Streamflow data were converted to runoff and trend slopes in percent change per decade were calculated. Trend slopes for three runoff statistics (the 7-day minimum, the mean, and the 1-day maximum) were analyzed annually and seasonally. The slopes also were analyzed both spatially and temporally. The spatial results indicated that trend slopes in the northern half of the watershed were generally greater than those in the southern half. The temporal analysis was done by splitting the 80-year flow record into two subsets; records for 28 streamgages were analyzed for 1930 through 1969 and records for 30 streamgages were analyzed for 1970 through 2010. The mean of the data for all sites for each year were plotted so that the following datasets were analyzed: the 7-day minimum runoff for the north, the 7-day minimum runoff for the south, the mean runoff for the north, the mean runoff for the south, the 1-day maximum runoff for the north, and the 1-day maximum runoff for the south. Results indicated that the period 1930 through 1969 was statistically different from the period 1970 through 2010. For the 7-day minimum runoff and the mean runoff, the latter period had significantly higher streamflow than did the earlier period, although within those two periods no significant linear trends were identified. For the 1-day maximum runoff, no step trend or linear trend could be shown to be statistically significant for the north, although the south showed a mixture of an upward step trend accompanied by linear downtrends within the periods. In no case was a change identified that indicated an increasing rate of change over time, and no general pattern was identified of hydrologic conditions becoming "more extreme

  16. Wave and Hydrodynamic Modeling for Engineering Design of Jetties at Tangier Island in Chesapeake Bay, USA

    Directory of Open Access Journals (Sweden)

    Lihwa Lin

    2015-12-01

    Full Text Available The protection of a boat canal at the western entrance of Tangier Island, Virginia, located in the lower Chesapeake Bay, is investigated using different structural alternatives. The existing entrance channel is oriented 45 deg with respect to the local shoreline, and exposed directly to the lower Bay without any protection. The adjacent shoreline has experienced progressive erosion in recent decades by flooding due to severe storms and waves. To protect the western entrance of the channel and shoreline, five different jetty and spur combinations were proposed to reduce wave energy in the lee of jetties. Environmental forces affecting the proposed jettied inlet system are quantified using the Coastal Modeling System, consisting of a spectral wave model and a depth-averaged circulation model with sediment transport calculations. Numerical simulations were conducted for design wave conditions and a 50-year return period tropical storm at the project site. Model results show a low crested jetty of 170-m length connecting to the north shore at a 45-deg angle, and a short south spur of 25-m long, provide adequate wave-reduction benefits among the five proposed alternatives. The model simulation indicates this alternative has the minimum impact on sedimentation around the structured inlet and boat canal.

  17. Resiliency of the Chesapeake Bay to Pollution Levels Following Storms and Based on Land-Use

    Science.gov (United States)

    Hasan, M.; Pavelsky, T.

    2015-12-01

    As pollution levels, transformations in land use, and ecological loss continue to increase in the Chesapeake Bay, questions arise as to whether this estuary, the largest in North America, will experience a change in the duration and levels of storm-related sediment and nutrient spikes. We use a combination of satellite data and previously-collected field measurements to study this question. We compare same-day and same-pixel NASA MODIS satellite data to in situ observations of sediment and nutrient concentrations over 20 years, and found that for at least 6 tributaries, the r2 value for a linear regression between the satellite reflectance and fieldwork measures of nitrogen, phosphorus, or suspended sediment concentrations exceeded 0.7, while for at least 12 tributaries, the r2 value exceeded 0.5. We took advantage of this relationship to estimate sediment and nutrient concentrations in the Chesapeake following major storm events, even in the absence of continuous in situ data. We studied sediment/nutrient levels daily following the storm, for every date on which a cloud-free MODIS image was available, for a month. The storms included 2003's Hurricane Isabel, 2011's Hurricane Irene, and 2012's Superstorm Sandy. The tributaries we focused on were the York and Piankatank Rivers of southern Virginia (heavily forested), the Potomac River (heavily urban), and the Nanticoke River of the Eastern Shore (heavily farmed). Results show that in the Potomac River, which over the last 15 years has experience a signifiant increase in urbanization, sediments and nutrients persist for longer periods and at higher levels compared to less urbanized rivers.

  18. Brominated diphenyl ethers in the sediments, porewater, and biota of the Chesapeake Bay, USA

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K.; Klosterhaus, S.; Liebert, D.; Stapleton, H. [Maryland Univ., Solomons, MD (United States)

    2004-09-15

    Levels of brominated diphenyl ethers (BDEs) are rapidly increasing in the environment, and in a short time these chemicals have evolved from 'emerging contaminants' to globally-distributed organic pollutants. Recent research demonstrates BDEs are sufficiently stable to be transported long distances in the environment and to accumulate in higher trophic levels. Photolysis and metabolism appear to be dominant loss processes for the parent compounds, generating a variety of lower brominated diphenyl ethers, hydroxylated metabolites, and other products. BDEs are hydrophobic, and therefore their transport in aquatic systems is likely controlled by sorption to sediments and perhaps exchange across the air-water interface. To date, few studies have examined the geochemistry of BDEs in natural waters. In this paper, we review our recent measurements of BDEs in the Chesapeake Bay, a shallow, productive estuary in eastern North America. We focus on the distribution of BDE congeners sediment, porewater, and in faunal benthos along a contamination gradient downstream from a wastewater treatment plant and on the spatial distribution of BDEs in bottom-feeding and pelagic fish species.

  19. The Chesapeake Bay bolide impact: a new view of coastal plain evolution

    Science.gov (United States)

    Poag, C. Wylie

    1998-01-01

    A spectacular geological event took place on the Atlantic margin of North America about 35 million years ago in the late part of the Eocene Epoch. Sea level was unusually high everywhere on Earth, and the ancient shoreline of the Virginia region was somewhere in the vicinity of where Richmond is today (fig. 1). Tropical rain forests covered the slopes of the Appalachians. To the east of a narrow coastal plain, a broad, lime (calcium carbonate)- covered continental shelf lay beneath the ocean. Suddenly, with an intense flash of light, that tranquil scene was transformed into a hellish cauldron of mass destruction. From the far reaches of space, a bolide (comet or asteroid), 3-5 kilometers in diameter, swooped through the Earth's atmosphere and blasted an enormous crater into the continental shelf. The crater is now approximately 200 km southeast of Washington, D.C., and is buried 300-500 meters beneath the southern part of Chesapeake Bay and the peninsulas of southeastern Virginia (fig. 1). The entire bolide event, from initial impact to the termination of breccia deposition, lasted only a few hours or days. The crater was then buried by additional sedimentary beds, which accumulated during the following 35 million years.

  20. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA.

    Science.gov (United States)

    Coxon, T M; Odhiambo, B K; Giancarlo, L C

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight (210)Pb and (137)Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. Copyright © 2016

  1. In plain sight: the Chesapeake Bay crater ejecta blanket

    Science.gov (United States)

    Griscom, D. L.

    2012-02-01

    The discovery nearly two decades ago of a 90 km-diameter impact crater below the lower Chesapeake Bay has gone unnoted by the general public because to date all published literature on the subject has described it as "buried". To the contrary, evidence is presented here that the so-called "upland deposits" that blanket ∼5000 km2 of the U.S. Middle-Atlantic Coastal Plain (M-ACP) display morphologic, lithologic, and stratigraphic features consistent with their being ejecta from the 35.4 Ma Chesapeake Bay Impact Structure (CBIS) and absolutely inconsistent with the prevailing belief that they are of fluvial origin. Specifically supporting impact origin are the facts that (i) a 95 %-pure iron ore endemic to the upland deposits of southern Maryland, eastern Virginia, and the District of Columbia has previously been proven to be impactoclastic in origin, (ii) this iron ore welds together a small percentage of well-rounded quartzite pebbles and cobbles of the upland deposits into brittle sheets interpretable as "spall plates" created in the interference-zone of the CBIS impact, (iii) the predominantly non-welded upland gravels have long ago been shown to be size sorted with an extreme crater-centric gradient far too large to have been the work of rivers, but well explained as atmospheric size-sorted interference-zone ejecta, (iv) new evidence is provided here that ~60 % of the non-welded quartzite pebbles and cobbles of the (lower lying) gravel member of the upland deposits display planar fractures attributable to interference-zone tensile waves, (v) the (overlying) loam member of the upland deposits is attributable to base-surge-type deposition, (vi) several exotic clasts found in a debris flow topographically below the upland deposits can only be explained as jetting-phase crater ejecta, and (vii) an allogenic granite boulder found among the upland deposits is deduced to have been launched into space and sculpted by hypervelocity air friction during reentry. An

  2. Sources of suspended-sediment flux in streams of the chesapeake bay watershed: A regional application of the sparrow model

    Science.gov (United States)

    Brakebill, J.W.; Ator, S.W.; Schwarz, G.E.

    2010-01-01

    We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain. ?? 2010 American Water Resources Association. No claim to original U.S. government works.

  3. Assessing development pressure in the Chesapeake Bay watershed: an evaluation of two land-use change models.

    Science.gov (United States)

    Claggett, Peter R; Jantz, Claire A; Goetz, Scott J; Bisland, Carin

    2004-06-01

    Natural resource lands in the Chesapeake Bay watershed are increasingly susceptible to conversion into developed land uses, particularly as the demand for residential development grows. We assessed development pressure in the Baltimore-Washington, DC region, one of the major urban and suburban centers in the watershed. We explored the utility of two modeling approaches for forecasting future development trends and patterns by comparing results from a cellular automata model, SLEUTH (slope, land use, excluded land, urban extent, transportation), and a supply/demand/allocation model, the Western Futures Model. SLEUTH can be classified as a land-cover change model and produces projections on the basis of historic trends of changes in the extent and patterns of developed land and future land protection scenarios. The Western Futures Model derives forecasts from historic trends in housing units, a U.S. Census variable, and exogenously supplied future population projections. Each approach has strengths and weaknesses, and combining the two has advantages and limitations.

  4. Estimating Vertical Land Motion in the Chesapeake Bay

    Science.gov (United States)

    Houttuijn Bloemendaal, L.; Hensel, P.

    2017-12-01

    This study aimed to provide a modern measurement of subsidence in the Chesapeake Bay region and establish a methodology for measuring vertical land motion using static GPS, a cheaper alternative to InSAR or classical leveling. Vertical land motion in this area is of particular concern because tide gages are showing up to 5 mm/yr of local, relative sea level rise. While a component of this rate is the actual eustatic sea level rise itself, part of the trend may also be vertical land motion, in which subsidence exacerbates the effects of actual changes in sea level. Parts of this region are already experiencing an increase in the frequency and magnitude of near-shore coastal flooding, but the last comprehensive study of vertical land motion in this area was conducted by NOAA in 1974 (Holdahl & Morrison) using repeat leveled lines. More recent measures of vertical land motion can help inform efforts on resilience to sea level rise, such as in the Hampton Roads area. This study used measured GPS-derived vertical heights in conjunction with legacy GPS data to calculate rates of vertical motion at several points in time for a selection of benchmarks scattered throughout the region. Seventeen marks in the stable Piedmont area and in the areas suspected of subsidence in the Coastal Plain were selected for the analysis. Results indicate a significant difference between the rates of vertical motion in the Piedmont and Coastal Plain, with a mean rate of -4.10 mm/yr in the Coastal Plain and 0.15 mm/yr in the Piedmont. The rates indicate particularly severe subsidence at the southern Delmarva Peninsula coast and the Hampton-Roads area, with a mean rate of -6.57 mm/yr in that region. By knowing local rates of subsidence as opposed to sea level change itself, coastal managers may make better informed decisions regarding natural resource use, such as deciding whether or not to reduce subsurface fluid withdrawals or to consider injecting treated water back into the aquifer to slow

  5. Eastern rim of the Chesapeake Bay impact crater: Morphology, stratigraphy, and structure

    Science.gov (United States)

    Poag, C.W.

    2005-01-01

    This study reexamines seven reprocessed (increased vertical exaggeration) seismic reflection profiles that cross the eastern rim of the Chesapeake Bay impact crater. The eastern rim is expressed as an arcuate ridge that borders the crater in a fashion typical of the "raised" rim documented in many well preserved complex impact craters. The inner boundary of the eastern rim (rim wall) is formed by a series of raterfacing, steep scarps, 15-60 m high. In combination, these rim-wall scarps represent the footwalls of a system of crater-encircling normal faults, which are downthrown toward the crater. Outboard of the rim wall are several additional normal-fault blocks, whose bounding faults trend approximately parallel to the rim wall. The tops of the outboard fault blocks form two distinct, parallel, flat or gently sloping, terraces. The innermost terrace (Terrace 1) can be identified on each profile, but Terrace 2 is only sporadically present. The terraced fault blocks are composed mainly of nonmarine, poorly to moderately consolidated, siliciclastic sediments, belonging to the Lower Cretaceous Potomac Formation. Though the ridge-forming geometry of the eastern rim gives the appearance of a raised compressional feature, no compelling evidence of compressive forces is evident in the profiles studied. The structural mode, instead, is that of extension, with the clear dominance of normal faulting as the extensional mechanism. 

  6. Effects of erosion control structures along a portion of the northern Chesapeake Bay shoreline

    Science.gov (United States)

    Zabawa, C.F.; Kerhin, R.T.; Bayley, S.

    1981-01-01

    A 6.500-meter reach of western Chesapeake Bay shoreline (lower Mayo Peninsula) lost about 1.1??106 cubic meters of sediment (equivalent to 170 cubic meters lost per meter of shoreline) between 1846 and 1932, when the first aerial photographs show the shoreline already substantially protected by a system of groins and intermittent bulkheading. These structures have eliminated the fastland as a source of erodable material, and have starved the supply of sand for littoral drift, thus limiting the extent of the beaches to the remaining groin fields. Volumes of sediment involved in these impacts are small in the overall sediment budget. Bulkheads produce no deficit in the budget since scouring of the beaches on their seaward sides makes up for the decreased erosion of protected fastland. Groins trap little of the potential littoral drift (computed to be about 104 cubic meters per meter of shoreline per year). The sand supply in the remaining beaches is nearly equivalent to the annual loss of sediment from the entire shoreline system due to the long-term rate of erosion of the shoreline and nearshore between 1846 and 1932. ?? 1981 Springer-Verlag New York Inc.

  7. Terrestrially derived dissolved organic matter in the chesapeake bay and the middle atlantic bight

    Science.gov (United States)

    Mitra, Siddhartha; Bianchi, Thomas S.; Guo, Laodong; Santschi, Peter H.

    2000-10-01

    Concentrations of lignin-phenols were analyzed in high molecular weight dissolved organic matter (0.2 μm > HMW DOM > 1 kDa) isolated from surface waters of the Chesapeake Bay (C. Bay), and surface and bottom waters of the Middle Atlantic Bight (MAB). The abundance of lignin-phenols in HMW DOM was higher in the C. Bay (0.128 ± 0.06 μg L -1) compared to MAB surface waters (0.016 ± 0.004 μg L -1) and MAB bottom waters (0.005 ± 0.003 μg L -1). On an organic carbon-normalized basis, lignin-phenol abundances in the HMW DOM (i.e., Λ 6), were significantly higher ( p vanillin (Ad/Al) V in HMW DOM, indicative of lignin decay, ranged from 0.611 to 1.37 in C. Bay, 0.534 to 2.62 in MAB surface waters, and 0.435 to 1.96 in MAB bottom water. Ratios of S/V and (Ad/Al) V showed no significant differences between each environment, providing no evidence of any compositionally distinct input of terrestrial organic matter into each environment. When considering depth profiles of suspended particulate matter in the MAB, with C:N ratios, and bulk radiocarbon ages and stable carbon isotopic values in HMW DOM isolated from these areas, two scenarios present themselves regarding the sources and transport of terrestrially derived HMW DOM in the MAB. Scenario #1 assumes that a low amount of refractory terrestrial organic matter and old DOC are uniformly distributed in the oceans, both in surface and bottom waters, and that primary production in surface waters increases DOC with low lignin and younger DOC which degrades easily. In this case, many of the trends in age and biomarker composition likely reflect general patterns of Atlantic Ocean surface and bottom water circulation in the area of the MAB. Scenario 2 assumes terrestrial organic matter in bottom waters of the MAB may have originated from weathered shelf and slope sediments in nearshore areas via a combination of mechanisms (e.g., diffusion, recent resuspension events, and/or desorption of DOM from riverine POM buried deep

  8. Diurnal variability in carbon and nitrogen pools within Chesapeake Bay and northern Gulf of Mexico: implications for future ocean color satellite sensors

    Science.gov (United States)

    Mannino, A.; Novak, M. G.; Tzortziou, M.; Salisbury, J.

    2016-02-01

    Relative to their areal extent, estuaries and coastal ocean ecosystems contribute disproportionately more to global biogeochemical cycling of carbon, nitrogen and other elements compared to the open ocean. Applying ocean color satellite data to study biological and biogeochemical processes within coastal ecosystems is challenging due to the complex mixtures of aquatic constituents derived from terrestrial, anthropogenic, and marine sources, human-impacted atmospheric properties, presence of clouds during satellite overpass, fine-scale spatial gradients, and time-varying processes on diurnal scales that cannot be resolved with current sensors. On diurnal scales, biological, photochemical, and biogeochemical processes are regulated by the variation in solar radiation. Other physical factors, such as tides, river discharge, estuarine and coastal ocean circulation, wind-driven mixing, etc., impart further variability on biological and biogeochemical processes on diurnal to multi-day time scales. Efforts to determine the temporal frequency required from a NASA GEO-CAPE ocean color satellite sensor to discern diurnal variability C and N stocks, fluxes and productivity culminated in field campaigns in the Chesapeake Bay and northern Gulf of Mexico. Near-surface drogues were released and tracked in quasi-lagrangian space to monitor hourly changes in community production, C and N stocks, and optical properties. While only small diurnal changes were observed in dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) absorption in Chesapeake Bay, substantial variation in particulate organic carbon (POC) and nitrogen (PN), chlorophyll-a, and inorganic nitrogen (DIN) were measured. Similar or greater diurnal changes in POC, PN, chlorophyll-a and DIN were found in Gulf of Mexico nearshore and offshore sites. These results suggest that satellite observations at hourly frequency are desirable to capture diurnal variability in carbon and nitrogen stocks, fluxes

  9. Understanding Aggregation and Estimating Seasonal Abundance of Chrysaora quinquecirrha Medusae from a Fixed-station Time Series in the Choptank River, Chesapeake Bay

    Science.gov (United States)

    Tay, J.; Hood, R. R.

    2016-02-01

    Although jellyfish exert strong control over marine plankton dynamics (Richardson et al. 2009, Robison et al. 2014) and negatively impact human commercial and recreational activities (Purcell et al. 2007, Purcell 2012), jellyfish biomass is not well quantified due primarily to sampling difficulties with plankton nets or fisheries trawls (Haddock 2004). As a result, some of the longest records of jellyfish are visual shore-based surveys, such as the fixed-station time series of Chrysaora quinquecirrha that began in 1960 in the Patuxent River in Chesapeake Bay, USA (Cargo and King 1990). Time series counts from fixed-station surveys capture two signals: 1) demographic change at timescales on the order of reproductive processes and 2) spatial patchiness at shorter timescales as different parcels of water move in and out of the survey area by tidal and estuarine advection and turbulent mixing (Lee and McAlice 1979). In this study, our goal was to separate these two signals using a 4-year time series of C. quinquecirrha medusa counts from a fixed-station in the Choptank River, Chesapeake Bay. Idealized modeling of tidal and estuarine advection was used to conceptualize the sampling scheme. Change point and time series analysis was used to detect demographic changes. Indices of aggregation (Negative Binomial coefficient, Taylor's Power Law coefficient, and Morisita's Index) were calculated to describe the spatial patchiness of the medusae. Abundance estimates revealed a bloom cycle that differed in duration and magnitude for each of the study years. Indices of aggregation indicated that medusae were aggregated and that patches grew in the number of individuals, and likely in size, as abundance increased. Further inference from the conceptual modeling suggested that medusae patch structure was generally homogenous over the tidal extent. This study highlights the benefits of using fixed-station shore-based surveys for understanding the biology and ecology of jellyfish.

  10. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA

    International Nuclear Information System (INIS)

    Coxon, T.M.; Odhiambo, B.K.; Giancarlo, L.C.

    2016-01-01

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight "2"1"0Pb and "1"3"7Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. - Highlights:

  11. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Coxon, T.M. [Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Avenue Fredericksburg, Virginia 22401 (United States); Odhiambo, B.K., E-mail: bkisila@umw.edu [Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Avenue Fredericksburg, Virginia 22401 (United States); Giancarlo, L.C. [Department of Chemistry, University of Mary Washington, Fredericksburg, VA 22401 (United States)

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight {sup 210}Pb and {sup 137}Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments

  12. Nutrient and physical profile data from four Microbial Exchanges and Coupling in Coastal Atlantic Systems (MECCAS) cruises collected aboard the R/V Gyre at the mouth of the Chesapeake Bay and northern Atlantic Ocean from February 17, 1985 to September 7, 1986 (NODC Accession 8800324)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Microbial Exchanges and Coupling in Coastal Atlantic Systems (MECCAS) cruise data collected aboard the R/V Gyre at the mouth of the Chesapeake Bay and northern...

  13. Scientists and Stakeholders in the Chesapeake Bay: How the Mid-Atlantic RISA Strengthens Climate Resilience Through Participatory Decision-Making Processes

    Science.gov (United States)

    Knopman, D.; Berg, N.

    2017-12-01

    The NOAA Mid-Atlantic Regional Integrated Sciences and Assessments (MARISA) program was formed in September 2016 to increase climate resilience in the Mid-Atlantic, with an initial focus on the Chesapeake Bay Watershed. In this talk, we will discuss how the program's unique structure and approach are designed to advance resilience to a changing climate through improved data, place-based decision support, and public engagement. Emphasis will be placed on MARISA's approach to integrating stakeholder perspectives from the onset of decision scoping, through the creation of actionable data sets, and concluding with the co-development of adaptation strategies between the scientific community, decision-makers, and stakeholders. Specific examples of this process involving climate-sensitive decisions and investments regarding water resources, land management, and urban corridors will be discussed.

  14. Morphological variation and phylogenetic analysis of the dinoflagellate Gymnodinium aureolum from a tributary of Chesapeake Bay.

    Science.gov (United States)

    Tang, Ying Zhong; Egerton, Todd A; Kong, Lesheng; Marshall, Harold G

    2008-01-01

    Cultures of four strains of the dinoflagellate Gymnodinium aureolum (Hulburt) G. Hansen were established from the Elizabeth River, a tidal tributary of the Chesapeake Bay, USA. Light microscopy, scanning electron microscopy, nuclear-encoded large sub-unit rDNA sequencing, and culturing observations were conducted to further characterize this species. Observations of morphology included: a multiple structured apical groove; a peduncle located between the emerging points of the two flagella; pentagonal and hexagonal vesicles on the amphiesma; production and germination of resting cysts; variation in the location of the nucleus within the center of the cell; a longitudinal ventral concavity; and considerable variation in cell width/length and overall cell size. A fish bioassay using juvenile sheepshead minnows detected no ichthyotoxicity from any of the strains over a 48-h period. Molecular analysis confirmed the dinoflagellate was conspecific with G. aureolum strains from around the world, and formed a cluster along with several other Gymnodinium species. Morphological evidence suggests that further research is necessary to examine the relationship between G. aureolum and a possibly closely related species Gymnodinium maguelonnense.

  15. The Eocene-Oligocene sedimentary record in the Chesapeake Bay impact structure: Implications for climate and sea-level changes on the western Atlantic margin

    Science.gov (United States)

    Schulte, P.; Wade, B.S.; Kontny, A.; ,

    2009-01-01

    A multidisciplinary investigation of the Eocene-Oligocene transition in the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville core from the Chesapeake Bay impact basin was conducted in order to document environmental changes and sequence stratigraphic setting. Planktonic foraminifera and calcareous nannofossil biostratigraphy indicate that the Eyreville core includes an expanded upper Eocene (Biozones E15 to E16 and NP19/20 to NP21, respectively) and a condensed Oligocene-Miocene (NP24-NN1) sedimentary sequence. The Eocene-Oligocene contact corresponds to a =3-Ma-long hiatus. Eocene- Oligocene sedimentation is dominated by great diversity and varying amounts of detrital and authigenic minerals. Four sedimentary intervals are identified by lithology and mineral content: (1) A 30-m-thick, smectite- and illite-rich interval directly overlies the Exmore Formation, suggesting long-term reworking of impact debris within the Chesapeake Bay impact structure. (2) Subsequently, an increase in kaolinite content suggests erosion from soils developed during late Eocene warm and humid climate in agreement with data derived from other Atlantic sites. However, the kaolinite increase may also be explained by change to a predominant sediment input from outside the Chesapeake Bay impact structure caused by progradation of more proximal facies belts during the highstand systems tract of the late Eocene sequence E10.Spectral analysis based on gamma-ray and magnetic susceptibility logs suggests infl uence of 1.2 Ma low-amplitude oscillation of the obliquity period during the late Eocene. (3) During the latest Eocene (Biozones NP21 and E16), several lithological contacts (clay to clayey silt) occur concomitant with a prominent change in the mineralogical composition with illite as a major component: This lithological change starts close to the Biozone NP19/20-NP21 boundary and may correspond to sequence boundary E10-E11 as observed in

  16. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model

    Science.gov (United States)

    Jantz, Claire A.; Goetz, Scott J.; Donato, David I.; Claggett, Peter

    2010-01-01

    This paper presents a fine-scale (30 meter resolution) regional land cover modeling system, based on the SLEUTH cellular automata model, that was developed for a 257000 km2 area comprising the Chesapeake Bay drainage basin in the eastern United States. As part of this effort, we developed a new version of the SLEUTH model (SLEUTH-3r), which introduces new functionality and fit metrics that substantially increase the performance and applicability of the model. In addition, we developed methods that expand the capability of SLEUTH to incorporate economic, cultural and policy information, opening up new avenues for the integration of SLEUTH with other land-change models. SLEUTH-3r is also more computationally efficient (by a factor of 5) and uses less memory (reduced 65%) than the original software. With the new version of SLEUTH, we were able to achieve high accuracies at both the aggregate level of 15 sub-regional modeling units and at finer scales. We present forecasts to 2030 of urban development under a current trends scenario across the entire Chesapeake Bay drainage basin, and three alternative scenarios for a sub-region within the Chesapeake Bay watershed to illustrate the new ability of SLEUTH-3r to generate forecasts across a broad range of conditions.

  17. The sedimentary record of climatic and anthropogenic influence on the Patuxent estuary and Chesapeake Bay ecosystems

    Science.gov (United States)

    Cronin, T. M.; Vann, C.D.

    2003-01-01

    Ecological and paleoecological studies from the Patuxent River mouth reveal dynamic variations in benthic ostracode assemblages over the past 600 years due to climatic and anthropogenic factors. Prior to the late 20th century, centennial-scale changes in species dominance were influenced by climatic and hydrological factors that primarily affected salinity and at times led to oxygen depletion. Decadal-scale droughts also occurred resulting in higher salinities and migration of ostracode species from the deep channel (Loxoconcha sp., Cytheromorpha newportensis) into shallower water along the flanks of the bay. During the 19th century the abundance of Leptocythere nikraveshae and Perissocytheridea brachyforma suggest increased turbidity and decreased salinity. Unprecedented changes in benthic ostracodes at the Patuxent mouth and in the deep channel of the bay occurred after the 1960s when Cytheromorpha curta became the dominant species, reflecting seasonal anoxia. The change in benthic assemblages coincided with the appearance of deformities in foraminifers. A combination of increased nitrate loading due to greater fertilizer use and increased freshwater flow explains this shift. A review of the geochemical and paleoecological evidence for dissolved oxygen indicates that seasonal oxygen depletion in the main channel of Chesapeake Bay varies over centennial and decadal timescales. Prior to 1700 AD, a relatively wet climate and high freshwater runoff led to oxygen depletion but rarely anoxia. Between 1700 and 1900, progressive eutrophication occurred related to land dearance and increased sedimentation, but this was superimposed on the oscillatory pattern of oxygen depletion most likely driven by climatological and hydrological factors. It also seems probable that the four- to five-fold increase in sedimentation due to agricultural and timber activity could have contributed to an increased natural nutrient load, likely fueling the early periods (1700-1900) of hypoxla

  18. 77 FR 15323 - Special Local Regulations and Safety Zone; War of 1812 Bicentennial Commemorations, Chesapeake...

    Science.gov (United States)

    2012-03-15

    ... National Technology Transfer and Advancement Act (NTTAA) (15 U.S.C. 272 note) directs agencies to use...] RIN 1625-AA08, AA00 Special Local Regulations and Safety Zone; War of 1812 Bicentennial Commemorations... Chesapeake Bay and Port of Baltimore, Maryland for War of 1812 Bicentennial Commemorations activities. This...

  19. Early Holocene estuary development of the Hesselø Bay area, southern Kattegat, Denmark and its implication for Ancylus Lake drainage

    Science.gov (United States)

    Bendixen, Carina; Boldreel, Lars Ole; Jensen, Jørn Bo; Bennike, Ole; Hübscher, Christian; Clausen, Ole Rønø

    2017-12-01

    High-resolution shallow seismic data, sediment core information, radiocarbon dating and sequence stratigraphy have been used to interpret the late glacial to early Holocene geological evolution of Hesselø Bay in the southern Kattegat, Denmark. A reconstruction of the early Holocene coastal environment and a description of coastal processes associated with a river outlet into the bay are presented. Weichselian glacial deposits form the lowermost interpreted unit, covered by late glacial (LG) and postglacial (PG, Holocene) sediments. A funnel-shaped estuary existed at the mouth of channels in the period 10.3-9.2 cal. ka BP; the channels drained water from south to north. The early PG is characterised by estuarine and coastal deposits. The early Holocene bars that developed in the estuary are preserved as morphological features on the present-day seabed, possibly as a result of rapid relative sea-level rise. The estuary existed simultaneously with the occurrence and drainage of the Ancylus Lake. The drainage of this lake occurred through the Dana River (palaeo-Great Belt channel) into the southern Kattegat and then into the study area. The level of the Ancylus Lake in the Baltic Sea region dropped significantly at about 10.2 cal. ka BP at the same time as the estuary developed in the Kattegat region. One outcome of the present study is an enhanced understanding of the Ancylus Lake drainage path. No evidence of major erosion is seen, which indicates non-catastrophic continuous water flow from the south without major drainage events of the Ancylus Lake to the southern Kattegat. During the Littorina transgression, coastal estuarine conditions characterized the Hesselø Bay area where elongated ridges formed a bar system. As the Littorina transgression continued, back-stepping of the bar system and coastline occurred. When the transgression breached the Great Belt threshold, flooding caused major erosion throughout the study area.

  20. Proposed tethered unmanned aerial system for the detection of pollution entering the Chesapeake Bay area

    Science.gov (United States)

    Goodman, J.; McKay, J.; Evans, W.; Gadsden, S. Andrew

    2016-05-01

    This paper is based on a proposed unmanned aerial system platform that is to be outfitted with high-resolution sensors. The proposed system is to be tethered to a moveable ground station, which may be a research vessel or some form of ground vehicle (e.g., car, truck, or rover). The sensors include, at a minimum: camera, infrared sensor, thermal, normalized difference vegetation index (NDVI) camera, global positioning system (GPS), and a light-based radar (LIDAR). The purpose of this paper is to provide an overview of existing methods for pollution detection of failing septic systems, and to introduce the proposed system. Future work will look at the high-resolution data from the sensors and integrating the data through a process called information fusion. Typically, this process is done using the popular and well-published Kalman filter (or its nonlinear formulations, such as the extended Kalman filter). However, future work will look at using a new type of strategy based on variable structure estimation for the information fusion portion of the data processing. It is hypothesized that fusing data from the thermal and NDVI sensors will be more accurate and reliable for a multitude of applications, including the detection of pollution entering the Chesapeake Bay area.

  1. Cenozoic stratigraphy and structure of the Chesapeake Bay region

    Science.gov (United States)

    Powars, David S.; Edwards, Lucy E.; Kidwell, Susan M.; Schindler, J. Stephen

    2015-01-01

    The Salisbury embayment is a broad tectonic downwarp that is filled by generally seaward-thickening, wedge-shaped deposits of the central Atlantic Coastal Plain. Our two-day field trip will take us to the western side of this embayment from the Fall Zone in Washington, D.C., to some of the bluffs along Aquia Creek and the Potomac River in Virginia, and then to the Calvert Cliffs on the western shore of the Chesapeake Bay. We will see fluvial-deltaic Cretaceous deposits of the Potomac Formation. We will then focus on Cenozoic marine deposits. Transgressive and highstand deposits are stacked upon each other with unconformities separating them; rarely are regressive or lowstand deposits preserved. The Paleocene and Eocene shallow shelf deposits consist of glauconitic, silty sands that contain varying amounts of marine shells. The Miocene shallow shelf deposits consist of diatomaceous silts and silty and shelly sands. The lithology, thickness, dip, preservation, and distribution of the succession of coastal plain sediments that were deposited in our field-trip area are, to a great extent, structurally controlled. Surficial and subsurface mapping using numerous continuous cores, auger holes, water-well data, and seismic surveys has documented some folds and numerous high-angle reverse and normal faults that offset Cretaceous and Cenozoic deposits. Many of these structures are rooted in early Mesozoic and/or Paleozoic NE-trending regional tectonic fault systems that underlie the Atlantic Coastal Plain. On Day 1, we will focus on two fault systems (stops 1–2; Stafford fault system and the Skinkers Neck–Brandywine fault system and their constituent fault zones and faults). We will then see (stops 3–5) a few of the remaining exposures of largely unlithified marine Paleocene and Eocene strata along the Virginia side of the Potomac River including the Paleocene-Eocene Thermal Maximum boundary clay. These exposures are capped by fluvial-estuarine Pleistocene terrace

  2. The Effect of Dissolved Polyunsaturated Aldehydes on Microzooplankton Growth Rates in the Chesapeake Bay and Atlantic Coastal Waters

    Directory of Open Access Journals (Sweden)

    Peter J. Lavrentyev

    2015-05-01

    Full Text Available Allelopathy is wide spread among marine phytoplankton, including diatoms, which can produce cytotoxic secondary metabolites such as polyunsaturated aldehydes (PUA. Most studies on diatom-produced PUA have been dedicated to their inhibitory effects on reproduction and development of marine invertebrates. However, little information exists on their impact on key herbivores in the ocean, microzooplankton. This study examined the effects of dissolved 2E,4E-octadienal and 2E,4E-heptadienal on the growth rates of natural ciliate and dinoflagellate populations in the Chesapeake Bay and the coastal Atlantic waters. The overall effect of PUA on microzooplankton growth was negative, especially at the higher concentrations, but there were pronounced differences in response among common planktonic species. For example, the growth of Codonella sp., Leegaardiella sol, Prorodon sp., and Gyrodinium spirale was impaired at 2 nM, whereas Strombidium conicum, Cyclotrichium gigas, and Gymnodinium sp. were not affected even at 20 nM. These results indicate that PUA can induce changes in microzooplankton dynamics and species composition.

  3. The Effect of Dissolved Polyunsaturated Aldehydes on Microzooplankton Growth Rates in the Chesapeake Bay and Atlantic Coastal Waters

    Science.gov (United States)

    Lavrentyev, Peter J.; Franzè, Gayantonia; Pierson, James J.; Stoecker, Diane K.

    2015-01-01

    Allelopathy is wide spread among marine phytoplankton, including diatoms, which can produce cytotoxic secondary metabolites such as polyunsaturated aldehydes (PUA). Most studies on diatom-produced PUA have been dedicated to their inhibitory effects on reproduction and development of marine invertebrates. However, little information exists on their impact on key herbivores in the ocean, microzooplankton. This study examined the effects of dissolved 2E,4E-octadienal and 2E,4E-heptadienal on the growth rates of natural ciliate and dinoflagellate populations in the Chesapeake Bay and the coastal Atlantic waters. The overall effect of PUA on microzooplankton growth was negative, especially at the higher concentrations, but there were pronounced differences in response among common planktonic species. For example, the growth of Codonella sp., Leegaardiella sol, Prorodon sp., and Gyrodinium spirale was impaired at 2 nM, whereas Strombidium conicum, Cyclotrichium gigas, and Gymnodinium sp. were not affected even at 20 nM. These results indicate that PUA can induce changes in microzooplankton dynamics and species composition. PMID:25955757

  4. Assessing water quality of the Chesapeake Bay by the impact of sea level rise and warming

    Science.gov (United States)

    Wang, P.; Linker, L.; Wang, H.; Bhatt, G.; Yactayo, G.; Hinson, K.; Tian, R.

    2017-08-01

    The influence of sea level rise and warming on circulation and water quality of the Chesapeake Bay under projected climate conditions in 2050 were estimated by computer simulation. Four estuarine circulation scenarios in the estuary were run using the same watershed load in 1991-2000 period. They are, 1) the Base Scenario, which represents the current climate condition, 2) a Sea Level Rise Scenario, 3) a Warming Scenario, and 4) a combined Sea Level Rise and Warming Scenario. With a 1.6-1.9°C increase in monthly air temperatures in the Warming Scenario, water temperature in the Bay is estimated to increase by 0.8-1°C. Summer average anoxic volume is estimated to increase 1.4 percent compared to the Base Scenario, because of an increase in algal blooms in the spring and summer, promotion of oxygen consumptive processes, and an increase of stratification. However, a 0.5-meter Sea Level Rise Scenario results in a 12 percent reduction of anoxic volume. This is mainly due to increased estuarine circulation that promotes oxygen-rich sea water intrusion in lower layers. The combined Sea Level Rise and Warming Scenario results in a 10.8 percent reduction of anoxic volume. Global warming increases precipitation and consequently increases nutrient loads from the watershed by approximately 5-7 percent. A scenario that used a 10 percent increase in watershed loads and current estuarine circulation patterns yielded a 19 percent increase in summer anoxic volume, while a scenario that used a 10 percent increase in watershed loads and modified estuarine circulation patterns by the aforementioned sea level rise and warming yielded a 6 percent increase in summer anoxic volume. Impacts on phytoplankton, sediments, and water clarity were also analysed.

  5. Application of a Weighted Regression Model for Reporting Nutrient and Sediment Concentrations, Fluxes, and Trends in Concentration and Flux for the Chesapeake Bay Nontidal Water-Quality Monitoring Network, Results Through Water Year 2012

    Science.gov (United States)

    Chanat, Jeffrey G.; Moyer, Douglas L.; Blomquist, Joel D.; Hyer, Kenneth E.; Langland, Michael J.

    2016-01-13

    In the Chesapeake Bay watershed, estimated fluxes of nutrients and sediment from the bay’s nontidal tributaries into the estuary are the foundation of decision making to meet reductions prescribed by the Chesapeake Bay Total Maximum Daily Load (TMDL) and are often the basis for refining scientific understanding of the watershed-scale processes that influence the delivery of these constituents to the bay. Two regression-based flux and trend estimation models, ESTIMATOR and Weighted Regressions on Time, Discharge, and Season (WRTDS), were compared using data from 80 watersheds in the Chesapeake Bay Nontidal Water-Quality Monitoring Network (CBNTN). The watersheds range in size from 62 to 70,189 square kilometers and record lengths range from 6 to 28 years. ESTIMATOR is a constant-parameter model that estimates trends only in concentration; WRTDS uses variable parameters estimated with weighted regression, and estimates trends in both concentration and flux. WRTDS had greater explanatory power than ESTIMATOR, with the greatest degree of improvement evident for records longer than 25 years (30 stations; improvement in median model R2= 0.06 for total nitrogen, 0.08 for total phosphorus, and 0.05 for sediment) and the least degree of improvement for records of less than 10 years, for which the two models performed nearly equally. Flux bias statistics were comparable or lower (more favorable) for WRTDS for any record length; for 30 stations with records longer than 25 years, the greatest degree of improvement was evident for sediment (decrease of 0.17 in median statistic) and total phosphorus (decrease of 0.05). The overall between-station pattern in concentration trend direction and magnitude for all constituents was roughly similar for both models. A detailed case study revealed that trends in concentration estimated by WRTDS can operationally be viewed as a less-constrained equivalent to trends in concentration estimated by ESTIMATOR. Estimates of annual mean flow

  6. The Medieval Climate Anomaly and Little Ice Age in Chesapeake Bay and the North Atlantic Ocean

    Science.gov (United States)

    Cronin, T. M.; Hayo, K.; Thunell, R.C.; Dwyer, G.S.; Saenger, C.; Willard, D.A.

    2010-01-01

    A new 2400-year paleoclimate reconstruction from Chesapeake Bay (CB) (eastern US) was compared to other paleoclimate records in the North Atlantic region to evaluate climate variability during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Using Mg/Ca ratios from ostracodes and oxygen isotopes from benthic foraminifera as proxies for temperature and precipitation-driven estuarine hydrography, results show that warmest temperatures in CB reached 16-17. ??C between 600 and 950. CE (Common Era), centuries before the classic European Medieval Warm Period (950-1100. CE) and peak warming in the Nordic Seas (1000-1400. CE). A series of centennial warm/cool cycles began about 1000. CE with temperature minima of ~. 8 to 9. ??C about 1150, 1350, and 1650-1800. CE, and intervening warm periods (14-15. ??C) centered at 1200, 1400, 1500 and 1600. CE. Precipitation variability in the eastern US included multiple dry intervals from 600 to 1200. CE, which contrasts with wet medieval conditions in the Caribbean. The eastern US experienced a wet LIA between 1650 and 1800. CE when the Caribbean was relatively dry. Comparison of the CB record with other records shows that the MCA and LIA were characterized by regionally asynchronous warming and complex spatial patterns of precipitation, possibly related to ocean-atmosphere processes. ?? 2010.

  7. Quantitative assessment of viable Cryptosporidium parvum load in commercial oysters (Crassostrea virginica) in the Chesapeake Bay.

    Science.gov (United States)

    Graczyk, Thaddeus K; Lewis, Earl J; Glass, Gregory; Dasilva, Alexandre J; Tamang, Leena; Girouard, Autumn S; Curriero, Frank C

    2007-01-01

    The epidemiological importance of increasing reports worldwide on Cryptosporidium contamination of oysters remains unknown in relation to foodborne cryptosporidiosis. Thirty market-size oysters (Crassostrea virginica), collected from each of 53 commercial harvesting sites in Chesapeake Bay, MD, were quantitatively tested in groups of six for Cryptosporidium sp. oocysts by immunofluorescent antibody (IFA). After IFA analysis, the samples were retrospectively retested for viable Cryptosporidium parvum oocysts by combined fluorescent in situ hybridization (FISH) and IFA. The mean cumulative numbers of Cryptosporidium sp. oocysts in six oysters (overall, 42.1+/-4.1) were significantly higher than in the numbers of viable C. parvum oocysts (overall, 28.0+/-2.9). Of 265 oyster groups, 221 (83.4%) contained viable C. parvum oocysts, and overall, from 10-32% (mean, 23%) of the total viable oocysts were identified in the hemolymph as distinct from gill washings. The amount of viable C. parvum oocysts was not related to oyster size or to the level of fecal coliforms at the sampling site. This study demonstrated that, although oysters are frequently contaminated with oocysts, the levels of viable oocysts may be too low to cause infection in healthy individuals. FISH assay for identification can be retrospectively applied to properly stored samples.

  8. Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed, and water-quality data from a survey of springs

    Science.gov (United States)

    Focazio, Michael J.; Plummer, Niel; Bohlke, John K.; Busenberg, Eurybiades; Bachman, L. Joseph; Powars, David S.

    1998-01-01

    Knowledge of the residence times of the ground-water systems in Chesapeake Bay watershed helps resource managers anticipate potential delays between implementation of land-management practices and any improve-ments in river and estuary water quality. This report presents preliminary estimates of ground-water residence times and apparent ages of water in the shallow aquifers of the Chesapeake Bay watershed. A simple reservoir model, published data, and analyses of spring water were used to estimate residence times and apparent ages of ground-water discharge. Ranges of aquifer hydraulic characteristics throughout the Bay watershed were derived from published literature and were used to estimate ground-water residence times on the basis of a simple reservoir model. Simple combinations of rock type and physiographic province were used to delineate hydrogeomorphic regions (HGMR?s) for the study area. The HGMR?s are used to facilitate organization and display of the data and analyses. Illustrations depicting the relation of aquifer characteristics and associated residence times as a continuum for each HGMR were developed. In this way, the natural variation of aquifer characteristics can be seen graphically by use of data from selected representative studies. Water samples collected in September and November 1996, from 46 springs throughout the watershed were analyzed for chlorofluorocarbons (CFC?s) to estimate the apparent age of ground water. For comparison purposes, apparent ages of water from springs were calculated assuming piston flow. Additi-onal data are given to estimate apparent ages assuming an exponential distribution of ages in spring discharge. Additionally, results from previous studies of CFC-dating of ground water from other springs and wells in the watershed were compiled. The CFC data, and the data on major ions, nutrients, and nitrogen isotopes in the water collected from the 46 springs are included in this report. The apparent ages of water

  9. Modelling the transverse distribution of velocity and suspended sediment in tidal estuaries

    NARCIS (Netherlands)

    Huijts, K.M.H.

    2011-01-01

    An estuary is a semi-enclosed coastal body of water which has a free connection with the open sea and within which sea water is measurably diluted with fresh water derived from land drainage. Examples are the Western Scheldt River Estuary and the Chesapeake Bay. Within these environments complex

  10. A simulation of the hydrothermal response to the Chesapeake Bay bolide impact

    Science.gov (United States)

    Sanford, W.E.

    2005-01-01

    Groundwater more saline than seawater has been discovered in the tsunami breccia of the Chesapeake Bay impact Crater. One hypothesis for the origin of this brine is that it may be a liquid residual following steam separation in a hydrothermal system that evolved following the impact. Initial scoping calculations have demonstrated that it is feasible such a residual brine could have remained in the crater for the 35 million years since impact. Numerical simulations have been conducted using the code HYDROTHERM to test whether or not conditions were suitable in the millennia following the impact for the development of a steam phase in the hydrothermal system. Hydraulic and thermal parameters were estimated for the bedrock underlying the crater and the tsunami breccia that fills the crater. Simulations at three different breccia permeabilities suggest that the type of hydrothermal system that might have developed would have been very sensitive to the permeability. A relatively low breccia permeability (1 ?? 10-16 m2) results in a system partitioned into a shallow water phase and a deeper superheated steam phase. A moderate breccia permeability (1 ?? 10-15 m2 ) results in a system with regionally extensive multiphase conditions. A relatively high breccia permeability (1 ?? 10-14 m2 ) results in a system dominated by warm-water convection cells. The permeability of the crater breccia could have had any of these values at given depths and times during the hydrothermal system evolution as the sediments compacted. The simulations were not able to take into account transient permeability conditions, or equations of state that account for the salt content of seawater. Results suggest, however, that it is likely that steam conditions existed at some time in the system following impact, providing additional evidence that is consistent with a hydrothermal origin for the crater brine. ?? Blackwell Publishing Ltd.

  11. Sediment Retention Dynamics and Vegetation Along Three Tributaries of the Chesapeake Bay

    Science.gov (United States)

    Ross, K.; Ross, K.; Hupp, C.; Alexander, L.; Alexander, L.

    2001-12-01

    Coastal Plain riparian wetlands in the Mid-Atlantic United States are the last place for sediment and contaminant storage before reaching critical estuarine and marine environments. The deteriorating health of the Chesapeake Bay has been attributed in part to elevated sediment loads. The purpose of this study is to investigate the effects of channelization and urbanization on sediment deposition and geomorphic processes along the Pocomoke and Chickahominy Rivers and Dragon Run, three Coastal Plain tributaries. Floodplain microtopography was surveyed in 100 x 100 m grids at three characteristic reaches along each river and woody vegetation analyses were conducted. Floodplain suspended sediment concentrations and short and long-term sedimentation rates were estimated at each reach using single stage sediment sampler arrays, clay pads and dendrogeomorphic techniques, respectively. Site hydroperiod and flow characteristics were determined from USGS gaging station records, floodplain water level recorders, and field observations. Channelized floodplain reaches along the Pocomoke River are flooded less frequently, have lower mineral sedimentation rates (2 mm/yr to 6 mm/yr) and woody species diversity than the unchannelized reaches. Along the Chickahominy River, floodplain wetlands close to urban centers are flooded more frequently, but have shorter hydroperiods (3.5 days/yr compared to more than 45 days/yr), lower sedimentation rates (1.8 mm/yr to 6.8 mm/yr), and lower woody species diversity (0.51 to 1.95 on the Shannon-Weiner diversity index) than floodplains further downstream. Suspended sediment delivery and deposition rates are significantly influenced by floodplain hydroperiod duration and channel-floodplain connectivity. These results suggest that understanding floodplain sediment dynamics and geomorphic processes with respect to dominant watershed landuse patterns is critical for effective water quality management and restoration efforts.

  12. Environmental determinants of Vibrio parahaemolyticus in the Chesapeake Bay.

    Science.gov (United States)

    Davis, Benjamin J K; Jacobs, John M; Davis, Meghan F; Schwab, Kellogg J; DePaola, Angelo; Curriero, Frank C

    2017-08-25

    Vibrio parahaemolyticus naturally-occurs in brackish and marine waters and is one of the leading causes of seafood-borne illness. Previous work studying the ecology of V. parahaemolyticus is often limited in geographic extent and lacking a full range of environmental measures. This study used a unique, large dataset of surface water samples in the Chesapeake Bay ( n =1,385) collected from 148 monitoring stations from 2007 to 2010. Water was analyzed for over 20 environmental parameters with additional meteorological and surrounding land use data. V. parahaemolyticus -specific genetic markers thermolabile hemolysin ( tlh ), thermostable direct hemolysin ( tdh ), and tdh -related hemolysin ( trh ) were assayed using quantitative PCR (qPCR), and interval-censored regression models with non-linear effects were estimated to account for limits of detection and quantitation. tlh was detected in 19.6% of water samples; tdh or trh markers were not detected. Results confirmed previously reported positive associations for V. parahaemolyticus abundance with temperature and turbidity and negative associations with high salinity (> 10-23‰). Furthermore, the salinity relationship was determined to be a function of both low temperature and turbidity, with an increase of either nullifying the high salinity effect. Associations with dissolved oxygen and phosphate also appeared stronger when samples were taken nearby human developments. Renewed focus on the V. parahaemolyticus ecological paradigm is warranted to protect public health. Importance Vibrio parahaemolyticus is one of the leading causes of seafood-borne illness in the United States and across the globe. Exposure is often through consuming raw or undercooked shellfish. Given the natural presence of the bacterium in the marine environment, improved understanding of its environmental determinants is necessary for future preventative measures. This analysis of environmental Vibrio parahaemolyticus is one of only a few that

  13. Flock sizes and sex ratios of canvasbacks in Chesapeake Bay and North Carolina

    Science.gov (United States)

    Haramis, G.M.; Derleth, E.L.; Link, W.A.

    1994-01-01

    Knowledge of the distribution, size, and sex ratios of flocks of wintering canvasbacks (Aythya valisineria) is fundamental to understanding the species' winter ecology and providing guidelines for management. Consequently, in winter 1986-87, we conducted 4 monthly aerial photographic surveys to investigate temporal changes in distribution, size, and sex ratios of canvasback flocks in traditional wintering areas of Chesapeake Bay and coastal North Carolina. Surveys yielded 35mm imagery of 194,664 canvasbacks in 842 flocks. Models revealed monthly patterns of flock size in North Carolina and Virginia, but no pattern of change in Maryland. A stepwise analysis of flock size and sex ratio fit a common positive slope (increasing proportion male) for all state-month datasets, except for North Carolina in February where the slope was larger (P lt 0.001). State and month effects on intercepts were significant (P lt 0.001) and confirmed a previously identified latitudinal gradient in sex ratio in the survey region. There was no relationship between flock purity (% canvasbacks vs. other species) and flock size except in North Carolina in January, February, and March when flock purity was related to flock size. Contrasting characteristics in North Carolina with regard to flock size (larger flocks) and flock purity suggested that proximate factors were reinforcing flocking behavior and possibly species fidelity there. Of possible factors, the need to locate foraging sites within this large, open-water environment was hypothesized to be of primary importance. Comparison of January 1981 and 1987 sex ratios indicated no change in Maryland, but lower (P lt 0.05) canvasback sex ratios (proportion male) in Virginia and North Carolina.

  14. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay

    Science.gov (United States)

    Blazer, Vicki; Pinkney, Alfred E.; Jenkins, Jill A.; Iwanowicz, Luke R.; Minkkinen, Steven; Draugelis-Dale, Rassa O.; Uphoff, James H.

    2013-01-01

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007–2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed.

  15. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay.

    Science.gov (United States)

    Blazer, Vicki S; Pinkney, Alfred E; Jenkins, Jill A; Iwanowicz, Luke R; Minkkinen, Steven; Draugelis-Dale, Rassa O; Uphoff, James H

    2013-03-01

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007-2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed. Published by Elsevier B.V.

  16. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    Science.gov (United States)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; hide

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  17. Conductivity, temperature, depth, fluorescence, optical backscatter, laser in-situ scattering and transmissivity, acoustic zooplankton biomass, net zooplankton counts, and suspended particle data from the RV HUGH R. SHARP in the upper Chesapeake Bay from February 23 through 26, 2007 as part of the Bio-Physical Interaction in the Turbidity Maximum (BITMAX-II) program (NODC Accession 0062884)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data set contains Cruise Reports and CTD data from 8 main cruises in the upper Chesapeake Bay on board the R/V Hugh R. Sharp from February 2007 to October 2008 ....

  18. Preventing Pollution to Local Waters, Bay; Preserving Historic Natural Bridge in Virginia

    Science.gov (United States)

    In helping to preserve one of the oldest tourist destinations in the country – a spectacular natural land bridge in Virginia – EPA funding is protecting the surrounding land from development that would have impacted local waters and the Chesapeake Bay.

  19. A rapid procedure for the determination of thorium, uranium, cadmium and molybdenum in small sediment samples by inductively coupled plasma-mass spectrometry: application in Chesapeake Bay

    International Nuclear Information System (INIS)

    Zheng, Y.; Weinman, B.; Cronin, T.; Fleisher, M.Q.; Anderson, R.F.

    2003-01-01

    This paper describes a rapid procedure that allows precise analysis of Mo, Cd, U and Th in sediment samples as small as 10 mg by using a novel approach that utilizes a 'pseudo' isotope dilution for Th and conventional isotope dilution for Mo, Cd and U by ICP-MS. Long-term reproducibility of the method is between 2.5 and 5% with an advantage of rapid analysis on a single digestion of sediment sample and the potential of adding other elements of interest if so desired. Application of this method to two piston cores collected near the mouth of the Patuxent River in Chesapeake Bay showed that the accumulation of authigenic Mo and Cd varied in response to the changing bottom water redox conditions, with anoxia showing consistent oscillations throughout both pre-industrial and industrial times. Accumulation of authigenic U shows consistent oscillations as well, without any apparent increase in productivity related to anoxic trends. Degrees of Mo and Cd enrichment also inversely correlate to halophilic microfaunal assemblages already established as paleoclimate proxies within the bay indicating that bottom water anoxia is driven in part by the amount of freshwater discharge that the area receives

  20. Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration

    Science.gov (United States)

    Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.

    2008-01-01

    We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.

  1. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    Science.gov (United States)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  2. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    Directory of Open Access Journals (Sweden)

    Sangchul Lee

    Full Text Available The adoption rate of winter cover crops (WCCs as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE reduced NO3-N loads by ~49.3% compared to the baseline (no WCC. The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean, with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  3. Land Use and Climate Alter Carbon Dynamics in Watersheds of Chesapeake Bay

    Science.gov (United States)

    Kaushal, S.; Duan, S.; Grese, M.; Pennino, M. J.; Belt, K. T.; Findlay, S.; Groffman, P. M.; Mayer, P. M.; Murthy, S.; Blomquist, J.

    2011-12-01

    There have been long-term changes in the quantity of organic carbon in streams and rivers globally. Shifts in the quality of organic carbon due to environmental changes may also impact downstream ecosystem metabolism and fate and transport of contaminants. We investigated long-term impacts of land use and hydrologic variability on organic carbon transport in watersheds of the Baltimore Long-Term Ecological Research (LTER) site and large rivers of the Chesapeake Bay. In small and medium-sized watersheds of the Baltimore LTER site, urban land use increased organic carbon concentrations in streams several-fold compared to forest and agricultural watersheds. Enzymatic activities of stream microbes were significantly altered across watershed land use during a record wet year. During the wet year, short-term bioassays showed that bioavailable dissolved organic carbon varied seasonally, but comprised a substantial proportion of the dissolved organic carbon pool. Similarly, measurements of biochemical oxygen demand across hydrologic variability suggest that reactive organic carbon export from small and medium-sized urban watersheds during storms can be substantial. At a larger regional scale, major tributaries such as the Potomac, Susquehanna, Patuxent, and Choptank rivers also showed similar variability as smaller watersheds in quantity and quality of organic carbon based on land use and climate. There were distinct isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices for rivers influenced by different land uses. Stable isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices showed marked seasonal changes in organic matter quality during spring floods in the Potomac River at Washington D.C. Across watershed size, there appeared to be differences in seasonal cycles of organic carbon quality and this may have been based on the degree of hydrologic connectivity between watersheds and

  4. NASA-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay.

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.

  5. Role of manganese oxides in the exposure of mute swans (Cygnus olor) to Pb and other elements in the Chesapeake Bay, USA

    International Nuclear Information System (INIS)

    Beyer, W. Nelson; Day, Daniel

    2004-01-01

    The aims of this study are to estimate exposure of waterfowl to elements in contaminated sediments in the Chesapeake Bay and to consider the potential role of Mn in influencing bioavailability and exposure. Metal concentrations were measured in livers and digesta taken from mute swans living on the Aberdeen Proving Ground, whose sediment had elevated concentrations of Cu, S, Se, Zn, As, Co, Cr, Hg and Pb. Concentrations of only the first four of these elements were elevated in swan digesta. None of the concentrations detected in the digesta or livers of the swans was considered toxic, although the concentrations of Cu and Se were high compared to concentrations of these elements reported in other waterfowl. Lead was found to be scavenged by Mn and Fe oxides from the water and deposited on the surface of vegetation at a reference site. Under some environmental chemical conditions, this is an important route of exposure to Pb in waterfowl, not previously recognized. - Lead was scavenged by Mn and Fe oxides and deposited on aquatic vegetation

  6. Role of manganese oxides in the exposure of mute swans (Cygnus olor) to Pb and other elements in the Chesapeake Bay, USA

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, W. Nelson; Day, Daniel

    2004-05-01

    The aims of this study are to estimate exposure of waterfowl to elements in contaminated sediments in the Chesapeake Bay and to consider the potential role of Mn in influencing bioavailability and exposure. Metal concentrations were measured in livers and digesta taken from mute swans living on the Aberdeen Proving Ground, whose sediment had elevated concentrations of Cu, S, Se, Zn, As, Co, Cr, Hg and Pb. Concentrations of only the first four of these elements were elevated in swan digesta. None of the concentrations detected in the digesta or livers of the swans was considered toxic, although the concentrations of Cu and Se were high compared to concentrations of these elements reported in other waterfowl. Lead was found to be scavenged by Mn and Fe oxides from the water and deposited on the surface of vegetation at a reference site. Under some environmental chemical conditions, this is an important route of exposure to Pb in waterfowl, not previously recognized. - Lead was scavenged by Mn and Fe oxides and deposited on aquatic vegetation.

  7. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    Science.gov (United States)

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    One of the major water-quality problems in the Chesapeake Bay is an overabundance of nutrients from the streams and rivers that discharge to the Bay. Some of these nutrients are from nonpoint sources such as atmospheric deposition, agricultural manure and fertilizer, and septic systems. The effects of efforts to control nonpoint sources, however, can be difficult to quantify because of the lag time between changes at the land surface and the response in the base-flow (ground water) component of streams. To help resource managers understand the lag time between implementation of management practices and subsequent response in the nutrient concentrations in the base-flow component of streamflow, a study of ground-water discharge, residence time, and nitrate transport in springs throughout the Chesapeake Bay Watershed and in four smaller watersheds in selected hydrogeomorphic regions (HGMRs) was conducted. The four watersheds were in the Coastal Plain Uplands, Piedmont crystalline, Valley and Ridge carbonate, and Valley and Ridge siliciclastic HGMRs.A study of springs to estimate an apparent age of the ground water was based on analyses for concentrations of chlorofluorocarbons in water samples collected from 48 springs in the Chesapeake Bay Watershed. Results of the analysis indicate that median age for all the samples was 10 years, with the 25th percentile having an age of 7 years and the 75th percentile having an age of 13 years. Although the number of samples collected in each HGMR was limited, there did not appear to be distinct differences in the ages between the HGMRs. The ranges were similar between the major HGMRs above the Fall Line (modern to about 50 years), with only two HGMRs of small geographic extent (Piedmont carbonate and Mesozoic Lowland) having ranges of modern to about 10 years. The median values of all the HGMRs ranged from 7 to 11 years. Not enough samples were collected in the Coastal Plain for comparison. Spring samples showed slightly younger

  8. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  9. Zostera marina (eelgrass) growth and survival along a gradient ofnutrients and turbidity in the lower Chesapeake Bay

    Science.gov (United States)

    Moore, K.A.; Neckles, H.A.; Orth, R.J.

    1996-01-01

    Survival of transplanted Zostera marina L. (eelgrass), Z. marina growth,and environmental conditions were studied concurrently at a number of sitesin a southwestern tributary of the Chesapeake Bay to elucidate the factorslimiting macrophyte distribution in this region. Consistent differences insurvival of the transplants were observed, with no long-term survival at anyof the sites that were formerly vegetated with this species but thatcurrently remain unvegetated. Therefore, the current distribution of Z.marina likely represents the extent of suitable environmental conditions inthe region, and the lack of recovery into historically vegetated sites is notsolely due to lack of propagules. Poor long-term survival was related toseasonally high levels of water column light attenuation. Fall transplantsdied by the end of summer following exposure to levels of high springturbidity (K(d) > 3.0). Accumulation of an epiphyte matrix during the latespring (0.36 to 1.14 g g-1 dry wt) may also have contributed to thisstress. Differences in water column nutrient levels among sites during thefall and winter (10 to 15 ??M dissolved inorganic nitrogen and 1 ??Mdissolved inorganic phosphates) had no observable effect on epiphyteaccumulation or macrophyte growth. Salinity effects were minor and there wereno symptoms of disease. Although summertime conditions resulted indepressions in growth, they did not alone limit long-term survival. It issuggested that water quality conditions enhancing adequate seagrass growthduring the spring may be key to long-term Z. marina survival and successfulrecolonization in this region.

  10. Studies of dry deposition of trace elements and diesel soot onto Lake Michigan and the Chesapeake Bay

    International Nuclear Information System (INIS)

    Ondov, J.M.; Caffrey, P.F.; Suarez, A.E.; Han, M.; Borgoul, P.V.

    1995-01-01

    As part of the Atmospheric Exchange Over Lakes and Oceans Study (AEOLOS) study, the University of Maryland participated in four intensive field campaigns, three on Lake Michigan (LM) and one on the Chesapeake Bay (CB), to determine the size distributions of potentially toxic elemental aerosol constituents, determine their sources, and their dry deposition loadings to surface waters. The work further seeks to elucidate the relative importance of constituents of fine- and coarse particles, as differentiation of these modes is essential to the eventual formation of control strategies. Unique components of the UMCP studies include (1) resolution of toxic elemental components of aerosol particles depositing to LM and CB by particle size and by source and (2) a Lake-wide evaluation of the importance of fine and coarse particle deposition to inorganic contamination of LM surface waters. In addition, a unique component of the Baltimore Study was the application of a sensitive iridium tracer to intentionally tag emissions form the City of Baltimore's sanitation truck fleet to tag the Baltimore urban plume and to determine the atmospheric behavior of diesel soot particles, a major source of urban carbon aerosol and the principle carrier of toxic polynuclear aromatic hydrocarbons. The work encompasses results for >40 elements by X-ray fluorescence and instrumental neutron activation analyses of more than 700 individual size-segregated aerosol, deposition, urban dust, and surface-water-suspended particulate samples. An overview of the results of these studies will be presented

  11. The deep biosphere in terrestrial sediments in the Chesapeake Bay area, Virginia, USA

    Directory of Open Access Journals (Sweden)

    Anja eBreuker

    2011-07-01

    Full Text Available For the first time quantitative data on the abundance of Bacteria, Archaea and Eukarya in deep terrestrial sediments are provided using multiple methods (total cell counting, quantitative real-time PCR (Q-PCR and catalyzed reporter deposition – fluorescence in situ hybridization (CARD-FISH. The oligotrophic (organic carbon content of ~ 0.2 % deep terrestrial sediments in the Chesapeake Bay area at Eyreville, Virginia, USA, were drilled and sampled up to a depth of 140 m in 2006. The possibility of contamination during drilling was checked using fluorescent microspheres. Total cell counts decreased from 109 to 106 cells per g dry weight (dw within the uppermost 20 m depth, and did not further decrease with depth below. A significant proportion of the total cell counts could be detected with CARD-FISH within the uppermost 7 m depth. The CARD-FISH numbers for Bacteria were about an order of magnitude higher than those for Archaea. The dominance of Bacteria over Archaea was confirmed by Q-PCR. The down core quantitative distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes as well as functional genes involved in different biogeochemical processes was revealed by Q-PCR for the uppermost 10 m and for 80-140 m depth. Eukarya and the Fe(III- and Mn(IV-reducing bacterial group Geobacteriaceae were almost only found in the uppermost meter (arable soil, where reactive iron was detected in higher amounts. The bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi, highly abundant in marine sediments, were found up to the maximum sampling depth in high copy numbers at this terrestrial site as well. A similar high abundance of the functional gene cbbL encoding for the large subunit of RubisCO suggests that autotrophic microorganisms could be relevant in addition to heterotrophs. The functional gene aprA of sulfate reducing bacteria was found within distinct layers up to ca. 100 m depth

  12. Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake Bay, East Coast, USA.

    Science.gov (United States)

    Rice, Karen C; Hong, Bo; Shen, Jian

    2012-11-30

    Global sea level is rising, and the relative rate in the Chesapeake Bay region of the East Coast of the United States is greater than the worldwide rate. Sea-level rise can cause saline water to migrate upstream in estuaries and rivers, threatening freshwater habitat and drinking-water supplies. The effects of future sea-level rise on two tributaries of Chesapeake Bay, the James and Chickahominy (CHK) Rivers, were evaluated in order to quantify the salinity change with respect to the magnitude of sea-level rise. Such changes are critical to: 1) local floral and faunal habitats that have limited tolerance ranges to salinity; and 2) a drinking-water supply for the City of Newport News, Virginia. By using the three-dimensional Hydrodynamic-Eutrophication Model (HEM-3D), sea-level rise scenarios of 30, 50, and 100 cm, based on the U.S. Climate Change Science Program for the mid-Atlantic region for the 21st century, were evaluated. The model results indicate that salinity increases in the entire river as sea level rises and that the salinity increase in a dry year is greater than that in a typical year. In the James River, the salinity increase in the middle-to-upper river (from 25 to 50 km upstream of the mouth) is larger than that in the lower and upper parts of the river. The maximum mean salinity increase would be 2 and 4 ppt for a sea-level rise of 50 and 100 cm, respectively. The upstream movement of the 10 ppt isohaline is much larger than the 5 and 20 ppt isohalines. The volume of water with salinity between 10 and 20 ppt would increase greatly if sea level rises 100 cm. In the CHK River, with a sea-level rise of 100 cm, the mean salinity at the drinking-water intake 34 km upstream of the mouth would be about 3 ppt in a typical year and greater than 5 ppt in a dry year, both far in excess of the U.S. Environmental Protection Agency's secondary standard for total dissolved solids for drinking water. At the drinking-water intake, the number of days of salinity

  13. Supplemental materials for the ICDP-USGS Eyreville A, B, and C core holes, Chesapeake Bay impact structure: Core-box photographs, coring-run tables, and depth-conversion files

    Science.gov (United States)

    Durand, C.T.; Edwards, L.E.; Malinconico, M.L.; Powars, D.S.

    2009-01-01

    During 2005-2006, the International Continental Scientific Drilling Program and the U.S. Geological Survey drilled three continuous core holes into the Chesapeake Bay impact structure to a total depth of 1766.3 m. A collection of supplemental materials that presents a record of the core recovery and measurement data for the Eyreville cores is available on CD-ROM at the end of this volume and in the GSA Data Repository. The supplemental materials on the CD-ROM include digital photographs of each core box from the three core holes, tables of the three coring-run logs, as recorded on site, and a set of depth-conversion programs. In this chapter, the contents, purposes, and basic applications of the supplemental materials are briefly described. With this information, users can quickly decide if the materials will apply to their specific research needs. ?? 2009 The Geological Society of America.

  14. Empirical models based on the universal soil loss equation fail to predict sediment discharges from Chesapeake Bay catchments.

    Science.gov (United States)

    Boomer, Kathleen B; Weller, Donald E; Jordan, Thomas E

    2008-01-01

    The Universal Soil Loss Equation (USLE) and its derivatives are widely used for identifying watersheds with a high potential for degrading stream water quality. We compared sediment yields estimated from regional application of the USLE, the automated revised RUSLE2, and five sediment delivery ratio algorithms to measured annual average sediment delivery in 78 catchments of the Chesapeake Bay watershed. We did the same comparisons for another 23 catchments monitored by the USGS. Predictions exceeded observed sediment yields by more than 100% and were highly correlated with USLE erosion predictions (Pearson r range, 0.73-0.92; p USLE estimates (r = 0.87; p USLE model did not change the results. In ranked comparisons between observed and predicted sediment yields, the models failed to identify catchments with higher yields (r range, -0.28-0.00; p > 0.14). In a multiple regression analysis, soil erodibility, log (stream flow), basin shape (topographic relief ratio), the square-root transformed proportion of forest, and occurrence in the Appalachian Plateau province explained 55% of the observed variance in measured suspended sediment loads, but the model performed poorly (r(2) = 0.06) at predicting loads in the 23 USGS watersheds not used in fitting the model. The use of USLE or multiple regression models to predict sediment yields is not advisable despite their present widespread application. Integrated watershed models based on the USLE may also be unsuitable for making management decisions.

  15. Food habits of mute swans in the Chesapeake Bay

    Science.gov (United States)

    Perry, M.C.; Osenton, P.C.; Lohnes, E.J.R.; Perry, Matthew C.

    2004-01-01

    Unlike the tundra swan (Cygnus columbianus) that migrate to the Bay for the winter, the mute swan (Cygnus olor) is a year long resident and therefore has raised concerns among research managers over reports of conflicts with nesting native water birds and the consumption of submerged aquatic vegetation (SAV). Although data on the reduction of SAV by nesting mute swans and their offspring during the spring and summer are limited, food-habits data show that mute swans rely heavily on SAV during these months. Analyses of the gullet and gizzard of mute swans indicate that widgeon grass (Ruppia maritima) and eelgrass (Zostera marina) were the most important food items to mute swans during the winter and spring. Other organisms were eaten by mute swans, but represent small percentages of food. Corn (Zea mays) fed to the swans by Bay residents in late winter probably supplements their limited vegetative food resources at that time of year.

  16. Alteration in Solid State Phosphorous With Depth in Sediments Along the Salinity Transition Zone of a Major Chesapeake Bay Tributary

    Science.gov (United States)

    Hartzell, J. L.; Jordan, T. E.

    2006-05-01

    Determining the fate of particulate phosphorus in estuaries is essential for addressing the widespread problem of estuarine eutrophication, and is key to understanding P cycling and developing accurate global P budgets. Prominent reservoirs of P in surficial sediments include particulate P associated with iron or organic C. However, the importance of these reservoirs changes with the decomposition of organic matter and the reduction of iron. Also, the importance of iron bound P may decrease with increasing salinity due to the formation of iron sulfides. To investigate estuarine P burial and its relationship to salinity, we collected sediment cores of one-meter depth along the salinity gradient of the Patuxent River estuary (Maryland, USA), a major tributary of Chesapeake Bay. The sediments were analyzed using a sequential sedimentary extraction procedure that quantifies five separate reservoirs of particulate P. Total phosphorus concentrations in freshwater sediments were significantly higher than those in more saline sediments at all depths. Conversely, porewater phosphate concentrations were significantly lower in freshwater sediments than in the more saline sediments. Total P in the saline sediment cores decreased with depth, correlating to a reduction in iron-bound P. However, we did not find a concurrent increase in authigenic apatite with depth. Our findings indicate that mechanisms controlling changes in P sorption to sediments change profoundly with salinity and may contribute to increased bioavailability of phosphates with increasing salinity.

  17. The deep biosphere in terrestrial sediments in the chesapeake bay area, virginia, USA.

    Science.gov (United States)

    Breuker, Anja; Köweker, Gerrit; Blazejak, Anna; Schippers, Axel

    2011-01-01

    For the first time quantitative data on the abundance of Bacteria, Archaea, and Eukarya in deep terrestrial sediments are provided using multiple methods (total cell counting, quantitative real-time PCR, Q-PCR and catalyzed reporter deposition-fluorescence in situ hybridization, CARD-FISH). The oligotrophic (organic carbon content of ∼0.2%) deep terrestrial sediments in the Chesapeake Bay area at Eyreville, Virginia, USA, were drilled and sampled up to a depth of 140 m in 2006. The possibility of contamination during drilling was checked using fluorescent microspheres. Total cell counts decreased from 10(9) to 10(6) cells/g dry weight within the uppermost 20 m, and did not further decrease with depth below. Within the top 7 m, a significant proportion of the total cell counts could be detected with CARD-FISH. The CARD-FISH numbers for Bacteria were about an order of magnitude higher than those for Archaea. The dominance of Bacteria over Archaea was confirmed by Q-PCR. The down core quantitative distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes as well as functional genes involved in different biogeochemical processes was revealed by Q-PCR for the uppermost 10 m and for 80-140 m depth. Eukarya and the Fe(III)- and Mn(IV)-reducing bacterial group Geobacteriaceae were almost exclusively found in the uppermost meter (arable soil), where reactive iron was detected in higher amounts. The bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi, highly abundant in marine sediments, were found up to the maximum sampling depth in high copy numbers at this terrestrial site as well. A similar high abundance of the functional gene cbbL encoding for the large subunit of RubisCO suggests that autotrophic microorganisms could be relevant in addition to heterotrophs. The functional gene aprA of sulfate reducing bacteria was found within distinct layers up to ca. 100 m depth in low copy numbers

  18. Novel Pelagic Iron-Oxidizing Zetaproteobacteria from the Chesapeake Bay Oxic–Anoxic Transition Zone

    Science.gov (United States)

    Chiu, Beverly K.; Kato, Shingo; McAllister, Sean M.; Field, Erin K.; Chan, Clara S.

    2017-01-01

    Chemolithotrophic iron-oxidizing bacteria (FeOB) could theoretically inhabit any environment where Fe(II) and O2 (or nitrate) coexist. Until recently, marine Fe-oxidizing Zetaproteobacteria had primarily been observed in benthic and subsurface settings, but not redox-stratified water columns. This may be due to the challenges that a pelagic lifestyle would pose for Zetaproteobacteria, given low Fe(II) concentrations in modern marine waters and the possibility that Fe oxyhydroxide biominerals could cause cells to sink. However, we recently cultivated Zetaproteobacteria from the Chesapeake Bay oxic–anoxic transition zone, suggesting that they can survive and contribute to biogeochemical cycling in a stratified estuary. Here we describe the isolation, characterization, and genomes of two new species, Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8, which are the first Zetaproteobacteria isolates from a pelagic environment. We looked for adaptations enabling strains CP-5 and CP-8 to overcome the challenges of living in a low Fe redoxcline with frequent O2 fluctuations due to tidal mixing. We found that the CP strains produce distinctive dreadlock-like Fe oxyhydroxide structures that are easily shed, which would help cells maintain suspension in the water column. These oxides are by-products of Fe(II) oxidation, likely catalyzed by the putative Fe(II) oxidase encoded by the cyc2 gene, present in both CP-5 and CP-8 genomes; the consistent presence of cyc2 in all microaerophilic FeOB and other FeOB genomes supports its putative role in Fe(II) oxidation. The CP strains also have two gene clusters associated with biofilm formation (Wsp system and the Widespread Colonization Island) that are absent or rare in other Zetaproteobacteria. We propose that biofilm formation enables the CP strains to attach to FeS particles and form flocs, an advantageous strategy for scavenging Fe(II) and developing low [O2] microenvironments within more oxygenated waters

  19. Wind-Wave Effects on Vertical Mixing in Chesapeake Bay, USA: comparing observations to second-moment closure predictions.

    Science.gov (United States)

    Fisher, A. W.; Sanford, L. P.; Scully, M. E.

    2016-12-01

    Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer

  20. Trends in nutrients and suspended solids at the Fall Line of five tributaries to the Chesapeake Bay in Virginia, July 1988 through June 1995

    Science.gov (United States)

    Bell, C.F.; Belval, D.L.; Campbell, J.P.

    1996-01-01

    Water-quality samples were collected at the Fall Line of five tributaries to the Chesapeake Bay in Virginia during a 6- to 7-year period. The water-quality data were used to estimate loads of nutrients and suspended solids from these tributaries to the non-tidal part of Chesapeake Bay Basin and to identify trends in water quality. Knowledge of trends in water quality is required to assess the effectiveness of nutrient manage- ment strategies in the five basins. Multivariate log-linear regression and the seasonal Kendall test were used to estimate flow-adjusted trends in constituent concentration and load. Results of multivariate log-linear regression indicated a greater number of statistically significant trends than the seasonal Kendall test; how-ever, when both methods indicated a significant trend, both agreed on the direction of the trend. Interpre- tation of the trend estimates for this report was based on results of the parametric regression method. No significant trends in total nitrogen concentration were detected at the James River monitoring station from July 1988 through June 1995, though total Kjeldahl nitrogen concen- tration decreased slightly in base-flow samples. Total phosphorus concentration decreased about 29 percent at this station during the sampling period. Most of the decrease can be attributed to reductions in point-source phosphorus loads in 1988 and 1989, especially the phosphate detergent ban of 1988. No significant trends in total suspended solids were observed at the James River monitoring station, and no trends in runoff- derived constituents were interpreted for this river. Significant decreases were detected in concentrations of total nitrogen, total Kjeldahl nitrogen, dissolved nitrite-plus-nitrate nitrogen, and total suspended solids at the Rappahannock River monitoring station between July 1988 and June 1995. A similar downward trend in total phosphorus concentration was significant at the 90-percent confidence level, but not the

  1. Upriver transport of dissolved substances in an estuary and sub-estuary system of the lower James River, Chesapeake Bay

    Science.gov (United States)

    Hong, Bo; Shen, Jian; Xu, Hongzhou

    2018-01-01

    The water exchange between the James River and the Elizabeth River, an estuary and sub-estuary system in the lower Chesapeake Bay, was investigated using a 3D numerical model. The conservative passive tracers were used to represent the dissolved substances (DS) discharged from the Elizabeth River. The approach enabled us to diagnose the underlying physical processes that control the expansion of the DS, which is representative of potential transport of harmful algae blooms, pollutants from the Elizabeth River to the James River without explicitly simulating biological processes. Model simulations with realistic forcings in 2005, together with a series of processoriented numerical experiments, were conducted to explore the correlations of the transport process and external forcing. Model results show that the upriver transport depends highly on the freshwater discharge on a seasonal scale and maximum upriver transport occurs in summer with a mean transport time ranging from 15-30 days. The southerly/easterly wind, low river discharge, and neap tidal condition all act to strengthen the upriver transport. On the other hand, the northerly/westerly wind, river pulse, water level pulse, and spring tidal condition act to inhibit the upriver transport. Tidal flushing plays an important role in transporting the DS during spring tide, which shortens the travel time in the lower James River. The multivariable regression analysis of volume mean subtidal DS concentration in the mesohaline portion of the James River indicates that DS concentration in the upriver area can be explained and well predicted by the physical forcings (r = 0.858, p = 0.00001).

  2. Large-Scale Submerged Aquatic Vegetation Restoration in Chesapeake Bay: Status Report, 2003-2006

    Science.gov (United States)

    2008-06-01

    seed injector designed by VIMS, which does not require a gel matrix, has been tested in Spider Crab Bay in Virginia’s Coastal Bays (Figures 13 and 14...seagrasses, contributing to their loss. Additionally, waters landward of restrictive breakwaters tend to be warmer ( blue and red thermometers) than those...marina), (2) wild celery (V. americana), (3) sago pondweed (S. pectinata), and (4) redhead grass (P. perfoliatus). Molecular and cultivation

  3. Ecosystem under pressure: ballast water discharge into Galveston Bay, Texas (USA) from 2005 to 2010.

    Science.gov (United States)

    Steichen, Jamie L; Windham, Rachel; Brinkmeyer, Robin; Quigg, Antonietta

    2012-04-01

    Ballast water exchange processes facilitate the dispersal and unnatural geographic expansion of phytoplankton, including harmful algal bloom species. From 2005 to 2010, over 45,000 vessels (≈ 8000 annually) travelled across Galveston Bay (Texas, USA) to the deep-water ports of Houston (10th largest in the world), Texas City and Galveston. These vessels (primarily tankers and bulkers) discharged ≈ 1.2 × 10(8) metrictons of ballast water; equivalent to ≈ 3.4% of the total volume of the Bay. Over half of the ballast water discharged had a coastwise origin, 96% being from US waters. Galveston Bay has fewer non-indigenous species but receives a higher volume of ballast water discharge, relative to the highly invaded Chesapeake and San Francisco Bays. Given the magnitude of shipping traffic, the role of Galveston Bay, both as a recipient and donor region of non-indigenous phytoplankton species is discussed here in terms of the invasibility risk to this system by way of ballast water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Optimal hydrograph separation using a recursive digital filter constrained by chemical mass balance, with application to selected Chesapeake Bay watersheds

    Science.gov (United States)

    Raffensperger, Jeff P.; Baker, Anna C.; Blomquist, Joel D.; Hopple, Jessica A.

    2017-06-26

    Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased

  5. 77 FR 43822 - Proposed Information Collection Request; Comment Request; Valuing Improved Water Quality in the...

    Science.gov (United States)

    2012-07-26

    ... Request; Comment Request; Valuing Improved Water Quality in the Chesapeake Bay Using Stated Preference... efforts to improve water quality in the Chesapeake Bay. In 2009, Executive Order (E.O.) 13508 re... undertaking a benefits analysis of improvements in Bay water quality under the TMDLs, as well as of ancillary...

  6. Comparison of two regression-based approaches for determining nutrient and sediment fluxes and trends in the Chesapeake Bay watershed

    Science.gov (United States)

    Moyer, Douglas; Hirsch, Robert M.; Hyer, Kenneth

    2012-01-01

    Nutrient and sediment fluxes and changes in fluxes over time are key indicators that water resource managers can use to assess the progress being made in improving the structure and function of the Chesapeake Bay ecosystem. The U.S. Geological Survey collects annual nutrient (nitrogen and phosphorus) and sediment flux data and computes trends that describe the extent to which water-quality conditions are changing within the major Chesapeake Bay tributaries. Two regression-based approaches were compared for estimating annual nutrient and sediment fluxes and for characterizing how these annual fluxes are changing over time. The two regression models compared are the traditionally used ESTIMATOR and the newly developed Weighted Regression on Time, Discharge, and Season (WRTDS). The model comparison focused on answering three questions: (1) What are the differences between the functional form and construction of each model? (2) Which model produces estimates of flux with the greatest accuracy and least amount of bias? (3) How different would the historical estimates of annual flux be if WRTDS had been used instead of ESTIMATOR? One additional point of comparison between the two models is how each model determines trends in annual flux once the year-to-year variations in discharge have been determined. All comparisons were made using total nitrogen, nitrate, total phosphorus, orthophosphorus, and suspended-sediment concentration data collected at the nine U.S. Geological Survey River Input Monitoring stations located on the Susquehanna, Potomac, James, Rappahannock, Appomattox, Pamunkey, Mattaponi, Patuxent, and Choptank Rivers in the Chesapeake Bay watershed. Two model characteristics that uniquely distinguish ESTIMATOR and WRTDS are the fundamental model form and the determination of model coefficients. ESTIMATOR and WRTDS both predict water-quality constituent concentration by developing a linear relation between the natural logarithm of observed constituent

  7. Baybook: A Guide to Reducing Water Pollution at Home.

    Science.gov (United States)

    Citizens Program for the Chesapeake Bay, Inc., Baltimore, MD.

    Developed to increase public awareness of the Chesapeake Bay ecosystem, this guide provides information and suggestions for improving the quality of life in the Bay area. Contents include background information and a "what can you do" section on separate topics related to: (1) resources of the Chesapeake Bay watershed; (2) streambank…

  8. Geologic columns for the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure: Impactites and crystalline rocks, 1766 to 1096 m depth

    Science.gov (United States)

    Horton, J. Wright; Gibson, R.L.; Reimold, W.U.; Wittmann, A.; Gohn, G.S.; Edwards, L.E.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville drill cores from the Chesapeake Bay impact structure provide one of the most complete geologic sections ever obtained from an impact structure. This paper presents a series of geologic columns and descriptive lithologic information for the lower impactite and crystalline-rock sections in the cores. The lowermost cored section (1766-1551 m depth) is a complex assemblage of mica schists that commonly contain graphite and fibrolitic sillimanite, intrusive granite pegmatites that grade into coarse granite, and local zones of mylonitic deformation. This basement-derived section is variably overprinted by brittle cataclastic fabrics and locally cut by dikes of polymict impact breccia, including several suevite dikes. An overlying succession of suevites and lithic impact breccias (1551-1397 m) includes a lower section dominated by polymict lithic impact breccia with blocks (up to 17 m) and boulders of cataclastic gneiss and an upper section (above 1474 m) of suevites and clast-rich impact melt rocks. The uppermost suevite is overlain by 26 m (1397-1371 m) of gravelly quartz sand that contains an amphibolite block and boulders of cataclasite and suevite. Above the sand, a 275-m-thick allochthonous granite slab (1371-1096 m) includes gneissic biotite granite, fine- and medium-to-coarse-grained biotite granites, and red altered granite near the base. The granite slab is overlain by more gravelly sand, and both are attributed to debris-avalanche and/or rockslide deposition that slightly preceded or accompanied seawater-resurge into the collapsing transient crater. ?? 2009 The Geological Society of America.

  9. Predicting redox conditions in groundwater at a regional scale

    Science.gov (United States)

    Tesoriero, Anthony J.; Terziotti, Silvia; Abrams, Daniel B.

    2015-01-01

    Defining the oxic-suboxic interface is often critical for determining pathways for nitrate transport in groundwater and to streams at the local scale. Defining this interface on a regional scale is complicated by the spatial variability of reaction rates. The probability of oxic groundwater in the Chesapeake Bay watershed was predicted by relating dissolved O2 concentrations in groundwater samples to indicators of residence time and/or electron donor availability using logistic regression. Variables that describe surficial geology, position in the flow system, and soil drainage were important predictors of oxic water. The probability of encountering oxic groundwater at a 30 m depth and the depth to the bottom of the oxic layer were predicted for the Chesapeake Bay watershed. The influence of depth to the bottom of the oxic layer on stream nitrate concentrations and time lags (i.e., time period between land application of nitrogen and its effect on streams) are illustrated using model simulations for hypothetical basins. Regional maps of the probability of oxic groundwater should prove useful as indicators of groundwater susceptibility and stream susceptibility to contaminant sources derived from groundwater.

  10. Assessing the paradigm of mutually exclusive erosion and deposition of mud, with examples from upper Chesapeake Bay

    Science.gov (United States)

    Sanford, L.P.; Halka, J.P.

    1993-01-01

    A paradigm of cohesive sediment transport research is that erosion and deposition are mutually exclusive. Many laboratory studies have shown that there is a velocity/stress threshold below which erosion does not occur and a lower threshold above which deposition does not occur. In contrast, a deposition threshold is not included in standard noncohesive sediment transport models, allowing erosion and deposition to occur simultaneously. Several researchers have also modeled erosion and deposition of mud without a deposition threshold. This distinction can have important implications for suspended sediment transport predictions and for data interpretation. Model-data comparisons based on observations of in situ erosion and deposition of upper Chesapeake Bay mud indicate poor agreement when the sediments are modeled as a single resuspended particle class and mutually exclusive erosion and deposition is assumed. The total resuspended sediment load increases in conjunction with increasing bottom shear stress as anticipated, but deposition is initiated soon after the shear stress begins to decrease and long before the stress falls below the value at which erosion had previously begun. Models assuming no critical stress for deposition, with continuous deposition proportional to the near bottom resuspended sediment concentration, describe the data better. Empirical parameter values estimated from these model fits are similar to other published values for estuarine cohesive sediments, indicating significantly greater erodability for higher water content surface sediments and settling velocities appropriate for large estuarine flocs. The apparent failure of the cohesive paradigm when applied to in situ data does not mean that the concept of a critical stress for deposition is wrong. Two possibilities for explaining the observed discrepancies are that certain aspects of in situ conditions have not been replicated in the laboratory experiments underlying the cohesive paradigm

  11. The distribution of phosphorus in Popes Creek, VA, and in the Pocomoke River, MD: Two watersheds with different land management practices in the Chesapeake Bay Basin

    Science.gov (United States)

    Simon, N.S.; Bricker, O.P.; Newell, W.; McCoy, J.; Morawe, R.

    2005-01-01

    This paper compares phosphorus (P) concentrations in sediments from two watersheds, one with, and one without, intensive animal agriculture. The watersheds are in the coastal plain of the Chesapeake Bay and have similar physiographic characteristics. Agriculture in the Pocomoke River, MD, watershed supplied 2.7 percent of all broiler chickens produced in the USA in 1997. Poultry litter is an abundant, local source of manure for crops. Broiler chickens are not produced in the Popes Creek, VA, watershed and poultry manure is, therefore, not a major source of fertilizer. The largest concentrations of P in sediment samples are found in floodplain and main-stem bottom sediment in both watersheds. Concentrations of total P and P extracted with 1N HCl are significantly larger in main-stem bottom sediments from the Pocomoke River than in main-stem bottom sediments from Popes Creek. Larger concentrations of P are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Pocomoke River watershed than are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Popes Creek watershed. Data for P and iron (Fe) concentrations in sediments from the Popes Creek watershed provide a numerical framework (baseline) with which to compare P and Fe concentrations in sediment from the Pocomoke River watershed. ?? Springer 2005.

  12. Impact of Environment and Ontogeny on Relative Fecundity and Egg Quality of Female Oysters (Crassostrea virginica) from Four Sites in Northern Chesapeake Bay.

    Science.gov (United States)

    Glandon, Hillary Lane; Michaelis, Adriane K; Politano, Vincent A; Alexander, Stephanie T; Vlahovich, Emily A; Reece, Kimberly S; Koopman, Heather N; Meritt, Donald W; Paynter, Kennedy T

    2016-12-01

    Resource allocation to reproduction is a primary physiological concern for individuals, and can vary with age, environment, or a combination of both factors. In this study we quantified the impact of environment and individual age on the reproductive output of female oysters Crassostrea virginica. We determined the relative fecundity, egg total lipid content, and overall and omega-3/omega-6 (ω3/ω6) fatty acid signatures (FAS) of eggs spawned by female oysters over a 2-year period (n = 32 and n = 64). Variation was quantified spatially and ontogenetically by sampling young and old oyster populations from two rivers in Chesapeake Bay, totaling four collection sites. During Year 1, when oysters underwent oogenesis in different locations, overall and ω3/ω6 egg FAS varied significantly by river, with no significant differences observed in the FAS of oysters by age in Year 1. In Year 2, when oysters from different sites underwent oogenesis in a single location, no significant differences in the overall egg FAS or ω3/ω6 egg FAS by river or age were observed. These findings suggest that oysters integrate environment into their reproductive output, but that time spent growing at a specific location (in this case, represented by oyster age) plays a relatively minor role in the biochemical composition of oyster eggs. These results have consequences for our understanding of how resources are allocated from the female oyster to eggs and, more generally, the impact of environment and ontogeny on reproductive physiology.

  13. The Pennsylvania Phosphorus Index and TopoSWAT: A comparison of transport components and approaches

    Science.gov (United States)

    The regional Chesapeake Bay Conservation Innovation Grant Initiative includes comparison of TopoSWAT results and Phosphorus Index (P Index) evaluations of eight study watersheds throughout the Chesapeake Bay watershed. While similarities exist between the P Index and TopoSWAT, further comparison of ...

  14. Chesapeake Bay Tidal Flooding Study. Appendix D. Social and Cultural Resources. Appendix E. Engineering Design and Cost Estimates. Appendix F. Economics.

    Science.gov (United States)

    1984-09-01

    provided by private airline. Facilities and services include fuel, storage and outside tiedown, instruction, rental planes, unicorn radio and aircraft...project the population to grow between 41 and 44.5 percent from 1980 to 2030. The greatest increases in population are anticipated for Chesapeake and...VIRGINIA DEMOGRAPHIC CHARACTERISTICS Poquoson has been one of the fastest growing cities in Virginia over the past 20 years. While the surrounding

  15. Deficient plakophilin-1 expression due to a mutation in PKP1 causes ectodermal dysplasia-skin fragility syndrome in Chesapeake Bay retriever dogs.

    Directory of Open Access Journals (Sweden)

    Thierry Olivry

    Full Text Available In humans, congenital and hereditary skin diseases associated with epidermal cell-cell separation (acantholysis are very rare, and spontaneous animal models of these diseases are exceptional. Our objectives are to report a novel congenital acantholytic dermatosis that developed in Chesapeake Bay retriever dogs. Nine affected puppies in four different litters were born to eight closely related clinically normal dogs. The disease transmission was consistent with an autosomal recessive mode of inheritance. Clinical signs occurred immediately after birth with superficial epidermal layers sloughing upon pressure. At three month of age, dogs exhibited recurrent superficial skin sloughing and erosions at areas of friction and mucocutaneous junctions; their coat was also finer than normal and there were patches of partial hair loss. At birth, histopathology revealed severe suprabasal acantholysis, which became less severe with ageing. Electron microscopy demonstrated a reduced number of partially formed desmosomes with detached and aggregated keratin intermediate filaments. Immunostaining for desmosomal adhesion molecules revealed a complete lack of staining for plakophilin-1 and anomalies in the distribution of desmoplakin and keratins 10 and 14. Sequencing revealed a homozygous splice donor site mutation within the first intron of PKP1 resulting in a premature stop codon, thereby explaining the inability to detect plakophilin-1 in the skin. Altogether, the clinical and pathological findings, along with the PKP1 mutation, were consistent with the diagnosis of ectodermal dysplasia-skin fragility syndrome with plakophilin-1 deficiency. This is the first occurrence of ectodermal dysplasia-skin fragility syndrome in an animal species. Controlled mating of carrier dogs would yield puppies that could, in theory, be tested for gene therapy of this rare but severe skin disease of children.

  16. Spatial Predictive Modeling and Remote Sensing of Land Use Change in the Chesapeake Bay Watershed

    Science.gov (United States)

    Goetz, Scott J.; Bockstael, Nancy E.; Jantz, Claire A.

    2005-01-01

    This project was focused on modeling the processes by which increasing demand for developed land uses, brought about by changes in the regional economy and the socio-demographics of the region, are translated into a changing spatial pattern of land use. Our study focused on a portion of the Chesapeake Bay Watershed where the spatial patterns of sprawl represent a set of conditions generally prevalent in much of the U.S. Working in the region permitted us access to (i) a time-series of multi-scale and multi-temporal (including historical) satellite imagery and (ii) an established network of collaborating partners and agencies willing to share resources and to utilize developed techniques and model results. In addition, a unique parcel-level tax assessment database and linked parcel boundary maps exists for two counties in the Maryland portion of this region that made it possible to establish a historical cross-section time-series database of parcel level development decisions. Scenario analyses of future land use dynamics provided critical quantitative insight into the impact of alternative land management and policy decisions. These also have been specifically aimed at addressing growth control policies aimed at curbing exurban (sprawl) development. Our initial technical approach included three components: (i) spatial econometric modeling of the development decision, (ii) remote sensing of suburban change and residential land use density, including comparisons of past change from Landsat analyses and more traditional sources, and (iii) linkages between the two through variable initialization and supplementation of parcel level data. To these we added a fourth component, (iv) cellular automata modeling of urbanization, which proved to be a valuable addition to the project. This project has generated both remote sensing and spatially explicit socio-economic data to estimate and calibrate the parameters for two different types of land use change models and has

  17. Chemical characterization of soil organic matter in a Chesapeake Bay salt marsh: analyzing microbial and vegetation inputs to SOM

    Science.gov (United States)

    Bye, E.; Schreiner, K. M.; Abdulla, H. A.; Minor, E. C.; Guntenspergen, G. R.

    2017-12-01

    Coastal wetlands play a critical role in the global carbon cycle. These ecosystems sequester and store carbon, known as "blue carbon," at a rate two or three orders of magnitude larger than other terrestrial ecosystems, such as temperate, tropical, and boreal forests. Anthropogenic changes to the climate are threatening blue carbon stores in coastal wetland ecosystems. To understand and predict how these important carbon stores will be affected by anthropogenic climate changes, it is necessary to understand the formation and preservation of soil organic matter (SOM) in these ecosystems. This study will present organic geochemical data from two sediment cores collected from the Smithsonian Environmental Research Center site on a salt marsh in Maryland along the Chesapeake Bay. One core is from a location that recently transitioned from a C4 to C3 plant regime, currently dominated by the sedge Shoenplectis americanus. The second core is from a C4 plant (Spartina patens) dominated location in the marsh. The organic geochemistry of these 100 cm deep sediment cores was studied through multiple bulk analyses including stable isotopes, elemental ratios, Fourier-transform infrared spectroscopy (FTIR), solid-state magic-angle-spinning Nuclear Magnetic Resonance (NMR), and compound specific lignin-phenol analysis. By using comprehensive chemical characterization techniques, this study aims to discern between vegetation- and microbially-derived inputs to SOM in blue carbon ecosystems. The results show a general increase in the aromatic content with a concomitant decrease of carbohydrates with depth in both cores. However, substantial differences between the two cores, indicates differing inputs and/or stabilization mechanisms within SOM formed from different vegetation regimes. Further compound specific work will help to elucidate the specific source of compounds within each compound class, in surface and deep SOM, and additionally can help provide evidence for different

  18. 77 FR 2317 - Captain John Smith Chesapeake National Historic Trail Advisory Council

    Science.gov (United States)

    2012-01-17

    ... DEPARTMENT OF THE INTERIOR National Park Service Captain John Smith Chesapeake National Historic... that the Advisory Committee on the Captain John Smith Chesapeake National Historic Trail will hold a... Columbia,'' tracing the 1607-1609 voyages of Captain John Smith to chart the land and waterways of the...

  19. Watershed Outreach Professionals' Behavior Change Practices, Challenges, and Needs

    Science.gov (United States)

    Kelly, Meghan; Little, Samuel; Phelps, Kaitlin; Roble, Carrie; Zint, Michaela

    2012-01-01

    This study investigated the practices, challenges, and needs of Chesapeake Bay watershed outreach professionals, as related to behavior change strategies and best outreach practices. Data were collected through a questionnaire e-mailed to applicants to the Chesapeake Bay Trust's environmental outreach grant program (n = 108, r = 56%). Almost all…

  20. 75 FR 27552 - Guidance for Federal Land Management in the Chesapeake Bay Watershed

    Science.gov (United States)

    2010-05-17

    ... will allow the federal government to lead the way in protecting the Bay and its watershed with the most effective tools and practices available to reduce water pollution from a variety of nonpoint sources... describe ``proven cost-effective tools and practices that reduce water pollution'' that are appropriate to...

  1. Scientific and technical advisory committee review of the nutrient inputs to the watershed model

    Science.gov (United States)

    The following is a report by a STAC Review Team concerning the methods and documentation used by the Chesapeake Bay Partnership for evaluation of nutrient inputs to Phase 6 of the Chesapeake Bay Watershed Model. The “STAC Review of the Nutrient Inputs to the Watershed Model” (previously referred to...

  2. Pleural fluid drainage: Percutaneous catheter drainage versus surgical chest tube drainage

    International Nuclear Information System (INIS)

    Illescas, F.F.; Reinhold, C.; Atri, M.; Bret, P.M.

    1987-01-01

    Over the past 4 years, 55 cases (one transudate, 28 exudates, and 26 empymas) were drained. Surgical chest tubes alone were used in 35 drainages, percutaneous catheters alone in five drainages, and both types in 15 drainages. Percutaneous catheter drainage was successful in 12 of 20 drainages (60%). Surgical tube drainage was successful in 18 of 50 drainages (36%). The success rate for the nonempyema group was 45% with both types of drainage. For the empyema group, the success rate for percutaneous catheter drainage was 66% vs 23% for surgical tube drainage. Seven major complications occurred with surgical tube drainage, but only one major complication occurred with percutaneous catheter drainage. Radiologically guided percutaneous catheter drainage should be the procedure of choice for pleural fluid drainage. It has a higher success rate for empyemas and is associated with less complications

  3. Atmospheric behavior of urban diesel soot tagged with an iridium tracer

    International Nuclear Information System (INIS)

    Suarez, A.E.; Caffrey, P.F.; Borgoul, P.V.; Ondov, J.M.

    1995-01-01

    An important source of polynuclear aromatic hydrocarbons depositing to the Chesapeake Bay is diesel emissions, including, those from the heavily-industrial City of Baltimore which lies 3 of diesel fuel burned by the City of Baltimore's sanitation truck fleet for a 20-day period in August, 1995. Size-segregated aerosol was collected daily using 80-L min -1 dichotomous samplers at four land-bas3ed sites and aboard ship at two locations on the Chesapeake Bay. Shipboard samples were collected on the EPA's Research Vessel Anderson, either east or southeast of Baltimore, off Annapolis. Three of the land sites, i.e., those at Catonsville, MD, the Eastern Avenue Fire Station (14 km from the Bay), and the Coast Guard Station at Still pond (30 km northeast of Baltimore) were chosen to be aligned with prevailing westerly winds. The fourth site was located on Hart Miller Island, about 14 km southeast of the Fire Station to take advantage of drainage flow along the Patapsco River. In addition, 10-stage Micro-Orifice Impactors were operated daily aboard ship and at all but the Catonsville site. Deposition plates were exposed aboard ship and at two of the land sites. Finally, several samples of tagged diesel emissions were collected with an MOI mounted on one of the sanitation trucks. Iridium and ≤ 40 other elements were determined by neutron activation analysis or X-ray fluorescence; graphitic carbon by light transmission, and aerosol mass by gravimetry

  4. Towards a sustainable future in Hudson Bay

    International Nuclear Information System (INIS)

    Okrainetz, G.

    1991-01-01

    To date, ca $40-50 billion has been invested in or committed to hydroelectric development on the rivers feeding Hudson Bay. In addition, billions more have been invested in land uses such as forestry and mining within the Hudson Bay drainage basin. However, there has never been a study of the possible impacts on Hudson Bay resulting from this activity. Neither has there been any federal environmental assessment on any of the economic developments that affect Hudson Bay. To fill this gap in knowledge, the Hudson Bay Program was established. The program will not conduct scientific field research but will rather scan the published literature and consult with leading experts in an effort to identify biophysical factors that are likely to be significantly affected by the cumulative influence of hydroelectric and other developments within and outside the region. An annotated bibliography on Hudson Bay has been completed and used to prepare a science overview paper, which will be circulated for comment, revised, and used as the basis for a workshop on cumulative effects in Hudson Bay. Papers will then be commissioned for a second workshop to be held in fall 1993. A unique feature of the program is its integration of traditional ecological knowledge among the Inuit and Cree communities around Hudson Bay with the scientific approach to cumulative impact assessment. One goal of the program is to help these communities bring forward their knowledge in such a way that it can be integrated into the cumulative effects assessment

  5. 77 FR 64980 - Chesapeake Renewable Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2012-10-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-28-000] Chesapeake Renewable Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding of Chesapeake Renewable Energy LLC's application for market-based rate authority, with an...

  6. A reevaluation of the late quaternary sedimentation in todos os Santos Bay (BA, Brazil

    Directory of Open Access Journals (Sweden)

    GUILHERME C. LESSA

    2000-12-01

    Full Text Available Todos os Santos Bay is a large ( 1000 km², structurally controlled tidal bay in northeast Brazil. Three main drainage basins debouch into the bay, providing a mean freshwater discharge of 200 m³/s (prior to 1985, or less than 1% of the spring tidal discharge through the bay mouth. Based on the result of several sedimentological studies performed in the 1970's, five surface sedimentary facies were identified inside the bay, namely i transgressive siliciclastic marine sand facies; ii transgressive bay sand-mud facies; iii a transgressive carbonate marine sand facies; iv regressive bay-mud facies, and v regressive fluvial sand facies. The spatial distribution of these facies would follow, somewhat closely, the hydrodynamic-energy distribution inside the bay. Seismic profiles along the bay bottom indicate the existence of several paleochannels, 5-10 m deep, blanketed at least by three different sedimentary units. The topmost sedimentary unit, 5-20 m thick, appears to be associated with the regressive bay-mud facies, and assuming that it was laid down within the last 5000 years, sedimentation rates for the central and northeastern part of the bay would average at 2,4 mm/y.

  7. Using Milk Urea Nitrogen to Evaluate Diet Formulation and Environmental Impact on Dairy Farms

    Directory of Open Access Journals (Sweden)

    J.S. Jonker

    2001-01-01

    Full Text Available Reducing nitrogen (N excretion by dairy cattle is the most effective means to reduce N losses (runoff, volatilization, and leaching from dairy farms. The objectives of this review are to examine the use of milk urea nitrogen (MUN to measure N excretion and utilization efficiency in lactating dairy cows and to examine impacts of overfeeding N to dairy cows in the Chesapeake Bay drainage basin. A mathematical model was developed and evaluated with an independent literature data set to integrate MUN and milk composition to predict urinary and fecal excretion, intake, and utilization efficiency for N in lactating dairy cows. This model was subsequently used to develop target MUN concentrations for lactating dairy cattle fed according to National Research Council (NRC recommendations. Target values calculated in this manner were 8 to 14 mg/dl for a typical lactation and were most sensitive to change in milk production and crude protein intake. Routine use of MUN to monitor dairy cattle diets was introduced to dairy farms (n = 1156 in the Chesapeake Bay watershed. Participating farmers (n = 454 were provided with the results of their MUN analyses and interpretive information monthly for a period of 6 months. The average MUN across all farms in the study increased in the spring, but the increase was 0.52 mg/dl lower for farmers receiving MUN results compared to those who did not participate in the program. This change indicated that participating farmers reduced N feeding compared to nonparticipants. Average efficiency of feed N utilization (N in milk / N in feed x 100 was 24.5% (SD = 4.5. On average, farmers fed 6.6% more N than recommended by the NRC, resulting in a 16% increase in urinary N and a 2.7% increase in fecal N compared to feeding to requirement. N loading to the Chesapeake Bay from overfeeding protein to lactating dairy cattle was estimated to be 7.6 million kg/year. MUN is a useful tool to measure diet adequacy and environmental impact

  8. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  9. Spatial variations in water composition at a northern Canadian lake impacted by mine drainage

    International Nuclear Information System (INIS)

    Moncur, M.C.; Ptacek, C.J.; Blowes, D.W.; Jambor, J.L.

    2006-01-01

    Release of acid drainage from mine-waste disposal areas is a problem of international scale. Contaminated surface water, derived from mine wastes, originates both as direct surface runoff and, indirectly, as subsurface groundwater flow. At Camp Lake, a small Canadian Shield lake that is in northern Manitoba and is ice-covered 6 months of the year, direct and indirect release of drainage from an adjacent sulfide-rich tailings impoundment has severely affected the quality of the lake water. Concentrations of the products from sulfide oxidation are extremely high in the pore waters of the tailings impoundment. Groundwater and surface water derived from the impoundment discharge into a semi-isolated shallow bay in Camp Lake. The incorporation of this aqueous effluent has altered the composition of the lake water, which in turn has modified the physical limnology of the lake. Geochemical profiles of the water column indicate that, despite its shallow depth (6 m), the bay is stratified throughout the year. The greatest accumulation of dissolved metals and SO 4 is in the lower portion of the water column, with concentrations up to 8500 mg L -1 Fe, 20,000 mg L -1 SO 4 , 30 mg L -1 Zn, 100 mg L -1 Al, and elevated concentrations of Cu, Cd, Pb and Ni. Meromictic conditions and very high solute concentrations are limited to the bay. Outside the bay, solute concentrations are lower and some stratification of the water column exists. Identification of locations and composition of groundwater discharge relative to lake bathymetry is a fundamental aspect of understanding chemical evolution and physical stability of mine-impacted lakes

  10. Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USA.

    Science.gov (United States)

    Wagena, Moges B; Collick, Amy S; Ross, Andrew C; Najjar, Raymond G; Rau, Benjamin; Sommerlot, Andrew R; Fuka, Daniel R; Kleinman, Peter J A; Easton, Zachary M

    2018-05-16

    Nutrient export from agricultural landscapes is a water quality concern and the cause of mitigation activities worldwide. Climate change impacts hydrology and nutrient cycling by changing soil moisture, stoichiometric nutrient ratios, and soil temperature, potentially complicating mitigation measures. This research quantifies the impact of climate change and climate anomalies on hydrology, nutrient cycling, and greenhouse gas emissions in an agricultural catchment of the Chesapeake Bay watershed. We force a calibrated model with seven downscaled and bias-corrected regional climate models and derived climate anomalies to assess their impact on hydrology and the export of nitrate (NO 3 -), phosphorus (P), and sediment, and emissions of nitrous oxide (N 2 O) and di-nitrogen (N 2 ). Model-average (±standard deviation) results indicate that climate change, through an increase in precipitation and temperature, will result in substantial increases in winter/spring flow (10.6 ± 12.3%), NO 3 - (17.3 ± 6.4%), dissolved P (32.3 ± 18.4%), total P (24.8 ± 16.9%), and sediment (25.2 ± 16.6%) export, and a slight increases in N 2 O (0.3 ± 4.8%) and N 2 (0.2 ± 11.8%) emissions. Conversely, decreases in summer flow (-29.1 ± 24.6%) and the export of dissolved P (-15.5 ± 26.4%), total P (-16.3 ± 20.7%), sediment (-20.7 ± 18.3%), and NO 3 - (-29.1 ± 27.8%) are driven by greater evapotranspiration from increasing summer temperatures. Decreases in N 2 O (-26.9 ± 15.7%) and N 2 (-36.6 ± 22.9%) are predicted in the summer and driven by drier soils. While the changes in flow are related directly to changes in precipitation and temperature, the changes in nutrient and sediment export are, to some extent, driven by changes in agricultural management that climate change induces, such as earlier spring tillage and altered nutrient application timing and by alterations to nutrient cycling in the soil. Copyright © 2018

  11. Impact of Hurricane Irene on Vibrio vulnificus and Vibrio parahaemolyticus concentrations in surface water, sediment and cultured oysters in the Chesapeake Bay, Maryland, USA

    Directory of Open Access Journals (Sweden)

    Kristi S Shaw

    2014-05-01

    Full Text Available To determine if a storm event (i.e., high winds, large volumes of precipitation could alter concentrations of Vibrio vulnificus and Vibrio parahaemolyticus in aquacultured oysters (Crassostrea virginica and associated surface water and sediment, this study followed a sampling timeline before and after Hurricane Irene impacted the Chesapeake Bay estuary in late August 2011. Aquacultured oysters were sampled from two levels in the water column: surface 0.3 m and near-bottom just above the sediment. Concentrations of each Vibrio spp. and associated virulence genes were measured in oysters with a combination of real-time PCR and most probable number enrichment methods, and in sediment and surface water with real-time PCR. While concentration shifts of each Vibrio species were apparent post-storm, statistical tests indicated no significant change in concentration change for either Vibrio species by location (surface or near bottom oysters or date sampled (oyster tissue, surface water and sediment concentrations. V. vulnificus in oyster tissue was correlated with total suspended solids (r=0.41, p=0.04, and V. vulnificus in sediment was correlated with secchi depth (r=-0.93, p< 0.01, salinity (r=-0.46, p=0.02, tidal height (r=-0.45, p=0.03, and surface water V. vulnificus (r=0.98, p< 0.01. V. parahaemolyticus in oyster tissue did not correlate with environmental measurements, but V. parahaemolyticus in sediment and surface water correlated with several measurements including secchi depth (r=-0.48, p=0.02[sediment]; r=-0.97 p< 0.01[surface water] and tidal height (r=-0.96. p< 0.01[sediment], r=-0.59,p< 0.01 [surface water]. The concentrations of Vibrio spp. were higher in oysters relative to other studies (average V. vulnificus 4x105 MPN g-1, V. parahaemolyticus 1x105 MPN g-1, and virulence-associated genes were detected in most oyster samples. This study provides a first estimate of storm-related Vibrio density changes in oyster tissues, sediment and

  12. Behaviour of uranium during mixing in the Delaware and Chesapeake estuaries

    International Nuclear Information System (INIS)

    Sarin, M.M.; Church, T.M.

    1994-01-01

    Unequivocal evidence is presented for the removal of uranium in two major estuarine systems of the north-eastern United States: the Delaware and Chesapeake Bays. In both the estuaries, during all seasons but mostly in summer, dissolved uranium shows distinctly non-conservative behaviour at salinities ≤ 5. At salinities above 5, there are no deviations from the ideal dilution line. In these two estuaries as much as 22% of dissolved uranium is removed at low salinities, around salinity 2. This pronounced removal of uranium observed at low salinities has been investigated in terms of other chemical properties measured in the Delaware Estuary. In the zone of uranium removal, dissolved oxygen is significantly depleted and pH goes through a minimum down to 6.8. In the same low salinity regime, total alkalinity shows negative deviation from the linear dilution line and phosphate is removed. Humic acids, dissolved iron and manganese are also rapidly removed during estuarine mixing in this low salinity region. Thus, it appears that removal of uranium is most likely related to those properties of alkalinity and acid-base system of the upper estuary that may destabilize the uranium-carbonate complex. Under these conditions, uranium may associate strongly with phosphates or humic substances and be removed onto particulate phases and deposited within upper estuarine sediments. (author)

  13. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville-B core, Chesapeake Bay impact structure

    Science.gov (United States)

    Townsend, Gabrielle N.; Gibson, Roger L.; Horton, J. Wright; Reimold, Wolf Uwe; Schmitt, Ralf T.; Bartosova, Katerina

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ± fibrolite ± garnet ± tourmaline ± pyrite ± rutile ± pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite-K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase-quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ± biotite ± garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ± muscovite ± pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ± epidote ± amphibole. The lower basement-derived section and both megablocks exhibit similar middle- to upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafic source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites.

  14. Pre-impact tectonothermal evolution of the crystalline basement-derived rocks in the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure

    Science.gov (United States)

    Gibson, R.L.; Townsend, G.N.; Horton, J. Wright; Reimold, W.U.

    2009-01-01

    Pre-impact crystalline rocks of the lowermost 215 m of the Eyreville B drill core from the Chesapeake Bay impact structure consist of a sequence of pelitic mica schists with subsidiary metagraywackes or felsic metavolcanic rocks, amphibolite, and calc-silicate rock that is intruded by muscovite (??biotite, garnet) granite and granite pegmatite. The schists are commonly graphitic and pyritic and locally contain plagioclase porphyroblasts, fi brolitic sillimanite, and garnet that indicate middle- to upper-amphibolite-facies peak metamorphic conditions estimated at ??0.4-0.5 GPa and 600-670 ??C. The schists display an intense, shallowly dipping, S1 composite shear foliation with local micrometer- to decimeter-scale recumbent folds and S-C' shear band structures that formed at high temperatures. Zones of chaotically oriented foliation, resembling breccias but showing no signs of retrogression, are developed locally and are interpreted as shear-disrupted fold hinges. Mineral textural relations in the mica schists indicate that the metamorphic peak was attained during D1. Fabric analysis indicates, however, that subhorizontal shear deformation continued during retrograde cooling, forming mylonite zones in which high-temperature shear fabrics (S-C and S-C') are overprinted by progressively lower- temperature fabrics. Cataclasites and carbonate-cemented breccias in more competent lithologies such as the calc-silicate unit and in the felsic gneiss found as boulders in the overlying impactite succession may refl ect a fi nal pulse of low-temperature cataclastic deformation during D1. These breccias and the shear and mylonitic foliations are cut by smaller, steeply inclined anastomosing fractures with chlorite and calcite infill (interpreted as D2). This D2 event was accompanied by extensive chlorite-sericitecalcite ?? epidote retrogression and appears to predate the impact event. Granite and granite pegmatite veins display local discordance to the S1 foliation, but elsewhere

  15. Riverine organic matter composition and fluxes to Hudson Bay

    Science.gov (United States)

    Kuzyk, Z. Z. A.; Macdonald, R. W.; Goni, M. A.; Godin, P.; Stern, G. A.

    2016-12-01

    With warming in northern regions, many changes including permafrost degradation, vegetation alteration, and wildfire incidence will impact the carbon cycle. Organic carbon (OC) carried by river runoff to northern oceans has the potential to provide integrated evidence of these impacts. Here, concentrations of dissolved (DOC) and particulate (POC) OC are used to estimate terrestrial OC transport in 17 major rivers draining varied vegetative and permafrost conditions into Hudson Bay and compositional data (lignin and 14C) to infer OC sources. Hudson Bay lies just south of the Arctic Circle in Canada and is surrounded by a large drainage basin (3.9 × 106 km2) dominated by permafrost. Analysis of POC and DOC in the 17 rivers indicates that DOC dominates the total OC load. The southern rivers dominate. The Nelson and Churchill Rivers to the southwest are particularly important suppliers of OC partly because of large drainage basins but also perhaps because of impacts by hydroelectric development, as suggested by a 14C age of DOC in the Churchill River of 2800 years. Higher DOC and POC concentrations in the southern rivers, which have substantive areas only partially covered by permafrost, compared to northern rivers draining areas with complete permafrost cover, implies that warming - and hence permafrost thawing - will lead to progressively higher DOC and POC loads for these rivers. Lignin composition in the organic matter (S/V and C/V ratios) reveals mixed sources of OC consistent with the dominant vegetation in the river basins. This vegetation is organized by latitude with southern regions below the tree line enriched by woody gymnosperm sources (boreal forest) and northern regions enriched with organic matter from non-woody angiosperms (flowering shrubs, tundra). Acid/Aldehyde composition together with Δ14C data for selected DOC samples suggest that most of the lignin has undergone oxidative degradation, particularly the DOC component. However, high Δ14C ages

  16. Examination of contaminant exposure and reproduction of ospreys (Pandion haliaetus) nesting in Delaware Bay and River in 2015.

    Science.gov (United States)

    Rattner, Barnett A; Lazarus, Rebecca S; Bean, Thomas G; McGowan, Peter C; Callahan, Carl R; Erickson, Richard A; Hale, Robert C

    2018-05-22

    A study of ospreys (Pandion haliaetus) nesting in the coastal Inland Bays of Delaware, and the Delaware Bay and Delaware River in 2015 examined spatial and temporal trends in contaminant exposure, food web transfer and reproduction. Concentrations of organochlorine pesticides and metabolites, polychlorinated biphenyls (PCBs), coplanar PCB toxic equivalents, polybrominated diphenyl ethers (PBDEs) and other flame retardants in sample eggs were generally greatest in the Delaware River. Concentrations of legacy contaminants in 2015 Delaware Bay eggs were lower than values observed in the 1970s through early 2000s. Several alternative brominated flame retardants were rarely detected, with only TBPH [bis(2-ethylhexyl)-tetrabromophthalate)] present in 5 of 27 samples at <5 ng/g wet weight. No relation was found between p,p'-DDE, total PCBs or total PBDEs in eggs with egg hatching, eggs lost from nests, nestling loss, fledging and nest success. Osprey eggshell thickness recovered to pre-DDT era values, and productivity was adequate to sustain a stable population. Prey fish contaminant concentrations were generally less than those in osprey eggs, with detection frequencies and concentrations greatest in white perch (Morone americana) from Delaware River compared to the Bay. Biomagnification factors from fish to eggs for p,p'-DDE and total PCBs were generally similar to findings from several Chesapeake Bay tributaries. Overall, findings suggest that there have been improvements in Delaware Estuary waterbird habitat compared to the second half of the 20th century. This trend is in part associated with mitigation of some anthropogenic contaminant threats. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville B core, Chesapeake Bay impact structure, USA

    Science.gov (United States)

    Townsend, G.N.; Gibson, R.L.; Horton, J. Wright; Reimold, W.U.; Schmitt, R.T.; Bartosova, K.

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ?? fibrolite ?? garnet ?? tourmaline ?? pyrite ?? rutile ?? pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite- K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase- quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ?? biotite ?? garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ?? muscovite ?? pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ?? epidote ?? amphibole. The lower basement-derived section and both megablocks exhibit similar middleto upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafi c source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites. ?? 2009 The Geological Society of America.

  18. EPA's Review of Concentrated Animal Feeding Operation (CAFO) Permits and Nutrient Management Plans in the Chesapeake Bay Watershed

    Science.gov (United States)

    Starting in 2013, EPA conducted reviews of Concentrated Animal Feeding Operations (CAFOs) permits and nutrient management plans (NMPs) in six of the Bay jurisdictions (Delaware, Maryland, New York, Pennsylvania, Virginia and West Virginia).

  19. Pharmaceuticals in water, fish and osprey nestlings in Delaware River and Bay

    Science.gov (United States)

    Bean, Thomas G.; Rattner, Barnett A.; Lazarus, Rebecca S.; Day, Daniel D.; Burket, S. Rebekah; Brooks, Bryan W.; Haddad, Samuel P.; Bowerman, William W.

    2018-01-01

    Exposure of wildlife to Active Pharmaceutical Ingredients (APIs) is likely to occur but studies of risk are limited. One exposure pathway that has received attention is trophic transfer of APIs in a water-fish-osprey food chain. Samples of water, fish plasma and osprey plasma were collected from Delaware River and Bay, and analyzed for 21 APIs. Only 2 of 21 analytes exceeded method detection limits in osprey plasma (acetaminophen and diclofenac) with plasma levels typically 2–3 orders of magnitude below human therapeutic concentrations (HTC). We built upon a screening level model used to predict osprey exposure to APIs in Chesapeake Bay and evaluated whether exposure levels could have been predicted in Delaware Bay had we just measured concentrations in water or fish. Use of surface water and BCFs did not predict API concentrations in fish well, likely due to fish movement patterns, and partitioning and bioaccumulation uncertainties associated with these ionizable chemicals. Input of highest measured API concentration in fish plasma combined with pharmacokinetic data accurately predicted that diclofenac and acetaminophen would be the APIs most likely detected in osprey plasma. For the majority of APIs modeled, levels were not predicted to exceed 1 ng/mL or method detection limits in osprey plasma. Based on the target analytes examined, there is little evidence that APIs represent a significant risk to ospreys nesting in Delaware Bay. If an API is present in fish orders of magnitude below HTC, sampling of fish-eating birds is unlikely to be necessary. However, several human pharmaceuticals accumulated in fish plasma within a recommended safety factor for HTC. It is now important to expand the scope of diet-based API exposure modeling to include alternative exposure pathways (e.g., uptake from landfills, dumps and wastewater treatment plants) and geographic locations (developing countries) where API contamination of the environment may represent greater risk.

  20. Development and validation of a predictive model for the growth of Vibrio parahaemolyticus in post-harvest shellstock oysters.

    Science.gov (United States)

    Parveen, Salina; DaSilva, Ligia; DePaola, Angelo; Bowers, John; White, Chanelle; Munasinghe, Kumudini Apsara; Brohawn, Kathy; Mudoh, Meshack; Tamplin, Mark

    2013-01-15

    Information is limited about the growth and survival of naturally-occurring Vibrio parahaemolyticus in live oysters under commercially relevant storage conditions harvested from different regions and in different oyster species. This study produced a predictive model for the growth of naturally-occurring V. parahaemolyticus in live Eastern oysters (Crassostrea virginica) harvested from the Chesapeake Bay, MD, USA and stored at 5-30 °C until oysters gapped. The model was validated with model-independent data collected from Eastern oysters harvested from the Chesapeake Bay and Mobile Bay, AL, USA and Asian (C. ariakensis) oysters from the Chesapeake Bay, VA, USA. The effect of harvest season, region and water condition on growth rate (GR) was also tested. At each time interval, two samples consisting of six oysters each were analyzed by a direct-plating method for total V. parahaemolyticus. The Baranyi D-model was fitted to the total V. parahaemolyticus growth and survival data. A secondary model was produced using the square root model. V. parahaemolyticus slowly inactivated at 5 and 10 °C with average rates of -0.002 and -0.001 log cfu/h, respectively. The average GRs at 15, 20, 25, and 30 °C were 0.038, 0.082, 0.228, and 0.219 log cfu/h, respectively. The bias and accuracy factors of the secondary model for model-independent data were 1.36 and 1.46 for Eastern oysters from Mobile Bay and the Chesapeake Bay, respectively. V. parahaemolyticus GRs were markedly lower in Asian oysters. Harvest temperature, salinity, region and season had no effect on GRs. The observed GRs were less than those predicted by the U.S. Food and Drug Administration's V. parahaemolyticus quantitative risk assessment. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Hindcasting of Storm Surges, Currents, and Waves at Lower Delaware Bay during Hurricane Isabel

    Science.gov (United States)

    Salehi, M.

    2017-12-01

    Hurricanes are a major threat to coastal communities and infrastructures including nuclear power plants located in low-lying coastal zones. In response, their sensitive elements should be protected by smart design to withstand against drastic impact of such natural phenomena. Accurate and reliable estimate of hurricane attributes is the first step to that effort. Numerical models have extensively grown over the past few years and are effective tools in modeling large scale natural events such as hurricane. The impact of low probability hurricanes on the lower Delaware Bay is investigated using dynamically coupled meteorological, hydrodynamic, and wave components of Delft3D software. Efforts are made to significantly reduce the computational overburden of performing such analysis for the industry, yet keeping the same level of accuracy at the area of study (AOS). The model is comprised of overall and nested domains. The overall model domain includes portion of Atlantic Ocean, Delaware, and Chesapeake bays. The nested model domain includes Delaware Bay, its floodplain, and portion of the continental shelf. This study is portion of a larger modeling effort to study the impact of low probability hurricanes on sensitive infrastructures located at the coastal zones prone to hurricane activity. The AOS is located on the east bank of Delaware Bay almost 16 miles upstream of its mouth. Model generated wind speed, significant wave height, water surface elevation, and current are calibrated for hurricane Isabel (2003). The model calibration results agreed reasonably well with field observations. Furthermore, sensitivity of surge and wave responses to various hurricane parameters was tested. In line with findings from other researchers, accuracy of wind field played a major role in hindcasting the hurricane attributes.

  2. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watershed using SWAT model

    Science.gov (United States)

    Lee, Sangchul; Sadeghi, Ali M.; Yeo, In-Young; McCarty, Gregory W.; Hively, W. Dean

    2017-01-01

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrate loads from agriculture. Accordingly, the question remains whether WCCs are sufficient to mitigate increased nutrient loads caused by FCCs. In this study, we assessed the impacts of FCCs on WCC nitrate reduction efficiency on the Coastal Plain of the CBW using Soil and Water Assessment Tool (SWAT) model. Three FCC scenarios (2085 – 2098) were prepared using General Circulation Models (GCMs), considering three Intergovernmnental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) greenhouse gas emission scenarios. We also developed six representative WCC implementation scenarios based on the most commonly used planting dates and species of WCCs in this region. Simulation results showed that WCC biomass increased by ~ 58 % under FCC scenarios, due to climate conditions conducive to the WCC growth. Prior to implementing WCCs, annual nitrate loads increased by ~ 43 % under FCC scenarios compared to the baseline scenario (2001 – 2014). When WCCs were planted, annual nitrate loads were substantially reduced by ~ 48 % and WCC nitrate reduction efficiency water ~ 5 % higher under FCC scenarios relative to the baseline. The increase rate of WCC nitrate reduction efficiency varied by FCC scenarios and WCC planting methods. As CO2 concentration was higher and winters were warmer under FCC scenarios, WCCs had greater biomass and therefore showed higher nitrate reduction efficiency. In response to FCC scenarios, the performance of less effective WCC practices (e.g., barley, wheat, and late planting) under the baseline indicated ~ 14 % higher increase rate of nitrate reduction efficiency compared to ones with better effectiveness under the baseline (e

  3. Seafloor geomorphology of western Antarctic Peninsula bays: a signature of ice flow behaviour

    Science.gov (United States)

    Munoz, Yuribia P.; Wellner, Julia S.

    2018-01-01

    Glacial geomorphology is used in Antarctica to reconstruct ice advance during the Last Glacial Maximum and subsequent retreat across the continental shelf. Analogous geomorphic assemblages are found in glaciated fjords and are used to interpret the glacial history and glacial dynamics in those areas. In addition, understanding the distribution of submarine landforms in bays and the local controls exerted on ice flow can help improve numerical models by providing constraints through these drainage areas. We present multibeam swath bathymetry from several bays in the South Shetland Islands and the western Antarctic Peninsula. The submarine landforms are described and interpreted in detail. A schematic model was developed showing the features found in the bays: from glacial lineations and moraines in the inner bay to grounding zone wedges and drumlinoid features in the middle bay and streamlined features and meltwater channels in the outer bay areas. In addition, we analysed local variables in the bays and observed the following: (1) the number of landforms found in the bays scales to the size of the bay, but the geometry of the bays dictates the types of features that form; specifically, we observe a correlation between the bay width and the number of transverse features present in the bays. (2) The smaller seafloor features are present only in the smaller glacial systems, indicating that short-lived atmospheric and oceanographic fluctuations, responsible for the formation of these landforms, are only recorded in these smaller systems. (3) Meltwater channels are abundant on the seafloor, but some are subglacial, carved in bedrock, and some are modern erosional features, carved on soft sediment. Lastly, based on geomorphological evidence, we propose the features found in some of the proximal bay areas were formed during a recent glacial advance, likely the Little Ice Age.

  4. A GIS FOR THE ANTARCTIC SPECIALLY MANAGED AREA OF ADMIRALTY BAY,KING GEORGE ISLAND,ANTARCTICA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    ABSTRACT A GIS is proposed as a tool for the managing plan for the Antarctic specially managed area (ASMA) in Admiralty Bay.The ASMA comprises the area considered to be within the glacial drainage basin of the bay.Furthermore,it includes part of SSSI No.8 adjacent to the area but outside of the glacial drainage basin.Three stations and six refuges are located in the area.Using a SPOT satellite image map,the limits of the ASMA are marked and its area is re_calculated.It consists of 362 km2,including 186 km2 island ice field and small cirque glaciers and 32 km2 ice_free field.The rest comprises water of the bay and a small adjacent area (8 km2) of the Bransfield Strait. The ASMA_GIS will consists of 12 data layers ranging from the physiographic settings to the biological and administrative features.All data will be implemented into Arc/Info GIS according to the cartographic guidelines of the SCAR WG_GGI.First,five plans of information will be realised using a topographic database compiled from various sources and data from the revised bathymetric chart published by the Brazilian Navy Hydrographic Survey and also including: 1) Limits of the ASMA and protected areas;2) Glaciological features (e.g.drainage basin limits) and 3) Human presence (e.g.stations and historical sites).These basic GIS layers will be operational in early 2001.Then,additional data on the remaining layers (e.g.hydrology,geology and geomorphology) will be included from published sources. The ASMA_GIS will form an important database for environmental monitoring and studies surveying temporal changes of features such as glacier front positions or bird breading sites.

  5. Linking the watershed to the schoolshed: teaching sustainable development in K-12 with the Chester RIver Watershed Observatory

    Science.gov (United States)

    Trembanis, A. C.; Levin, D.; Seidel, J.

    2012-12-01

    The Chester River has been the subject of ongoing scientific studies in response to both the Clean Water Act and the EPA's Chesapeake Bay Program initiatives. The Upper, Middle, and Lower Chester are on the Maryland Department of Environment's list of "impaired waters". The Chester River Watershed (CRW) Observatory is lead by the Center for Environment & Society at Washington College. Eight clusters representing 22 public and private K-12 schools in the CRW provide the sampling sites distributed throughout the watershed. Weather stations will be installed at these sites allowing monitoring of the watershed's microclimate. Each cluster will be assigned a Basic Observation Buoy (BOB), an easy to assemble inexpensive buoy platform for real-time water column and atmospheric condition measurements. The BOBs are fitted with a data sonde to collect similar data parameters (e.g. salinity, temperature) as the main stem Chesapeake Bay buoys do. These assets will be deployed and the data transmitted to the Chester River Geographic Information System site for archival and visual display. Curriculum already developed for the Chesapeake Bay Interpretive Buoy System by the NOAA Chesapeake Bay Office will be adapted to the Chester River Watershed. Social issues of water sustainability will be introduced using the Watershed Game (Northland NEMO ®). During 2011 NOAA's Chesapeake Bay Office completed curriculum projects including Chesapeake Exploration, Build-a-Buoy (BaBs) and Basic Observation Buoys (BOBs). These engaging projects utilize authentic data and hands-on activities to demonstrate the tools scientists use to understand system interactions in the Bay. Chesapeake Exploration is a collection of online activities that provides teachers and students with unprecedented access to Bay data. Students are guided through a series of tasks that explore topics related to the interrelation between watersheds, land-use, weather, water quality, and living resources. The BaBs and BOBs

  6. Seafloor geomorphology of western Antarctic Peninsula bays: a signature of ice flow behaviour

    Directory of Open Access Journals (Sweden)

    Y. P. Munoz

    2018-01-01

    Full Text Available Glacial geomorphology is used in Antarctica to reconstruct ice advance during the Last Glacial Maximum and subsequent retreat across the continental shelf. Analogous geomorphic assemblages are found in glaciated fjords and are used to interpret the glacial history and glacial dynamics in those areas. In addition, understanding the distribution of submarine landforms in bays and the local controls exerted on ice flow can help improve numerical models by providing constraints through these drainage areas. We present multibeam swath bathymetry from several bays in the South Shetland Islands and the western Antarctic Peninsula. The submarine landforms are described and interpreted in detail. A schematic model was developed showing the features found in the bays: from glacial lineations and moraines in the inner bay to grounding zone wedges and drumlinoid features in the middle bay and streamlined features and meltwater channels in the outer bay areas. In addition, we analysed local variables in the bays and observed the following: (1 the number of landforms found in the bays scales to the size of the bay, but the geometry of the bays dictates the types of features that form; specifically, we observe a correlation between the bay width and the number of transverse features present in the bays. (2 The smaller seafloor features are present only in the smaller glacial systems, indicating that short-lived atmospheric and oceanographic fluctuations, responsible for the formation of these landforms, are only recorded in these smaller systems. (3 Meltwater channels are abundant on the seafloor, but some are subglacial, carved in bedrock, and some are modern erosional features, carved on soft sediment. Lastly, based on geomorphological evidence, we propose the features found in some of the proximal bay areas were formed during a recent glacial advance, likely the Little Ice Age.

  7. Myxosporean plasmodial infection associated with ulcerative lesions in young-of-the-year Atlantic menhaden in a tributary of the Chesapeake Bay, and possible links to Kudoa clupeidae

    Science.gov (United States)

    Reimschuessel, R.; Gieseker, C.M.; Driscoll, C.; Baya, A.; Kane, A.S.; Blazer, V.S.; Evans, J.J.; Kent, M.L.; Moran, J.D.W.; Poynton, S.L.

    2003-01-01

    Ulcers in Atlantic menhaden Brevoortia tyrannus (Latrobe) (Clupeidae), observed along the USA east coast, have been attributed to diverse etiologies including bacterial, fungal and, recently, harmful algal blooms. To understand the early pathogenesis of these lesions, we examined juvenile Atlantic menhaden collected during their seasonal presence in Chesapeake Bay tributaries from April to October 1999 and from March to August 2000. We conducted histopathological examinations of young-of-the-year fish from the Pocomoke River tributary, which has a history of fish mortalities and high lesion prevalence. Kudoa clupeidae (Myxozoa: Myxosporea) spores were present in the muscles of fish collected in both years. Of the fish assessed by histology in April, 5 to 14% were infected, while in May 90 to 96% were infected. Infection rates remained high during the summer. Mature spores were primarily located within myomeres and caused little or no observable pathological changes. Ultrastructure showed spores with capsulogenic cells bearing filamentous projections, and a basal crescentic nucleus with mottled nucleoplasm containing cleaved, condensed chromatin. Also, a highly invasive plasmodial stage of a myxozoan was found in the lesions of juvenile Atlantic menhaden. The plasmodia were observed in fish collected between May and July, with the maximum occurrence in late June 1999 and late May 2000. Plasmodia penetrated and surrounded muscle bundles, causing grossly observable raised lesions in 73% of all fish infected with this invasive stage. Plasmodia were also detected in the visceral organs, branchial arches, and interocular muscles of some fish. Some of the invasive extrasporogonic plasmodial lesions were associated with ulcers and chronic inflammatory infiltrates. The plasmodial stage appeared to slough out of the tissue with subsequent evidence of wound healing. Ultrastructure showed plasmodia with an elaborate irregular surface, divided into distinct ectoplasm and

  8. Comparison between autologous blood transfusion drainage and closed-suction drainage/no drainage in total knee arthroplasty: a meta-analysis.

    Science.gov (United States)

    Hong, Kun-Hao; Pan, Jian-Ke; Yang, Wei-Yi; Luo, Ming-Hui; Xu, Shu-Chai; Liu, Jun

    2016-08-01

    Autologous blood transfusion (ABT) drainage system is a new unwashed salvaged blood retransfusion system for total knee replacement (TKA). However, whether to use ABT drainage, closed-suction (CS) drainage or no drainage in TKA surgery remains controversial. This is the first meta-analysis to assess the clinical efficiency, safety and potential advantages regarding the use of ABT drains compared with closed-suction/no drainage. PubMed, Embase, and the Cochrane Library were comprehensively searched in March 2015. Fifteen randomized controlled trials (RCTs) were identified and pooled for statistical analysis. The primary outcome evaluated was homologous blood transfusion rate. The secondary outcomes were post-operative haemoglobin on days 3-5, length of hospital stay and wound infections after TKA surgery. The pooled data included 1,721 patients and showed that patients in the ABT drainage group might benefit from lower blood transfusion rates (16.59 % and 37.47 %, OR: 0.28 [0.14, 0.55]; 13.05 % and 16.91 %, OR: 0.73 [0.47,1.13], respectively). Autologous blood transfusion drainage and closed-suction drainage/no drainage have similar clinical efficacy and safety with regard to post-operative haemoglobin on days 3-5, length of hospital stay and wound infections. Autologous blood transfusion drainage offers a safe and efficient alternative to CS/no drainage with a lower blood transfusion rate. Future large-volume high-quality RCTs with extensive follow-up will affirm and update this system review.

  9. Peritoneal Drainage Versus Pleural Drainage After Pediatric Cardiac Surgery.

    Science.gov (United States)

    Gowda, Keshava Murty Narayana; Zidan, Marwan; Walters, Henry L; Delius, Ralph E; Mastropietro, Christopher W

    2014-07-01

    We aimed to determine whether infants undergoing cardiac surgery would more efficiently attain negative fluid balance postoperatively with passive peritoneal drainage as compared to traditional pleural drainage. A prospective, randomized study including children undergoing repair of tetralogy of Fallot (TOF) or atrioventricular septal defect (AVSD) was completed between September 2011 and June 2013. Patients were randomized to intraoperative placement of peritoneal catheter or right pleural tube in addition to the requisite mediastinal tube. The primary outcome measure was fluid balance at 48 hours postoperatively. Variables were compared using t tests or Fisher exact tests as appropriate. A total of 24 patients were enrolled (14 TOF and 10 AVSD), with 12 patients in each study group. Mean fluid balance at 48 hours was not significantly different between study groups, -41 ± 53 mL/kg in patients with periteonal drainage and -9 ± 40 mL/kg in patients with pleural drainage (P = .10). At 72 hours however, postoperative fluid balance was significantly more negative with peritoneal drainage, -52.4 ± 71.6 versus +2.0 ± 50.6 (P = .04). On subset analysis, fluid balance at 48 hours in patients with AVSD was more negative with peritoneal drainage as compared to pleural, -82 ± 51 versus -1 ± 38 mL/kg, respectively (P = .02). Fluid balance at 48 hours in patients with TOF was not significantly different between study groups. Passive peritoneal drainage may more effectively facilitate negative fluid balance when compared to pleural drainage after pediatric cardiac surgery, although this benefit is not likely universal but rather dependent on the patient's underlying physiology. © The Author(s) 2014.

  10. Mine drainage treatment

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Golomeov, Blagoj; Krstev, Aleksandar

    2012-01-01

    Water flowing from underground and surface mines and contains high concentrations of dissolved metals is called mine drainage. Mine drainage can be categorized into several basic types by their alkalinity or acidity. Sulfide rich and carbonate poor materials are expected to produce acidic drainage, and alkaline rich materials, even with significant sulfide concentrations, often produce net alkaline water. Mine drainages are dangerous because pollutants may decompose in the environment. In...

  11. Comparative analysis of hydrological responses of two adjacent watersheds to climate variability and change scenarios using SWAT model

    Science.gov (United States)

    The Chesapeake Bay (CB) is the largest and most productive estuary in the United States (US). Despite significant restoration efforts, the health of the Bay has continued to deteriorate, primarily due to excessive nutrient and sediment loadings from agricultural land. The water quality problem is ex...

  12. Rearrangement of land and water use system in polder and drainage improvement. Kantakuchi no tochiter dot mizu riyo taikei no saihensei to haisui kairyo

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuno, T; Nagahori, K [Okayama Univ., Okayama (Japan). Faculty of Agriculture; Yamamoto, T [Ministry of Agriculture, Forestry and Fisheries, Tokyo (Japan)

    1991-09-01

    Polders have no basin of their own, and the supply of irrigation water in polders is always short and unstable. The irrigation water system is so structured that the conflicting objects of both the insurance of irrigation water and drainage of rainwater can be achieved. Quoting an example at the surrounding area of the Kojima Bay in the southern area of Okayaja Prefecture where inning (land reclamation by drainage) has been practiced for a long time, problems in drainage improvement required for better use of low-lying flat lands are discussed. There are complicate relations among the safety against flood, rainwater drainage capability, stock capacity, and critical leveling time, therefore, the basic operation which must be performed at first in making a drainage plan is to determine the basic framework of the plan taking those relations into consideration. In low-lying flat lands, safety of the total area against flood has been established basing on the stock capacity of the paddy fields, and it is important to secure paddy field areas to a certain extent. 8 refs., 7 figs., 1 tab.

  13. Geochemical analysis of sediments from a semi-enclosed bay (Dongshan Bay, southeast China) to determine the anthropogenic impact and source.

    Science.gov (United States)

    Xu, Yonghang; Sun, Qinqin; Ye, Xiang; Yin, Xijie; Li, Dongyi; Wang, Liang; Wang, Aijun; Li, Yunhai

    2017-05-01

    The geochemical compositions of sediments in the Dongshan Bay, a semi-enclosed bay on the southeast coast of China, were obtained to identify pollutant sources and evaluate the anthropogenic impacts over the last 100 years. The results indicated that the metal flux had been increasing since the 1980s. Enrichment factor values (Pb, Zn and Cu) suggested only slight enrichment. The proportion of anthropogenic Pb changed from 9% to 15% during 2000-2014. Coal combustion might be an important contamination source in the Dongshan Bay. The historical variation in the metal flux reflected the economic development and urbanization in the Zhangjiang drainage area in the past 30 years. According to the Landsat satellite remote sensing data, the urbanization area expanded approximately three times from 1995 to 2010. The δ 13 C values (-21‰ to -23‰) of the organic matter (OM) in the sediments indicated that the OM was primarily sourced from aquatic, terrigenous and marsh C 3 plants. Nitrogen was mainly derived from aquatic plants and terrigenous erosion before the 1980s. However, the total organic carbon (TOC) contents, total nitrogen (TN) contents and δ 15 N had been increasing since the 1980s, which suggested that the sources of nitrogen were soil erosion, fertilizer and sewage. In addition, the TOC and TN fluxes in the Dongshan Bay had significantly increased since the 1980s, which reflected the use of N fertilizer. However, the TOC and TN fluxes significantly decreased in the past decade because environmental awareness increased and environmental protection policies were implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. WATER DRAINAGE MODEL

    International Nuclear Information System (INIS)

    Case, J.B.

    2000-01-01

    The drainage of water from the emplacement drift is essential for the performance of the EBS. The unsaturated flow properties of the surrounding rock matrix and fractures determine how well the water will be naturally drained. To enhance natural drainage, it may be necessary to introduce engineered drainage features (e.g. drilled holes in the drifts), that will ensure communication of the flow into the fracture system. The purpose of the Water Drainage Model is to quantify and evaluate the capability of the drift to remove water naturally, using the selected conceptual repository design as a basis (CRWMS M andO, 1999d). The analysis will provide input to the Water Distribution and Removal Model of the EBS. The model is intended to be used to provide postclosure analysis of temperatures and drainage from the EBS. It has been determined that drainage from the EBS is a factor important to the postclosure safety case

  15. Identification of largemouth bass virus in the introduced Northern snakehead inhabiting the Cheasapeake Bay watershed

    Science.gov (United States)

    Iwanowicz, Luke R.; Densmore, Christine L.; Hahn, Cassidy M.; McAllister, Phillip; Odenkirk, John

    2013-01-01

    The Northern Snakehead Channa argus is an introduced species that now inhabits the Chesapeake Bay. During a preliminary survey for introduced pathogens possibly harbored by these fish in Virginia waters, a filterable agent was isolated from five specimens that produced cytopathic effects in BF-2 cells. Based on PCR amplification and partial sequencing of the major capsid protein (MCP), DNA polymerase (DNApol), and DNA methyltransferase (Mtase) genes, the isolates were identified as Largemouth Bass virus (LMBV). Nucleotide sequences of the MCP (492 bp) and DNApol (419 pb) genes were 100% identical to those of LMBV. The nucleotide sequence of the Mtase (206 bp) gene was 99.5% identical to that of LMBV, and the single nucleotide substitution did not lead to a predicted amino acid coding change. This is the first report of LMBV from the Northern Snakehead, and provides evidence that noncentrarchid fishes may be susceptible to this virus.

  16. Spatial distribution of heavy metals in surficial sediments from Guanabara Bay: Rio de Janeiro, Brazil

    Science.gov (United States)

    Neto, José Antônio Baptista; Gingele, Franz Xaver; Leipe, Thomas; Brehme, Isa

    2006-04-01

    Ninety-two surface sediment samples were collected in Guanabara Bay, one of the most prominent urban bays in SE Brazil, to investigate the spatial distribution of anthropogenic pollutants. The concentrations of heavy metals, organic carbon and particle size were examined in all samples. Large spatial variations of heavy metals and particle size were observed. The highest concentrations of heavy metals were found in the muddy sediments from the north western region of the bay near the main outlets of the most polluted rivers, municipal waste drainage systems and one of the major oil refineries. Another anomalous concentration of metals was found adjacent to Rio de Janeiro Harbour. The heavy metal concentrations decrease to the northeast, due to intact rivers and the mangrove systems in this area, and to the south where the sand fraction and open-marine processes dominate. The geochemical normalization of metal data to Li or Al has also demonstrated that the anthropogenic input of heavy metals have altered the natural sediment heavy metal distribution.

  17. Evaluating confidence in the impact of regulatory nutrient reduction and assessing the competing impact of climate change

    Science.gov (United States)

    Irby, I.; Friedrichs, M. A. M.

    2017-12-01

    Human impacts on the Chesapeake Bay through increased nutrient run-off as a result of land-use change, urbanization, and industrialization, have resulted in a degradation of water quality over the last half-century. These direct impacts, compounded with human-induced climate changes such as warming, rising sea level, and changes in precipitation, have elevated the conversation surrounding the future of the Bay's water quality. As a result, in 2010, a Total Maximum Daily Load (TMDL) was established for the Chesapeake Bay that limited nutrient and sediment input in an effort to increase dissolved oxygen. This research utilizes a multiple model approach to evaluate confidence in the estuarine water quality modeling portion of the TMDL. One of the models is then used to assess the potential impact climate change may have on the success of currently mandated nutrient reduction levels in 2050. Results demonstrate that although the models examined differ structurally and in biogeochemical complexity, they project a similar attainment of regulatory water quality standards after nutrient reduction, while also establishing that meeting water quality standards is relatively independent of hydrologic conditions. By developing a Confidence Index, this research identifies the locations and causes of greatest uncertainty in modeled projections of water quality. Although there are specific locations and times where the models disagree, this research lends an increased degree of confidence in the appropriateness of the TMDL levels and in the general impact nutrient reductions will have on Chesapeake Bay water quality under current environmental conditions. However, when examining the potential impacts of climate change, this research shows that the combined impacts of increasing temperature, sea level, and river flow negatively affect dissolved oxygen throughout the Chesapeake Bay and impact progress towards meeting the water quality standards associated with the TMDL with

  18. Transient drainage summary report

    International Nuclear Information System (INIS)

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage

  19. Prairie Pothole Region wetlands and subsurface drainage systems: Key factors for determining drainage setback distances

    Science.gov (United States)

    Tangen, Brian; Wiltermuth, Mark T.

    2018-01-01

    Use of agricultural subsurface drainage systems in the Prairie Pothole Region of North America continues to increase, prompting concerns over potential negative effects to the Region's vital wetlands. The U.S. Fish and Wildlife Service protects a large number of wetlands through conservation easements that often utilize standard lateral setback distances to provide buffers between wetlands and drainage systems. Because of a lack of information pertaining to the efficacy of these setback distances for protecting wetlands, information is required to support the decision making for placement of subsurface drainage systems adjacent to wetlands. We used qualitative graphical analyses and data comparisons to identify characteristics of subsurface drainage systems and wetland catchments that could be considered when assessing setback distances. We also compared setback distances with catchment slope lengths to determine if they typically exclude drainage systems from the catchment. We demonstrated that depth of a subsurface drainage system is a key factor for determining drainage setback distances. Drainage systems located closer to the surface (shallow) typically could be associated with shorter lateral setback distances compared with deeper systems. Subsurface drainage systems would be allowed within a wetland's catchment for 44–59% of catchments associated with wetland conservation easements in North Dakota. More specifically, results suggest that drainage setback distances generally would exclude drainage systems from catchments of the smaller wetlands that typically have shorter slopes in the adjacent upland contributing area. For larger wetlands, however, considerable areas of the catchment would be vulnerable to drainage that may affect wetland hydrology. U.S. Fish and Wildlife Service easements are associated with > 2,000 km2 of wetlands in North Dakota, demonstrating great potential to protect these systems from drainage depending on policies for installing

  20. The foam drainage equation for drainage dynamics in unsaturated porous media

    Science.gov (United States)

    Lehmann, P.; Hoogland, F.; Assouline, S.; Or, D.

    2017-07-01

    Similarity in liquid-phase configuration and drainage dynamics of wet foam and gravity drainage from unsaturated porous media expands modeling capabilities for capillary flows and supplements the standard Richards equation representation. The governing equation for draining foam (or a soil variant termed the soil foam drainage equation—SFDE) obviates the need for macroscopic unsaturated hydraulic conductivity function by an explicit account of diminishing flow pathway sizes as the medium gradually drains. The study provides new and simple analytical expressions for drainage rates and volumes from unsaturated porous media subjected to different boundary conditions. Two novel analytical solutions for saturation profile evolution were derived and tested in good agreement with a numerical solution of the SFDE. The study and the proposed solutions rectify the original formulation of foam drainage dynamics of Or and Assouline (2013). The new framework broadens the scope of methods available for quantifying unsaturated flow in porous media, where the intrinsic conductivity and geometrical representation of capillary drainage could improve understanding of colloid and pathogen transport. The explicit geometrical interpretation of flow pathways underlying the hydraulic functions used by the Richards equation offers new insights that benefit both approaches.

  1. Chesapeake Bay Sediment Flux Model

    Science.gov (United States)

    1993-06-01

    1988; Van der Molen , -88- 1991; Yoshida, 1981.) The model developed below is based on both of these approaches. It incorporates the diagenetic...288: pp. 289-333. Van der Molen , D.T. (1991): A simple, dynamic model for the simulation of the release of phosphorus from sediments in shallow...1974; Berner, 1980; van Cappellen and Berner, 1988). These relate the diagenetic production of phosphate to the resulting pore water concentration

  2. Atlantic Seaduck Project

    Science.gov (United States)

    Perry, M.C.; Hanson, Alan; Kerekes, Joseph; Paquet, Julie

    2006-01-01

    Atlantic Seaduck Project is being conducted to learn more about the breeding and moulting areas of seaducks in northern Canada and more about their feeding ecology on wintering areas, especially Chesapeake Bay. Satellite telemetry is being used to track surf scoters wintering in Chesapeake Bay, Maryland and black scoters on migrational staging areas in New Brunswick, Canada to breeding and moulting areas in northern Canada. Various techniques used to capture the scoters included mist netting, night-lighting, and net capture guns. All captured ducks were transported to a veterinary hospital where surgery was conducted following general anaesthesia procedures. A PTT100 transmitter (39 g) manufactured by Microwave, Inc., Columbia, Maryland was implanted into the duck?s abdominal cavity with an external (percutaneous) antenna. Eight of the surf scoters from Chesapeake Bay successfully migrated to possible breeding areas in Canada and all 13 of the black scoters migrated to suspected breeding areas. Ten of the 11 black scoter males migrated to James Bay presumably for moulting. Updated information from the ARGOS Systems aboard the NOAA satellites on scoter movements was made accessible on the Patuxent Website. Habitat cover types of locations using GIS (Geographical Information Systems) and aerial photographs (in conjunction with remote sensing software) are currently being analyzed to build thematic maps with varying cosmetic layer applications. Many factors related to human population increases have been implicated in causing changes in the distribution and abundance of wintering seaducks. Analyses of the gullet (oesophagus and proventriculus) and the gizzard of seaducks are currently being conducted to determine if changes from historical data have occurred. Scoters in the Bay feed predominantly on the hooked mussel and several species of clams. The long-tailed duck appears to select the gem clam in greater amounts than other seaducks, but exhibits a diverse diet of

  3. Implementation of Wetting and Drying in NCOM: Description and Validation Test Report

    Science.gov (United States)

    2015-08-04

    inundation in Charleston Harbor during Hurricane Hugo 1989, Ocean Modelling, 20, 252– 269. Zimmermann, M., and M.M. Prescott (2014). Smooth Sheet...against, (c) several coastal regions that have notable WAD areas, i.e., San Francisco Bay, Chesapeake Bay, and Cook Inlet in Alaska, and (d) Hurricane ...Inlet, Alaska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.8 Hurricane Ike

  4. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    Science.gov (United States)

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  5. Characterization of the Marine Atmosphere for Free-Space Optical Communication

    National Research Council Canada - National Science Library

    Thomas, Linda M. Wasiczko; Moore, Christopher I; Burris, Harris R; Suite, Michele; Stell, Mena; Murphy, James; Gilbreath, G. C; Rabinovich, William; Scharpf, William

    2006-01-01

    The Chesapeake Bay Detachment of the Naval Research Laboratory (NRL-CBD) provides an ideal environment for characterizing the effects of the marine atmosphere on free space optical communication links...

  6. Drainage of radioactive areas

    International Nuclear Information System (INIS)

    1981-04-01

    This Code of Practice covers all the drainage systems which may occur in the radioactive classified area of an establishment, namely surface water, foul, process and radioactive drainage. It also deals with final discharge lines. The Code of Practice concentrates on those aspects of drainage which require particular attention because the systems are in or from radioactive areas and typical illustrations are given in appendices. The Code makes references to sources of information on conventional aspects of drainage design. (author)

  7. DNA Barcoding of Ichthyoplankton in Hampton Roads Bay Estuary

    Science.gov (United States)

    Wilkins, N.; Rodríguez, Á. E.

    2016-02-01

    Zooplankton is composed of animals that drift within the water column. The study of zooplankton biodiversity and distribution is crucial to understand oceanic ecosystems and anticipate the effects of climate change. In this study our focus is on ichthyoplankton (fish eggs and larvae). Our aim is to employ molecular genetic techniques such as DNA barcoding to begin a detailed characterization of ichthyoplankton diversity, abundance and community structure in the Hampton Roads Bay Estuary (HRBE). A sampling of zooplankton was performed on June 19, 2015. Samples were taken with a 0.5m, 200 µm mesh net in triplicates at two stations: inner shore in the mouth of Jones Creek and 5 miles off Hampton in the lower part of Chesapeake Bay. Physical parameters (dissolved oxygen, salinity, and temperature and water transparency) were measured simultaneously. Species were identified by DNA barcoding using the mitochondrial DNA (mtDNA) of the Cytochrome Oxidase 1 (CO1) gene. Fish eggs were identified from Opistonema oglinum (Atlantic Thread Herring) at the offshore stations while, Anchoa mitchilli was found at both stations. These species are common to the area and as observed, differences in species between stations were found. O. oglinum eggs were found in the offshore stations, which is their reported habitat. A. mitchilli eggs were found in both stations; both known to exhibit a wider salinity tolerance. This work indicates that using mtDNA-CO1 barcoding is suitable to identify ichthyoplankton to the species level and helped validate DNA barcoding as a faster taxonomic approach. The long term objective of this project is to provide taxonomic composition and biodiversity assessment of ichthyoplankton in HRBE. This data will be a reference for broad monitoring programs; for a better understanding and management of ecologically and commercially important species in the HRBE. Monthly samplings will be performed for a year beginning September 2015.

  8. Are there still roles for exocrine bladder drainage and portal venous drainage for pancreatic allografts?

    Science.gov (United States)

    Young, Carlton J

    2009-02-01

    Controversy remains regarding the best methodology of handling exocrine pancreatic fluid and pancreatic venous effluent. Bladder drainage has given way to enteric drainage. However, is there an instance in which bladder drainage is preferable? Also, hyperinsulinemia, as a result of systemic venous drainage (SVD), is claimed to be proatherosclerotic, whereas portal venous drainage (PVD) is more physiologic and less atherosclerotic. Bladder drainage remains a viable method of exocrine pancreas drainage, but evidence is sparse that measuring urinary amylase has a substantial benefit in the early detection of acute rejection in all types of pancreas transplants. Currently, there is no incontrovertible evidence that systemic hyperinsulinemia is proatherosclerotic, whereas recent metabolic studies on SVD and PVD showed that there was no benefit to PVD. Given the advent of newer immunosuppressive agents and overall lower acute rejection rates, the perceived benefit of bladder drainage as a means to measure urinary amylase as an early marker of rejection has not been substantiated. However, there may be a selective role for bladder drainage in 'high risk' pancreases. Also, without a clear-cut metabolic benefit to PVD over SVD, it remains the surgeon's choice as to which method to use.

  9. Transgressive systems tract development and incised-valley fills within a quaternary estuary-shelf system: Virginia inner shelf, USA

    Science.gov (United States)

    Foyle, A.M.; Oertel, G.F.

    1997-01-01

    High-frequency Quaternary glacioeustasy resulted in the incision of six moderate- to high-relief fluvial erosion surfaces beneath the Virginia inner shelf and coastal zone along the updip edges of the Atlantic continental margin. Fluvial valleys up to 5 km wide, with up to 37 m of relief and thalweg depths of up to 72 m below modern mean sea level, cut through underlying Pleistocene and Mio-Pliocene strata in response to drops in baselevel on the order of 100 m. Fluvially incised valleys were significantly modified during subsequent marine transgressions as fluvial drainage basins evolved into estuarine embayments (ancestral generations of the Chesapeake Bay). Complex incised-valley fill successions are bounded by, or contain, up to four stacked erosional surfaces (basal fluvial erosion surface, bay ravinement, tidal ravinement, and ebb-flood channel-base diastem) in vertical succession. These surfaces, combined with the transgressive oceanic ravinement that generally caps incised-valley fills, control the lateral and vertical development of intervening seismic facies (depositional systems). Transgressive stratigraphy characterizes the Quaternary section beneath the Virginia inner shelf where six depositional sequences (Sequences I-VI) are identified. Depositional sequences consist primarily of estuarine depositional systems (subjacent to the transgressive oceanic ravinement) and shoreface-shelf depositional systems; highstand systems tract coastal systems are thinly developed. The Quaternary section can be broadly subdivided into two parts. The upper part contains sequences consisting predominantly of inner shelf facies, whereas sequences in the lower part of the section consist predominantly of estuarine facies. Three styles of sequence preservation are identified. Style 1, represented by Sequences VI and V, is characterized by large estuarine systems (ancestral generations of the Chesapeake Bay) that are up to 40 m thick, have hemicylindrical wedge geometries

  10. Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA

    Science.gov (United States)

    One of the main contributors to poor water quality in the Mississippi River and aeral increase in the hypoxic zone in the Gulf of Mexico is intensive drainage of the cropland within the watershed. Controlled drainage has been demonstrated as an approach to curb totla drainage outflow and nutrient di...

  11. 33 CFR 100.124 - Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York. 100.124 Section 100.124 Navigation and Navigable... NAVIGABLE WATERS § 100.124 Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York...

  12. Vibrio ecology - Identifying Environmental Determinants Favorable for the Presence and Transmission of Pathogenic Vibrios

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In a tri-coastal collaborative study, the population densities of vibrios are being determined in the Mississippi Sound, Puget Sound, Chesapeake Bay, and Timbalier...

  13. Poplar Island Environmental Restoration Project Nekton Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Poplar Island Environmental Restoration Project (PIERP) is a large scale 1,800 acres restoration project located in mid Chesapeake Bay. Fishery collections are...

  14. 75 FR 3897 - Mid-Atlantic Fishery Management Council; Public Meetings

    Science.gov (United States)

    2010-01-25

    ... the Hyatt Regency Chesapeake Bay Hotel, 100 Heron Blvd, Cambridge, MD 21613; telephone: (410) 901... Council will hear the Scientific and Statistical Committee (SSC) Report. 1 p.m. until 2 p.m. -- The...

  15. AIR PRESSURE and Other Data from TIDE STATIONS From North American Coastline-North and Others from 1972-01-01 to 1974-06-30 (NODC Accession 7601613)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This entry contains tidal information for Chesapeake Bay. Data was submitted by Saul Berkman, NOS Tides Branch, Oceanographic Division. These data are in NODC...

  16. Sustainable development in the Hudson Bay/James Bay bioregion

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    An overview is presented of projects planned for the James Bay/Hudson Bay region, and the expected environmental impacts of these projects. The watershed of James Bay and Hudson Bay covers well over one third of Canada, from southern Alberta to central Ontario to Baffin Island, as well as parts of north Dakota and Minnesota in the U.S.A. Hydroelectric power developments that change the timing and rate of flow of fresh water may cause changes in the nature and duration of ice cover, habitats of marine mammals, fish and migratory birds, currents into and out of Hudson Bay/James Bay, seasonal and annual loads of sediments and nutrients to marine ecosystems, and anadromous fish populations. Hydroelectric projects are proposed for the region by Quebec, Ontario and Manitoba. In January 1992, the Canadian Arctic Resources Committee (CARC), the Environmental Committee of Sanikuluaq, and the Rawson Academy of Arctic Science will launch the Hudson Bay/James Bay Bioregion Program, an independent initiative to apply an ecosystem approach to the region. Two main objectives are to provide a comprehensive assessment of the cumulative impacts of human activities on the marine and freshwater ecosystems of the Hudson Bay/James Bay bioregion, and to foster sustainable development by examining and proposing cooperative processes for decision making among governments, developers, aboriginal peoples and other stakeholders. 1 fig

  17. Assessments of urban growth in the Tampa Bay watershed using remote sensing data

    Science.gov (United States)

    Xian, G.; Crane, M.

    2005-01-01

    Urban development has expanded rapidly in the Tampa Bay area of west-central Florida over the past century. A major effect associated with this population trend is transformation of the landscape from natural cover types to increasingly impervious urban land. This research utilizes an innovative approach for mapping urban extent and its changes through determining impervious surfaces from Landsat satellite remote sensing data. By 2002, areas with subpixel impervious surface greater than 10% accounted for approximately 1800 km2, or 27 percent of the total watershed area. The impervious surface area increases approximately three-fold from 1991 to 2002. The resulting imperviousness data are used with a defined suite of geospatial data sets to simulate historical urban development and predict future urban and suburban extent, density, and growth patterns using SLEUTH model. Also examined is the increasingly important influence that urbanization and its associated imperviousness extent have on the individual drainage basins of the Tampa Bay watershed.

  18. In-office drainage of sinus Mucoceles: An alternative to operating-room drainage.

    Science.gov (United States)

    Barrow, Emily M; DelGaudio, John M

    2015-05-01

    Endoscopic drainage has become the standard of care for the treatment of mucoceles. In many patients this can be performed in the office. This study reviews our experience with in-office endoscopic mucocele drainage. Retrospective chart review. A retrospective review of one surgeon's experience with in-office endoscopic drainage of sinus mucoceles between 2006 and 2014 was performed. Charts were reviewed for patient demographics, previous surgery, mucocele location, bone erosion, and outcomes. Thirty-two patients underwent 36 in-office drainage procedures. All procedures were performed under topical/local anesthesia. The mean age was 55 years (range, 17-92 years). The mean follow-up time was 444 days. Fifty-five percent had previous sinus surgery. The primary sinus involved was the frontal (12), anterior (11), posterior ethmoid (six), maxillary (four), and sphenoid (two). Bone erosion was noted to be present on computed tomography in 18 mucoceles (51%) (16 orbital, seven skull-base). All mucoceles were successfully accessed in the office with the exception of one, which was aborted due to neo-osteogenesis. Five patients (14% of mucoceles) required additional surgery, two for mucocele recurrence and three for septated mucoceles not completely drained in the office. No treatment complications occurred. All but one patient preferred in-office to operating-room drainage. In-office drainage of sinus mucoceles is well tolerated by patients, with high success and low complication rates, even in large mucoceles with bone erosion. The presence of septations and neo-osteogenesis reduce the likelihood of complete drainage and are relative contraindications. Orbital and skull base erosion are not contraindications. 4. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Distribution and behavior of major and trace elements in Tokyo Bay, Mutsu Bay and Funka Bay marine sediments

    International Nuclear Information System (INIS)

    Honda, Teruyuki; Kimura, Ken-ichiro

    2003-01-01

    Fourteen major and trace elements in marine sediment core samples collected from the coasts along eastern Japan, i.e. Tokyo Bay (II) (the recess), Tokyo Bay (IV) (the mouth), Mutsu Bay and Funka Bay and the Northwest Pacific basin as a comparative subject were determined by the instrumental neutron activation analysis (INAA). The sedimentation rates and sedimentary ages were calculated for the coastal sediment cores by the 210 Pb method. The results obtained in this study are summarized as follows: (1) Lanthanoid abundance patterns suggested that the major origin of the sediments was terrigenous material. La*/Lu* and Ce*/La* ratios revealed that the sediments from Tokyo Bay (II) and Mutsu Bay more directly reflected the contribution from river than those of other regions. In addition, the Th/Sc ratio indicated that the coastal sediments mainly originated in the materials from the volcanic island-arcs, Japanese islands, whereas those from the Northwest Pacific mainly from the continent. (2) The correlation between the Ce/U and Th/U ratios with high correlation coefficients of 0.920 to 0.991 indicated that all the sediments from Tokyo Bay (II) and Funka Bay were in reducing conditions while at least the upper sediments from Tokyo Bay (IV) and Mutsu Bay were in oxidizing conditions. (3) It became quite obvious that the sedimentation mechanism and the sedimentation environment at Tokyo Bay (II) was different from those at Tokyo Bay (IV), since the sedimentation rate at Tokyo Bay (II) was approximately twice as large as that at Tokyo Bay (IV). The sedimentary age of the 5th layer (8∼10 cm in depth) from Funka Bay was calculated at approximately 1940∼50, which agreed with the time, 1943∼45 when Showa-shinzan was formed by the eruption of the Usu volcano. (author)

  20. Investigating water use over the Choptank River Watershed using a multisatellite data fusion approach

    Science.gov (United States)

    Sun, Liang; Anderson, Martha C.; Gao, Feng; Hain, Christopher; Alfieri, Joseph G.; Sharifi, Amirreza; McCarty, Gregory W.; Yang, Yun; Yang, Yang; Kustas, William P.; McKee, Lynn

    2017-07-01

    The health of the Chesapeake Bay ecosystem has been declining for several decades due to high levels of nutrients and sediments largely tied to agricultural production systems. Therefore, monitoring of agricultural water use and hydrologic connections between crop lands and Bay tributaries has received increasing attention. Remote sensing retrievals of actual evapotranspiration (ET) can provide valuable information in support of these hydrologic modeling efforts, spatially and temporally describing consumptive water use by crops and natural vegetation and quantifying response to expansion of irrigated area occurring with Bay watershed. In this study, a multisensor satellite data fusion methodology, combined with a multiscale ET retrieval algorithm, was applied over the Choptank River watershed located within the Lower Chesapeake Bay region on the Eastern Shore of Maryland, USA to produce daily 30 m resolution ET maps. ET estimates directly retrieved on Landsat satellite overpass dates have high accuracy with relative error (RE) of 9%, as evaluated using flux tower measurements. The fused daily ET time series have reasonable errors of 18% at the daily time step - an improvement from 27% errors using standard Landsat-only interpolation techniques. Annual water consumption by different land cover types was assessed, showing reasonable distributions of water use with cover class. Seasonal patterns in modeled crop transpiration and soil evaporation for dominant crop types were analyzed, and agree well with crop phenology at field scale. Additionally, effects of irrigation occurring during a period of rainfall shortage were captured by the fusion program. These results suggest that the ET fusion system will have utility for water management at field and regional scales over the Eastern Shore. Further efforts are underway to integrate these detailed water use data sets into watershed-scale hydrologic models to improve assessments of water quality and inform best

  1. Using a Content Management System for Integrated Water Quantity, Quality and Instream Flows Modeling

    Science.gov (United States)

    Burgholzer, R.; Brogan, C. O.; Scott, D.; Keys, T.

    2017-12-01

    With increased population and water demand, in-stream flows can become depleted by consumptive uses and dilution of permitted discharges may be compromised. Reduced flows downstream of water withdrawals may increase the violation rate of bacterial concentrations from direct deposition by livestock and wildlife. Water storage reservoirs are constructed and operated to insure more stable supplies for consumptive demands and dilution flows, however their use comes at the cost of increased evaporative losses, potential for thermal pollution, interrupted fish migration, and reduced flooding events that are critical to maintain habitat and water quality. Due to this complex interrelationship between water quantity, quality and instream habitat comprehensive multi-disciplinary models must be developed to insure long-term sustainability of water resources and to avoid conflicts between drinking water, food and energy production, and aquatic biota. The Commonwealth of Virginia funded the expansion of the Chesapeake Bay Program Phase 5 model to cover the entire state, and has been using this model to evaluate water supply permit and planning since 2009. This integrated modeling system combines a content management system (Drupal and PHP) for model input data and leverages the modularity of HSPF with the custom segmentation and parameterization routines programmed by modelers working with the Chesapeake Bay Program. The model has been applied to over 30 Virginia Water Permits, instream flows and aquatic habitat models and a Virginias 30 year water supply demand projections. Future versions will leverage the Bay Model auto-calibration routines for adding small-scale water supply and TMDL models, utilize climate change scenarios, and integrate Virginia's reservoir management modules into the Chesapeake Bay watershed model, feeding projected demand and operational changes back up to EPA models to improve the realism of future Bay-wide simulations.

  2. 78 FR 44556 - Chesapeake Energy Marketing, Inc. v. Midcontinent Express Pipeline LLC; Notice of Complaint

    Science.gov (United States)

    2013-07-24

    ... Energy Marketing, Inc. v. Midcontinent Express Pipeline LLC; Notice of Complaint Take notice that on July... CFR 385.206, Chesapeake Energy Marketing, Inc. (CEMI or Complainant), filed a complaint against... assistance with any FERC Online service, please email [email protected] , or call (866) 208-3676...

  3. Development of a chronic sediment toxicity test for marine benthic amphipods

    International Nuclear Information System (INIS)

    DeWitt, T.H.; Redmond, M.S.; Sewall, J.E.; Swartz, R.C.

    1992-12-01

    The results of the research effort culminated in the development of a research method for assessing the chronic toxicity of contaminated marine and estuarine sediments using the benthic amphipod, Leptocheirus plumulosus. The first chapter describes the efforts at collecting, handling, and culturing four estuarine amphipods from Chesapeake Bay, including L. plumulosus. This chapter includes maps of the distribution and abundance of these amphipods within Chesapeake Bay and methodologies for establishing cultures of amphipods which could be readily adopted by other laboratories. The second chapter reports the development of acute and chronic sediment toxicity test methods for L. plumulosus, its sensitivity to non-contaminant environmental variables, cadmium, two polynuclear aromatic hydrocarbons, and contaminated sediment from Baltimore Harbor, MD. The third chapter reports the authors attempts to develop a chronic sediment toxicity test with Ampelisca abdita

  4. Percutaneous drainage of lung abscesses

    International Nuclear Information System (INIS)

    van Sonnenberg, E.; D'Agostino, H.; Casola, G.; Vatney, R.R.; Wittich, G.R.; Harker, C.

    1989-01-01

    The authors performed percutaneous drainage of lung abscesses in 12 patients. Indications for drainage were septicemia and persistence or worsening of radiographic findings. These lung abscesses were refractory to intravenous antibiotics and to bronchial toilet. Etiology of the abscesses included pneumonia (most frequently), trauma, postoperative development, infected necrotic neoplasm, and infected sequestration. Guidelines for drainage included passage of the catheter through contiguously abnormal lung and pleura, inability of the patient to cough, and/or bronchial obstruction precluding bronchial drainage. Cure was achieved in 11 of 12 patients. Catheters were removed on an average of 16 days after insertion. Antibiotics were administered an average of 18 days before drainage. No major complications occurred

  5. Free-Space Optical Communications Link at 1550-nm using Multiple-Quantum-Well Modulating Retroreflectors in a Marine Environment

    National Research Council Canada - National Science Library

    Rabinovich, W. S; Mahon, R; Burris, H. R; Gilbreath, G. C; Goetz, P. G; Moore, C. I; Stell, M. F; Vilcheck, M. J; Witkowsky, J. L; Swingen, L

    2005-01-01

    A 1550-nm eye-safe, free-space optical communications link is demonstrated at rates up to 5 Mbits/s over a distance of 2 km in the Chesapeake Bay, using quantum-well-based modulating retroreflectors...

  6. Percutaneous catheter drainage of lung abscess

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Shin; Chun, Kyung Ah; Choi, Hyo Sun; Ha, Hyun Kown; Shinn, Kyung Sub [Catholic University Medical college, Seoul (Korea, Republic of)

    1993-09-15

    From March 1987 to July 1989, six patients (five adults and one child) with lung abscess (size, 5-13 cm in diameter) were treated with percutaneous aspiration and drainage. In each case, the puncture was made where the wall of the abscess was in contact with the pleural surface. An 8 to 10 Fr cartheter was inserted for drainage. Five of 6 had a dynamatic clinical response within 24 hours of the drainage. Percutaneous drainage was successful with complete abscess resolution in four and partial resolution in one patient. No response was seen in the rest one. The duration of drainage ranged from 7 to 18 days(average, 15.5 days) in successful cases. One case of the failure in drainage was due tio persistent aspiration of the neurologically impaired patient. In one patient, the abscess resolved after drainage but recurred after inadvertent removal of the catheter 7 days after insertion. In two patients, concurrent pleural empyema was resolved completely by the drainage. Computed tomography provide anatomic details necessary for choosing the puncture site and avoiding a puncture of the lung parenchyma. Percutaneous catheter drainage is safe and effective method for treating patient with lung abscess.

  7. Percutaneous catheter drainage of lung abscess

    International Nuclear Information System (INIS)

    Kim, Young Shin; Chun, Kyung Ah; Choi, Hyo Sun; Ha, Hyun Kown; Shinn, Kyung Sub

    1993-01-01

    From March 1987 to July 1989, six patients (five adults and one child) with lung abscess (size, 5-13 cm in diameter) were treated with percutaneous aspiration and drainage. In each case, the puncture was made where the wall of the abscess was in contact with the pleural surface. An 8 to 10 Fr cartheter was inserted for drainage. Five of 6 had a dynamatic clinical response within 24 hours of the drainage. Percutaneous drainage was successful with complete abscess resolution in four and partial resolution in one patient. No response was seen in the rest one. The duration of drainage ranged from 7 to 18 days(average, 15.5 days) in successful cases. One case of the failure in drainage was due tio persistent aspiration of the neurologically impaired patient. In one patient, the abscess resolved after drainage but recurred after inadvertent removal of the catheter 7 days after insertion. In two patients, concurrent pleural empyema was resolved completely by the drainage. Computed tomography provide anatomic details necessary for choosing the puncture site and avoiding a puncture of the lung parenchyma. Percutaneous catheter drainage is safe and effective method for treating patient with lung abscess

  8. Heart Disease Patients' Averting Behavior, Costs of Illness, and Willingness to Pay to Avoid Angina Episodes - Final Report (1988)

    Science.gov (United States)

    This report examines the cost effectiveness of control options which reduce nitrate deposition to the Chesapeake watershed and to the tidal Bay. The report analyzes current estimates of the reductions expected in the ozone transport region.

  9. Humic Substances from Manila Bay and Bolinao Bay Sediments

    Directory of Open Access Journals (Sweden)

    Elma Llaguno

    1997-12-01

    Full Text Available The C,H,N composition of sedimentary humic acids (HA extracted from three sites in Manila Bay and six sites in Bolinao Bay yielded H/C atomic ratios of 1.1-1.4 and N/C atomic ratios of 0.09 - 0.16. The Manila Bay HA's had lower H/C and N/C ratios compared to those from Bolinao Bay. The IR spectra showed prominent aliphatic C-H and amide I and II bands. Manila Bay HA's also had less diverse molecular composition based on the GC-MS analysis of the CuO and alkaline permanganate oxidation products of the humic acids.

  10. Chesapeake Bay Climate Study Partnership: Undergraduate Student Experiential Learning on Microclimates at the University of Hawai'i, Hilo

    Science.gov (United States)

    Ozbay, G.; Sriharan, S.; Fan, C.; Adolf, J.

    2015-12-01

    Undergraduate student experiential learning activities focused on microclimates of Hawai'i Island, Hawai'i. Six students from Virginia State University, three students from Delaware State University and faculty advisors were hosted by the University of Hawai'i at Hilo (UHH) Department of Marine Science. This partnership provided integrated, cohesive, and innovative education and research capabilities to minority students on climate change science. Activities included a summer course, instrumentation training, field and laboratory research training, sampling, data collection, logging, analysis, interpretation, report preparation, and research presentation. Most training activities used samples collected during students' field sampling in Hilo Bay. Water quality and phytoplankton data were collected along a 220 degree line transect from the mouth of the Wailuku River to the pelagic zone outside of Hilo Bay into the Pacific Ocean to a distance of 15.5 km. Water clarity, turbidity, chlorophyll, physical water quality parameters, and atmospheric CO2 levels were measured along the transect. Phytoplankton samples were collected for analysis by Scanning Electron Microscopy and Flow Cytometry. Data showed the extent of anthropogenic activity on water quality, with implications for food web dynamics. In addition, atmospheric CO2 concentration, island vegetation, and GPS points were recorded throughout the island of Hawai'i to investigate how variations in microclimate, elevation, and land development affect the amount of CO2 in the atmosphere, vegetation, and water quality. Water quality results at locations near rivers were completely different from other study sites, requiring students' critical thinking skills to find possible reasons for the difference. Our data show a correlation between population density and CO2 concentrations. Anthropogenic activities affecting CO2 and ocean conditions in Hawaiian microclimates can potentially have deleterious effects on the life

  11. Routine Sub-hepatic Drainage versus No Drainage after Laparoscopic Cholecystectomy: Open, Randomized, Clinical Trial.

    Science.gov (United States)

    Shamim, Muhammad

    2013-02-01

    Surgeons are still following the old habit of routine subhepatic drainage following laparoscopic cholecystectomy (LC). This study aims to compare the outcome of subhepatic drainage with no drainage after LC. This prospective study was conducted in two phases. Phase I was open, randomized controlled trial (RCT), conducted in Civil Hospital Karachi, from August 2004 to June 2005. Phase II was descriptive case series, conducted in author's practice hospitals of Karachi, from July 2005 to December 2009. In phase I, 170 patients with chronic calculous cholecystitis underwent LC. Patients were divided into two groups, subhepatic drainage (group A: 79 patients) or no drainage (group B: 76 patients). The rest 15 patients were excluded either due to conversion or elective subhepatic drainage. In phase II, 218 consecutive patients were enrolled, who underwent LC with no subhepatic drainage. Duration of operation, character, and amount of drain fluid (if placed), postoperative ultrasound for subhepatic collection, postoperative chest X-ray for the measurement of subdiaphragmatic air, postoperative pain, postoperative nausea/vomiting, duration of hospital stay, and preoperative or postoperative complications were noted and analyzed. Duration of operation and hospital stay was slightly longer in group A patients (P values 0.002 and 0.029, respectively); postoperative pain perception, nausea/vomiting, and postoperative complications were nearly same in both groups (P value 0.064, 0.078, and 0.003, respectively). Subhepatic fluid collection was more in group A (P = 0.002), whereas subdiaphragmatic air collection was more in group B (P = 0.003). Phase II results were nearly similar to group B patients in phase I. Routine subhepatic drainage after LC is not necessary in uncomplicated cases.

  12. Fifteen Projects Unveiled to Green Local Communities, Create Jobs and Manage Stormwater Runoff

    Science.gov (United States)

    BALTIMORE - Today the U.S. Environmental Protection Agency (EPA) and the Chesapeake Bay Trust, in partnership with Maryland's Department of Natural Resources, announced $727,500 in grants to be awarded to 15 organizations through the Green Streets,

  13. Is delta sup(15)N of sedimentary organic matter a good proxy for paleodenitrification in coastal waters of the eastern Arabian Sea?

    Digital Repository Service at National Institute of Oceanography (India)

    Agnihotri, R.; Naqvi, S.W.A.; Kurian, S.; Altabet, M.A.; Bratton, J.F.

    over the last few decades were examined. In systems that are significantly affected by an enhanced inventory of nutrients from organic matter in soils due to continental erosion following colonial land clearing (e.g., Chesapeake Bay), fertilizer...

  14. Endoscopic Ultrasound-Guided Perirectal Abscess Drainage without Drainage Catheter: A Case Series

    Directory of Open Access Journals (Sweden)

    Eun Kwang Choi

    2017-05-01

    Full Text Available A perirectal abscess is a relatively common disease entity that occurs as a postsurgical complication or as a result of various medical conditions. Endoscopic ultrasound (EUS-guided drainage was recently described as a promising alternative treatment. Previous reports have recommended placement of a drainage catheter through the anus for irrigation, which is inconvenient to the patient and carries a risk of accidental dislodgement. We report four cases of perirectal abscess that were successfully treated with only one or two 7 F double pigtail plastic stent placements and without a drainage catheter for irrigation.

  15. Sup(239,240)Pu in estuarine and shelf waters of the north-eastern United States

    International Nuclear Information System (INIS)

    Sholkovitz, E.R.; Mann, D.R.

    1987-01-01

    The distribution of sup(239,240)Pu between dissolved and particulate forms has been measured in four estuaries on the north-east coast of the United States (Connecticut River, Delaware Bay, Chesapeake Bay, and Mullica River). The data cover the whole salinity range from freshwater input to shelf waters at 3.5% and includes one profile from a nearly anoxic basin in the Chesapeake Bay. In the organic-rich Mullica River estuary, large-scale removal of riverine dissolved sup(239,240)Pu occurs at low salinities due to salt-induced coagulation, a mechanism analogous to that for iron and humic acids. Within the 0 to 2.5-3.5% zone in the other three estuaries, the activity of dissolved sup(239,240)Pu increases almost conservatively. The activities of particulate sup(239,240)Pu are highest in the more turbid waters of low salinity regime (0-1.5%), but become increasingly insignificant with respect to dissolved sup(239,240)Pu as salinities increase. At higher salinities corresponding to shelf water, there is a sharp increase in dissolved sup(239,240)Pu activity. The dissolved sup(239,240)Pu activity within each estuary appears to be inversely related to the flushing time of water. The sharp decrease in dissolved sup(239,240)Pu activities between shelf and estuarine waters appears to be driven by removal within the estuaries themselves rather than on the shelf. Dissolved sup(239,240)Pu activities are lower in the nearly-anoxic bottom waters of Chesapeake Bay indicating enhanced removal by redox transformation of Pu [i.e., Pu(V) to Pu(IV)]. (author)

  16. Sedimentary gravity flows from subaerial fan-deltas in Loreto Bay, Baja California Sur, Mexico

    Science.gov (United States)

    Navarro-Lozano, José O.; Nava-Sánchez, Enrique H.; Godínez-Orta, Lucio

    2010-05-01

    Fan-deltas from Loreto Bay show recent evidences of sedimentary gravity flows as a result from catastrophic events during hurricane rainfalls. The knowledge of hydrological characteristics of these flows is important for understanding the effects of storms on fan-deltas geomorphology in this region, as well as for the urban developing planning of the city of Loreto in order to avoid hazardous zones. The analysis of precipitation and hurricane tracks data for the period 1945 to 2009 indicates that hurricanes have caused catastrophic floods every 20 years. Stratigraphy from the channel incision shows a sequence of stream flow and debris flow controlled by changes in the competence and capacity of the stream, which are associated to the gentle slope (<2 °) of the fan-deltas. However fans from the north of the bay (Arce and Gúa) show deposits of debris flows associated to catastrophic floods, which have caused the incision channel to drift towards the southern part of the fans, while flows from Las Parras fan-delta, from the middle of the bay, are dominated by stream flows. These differences in the type of the flows are controlled by lithology, shape and size of the drainage basin, and slope of the transit zone in the feeder channel.

  17. Exploring Agricultural Drainage's Influence on Wetland and ...

    Science.gov (United States)

    Artificial agricultural drainage (i.e. surface ditches or subsurface tile) is an important agricultural management tool. Artificial drainage allows for timely fieldwork and adequate root aeration, resulting in greater crop yields for farmers. This practice is widespread throughout many regions of the United States and the network of artificial drainage is especially extensive in flat, poorly-drained regions like the glaciated Midwest. While beneficial for crop yields, agricultural drains often empty into streams within the natural drainage system. The increased network connectivity may lead to greater contributing area for watersheds, altered hydrology and increased conveyance of pollutants into natural water bodies. While studies and models at broader scales have implicated artificial drainage as an important driver of hydrological shifts and eutrophication, the actual spatial extent of artificial drainage is poorly known. Consequently, metrics of wetland and watershed connectivity within agricultural regions often fail to explicitly include artificial drainage. We use recent agricultural census data, soil drainage data, and land cover data to create estimates of potential agricultural drainage across the United States. We estimate that agricultural drainage in the US is greater than 31 million hectares and is concentrated in the upper Midwest Corn Belt, covering greater than 50% of available land for 114 counties. Estimated drainage values for numerous countie

  18. THE EFFECT OF PCBS ON GLYCOGEN RESERVES IN THE EASTERN OYSTER CRASSOSTREA VIRGINICA. (R825349)

    Science.gov (United States)

    Recent declines in Chesapeake Bay oyster populations have been attributed to disease, and reduced water quality from pollution. The stress associated with pollutant exposure may reduce energy available for growth and reproduction. Polychlorinated biphenyls (PCBs) are lipophilic c...

  19. Evaluating Aquatic Life Benefits of Reducing Nutrient Loading to Remediate Episodic and Diel Cycling Hypoxia in a Shallow Hypereutrophic Estuary

    Science.gov (United States)

    Theoretical linkages between excess nutrient loading, nutrient-enhanced community metabolism (i.e., production and respiration), and hypoxia in estuaries are well-understood. In seasonally-stratified estuaries and coastal systems (e.g., Chesapeake Bay, northern Gulf of Mexico), h...

  20. Mine Drainage Generation and Control Options.

    Science.gov (United States)

    Wei, Xinchao; Rodak, Carolyn M; Zhang, Shicheng; Han, Yuexin; Wolfe, F Andrew

    2016-10-01

    This review provides a snapshot of papers published in 2015 relevant to the topic of mine drainage generation and control options. The review is broken into 3 sections: Generation, Prediction and Prevention, and Treatment Options. The first section, mine drainage generation, focuses on the characterization of mine drainage and the environmental impacts. As such, it is broken into three subsections focused on microbiological characterization, physiochemical characterization, and environmental impacts. The second section of the review is divided into two subsections focused on either the prediction or prevention of acid mine drainage. The final section focuses on treatment options for mine drainage and waste sludge. The third section contains subsections on passive treatment, biological treatment, physiochemical treatment, and a new subsection on beneficial uses for mine drainage and treatment wastes.

  1. Percutaneous catheter drainage of intrapulmonary fluid collection

    International Nuclear Information System (INIS)

    Park, E. D.; Kim, H. J.; Choi, P. Y.; Jung, S. H.

    1994-01-01

    With the success of percutaneous abdominal abscess drainage, attention is now being focused on the use of similar techniques in the thorax. We studied to evaluate the effect of percutaneous drainage in parenchymal fluid collections in the lungs. We performed percutaneous drainage of abscesses and other parenchymal fluid collections of the lungs in 15 patients. All of the procedures were performed under the fluoroscopic guidance with an 18-gauge Seldinger needle and coaxial technique with a 8-10F drainage catheter. Among 10 patients with lung abscess, 8 patients improved by percutaneous catheter drainage. In one patient, drainage was failed by the accidental withdrawal of the catheter before complete drainage. One patient died of sepsis 5 hours after the procedure. Among three patients with complicated bulla, successful drainage was done in two patients, but in the remaining patient, the procedure was failed. In one patient with intrapulmonary bronchogenic cyst, the drainage was not successful due to the thick internal contents. In one patient with traumatic hematoma, after the drainage of old blood clots, the signs of infection disappeared. Overally, of 14 patients excluding one who died, 11 patients improved with percutaneous catheter drainage and three patients did not. There were no major complications during and after the procedure. We conclude that percutaneous catheter drainage is effective and safe procedure for the treatment of parenchymal fluid collections of the lung in patients unresponsive to the medical treatment

  2. Percutaneous catheter drainage of intrapulmonary fluid collection

    Energy Technology Data Exchange (ETDEWEB)

    Park, E. D.; Kim, H. J.; Choi, P. Y.; Jung, S. H. [Gyeongsang National University Hospital, Chinju (Korea, Republic of)

    1994-01-15

    With the success of percutaneous abdominal abscess drainage, attention is now being focused on the use of similar techniques in the thorax. We studied to evaluate the effect of percutaneous drainage in parenchymal fluid collections in the lungs. We performed percutaneous drainage of abscesses and other parenchymal fluid collections of the lungs in 15 patients. All of the procedures were performed under the fluoroscopic guidance with an 18-gauge Seldinger needle and coaxial technique with a 8-10F drainage catheter. Among 10 patients with lung abscess, 8 patients improved by percutaneous catheter drainage. In one patient, drainage was failed by the accidental withdrawal of the catheter before complete drainage. One patient died of sepsis 5 hours after the procedure. Among three patients with complicated bulla, successful drainage was done in two patients, but in the remaining patient, the procedure was failed. In one patient with intrapulmonary bronchogenic cyst, the drainage was not successful due to the thick internal contents. In one patient with traumatic hematoma, after the drainage of old blood clots, the signs of infection disappeared. Overally, of 14 patients excluding one who died, 11 patients improved with percutaneous catheter drainage and three patients did not. There were no major complications during and after the procedure. We conclude that percutaneous catheter drainage is effective and safe procedure for the treatment of parenchymal fluid collections of the lung in patients unresponsive to the medical treatment.

  3. Investigation of ground-water contamination at a drainage ditch, Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, 2005–06

    Science.gov (United States)

    Vroblesky, Don A.; Casey, Clifton C.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Naval Facilities Engineering Command Southeast, used newly developed sampling methods to investigate ground-water contamination by chlorobenzenes beneath a drainage ditch on the southwestern side of Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, during 2005-06. The drainage ditch, which is a potential receptor for ground-water contaminants from Installation Restoration Site 4, intermittently discharges water to Corpus Christi Bay. This report uses data from a new type of pore-water sampler developed for this investigation and other methods to examine the subsurface contamination beneath the drainage ditch. Analysis of ground water from the samplers indicated that chlorobenzenes (maximum detected concentration of 160 micrograms per liter) are present in the ground water beneath the ditch. The concentrations of dissolved oxygen in the samples (less than 0.05-0.4 milligram per liter) showed that the ground water beneath and near the ditch is anaerobic, indicating that substantial chlorobenzene biodegradation in the aquifer beneath the ditch is unlikely. Probable alternative mechanisms of chlorobenzene removal in the ground water beneath the drainage ditch include sorption onto the organic-rich sediment and contaminant depletion by cattails through uptake, sorption, and localized soil aeration.

  4. Comparison of natural drainage group and negative drainage groups after total thyroidectomy: prospective randomized controlled study.

    Science.gov (United States)

    Woo, Seung Hoon; Kim, Jin Pyeong; Park, Jung Je; Shim, Hyun Seok; Lee, Sang Ha; Lee, Ho Joong; Won, Seong Jun; Son, Hee Young; Kim, Rock Bum; Son, Young-Ik

    2013-01-01

    The aim of this study was to compare a negative pressure drain with a natural drain in order to determine whether a negative pressure drainage tube causes an increase in the drainage volume. Sixty-two patients who underwent total thyroidectomy for papillary thyroid carcinoma (PTC) were enrolled in the study between March 2010 and August 2010 at Gyeongsang National University Hospital. The patients were prospectively and randomly assigned to two groups, a negative pressure drainage group (n=32) and natural drainage group (n=30). Every 3 hours, the volume of drainage was checked in the two groups until the tube was removed. The amount of drainage during the first 24 hours postoperatively was 41.68 ± 3.93 mL in the negative drain group and 25.3 ± 2.68 mL in the natural drain group (pdrain group was 35.19 ± 4.26 mL and natural drain groups 21.53 ± 2.90 mL (pdrain may increase the amount of drainage during the first 24-48 hours postoperatively. Therefore, it is not necessary to place a closed suction drain when only a total thyroidectomy is done.

  5. Tetrachlorodibenzo-p-dioxins and tetrachlorodibenzofurans in Atlantic coast striped bass and in selected Hudson River fish, waterfowl and sediments

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, P; Hilker, D; Meyer, C; Aldous, K; Shane, L; Donnelly, R; Smith, R; Sloan, R; Skinner, L; Horn, E

    1884-01-01

    In striped bass samples from the lower Hudson River and its estuary 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) was found at concentrations from 16 to 120 pg/g (ppt). Striped bass from two other locations (Rhode Island coastal waters and Chesapeake Bay, Maryland) had <5 ppt, 2,3,7,8-TCDD. The contaminant, 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF), was found in striped bass from all three locations with concentrations varying from 6 ppt in Chesapeake Bay to 78 ppt in the Hudson River. Results from a limited number of non-migratory fish (carp and goldfish) and sediments suggest that the upper Hudson River is not a source for 2,3,7,8-TCDD/2,3,7,8-TCDF contamination of striped bass. 26 references, 3 tables.

  6. Drainage filter technologies to mitigate site-specific phosphorus losses in agricultural drainage discharge

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heckrath, Goswin Johann; Canga, Eriona

    in drainage. The Danish “SUPREME-TECH” project (2010-2016) (www.supreme-tech.dk) aims at providing the scientific basis for developing cost-effective filter technologies for P in agricultural drainage waters. The project studies different approaches of implementing filter technologies including drainage well....... Targeting high risk areas of P loss and applying site-specific measures promises to be a cost-efficient approach. The Danish Commission for Nature and Agriculture has, therefore, now called for a paradigm shift towards targeted, cost-efficient technologies to mitigate site-specific nutrient losses...... environmental threshold values (

  7. Relationship of land use to water quality in the Chesapeake Bay region. [water sampling and photomapping river basins

    Science.gov (United States)

    Correll, D. L.

    1978-01-01

    Both the proportions of the various land use categories present on each watershed and the specific management practices in use in each category affect the quality of runoff waters, and the water quality of the Bay. Several permanent and portable stations on various Maryland Rivers collect volume-integrated water samples. All samples are analyzed for a series of nutrient, particulate, bacterial, herbicide, and heavy metal parameters. Each basin is mapped with respect to land use by the analysis of low-elevation aerial photos. Analyses are verified and adjusted by ground truth surveys. Data are processed and stored in the Smithsonian Institution data bank. Land use categories being investigated include forests/old fields, pastureland, row crops, residential areas, upland swamps, and tidal marshes.

  8. Evaluation of waste concrete road materials for use in oyster aquaculture.

    Science.gov (United States)

    2013-02-01

    The primary objective of this study was to determine the suitability of recycled concrete : aggregate (RCA) from road projects as bottom conditioning material for on-bottom oyster : aquaculture in the Chesapeake Bay. The testing was designed to (1) e...

  9. Phase II evaluation of waste concrete road materials for use in oyster aquaculture - field test.

    Science.gov (United States)

    2015-02-01

    The overall objective of this study was to determine the suitability of recycled concrete aggregate : (RCA) from road projects as bottom conditioning material for on-bottom oyster aquaculture in the : Chesapeake Bay. During this Phase of the study, t...

  10. Phase II evaluation of waste concrete road materials for use in oyster aquaculture - field test.

    Science.gov (United States)

    2014-11-01

    The overall objective of this study was to determine the suitability of recycled concrete : aggregate (RCA) from road projects as bottom conditioning material for on-bottom oyster : aquaculture in the Chesapeake Bay. During this Phase of the study, t...

  11. [Ascites drainage at home

    NARCIS (Netherlands)

    Lutjeboer, J.; Erkel, A.R. van; Hoeven, J.J.M. van der; Meer, R.W. van der

    2015-01-01

    Ascites can lead to many symptoms, and often occurs in patients with an end-stage malignancy such as ovarian, pancreatic, colonic, or gastric cancer. Intermittent ascites drainage is applied in these patients as a palliative measure. As frequent drainage is necessary, a subcutaneously tunnelled

  12. Percutaneous transhepatic biliary drainage

    International Nuclear Information System (INIS)

    Park, Jae Hyung; Hong, Seong Mo; Han, Man Chung

    1982-01-01

    Percutaneous transhepatic biliary drainage was successfully made 20 times on 17 patients of obstructive jaundice for recent 1 year since June 1981 at Department of Radiology in Seoul National University Hospital. The causes of obstructive jaundice was CBD Ca in 13 cases, metastasis in 2 cases, pancreatic cancer in 1 case and CBD stone in 1 case. Percutaneous transhepatic biliary drainage is a relatively ease, safe and effective method which can be done after PTC by radiologist. It is expected that percutaneous transhepatic biliary drainage should be done as an essential procedure for transient permanent palliation of obstructive jaundice

  13. 76 FR 76950 - Endangered Species; File No. 16134

    Science.gov (United States)

    2011-12-09

    ... Kemp's ridley sea turtle abundance, distribution, health, and nutrition in Chesapeake Bay and nearshore Virginia waters, (2) compare the relative abundance, size distribution, sex ratio, health parameters and... passive integrated transponder tags, measure, photograph, oral swab, weigh, and sample blood, feces...

  14. Retrospective Evaluation of the Protocol for US Army Corps of Engineers Aquatic Ecosystem Restoration Projects. Part 2. Database Content and Data Entry Guidelines

    Science.gov (United States)

    2014-01-01

    Chesapeake Bay Program, Gulf of Mexico Program, etc…)  State: (State Water Quality Regulations, State Fish and Wildlife Management Plans, etc...entered into the performance table. Water quality components (D.O., salinity, turbidity , etc…) with specific performance targets are listed

  15. Assessing the Magnitude of Polycyclic Aromatic Hydrocarbon Loading from Road Surfaces and Its Effect on Algal Productivity

    Science.gov (United States)

    2010-06-01

    The hypotheses of the study were that PAHs washing off roads would retard the growth of aquatic life-supporting algae and promote the growth of harmful, toxin-producing algae in estuaries, such as the Chesapeake Bay. Runoff from various road surfaces...

  16. Nutrient Budgets and Management Actions in the Patuxent River Estuary, Maryland

    Science.gov (United States)

    Multi-year nitrogen (N) and phosphorus (P) budgets were developed for the Patuxent River estuary, a seasonally stratified and moderately eutrophic tributary of Chesapeake Bay. Major inputs (point, diffuse, septic and direct atmospheric) were measured for 13 years during which la...

  17. Developing a Phytoplankton Biotic Index as an Indicator of Freshwater Inflow within a Subtropical Estuary

    Science.gov (United States)

    Steichen, J. L.; Quigg, A.; Lucchese, A.; Preischel, H.

    2016-02-01

    Freshwater inflows drive the water and sediment quality in coastal bays and estuaries influencing the ecosystem and health of the biological community. Phytoplankton accessory pigments (used as a proxy for major taxonomic groups) have been utilized to develop a biotic index of physical, chemical and biotic disturbances in Chesapeake Bay (USA) and other estuarine systems. In this study we have used the Chesapeake Bay - Phytoplankton Index of Biotic Integrity model as a guide in developing an index for Galveston Bay, TX (USA) as an indicator of sufficient freshwater inflow to a subtropical estuary. Multivariate statistical analyses were run using PRIMER-E+PERMANOVA to determine the correlations between phytoplankton accessory pigment concentrations and a suite of abiotic factors associated with freshwater inflow (salinity, DIN, PO4, secchi). Phytoplankton pigment concentrations and water quality parameters were collected across Galveston Bay on a monthly basis from 2008-2013. In the upper region of the bay nearest the river source Dinophyceae, Cryptophyceae (winter (Dec-Feb)) and Chlorophyceae (winter and spring (Mar-May)) were significantly correlated to freshwater inflow and nutrient concentrations PO4 (p<0.05). Increased concentrations of Bacillariophyceae and Cyanophyceae (summer (Jun-Aug)) were significantly correlated to lower concentrations of DIN (p<0.05). Near the mouth of the estuary there was a significant correlation between the increase in Bacillariophyceae, Cyanophyceae, Cryptophyceae and Dinophyceae with decreasing PO4 (p<0.05). Within the dynamic system of Galveston Bay we are working to apply a Phytoplankton Index of Biotic Integrity as a means of monitoring the biological health of this ecologically and economically important estuarine ecosystem.

  18. Agricultural drainage water quality

    International Nuclear Information System (INIS)

    Madani, A.; Gordon, R.

    2002-01-01

    'Full text:' Agricultural drainage systems have been identified as potential contributors of non-point source pollution. Two of the major concerns have been with nitrate-nitrogen (NO3 - -N) concentrations and bacteria levels exceeding the Maximum Acceptable Concentration in drainage water. Heightened public awareness of environmental issues has led to greater pressure to maintain the environmental quality of water systems. In an ongoing field study, three experiment sites, each with own soil properties and characteristics, are divided into drainage plots and being monitored for NO3 - -N and fecal coliforms contamination. The first site is being used to determine the impact of the rate of manure application on subsurface drainage water quality. The second site is being used to determine the difference between hog manure and inorganic fertilizer in relation to fecal coliforms and NO3-N leaching losses under a carrot rotation system. The third site examines the effect of timing of manure application on water quality, and is the only site equipped with a surface drainage system, as well as a subsurface drainage system. Each of the drains from these fields lead to heated outflow buildings to allow for year-round measurements of flow rates and water samples. Tipping buckets wired to data-loggers record the outflow from each outlet pipe on an hourly basis. Water samples, collected from the flowing drains, are analyzed for NO3 - -N concentrations using the colorimetric method, and fecal coliforms using the Most Probable Number (MPN) method. Based on this information, we will be able better positioned to assess agricultural impacts on water resources which will help towards the development on industry accepted farming practices. (author)

  19. Arterial Pulsations cannot Drive Intramural Periarterial Drainage: Significance for Aβ Drainage

    Directory of Open Access Journals (Sweden)

    Alexandra K. Diem

    2017-08-01

    Full Text Available Alzheimer's Disease (AD is the most common form of dementia and to date there is no cure or efficient prophylaxis. The cognitive decline correlates with the accumulation of amyloid-β (Aβ in the walls of capillaries and arteries. Our group has demonstrated that interstitial fluid and Aβ are eliminated from the brain along the basement membranes of capillaries and arteries, the intramural periarterial drainage (IPAD pathway. With advancing age and arteriosclerosis, the stiffness of arterial walls, this pathway fails in its function and Aβ accumulates in the walls of arteries. In this study we tested the hypothesis that arterial pulsations drive IPAD and that a valve mechanism ensures the net drainage in a direction opposite to that of the blood flow. This hypothesis was tested using a mathematical model of the drainage mechanism. We demonstrate firstly that arterial pulsations are not strong enough to produce drainage velocities comparable to experimental observations. Secondly, we demonstrate that a valve mechanism such as directional permeability of the IPAD pathway is necessary to achieve a net reverse flow. The mathematical simulation results are confirmed by assessing the pattern of IPAD in mice using pulse modulators, showing no significant alteration of IPAD. Our results indicate that forces other than the cardiac pulsations are responsible for efficient IPAD.

  20. Drainage under increasing and changing requirements

    NARCIS (Netherlands)

    Schultz, E.; Zimmer, D.; Vlotman, W.F.

    2007-01-01

    This year the Working Group on Drainage of the International Commission on Irrigation and Drainage (ICID) celebrates its 25th anniversary. This paper reviews the development of drainage for three different agro-climatic zones, i.e. the temperate (humid), the arid/semi-arid and the humid/semi-humid

  1. Assessing man-induced environmental changes in the Sepetiba Bay (Southeastern Brazil) with geochemical and satellite data

    Science.gov (United States)

    Araújo, Daniel Ferreira; Peres, Lucas G. M.; Yepez, Santiago; Mulholland, Daniel S.; Machado, Wilson; Tonhá, Myller; Garnier, Jérémie

    2017-10-01

    The Sepetiba Bay, Southeastern Brazil, has undergone intense environmental changes due to anthropogenic influence. This work aims to: (i) evaluate the changes in the drainage landscape use over the last decades, (ii) identify new and past punctual and diffuse anthropogenic sources and assess risks of man-induced disturbances of the coastal zones of Sepetiba. A multivariate statistics approach on the sediment's elemental geochemical dataset discriminated three groups: the electroplating waste-affected elements (As, Cd, Pb, Cu and Zn), terrigenous elements (Si, K, Ti, Al and Fe), and biogenic and carbonate-derived elements (Ca, Mg, Mn, P, Ni, and Cr). Sediment core profiles of trace elements evidence records of former environmental impacts from old metallurgical wastes. Analysis of two Landsat images from 30 years ago and 2015 reveals a decrease in the mangrove area of nearly 26%. The ongoing suppression of mangroves could enhance the release of trace elements into the Sepetiba Bay, increasing the risks to human and biota health.

  2. Social impact assessment of subsurface drainage

    International Nuclear Information System (INIS)

    Azhar, A.H.; Rafiq, M.; Alam, M.M.

    2005-01-01

    Social impact assessment of four drainage projects namely; Mardan SCARP Project (MSP), Fourth Drainage Project, Faisalabad (FDP), Chashma Command Area Development Project (CCADP) and Mirpurkhas Tile Drainage Project (MKOP) has been done. For this purpose, a socio-technical survey was carried out in which randomly selected farmers were interviewed. The investigations revealed that although significant population (-77%) at four study sites was educated, yet, the farmers were not satisfactorily educated to understand the operation and maintenance of drainage systems. The perusal of data revealed that 14%, 17% and 25% respondents from MSP, FOP and MKDP respectively had to migrate from their villages mainly due to pre-project water logging problem. However, installation of drainage systems in those areas improved the situation resulting in the increase of farm income, which was an attraction for them to return to their villages. The analysis of farm mechanization revealed that at MSP, FDP, CCADP and MKOP sites 71%, 42%, 40% and 75% respondents respectively were tractor owners and owners of some kind of other farm implements, whereas, remaining respondents were performing their farm operations on hire basis. Although, hire operation basis is much better than traditional ways, however, improving the farm mechanization could further enhance the benefits of drainage systems. The investigations revealed that a significant majority of respondents at four project sites had never met the Agricultural Extension Officer. The farmers' access to financing institutions such as ZTB was also negligible. There was lack of coordination among various departments such as WAPDA, Agriculture Extension and Irrigation and Power Department at four study sites. Nevertheless, the overall social impact investigations did reveal that the objectives of drainage systems installation have been achieved in terms of uplifting the socio-economic conditions of drainage areas. To make the efficient use of

  3. Wastewater and Saltwater: Studying the Biogeochemistry and Microbial Activity Associated with Wastewater Inputs to San Francisco Bay

    Science.gov (United States)

    Challenor, T.; Menendez, A. D.; Damashek, J.; Francis, C. A.; Casciotti, K. L.

    2014-12-01

    to estuarine sediment found at other sites in the San Francisco Bay as well as the Chesapeake Bay, China East Sea, and Pearl River Estuary. Our data provide evidence for the path that N takes once entering the estuary and also further characterize the behavior of nitrifying microorganisms in extremely high-nutrient aquatic environments.

  4. Assessing wetland loss impacts on watershed hydrology using an improved modeling approach

    Science.gov (United States)

    Despite the importance of wetland impacts on water cycling, the Chesapeake Bay Watershed (CBW) has experienced significant wetland losses. The resultant environmental degradation has not been fully characterized. Our aim is to assess wetland loss impacts on watershed hydrology for an agricultural wa...

  5. Farm-system modeling to evaluate environmental losses, profitability, and best management practice cost-effectiveness

    Science.gov (United States)

    To meet Chesapeake Bay Total Maximum Daily Load requirements for agricultural pollution, conservation districts and farmers are tasked with implementing best management practices (BMPs) that reduce farm losses of nutrients and sediment. The importance of the agricultural industry to the regional eco...

  6. 78 FR 38713 - Additional Documents Available for Public Review Related to Willingness To Pay Survey for...

    Science.gov (United States)

    2013-06-27

    ... Center for Environmental Economics, Office of Policy, (1809T), Environmental Protection Agency, 1200.... The Chesapeake Bay's unique set of ecological and cultural elements has motivated efforts to preserve... the TMDL benefits study, EPA's National Center for Environmental Economics (NCEE) is seeking approval...

  7. 76 FR 35468 - Star-Spangled Banner National Historic Trail Advisory Council

    Science.gov (United States)

    2011-06-17

    ... DEPARTMENT OF THE INTERIOR National Park Service Star-Spangled Banner National Historic Trail... the Advisory Committee on the Star-Spangled Banner National Historic Trail will hold a meeting... Council is John Maounis, Superintendent, Chesapeake Bay Office, telephone: (410) 260-2471. DATES: The Star...

  8. Inventory of drainage wells and potential sources of contaminants to drainage-well inflow in Southwest Orlando, Orange County, Florida

    Science.gov (United States)

    Taylor, George Fred

    1993-01-01

    Potential sources of contaminants that could pose a threat to drainage-well inflow and to water in the Floridan aquifer system in southwest Orlando, Florida, were studied between October and December 1990. Drainage wells and public-supply wells were inventoried in a 14-square-mile area, and available data on land use and activities within each drainage well basin were tabulated. Three public-supply wells (tapping the Lower Floridan aquifer) and 38 drainage wells (open to the Upper Floridan aquifer) were located in 17 drainage basins within the study area. The primary sources of drainage-well inflow are lake overflow, street runoff, seepage from the surficial aquifer system, and process-wastewater disposal. Drainage-well inflow from a variety of ares, including resi- dential, commercial, undeveloped, paved, and industrial areas, are potential sources of con- taminants. The four general types of possible contaminants to drainage-well inflow are inorganic chemicals, organic compounds, turbidity, and microbiological contaminants. Potential contami- nant sources include plant nurseries, citrus groves, parking lots, plating companies, auto- motive repair shops, and most commonly, lake- overflow water. Drainage wells provide a pathway for contaminants to enter the Upper Floridan aquifer and there is a potential for contaminants to move downward from the Upper Floridan to the Lower Floridan aquifer.

  9. 75 FR 80526 - Chesapeake and Ohio Canal National Historical Park Advisory Commission; Notice of Public Meeting

    Science.gov (United States)

    2010-12-22

    .... Charles D. McElrath Ms. Patricia Schooley Mr. Jack Reeder Ms. Merrily Pierce Topics that will be presented... of the Chesapeake and Ohio Canal National Historical Park Advisory Commission will be held at 9:30 a... personal identifying information from public review, we cannot guarantee that we will be able to do so. The...

  10. 33 CFR 100.919 - International Bay City River Roar, Bay City, MI.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false International Bay City River Roar, Bay City, MI. 100.919 Section 100.919 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Bay City River Roar, Bay City, MI. (a) Regulated Area. A regulated area is established to include all...

  11. Differential sensitivity of pigmented and non-pigmented marine bacteria to metals and antibiotics

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.; Chandramohan, D.; LokaBharathi, P.A.

    . Appl. em'ir. Microbiol. 33, 975-976. Nelson J. D. Jr and Colwell R. R. (1975) The ecology of mercury resistant bacteria in Chesapeake bay. Microbioi. Ecol. 1, 191-218. Oison B. H. and Thornton I. (1982) The resistance patterns to metals... to metals em- ploying epifluorescent microscopy. J. microbiol. Met& 7, 143-155. Zemelman R., Silva J. and Herriques, M. (1980) Antibiotic resistant bacteria in seawater from Concepcion Bay. Archs Biol. Exp. 13, 121. ...

  12. Early Holocene estuary development of the Hesselø Bay area, southern Kattegat, Denmark and its implication for Ancylus Lake drainage

    DEFF Research Database (Denmark)

    Bendixen, Carina; Boldreel, Lars Ole; Jensen, Jørn Bo

    2017-01-01

    environment and a description of coastal processes associated with a river outlet into the bay are presented. Weichselian glacial deposits form the lowermost interpreted unit, covered by late glacial (LG) and postglacial (PG, Holocene) sediments. A funnel-shaped estuary existed at the mouth of channels......High-resolution shallow seismic data, sediment core information, radiocarbon dating and sequence stratigraphy have been used to interpret the late glacial to early Holocene geological evolution of Hesselø Bay in the southern Kattegat, Denmark. A reconstruction of the early Holocene coastal...... in the period 10.3–9.2 cal. ka BP; the channels drained water from south to north. The early PG is characterised by estuarine and coastal deposits. The early Holocene bars that developed in the estuary are preserved as morphological features on the present-day seabed, possibly as a result of rapid relative sea...

  13. Wound Drainage Culture (For Parents)

    Science.gov (United States)

    ... Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Wound Drainage Culture KidsHealth / For Parents / Wound Drainage Culture What's in ...

  14. Pre-operative biliary drainage for obstructive jaundice

    Science.gov (United States)

    Fang, Yuan; Gurusamy, Kurinchi Selvan; Wang, Qin; Davidson, Brian R; Lin, He; Xie, Xiaodong; Wang, Chaohua

    2014-01-01

    Background Patients with obstructive jaundice have various pathophysiological changes that affect the liver, kidney, heart, and the immune system. There is considerable controversy as to whether temporary relief of biliary obstruction prior to major definitive surgery (pre-operative biliary drainage) is of any benefit to the patient. Objectives To assess the benefits and harms of pre-operative biliary drainage versus no pre-operative biliary drainage (direct surgery) in patients with obstructive jaundice (irrespective of a benign or malignant cause). Search methods We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, Cochrane Central Register of Controlled Clinical Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, and Science Citation Index Expanded until February 2012. Selection criteria We included all randomised clinical trials comparing biliary drainage followed by surgery versus direct surgery, performed for obstructive jaundice, irrespective of the sample size, language, and publication status. Data collection and analysis Two authors independently assessed trials for inclusion and extracted data. We calculated the risk ratio (RR), rate ratio (RaR), or mean difference (MD) with 95% confidence intervals (CI) based on the available patient analyses. We assessed the risk of bias (systematic overestimation of benefit or systematic underestimation of harm) with components of the Cochrane risk of bias tool. We assessed the risk of play of chance (random errors) with trial sequential analysis. Main results We included six trials with 520 patients comparing pre-operative biliary drainage (265 patients) versus no pre-operative biliary drainage (255 patients). Four trials used percutaneous transhepatic biliary drainage and two trials used endoscopic sphincterotomy and stenting as the method of pre-operative biliary drainage. The risk of bias was high in all trials. The proportion of patients with malignant obstruction varied between 60

  15. Using Water Quality Models in Management - A Multiple Model Assessment, Analysis of Confidence, and Evaluation of Climate Change Impacts

    Science.gov (United States)

    Irby, Isaac David

    Human impacts on the Chesapeake Bay through increased nutrient run-off as a result of land-use change, urbanization, and industrialization, have resulted in a degradation of water quality over the last half-century. These direct impacts, compounded with human-induced climate changes such as warming, rising sea-level, and changes in precipitation, have elevated the conversation surrounding the future of water quality in the Bay. The overall goal of this dissertation project is to use a combination of models and data to better understand and quantify the impact of changes in nutrient loads and climate on water quality in the Chesapeake Bay. This research achieves that goal in three parts. First, a set of eight water quality models is used to establish a model mean and assess model skill. All models were found to exhibit similar skill in resolving dissolved oxygen concentrations as well as a number of dissolved oxygen-influencing variables (temperature, salinity, stratification, chlorophyll and nitrate) and the model mean exhibited the highest individual skill. The location of stratification within the water column was found to be a limiting factor in the models' ability to adequately simulate habitat compression resulting from low-oxygen conditions. Second, two of the previous models underwent the regulatory Chesapeake Bay pollution diet mandated by the Environmental Protection Agency. Both models exhibited a similar relative improvement in dissolved oxygen concentrations as a result of the reduction of nutrients stipulated in the pollution diet. A Confidence Index was developed to identify the locations of the Bay where the models are in agreement and disagreement regarding the impacts of the pollution diet. The models were least certain in the deep part of the upper main stem of the Bay and the uncertainty primarily stemmed from the post-processing methodology. Finally, by projecting the impacts of climate change in 2050 on the Bay, the potential success of the

  16. Integration of bed characteristics, geochemical tracers, current measurements, and numerical modeling for assessing the provenance of beach sand in the San Francisco Bay Coastal System

    Science.gov (United States)

    Barnard, Patrick L.; Foxgrover, Amy C.; Elias, Edwin P.L.; Erikson, Li H.; Hein, James R.; McGann, Mary; Mizell, Kira; Rosenbauer, Robert J.; Swarzenski, Peter W.; Takesue, Renee K.; Wong, Florence L.; Woodrow, Donald L.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Over 150 million m3 of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach-sized sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.

  17. Use of geochemical biomarkers in bottom sediment to track oil from a spill, San Francisco Bay, California

    Science.gov (United States)

    Hostettler, F.D.; Rapp, J.B.; Kvenvolden, K.A.

    1992-01-01

    In April 1988, approximately 1500 m3 of a San Joaquin Valley crude oil were accidentally released from a Shell Oil Co. refinery near Martinez, Californa. The oil flowed into Carquinez Strait and Suisun Bay in northern San Francisco Bay Sediment and oil samples were collected within a week and analysed for geochemical marker compounds in order to track the molecular signature of the oil spill in the bottom sediment. Identification of the spilled oil in the sediment was complicated by the degraded nature of the oil and the similarity of the remaining, chromatographically resolvable constituents to those already present in the sediments from anthropogenic petroleum contamination, pyrogenic sources, and urban drainage. Ratios of hopane and sterane biomarkers, and of polycyclic aromatic hydrocarbons and their alkylated derivatives best identified the oil impingement. They showed the oil impact at this early stage to be surficial only, and to be patchy even within an area of heavy oil exposure.

  18. Magnitude and frequency of flooding on small urban watersheds in the Tampa Bay area, west-central Florida

    Science.gov (United States)

    Lopez, M.A.; Woodham, W.M.

    1983-01-01

    Hydrologic data collected on nine small urban watersheds in the Tampa Bay area of west-central Florida and a method for estimating peak discharges in the study area are described. The watersheds have mixed land use and range in size from 0.34 to 3.45 square miles. Watershed soils, land use, and storm-drainage system data are described. Urban development ranged from a sparsely populated area with open-ditch storm sewers and 19% impervious area to a completely sewered watershed with 61% impervious cover. The U.S. Geological Survey natural-basin and urban-watershed models were calibrated for the nine watersheds using 5-minute interval rainfall data from the Tampa, Florida, National Weather Service rain gage to simulate annual peak discharge for the period 1906-52. A log-Pearson Type III frequency analysis of the simulated annual maximum discharge was used to determine the 2-, 5-, 10-, 25-, 50-, and 100-year flood discharges for each watershed. Flood discharges were related in a multiple-linear regression to drainage area, channel slope, detention storage area, and an urban-development factor determined by the extent of curb and gutter street drainage and storm-sewer system. The average standard error for the regional relations ranged from + or - 32 to + or - 42%. (USGS)

  19. Advances in drainage: Selected works from the Tenth International Drainage Symposium

    Science.gov (United States)

    Strock, Jeffrey S.; Hay, Christopher; Helmers, Matthew; Nelson, Kelly A.; Sands, Gary R.; Skaggs, R. Wayne; Douglas-Mankin, Kyle R.

    2018-01-01

    This article introduces a special collection of fourteen articles accepted from among the 140 technical presentations, posters, and meeting papers presented at the 10th International ASABE Drainage Symposium. The symposium continued in the tradition of previous symposia that began in 1965 as a forum for presenting and assessing the progress of drainage research and implementation throughout the world. The articles in this collection address a wide range of topics grouped into five broad categories: (1) crop response, (2) design and management, (3) hydrology and scale, (4) modeling, and (5) water quality. The collection provides valuable information for scientists, engineers, planners, and others working on crop production, water quality, and water quantity issues affected by agricultural drainage. The collection also provides perspectives on the challenges of increasing agricultural production in a changing climate, with ever-greater attention to water quality and quantity concerns that will require integrated technical, economic, and social solutions.

  20. [Ascites drainage at home].

    Science.gov (United States)

    Lutjeboer, Jacob; van Erkel, Arian R; van der Hoeven, J J M Koos; van der Meer, Rutger W

    2015-01-01

    Ascites can lead to many symptoms, and often occurs in patients with an end-stage malignancy such as ovarian, pancreatic, colonic, or gastric cancer. Intermittent ascites drainage is applied in these patients as a palliative measure. As frequent drainage is necessary, a subcutaneously tunnelled permanent ascites catheter is a good alternative for intermittent drainage. The patient can open - and then re-close - the catheter when abdominal pressure increases. We inserted 35 subcutaneously permanent ascites catheters in the course of the past 3.5 years in the Leiden University Medical Centre. The success rate was 100% and the complication risk was 2.9%. A subcutaneously tunnelled ascites catheter is an effective and safe palliative treatment for patients with end-stage malignant disease and suffering from ascites.

  1. Reconstructing missing daily precipitation data using regression trees and artificial neural networks

    Science.gov (United States)

    Incomplete meteorological data has been a problem in environmental modeling studies. The objective of this work was to develop a technique to reconstruct missing daily precipitation data in the central part of Chesapeake Bay Watershed using regression trees (RT) and artificial neural networks (ANN)....

  2. Climate, Clams, and a Changing Watershed: A time series analysis to quantify the impact of management and climate on water quality in the Potomac Estuary

    Science.gov (United States)

    The Potomac River is the largest tributary of the Chesapeake Bay and has been a key study site in water quality research, beginning with work to address public health concerns such as safe drinking water and waterborne disease during periods of population growth and urbanization ...

  3. Water Reuse Project in Virginia Providing Multiple Benefits

    Science.gov (United States)

    More than 500 million gallons a year of treated wastewater that would otherwise be discharged into a tributary of the Chesapeake Bay are instead being put to beneficial reuse to cool a waste-to-energy plant and irrigate a golf course and ball fields.

  4. 77 FR 2972 - Thunder Bay Power Company, Thunder Bay Power, LLC, et al.

    Science.gov (United States)

    2012-01-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Thunder Bay Power Company, Thunder Bay Power, LLC, et al.; Notice of Application for Transfer of Licenses, and Soliciting Comments and Motions To Intervene Thunder Bay Power Company Project No. 2404-095 Thunder Bay Power, LLC Midwest Hydro, Inc...

  5. Failures and complications of thoracic drainage

    Directory of Open Access Journals (Sweden)

    Đorđević Ivana

    2006-01-01

    Full Text Available Background/Aim. Thoracic drainage is a surgical procedure for introducing a drain into the pleural space to drain its contents. Using this method, the pleura is discharged and set to the physiological state which enables the reexpansion of the lungs. The aim of the study was to prove that the use of modern principles and protocols of thoracic drainage significantly reduces the occurrence of failures and complications, rendering the treatment more efficient. Methods. The study included 967 patients treated by thoracic drainage within the period from January 1, 1989 to June 1, 2000. The studied patients were divided into 2 groups: group A of 463 patients treated in the period from January 1, 1989 to December 31, 1994 in whom 386 pleural drainage (83.36% were performed, and group B of 602 patients treated form January 1, 1995 to June 1, 2000 in whom 581 pleural drainage (96.51% were performed. The patients of the group A were drained using the classical standards of thoracic drainage by the general surgeons. The patients of the group B, however, were drained using the modern standards of thoracic drainage by the thoracic surgeons, and the general surgeons trained for this kind of the surgery. Results. The study showed that better results were achieved in the treatment of the patients from the group B. The total incidence of the failures and complications of thoracic drainage decreased from 36.52% (group A to 12.73% (group B. The mean length of hospitalization of the patients without complications in the group A was 19.5 days versus 10 days in the group B. The mean length of the treatment of the patients with failures and complications of the drainage in the group A was 33.5 days versus 17.5 days in the group B. Conclusion. The shorter length of hospitalization and the lower morbidity of the studied patients were considered to be the result of the correct treatment using modern principles of thoracic drainage, a suitable surgical technique, and a

  6. Preoperative endoscopic versus percutaneous transhepatic biliary drainage in potentially resectable perihilar cholangiocarcinoma (DRAINAGE trial): design and rationale of a randomized controlled trial.

    Science.gov (United States)

    Wiggers, Jimme K; Coelen, Robert J S; Rauws, Erik A J; van Delden, Otto M; van Eijck, Casper H J; de Jonge, Jeroen; Porte, Robert J; Buis, Carlijn I; Dejong, Cornelis H C; Molenaar, I Quintus; Besselink, Marc G H; Busch, Olivier R C; Dijkgraaf, Marcel G W; van Gulik, Thomas M

    2015-02-14

    Liver surgery in perihilar cholangiocarcinoma (PHC) is associated with high postoperative morbidity because the tumor typically causes biliary obstruction. Preoperative biliary drainage is used to create a safer environment prior to liver surgery, but biliary drainage may be harmful when severe drainage-related complications deteriorate the patients' condition or increase the risk of postoperative morbidity. Biliary drainage can cause cholangitis/cholecystitis, pancreatitis, hemorrhage, portal vein thrombosis, bowel wall perforation, or dehydration. Two methods of preoperative biliary drainage are mostly applied: endoscopic biliary drainage, which is currently used in most regional centers before referring patients for surgical treatment, and percutaneous transhepatic biliary drainage. Both methods are associated with severe drainage-related complications, but two small retrospective series found a lower incidence in the number of preoperative complications after percutaneous drainage compared to endoscopic drainage (18-25% versus 38-60%, respectively). The present study randomizes patients with potentially resectable PHC and biliary obstruction between preoperative endoscopic or percutaneous transhepatic biliary drainage. The study is a multi-center trial with an "all-comers" design, randomizing patients between endoscopic or percutaneous transhepatic biliary drainage. All patients selected to potentially undergo a major liver resection for presumed PHC are eligible for inclusion in the study provided that the biliary system in the future liver remnant is obstructed (even if they underwent previous inadequate endoscopic drainage). Primary outcome measure is the total number of severe preoperative complications between randomization and exploratory laparotomy. The study is designed to detect superiority of percutaneous drainage: a provisional sample size of 106 patients is required to detect a relative decrease of 50% in the number of severe preoperative

  7. Evaluation of Fe(II) oxidation at an acid mine drainage site using laboratory-scale reactors

    Science.gov (United States)

    Brown, Juliana; Burgos, William

    2010-05-01

    Acid mine drainage (AMD) is a severe environmental threat to the Appalachian region of the Eastern United States. The Susquehanna and Potomac River basins of Pennsylvania drain to the Chesapeake Bay, which is heavily polluted by acidity and metals from AMD. This study attempted to unravel the complex relationships between AMD geochemistry, microbial communities, hydrodynamic conditions, and the mineral precipitates for low-pH Fe mounds formed downstream of deep mine discharges, such as Lower Red Eyes in Somerset County, PA, USA. This site is contaminated with high concentrations of Fe (550 mg/L), Mn (115 mg/L), and other trace metals. At the site 95% of dissolved Fe(II) and 56% of total dissolved Fe is removed without treatment, across the mound, but there is no change in the concentration of trace metals. Fe(III) oxides were collected across the Red Eyes Fe mound and precipitates were analyzed by X-ray diffraction, electron microscopy and elemental analysis. Schwertmannite was the dominant mineral phase with traces of goethite. The precipitates also contained minor amounts of Al2O3, MgO,and P2O5. Laboratory flow-through reactors were constructed to quantify Fe(II) oxidation and Fe removal over time at terrace and pool depositional facies. Conditions such as residence time, number of reactors in sequence and water column height were varied to determine optimal conditions for Fe removal. Reactors with sediments collected from an upstream terrace oxidized more than 50% of dissolved Fe(II) at a ten hour residence time, while upstream pool sediments only oxidized 40% of dissolved Fe(II). Downstream terrace and pool sediments were only capable of oxidizing 25% and 20% of Fe(II), respectively. Fe(II) oxidation rates measured in the reactors were determined to be between 3.99 x 10-8and 1.94 x 10-7mol L-1s-1. The sediments were not as efficient for total dissolved Fe removal and only 25% was removed under optimal conditions. The removal efficiency for all sediments

  8. Acid drainage (AD) in nature and environmental impact of acid mine drainage (AMD) in Southern Tuscany

    International Nuclear Information System (INIS)

    Di Lella, Luigi Antonello; Protano, Giuseppe; Riccobono, Francesco

    2005-01-01

    Acid drainage (AD) is a natural process occurring locally at the Earth's surface. It consists in a substantial increase of acidity of surface waters as a result of chemical reactions occurring in the atmosphere (i.e. acid rain) or involving reactive phases (i.e. pyrite) present in the percolated medium. Acidic surface waters (usually pH < 4) can be produced by oxidation of sulphides (mainly pyrite and other iron sulphides) exposed to atmospheric oxygen, while human activities, such as mining, can greatly enhance this process. Acid drainage promoted by mining activities is called acid mine drainage (AMD) and is a primary source of environmental pollution and a world-wide problem in both active and abandoned mining areas. In fact, exposure of iron sulphides to oxidising conditions produces strongly acidic drainage waters rich in sulphate and a variety of heavy elements (i.e. As, Cd, Pb, Sb). Several occurrences of active acid mine drainage have been found in the Metalliferous Hills (southern Tuscany). The most important AMD phenomena were observed in the Fenice Capanne and Niccioleta mining areas

  9. Percutaneous drainage of abscesses associated with biliary fistulae

    International Nuclear Information System (INIS)

    Berger, H.; Winter, T.; Pratschke, E.; Sauerbruch, T.; Klinikum Grosshadern, Muenchen; Klinikum Grosshadern, Muenchen

    1989-01-01

    33 abdominal abscesses associated with fistulae in 31 patients were treated by percutaneous drainage. 19 of these patients had had surgery immediately preceding the drainage. In 64% the percutaneous drainage led to a diagnosis of an internal fistula. Additional therapeutic measures, because of the fistula, were necessary in 45% (operation, biliary drainage, repositioning of catheter). The average duration of drainage was 29 days. 77% of those abscesses which could be drained were treated successfully. Mortality in the entire series was 19%. (orig.) [de

  10. 33 CFR 162.125 - Sturgeon Bay and the Sturgeon Bay Ship Canal, Wisc.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Sturgeon Bay and the Sturgeon Bay Ship Canal, Wisc. 162.125 Section 162.125 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS § 162.125 Sturgeon Bay and the Sturgeon Bay Ship...

  11. 77 FR 21946 - Taking of Marine Mammals Incidental to Commercial Fishing Operations; Bottlenose Dolphin Take...

    Science.gov (United States)

    2012-04-12

    ... meter isobath between the mouth of the Chesapeake Bay in Virginia and Long Island, New York during the... the fishery, the availability of existing technology, and existing state or regional fishery... depending on fishing location. Given the history of this fishery, continued increases in quotas and...

  12. Nitrate leaching from winter cereal cover crops using undisturbed soil-column lysimeters

    Science.gov (United States)

    Cover crops are important management practices for reducing nitrogen (N) leaching in the Chesapeake Bay watershed, which is under Total Maximum Daily Load restraints. Cool-season annual grasses such as barley, rye, or wheat are common cover crops, but studies are needed to directly compare field ni...

  13. 76 FR 549 - Clean Water Act Section 303(d): Notice for the Establishment of the Total Maximum Daily Load...

    Science.gov (United States)

    2011-01-05

    ... Establishment of the Total Maximum Daily Load (TMDL) for the Chesapeake Bay AGENCY: Environmental Protection... that when met will assure the attainment and maintenance of all applicable water quality standards for... productive estuaries in the world. Despite significant efforts by federal, state, and local governments and...

  14. The phylogenetic position of Amoebophrya sp. infecting Gymnodinium sanguineum.

    Science.gov (United States)

    Gunderson, J H; Goss, S H; Coats, D W

    1999-01-01

    The small-subunit rRNA sequence of a species of Amoebophrya infecting Gymnodinium sanguineum in Chesapeake Bay was obtained and compared to the small subunit rRNA sequences of other protists. Phylogenetic trees constructed with the new sequence place Amoebophrya between the remaining dinoflagellates and other protists.

  15. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania

    Science.gov (United States)

    In the Chesapeake Bay watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient croppin...

  16. 78 FR 9045 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request...

    Science.gov (United States)

    2013-02-07

    ... FURTHER INFORMATION CONTACT: Dr. Nathalie Simon, National Center for Environmental Economics, Office of... States and the third largest in the world. The Chesapeake Bay's unique set of ecological and cultural... Economics (NCEE) is seeking approval to conduct a stated preference survey to collect data on households...

  17. Atmospheric ammonia measurements at low concentration sites in the northeastern USA: implications for total nitrogen deposition and comparison with CMAQ estimates

    Science.gov (United States)

    We evaluated the relative importance of dry deposition of ammonia (NH3) gas at several headwater areas of the Susquehanna River, the largest single source of nitrogen pollution to Chesapeake Bay, including three that are remote from major sources of NH3 emissions (CTH, ARN, and K...

  18. Reuse of drainage water in the Nile Delta; monitoring, modelling and analysis; final report Reuse of Drainage Water Project

    NARCIS (Netherlands)

    Staring Centrum, Instituut voor Onderzoek van het LandelijkGebied

    1995-01-01

    The effects of reusing drainage water have been evaluated and other options to increase the water utilization rate in Egypt explored. The results are an operational network for monitoring drainage water discharges and salinity along the major drains, a database for monitored drainage water

  19. Bird surveys at McKinley Bay and Hutchison Bay, Northwest Territories, in 1991

    Energy Technology Data Exchange (ETDEWEB)

    Cornish, B J; Dickson, D L; Dickson, H L

    1992-03-01

    McKinley Bay is a shallow protected bay along the eastern Beaufort Sea coast which provides an important habitat for diving ducks. Since 1979, the bay has been the site of a winter harbor and support base for oil and gas exploraton in the Beaufort Sea. Aerial surveys for bird abundance and distribution were conducted in August 1991 as a continuation of long-term monitoring of birds in McKinley Bay and Hutchison Bay, a nearby area used as a control. The main objectives of the 1991 surveys were to expand the set of baseline data on natural annual fluctuations in diving duck numbers, and to determine if numbers of diving ducks had changed since the initial 1981-85 surveys. On the day with the best survey conditions, the population of diving ducks at McKinley bay was estimated at ca 32,000, significantly more than 1981-85. At Hutchison Bay, there were an estimated 11,000 ducks. As in previous years, large numbers of diving ducks were observed off Atkinson Point at the northwest corner of McKinley Bay, at the south end of the bay, and in the northeast corner near a long spit. Most divers in Hutchison Bay were at the west side. Diving ducks, primarily Oldsquaw and scoter, were the most abundant bird group in the study area. Observed distribution patterns of birds are discussed with reference to habitat preferences. 16 refs., 7 figs., 30 tabs.

  20. Pb’s high sedimentation inside the bay mouth of Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Miao, Zhenqing; Huang, Xinmin; Wei, Linzhen; Feng, Ming

    2017-12-01

    Sedimentation is one of the key environmental behaviors of pollutants in the ocean. This paper analyzed the seasonal and temporal variations of Pb’s sedimentation process in Jiaozhou Bay in 1987. Results showed that Pb contents in bottom waters in Jiaozhou Bay in May, July and November 1987 were 1.87-2.60 μg L-1, 15.11-19.68 μg L-1 and 11.08-15.18 μg L-1, and the pollution levels of Pb in May, July and November 1987 were slight, heavy and heavy, respectively. In May 1987, there was low sedimentation process in waters in the outside of the bay mouth, yet were high sedimentation process in waters in the middle and inside of the bay mouth. In July and November 1987, there was low sedimentation process in waters in the outside of the bay mouth, yet were high sedimentation process in waters in the inside of the bay mouth. The seasonal-temporal variation of sedimentation processes of Pb were determined by the variations of sources input and the vertical water’s effect.

  1. Use of ERTS imagery in air pollution and marine biology studies, tasks 1 through 3

    Science.gov (United States)

    Copeland, G. E.; Ludwick, J. C.; Marshall, H. G. (Principal Investigator); Bandy, A. R.; Fleischer, P.; Hanna, W. J.; Gosink, T. A.; Bowker, D. W.

    1972-01-01

    There are no author-identified significant results in this report. The general suitability of ERTS imagery in detecting ground originated air pollution has proved to be excellent. The quality and resolution exceeded expectations and has permitted in some instances location of point sources to within a thousand feet. Suitable techniques have not yet been developed for determining or measuring area and line sources of air pollution. A major problem has been cloud cover that has persisted over the area of primary interest, the Chesapeake Bay. Work has been completed on mounting the shipboard transmissometer which will be used for investigations to relate the chlorophyll and suspended sediment content in the waters of the Lower Chesapeake Bay to ERTS-1 imagery. Water sampling, plankton analysis, and preparations for sea collection of water truth along the eastern continental shelf of the U.S. have been completed for use in comparisons with ERTS-1 data.

  2. Chesapeake Bay Study. Supplement A. Problem Identification. Supplement B. Public Involvement. Supplement C. The Chesapeake Bay Hydraulic Model.

    Science.gov (United States)

    1984-09-01

    Amphipod (5 genera) Canvasback Sand flea Lesser scaup Cnidaria 4’ Grass shrimp 4’ Bufflehead 4 Sand shrimp ** Osprey " Stinging nettle 4’ Xanthid crab (2...thereby decreasing the amounts of available oxygen in the water and, in extreme cases, causing fish kills. In addition, the use of insecticides in...where demands are the greatest. The stinging sea nettle and the closely related comb A-79 f. . . . . . • _ . . ... . .. jellies or ctenophores which

  3. Radiologically-guided catheter drainage of intrathoracic abscesses and empyemas

    International Nuclear Information System (INIS)

    Berger, H.; Steiner, W.; Bergman, C.; Anthuber, M.; Dienemann, H.

    1993-01-01

    Radiologically guided percutaneous catheter drainage was used in 38 patients to treat pleural empyemas (35 patients) and pulmonary abscesses (3 patients). Drainage was successful in 85.7% of empyemas including 11 cases with fistulous communications. Three percutaneously drained pulmonary abscesses required subsequent lobectomy. One patient died during the drainage procedure due to sepsis. No major complications related to the drainage procedure were observed. Guided percutaneous drainage proved to be a safe and successful alternative to closed drainage of pleural fluid collections. (orig.)

  4. Development, calibration, and analysis of a hydrologic and water-quality model of the Delaware Inland Bays watershed

    Science.gov (United States)

    Gutierrez-Magness, Angelica L.; Raffensperger, Jeff P.

    2003-01-01

    watershed are low in comparison to yields reported for the Eastern Shore from the Chesapeake Bay watershed model. The flatness of the terrain and the low annual surface runoff are important factors in determining the amount of detached sediment from the land that is delivered to streams. The highest total suspended solids yields were found in the southern part of the watershed, associated with high total streamflow and a high surface runoff component, and related to soil and aquifer permeability and land use. Nutrient yields from watershed model segments in the southern part of the Inland Bays watershed were the highest of all calibrated segments, due to high runoff and the substantial amount of available organic fertilizer (animal waste), which results in over-application of organic fertilizer to crops. Time series of simulated hourly total nitrogen concentrations and observed instantaneous values indicate a seasonal pattern, with the lowest values occurring during the summer and the highest during the winter months. Total phosphorus and total suspended solids concentrations are somewhat less seasonal. During storm events, total nitrogen concentrations tend to be diluted and total phosphorus concentrations tend to rise sharply. Nitrogen is transported mainly in the aqueous phase and primarily through ground water, whereas phosphorus is strongly associated with sediment, which washes off during precipitation events.

  5. Percutaneous drainage of lung abscess

    Energy Technology Data Exchange (ETDEWEB)

    Ri, Jong Min; Kim, Yong Joo; Kang, Duk Sik [Kyung-Pook National University Hospital, Daegu (Korea, Republic of)

    1992-05-15

    Medical treatment using antibiotics and postural drainage has been widely adopted as a treatment method of pulmonary abscess, accompanied by surgical methods in cases intractable to drug therapy. However long-term therapy may be required, and the tolerance of organisms to antibiotics or other complications are apt to be encountered, during medical treatment. To shorten the convalescent period or to decrease the risk of invasive procedures, rather simple and relatively easy interventional techniques such as transbronchial or percutaneous catheter drainage have been successfully tried. We have performed 12 cases of percutaneous drainages of lung abscesses under fluoroscope guidance. This report is on the results of this procedure.

  6. Percutaneous drainage of lung abscess

    International Nuclear Information System (INIS)

    Ri, Jong Min; Kim, Yong Joo; Kang, Duk Sik

    1992-01-01

    Medical treatment using antibiotics and postural drainage has been widely adopted as a treatment method of pulmonary abscess, accompanied by surgical methods in cases intractable to drug therapy. However long-term therapy may be required, and the tolerance of organisms to antibiotics or other complications are apt to be encountered, during medical treatment. To shorten the convalescent period or to decrease the risk of invasive procedures, rather simple and relatively easy interventional techniques such as transbronchial or percutaneous catheter drainage have been successfully tried. We have performed 12 cases of percutaneous drainages of lung abscesses under fluoroscope guidance. This report is on the results of this procedure

  7. Percutaneous drainage of diverticular abscess: Adjunct to resection

    International Nuclear Information System (INIS)

    Mueller, P.R.; Saini, S.; Butch, R.J.; Simeone, J.F.; Rodkey, G.V.; Bousquet, J.C.; Ottinger, L.W.; Wittenberg, J.; Ferrucci, J.T. Jr.

    1986-01-01

    Traditional surgical management of acute diverticulitis with abscess may require a one-, two-, or three-stage procedure. Because of recent interest in CT diagnosis of diverticulitis, and novel access routes for interventional drainage of deep pelvic abscesses, the authors investigated the potential for converting complex two- and three-stage surgical procedures to simpler, safer one-stage colon resections by percutaneous drainage of the associated abscess. Of 23 patients with acute perforated diverticulitis who were referred for catheter drainage under radiologic guidance, successful catheter drainage and subsequent single-stage colon resection were carried out in 15. In three patients catheter drainage was unsuccessful and a multistage procedure was required. In three patients only percutaneous drainage was performed and operative intervention was omitted entirely

  8. Geohydrologic reconnaissance of drainage wells in Florida

    Science.gov (United States)

    Kimrey, J.O.; Fayard, L.D.

    1984-01-01

    Drainage wells are used to inject surface waters directly into an aquifer, or shallow ground waters directly into a deeper aquifer, primarily by gravity. Such wells in Florida may be grouped into two broad types: (1) surface-water injection wells, and (2) interaquifer connector wells. Drainage wells of the first type are further categorized as either Floridan aquifer drainage wells or Biscayne aquifer drainage wells. Floridan aquifer drainage wells are commonly used to supplement drainage for urban areas in karst terranes of central and north Florida. Data are available for 25 wells in the Ocala, Live Oak, and Orlando areas that allow comparison of the quality of water samples from these Floridan aquifer drainage wells with allowable contaminant levels. Comparison indicates that maximum contaminant levels for turbidity, color, and iron, manganese, and lead concentrations are equaled or exceeded in some drainage-well samples, and relatively high counts for coliform bacteria are present in most wells. Biscayne aquifer drainage wells are used locally to dispose of stormwater runoff and other surplus water in southeast Florida, where large numbers of these wells have been permitted in Dade and Broward Counties. The majority of these wells are used to dispose of water from swimming pools or to dispose of heated water from air-conditioning units. The use of Biscayne aquifer drainage wells may have minimal effect on aquifer potability so long as injection of runoff and industrial wates is restricted to zones where chloride concentrations exceed 1,500 milligrams per liter. Interaquifer connector wells are used in the phosphate mining areas of Polk and Hillsborough Counties, to drain mines and recharge the Floridan aquifer. Water-quality data available from 13 connector wells indicate that samples from most of these wells exceed standards values for iron concentration and turbidity. One well yielded a highly mineralized water, and samples from 6 of the other 12 wells exceed

  9. EFFECTIVENESS OF AUTOGENIC DRAINAGE VERSUS POSTURAL DRAINAGE ON OXYGEN SATURATION IN PATIENTS WITH CHRONIC BRONCHITIS WITH 15 MINUTES POST THERAPY

    OpenAIRE

    V. Kiran; Dr. Bhimasen .S; E. Mastanaiah; A. Thiruppathi

    2014-01-01

    Background: Patients with COPD will have more amount of secretions. To clear the secretions by using of different bronchial hygiene techniques like postural drainage and autogenic drainage technique, manual hyperventilation technique ,active cycle breathing technique .Hence in this study to compare the short-term effects of postural drainage with clapping (PD) and autogenic drainage (AD) on level of oxygen saturation in blood, and amount of sputum recovery. Methodology: The study was done ...

  10. The effect of varying protein levels on blood chemistry, food consumption, and behavior of captive seaducks

    Science.gov (United States)

    Wells-Berlin, A. M.; Perry, M.C.; Olsen, Glenn H.

    2005-01-01

    The Chesapeake Bay is a primary wintering area for scoters and the long-tailed ducks (Clangia hyemalis) that migrate along the Atlantic Flyway. Recently, the Chesapeake Bay had undergone an ecosystem shift and little is known about how this is affecting the seaduck populations. We are determining what are the preferred food sources of the seaducks wintering on the Bay and analyzing the factors influencing prey selection whether it is prey composition, energy assimilated, prey availability, or a combination of any or all of these factors. We have established a captive colony of surf (Melanitta perspicillata) and white-winged scoters (Melanitta fusca) as well as long-tailed ducks at Patuxent Wildlife Research Center to allow us to examine these factors in a more controlled environment. This project contains a multitude of experiments and the resultant data will be compiled into a compartmental model on the feeding ecology of seaducks wintering on the Bay. The first experiment entailed feeding groups of each species (four ducks per pen of equal sex ratio, if possible, and four pens per species) three diets varying in percent protein levels from November to February. Each diet was randomly assigned to each pen and the amount of food consumed was recorded each day. New feed was given when all existing food was consumed. Behavioral trials and blood profiles were completed on all study birds to determine the effects of the varying diets. There were no significant differences in food consumption, blood chemistry, and behavior detected at the 5% level among the diets for all three species of interest. There was a seasonal effect determined based on the food consumption data for white-winged scoters, but not for surf scoters or long-tailed ducks. The blood profiles of the surf scoters were compared to blood profiles of wild surf scoters and a there was no difference detected at the 5% level. As a health check of the ducks an aspergillosis test was run on the blood obtained

  11. Postoperative drainage in head and neck surgery.

    Science.gov (United States)

    Amir, Ida; Morar, Pradeep; Belloso, Antonio

    2010-11-01

    A major factor affecting patients' length of hospitalisation following head and neck surgery remains the use of surgical drains. The optimal time to remove these drains has not been well defined. A routine practice is to measure the drainage every 24 h and remove the drain when daily drainage falls below 25 ml. This study aims to determine whether drainage measurement at shorter intervals decreases the time to drain removal and hence the length of in-patient stays. A 6-month prospective observational study was performed. The inclusion criteria were patients who underwent head and neck surgery without neck dissection and had a closed suction drain inserted. Drainage rates were measured at 8-hourly intervals. Drains were removed when drainage-rate was ≤ 1 ml/h over an 8-h period. A total of 43 patients were evaluated. The highest drainage rate occurred in the first 8 postoperative hours and decreased significantly in the subsequent hours. The median drainage rates at 8, 16, 24, 32 and 40 postoperative hours were 3.375, 1, 0, 0 and 0 ml/h, respectively. Applying our new removal criteria of ≤ 1 ml/h drainage rate, the drains were removed in 22 (51%) patients at the 16th postoperative hour; 37 (86%) were removed by 24 h after operation. In comparison, only nine (20.9%) patients could potentially be discharged the day after surgery if previous criteria of ≤ 25 ml/24-h were used to decide on drain removal. Our 8-hourly drainage-rate monitoring has facilitated safe earlier discharge of an additional 28 (65%) patients on the day after surgery. This has led to improvement in patient care, better optimisation of hospital resources and resulted in positive economic implications to the department.

  12. Shell Games. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experiences supported by multimedia instruction. This document presents an overview on the biology of…

  13. Traditional Foley drainage systems--do they drain the bladder?

    Science.gov (United States)

    Garcia, Maurice M; Gulati, Shelly; Liepmann, Dorian; Stackhouse, G Bennett; Greene, Kirsten; Stoller, Marshall L

    2007-01-01

    Foley catheters are assumed to drain the bladder to completion. Drainage characteristics of Foley catheter systems are poorly understood. To investigate unrecognized retained urine with Foley catheter drainage systems, bladder volumes of hospitalized patients were measured with bladder scan ultrasound volumetrics. Additionally, an in vitro bench top mock bladder and urinary catheter system was developed to understand the etiology of such residual volumes. A novel drainage tube design that optimizes indwelling catheter drainage was also designed. Bedside bladder ultrasound volumetric studies were performed on patients hospitalized in ward and intensive care unit. If residual urine was identified the drainage tubing was manipulated to facilitate drainage. An ex vivo bladder-urinary catheter model was designed to measure flow rates and pressures within the drainage tubing of a traditional and a novel drainage tube system. A total of 75 patients in the intensive care unit underwent bladder ultrasound volumetrics. Mean residual volume was 96 ml (range 4 to 290). In 75 patients on the hospital ward mean residual volume was 136 ml (range 22 to 647). In the experimental model we found that for every 1 cm in curl height, obstruction pressure increased by 1 cm H2O within the artificial bladder. In contrast, the novel spiral-shaped drainage tube demonstrated rapid (0.5 cc per second), continuous and complete (100%) reservoir drainage in all trials. Traditional Foley catheter drainage systems evacuate the bladder suboptimally. Outflow obstruction is caused by air-locks that develop within curled redundant drainage tubing segments. The novel drainage tubing design eliminates gravity dependent curls and associated air-locks, optimizes flow, and minimizes residual bladder urine.

  14. The onset of deglaciation of Cumberland Bay and Stromness Bay, South Georgia

    NARCIS (Netherlands)

    Van Der Putten, N.; Verbruggen, C.

    Carbon dating of basal peat deposits in Cumberland Bay and Stromness Bay and sediments from a lake in Stromness Bay, South Georgia indicates deglaciation at the very beginning of the Holocene before c. 9500 14C yr BP. This post-dates the deglaciation of one local lake which has been ice-free since

  15. Grenville age of basement rocks in Cape May NJ well: New evidence for Laurentian crust in U.S. Atlantic Coastal Plain basement Chesapeake terrane

    Science.gov (United States)

    Sheridan, R.E.; Maguire, T.J.; Feigenson, M.D.; Patino, L.C.; Volkert, R.A.

    1999-01-01

    The Chesapeake terrane of the U.S. mid-Atlantic Coastal Plain basement is bounded on the northwest by the Salisbury positive gravity and magnetic anomaly and extends to the southeast as far as the Atlantic coast. It underlies the Coastal Plain of Virginia, Maryland, Delaware and southern New Jersey. Rubidium/Strontium dating of the Chesapeake terrane basement yields an age of 1.025 ?? 0.036 Ga. This age is typical of Grenville province rocks of the Middle to Late Proterozoic Laurentian continent. The basement lithologies are similar to some exposed Grenville-age rocks of the Appalachians. The TiO2 and Zr/P2O5 composition of the metagabbro from the Chesapeake terrane basement is overlapped by those of the Proterozoic mafic dikes in the New Jersey Highlands. These new findings support the interpretation that Laurentian basement extends southeast as far as the continental shelf in the U.S. mid-Atlantic region. The subcrop of Laurentian crust under the mid-Atlantic Coastal Plain implies unroofing by erosion of the younger Carolina (Avalon) supracrustal terrane. Dextral-transpression fault duplexes may have caused excessive uplift in the Salisbury Embayment area during the Alleghanian orogeny. This extra uplift in the Salisbury area may have caused the subsequent greater subsidence of the Coastal Plain basement in the embayment.

  16. Percutaneous catheter drainage of tuberculous psoas abscesses

    International Nuclear Information System (INIS)

    Pombo, F.; Martin-Egana, R.; Cela, A.; Diaz, J.L.; Linares-Mondejar, P.; Freire, M.

    1993-01-01

    Six patients with 7 tuberculous psoas or ilio-psoas abscesses were treated by CT-guided catheter drainage and chemotherapy. The abscesses (5 unilateral and 1 bilateral) were completely drained using a posterior or lateral approach. The abscess volume was 70 to 700 ml (mean 300 ml) and the duration of drainage 5 to 11 days (mean 7 days). Immediate local symptomatic improvement was achieved in all patients, and there were no procedural complications. CT follow-up at 3 to 9 months showed normalization in 5 patients, 2 of whom are still in medical therapy. One patient, who did not take the medication regularly, had a recurrent abscess requiring new catheter drainage after which the fluid collection disappeared. Percutaneous drainage represents an efficient and attractive alternative to surgical drainage as a supplement to medical therapy in the management of patients with large tuberculous psoas abscesses. (orig.)

  17. Definition of the drainage filter problem

    NARCIS (Netherlands)

    Zaslavsky, D.

    1977-01-01

    It is common to consider the following: I. Retention of soil particles that may enter the drainage pipe and cause its clogging. For some sensitive structures it is important to prevent settlements due to soil transportation by drainage water.

  18. Subsurface drainage

    CSIR Research Space (South Africa)

    Van Der

    1993-09-01

    Full Text Available and long term behavior were evaluated. Laboratory tests for geotextile selection are recommended and tentative criteria given. The use of fin drains was evaluated in the laboratory and a field study to monitor the efficacy of drainage systems was started...

  19. Endoscopic ultrasound-guided transmural drainage of postoperative pancreatic collections.

    Science.gov (United States)

    Tilara, Amy; Gerdes, Hans; Allen, Peter; Jarnagin, William; Kingham, Peter; Fong, Yuman; DeMatteo, Ronald; D'Angelica, Michael; Schattner, Mark

    2014-01-01

    Pancreatic leak is a major cause of morbidity after pancreatectomy. Traditionally, peripancreatic fluid collections have been managed by percutaneous or operative drainage. Data for endoscopic ultrasound (EUS)-guided drainage of postoperative fluid collections are limited. Here we report on the safety, efficacy, and timing of EUS-guided drainage of postoperative peripancreatic collections. This is a retrospective review of 31 patients who underwent EUS-guided drainage of fluid collections after pancreatic resection. Technical success was defined as successful transgastric deployment of at least one double pigtail plastic stent. Clinical success was defined as resolution of the fluid collection on follow-up CT scan and resolution of symptoms. Early drainage was defined as initial transmural stent placement within 30 days after surgery. Endoscopic ultrasound-guided drainage was performed effectively with a technical success rate of 100%. Clinical success was achieved in 29 of 31 patients (93%). Nineteen of the 29 patients (65%) had complete resolution of their symptoms and collection with the first endoscopic procedure. Repeat drainage procedures, including some with necrosectomy, were required in the remaining 10 patients, with eventual resolution of collection and symptoms. Two patients who did not achieve durable clinical success required percutaneous drainage by interventional radiology. Seventeen (55%) of 31 patients had successful early drainage completed within 30 days of their operation. Endoscopic ultrasound-guided drainage of fluid collections after pancreatic resection is safe and effective. Early drainage (collections was not associated with increased complications in this series. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Thoracoscopic Surgery for Pneumothorax Following Outpatient Drainage Therapy.

    Science.gov (United States)

    Sano, Atsushi; Yotsumoto, Takuma

    2017-10-20

    We investigated the outcomes of surgery for pneumothorax following outpatient drainage therapy. We reviewed the records of 34 patients who underwent operations following outpatient drainage therapy with the Thoracic Vent at our hospital between December 2012 and September 2016. Indications for outpatient drainage therapy were pneumothorax without circulatory or respiratory failure and pleural effusion. Indications for surgical treatment were persistent air leakage and patient preference for surgery to prevent or reduce the incidence of recurrent pneumothorax. Intraoperatively, 9 of 34 cases showed loose adhesions around the Thoracic Vent, all of which were dissected bluntly. The preoperative drainage duration ranged from 5 to 13 days in patients with adhesions and from 3 to 19 days in those without adhesions, indicating no significant difference. The duration of preoperative drainage did not affect the incidence of adhesions. The operative duration ranged from 30 to 96 minutes in patients with adhesions and from 31 to 139 minutes in those without adhesions, also indicating no significant difference. Outpatient drainage therapy with the Thoracic Vent was useful for spontaneous pneumothorax patients who underwent surgery, and drainage for less than 3 weeks did not affect intraoperative or postoperative outcomes.

  1. Foamed emulsion drainage: flow and trapping of drops

    OpenAIRE

    Schneider, Maxime; Zou, Ziqiang; Langevin, Dominique; Salonen, Anniina

    2017-01-01

    Foamed emulsions are ubiquitous in our daily life but the ageing of such systems is still poorly understood. In this study we investigate foam drainage and measure the evolution of the gas, liquid and oil volume fractions inside the foam. We evidence three regimes of ageing. During an initial period of fast drainage, both bubbles and drops are very mobile. As the foam stabilises drainage proceeds leading to a gradual decrease of the liquid fraction and slowing down of drainage. Clusters of oi...

  2. 75 FR 8297 - Tongass National Forest, Thorne Bay Ranger District, Thorne Bay, AK

    Science.gov (United States)

    2010-02-24

    ..., Thorne Bay, AK AGENCY: Forest Service, USDA. ACTION: Cancellation of Notice of intent to prepare an... Roberts, Zone Planner, Thorne Bay Ranger District, Tongass National Forest, P.O. Box 19001, Thorne Bay, AK 99919, telephone: 907-828-3250. SUPPLEMENTARY INFORMATION: The 47,007-acre Kosciusko Project Area is...

  3. 77 FR 44140 - Drawbridge Operation Regulation; Sturgeon Bay Ship Canal, Sturgeon Bay, WI

    Science.gov (United States)

    2012-07-27

    ... Maple-Oregon Bridges so vehicular traffic congestion would not develop on downtown Sturgeon Bay streets... movement of vehicular traffic in Sturgeon Bay. The Sturgeon Bay Ship Canal is approximately 8.6 miles long... significant increase in vehicular and vessel traffic during the peak tourist and navigation season between...

  4. Preoperative endoscopic versus percutaneous transhepatic biliary drainage in potentially resectable perihilar cholangiocarcinoma (DRAINAGE trial): design and rationale of a randomized controlled trial

    OpenAIRE

    Wiggers, Jimme K; Coelen, Robert JS; Rauws, Erik AJ; van Delden, Otto M; van Eijck, Casper HJ; de Jonge, Jeroen; Porte, Robert J; Buis, Carlijn I; Dejong, Cornelis HC; Molenaar, I Quintus; Besselink, Marc GH; Busch, Olivier RC; Dijkgraaf, Marcel GW; van Gulik, Thomas M

    2015-01-01

    Background Liver surgery in perihilar cholangiocarcinoma (PHC) is associated with high postoperative morbidity because the tumor typically causes biliary obstruction. Preoperative biliary drainage is used to create a safer environment prior to liver surgery, but biliary drainage may be harmful when severe drainage-related complications deteriorate the patients? condition or increase the risk of postoperative morbidity. Biliary drainage can cause cholangitis/cholecystitis, pancreatitis, hemorr...

  5. Percutaneous drainage treatment of primary liver abscesses

    Energy Technology Data Exchange (ETDEWEB)

    Berger, H.; Pratschke, E.; Berr, F.; Fink, U.

    1989-02-01

    28 primary liver abscesses, including 9 amoebic abscesses, in 24 patients were drained percutaneously. Indication for drainage in amoebic abscesses was imminent rupture and clinical symptoms as pleural effusion, lung atelectasis and pain. 95% of the primary abscesses were cured by percutaneous drainage and systemic antibiotic treatment. There was one recurrence of abscess, which was managed surgically. Reasons for drainage failure were: tumour necrosis and tumour perforation with secondary liver abscess.

  6. Radiologic drainage of infected and noninfected thoracic fluid collections

    International Nuclear Information System (INIS)

    Van Sonnenberg, E.; Casola, G.; Stavas, J.; Neff, C.C.; Varney, R.A.; Wittich, G.R.; Dillard, J.; Christensen, R.A.; Friedman, P.J.

    1987-01-01

    Radiologically guided drainage of 100 thoracic fluid collections is described in this paper. Collections that underwent drainage include empyemas, lung abscesses, bronchopleural fistulas (BPFs), mediastinal abscesses, paracardial collections, bronchogenic cysts, sequestrations, lymphoceles, lymphangiomas, malignant effusions, and necrotic tumors. Catheters were placed for sclerotherapy in nine patients. Guidance modalities (in descending order of frequency) were CT, US, fluoroscopy, and MR. Inadequate thoracostomy tube drainage occurred in a third of the patients prior to radiologic drainage. Drainages were effective in 85% of cases, sparing surgery or another thoracostomy tube. Complications occurred in 7% of patients, most being minor and none requiring operation. Criteria for drainage of lung abscess and BPF will be emphasized, as will techniques and methods of follow-up

  7. Tile Drainage Expansion Detection using Satellite Soil Moisture Dynamics

    Science.gov (United States)

    Jacobs, J. M.; Cho, E.; Jia, X.

    2017-12-01

    In the past two decades, tile drainage installation has accelerated throughout the Red River of the North Basin (RRB) in parts of western Minnesota, eastern North Dakota, and a small area of northeastern South Dakota, because the flat topography and low-permeability soils in this region necessitated the removal of excess water to improve crop production. Interestingly, streamflow in the Red River has markedly increased and six of 13 major floods during the past century have occurred since the late 1990s. It has been suggested that the increase in RRB flooding could be due to change in agricultural practices, including extensive tile drainage installation. Reliable information on existing and future tile drainage installation is greatly needed to capture the rapid extension of tile drainage systems and to locate tile drainage systems in the north central U.S. including the RRB region. However, there are few reliable data of tile drainage installation records, except tile drainage permit records in the Bois de Sioux watershed (a sub-basin in southern part of the RRB where permits are required for tile drainage installation). This study presents a tile drainage expansion detection method based on a physical principle that the soil-drying rate may increase with increasing tile drainage for a given area. In order to capture the rate of change in soil drying rate with time over entire RRB (101,500 km2), two satellite-based microwave soil moisture records from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and AMSR2 were used during 2002 to 2016. In this study, a sub-watershed level (HUC10) potential tile drainage growth map was developed and the results show good agreement with tile drainage permit records of six sub-watersheds in the Bois de Sioux watershed. Future analyses will include improvement of the potential tile drainage map through additional information using optical- and thermal-based sensor products and evaluation of its

  8. Bundle of measures for external cerebral ventricular drainage-associated ventriculitis.

    Science.gov (United States)

    Chatzi, Maria; Karvouniaris, Marios; Makris, Demosthenes; Tsimitrea, Eleni; Gatos, Charalampos; Tasiou, Anastasia; Mantzarlis, Kostas; Fountas, Kostas N; Zakynthinos, Epaminondas

    2014-01-01

    To assess the prevalence and outcome of external cerebral ventricular drainage-associated ventriculitis in neurocritical patients before and after the implementation of a bundle of external cerebral ventricular drainage-associated ventriculitis control measures. Clinical prospective case series. University Hospital of Larissa, Greece. Consecutive patients were recruited from the ICU of the hospital. Patient inclusion criteria included presence of external ventricular drainage and ICU stay more than 48 hours. The bundle of external cerebral ventricular drainage-associated ventriculitis control measures included 1) reeducation of ICU personnel on issues of infection control related to external cerebral ventricular drainage, 2) meticulous intraventricular catheter handling, 3) cerebrospinal fluid sampling only when clinically necessary, and 4) routine replacement of the drainage catheter on the seventh drainage day if the catheter was still necessary. The bundle was applied after an initial period (preintervention) where standard policy for external cerebral ventricular drainage-associated ventriculitis was established. External cerebral ventricular drainage-associated ventriculitis prevalence, external cerebral ventricular drainage-associated ventriculitis events per 1,000 drainage days (drain-associated infection rate), length of ICU stay, Glasgow Outcome Scale at 6 months, and risk factors for external cerebral ventricular drainage-associated ventriculitis. Eighty-two patients entered the study in the preintervention period and 57 patients during the intervention period. During the preintervention and intervention period, external cerebral ventricular drainage-associated ventriculitis prevalence was 28% and 10.5% (p = 0.02) and drain-associated infection rate was 18 and 7.1, respectively (p = 0.0001); mean (95% CI) length of ICU stay in patients who presented external cerebral ventricular drainage-associated ventriculitis was 44.4 days (36.4-52.4 d), whereas mean

  9. Modes of supraglacial lake drainage and dynamic ice sheet response

    Science.gov (United States)

    Das, S. B.; Behn, M. D.; Joughin, I. R.

    2011-12-01

    We investigate modes of supraglacial lake drainage using geophysical, ground, and remote sensing observations over the western margin of the Greenland ice sheet. Lakes exhibit a characteristic life cycle defined by a pre-drainage, drainage, and post-drainage phase. In the pre-drainage phase winter snow fills pre-existing cracks and stream channels, efficiently blocking past drainage conduits. As temperatures increase in the spring, surface melting commences, initially saturating the snow pack and subsequently forming a surface network of streams that fills the lake basins. Basins continue to fill until lake drainage commences, which for individual lakes occurs at different times depending on the previous winter snow accumulation and summer temperatures. Three styles of drainage behavior have been observed: (1) no drainage, (2) slow drainage over the side into an adjacent pre-existing crack, and (3) rapid drainage through a new crack formed beneath the lake basin. Moreover, from year-to-year individual lakes exhibit different drainage behaviors. Lakes that drain slowly often utilize the same outflow channel for multiple years, creating dramatic canyons in the ice. Ultimately, these surface channels are advected out of the lake basin and a new channel forms. In the post-drainage phase, melt water continues to access the bed typically through a small conduit (e.g. moulin) formed near a local topographic minimum along the main drainage crack, draining the lake catchment throughout the remainder of the melt season. This melt water input to the bed leads to continued basal lubrication and enhanced ice flow compared to background velocities. Lakes that do not completely drain freeze over to form a surface ice layer that persists into the following year. Our results show that supraglacial lakes show a spectrum of drainage behaviors and that these styles of drainage lead to varying rates and timing of surface meltwater delivery to the bed resulting in different dynamic ice

  10. Physical processes in a coupled bay-estuary coastal system: Whitsand Bay and Plymouth Sound

    Science.gov (United States)

    Uncles, R. J.; Stephens, J. A.; Harris, C.

    2015-09-01

    Whitsand Bay and Plymouth Sound are located in the southwest of England. The Bay and Sound are separated by the ∼2-3 km-wide Rame Peninsula and connected by ∼10-20 m-deep English Channel waters. Results are presented from measurements of waves and currents, drogue tracking, surveys of salinity, temperature and turbidity during stratified and unstratified conditions, and bed sediment surveys. 2D and 3D hydrodynamic models are used to explore the generation of tidally- and wind-driven residual currents, flow separation and the formation of the Rame eddy, and the coupling between the Bay and the Sound. Tidal currents flow around the Rame Peninsula from the Sound to the Bay between approximately 3 h before to 2 h after low water and form a transport path between them that conveys lower salinity, higher turbidity waters from the Sound to the Bay. These waters are then transported into the Bay as part of the Bay-mouth limb of the Rame eddy and subsequently conveyed to the near-shore, east-going limb and re-circulated back towards Rame Head. The Simpson-Hunter stratification parameter indicates that much of the Sound and Bay are likely to stratify thermally during summer months. Temperature stratification in both is pronounced during summer and is largely determined by coastal, deeper-water stratification offshore. Small tidal stresses in the Bay are unable to move bed sediment of the observed sizes. However, the Bay and Sound are subjected to large waves that are capable of driving a substantial bed-load sediment transport. Measurements show relatively low levels of turbidity, but these respond rapidly to, and have a strong correlation with, wave height.

  11. Health of the coral reefs at the US Navy Base, Guantánamo Bay, Cuba: A preliminary report based on isotopic records from gorgonians

    International Nuclear Information System (INIS)

    Risk, Michael J.; Burchell, Meghan; Brunton, Dalston A.; McCord, Michael R.

    2014-01-01

    Specimens of the gorgonian Plexaura homomalla were sampled from several areas along the fringing reefs fronting the United States Naval Base at Guantánamo Bay, Cuba. Sample coverage extended from apparently healthy reefs in oceanic waters to declining reefs located in the plume of the drainage from upper parts of Guantánamo Bay. Tentacle tips were excised, and trunk sections were cut and polished. Stable isotope ratios of nitrogen (δ 15 N) and carbon indicate a strong correlation of reef health with proximity to the plume of the river. Of all the worldwide cases in which land-based sources of pollution have impacted reefs, this one may well be the most intractable. The US Navy has jurisdiction over the reefs, with the obligation to protect them, yet the threat comes down the river from Cuba

  12. Percutaneous drainage treatment of primary liver abscesses

    International Nuclear Information System (INIS)

    Berger, H.; Pratschke, E.; Berr, F.; Fink, U.; Klinikum Grosshadern, Muenchen; Klinikum Grosshadern, Muenchen

    1989-01-01

    28 primary liver abscesses, including 9 amoebic abscesses, in 24 patients were drained percutaneously. Indication for drainage in amoebic abscesses was imminent rupture and clinical symptoms as pleural effusion, lung atelectasis and pain. 95% of the primary abscesses were cured by percutaneous drainage and systemic antibiotic treatment. There was one recurrence of abscess, which was managed surgically. Reasons for drainage failure were: tumour necrosis and tumour perforation with secondary liver abscess. (orig.) [de

  13. Endoscopic Ultrasound-Guided Biliary Drainage

    International Nuclear Information System (INIS)

    Artifon, Everson L.A.; Ferreira, Fla'vio C.; Sakai, Paulo

    2012-01-01

    To demonstrate a comprehensive review of published articles regarding endoscopic ultrasound (EUS)-guided biliary drainage. Review of studies regarding EUS-guided biliary drainage including case reports, case series and previous reviews. EUS-guided hepaticogastrostomy, coledochoduodenostomy and choledoantrostomy are advanced biliary and pancreatic endoscopy procedures, and together make up the echo-guided biliary drainage. Hepaticogastrostomy is indicated in cases of hilar obstruction, while the procedure of choice is the coledochoduodenostomy or choledochoantrostomy in distal lesions. Both procedures must be performed only after unsuccessful ERCPs. The indication of these procedures must be made under a multidisciplinary view while sharing information with the patient or legal guardian. Hepaticogastrostomy and coledochoduodenostomy or choledochoantrostomy are feasible when performed by endoscopists with expertise in biliopancreatic endoscopy. Advanced echo-endoscopy should currently be performed under a rigorous protocol in educational institutions.

  14. Endoscopic Ultrasound-Guided Biliary Drainage

    Energy Technology Data Exchange (ETDEWEB)

    Artifon, Everson L.A.; Ferreira, Fla& #x27; vio C.; Sakai, Paulo [University of Saeo Paulo, Saeo Paulo (Brazil)

    2012-02-15

    To demonstrate a comprehensive review of published articles regarding endoscopic ultrasound (EUS)-guided biliary drainage. Review of studies regarding EUS-guided biliary drainage including case reports, case series and previous reviews. EUS-guided hepaticogastrostomy, coledochoduodenostomy and choledoantrostomy are advanced biliary and pancreatic endoscopy procedures, and together make up the echo-guided biliary drainage. Hepaticogastrostomy is indicated in cases of hilar obstruction, while the procedure of choice is the coledochoduodenostomy or choledochoantrostomy in distal lesions. Both procedures must be performed only after unsuccessful ERCPs. The indication of these procedures must be made under a multidisciplinary view while sharing information with the patient or legal guardian. Hepaticogastrostomy and coledochoduodenostomy or choledochoantrostomy are feasible when performed by endoscopists with expertise in biliopancreatic endoscopy. Advanced echo-endoscopy should currently be performed under a rigorous protocol in educational institutions.

  15. Predictors of chest drainage complications in trauma patients

    Directory of Open Access Journals (Sweden)

    CECÍLIA ARAÚJO MENDES

    2018-04-01

    Full Text Available ABSTRACT Objective: to identify predictors of chest drainage complications in trauma patients attended at a University Hospital. Methods: we conducted a retrospective study of 68 patients submitted to thoracic drainage after trauma, in a one-year period. We analyzed gender, age, trauma mechanism, trauma indices, thoracic and associated lesions, environment in which the procedure was performed, drainage time, experience of the performer, complications and evolution. Results: the mean age of the patients was 35 years and the male gender was the most prevalent (89%. Blunt trauma was the most frequent, with 67% of cases, and of these, 50% were due to traffic accidents. The mean TRISS (Trauma and Injury Severity Score was 98, with a mortality rate of 1.4%. The most frequent thoracic and associated lesions were, respectively, rib fractures (51% and abdominal trauma (32%. The mean drainage time was 6.93 days, being higher in patients under mechanical ventilation (p=0.0163. The complication rate was 26.5%, mainly poor drain positioning (11.77%. Hospital drainage was performed in 89% of cases by doctors in the first year of specialization. Thoracic drainage performed in prehospital care presented nine times more chances of complications (p=0.0015. Conclusion: the predictors of post-trauma complications for chest drainage were a procedure performed in an adverse site and mechanical ventilation. The high rate of complications demonstrates the importance of protocols of care with the thoracic drainage.

  16. Natural attenuation of antimony in mine drainage water

    International Nuclear Information System (INIS)

    Manaka, Mitsuo; Yanase, Nobuyuki; Sato, Tsutomu; Fukushi, Keisuke

    2007-01-01

    In this study, we investigated the natural attenuation of antimony (Sb) in the drainage water of an abandoned mine. Drainage water, waste rocks, and ocherous precipitates collected from the mine were investigated in terms of their mineralogy and chemistry. The chemistry of the drainage water was analyzed by measuring pH, oxidation-reduction potential (ORP), and electric conductivity on site as well as by inductively coupled plasma mass spectrometry and ion chromatography. As the drainage flowed downstream, the pH decreased rapidly from 7.05 to 3.26 and then increased slowly to 3.50. In a section where the pH increased, ocherous precipitates occur on a drainage water channel. We determined Sb levels in the drainage water, and the distribution of Sb in the mineral phases of waste rocks and precipitates was estimated by means of a sequential extraction procedure. The results of these investigations indicated that Sb, which is generated by the dissolution of stibnite (Sb 2 S 3 ) and secondary formed Sb minerals in waste rocks, was attenuated by iron-bearing ocherous precipitates, especially schwertmannite, that form over time in the drainage water. The Sb concentrations in the ocherous precipitates were up to 370 mg/kg, whereas the Sb concentrations in the drainage water downstream were below background levels (0.6 μg/L). Bulk distribution coefficients (K d ) for this Sb adsorption to the precipitates ranges up to at least 10 5 L/kg. (author)

  17. adequacy of drainage channels f drainage channels in a small

    African Journals Online (AJOL)

    eobe

    The area upon which waterfalls and the netw through ... ls were determined using the rational model and manning's equation. A .... runoff, including roads, culverts and drainage systems. ... hence, detailed design information of the drain is.

  18. 75 FR 38590 - Notice of Actions Taken at June 11, 2010, Meeting

    Science.gov (United States)

    2010-07-02

    ... presentation by the IMAX movie production staff at the Harrisburg Whitaker Center for Science and the Arts on development of an educational production on the future of the Chesapeake Bay; (2) a concluding report on the... application of fees to certain projects and ease the impact of fees on groundwater remediation and municipal...

  19. 77 FR 19957 - OPSAIL 2012 Virginia, Port of Hampton Roads, VA

    Science.gov (United States)

    2012-04-03

    ...-0174] RIN 1625-AA00, AA01, AA08, AA11, AA87 OPSAIL 2012 Virginia, Port of Hampton Roads, VA AGENCY... temporary regulations in the Port of Hampton Roads, Virginia for Operation Sail (OPSAIL) 2012 Virginia... portions of Chesapeake Bay, Hampton Roads, the James River and Elizabeth River. DATES: Comments and related...

  20. Experimental and numerical analysis of the drainage of aluminium foams

    International Nuclear Information System (INIS)

    Brunke, O; Hamann, A; Cox, S J; Odenbach, S

    2005-01-01

    Drainage is one of the driving forces for the temporal instability of molten metal foams. For usual aqueous foams this phenomenon is well examined and understood on both the experimental and the theoretical side. The situation is different for metallic foams. Due to their opaque nature, the observation of drainage is only possible by either measuring the density distribution of solidified samples ex situ or by x-ray or neutron radioscopy. Up to now there exists just one theoretical study describing the drainage behaviour of metallic foams incorporating the drainage equation, the temperature dependence of the viscosity and thermal transport. This paper will present results on the drainage behaviour of aluminium foams grown by a powder-metallurgical production route. For this purpose an experiment which allows the observation of drainage in cylindrical metal foam columns has been developed. Experimental density profiles after different drainage times are measured ex situ and compared to numerical results of the standard drainage equation for aqueous foams. This first comparison between the density redistribution of metallic aluminium foams and numerical solutions shows that the standard drainage equation can be used to explain the drainage behaviour of metallic foams

  1. 78 FR 46813 - Safety Zone; Evening on the Bay Fireworks; Sturgeon Bay, WI

    Science.gov (United States)

    2013-08-02

    ...-AA00 Safety Zone; Evening on the Bay Fireworks; Sturgeon Bay, WI AGENCY: Coast Guard, DHS. ACTION.... This temporary safety zone will restrict vessels from a portion of Sturgeon Bay due to a fireworks... hazards associated with the fireworks display. DATES: This rule is effective from 8 p.m. until 10 p.m. on...

  2. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    Science.gov (United States)

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.

    2009-01-01

    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  3. 77 FR 38488 - Safety Zone; Alexandria Bay Chamber of Commerce, St. Lawrence River, Alexandria Bay, NY

    Science.gov (United States)

    2012-06-28

    ... 1625-AA00 Safety Zone; Alexandria Bay Chamber of Commerce, St. Lawrence River, Alexandria Bay, NY... restrict vessels from a portion of the St. Lawrence River during the Alexandria Bay Chamber of Commerce... of proposed rulemaking (NPRM) entitled Safety Zone; Alexandria Bay Chamber of Commerce, St. Lawrence...

  4. Contribution of computed tomography on chest drainage guidance

    International Nuclear Information System (INIS)

    Douvlou, E.; Tzortzis, D.; Vlachou, I.; Petrocheilou, G.; Safarika, V.; Fragopoulou, L.; Stathopoulou, S.; Kokkinis, C.

    2012-01-01

    Full text: Introduction: Thoracic collections (encysted pleural, endopulmonary, mediastinal) are common findings in major trauma hospitals mainly in need of further treatment as drainage. Objectives and tasks: To evaluate the CT-guidance, as a method of choice for thoracic drainages. Material and methods: 35 CT-guided chest drainages were performed for diagnostic and therapeutic purpose in 33 patients, with a mean age of 62 years. Of the 35 drainages, 31 were encysted at the pleura, 3 of them were endopulmonary and 1 was in the mediastinum. During the procedure we used needles of 15cm long and 18-22 G diameter for small collections while for 'large' collections drainage catheters of 10-16 F were placed. Results: All the CT-guided drainages of the chest were successful. Of them, 7 were pleural effusion collections while 24 were exudate collections (18 inflammatory and 6 neoplastic) and all were developed in the lungs or the mediastinum. In all the cases that a catheter was placed, full removal of the collections was achieved leading to a remarkable improvement of the patient's condition. Non-significant pneumothorax and tiny endopulmonary bleeding were the complications that occurred. Conclusion: CT-guided drainage of thoracic collections is an accurate and secure procedure and achieves high diagnostic and therapeutic results

  5. [Endoscopic ultrasound guided rendezvous for biliary drainage].

    Science.gov (United States)

    Knudsen, Marie Høxbro; Vilmann, Peter; Hassan, Hazem; Karstensen, John Gésdal

    2015-04-27

    Endoscopic retrograde cholangiography (ERCP) is currently standard treatment for biliary drainage. Endoscopic ultrasound guided rendezvous (EUS-RV) is a novel method to overcome an unsuccessful biliary drainage procedure. Under endoscopic ultrasound guidance a guidewire is passed via a needle from the stomach or duodenum to the common bile duct and from there on to the duodenum enabling ERCP. With a relatively high rate of success EUS-RV should be considered as an alternative to biliary drainage and surgical intervention.

  6. Percutaneous transhepatic biliary drainage for hilar cholangiocarcinoma

    International Nuclear Information System (INIS)

    Qian Xiaojun; Jin Wenhui; Dai Dingke; Yu Ping; Gao Kun; Zhai Renyou

    2007-01-01

    Objective: To evaluate the effect of PTBD in treating malignant biliary obstruction caused by hilar cholangiocarcinoma. Methods: We retrospectively analyzed the data of 103 patients(M:62,F:41)with malignant obstructive jaundice caused by hilar cholangiocarcinoma. After taking percutaneous transhepatic cholangiography, metallic stent or plastic external catheter or external-internal catheter for drainage was deployed and then followed up was undertaken with clinical and radiographic evaluation and laboratory. examination. Results: All patients went though PTBD successfully (100%). According to Bismuth classification, all 103 cases consisted of I type(N=30), II type (N=30), III type (N=26) and IV type (N=17). Thirty-nine cases were placed with 47 stents and 64 eases with drainage tubes. 4 cases installed two stems for bilateral drainage, 2 cases installed two stents because of long segmental strictures with stent in stent, 1 case was placed with three stents, and 3 cases installed stent and plastic catheter together. Sixty-four cases received plastic catheters in this series, 35 cases installed two or more catheters for bilateral drainage, 28 cases installed external and internal drainage catheters, 12 eases installed external drainage catheters, and 24 eases installed both of them. There were 17 patients involving incorporative infection before procedure, 13 cases cured after procedure, and 15 new patients got inflammation after procedure. 13 cases showed increase of amylase (from May, 2004), 8 eases had bloody bile drainage and 1 case with pyloric obstruction. Total serum bilirubin reduced from (386 ± 162) μmol/L to (161 ± 117) μmol/L, (P<0.01) short term curative effect was related with the type of hilar cholangiocarcinoma. The survival time was 186 days(median), and 1, 3, 6, 12 month survival rate were 89.9%, 75.3%, 59.6%, 16.9%, respectively. Conclusion: Percutaneous transhepatic bile drainage is a safe and effective palliative therapy of malignant

  7. Foamed emulsion drainage: flow and trapping of drops.

    Science.gov (United States)

    Schneider, Maxime; Zou, Ziqiang; Langevin, Dominique; Salonen, Anniina

    2017-06-07

    Foamed emulsions are ubiquitous in our daily life but the ageing of such systems is still poorly understood. In this study we investigate foam drainage and measure the evolution of the gas, liquid and oil volume fractions inside the foam. We evidence three regimes of ageing. During an initial period of fast drainage, both bubbles and drops are very mobile. As the foam stabilises drainage proceeds leading to a gradual decrease of the liquid fraction and slowing down of drainage. Clusters of oil drops are less sheared, their dynamic viscosity increases and drainage slows down even further, until the drops become blocked. At this point the oil fraction starts to increase in the continuous phase. The foam ageing leads to an increase of the capillary pressure until the oil acts as an antifoaming agent and the foam collapses.

  8. Priority Scale of Drainage Rehabilitation of Cilacap City

    Science.gov (United States)

    Rudiono, Jatmiko

    2018-03-01

    Characteristics of physical condition of Cilacap City is relatively flat and low to sea level (approximately 6 m above sea level). In the event of a relatively heavy rainfall resulting in inundation at several locations. The problem of inundation is a serious problem if there is in a dense residential area or occurs in publicly-used infrastructure, such as roads and settlements. These problems require improved management of which include how to plan a sustainable urban drainage system and environmentally friendly. The development of Cilacap City is increasing rapidly, this causes drainage system based on the Drainage Masterplan Cilacap made in 2006 has not been able to accommodate rain water, so, it is necessary to evaluate the drainage masterplan for subsequent rehabilitation. Priority scale rehabilitation of the drainage sections as a guideline is an urgent need of rehabilitation in the next time period.

  9. Talking Trash on the Internet: Working Real Data into Your Classroom.

    Science.gov (United States)

    Lynch, Maurice P.; Walton, Susan A.

    1998-01-01

    Describes how a middle school teacher used the Chesapeake Bay National Estuarine Research Reserve in Virginia (CBNERRVA) Web site to provide scientific data for a unit on recycling. Includes sample data sheets and tables, charts results of a Web search for marine debris using different search engines, and lists selected marine data Web sites. (PEN)

  10. 76 FR 30236 - Requested Administrative Waiver of the Coastwise Trade Laws

    Science.gov (United States)

    2011-05-24

    ... p.m., E.T., Monday through Friday, except Federal holidays. An electronic version of this document... charter in the Chesapeake Bay and between New York City and Boston. The program would focus on French and... able to search the electronic form of all comments received into any of our dockets by the name of the...

  11. The American Oyster.

    Science.gov (United States)

    Thompson, Nancy E.

    The Maryland Marine Science Education Project has produced a series of mini-units in marine science education for the junior high/middle school classroom. This unit focuses on the American oyster. Although the unit specifically treats the Chesapeake Bay, it may be adapted for use with similar estuarine systems. In addition, the unit may be…

  12. An update on the drainage of pyogenic lung abscesses

    Directory of Open Access Journals (Sweden)

    Siraj O Wali

    2012-01-01

    Full Text Available Most lung abscesses (80-90% are now successfully treated with antibiotics; however, this conservative approach may occasionally fail. When medical treatment fails, pulmonary resection is usually advised. Alternatively, percutaneous transthoracic tube drainage or endoscopic drainage can be considered, though both remain controversial. In this communication, the medical literature focusing on percutaneous tube drainage efficacy, indications, techniques, complications, and mortality, as well as available data regarding endoscopic drainage are reviewed.

  13. An Optimal Balance between Efficiency and Safety of Urban Drainage Networks

    Science.gov (United States)

    Seo, Y.

    2014-12-01

    Urban drainage networks have been developed to promote the efficiency of a system in terms of drainage time so far. Typically, a drainage system is designed to drain water from developed areas promptly as much as possible during floods. In this regard, an artificial drainage system have been considered to be more efficient compared to river networks in nature. This study examined artificial drainage networks and the results indicate they can be less efficient in terms of network configuration compared with river networks, which is counter-intuitive. The case study of 20 catchments in Seoul, South Korea shows that they have wide range of efficiency in terms of network configuration and consequently, drainage time. This study also demonstrates that efficient drainage networks are more sensitive to spatial and temporal rainfall variation such as rainstorm movement. Peak flows increase more than two times greater in effective drainage networks compared with inefficient and highly sinuous drainage networks. Combining these results, this study implies that the layout of a drainage network is an important factor in terms of efficient drainage and also safety in urban catchments. Design of an optimal layout of the drainage network can be an alternative non-structural measures that mitigate potential risks and it is crucial for the sustainability of urban environments.

  14. Marine hypoxia/anoxia as a source of CH4 and N2O

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Bange, H.W.; Farias, L.; Monteiro, P.M.S.; Scranton, M.I.; Zhang, J.

    ” of the Louisiana Shelf in the northern Gulf of Mexico (Rabal- ais et al., 2007; Swarzenski et al., 2008). All natural O2- deficient aquatic environments have arguably been affected by human activities to varying degrees. Nonetheless, it is possible in most cases... to identify the dominant driver of hy- poxia. Thus, out of the systems being examined here (Fig. 1), hypoxia in the East China Sea, Chesapeake Bay, Gulf of Mexico and Tokyo Bay is largely human-induced, whereas in the remaining regions it is primarily...

  15. Henneguya sp. (Cnidospora:Myxosporida) parasitic in the heart of the bluefish, Pomatomus saltatrix.

    Science.gov (United States)

    Meyers, T R; Sawyer, T K; MacLean, S A

    1977-10-01

    A myxosporidan parasite, Henneguya sp., was discovered in the bulbus and truncus arteriosus of bluefish, Pomatomus saltatrix. Infected fish were captured from the Atlantic Ocean near Montauk Point, Long Island, New York, Raritan Bay, New Jersey, and Chesapeake Bay, Maryland. Comparative features of mature spores showed that they were similar to those of Henneguya sebasta Moser and Love 1975, from the bulbus arteriosus of seven species of California rockfish, Sebastes. Studies on growth stages of the parasite from both host species are necessary before a definite identification of the bluefish parasite can be made.

  16. Gradient Analysis and Classification of Carolina Bay Vegetation: A Framework for Bay Wetlands Conservation and Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Diane De Steven,Ph.D.; Maureen Tone,PhD.

    1997-10-01

    This report address four project objectives: (1) Gradient model of Carolina bay vegetation on the SRS--The authors use ordination analyses to identify environmental and landscape factors that are correlated with vegetation composition. Significant factors can provide a framework for site-based conservation of existing diversity, and they may also be useful site predictors for potential vegetation in bay restorations. (2) Regional analysis of Carolina bay vegetation diversity--They expand the ordination analyses to assess the degree to which SRS bays encompass the range of vegetation diversity found in the regional landscape of South Carolina's western Upper Coastal Plain. Such comparisons can indicate floristic status relative to regional potentials and identify missing species or community elements that might be re-introduced or restored. (3) Classification of vegetation communities in Upper Coastal Plain bays--They use cluster analysis to identify plant community-types at the regional scale, and explore how this classification may be functional with respect to significant environmental and landscape factors. An environmentally-based classification at the whole-bay level can provide a system of templates for managing bays as individual units and for restoring bays to desired plant communities. (4) Qualitative model for bay vegetation dynamics--They analyze present-day vegetation in relation to historic land uses and disturbances. The distinctive history of SRS bays provides the possibility of assessing pathways of post-disturbance succession. They attempt to develop a coarse-scale model of vegetation shifts in response to changing site factors; such qualitative models can provide a basis for suggesting management interventions that may be needed to maintain desired vegetation in protected or restored bays.

  17. Nonsurgical drainage of splenic abscess

    International Nuclear Information System (INIS)

    Berkman, W.A.; Harris, S.A. Jr.; Bernardino, M.E.

    1983-01-01

    The mortality associated with intraabdominal abscess remains high despite modern surgical methods and antibiotics. Draingae of abscesses of the abdomen, retroperitoneum, pelvis, pancreatic pseudocyst, mediastinum, and lung may be treated effectively by percutaneous catheter placement. In several reports of percutaneous abdominal abscess drainage, only three cases of splenic abscess drainage have been reported. The authors have recently drained two splenic abscesses with the aid of computed tomography (CT) and emphasize several advantages of the percutaneous guided approach

  18. Health of the coral reefs at the US Navy Base, Guantánamo Bay, Cuba: a preliminary report based on isotopic records from gorgonians.

    Science.gov (United States)

    Risk, Michael J; Burchell, Meghan; Brunton, Dalston A; McCord, Michael R

    2014-06-15

    Specimens of the gorgonian Plexaura homomalla were sampled from several areas along the fringing reefs fronting the United States Naval Base at Guantánamo Bay, Cuba. Sample coverage extended from apparently healthy reefs in oceanic waters to declining reefs located in the plume of the drainage from upper parts of Guantánamo Bay. Tentacle tips were excised, and trunk sections were cut and polished. Stable isotope ratios of nitrogen (δ(15)N) and carbon indicate a strong correlation of reef health with proximity to the plume of the river. Of all the worldwide cases in which land-based sources of pollution have impacted reefs, this one may well be the most intractable. The US Navy has jurisdiction over the reefs, with the obligation to protect them, yet the threat comes down the river from Cuba. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Effect of viscosity on tear drainage and ocular residence time.

    Science.gov (United States)

    Zhu, Heng; Chauhan, Anuj

    2008-08-01

    An increase in residence time of dry eye medications including artificial tears will likely enhance therapeutic benefits. The drainage rates and the residence time of eye drops depend on the viscosity of the instilled fluids. However, a quantitative understanding of the dependence of drainage rates and the residence time on viscosity is lacking. The current study aims to develop a mathematical model for the drainage of Newtonian fluids and also for power-law non-Newtonian fluids of different viscosities. This study is an extension of our previous study on the mathematical model of tear drainage. The tear drainage model is modified to describe the drainage of Newtonian fluids with viscosities higher than the tear viscosity and power-law non-Newtonian fluids with rheological parameters obtained from fitting experimental data in literature. The drainage rate through canaliculi was derived from the modified drainage model and was incorporated into a tear mass balance to calculate the transients of total solute quantity in ocular fluids and the bioavailability of instilled drugs. For Newtonian fluids, increasing the viscosity does not affect the drainage rate unless the viscosity exceeds a critical value of about 4.4 cp. The viscosity has a maximum impact on drainage rate around a value of about 100 cp. The trends are similar for shear thinning power law fluids. The transients of total solute quantity, and the residence time agrees at least qualitatively with experimental studies. A mathematical model has been developed for the drainage of Newtonian fluids and power-law fluids through canaliculi. The model can quantitatively explain different experimental observations on the effect of viscosity on the residence of instilled fluids on the ocular surface. The current study is helpful for understanding the mechanism of fluid drainage from the ocular surface and for improving the design of dry eye treatments.

  20. Preoperative biliary drainage in hilar cholangiocarcinoma: When and how?

    Science.gov (United States)

    Paik, Woo Hyun; Loganathan, Nerenthran; Hwang, Jin-Hyeok

    2014-01-01

    Hilar cholangiocarcinoma is a tumor of the extrahepatic bile duct involving the left main hepatic duct, the right main hepatic duct, or their confluence. Biliary drainage in hilar cholangiocarcinoma is sometimes clinically challenging because of complexities associated with the level of biliary obstruction. This may result in some adverse events, especially acute cholangitis. Hence the decision on the indication and methods of biliary drainage in patients with hilar cholangiocarcinoma should be carefully evaluated. This review focuses on the optimal method and duration of preoperative biliary drainage (PBD) in resectable hilar cholangiocarcinoma. Under certain special indications such as right lobectomy for Bismuth type IIIA or IV hilar cholangiocarcinoma, or preoperative portal vein embolization with chemoradiation therapy, PBD should be strongly recommended. Generally, selective biliary drainage is enough before surgery, however, in the cases of development of cholangitis after unilateral drainage or slow resolving hyperbilirubinemia, total biliary drainage may be considered. Although the optimal preoperative bilirubin level is still a matter of debate, the shortest possible duration of PBD is recommended. Endoscopic nasobiliary drainage seems to be the most appropriate method of PBD in terms of minimizing the risks of tract seeding and inflammatory reactions. PMID:24634710

  1. Discharge, water-quality characteristics, and nutrient loads from McKay Bay, Delaney Creek, and East Bay, Tampa, Florida, 1991-1993

    Science.gov (United States)

    Stoker, Y.E.; Levesque, V.A.; Fritz, E.M.

    1996-01-01

    Nutrient enrichment in Tampa Bay has caused a decline in water quality in the estuary. Efforts to reduce the nutrient loading to Tampa Bay have resulted in improvement in water quality from 1981 to 1991. However, Tampa Bay still is onsidered enriched with nutrients. Water quality in East Bay (located at the northeastern part of Hillsborough Bay, which is an embayment in Tampa Bay) is not improving at the same rate as the rest of the bay. East Bay is the center of shipping activity in Tampa Bay and the seventh largest port in the United States. One of the primary cargoes is phosphate ore and related products such as fertilizer. The potential for nutrient loading to East Bay from shipping activities is high and has not previously been measured. Nitrogen and phosphorus loads from East Bay to Hillsborough Bay were measured during selected time periods during June 1992 through May 1993; these data were used to estimate seasonal and annual loads. These loads were evaluated to determine whether the loss of fertilizer products from shipping activities resulted in increased nutrient loading to Hillsborough Bay. Discharge was measured, and water-quality samples were collected at the head of East Bay (exiting McKay Bay), and at the mouth of East Bay. Discharge and nitrogen and phosphorus concentrations for the period June 1992 through May 1993 were used to compute loads. Discharges from McKay Bay, Delaney Creek, and East Bay are highly variable because of the effect of tide. Flow patterns during discharge measurements generally were unidirectional in McKay Bay and Delaney Creek, but more complex, bidirectional patterns were observed at the mouth of East Bay. Tidally affected discharge data were digitally filtered with the Godin filter to remove the effects of tide so that residual, or net, discharge could be determined. Daily mean discharge from McKay Bay ranged from -1,900 to 2,420 cubic feet per second; from Delaney Creek, -3.8 to 162 cubic feet per second; and from East

  2. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  3. 33 CFR 165.1182 - Safety/Security Zone: San Francisco Bay, San Pablo Bay, Carquinez Strait, and Suisun Bay, CA.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety/Security Zone: San... Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY... Areas Eleventh Coast Guard District § 165.1182 Safety/Security Zone: San Francisco Bay, San Pablo Bay...

  4. Food Webs in an Estuary.

    Science.gov (United States)

    Dunne, Barbara B.

    The Maryland Marine Science Education Project has produced a series of mini-units in marine science education for the junior high/middle school classroom. This unit focuses on food chains in an estuary. Although the unit specifically treats the Chesapeake Bay, it may be adapted for use with similar estuarine systems. In addition, the unit may be…

  5. Validation databases for simulation models: aboveground biomass and net primary productive, (NPP) estimation using eastwide FIA data

    Science.gov (United States)

    Jennifer C. Jenkins; Richard A. Birdsey

    2000-01-01

    As interest grows in the role of forest growth in the carbon cycle, and as simulation models are applied to predict future forest productivity at large spatial scales, the need for reliable and field-based data for evaluation of model estimates is clear. We created estimates of potential forest biomass and annual aboveground production for the Chesapeake Bay watershed...

  6. Establishing Empirical Bases for Sustainability Objectives

    Science.gov (United States)

    Lawrence Martin

    2006-01-01

    The argument is made that sustainability should be construed as measurable environmental conditions, and that sustainable development strategies should be considered in terms of how well they contribute to the sustainable condition target. A case study of the Chesapeake Bay is presented to illustrate how use of Material Flow Analysis (MFA) as a basic component in the...

  7. 78 FR 62293 - Safety Zone, Oyster Festival 30th Anniversary Fireworks Display, Oyster Bay; Oyster Bay, NY

    Science.gov (United States)

    2013-10-15

    ... Safety Zone, Oyster Festival 30th Anniversary Fireworks Display, Oyster Bay; Oyster Bay, NY AGENCY: Coast... zone on the navigable waters of Oyster Bay near Oyster Bay, NY for the Oyster Festival 30th Anniversary... Oyster Festival 30th Anniversary Fireworks Display is scheduled for October 19, 2013 and is one of...

  8. Drainage of Splenic Abscess: A Case Report | Kombo | Nigerian ...

    African Journals Online (AJOL)

    ... and was managed by tube drainage. His post operative recovery was uneventful. Conclusion: Tube drainage of the splenic abscess is encouraged if there is easy access to the abscess and there is evidence of residual splenic tissue in the critically ill patient. Key Word: Tube drainage, splenic abscess, splenectomy.

  9. The construction technology of Chinese ancient city drainage facilities

    Science.gov (United States)

    Hequn, Li; Yufengyun

    2018-03-01

    In ancient china, according to the local natural environment, a variety of drainage facilities were built in order to excrete rainwater, domestic sewage, production wastewater and so on. These drainage facilities were mainly made of pottery, bricks, wood, stone, etc. For example, ceramic water pipelines, buried in the ground, connect together one by one, and there was a slight drop from one end to the other in favor of drainage. These measures can also be used for reference in today’s urban drainage and flood control.

  10. Drainage divides, Massachusetts; Blackstone and Thames River basins

    Science.gov (United States)

    Krejmas, Bruce E.; Wandle, S. William

    1982-01-01

    Drainage boundaries for selected subbasins of the Blackstone and Thames River basins in eastern Hampden, eastern Hampshire, western Norfolk, southern Middlesex, and southern Worcester Counties, Massachusetts, are delineated on 12 topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for streams where the drainage area is greater than 3 square miles. Successive sites along watercourses are indicated where the intervening area is at least 6 miles on tributary streams or 15 square miles along the Blackstone River, French River, or Quinebaug River. (USGS)

  11. Application of BIM Technology in Building Water Supply and Drainage Design

    Science.gov (United States)

    Wei, Tianyun; Chen, Guiqing; Wang, Junde

    2017-12-01

    Through the application of BIM technology, the idea of building water supply and drainage designers can be related to the model, the various influencing factors to affect water supply and drainage design can be considered more comprehensively. BIM(Building information model) technology assist in improving the design process of building water supply and drainage, promoting the building water supply and drainage planning, enriching the building water supply and drainage design method, improving the water supply and drainage system design level and building quality. Combined with fuzzy comprehensive evaluation method to analyze the advantages of BIM technology in building water supply and drainage design. Therefore, application prospects of BIM technology are very worthy of promotion.

  12. Understanding Urban Watersheds through Digital Interactive Maps, San Francisco Bay Area, California

    Science.gov (United States)

    Sowers, J. M.; Ticci, M. G.; Mulvey, P.

    2014-12-01

    Dense urbanization has resulted in the "disappearance" of many local creeks in urbanized areas surrounding the San Francisco Bay. Long reaches of creeks now flow in underground pipes. Municipalities and water agencies trying to reduce non-point-source pollution are faced with a public that cannot see and therefore does not understand the interconnected nature of the drainage system or its ultimate discharge to the bay. Since 1993, we have collaborated with the Oakland Museum, the San Francisco Estuary Institute, public agencies, and municipalities to create creek and watershed maps to address the need for public understanding of watershed concepts. Fifteen paper maps are now published (www.museumca.org/creeks), which have become a standard reference for educators and anyone working on local creek-related issues. We now present digital interactive creek and watershed maps in Google Earth. Four maps are completed covering urbanized areas of Santa Clara and Alameda Counties. The maps provide a 3D visualization of the watersheds, with cartography draped over the landscape in transparent colors. Each mapped area includes both Present and Past (circa 1800s) layers which can be clicked on or off by the user. The Present layers include the modern drainage network, watershed boundaries, and reservoirs. The Past layers include the 1800s-era creek systems, tidal marshes, lagoons, and other habitats. All data are developed in ArcGIS software and converted to Google Earth format. To ensure the maps are interesting and engaging, clickable icons pop-up provide information on places to visit, restoration projects, history, plants, and animals. Maps of Santa Clara Valley are available at http://www.valleywater.org/WOW.aspx. Maps of western Alameda County will soon be available at http://acfloodcontrol.org/. Digital interactive maps provide several advantages over paper maps. They are seamless within each map area, and the user can zoom in or out, and tilt, and fly over to explore

  13. Percutaneous transhepatic biliary drainage: analysis of 175 cases

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kyung Jin; Lee, Sang Kwon; Kim, Tae Hun; Kim, Yong Joo; Kang, Duk Sik [College of Medicine, Kyungpook National Univ., Daegu (Korea, Republic of)

    1990-10-15

    Percutaneous transhepatic biliary drainage is a safe, effective and palliative means of treatment in biliary obstruction, especially in cases with malignant obstruction which are inoperable. 175 cases of transhepatic biliary drainage were performed on 119 patients with biliary obstruction from January 1985 to June 1989 at Kyung-pook National University Hospital. The causes of obstructive jaundice were 110 malignant diseases and 9 benign diseases. The most common indication for drainage was palliative intervention of obstruction secondary to malignant tumor in 89 cases. 86 cases of external drainage were performed including 3 cases of left duct approach, 29 cases of external-internal drainage and 60 cases of endoprosthesis. In external and external-internal drainages, immediate major complications (11.9%) occurred, including not restricted to, but sepsis, bile peritonitis and hemobilia. Delayed major complications (42.9%) were mainly catheter related. The delayed major complication of endoprosthesis resulted from obstruction of the internal stent. The mean time period to reobstruction of the internal stent was about 12 weeks. To improve management status, regular follow-up is required, as is education of both patients and their families as to when immediate clinical attention is mandated. Close communication amongst the varying medical specialities involved will be necessary to provide optional treatment for each patient.

  14. Percutaneous transhepatic biliary drainage: analysis of 175 cases

    International Nuclear Information System (INIS)

    Suh, Kyung Jin; Lee, Sang Kwon; Kim, Tae Hun; Kim, Yong Joo; Kang, Duk Sik

    1990-01-01

    Percutaneous transhepatic biliary drainage is a safe, effective and palliative means of treatment in biliary obstruction, especially in cases with malignant obstruction which are inoperable. 175 cases of transhepatic biliary drainage were performed on 119 patients with biliary obstruction from January 1985 to June 1989 at Kyung-pook National University Hospital. The causes of obstructive jaundice were 110 malignant diseases and 9 benign diseases. The most common indication for drainage was palliative intervention of obstruction secondary to malignant tumor in 89 cases. 86 cases of external drainage were performed including 3 cases of left duct approach, 29 cases of external-internal drainage and 60 cases of endoprosthesis. In external and external-internal drainages, immediate major complications (11.9%) occurred, including not restricted to, but sepsis, bile peritonitis and hemobilia. Delayed major complications (42.9%) were mainly catheter related. The delayed major complication of endoprosthesis resulted from obstruction of the internal stent. The mean time period to reobstruction of the internal stent was about 12 weeks. To improve management status, regular follow-up is required, as is education of both patients and their families as to when immediate clinical attention is mandated. Close communication amongst the varying medical specialities involved will be necessary to provide optional treatment for each patient

  15. Superficial drainage studies in open-pit mines

    International Nuclear Information System (INIS)

    Teixeira Junior, P.B.; Leite, C.B.B.

    1984-01-01

    Drainage studies concerning large open-pit mining projects can be of vital importance throughout the mining activity itself as they may assist in avoiding activity interruptions due to drainage problems, therefore representing substantial savings. These studies should, in fact, be carried out from the initial activity stages and shall be considered in operational, project and planning decisions in order to optimize results and reduce costs. This specific study presents a drainage study systematization proposal, enphasazing economic decision criteria. The authors comment on studies of this nature developed at the Caldas uranium mine - NUCLEBRAS. (D.J.M.) [pt

  16. Gravity Drainage Kinetics of Papermaking Fibrous Suspensions

    Directory of Open Access Journals (Sweden)

    Przybysz Piotr

    2014-12-01

    Full Text Available The study analyses application possibilities of filtration and thickening models in evaluation of papermaking suspension drainage rate. The authors proposed their own method to estimate the drainage rate on the basis of an existing Ergun capillary model of liquid flow through a granular material. The proposed model was less sensitive to porosity changes than the Ergun model. An empirical verification proved robustness of the proposed approach. Taking into account discrepancies in the published data concerning how the drainage velocity of papermaking suspension is defined, this study examines which of the commonly applied models matches experimental results the best.

  17. Surgical vs ultrasound-guided drainage of deep neck space abscesses: a randomized controlled trial: surgical vs ultrasound drainage.

    Science.gov (United States)

    Biron, Vincent L; Kurien, George; Dziegielewski, Peter; Barber, Brittany; Seikaly, Hadi

    2013-02-26

    Deep neck space abscesses (DNAs) are relatively common otolaryngology-head and neck surgery emergencies and can result in significant morbidity with potential mortality. Traditionally, surgical incision and drainage (I&D) with antibiotics has been the mainstay of treatment. Some reports have suggested that ultrasound-guided drainage (USD) is a less invasive and effective alternative in select cases. To compare I&D vs USD of well-defined DNAs, using a randomized controlled clinical trial design. The primary outcome measure was effectiveness (length of hospital stay (LOHS) and safety), and the secondary outcome measure was overall cost to the healthcare system. Patients presenting to the University of Alberta Emergency Department with a well-defined deep neck space abscess were recruited in the study. Patients were randomized to surgical or US-guided drainage, placed on intravenous antibiotics and admitted with airway precautions. Following drainage with either intervention, abscess collections were cultured and drains were left in place until discharge. Seventeen patients were recruited in the study. We found a significant difference in mean LOHS between patients who underwent USD (3.1 days) vs I&D (5.2 days). We identified significant cost savings associated with USD with a 41% cost reduction in comparison to I&D. USD drainage of deep neck space abscesses in a certain patient population is effective, safe, and results in a significant cost savings to the healthcare system.

  18. Improved drainage with active chest tube clearance.

    Science.gov (United States)

    Shiose, Akira; Takaseya, Tohru; Fumoto, Hideyuki; Arakawa, Yoko; Horai, Tetsuya; Boyle, Edward M; Gillinov, A Marc; Fukamachi, Kiyotaka

    2010-05-01

    This study was performed to evaluate the efficacy of a novel chest drainage system. This system employs guide wire-based active chest tube clearance to improve drainage and maintain patency. A 32 Fr chest tube was inserted into pleural cavities of five pigs. On the left, a tube was connected to the chest canister, and on the right, the new system was inserted between the chest tube and chest canister. Acute bleeding was mimicked by periodic infusion of blood. The amount of blood drained from each chest cavity was recorded every 15 min for 2 h. After completion of the procedure, all residual blood and clots in each chest cavity were assessed. The new system remained widely patent, and the amount of drainage achieved with this system (670+/-105 ml) was significantly (P=0.01) higher than that with the standard tube (239+/-131 ml). The amount of retained pleural blood and clots with this system (150+/-107 ml) was significantly (P=0.04) lower than that with the standard tube (571+/-248 ml). In conclusion, a novel chest drainage system with active tube clearance significantly improved drainage without tube manipulations. 2010 Published by European Association for Cardio-Thoracic Surgery. All rights reserved.

  19. eBay.com

    DEFF Research Database (Denmark)

    Engholm, Ida

    2014-01-01

    Celebrated as one of the leading and most valuable brands in the world, eBay has acquired iconic status on par with century-old brands such as Coca-Cola and Disney. The eBay logo is now synonymous with the world’s leading online auction website, and its design is associated with the company...

  20. Discharge between San Antonio Bay and Aransas Bay, southern Gulf Coast, Texas, May-September 1999

    Science.gov (United States)

    East, Jeffery W.

    2001-01-01

    Along the Gulf Coast of Texas, many estuaries and bays are important habitat and nurseries for aquatic life. San Antonio Bay and Aransas Bay, located about 50 and 30 miles northeast, respectively, of Corpus Christi, are two important estuarine nurseries on the southern Gulf Coast of Texas (fig. 1). According to the Texas Parks and Wildlife Department, “Almost 80 percent of the seagrasses [along the Texas Gulf Coast] are located in the Laguna Madre, an estuary that begins just south of Corpus Christi Bay and runs southward 140 miles to South Padre Island. Most of the remaining seagrasses, about 45,000 acres, are located in the heavily traveled San Antonio, Aransas and Corpus Christi Bay areas” (Shook, 2000).Population growth has led to greater demands on water supplies in Texas. The Texas Water Development Board, the Texas Parks and Wildlife Department, and the Texas Natural Resource Conservation Commission have the cooperative task of determining inflows required to maintain the ecological health of the State’s streams, rivers, bays, and estuaries. To determine these inflow requirements, the three agencies collect data and conduct studies on the need for instream flows and freshwater/ saline water inflows to Texas estuaries.To assist in the determination of freshwater inflow requirements, the U.S. Geological Survey (USGS), in cooperation with the Texas Water Development Board, conducted a hydrographic survey of discharge (flow) between San Antonio Bay and Aransas Bay during the period May–September 1999. Automated instrumentation and acoustic technology were used to maximize the amount and quality of data that were collected, while minimizing personnel requirements. This report documents the discharge measured at two sites between the bays during May–September 1999 and describes the influences of meteorologic (wind and tidal) and hydrologic (freshwater inflow) conditions on discharge between the two bays. The movement of water between the bays is

  1. Fluoroscopy guided percutaneous catheter drainage of pneumothorax in good mid-term patency with tube drainage

    International Nuclear Information System (INIS)

    Park, Ga Young; Oh, Joo Hyung; Yoon, Yup; Sung, Dong Wook

    1995-01-01

    To evaluate efficacy and the safety of percutaneous catheter drainage in patients with pneumothorax that is difficult to treat with closed thoracotomy. We retrospectively reviewed effectiveness of percutaneous catheter drainage (PCD) in 10 patients with pneumothorax. The catheter was inserted under fluoroscopic guidance. Seven patients had spontaneous pneumothorax caused by tuberculosis (n =4), reptured bullae (n = 2), and histiocytosis-X (n = 1). Three patients had iatrogenic pneumothorax caused by trauma (n = 1) and surgery (n = 2). All procedures were performed by modified Seldinger's method by using 8F-20F catheter. All catheter were inserted successfully. In 9 of 10 patients, the procedure was curative without further therapy. Duration of catheter insertion ranged from 1 day to 26 days. In the remaining 1 patient in whom multiple pneumothorax occurred after operation, catheter insertion was performed twice. Percutaneous catheter drainage under fluoroscopic guidance is effective and safe procedure for treatment of pneumothorax in patients with failed closed thoracotomy

  2. Fluoroscopy guided percutaneous catheter drainage of pneumothorax in good mid-term patency with tube drainage

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ga Young; Oh, Joo Hyung; Yoon, Yup; Sung, Dong Wook [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1995-10-15

    To evaluate efficacy and the safety of percutaneous catheter drainage in patients with pneumothorax that is difficult to treat with closed thoracotomy. We retrospectively reviewed effectiveness of percutaneous catheter drainage (PCD) in 10 patients with pneumothorax. The catheter was inserted under fluoroscopic guidance. Seven patients had spontaneous pneumothorax caused by tuberculosis (n =4), reptured bullae (n = 2), and histiocytosis-X (n = 1). Three patients had iatrogenic pneumothorax caused by trauma (n = 1) and surgery (n = 2). All procedures were performed by modified Seldinger's method by using 8F-20F catheter. All catheter were inserted successfully. In 9 of 10 patients, the procedure was curative without further therapy. Duration of catheter insertion ranged from 1 day to 26 days. In the remaining 1 patient in whom multiple pneumothorax occurred after operation, catheter insertion was performed twice. Percutaneous catheter drainage under fluoroscopic guidance is effective and safe procedure for treatment of pneumothorax in patients with failed closed thoracotomy.

  3. Evaluation of the sustainability of road drainage systems

    Science.gov (United States)

    García-Diez, Iván; Palencia, Covadonga; Fernández Raga, María

    2017-04-01

    Water is the most erosive agent that exists on the linear structures, because they are constantly subjected to outdoor condition like irregular infiltration, frosts and different rain intensities. Another variables that highly influence in the entire lifetime of a natural drainage system are the spatial and temporal variability of the rainfall, the soil, the vegetation cover and the design. All this factors are affecting the vulnerability of the clearings and embankments, by wearing away the weakest materials which surround the roads or train rails, producing erosion and very bumpy surfaces. The result is that the original pattern, developped to disminished the lost of soil, is not properly working and it cannot eliminate water, with the consequence destruction of the linear structure after several rainfall periods, and the accumulation of material down slope. The propose of this research focuses on analysing the drainage systems used in spanish roads and railways lines. For this purpose, a revision of the literature has been done, and the main drainage solutions have been recovered, carrying out an evaluation of them from an environmental point of view. This procedure has been requested by several authors in the past (Nwa, E.U. & Twocock, J.G., 1969; Goulter, I.C., 1992), together with the need of designing a more sustainable drainage system. The final objective of this complete revision is to compare objetively the designs to valuate them in order to develop a new drainage patter which minimize the erosion, increasing the durability and effectiveness of the drainage system. For this purpose, it is neccesary to assure that all the systems will be compare under similar parameters of flow rate, vegetation, substrate, lenght, slope and total section. Only the channels pattern and water distribution will change. The analysis has been done following Liu, H. & Zhu, X.B., (2012), who pointed out that the main parameters to take into account to select a road drainage

  4. Subdural drainage versus subperiosteal drainage in burr-hole trepanation for symptomatic chronic subdural hematomas.

    Science.gov (United States)

    Bellut, David; Woernle, Christoph Michael; Burkhardt, Jan-Karl; Kockro, Ralf Alfons; Bertalanffy, Helmut; Krayenbühl, Niklaus

    2012-01-01

    Symptomatic chronic subdural hematoma (scSDH) is one of the most frequent diseases in neurosurgical practice, and its incidence is increasing. However, treatment modalities are still controversial. The aim of this retrospective single-center study is to compare for the first time two surgical methods in the treatment of subdural hematoma that have been proven to be efficient in previous studies in a direct comparison. We analyzed the data of 143 scSDHs in 113 patients undergoing surgery for subdural hematoma with placement of subperiosteal or subdural drainage after double burr-hole trepanation for hematoma evacuation. Overall, there were no statistically significant differences regarding general patient characteristics, preoperative and postoperative symptoms, postoperative hematoma remnant, rates of recurrences, mortality, complications, and outcome at discharge and at 3-month follow up between the groups. There was a close to significant tendency of lower mortality after placement of subperiosteal drainage system and a tendency towards lower rate of recurrent hematoma after placement of subdural drainage system. Our study shows for the first time a direct comparison of two mainly used surgical techniques in the treatment of scSDH. Both methods proved to be highly effective, and general patient data, complications, outcome and mortality of both groups are equal or superior compared with previously published series. Because there is a clear tendency to less mortality and fewer serious complications, treatment with double burr-hole trepanation, irrigation, and placement of subperiosteal drainage is our treatment of choice in patients with predictable high risk of complications. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Ultrasound guided transrectal catheter drainage of pelvic collections.

    Science.gov (United States)

    Thakral, Anuj; Sundareyan, Ramaniwas; Kumar, Sheo; Arora, Divya

    2015-01-01

    The transrectal approach to draining deep-seated pelvic collections may be used to drain The transrectal approach to draining deep-seated pelvic collections may be used to drain intra-abdominal collections not reached by the transabdominal approach. We discuss 6 patients with such pelvic collections treated with transrectal drainage using catheter placement via Seldinger technique. Transrectal drainage helped achieve clinical and radiological resolution of pelvic collections in 6 and 5 of 6 cases, respectively. It simultaneously helped avoid injury to intervening bowel loops and neurovascular structures using real-time visualization of armamentarium used for drainage. Radiation exposure from fluoroscopic/CT guidance was avoided. Morbidity and costs incurred in surgical exploration were reduced using this much less invasive ultrasound guided transrectal catheter drainage of deep-seated pelvic collections.

  6. Classification using Hierarchical Naive Bayes models

    DEFF Research Database (Denmark)

    Langseth, Helge; Dyhre Nielsen, Thomas

    2006-01-01

    Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...

  7. Urban Greening Bay Area

    Science.gov (United States)

    Information about the San Francisco Bay Water Quality Project (SFBWQP) Urban Greening Bay Area, a large-scale effort to re-envision urban landscapes to include green infrastructure (GI) making communities more livable and reducing stormwater runoff.

  8. USGS Tampa Bay Pilot Study

    Science.gov (United States)

    Yates, K.K.; Cronin, T. M.; Crane, M.; Hansen, M.; Nayeghandi, A.; Swarzenski, P.; Edgar, T.; Brooks, G.R.; Suthard, B.; Hine, A.; Locker, S.; Willard, D.A.; Hastings, D.; Flower, B.; Hollander, D.; Larson, R.A.; Smith, K.

    2007-01-01

    Many of the nation's estuaries have been environmentally stressed since the turn of the 20th century and will continue to be impacted in the future. Tampa Bay, one the Gulf of Mexico's largest estuaries, exemplifies the threats that our estuaries face (EPA Report 2001, Tampa Bay Estuary Program-Comprehensive Conservation and Management Plan (TBEP-CCMP)). More than 2 million people live in the Tampa Bay watershed, and the population constitutes to grow. Demand for freshwater resources, conversion of undeveloped areas to resident and industrial uses, increases in storm-water runoff, and increased air pollution from urban and industrial sources are some of the known human activities that impact Tampa Bay. Beginning on 2001, additional anthropogenic modifications began in Tampa Bat including construction of an underwater gas pipeline and a desalinization plant, expansion of existing ports, and increased freshwater withdrawal from three major tributaries to the bay. In January of 2001, the Tampa Bay Estuary Program (TBEP) and its partners identifies a critical need for participation from the U.S. Geological Survey (USGS) in providing multidisciplinary expertise and a regional-scale, integrated science approach to address complex scientific research issue and critical scientific information gaps that are necessary for continued restoration and preservation of Tampa Bay. Tampa Bay stakeholders identified several critical science gaps for which USGS expertise was needed (Yates et al. 2001). These critical science gaps fall under four topical categories (or system components): 1) water and sediment quality, 2) hydrodynamics, 3) geology and geomorphology, and 4) ecosystem structure and function. Scientists and resource managers participating in Tampa Bay studies recognize that it is no longer sufficient to simply examine each of these estuarine system components individually, Rather, the interrelation among system components must be understood to develop conceptual and

  9. Concentration of PSP (Paralytic Shellfish Poisoning) Toxin On Shellfish From Inner Ambon Bay and Kao Bay North Halmahera

    Science.gov (United States)

    Pello, F. S.; Haumahu, S.; Huliselan, N. V.; Tuapattinaja, M. A.

    2017-10-01

    The Inner Ambon Bay and Kao Bay have potential on fisheries resources which one of them is molluscs. Molluscs especially for class bivalve have economical values and are consumed by coastal community. The research had been done to analyze saxitoxin (STX) concentration on bivalves from Kao Bay and Inner Ambon Bay. The Saxitoxin Elisa Test Kit Protocol was used to determine saxitoxin concentration. The measurement showed that the highest concentration of saxitoxin (392.42 µg STXeq/100g shellfish meat) was Gafrarium tumidum from Ambon Bay, whereas concentration of saxitoxin (321.83 µg STXeq/100g shellfish meat) was Mactra mera from Kao Bay

  10. Intermediate report on the problems of warm water drainage

    International Nuclear Information System (INIS)

    1976-01-01

    The investigation into the solution of the problems of warm water drainage and its related matters was conducted, and the result was summarized by the warm water drainage sectional committee of the central public nuisance-prevention council entrusted by the Environment Agency. The first section of this report deals with the background of the warm water drainage problems. In December 1970, the environmental pollution prevention act was revised so as to include warm water drainage in the law. The second section deals with the progress of deliberation by the sectional committee. The third section deals with the actual conditions of warm water drainage. The temperature difference at the inlet and outlet of water was 5 to 11 0 C in power plants, 5 to 16 0 C in iron and steel works, 4 to 11 0 C in petroleum refineries, and 7 to 25 0 C in petrochemical plants. The amount of heat energy discharged from power plants was greater than that from the others. Other sections deal with its effects on the living things in water, the forecast of diffusion of warm drainage, the concept of the regulation of warm drainage, and the present countermeasure. Twelve points which require future investigation are listed. They are the change in the phases of living things affected by the change in temperature and flow of warm drainage, the effects on fishery resources, the estimation system for the environmental calorific capacity in the sea, the mechanism of diffusion and the forecasting method for the diffusion range. (Iwakiri, K.)

  11. Marine littoral diatoms from the Gordon’s bay region of False Bay, Cape Province, South Africa

    CSIR Research Space (South Africa)

    Giffen, MH

    1971-01-01

    Full Text Available and Comic/i for Scientific and Industrial Research, Pretoria (Received: 5.2. 1970) The Gordon?s Bay region occupies the north western corner of False Bay, a large rectangular bay, bounded on the west by the Cape Peninsula ending at Cape Point...

  12. Development of laundry drainage treatment system with ceramic ultra filter

    International Nuclear Information System (INIS)

    Kanda, Masanori; Kurahasi, Takafumi

    1995-01-01

    A compact laundry drainage treatment system (UF system hereafter) with a ceramic ultra filter membrane (UF membrane hereafter) has been developed to reduce radioactivity in laundry drainage from nuclear power plants. The UF membrane is made of sintered fine ceramic. The UF membrane has 0.01 μm fine pores, resulting in a durable, heat-resistant, and corrosion-resistant porous ceramic filter medium. A cross-flow system, laundry drainage is filtrated while it flows across the UF membrane, is used as the filtration method. This method creates less caking when compared to other methods. The UF membrane is back washed at regular intervals with permeated water to minimize caking of the filter. The UF membrane and cross-flow system provides long stable filtration. The ceramic UF membrane is strong enough to concentrate suspended solids in laundry drainage up to a weight concentration of 10%. The final concentrated laundry drainage can be treated in an incinerator. The performance of the UF system was checked using radioactive laundry drainage. The decontamination factor of the UF system was 25 or more. The laundry drainage treatment capacity and concentration ratio of the UF system, as well as the service life of the UF membrane were also checked by examination using simulated non-radioactive laundry drainage. Even though laundry drainage was concentrated 1000 times, the UF system showed good permeated water quality and permeated water flux. (author)

  13. Proceedings of the international land reclamation and mine drainage conference and third international conference on the abatement of acidic drainage. Volume 1: Mine drainage -- SP 06A-94

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Volume 1 of these proceedings is divided into the following sections: Modeling mine water quality; Water treatment with wetlands; Predicting mine water quality; Water treatment--Chemical; Control of acid mine drainage--Wet covers; Site characterization monitoring; Control of acid mine drainage--Alkaline addition; and Mine water geochemistry. Papers dealing with or applicable to coal or uranium mining have been processed separately for inclusion on the data base

  14. Ecological effects of nuclear steam electric station operations on estuarine systems. Final report

    International Nuclear Information System (INIS)

    Mihursky, J.A.

    1983-01-01

    This report summarizes the findings of studies of the impact of the Calvert Cliffs Nuclear Power Plant on the aquatic biota of Chesapeake Bay. Physical findings show that the typical radial extent of influence of the discharge on the physical and chemical environment of the Bay is rather limited (< 2 km). This suggestion is bolstered by findings of phytoplankton and zooplankton studies: when effects were noted at all, they only appeared at sampling stations nearest (within 2 km of) the discharge. Also, direct entrainment effects on these groups were either small (in the case of phytoplankton) or species-specific (in the case of zooplankton). Benthos showed mixed responses to plant operations - the populations of some species were enhanced, one species was adversely affected, and others were unaffected. The major plant effect on the benthos was due to habitat resource enrichment, and the consequence was higher standing stocks (e.g., more food for fish) in the affected area. Direct plant effects on finfish are dominated by impingement. Mortality as a result of impingement, for many species, tends to be moderate to slight. Effects as a result of entrainment of eggs and larvae are limited because the Calvert Cliffs area is not a major spawning location for any species. In sum, the Calvert Cliffs plant appears to have a limited effect on the Chesapeake Bay ecosystem. 180 references, 6 figures, 18 tables

  15. Imbalance of Nature due to Anthropogenic Activities in the Bay of Bacorehuis, Sinaloa, Mexico

    Science.gov (United States)

    Torrecillas Nunez, C.; Cárdenas Cota, H.

    2013-05-01

    Pollution is further enhancing water scarcity by reducing water usability downstream, globally the most prevalent water quality problem is eutrophication, a result of high-nutrient loads, which substantially impairs beneficial uses of water. Projected food production needs and increasing wastewater effluents associated with an increasing population over the next three decades suggest a 10%-15% increase in the river input of nitrogen loads into coastal ecosystems (UNO, 2009). Our study in the Bay of Bacorehuis in the State of Sinaloa, which was carried out due to a request from local fishermen who wanted to find out the reason for fishing stocks depletion, confirmed this trend with the consequent imbalance of nature. Sinaloa depends heavily on intensive agricultural production to support its economy which in turn relies on water irrigation and the application of agro-chemicals. The research project included a desk top study of geophysical and environmental factors as well as sampling and testing of the water. In addition we carried out socio-economic research to find out the impact on the local community of the imbalance caused by anthropogenic activities in the watershed upstream from the Bay. Our research established that the Bay of Bacorehuis is contaminated by organic matter, bacteria coliforms, pesticides and mercury due to the discharge of surplus runoff generated by irrigation of farmlands into drainage networks as well as the discharge of untreated industrial and domestic wastewater form more than 24,000 inhabitants. The main contaminants detected in the water bodies were organic matter, faecal coliforms, mercury, dimethoate, endosulfan, heptachlor, DDE, DDT, organonitrogen, synthetic pyrethroid, chlorothalonil, ethion, endosulfan, diazinon, malathion and chlorpyrifos. Contaminants in sediments included the pesticides endosulfan, heptachlor, DDE, DDT, organophosphates, organonitrogen and synthetic pyrethroids. Natural water courses have been highly modified

  16. Numerical Three-Dimensional Model of Airport Terminal Drainage System

    Directory of Open Access Journals (Sweden)

    Strzelecki Michał

    2014-03-01

    Full Text Available During the construction of an airport terminal it was found that as a result of the hydrostatic pressure of underground water the foundation plate of the building had dangerously shifted in the direction opposite to that of the gravitational forces. The only effective measure was to introduce a drainage system on the site. The complex geology of the area indicated that two independent drainage systems, i.e., a horizontal system in the Quaternary beds and a vertical system in the Tertiary water-bearing levels, were necessary. This paper presents numerical FEM calculations of the two drainage systems being part of the airport terminal drainaged esign. The computer simulation which was carried out took into consideration the actual effect of the drainage systems and their impact on the depression cone being formed in the two aquifers.

  17. Description of gravity cores from San Pablo Bay and Carquinez Strait, San Francisco Bay, California

    Science.gov (United States)

    Woodrow, Donald L.; John L. Chin,; Wong, Florence L.; Fregoso, Theresa A.; Jaffe, Bruce E.

    2017-06-27

    Seventy-two gravity cores were collected by the U.S. Geological Survey in 1990, 1991, and 2000 from San Pablo Bay and Carquinez Strait, California. The gravity cores collected within San Pablo Bay contain bioturbated laminated silts and sandy clays, whole and broken bivalve shells (mostly mussels), fossil tube structures, and fine-grained plant or wood fragments. Gravity cores from the channel wall of Carquinez Strait east of San Pablo Bay consist of sand and clay layers, whole and broken bivalve shells (less than in San Pablo Bay), trace fossil tubes, and minute fragments of plant material.

  18. Land drainage and restoration of land after NCB opencast mining

    Energy Technology Data Exchange (ETDEWEB)

    Bragg, N.

    The author outlines the MAFF Field Drainage Research Unit's research into drainage of reinstated land. Current investigations have aimed at identifying the problems of reinstated soil and how they affect drainage design. Experiments on efficiency of permeable field drains and non-permeable field drains are mentioned. Further work is needed to examine long-term effects of storage on soil structure and whether existing drainage can be revitalised by secondary treatment.

  19. Drainage Water Filtration

    Science.gov (United States)

    Tile drainage discharge from managed turf is known to carry elevated concentrations of agronomic fertilizers and chemicals. One approach being considered to reduce the transport is end-of-tile-filters. Laboratory and field studies have been initiated to address the efficacy of this approach. Result...

  20. The effect of climate change on urban drainage

    DEFF Research Database (Denmark)

    Grum, M.; Jørgensen, A.T.; Johansen, R.M.

    2006-01-01

    and consequences of climate change on urban drainage and urban runoff pollution issues. This study uses predictions from a regional climate model to look at the effects of climate change on extreme precipitation events. Results are presented in terms of point rainfall extremes. The analysis involves three steps......That we are in a period of extraordinary rates of climate change is today evident. These climate changes are likely to impact local weather conditions with direct impacts on precipitation patterns and urban drainage. In recent years several studies have focused on revealing the nature, extent...... to urban drainage. However, in spite of these uncertainties, and others raised in the discussion, the tendency is clear: extreme precipitation events effecting urban drainage and causing flooding will become more frequent as a result of climate change....

  1. 75 FR 15343 - Regulated Navigation Area: Narragansett Bay, RI and Mount Hope Bay, RI and MA, Including the...

    Science.gov (United States)

    2010-03-29

    ...: Narragansett Bay, RI and Mount Hope Bay, RI and MA, Including the Providence River and Taunton River AGENCY... River and Mount Hope Bay in the vicinity of the two Brightman Street bridges have not been adopted and... Island and Mt. Hope Bay, MA.'' The notice was prompted primarily by two events: (1) The U.S. Army Corps...

  2. PASSIVE TREATMENT OF ACID ROCK DRAINAGE FROM A SUBSURFACE MINE

    Science.gov (United States)

    Acidic, metal-contaminated drainages are a critical problem facing many areas of the world. Acid rock drainage results when metal sulfide minerals, particularly pyrite, are oxidized by exposure to oxygen and water. The deleterious effects of these drainages on receiving streams a...

  3. Systematic review and meta-analysis of closed suction drainage versus non-drainage in primary hip arthroplasty.

    LENUS (Irish Health Repository)

    Kelly, Enda G

    2014-03-01

    The routine use of drains in surgery has been dogmatically instituted in some disciplines. Orthopaedic surgery is one such sub-speciality. The use of postoperative closed suction drainage in total hip arthroplasty (THA) has become increasingly controversial with multiple randomised control trials performed to assess the benefit to outcome in THA. The hypothesis of this systematic review is that closed suction drainage does not infer a benefit and increase transfusion requirements of primary total hip arthroplasty patients. A systematic review and meta-analysis was conducted adhering to the PRISMA guidelines. A search of the available literature was performed on PubMed, Cochrane Central Registry of Controlled Trials, MEDLINE (OVID) and EMBASE using a combination of MeSH terms and Boolean operators. All data analysis was performed using the Cochrane Collaboration\\'s Review Manager 5.1. Sixteen studies (n=2705) were included in the analysis. Post-operative closed suction drainage was found to increase total blood loss and blood transfusion requirements (p<0.05). Surgical site infection demonstrated no significant difference between the two groups (p=0.82). No significant difference in haematoma formation between groups (p=0.19) was elicited. The routine use of closed suction drainage systems post primary hip arthroplasty is not supported by this meta-analysis. However, the heterogeneity between studies does limit the accuracy of the meta-analysis.

  4. A model to measure lymphatic drainage from the eye.

    Science.gov (United States)

    Kim, Minhui; Johnston, Miles G; Gupta, Neeru; Moore, Sara; Yücel, Yeni H

    2011-11-01

    Intraocular pressure (IOP) is the most important risk factor for glaucoma development and progression. Most anti-glaucoma treatments aim to lower IOP by enhancing aqueous humor drainage from the eye. Aqueous humor drainage occurs via well-characterized trabecular meshwork (TM) and uveoscleral (UVS) pathways, and recently described ciliary body lymphatics. The relative contribution of the lymphatic pathway to aqueous drainage is not known. We developed a sheep model to quantitatively assess lymphatic drainage along with TM and UVS outflows. This study describes that model and presents our initial findings. Following intracameral injection of (125)I-bovine serum albumin (BSA), lymph was continuously collected via cannulated cervical lymphatic vessels and the thoracic lymphatic duct over either a 3-h or 5-h time period. In the same animals, blood samples were collected from the right jugular vein every 15 min. Lymphatic and TM drainage were quantitatively assessed by measuring (125)I-BSA in lymph and plasma, respectively. Radioactive tracer levels were also measured in UVS and "other" ocular tissue, as well as periocular tissue harvested 3 and 5 h post-injection. Tracer recovered from UVS tissue was used to estimate UVS drainage. The amount of (125)I-BSA recovered from different fluid and tissue compartments was expressed as a percentage of total recovered tracer. Three hours after tracer injection, percentage of tracer recovered in lymph and plasma was 1.64% ± 0.89% and 68.86% ± 9.27%, respectively (n = 8). The percentage of tracer in UVS, other ocular and periocular tissues was 19.87% ± 5.59%, 4.30% ± 3.31% and 5.32% ± 2.46%, respectively. At 5 h (n = 2), lymphatic drainage was increased (6.40% and 4.96% vs. 1.64%). On the other hand, the percentage of tracer recovered from UVS and other ocular tissue had decreased, and the percentage from periocular tissue showed no change. Lymphatic drainage increased steadily over the 3 h post-injection period, while TM

  5. Regulated Electric Drainage and its Interference with Track Circuits

    Directory of Open Access Journals (Sweden)

    Vaclav Kolar

    2018-01-01

    Full Text Available Electric drainage is a power electronic device used to protect underground metal devices (such as piping from the corrosive effects of stray currents. Stray currents are usually caused by DC electric traction, such as trams or railways. In places where stray currents leave the underground device and return into rails, they cause significant electrochemical corrosion of buried devices. The principle of electric drainage is based on electrical connection between the underground device and electric traction rails, which ensures that current flows through this connection, instead of flowing into the ground. Nowadays, the most widely used type is regulated electric drainage, where current is regulated by means of Pulse Width Modulation (PWM. Because of this modulation, current flowing through the drainage contains harmonic components with different frequencies. In modern railways, track circuits are often used as an important part of the track security system. For safe operation, it is necessary to ensure that frequencies generated by the drainage do not interfere with track circuits. This paper describes the design of a regulated drainage control system, with regard to its compatibility with track circuits and this paper contains related computer simulations and discussion of the results

  6. Radiologic guidance of drainage of infected and noninfected thoracic fluid collections

    International Nuclear Information System (INIS)

    Van Sonnenberg, E.; Casola, G.; Stavas, J.; Neff, C.C.; Wittich, G.R.; Varney, R.A.; Christensen, R.; Friedman, P.

    1987-01-01

    This exhibit illustrates the spectrum and benefits of radiologic guidance of drainage of 100 thoracic fluid collections. Collections which underwent drainage include: empyemas, lung abscesses, bronchopleural fistulas (BPF), mediastinal abscesses, paracardial collections, bronchogenic cysts, sequestrations, lymphocoeles, malignant effusions, and necrotic tumors. Sclerotherapy catheterization also is described. The modalities for guidance were CT, US, and fluoroscopy. Inadequate thoracostomy tube drainage occurred in a third of the patients prior to radiologic drainage. Drainages were effective in 85% of cases sparing surgery or another thoracostomy tube. Complications occurred in 7% of patients, most being minor and none requiring operation. Pitfalls and caveats are highlighted. Criteria for drainage of lung abscesses and BPF are emphasized, as are techniques and methods of follow-up

  7. Acid mine drainage

    Science.gov (United States)

    Bigham, Jerry M.; Cravotta, Charles A.

    2016-01-01

    Acid mine drainage (AMD) consists of metal-laden solutions produced by the oxidative dissolution of iron sulfide minerals exposed to air, moisture, and acidophilic microbes during the mining of coal and metal deposits. The pH of AMD is usually in the range of 2–6, but mine-impacted waters at circumneutral pH (5–8) are also common. Mine drainage usually contains elevated concentrations of sulfate, iron, aluminum, and other potentially toxic metals leached from rock that hydrolyze and coprecipitate to form rust-colored encrustations or sediments. When AMD is discharged into surface waters or groundwaters, degradation of water quality, injury to aquatic life, and corrosion or encrustation of engineered structures can occur for substantial distances. Prevention and remediation strategies should consider the biogeochemical complexity of the system, the longevity of AMD pollution, the predictive power of geochemical modeling, and the full range of available field technologies for problem mitigation.

  8. Risk factors influencing the pleural drainage volume after transthoracic oesophagectomy.

    Science.gov (United States)

    Kosugi, Shin-ichi; Kanda, Tatsuo; Yajima, Kazuhito; Ishikawa, Takashi; Sakamoto, Kaoru

    2013-06-01

    The objective of this study was to clarify the factors influencing pleural drainage volume after transthoracic oesophagectomy and to determine criteria for the selection of patients who would benefit from the early removal of chest drains. Clinicopathological characteristics of 155 patients who underwent transthoracic oesophagectomy were prospectively collected, and the daily drainage volume of each patient was retrospectively reviewed. Potential risk factors were compared between the high-output group (n = 39) and low-output group (n = 116), which were dichotomized using the 75th percentile of total pleural drainage volume of the total study population. Multivariate logistic regression analyses were used to identify independent risk factors. The median duration of drainage was 10 days, with a median total drainage volume of 2258 ml. Of 27 potential risk factors influencing the drainage volume, creatinine clearance (P = 0.04), operative approach (P = 0.03) and thoracic duct removal (P = 0.01) were significantly associated with the total pleural drainage volume. The removal of the thoracic duct (P = 0.02; odds ratio, 4.02; 95% confidence interval 1.20-13.41) and lower creatinine clearance (P = 0.04; odds ratio, 1.02; 95% confidence interval 1.00-1.04) was independent risk factors for increased pleural drainage volume after transthoracic oesophagectomy. The early removal of chest drains may be possible in patients without these risk factors.

  9. Estimating the benefits of improved drainage on pavement ...

    African Journals Online (AJOL)

    user

    2 Centre for Transportation Systems, Indian Institute of Technology Roorkee, INDIA ... parking lots that only allow cars, not trucks). ..... drainage section) and 2015 & 2019 (for poor drainage section) after the construction of an overlay, it was ...

  10. Control of fouling organisms in estuarine cooling water systems by chlorine and bromine chloride

    International Nuclear Information System (INIS)

    Burton, D.T.; Margrey, S.L.

    1979-01-01

    The study described was initiated to evaluate the antifouling effectiveness of chlorine and bromine chloride in low velocity flow areas where estuarine waters are used for cooling purposes. The relative antifouling effectiveness of chlorine and bromine chloride under intermittent and continuous modes of application in low velocity flow areas was evaluated at an estuarine power plant located on the Chesapeake Bay

  11. Emergent Patterns of Diversity and Dynamics in Natural Populations of Planktonic Vibrio Bacteria

    Science.gov (United States)

    2005-06-01

    1973. Ecology of Vibrio parahemolyticus in mixed-template amplifications: formation, consequences and elimination by Chesapeake Bay. J. Bacteriol. 113...Science 1930 and Engineering DOCTORAL DISSERTATION Emergent Patterns of Diversity and Dynamics in Natural Populations of Planktonic Vibrio Bacteria by...DYNAMICS IN NATURAL POPULATIONS OF PLANKTONIC VIBRIO BACTERIA by Janelle Ren6e Thompson B.S. Biological Sciences, Stanford University 1998 M.S

  12. Life after Steel

    Science.gov (United States)

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  13. A Waterman's Journey: Tim Junkin's Bloodsworth

    Science.gov (United States)

    Ward, Nathan

    2004-01-01

    Before he was wrongly sent to death row for the rape and murder of a nine-year-old girl in 1984, Kirk Bloodsworth enjoyed the life of a Chesapeake Bay waterman. Convicted largely on the testimony of a seven- and a ten-year-old eyewitness, by 1989 Johnson had exhausted almost every legal option available--after winning a new trial, he was convicted…

  14. Acid Mine Drainage Treatment

    National Research Council Canada - National Science Library

    Fripp, Jon

    2000-01-01

    .... Acid mine drainage (AMD) can have severe impacts to aquatic resources, can stunt terrestrial plant growth and harm wetlands, contaminate groundwater, raise water treatment costs, and damage concrete and metal structures...

  15. Agricultural Drainage Well Intakes

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Locations of surface intakes for registered agriculture drainage wells according to the database maintained by IDALS. Surface intakes were located from their...

  16. CT-guided biopsies and drainage

    International Nuclear Information System (INIS)

    Scheppers, I.; Wollschlaeger, D.

    2011-01-01

    Following the implementation of computed tomography (CT) or ultrasound-guided biopsy of solid tumors and the puncture and drainage of liquid processes, the number of surgical open biopsies and curative operations for abscess drainage has declined. Such CT-guided interventions are performed in nearly every organ. Instead of aspiration biopsies, more and more core biopsies are being performed to allow histopathological evaluation and thus allowing targeted therapy. This article is intended to give a general overview of techniques, materials, indications and contraindications. Ultrasound-guided biopsies as well as large bore vacuum biopsies of the breast are not included in this review. (orig.) [de

  17. Management of chest drainage tubes after lung surgery.

    Science.gov (United States)

    Satoh, Yukitoshi

    2016-06-01

    Since chest tubes have been routinely used to drain the pleural space, particularly after lung surgery, the management of chest tubes is considered to be essential for the thoracic surgeon. The pleural drainage system requires effective drainage, suction, and water-sealing. Another key point of chest tube management is that a water seal is considered to be superior to suction for most air leaks. Nowadays, the most common pleural drainage device attached to the chest tube is the three-bottle system. An electronic chest drainage system has been developed that is effective in standardizing the postoperative management of chest tubes. More liberal use of digital drainage devices in the postoperative management of the pleural space is warranted. The removal of chest tubes is a common procedure occurring almost daily in hospitals throughout the world. Extraction of the tube is usually done at the end of full inspiration or at the end of full expiration. The tube removal technique is not as important as how it is done and the preparation for the procedure. The management of chest tubes must be based on careful observation, the patient's characteristics, and the operative procedures that had been performed.

  18. Drainage from coal mines: Chemistry and environmental problems

    International Nuclear Information System (INIS)

    Wildeman, T.

    1991-01-01

    Much of the research on coal-mine drainage chemistry was conducted a decade ago, and now increased environmental awareness has brought about renewed interest in the findings. Consideration of the trace minerals and elements in coal points to the possible generation of acidic waters upon weathering, especially when pyrite is present. When pyrite weathers, it produces H + and Fe 3+ which catalyze the incongruent weathering of other carbonates and sulfides. In this weathering mechanism, catalysis by bacteria is important. Of the environmental problems in coal mine drainage, the mineral acidity of the water is the most serious. This is caused not only by the H + , but also by Mn 4+ , Fe 3+ , and Al 3+ that are found or generated within the drainage. Case studies in Kentucky, Pennsylvania, Illinois, and Colorado show that the abundance and form of pyrite in the deposit and in the overburden determines the level of acidity and the concentration of heavy metal pollutants in the drainage. Recent trends in environmental enforcement that emphasize integrated stream water standards and biotoxicity assays point to the possibility that the concentrations of heavy metals in coal mine drainages may cause environmental concern

  19. Glaucoma Drainage Device Erosion Following Ptosis Surgery.

    Science.gov (United States)

    Bae, Steven S; Campbell, Robert J

    2017-09-01

    To highlight the potential risk of glaucoma drainage device erosion following ptosis surgery. Case report. A 71-year-old man underwent uncomplicated superotemporal Ahmed glaucoma valve implantation in the left eye in 2008. Approximately 8 years later, the patient underwent bilateral ptosis repair, which successfully raised the upper eyelid position. Three months postoperatively, the patient's glaucoma drainage implant tube eroded through the corneal graft tissue and overlying conjunctiva to become exposed. A graft revision surgery was successfully performed with no further complications. Caution and conservative lid elevation may be warranted when performing ptosis repair in patients with a glaucoma drainage implant, and patients with a glaucoma implant undergoing ptosis surgery should be followed closely for signs of tube erosion.

  20. Dynamic drainage of froth with wood fibers

    Science.gov (United States)

    J.Y. Zhu; Freya Tan

    2005-01-01

    Understanding froth drainage with fibers (or simply called fiber drainage in froth) is important for improving fiber yield in the flotation deinking operation. In this study, the data of water and fiber mass in foams collected at different froth heights were used to reconstruct the time dependent and spatially resolved froth density and fiber volumetric concentration...