WorldWideScience

Sample records for chernobyl nuclear reactor

  1. Medical lessons learned from chernobyl relative to nuclear detonations and failed nuclear reactors.

    Science.gov (United States)

    Dallas, Cham E

    2012-12-01

    The Chernobyl disaster in 1986 involved the largest airborne release of radioactivity in history, more than 100 times as much radioactivity as the Hiroshima and Nagasaki atomic bombs together. The resulting emergency response, administrative blunders, and subsequent patient outcomes from this large-scale radiological disaster provide a wealth of information and valuable lessons for those who may find themselves having to deal with the staggering consequences of nuclear war. Research findings, administrative strategies (successful and otherwise), and resulting clinical procedures from the Chernobyl experience are reviewed to determine a current utility in addressing the appropriate protocols for a medical response to nuclear war. As various myths are still widely associated with radiation exposure, attention is given to the realities of a mass casualty medical response as it would occur with a nuclear detonation.

  2. Chernobyl Nuclear Reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. [Influence of nuclear reactor accident at Chernobyl' on the environmental radioactivity in Toyama].

    Science.gov (United States)

    Morita, M; Shoji, M; Honda, T; Sakanoue, M

    1987-06-01

    The environmental radioactivity caused by the reactor accident at Chernobyl' was investigated from May 7 to May 31 of 1986 in Toyama. Measurement of radioactivities in airborne particles, rain water, drinking water, milk, and mugwort are carried out by gamma-ray spectrometry (pure Ge detector; ORTEC GMX-23195). Ten different nuclides (103Ru, 106Ru, 131I, 132Te-I, 134Cs, 136Cs, 137Cs, 140Ba-La) are identified from samples of airborne particles. In the air samples, a maximum radioactivity concentration of each nuclide is observed on 13th May 1986. The time of the reactor shut-down and the flux of thermal neutron at the reactor were calculated from 131I/132I and 137Cs/134Cs ratio. The exposure dose in Toyama by this accident is given as follows: internal exposure; [thyroid] adult-59 microSv, child-140 microSv, baby-130 microSv, [total body] adult-0.2 microSv, child, baby-0.4 microSv, external exposure; 7 microSv, effective dose equivalent; adult-9 microSv, child-12 Sv, baby-11 microSv.

  4. Chernobyl lessons learned review of N Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Weber, E.T.; McNeece, J.P.; Omberg, R.P.; Stepnewski, D.D.; Lutz, R.J.; Henry, R.E.; Bonser, K.D.; Miller, N.R.

    1987-10-01

    A broad-base review of the N Reactor plant, design characteristics, administrative controls and responses unique to upset conditions has been completed. The review was keyed to Nuclear Regulatory Commission (NRC)-defined issues associated with the Chernobyl accident. Physical features of N Reactor that preclude an accident like Chernobyl include: lack of autocatalytic reactivity insertion (i.e., negative coolant void and power coefficents) and two separate, fast-acting scram systems. Administrative controls in place at N Reactor would effectively protect against the operator errors and safety violations that set up the Chernobyl accident. Several items were identified where further near-term action is appropriate to ensure effectiveness of existing safety features: Resolve a question concerning the exact point at which Emergency Core Cooling System (ECCS) activation by manual actions should be implemented or deferred if automatic ECCS trip fails. Ensure appropriate revision of the Emergency Response Guides and full communication of the correct procedure to all Operations, Safety and cognizant Technology staff. Train reactor operators in the currently recognized significance of the Graphite and Shield Cooling System (GSCS) in severe accident situations and cover this appropriately in the Emergency Response Guides. Complete reviews which establish an independent verification that pressure tube rupture will not propagate to other tubes. 15 refs., 3 tabs.

  5. ASSESSMENT OF THE RADIONUCLIDE COMPOSITION OF "HOT PARTICLES" SAMPLED IN THE CHERNOBYL NUCLEAR POWER PLANT FOURTH REACTOR UNIT

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Jannik, T.; Marra, J.

    2011-10-01

    Fuel-containing materials sampled from within the Chernobyl Nuclear Power Plant (ChNPP) 4th Reactor Unit Confinement Shelter were spectroscopically studied for gamma and alpha content. Isotopic ratios for cesium, europium, plutonium, americium, and curium were identified and the fuel burnup in these samples was determined. A systematic deviation in the burnup values based on the cesium isotopes, in comparison with other radionuclides, was observed. The conducted studies were the first ever performed to demonstrate the presence of significant quantities of {sup 242}Cm and {sup 243}Cm. It was determined that there was a systematic underestimation of activities of transuranic radionuclides in fuel samples from inside of the ChNPP Confinement Shelter, starting from {sup 241}Am (and going higher), in comparison with the theoretical calculations.

  6. [Chernobyl nuclear power plant accident and Tokaimura criticality accident].

    Science.gov (United States)

    Takada, Jun

    2012-03-01

    It is clear from inspection of historical incidents that the scale of disasters in a nuclear power plant accident is quite low level overwhelmingly compared with a nuclear explosion in nuclear war. Two cities of Hiroshima and Nagasaki were destroyed by nuclear blast with about 20 kt TNT equivalent and then approximately 100,000 people have died respectively. On the other hand, the number of acute death is 30 in the Chernobyl nuclear reactor accident. In this chapter, we review health hazards and doses in two historical nuclear incidents of Chernobyl and Tokaimura criticality accident and then understand the feature of the radiation accident in peaceful utilization of nuclear power.

  7. The Chernobyl Nuclear Power Plant accident: ecotoxicological update

    Science.gov (United States)

    Eisler, R.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John=

    2003-01-01

    The accident at the Chernobyl, Ukraine, nuclear reactor on 26 April 1986 released large amounts of radiocesium and other radionuclides into the environment, contaminating much of the northern hemisphere, especially Europe. In the vicinity of Chernobyl, at least 30 people died, more than 115,000 others were evacuated, and consumption of milk and other foods was banned because of radiocontamination. At least 14,000 human cancer deaths are expected in Russia, Belarus, and the Ukraine as a direct result of Chernobyl. The most sensitive local ecosystems, as judged by survival, were the soil fauna, pine forest communities, and certain populations of rodents. Elsewhere, fallout from Chernobyl significantly contaminated freshwater and terrestrial ecosystems and flesh and milk of domestic livestock; in many cases, radionuclide concentrations in biological samples exceeded current radiation protection guidelines. Reindeer (Rangifer tarandus) in Scandinavia were among the most seriously afflicted by Chernobyl fallout, probably because their main food during winter (lichens) is an efficient absorber of airborne particles containing radiocesium. Some reindeer calves contaminated with 137Cs from Chernobyl showed 137Cs-dependent decreases in survival and increases in frequency of chromosomal aberrations. Although radiation levels in the biosphere are declining with time, latent effects of initial exposure--including an increased frequency of thyroid and other cancers--are now measurable. The full effect of the Chernobyl nuclear reactor accident on natural resources will probably not be known for at least several decades because of gaps in data on long-term genetic and reproductive effects and on radiocesium cycling and toxicokinetics.

  8. Consequences and countermeasures in a nuclear power accident: Chernobyl experience.

    Science.gov (United States)

    Kirichenko, Vladimir A; Kirichenko, Alexander V; Werts, Day E

    2012-09-01

    Despite the tragic accidents in Fukushima and Chernobyl, the nuclear power industry will continue to contribute to the production of electric energy worldwide until there are efficient and sustainable alternative sources of energy. The Chernobyl nuclear accident, which occurred 26 years ago in the former Soviet Union, released an immense amount of radioactivity over vast territories of Belarus, Ukraine, and the Russian Federation, extending into northern Europe, and became the most severe accident in the history of the nuclear industry. This disaster was a result of numerous factors including inadequate nuclear power plant design, human errors, and violation of safety measures. The lessons learned from nuclear accidents will continue to strengthen the safety design of new reactor installations, but with more than 400 active nuclear power stations worldwide and 104 reactors in the Unites States, it is essential to reassess fundamental issues related to the Chernobyl experience as it continues to evolve. This article summarizes early and late events of the incident, the impact on thyroid health, and attempts to reduce agricultural radioactive contamination.

  9. [The radioecology of the grapevine. 2. Effects of the nuclear reactor accident in Chernobyl on the radioactivity in the soil, leaves, grapes and wine].

    Science.gov (United States)

    Wagner, A; Diehl, J F

    1991-04-01

    Natural (tritium, 14C, 40K, 226Ra) and man-made radionuclides (90Sr, 134Cs, 137Cs) were determined in soil (top 30 cm), vine leaves, grapes and wine in eight locations of the most important viticultural regions in the Federal Republic of Germany. The results obtained in 1983-1985 have been published previously. Part II of this study presents results obtained in 1986 and 1987, i.e. after the reactor accident at Chernobyl in the Soviet Union. The mean content of 137Cs before (after) Chernobyl was 4 (9) Bq/kg dry matter in soil, 0.07 (3) Bq/kg fresh matter in leaves, 0.02 (0.4) Bq/kg in grapes, and 0.008 (0.9) Bq/L in wine. As compared with 1986, distinctly lower levels were found in leaves, grapes and wine in 1987. In 1986 the content of 134Cs was about half that of 137Cs. Owing to its shorter half-life, 134Cs was below the detection limit in many of the 1987 samples. Transfer factors such as from soil to leaves and from soil to grapes for caesium agreed well in 1983-1985 and 1987, but showed considerable deviations in 1986, due to the ubiquitous contamination of the environment. Results of 90Sr determinations confirmed other reports showing this radionuclide to be a very minor contributor to the total radioactivity released at Chernobyl. No effect of the reactor accident on levels of the other radionuclides was detected.

  10. Chernobyl Nuclear Catastrophe and the High Risk Potential for Mental Retardation.

    Science.gov (United States)

    Holowinsky, Ivan Z.

    1993-01-01

    This report considers potential effects of the 1986 nuclear explosion at the Chernobyl (Ukraine) nuclear reactor. Approximately 17 million people, of whom 2.5 million were below the age of 5, are thought to have suffered some radioactive contamination. Many of these children are at high risk for mental retardation and learning disorders.…

  11. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  12. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  13. Radioactive waste management in the Chernobyl exclusion zone: 25 years since the Chernobyl nuclear power plant accident.

    Science.gov (United States)

    Oskolkov, Boris Y; Bondarkov, Mikhail D; Zinkevich, Lubov I; Proskura, Nikolai I; Farfán, Eduardo B; Jannik, G Timothy

    2011-10-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities in the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste-related problems in Ukraine and the Chernobyl Exclusion Zone and, in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program.

  14. Chernobyl accident and its consequences

    Energy Technology Data Exchange (ETDEWEB)

    Gittus, J.H.

    1987-06-01

    The paper concerns the Chernobyl reactor accident, with emphasis on the design of the RBMK reactor and nuclear safety. A description is given of the Chernobyl nuclear power plant, including details of the RMBK reactor and safety systems. Comments on the design of the RBMK by UK experts prior to the accident are summarized, along with post-accident design changes to improve RBMK safety. Events of the Chernobyl accident are described, as well as design deficiencies highlighted by the accident. Differences between the USSR and UK approaches to nuclear safety are commented on. Finally source terms, release periods and environmental consequences are briefly discussed.

  15. Compendium of the Environmental Measurements Laboratory's research projects related to the Chernobyl nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Volchok, H L; Chieco, N [comps.

    1986-10-01

    Following the accident at the Chernobyl nuclear reactor power station in the USSR on April 26, 1986, the Environmental Measurements Laboratory (EML) initiated a number of research projects as follows: (1) selected sites in both the Deposition and Surface Air networks were alerted and their sampling protocols adjusted to accommodate the anticipated arrival times and activity concentrations of the Chernobyl debris; (2) a number of cooperative programs involving field work, sampling, analysis and data interpretation were set up with institutions and scientists in other countries; (3) EML's Regional Baseline Station at Chester, NJ, as well as the roof of the Laboratory in New York City, provided bases for sampling and measurements to study the radionuclide concentrations, radiation levels, physical characteristics and potential biological implications of the Chernobyl fallout on the northeastern United States; and (4) the resulting fallout from the Chernobyl accident provided an 'experiment of opportunity' in that it enabled us to study fresh fission product deposition using collection systems resurrected from the 1950's and 1960's for comparison with current state-of-the-art methodology. The 13 reports of this volume have been entered separately into the data base.

  16. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  17. 15 years after Chernobyl. Nuclear power and climate change?

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M

    2001-04-01

    Fifteen years after two massive explosions and a subsequent fire released a giant radioactive cloud into the atmosphere over the Chernobyl nuclear power plant located in what used to be the USSR, 388 farms with 230,000 sheep in Wales, England and Scotland are still subject to restriction orders. The contamination levels stand at several hundred Becquerels of cesium per kilogram of meat, too much to be consumed by human beings. The sheep have to be moved for some time to low or non-contaminated pastures in order to allow the bodies to loose some of their radioactivity before they can be slaughtered. For many countries the 1986 Chernobyl catastrophe came a public turning point for the future of nuclear energy. (author)

  18. Experiences using laser Doppler vibrometers at Chernobyl Nuclear Power Plant

    Science.gov (United States)

    Yarovoi, Leonid K.; Robur, Lubomir I.; Siegmund, Georg; Tushev, Dmitry

    2000-05-01

    The implementation of laser vibrometers into various branches of industry solves complex technical problems as well as raising the authority of laser vibrometry as unique measurement tool. From this point of view, the nuclear industry is an interesting and attractive application field with specific and rigorous exploitation conditions of measuring systems. The objective of this work was to evaluate all advantages and disadvantages of the laser Doppler vibrometry with respect to nuclear power plant (NPP) equipment examination. The Chernobyl NPP is the ideal place for these purposes. The diagnostic ability on different Chernobyl NPP systems (e.g. third power unit main circulators, bearing shaft of fifth turbo-generator and various pipelines) has been demonstrated using laser Doppler vibrometers. The measurements performed by laser vibrometers were checked by standard Chernobyl NPP vibration measurement tools. The laser Doppler vibrometers (CLV, Polytec GmbH and LDV, Kiev University) have been tested and have shown full functionality in NPP zone at 0.5 sievert/hour radiation levels, high electromagnetic fields (magnetic component up to 5 kA/m) and significant vibrations.

  19. RADIOACTIVE WASTE MANAGEMENT IN THE CHERNOBYL EXCLUSION ZONE - 25 YEARS SINCE THE CHERNOBYL NUCLEAR POWER PLANT ACCIDENT

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Jannik, T.

    2011-10-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from a beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures

  20. International measures for supporting the Ukraine in decommissioning Chernobyl nuclear power plant; Internationale Massnahmen zur Unterstuetzung der Ukraine bei der Stilllegung des KKW Tschernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, J.

    2006-07-01

    The destruction of Block 4 of the Ukranian nuclear power plant in Chernobyl on 26 April 1986 was the largest and most momentous accident in the civil use of nuclear energy. Its far-reaching and lasting ecological, heath-related and economic effects confronted the then Soviet and later the Ukraine with grave problems. Particularly after the dissolution of the Eastern Bloc and the emergence of information about the safety shortcomings of RBMK-type (Chernobyl-type) reactors the Western states pressed for the decommissioning of these reactors. At the G7 summit in Naples in 1994 the Ukraine was offered an action plan of support if it were willing to close down Chernobyl nuclear power plant. This initiative led to the signing on 20 December 1995 of a Memorandum of Understanding on the Closure of Chernobyl Nuclear Power Plant between the G7 states, the European Commission and the Ukraine. It contained an assurance by President Kuchma that Chernobyl nuclear power plant would be closed by the year 2000.

  1. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  2. Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Steinhauser, Georg, E-mail: georg.steinhauser@colostate.edu; Brandl, Alexander; Johnson, Thomas E.

    2014-02-01

    The environmental impacts of the nuclear accidents of Chernobyl and Fukushima are compared. In almost every respect, the consequences of the Chernobyl accident clearly exceeded those of the Fukushima accident. In both accidents, most of the radioactivity released was due to volatile radionuclides (noble gases, iodine, cesium, tellurium). However, the amount of refractory elements (including actinides) emitted in the course of the Chernobyl accident was approximately four orders of magnitude higher than during the Fukushima accident. For Chernobyl, a total release of 5300 PBq (excluding noble gases) has been established as the most cited source term. For Fukushima, we estimated a total source term of 520 (340–800) PBq. In the course of the Fukushima accident, the majority of the radionuclides (more than 80%) was transported offshore and deposited in the Pacific Ocean. Monitoring campaigns after both accidents reveal that the environmental impact of the Chernobyl accident was much greater than of the Fukushima accident. Both the highly contaminated areas and the evacuated areas are smaller around Fukushima and the projected health effects in Japan are significantly lower than after the Chernobyl accident. This is mainly due to the fact that food safety campaigns and evacuations worked quickly and efficiently after the Fukushima accident. In contrast to Chernobyl, no fatalities due to acute radiation effects occurred in Fukushima. - Highlights: • The environmental effects of Chernobyl and Fukushima are compared. • Releases of radionuclides from Chernobyl exceeded Fukushima by an order of magnitude. • Chernobyl caused more severe radiation-related health effects. • Overall, Chernobyl was a much more severe nuclear accident than Fukushima. • Psychological effects are neglected but important consequences of nuclear accidents.

  3. Neutron-activation analysis of hot particles from the vicinity of the Chernobyl Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lyul`, A.Yu.; Kolesov, G.M.; Cherkezyan, V.O. [V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow (Russian Federation)

    1994-04-10

    A considerable portion of the radioactive contamination of the surface layers of soil after the accident at the Chernobyl Nuclear Power Plant was caused by hot particles or aggregates with a diameter of several tens microns and a specific activity >n{center_dot}10{sup {minus}11} Ci. They consist of primary particles of the dispersed material of the nuclear fuel and secondary particles formed as a result of the interaction of the fuel and uranium fission products with the structural materials of the reactor and the destroyed active zone. The radionuclide composition of the hot particles characterizes the nuclear fuel used and the temperature conditions in the reactor during the first weeks after the accident and their chemical composition reflects the conditions and processes leading to their formation, which must be known in order; to ascertain the mechanism of the formation of the radioactive emission from the reactor and to evaluate the degree of ecological danger posed by the particles. All this promotes the urgency and importance of studying the radiation-chemical characteristics of such hot particles. Their small sizes and masses impose definite restrictions; on the investigative methods used, which must be highly sensitive and must offer the possibility of performing a nondestructive analysis. One such method is neutron-activation analysis. The purpose of the present investigation was to apply instrumental neutron-activation analysis to the simultaneous determination of the elemental composition of hot particles and establishment of the isotopic composition of the uranium in them.

  4. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  5. Nuclear power debate and public opinion in Belarus: From Chernobyl to Ostrovets.

    Science.gov (United States)

    Novikau, Aliaksandr

    2016-05-05

    The Belarusian government's decision of the last decade to build a nuclear power plant near the city of Ostrovets, in northern Belarus, has proven to be controversial, resulting in a great deal of debate about nuclear energy in the country. The debate was inevitably shaped by the traumatic event that affected Belarus - the Chernobyl nuclear accident of 1986. The Belarusian authorities have consistently promoted a positive view of nuclear energy to the population in order to overcome the so-called 'Chernobyl syndrome' and deliberately shaped nuclear risk communication. As a result, the issue of trust remains crucial in all nuclear debates in Belarus.

  6. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  7. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  8. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts.

    Science.gov (United States)

    Steinhauser, Georg; Brandl, Alexander; Johnson, Thomas E

    2014-02-01

    The environmental impacts of the nuclear accidents of Chernobyl and Fukushima are compared. In almost every respect, the consequences of the Chernobyl accident clearly exceeded those of the Fukushima accident. In both accidents, most of the radioactivity released was due to volatile radionuclides (noble gases, iodine, cesium, tellurium). However, the amount of refractory elements (including actinides) emitted in the course of the Chernobyl accident was approximately four orders of magnitude higher than during the Fukushima accident. For Chernobyl, a total release of 5,300 PBq (excluding noble gases) has been established as the most cited source term. For Fukushima, we estimated a total source term of 520 (340-800) PBq. In the course of the Fukushima accident, the majority of the radionuclides (more than 80%) was transported offshore and deposited in the Pacific Ocean. Monitoring campaigns after both accidents reveal that the environmental impact of the Chernobyl accident was much greater than of the Fukushima accident. Both the highly contaminated areas and the evacuated areas are smaller around Fukushima and the projected health effects in Japan are significantly lower than after the Chernobyl accident. This is mainly due to the fact that food safety campaigns and evacuations worked quickly and efficiently after the Fukushima accident. In contrast to Chernobyl, no fatalities due to acute radiation effects occurred in Fukushima.

  9. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  10. The Chernobyl and Fukushima Daiichi nuclear accidents and their tragic consequences

    CERN Document Server

    CERN. Geneva

    2016-01-01

    On April 26, 1986, the Unit 4 of the RBMK nuclear power plant of Chernobyl, in Ukraine, went out of control during a test at low-power, leading to an explosion and fire. The reactor building was totally demolished and very large amounts of radiation were released into the atmosphere for several hundred kilometres around the site including the nearby town of Pripyat. The explosion leaving tons of nuclear waste and spent fuel residues without any protection and control totally contaminating the entire area. Several hundred thousand people were affected by the radiation fall out. The radioactive cloud spread across Europe affecting most of the Northern, Central and Eastern European countries. Some areas of southern Switzerland, of northern Italy as well as western France were subject to radioactive contamination. The initiative of the G7 countries to launch and important programme for the closure of some Soviet built nuclear plants was accepted by several donor countries. A team of engineers was established wi...

  11. Health consequences of Chernobyl. 25 years after the reactor catastrophy; Gesundheitliche Folgen von Tschernobyl. 25 Jahre nach der Reaktorkatastrophe

    Energy Technology Data Exchange (ETDEWEB)

    Pflugbeil, Sebastian; Schmitz-Feuerhake, Inge [Gesellschaft fuer Strahlenschutz e.V., Berlin (Germany); Paulitz, Henrik; Claussen, Angelika [Internationale Aerzte fuer die Verhuetung des Atomkrieges, Aerzte in sozialer Verantwortung e.V. (IPPNW), Berlin (Germany). Deutsche Sektion

    2011-04-15

    The report is an evaluation of studies indicating health effects as a consequence of the reactor catastrophe in Chernobyl. The most exposed population include the cleaning personnel (liquidators), the population evacuated from the 30 km zone, the populations in highly contaminated regions in Russia, Belarus and Ukraine, the European population in lass contaminated regions. The following issues are discussed: the liquidators, infant mortality, genetic and teratogenic damages, thyroid carcinoma and other thyroid diseases, carcinogenic diseases and leukemia, other diseases following the Chernobyl catastrophe.

  12. Reactor accidents and the actions of fire brigades. Plea for nuclear phaseout. An analytic report on Leipzig, Windscale, Chernobyl and Fukushima; Reaktorunfaelle und die Handlungen der Feuerwehr. Plaedoyer fuer den Atomausstieg. Ein Analysebericht zu Leipzig, Windscale, Tschernobyl und Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Steffler, Reinhard

    2016-11-01

    The report covers the historically first fire brigade action at the ''uranium machine'' on June 23th 1942 in Leipzig, and the fire brigade actions in Windscale (October 11, 1957), Chernobyl and Fukushima Daiichi. Further issues are the behavior of the media, selected features of the fire brigade actions, and a discussion of questions concerning the preparedness of the fire brigades.

  13. 30 years life with Chernobyl, 5 years life with Fukushima. Health consequences of the nuclear catastrophes of Chernobyl and Fukushima; 30 Jahre Leben mit Tschernobyl, 5 Jahre Leben mit Fukushima. Gesundheitliche Folgen der Atomkatastrophen von Tschernobyl und Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, Angelika; Rosen, Alex

    2016-02-15

    The IPPNW report on health consequences of the nuclear catastrophes of Chernobyl and Fukushima covers the following issues: Part.: 30 years life with Chernobyl: Summarized consequences of Chernobyl, the accident progression, basic data of the catastrophe, estimation of health hazards as a consequence of the severe accident of Chernobyl, health consequences for the liquidators, health consequences for the contaminated population, mutagenic and teratogenic effects. Part B: 5 years life with Fukushima: The start of the nuclear catastrophe, emissions and contamination, consequences of the nuclear catastrophe on human health, thyroid surveys in the prefecture Fukushima, consequences of the nuclear catastrophe on the ecosystem, outlook.

  14. Chernobyl nuclear accident revealed from the 7010 m Muztagata ice core record

    Institute of Scientific and Technical Information of China (English)

    TIAN LiDe; YAO TanDong; WU GuangJian; LI Zhen; XU BaiQing; LI YueFang

    2007-01-01

    The total activity variation with depth from a 41.6 m Muztagata ice core drilled at 7010 m,recorded not only the 1963 radioactive layer due to the thermonuclear test,but also clearly the radioactive peak released by the Chernobyl accident in 1986.This finding indicates that the Chernobyl nuclear accident was clearly recorded in alpine glaciers in the Pamirs of west China,and the layer can be potentially used for ice core dating in other high alpine glaciers in the surrounding regions.

  15. After Chernobyl. Psychological factors affecting health after a nuclear disaster

    Energy Technology Data Exchange (ETDEWEB)

    Havenaar, J.M.

    1996-04-23

    During his stay in Belarus, Ukraine and Russia the author learned much about the medical and psychological consequences of the Chernobyl accident, and about the rapidly changing societies of the former Soviet Union. The chapters of this dissertation may be regarded as being stations along the way in this learning process. Chapter 1 describes his first impressions and the accounts he heard about the events that followed the catastrophe. It summarizes the current knowledge about the radiological consequences of the disaster. Chapter 2 presents a review of the literature about the psychological impact of disasters, such as Chernobyl, Bhopal and Three Mile Island, events that are characterized by the release of potentially harmful quantities of toxic substances into the environment. Chapters 3 and 4 describe the painstaking process of obtaining the necessary reliable research instruments, which were totally lacking in the Russian language. Without such instruments no valid epidemiological research is possible. Furthermore, these research instruments were to provide a tool to assist the Byelorussian physicians in their daily practice, helping them to assess the presence of psychosocial and psychiatric problems in their patients in a more reliable fashion. Chapter 5 describes the mental health situation in the region and analyses the presence of high-risk groups towards whom special intervention programmes. Chapter 6 investigates the question to what extent the high levels of psychopathology in Gomel can be attributed to the impact of the Chernobyl disaster, even more than six years after the event. In chapter 7 the perspective is widened. The field of mental health is left behind and the domain of public health is addressed. This chapter describes the relationship between subjective health and illness behaviour in relation to objective clinical parameters of physical and mental health. Finally, in chapter 8, the findings from these studies are critically reviewed and

  16. The legacy of Chernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Bojcun, M.

    1991-04-20

    This article looks at daily life in the Northern Ukraine, where the fallout effects from the Chernobyl nuclear reactor accident were felt most keenly. High levels of radioactive iodine 131, strontium 90 and caesium 137 are still present five years on and the health of the population, including those evacuated from the exclusion zones, is at risk from leukaemia and thyroid problems, especially among children. Other worrying reports suggest the occurence of a new disease, ''Chernobyl AIDs'', in which sufferers' immune systems are depressed. Other major outstanding problems include the integrity of the concrete sarcophagus enclosing the damaged reactor, and the continued consumption of locally grown contaminated food due to government inadequacies in supplying ''clean'' equivalents. (UK).

  17. Teaching About Nature's Nuclear Reactors

    CERN Document Server

    Herndon, J M

    2005-01-01

    Naturally occurring nuclear reactors existed in uranium deposits on Earth long before Enrico Fermi built the first man-made nuclear reactor beneath Staggs Field in 1942. In the story of their discovery, there are important lessons to be learned about scientific inquiry and scientific discovery. Now, there is evidence to suggest that the Earth's magnetic field and Jupiter's atmospheric turbulence are driven by planetary-scale nuclear reactors. The subject of planetocentric nuclear fission reactors can be a jumping off point for stimulating classroom discussions about the nature and implications of planetary energy sources and about the geomagnetic field. But more importantly, the subject can help to bring into focus the importance of discussing, debating, and challenging current thinking in a variety of areas.

  18. The Chernobyl murder. The nuclear Goulag; Le crime de Tchernobyl. Le goulag nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Tchertkoff, W

    2006-07-01

    The authors of this book are the Chernobyl victims of the 26 April 1986 nuclear accident: millions of poor farmers, contaminated young mothers and children which eat every days radionuclides; ''Liquidators'', sacrificed to stop the fire of the power plants; invalids and also doctors and scientists which refuse the nuclear lobby. This book presents the two Byelorussian scientists which have risk their career and their health to help the contaminated populations. This book takes stock on the today nuclear policy and becomes alarm in seeing the development of the nuclear program in many countries. (A.L.B.)

  19. Radiological consequences of the Chernobyl reactor accident; Radiologische Folgen des Tschernobyl-Ungluecks

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P.

    1996-05-01

    Large areas of Belarus, Russia, and the Ukraine have been highly contaminated by the radioactive fallout from the reactor accident at Chernobyl. The most affected areas are around Chernobyl and east of Gomel in Belarus, where part of the radioactive fallout came down with rain. The article maps the radioactive contamination through cesium 137 and iodine 131, and summarizes the immediate action taken at the time, as well as long-term remedial action for decontamination of soils. Data are given on the radiation exposure of the population, in particular doses to the thyroid, and prognoses on the incidence of thyroid cancer. (VHE) [Deutsch] Durch den Reaktorunfall von Tschernobyl wurden groessere Flaechen von Belarus, Russland und der Ukraine stark radioaktiv kontaminiert. Besonders betroffen sind die Umgebung von Tschernobyl sowie die Gegend oestlich von Gomel (Belarus), wo die radioaktive Wolke teilweise ausregnete. Der Artikel beschreibt die Belastung mit Caesium 137 und Iod 131 sowie die ergriffenen Sofortmassnahmen und die langfristigen Massnahmen zur Dekontamination der betroffenen Boeden. Die Strahlenbelastung der Bevoelkerung, v.a. die Schilddruesendosen, werden beschrieben, fuer Schilddruesenkrebs werden Prognosen gegeben. (VHE)

  20. Nuclear Reactor Engineering Analysis Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-12-31

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels.

  1. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  2. Chernobyl accident and its consequences

    Energy Technology Data Exchange (ETDEWEB)

    Gittus, J.H.; Bonell, P.G.; Hicks, D.

    1987-01-01

    The USSR power reactor programme is first described. The reasons for the accident at the Chernobyl-4 RBMK nuclear reactor on 26 April 1986, the sequence of events that took place, and the immediate and long-term consequences are considered. A description of the RBMK-type reactors is given and the design changes resulting from the experience of the accident are explained. The source terms describing the details of the radioactivity release associated with the accident and the environmental consequences are covered in the last two sections of the report. Throughout the text comments referring to the UK Nuclear Installations Inspectorate Safety assessment principles have been inserted. (U.K.).

  3. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  4. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  5. Surface activity distribution measurements and establishment of a dose rate map inside the destroyed Chernobyl reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chesnokov, A.V.; Fedin, V.I.; Gulyaev, A.A. [RECOM Ltd., Moscow (Russian Federation)] [and others

    1999-02-01

    A Gamma Locator designed for contamination survey inside the reactor hall of the 4th unit of Chernobyl NNP has been developed. The device consists of a detector head and a remote control computer connected by a 150 m long cable. The detector head (dimensions: 500 mm by 500 mm by 400 mm; weight: about 40 kg) is a collimated scintillation gamma detector (the collimation angle is 10 deg.). It is installed on a scanning unit and was placed inside the reactor hall. The Gamma Locator scans all surfaces of the reactor hall with angular steps ({<=} 1 deg. vertically as well as horizontally) and the particle fluence from the corresponding direction is recorded. The distance between the device head and the measured surface is instantaneously registered by a laser distance gauge. Inside the collimator there is a small CCD camera which makes it possible to obtain a visible image of the measured surface. The effective surface activity levels are presented in colour on the screen of the control computer. The gamma detector essentially consists of a CsI(TI) scintillator crystal ({phi} 8 mm in diameter, 2.5 mm in thickness) and a Si photodiode. The detector energy resolution is about 8% for radiation from {sup 137}Cs. The exposure dose rate distribution in the reactor hall is estimated from the measured effective surface activities ({sup 137}Cs is the main gamma emitting isotope inside the reactor hall). The results of dose rate calculations are presented in colour superposed on a drawing of the reactor hall. (au) 1 tab., 28 ills., 16 refs.

  6. Distribution and migration of long lived radionuclides in the environment around the Chernobyl Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Hikaru; Matsunaga, Takeshi; Ueno, Takashi; Nagao, Seiya; Yanase, Nobuyuki; Watanabe, Miki; Hanzawa, Yukiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    Characteristics of the distribution and migration of long lived radionuclides in the environment around the Chernobyl Nuclear Power Plant (30 km exclusion zone) has been investigated. Research items are, (i) Distribution of long lived radionuclides in the surface environment, (ii) Speciation of long lived radionuclides in the surface environment, (iii) Characteristics of the migration in the surface environment, (iv) Characteristics of the uptake into the vegetables, (v) Prediction of future radioecological situation in the environment, respectively. (author)

  7. Reactor antineutrinos and nuclear physics

    Science.gov (United States)

    Balantekin, A. B.

    2016-11-01

    Short-baseline reactor neutrino experiments successfully measured the neutrino parameters they set out to measure, but they also identified a shape distortion in the 5-7 MeV range as well as a reduction from the predicted value of the flux. Nuclear physics input into the calculations of reactor antineutrino spectra needs to be better refined if this anomaly is to be interpreted as due to sterile neutrino states.

  8. Nuclear reactor downcomer flow deflector

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Charles B. (Greensburg, PA); Altman, David A. (Pittsburgh, PA); Singleton, Norman R. (Murrysville, PA)

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  9. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  10. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  11. Micro-analytical uranium isotope and chemical investigations of zircon crystals from the Chernobyl “lava” and their nuclear fuel inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Pöml, P., E-mail: Philipp.POEML@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Burakov, B. [Laboratory of Applied Mineralogy and Radiogeochemistry, V.G. Khlopin Radium Institute, 28, 2-nd Murinskiy Ave., St. Petersburg 194021 (Russian Federation); Geisler, T. [Steinmann Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, Poppelsdorfer Schloss, 53115 Bonn (Germany); Walker, C.T. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Grange, M.L.; Nemchin, A.A. [Department of Applied Geology, Western Australian School of Mines, Curtin University, GPO Box U1987, Western Australia 6845 (Australia); Berndt, J. [Institut für Mineralogie, Westfälische Wilhelms-Universität, Corrensstraße 24, 48149 Münster (Germany); Fonseca, R.O.C. [Steinmann Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, Poppelsdorfer Schloss, 53115 Bonn (Germany); Bottomley, P.D.W.; Hasnaoui, R. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany)

    2013-08-15

    U isotope data measured on real fragments of the Chernobyl nuclear fuel included in zircon crystals crystallised from the Chernobyl “lava” are presented for the first time. The U isotope data show no anomalies and lie within the expected burnup values for the Chernobyl nuclear fuel. However, the U concentration, the U isotopic composition, and the Ti concentration in the host zircon vary significantly within single crystals as well as between single crystals. Our results indicate that during the time of melt activity temperature and melt composition likely varied considerably. New melt was formed progressively (and solidified) during the accident that reacted and mixed with pre-existing melt that never fully equilibrated. In such an environment zircon crystals crystallised at temperatures below 1250 °C, as estimated from thermodynamic considerations along with the observation that the centre of the investigated zircon crystal contains monoclinic ZrO{sub 2} inclusions. Since the zircon crystals crystallised before the silicate melt spread out into the reactor block basement, the flow of the melt into the basement must also have occurred at temperatures below 1250 °C.

  12. Global risk of radioactive fallout after nuclear reactor accidents

    Science.gov (United States)

    Kunkel, D.; Lelieveld, J.; Lawrence, M. G.

    2012-04-01

    Reactor core meltdowns of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents, using particulate 137Cs and gaseous 131I as proxies for the fallout. It appears that previously the occurrence of major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a core melt of any nuclear power plant worldwide, more than 90 % of emitted 137Cs would be transported beyond 50 km and about 50 % beyond 1000 km distance. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human deposition exposure are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in southern Asia where a core melt can subject 55 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  13. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  14. Nuclear reactor effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L.; Essig, T.H. [Nuclear Regulatory Commission, Washington, DC (United States)

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  15. Global risk of radioactive fallout after major nuclear reactor accidents

    Science.gov (United States)

    Lelieveld, J.; Kunkel, D.; Lawrence, M. G.

    2012-05-01

    Major reactor accidents of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the cumulative, global risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents (the most severe ones on the International Nuclear Event Scale, INES 7), using particulate 137Cs and gaseous 131I as proxies for the fallout. Our results indicate that previously the occurrence of INES 7 major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a major reactor accident of any nuclear power plant worldwide, more than 90% of emitted 137Cs would be transported beyond 50 km and about 50% beyond 1000 km distance before being deposited. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human exposure due to deposition are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in West Europe and South Asia, where a major reactor accident can subject around 30 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  16. Global risk of radioactive fallout after major nuclear reactor accidents

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2012-05-01

    Full Text Available Major reactor accidents of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the cumulative, global risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents (the most severe ones on the International Nuclear Event Scale, INES 7, using particulate 137Cs and gaseous 131I as proxies for the fallout. Our results indicate that previously the occurrence of INES 7 major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a major reactor accident of any nuclear power plant worldwide, more than 90% of emitted 137Cs would be transported beyond 50 km and about 50% beyond 1000 km distance before being deposited. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human exposure due to deposition are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in West Europe and South Asia, where a major reactor accident can subject around 30 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  17. [Discirculatory encephalopathy in liquidators of the Chernobyl nuclear power station: a twenty-year study].

    Science.gov (United States)

    Podsonnaia, I V; Shumakher, G I; Golovin, V A

    2009-01-01

    A comparative twenty-year study of 536 liquidators of the Chernobyl nuclear disaster and 436 patients without radiation anamnesis has been carried out. Discirculatory encephalopathy (DE) was more often developed in subjects exposed to radiation at the age 30 years. Compared to individuals from the general population, it is characterized by the earlier onset, malignant progression, rapid increase of signs of cerebral affection during the first two years after exposure to radiation, stability of clinical symptoms during the following 5-6 years and further progressive cerebral decompensation with early autonomic dysfunction, psychoorganic syndrome, epilepsy. Moreover, severe stroke is a common complication of DE in liquidators.

  18. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  19. Management, administrative and operational causes of the accident: Chernobyl nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, G. [California State Univ., Sacramento, CA (United States)

    1996-10-01

    The Chernobyl accident, which occurred in April 1986, was the result of management, administrative, operational, technical and design flaws. The accident released millions of curies of mixed fission products including 70-100 PBq of {sup 137}Cs. At the time of the accident, science, engineering and safety in the former Soviet Union were dominated by an atmosphere of politics, group think and `dingoes tending the sheep`. This corrupted safety culture exacerbated the poor design of the reactor. The results of this study strongly suggest that the cultural, political, managerial and operational attributes of the Soviet `system` performed in a synergistic manner to significantly contribute to the initiation of the accident. (authors). 16 refs.

  20. Cancer incidence in northern Sweden before and after the Chernobyl nuclear power plant accident.

    Science.gov (United States)

    Alinaghizadeh, Hassan; Tondel, Martin; Walinder, Robert

    2014-08-01

    Sweden received about 5 % of the total release of (137)Cs from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of (137)Cs and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of (137)Cs from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of (137)Cs at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with the

  1. Heat for industry from nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Novikov, V.M.

    Two factors which incline nations toward the use of heat from nuclear reactors for industrial use are: 1) exhaustion of cheap fossil fuel resources, and 2) ecological problems associated both with extraction of fossil fuel from the earth and with its combustion. In addition to the usual problems that beset nuclear reactors, special problems associated with using heat from nuclear reactors in various industries are explored.

  2. Autonomous Control of Space Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation....

  3. Dose estimates from the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Lange, R.; Dickerson, M.H.; Gudiksen, P.H.

    1987-11-01

    The Lawrence Livermore National Laboratory Atmospheric Release Advisory Capability (ARAC) responded to the Chernobyl nuclear reactor accident in the Soviet Union by utilizing long-range atmospheric dispersion modeling to estimate the amount of radioactivity released (source term) and the radiation dose distribution due to exposure to the radioactive cloud over Europe and the Northern Hemisphere. In later assessments, after the release of data on the accident by the Soviet Union, the ARAC team used their mesoscale to regional scale model to focus in on the radiation dose distribution within the Soviet Union and the vicinity of the Chernobyl plant. 22 refs., 5 figs., 5 tabs.

  4. Chernobyl and Fukushima nuclear accidents: what has changed in the use of atmospheric dispersion modeling?

    Science.gov (United States)

    Benamrane, Y; Wybo, J-L; Armand, P

    2013-12-01

    The threat of a major accidental or deliberate event that would lead to hazardous materials emission in the atmosphere is a great cause of concern to societies. This is due to the potential large scale of casualties and damages that could result from the release of explosive, flammable or toxic gases from industrial plants or transport accidents, radioactive material from nuclear power plants (NPPs), and chemical, biological, radiological or nuclear (CBRN) terrorist attacks. In order to respond efficiently to such events, emergency services and authorities resort to appropriate planning and organizational patterns. This paper focuses on the use of atmospheric dispersion modeling (ADM) as a support tool for emergency planning and response, to assess the propagation of the hazardous cloud and thereby, take adequate counter measures. This paper intends to illustrate the noticeable evolution in the operational use of ADM tools over 25 y and especially in emergency situations. This study is based on data available in scientific publications and exemplified using the two most severe nuclear accidents: Chernobyl (1986) and Fukushima (2011). It appears that during the Chernobyl accident, ADM were used few days after the beginning of the accident mainly in a diagnosis approach trying to reconstruct what happened, whereas 25 y later, ADM was also used during the first days and weeks of the Fukushima accident to anticipate the potentially threatened areas. We argue that the recent developments in ADM tools play an increasing role in emergencies and crises management, by supporting stakeholders in anticipating, monitoring and assessing post-event damages. However, despite technological evolutions, its prognostic and diagnostic use in emergency situations still arise many issues.

  5. Origin of a signal detected with the LSD detector after the accident at the chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Agafonova, N. Yu., E-mail: natagafonova@gmail.com; Malgin, A. S., E-mail: malgin@lngs.infn.it [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Fulgione, W. [Istituto Nazionale di Fisica Nucleare, and Osservatorio Astrofisico di Torino, Istituto di Fisica dello Spazio Interplanetario (Italy)

    2013-08-15

    A rare signal was detected at 23:53 Moscow time on April 27, 1986 with the LSD low-background scintillation detector located under Mont Blanc at a distance of 1820 km from Chernobyl. To reveal the origin of this signal, we discuss the results obtained with other instruments operating within a similar program, as well as analyze the characteristics of the pulses of the signal and facts referring to the explosion of the Chernobyl reactor. A hypothesis based on detection with the LSD of gamma-quanta from {beta} decays of {sup 135}I nuclei ejected into atmosphere by the reactor explosion and carried in the underground detector camera with air of positive ventilation is considered. The explosion origin of the LSD signal indicates a new technogenic source of the background in the search for neutrino bursts from cores of collapsing stars.

  6. Origin of a signal detected with the LSD detector after the accident at the chernobyl nuclear power plant

    Science.gov (United States)

    Agafonova, N. Yu.; Malgin, A. S.; Fulgione, W.

    2013-08-01

    A rare signal was detected at 23:53 Moscow time on April 27, 1986 with the LSD low-background scintillation detector located under Mont Blanc at a distance of 1820 km from Chernobyl. To reveal the origin of this signal, we discuss the results obtained with other instruments operating within a similar program, as well as analyze the characteristics of the pulses of the signal and facts referring to the explosion of the Chernobyl reactor. A hypothesis based on detection with the LSD of gamma-quanta from β decays of 135I nuclei ejected into atmosphere by the reactor explosion and carried in the underground detector camera with air of positive ventilation is considered. The explosion origin of the LSD signal indicates a new technogenic source of the background in the search for neutrino bursts from cores of collapsing stars.

  7. Radioactive target needs for nuclear reactor physics and nuclear astrophysics

    OpenAIRE

    Jurado, B.; Barreau, G.; Bacri, C. O.

    2010-01-01

    Nuclear Instruments and Methods in Physics Research Section A - In press.; Nuclear reaction cross sections of short-lived nuclei are key inputs for new generation nuclear reactor simulations and for models describing the nucleosynthesis of elements. After discussing various topics of nuclear astrophysics and reactor physics where the demand of nuclear data on unstable nuclei is strong, we describe the general characteristics of the targets needed to measure the requested data. In some cases t...

  8. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

  9. Chernobyl Doses. Volume 3. Habitat and Vegetation Near the Chernobyl Nuclear Reactor Station

    Science.gov (United States)

    1993-01-01

    cristatus, Dacrylis glomerata, Festuca rubra, F. pratensis, Holcus lanatus, H. mollis, Lolium perenne, Nardus stricta, Phleum pratense, Poa pratensis...ursi, Empetrum nigrum, Ledum palustre, Vaccinium vids-daea, and V. uliginosur. The common herbs include Nardus stricta and Uncus squarrosus. Sphagnum... Nardus stricta are 16 important herbs. Trees are well proportioned, with narrow crowns. Pines in moist habitats are longer lived than in dry or wet

  10. Chernobyl bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Carr, F. Jr.; Mahaffey, J.A.

    1989-09-01

    The purpose of the DOE/OHER Chernobyl Database project is to create and maintain an information system to provide usable information for research studies related to the nuclear accident. The system is the official United States repository for information about the Chernobyl accident and its consequences, and currently includes an extensive bibliography and diverse radiological measurements with supporting information. PNL has established two resources: original (not summarized) measurement data, currently about 80,000 measurements, with ancillary information; and about 2,200 bibliographic citations, some including abstracts. Major organizations that have contributed radiological measurement data include the Washington State Department of Social and Health Services; United States Environmental Protection Agency (domestic and foreign data); United States Nuclear Regulatory Commission; Stone Webster; Brookhaven National Laboratory; Commissariat A L'energie Atomique in France; Ministry of Agriculture, Fisheries, and Food in the United Kingdom; Japan National Institute of Radiological Sciences; and the Finnish Centre For Radiation and Nuclear Safety (STUK). Scientists in Australia, Austria, Belgium, Canada, China, Denmark, England, Federal Republic of Germany, Finland, France, Ireland, Italy, Japan, the Netherlands, Romania, Scotland, Spain, Sweden, Switzerland, United States, Wales, and Yugoslavia have made contributions. Bibliographic materials have been obtained from scientists in the above countries that have replied to requests. In addition, literature searches have been conducted, including a search of the DOE Energy Database. The last search was conducted in January, 1989. This document lists the bibliographic information in the DOE/OHER Chernobyl Database at the current time.

  11. The lesson of the Chernobyl disaster

    Energy Technology Data Exchange (ETDEWEB)

    Milhaud, G. (Hopital Saint-Antoine, 75 Paris (FR))

    1991-01-01

    On april 26, 1986 a major nuclear disaster took place at 1 h 24 min local time, destroying the fourth reactor of the Chernobyl plant. Five years later the consequences of the disaster are still not fully known. Nevertheless the long term future of nuclear energy in the world is uncertain. Questions need to be answered by observing hard facts if emotional attitudes are not to prevail over reality. The reactor and its core were destroyed by an explosion, causing two radioactive jet emissions of iodine 131, followed by caesium 137. Both elements are mainly incorporated in the body via food. The Chernobyl disaster was a consequence of inadequate safety regulations and human error. Enforcement of strict regulations are likely to be highly effective in preventing a further catastrophe. However, governments should consider another possibility. What would be the consequences for public health if a terroristic act deliberately destroyed a nuclear power station.

  12. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  13. The Design of a Nuclear Reactor

    Indian Academy of Sciences (India)

    2016-09-01

    The aim of this largely pedagogical article is toemploy pre-college physics to arrive at an understanding of a system as complex as a nuclear reactor. We focus on three key issues: the fuelpin, the moderator, and lastly the dimensions ofthe nuclear reactor.

  14. The Italian debate on nuclear energy in the post Chernobyl age

    Energy Technology Data Exchange (ETDEWEB)

    Cantone, M.C. [Milano Univ., Dipt. di Fisica and INFN (Italy); Sturloni, G. [SISSA, Innovations in the Communication of Science, Trieste (Italy)

    2006-07-01

    Full text of publication follows: Italy entered with enthusiasm into the production of nuclear energy for civil use at the end of 50. By 1966 - with an overall output of 3.9 billions kWh - Italy had become the fourth world producer of electricity generated by nuclear reactions, the second one in Europe after Great Britain. Chernobyl's 1986 disaster, which so much shook public opinion all over Europe, had particularly important economic and political consequences in Italy. In a controversial referendum, held in November 1987, Italian citizens voted for the repeal of three laws which promoted the installation of nuclear power plants on the Italian soil and the participation of ENEL (National Institution for the Electrical Energy) to plant constructions abroad. The 1987 referendum was interpreted by the Italian government as an opposition to nuclear power generation - the following year, the four Italian plants (Garigliano, Latina, Trino Vercellese, Caorso) ceased their activity and plans to build new plants were abandoned. This decision marked the ruin of Italian research on nuclear energy, that in the 30 had known a glorious era thanks to Enrico Fermi works. As the 20. Anniversary of Chernobyl's accident is drawing near, the University of Milan and ICS-research group (Innovations in Communication of Science) at SISSA, Trieste, have decided to analyse jointly the reasons which brought Italy to give up its nuclear energy production. In the present scenario of controversies concerning the development of science and technology, in which European countries exchange experiences of best practice to involve the public in decision making processes, Italy reaction to Chernobyl accident can indeed be considered paradigmatic in that it anticipated crucial risks governance issues in today relationship between science and society. The research project draws on methodologies used in media studies and on socio linguistic analysis, as developed by risk perception and risk

  15. "What--me worry?" "Why so serious?": a personal view on the Fukushima nuclear reactor accidents.

    Science.gov (United States)

    Gallucci, Raymond

    2012-09-01

    Infrequently, it seems that a significant accident precursor or, worse, an actual accident, involving a commercial nuclear power reactor occurs to remind us of the need to reexamine the safety of this important electrical power technology from a risk perspective. Twenty-five years since the major core damage accident at Chernobyl in the Ukraine, the Fukushima reactor complex in Japan experienced multiple core damages as a result of an earthquake-induced tsunami beyond either the earthquake or tsunami design basis for the site. Although the tsunami itself killed tens of thousands of people and left the area devastated and virtually uninhabitable, much concern still arose from the potential radioactive releases from the damaged reactors, even though there was little population left in the area to be affected. As a lifelong probabilistic safety analyst in nuclear engineering, even I must admit to a recurrence of the doubt regarding nuclear power safety after Fukushima that I had experienced after Three Mile Island and Chernobyl. This article is my attempt to "recover" my personal perspective on acceptable risk by examining both the domestic and worldwide history of commercial nuclear power plant accidents and attempting to quantify the risk in terms of the frequency of core damage that one might glean from a review of operational history.

  16. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

    2009-11-09

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  17. ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.

    2009-09-30

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  18. Design of an Organic Simplified Nuclear Reactor

    OpenAIRE

    Koroush Shirvan; Eric Forrest

    2016-01-01

    Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attr...

  19. Proliferation Resistant Nuclear Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount

  20. Nuclear reactor kinetics and plant control

    CERN Document Server

    Oka, Yoshiaki

    2013-01-01

    Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit

  1. Autonomous Control of Space Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors to support future lunar and Mars robotic and manned missions impose new and innovative technological requirements for their control and protection...

  2. Design of an organic simplified nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shirvan, Koroush [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge (United States); Forrest, Eric [Primary Standards Laboratory, Sandia National Laboratories, Albuquerque (United States)

    2016-08-15

    Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  3. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    Science.gov (United States)

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  4. Design of an Organic Simplified Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-08-01

    Full Text Available Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  5. Impact of {sup 134}Cs and {sup 137}Cs from the Chernobyl reactor accident on the Spanish Mediterranean marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Molero, J.; Sanchez-Cabeza, J.A.; Merino, J. [Grup de Fisica de les Radiacions, Departament de Fisica, Facultat de Ciencies, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Mitchell, P.I. [Laboratory of Radiation Physics, University College, Dublin (Ireland); Vidal-Quadras, A. [Grup de Fisica de les Radiacions, Departament de Fisica, Facultat de Ciencies, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)

    1999-05-01

    As part of a study aiming to establish the distribution and bioavailability of man-made radionuclides in the marine environment, radiocaesium levels were determined in large volume sea water samples and in the sea-grass Posidonia oceanica collected along the Spanish Mediterranean coast. Results obtained from 1987 to 1991 showed the enhancement of radiocaesium levels in the Spanish Mediterranean marine environment after the Chernobyl accident. The well-known {sup 134}Cs/{sup 137}Cs isotopic ratio in Chernobyl fresh deposition was used to identify the weapon tests fall-out and Chernobyl deposition components. {sup 137}Cs and {sup 134}Cs mean concentrations in surface waters from the Spanish Mediterranean shoreline were 4.8{+-}0.2 and 0.27{+-}0.01 Bq m{sup -3}, respectively. {sup 137}Cs concentration incorporated into Mediterranean waters as a consequence of the post-Chernobyl deposition was estimated to be 1.16{+-}0.04 Bq m{sup -3}, which is a 33{+-}2% increase over the previous levels. {sup 137}Cs estimated inventory in the surface water layer (0-50 m) of the Catalan-Balearic basin was 17.4{+-}0.5 TBq for {sup 137}Cs, of which 4.3{+-}0.2 TBq must be attributed to post-Chernobyl deposition, and 1.00{+-}0.04 TBq for {sup 134}Cs. Activation and fission products such as {sup 106}Ru, {sup 110m}Ag, {sup 134}Cs, {sup 137}Cs and {sup 144}Ce, were detected in all samples of Posidonia oceanica. Mean radiocaesium levels in the bioindicator were 1.02{+-}0.25 and 0.20{+-}0.03 Bq kg{sup -1} for {sup 137}Cs and {sup 134}Cs, respectively, corresponding to a mean isotopic ratio {sup 134}Cs/{sup 137}Cs equal to 0.20{+-}0.04 (1987). {sup 137}Cs activity incorporated by Posidonia oceanica after the Chernobyl deposition over the Mediterranean Sea was estimated as 0.51{+-}0.08 Bq kg{sup -1}. Therefore, {sup 137}Cs specific activity had increased 100{+-}40% one year after the accident. Low level radioactive liquid effluents from the nuclear power plants located on the southern Catalan

  6. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  7. Transgenerational genomic instability in children of irradiated parents as a result of the Chernobyl Nuclear Accident

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanyan, Anna, E-mail: ann-aghajanyan@yandex.ru [Cytogenetics Laboratory, FSI Russian Scientific Center of Roentgenology and Radiology, Profsoyuznaya 86, GSP-7, Moscow, 117997 (Russian Federation); Suskov, Igor [Laboratory of Ecological Genetics, N.I. Vavilov Institute of General Genetics Russian Academy of Sciences, Gybkin st. 3, Moscow 119991 (Russian Federation)

    2009-12-01

    The study of families irradiated as a result of the accident at the Chernobyl Nuclear Power Plant revealed significantly increased aberrant genomes frequencies (AGFs) not only in irradiated parents (n = 106, p < 0.01), but also in their children born after the accident (n = 159, p < 0.05). This is an indicative of the phenomenon of transgenerational genomic instability. To elucidate this phenomenon, experiments were undertaken to model genomic instability by using single and fractional in vitro {gamma}-irradiation ({sup 137}Cs) of peripheral blood samples from the children and their parents at doses of 0.1, 0.2 and 0.3 Gy. The spectrum and frequency of chromosome aberrations were studied in the 1st and 2nd cell generations. The average AGF was significantly increased at all doses (except 0.1 Gy) in children of irradiated parents, as compared to children born from non-irradiated parents. Amplification of cells with single-break chromosome aberrations in mitosis 2, as compared to mitosis 1, suggests the replication mechanism of realization of potential damage in DNA and the occurrence of genomic instability in succeeding cell generations.

  8. Chernobyl, 13 years after; Tchernobyl, 13 ans apres

    Energy Technology Data Exchange (ETDEWEB)

    Regniault-Lacharme, Mireille; Metivier, Henri [Inst. de Protection et de Surete Nucleaire, CEA Centre d' Etudes de Fontenay-aux-Roses, 92 (France)

    1999-04-01

    This is an annual report, regularly issued by IPSN, that presents the ecological and health consequences of the Chernobyl Nuclear Accident. The present status of the Chernobyl Nuclear Plant, which Ukraine engaged to stop definitively in year 2000, is summarized. The only reactor unit now in operation is Chernobylsk-3 Reactor which poses two safety questions: evolution of cracks in part of the tubing and behaviour of the pressure tubes. Although, some improvements in the RBMK reactor types were introduced, problems remain that make IPSN to stress the requirement of stopping this NPP completely. In the contaminated territories surrounding Chernobyl incidence rate of infant thyroid cancers continues to grow, reaching values 10 to 100 times higher than the natural rate. In France the IPSN analyzed 60,000 records carried out in 17 sites during May 1986 and April 1989. It was estimated that the individual dose received during 60 years (1986-2046) by the inhabitants of the most affected zone (eastern France) is lower than 1.5 mSv, a value lower than 1% of the natural cosmic and telluric radioactivity exposure for the same period. For the persons assumed to live in the most attacked forests (from eastern France) and nourishing daily with venison and mushrooms the highest estimate is 1 mSv a year. Concerning the 'hot spots', identified in mountains by IPSN and CRIIRAD, the doses received by excursionists are around 0.015 mSv. For an average inhabitant of the country the dose piled up in the thyroid due to iodine-131 fallout is estimated to 0.5-2 mSv for an adult and 6.5-16 mSv for an infant. These doses are 100 to 1000 times lower than the ones to which the infants living in the neighbourhood of Chernobyl are exposed to. The contents of the report is displayed in the following six chapters: 1. Chernobyl in some figures; 2. The 'sarcophagus' and the reactors of the Chernobyl NPP; 3. Health consequences of the Chernobyl accident;. 4. The impact of

  9. Reactivity control assembly for nuclear reactor. [LMFBR

    Science.gov (United States)

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  10. Chernobyl operators: criminals or victims?

    Science.gov (United States)

    Munipov, V M

    1992-10-01

    The blame for the 1986 Chernobyl disaster has been variously attributed to the operating personnel, the plant management, the design of the reactor, and the lack of adequate safety information in the Soviet nuclear industry. This paper considers a number of design faults, operational shortcomings and human errors that combined in the accident. It examines the sequence of events leading up to the accident, design problems in the reactor and cooling rods, and the course of the accident itself. It considers the ergonomics aspects, and expresses the view that the main cause of the accident was inadequate human-machine interaction. Finally, it stresses the continuing inadequacies of the Soviet nuclear system, and emphasizes that unless the ergonomics lessons are fully learned, a similar disaster could still occur.

  11. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  12. Workshop on short-term health effects of reactor accidents: Chernobyl

    Energy Technology Data Exchange (ETDEWEB)

    1986-08-08

    The high-dose early-effects research that has been continued has been done in the context of infrequent accidents with large radiation sources and the use of bone marrow transfusions for treating malignancies, especially leukemia. It thus seemed appropriate to bring together those who have done research on and have had experience with massive whole-body radiation. The objectives were to review what is known about the acute effects of whole-body irradiation, to review the current knowledge of therapy, and particularly of the diagnostic and immunologic problems encountered in bone marrow therapy, and to compare this knowledge with observations made to date on the Chernobyl accident radiation casualties. Dr. Robert Gale, who had helped to care for these casualties, was present at the Workshop. It was hoped that such a review would help those making continuing clinical and pathological observations on the Chernobyl casualties, and that these observations would provide a basis for recommendations for additional research that might result in improved ability to manage successfully this type of severe injury.

  13. U.S. Nuclear Power Reactor Plant Status

    Data.gov (United States)

    Nuclear Regulatory Commission — Demographic data on U.S. commercial nuclear power reactors, including: plant name/unit number, docket number, location, licensee, reactor/containment type, nuclear...

  14. Thermionic reactors for space nuclear power

    Science.gov (United States)

    Griaznov, Georgii M.; Zhabotinskii, Evgenii E.; Serbin, Victor I.; Zrodnikov, Anatolii V.; Pupko, Victor Ia.; Ponomarev-Stepnoi, Nikolai N.; Usov, V. A.; Nikolaev, Iu. V.

    Compact thermionic nuclear reactor systems with satisfactory mass performance are competitive with space nuclear power systems based on the organic Rankine and closed Brayton cycles. The mass characteristics of the thermionic space nuclear power system are better than that of the solar power system for power levels beyond about 10 kWe. Longlife thermionic fuel element requirements, including their optimal dimensions, and common requirements for the in-core thermionic reactor design are formulated. Thermal and fast in-core thermionic reactors are considered and the ranges of their sensible use are discussed. Some design features of the fast in-core thermionic reactors cores (power range to 1 MWe) including a choice of coolants are discussed. Mass and dimensional performance for thermionic nuclear power reactor system are assessed. It is concluded that thermionic space nuclear power systems are promising power supplies for spacecrafts and that a single basic type of thermionic fuel element may be used for power requirements ranging to several hundred kWe.

  15. Optimally moderated nuclear fission reactor and fuel source therefor

    Science.gov (United States)

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  16. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  17. Ten years after the Chernobyl accident: reporting on nuclear and other hazards in six Swedish newspapers

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Aasa; Sjoeberg, L.; Waahlberg, A. af

    1997-07-01

    A European Commission sponsored study (RISKPERCOM) involving France, Norway, Spain, Sweden, and the UK, is concerned with surveying public perceptions of radiation related and other risks. This was partly done by distributing a questionnaire in each country at three different times in 1996: before, during and after the expected media attention given to the tenth anniversary of the Chernobyl accident. A selection of print media were analyzed, during a period of eight weeks - four weeks before the anniversary, and four weeks after - making it possible to contrast any changes between the three waves of the questionnaire with the results of the media study. The present report aims at providing a picture of the Swedish media coverage of different kinds of risks during the period referred to above. The purpose of the analysis is thus primarily of a descriptive nature; explanatory factors are only considered in an ad hoc manner while discussing the results and their possible implications. Naturally, the findings arising from this study cannot alone serve as a basis for making statements about the effects of risk related content on the Swedish newspaper readers. The risk stories included in the analysis were those dealing with one or more of the twenty different hazard items referred to in several of the questions in the RISKPERCOM questionnaire. Radiation and nuclear power energy were not the only issues of concern. The selection covered a wide range of other hazards as well, in order to provide for a wide risk panorama, thus making it possible to compare specific risk qualities etc., as these were presented in the media 70 refs, 40 refs

  18. Chernobyl, 14 years later; Tchernobyl, 14 ans apres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This report draws an account of the consequences of Chernobyl accident 14 years after the disaster. It is made up of 8 chapters whose titles are: (1) Some figures about Chernobyl accident, (2) Chernobyl nuclear power plant, (3)Sanitary consequences of Chernobyl accident, (4) The management of contaminated lands, (5) The impact in France of Chernobyl fallout, (6) International cooperation, (7) More information about Chernobyl and (8) Glossary.

  19. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  20. Oklo reactors and implications for nuclear science

    CERN Document Server

    Davis, E D; Sharapov, E I

    2014-01-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross sections are input to all Oklo modeling and we discuss a parameter, the $^{175}$Lu ground state cross section for thermal neutron capture leading to the isomer $^{176\\mathrm{m}}$ Lu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant $\\alpha$ and the ratio $X_q=m_q/\\Lambda$ (where $m_...

  1. Nuclear Data and the Oklo Natural Nuclear Reactors

    Science.gov (United States)

    Gould, C. R.; Sharapov, E. I.; Sonzogni, A. A.

    2014-04-01

    Data from the Oklo natural nuclear reactors have enabled some of the most sensitive terrestrial tests of time variation of dimensionless fundamental constants. The constraints on variation of αEM, the fine structure constant are particular good, but depend on the reliability of the nuclear data, and on the reliability of the modeling of the reactor environment. We briefly review the history of these tests and discuss our recent work in 1) attempting to better bound the temperatures at which the reactors operated, 2) investigating whether the γ-ray fluxes in the reactors could have contributed to changing lutetium isotopic abundances and 3) determining whether lanthanum isotopic data could provide an alternate estimate of the neutron fluence.

  2. Nuclear reactor alignment plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  3. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, J.H.

    1995-01-17

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP).

  4. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    Science.gov (United States)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-01

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors. Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat. The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  5. Current Abstracts Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bales, J.D.; Hicks, S.C. [eds.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  6. Radiation Exposure and Thyroid Cancer Risk After the Fukushima Nuclear Power Plant Accident in Comparison with the Chernobyl Accident.

    Science.gov (United States)

    Yamashita, S; Takamura, N; Ohtsuru, A; Suzuki, S

    2016-09-01

    The actual implementation of the epidemiological study on human health risk from low dose and low-dose rate radiation exposure and the comprehensive long-term radiation health effects survey are important especially after radiological and nuclear accidents because of public fear and concern about the long-term health effects of low-dose radiation exposure have increased considerably. Since the Great East Japan earthquake and the Fukushima Daiichi Nuclear Power Plant accident in Japan, Fukushima Prefecture has started the Fukushima Health Management Survey Project for the purpose of long-term health care administration and medical early diagnosis/treatment for the prefectural residents. Especially on a basis of the lessons learned from the Chernobyl accident, both thyroid examination and mental health care are critically important irrespective of the level of radiation exposure. There are considerable differences between Chernobyl and Fukushima regarding radiation dose to the public, and it is very difficult to estimate retrospectively internal exposure dose from the short-lived radioactive iodines. Therefore, the necessity of thyroid ultrasound examination in Fukushima and the intermediate results of this survey targeting children will be reviewed and discussed in order to avoid any misunderstanding or misinterpretation of the high detection rate of childhood thyroid cancer.

  7. INFLUENCE OF ANTIHYPERTENSIVE THERAPY ON PSYCHOLOGICAL STATUS OF CHERNOBYL NUCLEAR POWER PLANT ACCIDENT CONSEQUENCES LIQUIDATORS

    Directory of Open Access Journals (Sweden)

    E. M. Manoshkina

    2006-01-01

    Full Text Available Aim. To study psychological status and influence of antihypertensive therapy (AHT on it in Chernobyl nuclear power plant (NPP accident consequences liquidators, who suffer arterial hyper-tension (AH, with controlled treatment compared to the standard treatment in out-patient clinic. Material and methods. 81 liquidators with AH (all men were included into open compara-tive randomized study. Study duration was 12 months. Patients were randomized into main group (MG and control group (CG. Patients of MG received strictly regulated stepped AHT based on ACE inhibitor spirapril 6 mg daily (Quadropril®, Pliva-AVD, hypothiazide was added if necessary (12.5-25 mg daily and afterwards – atenolol (12.5-100 mg daily. In CG AHT and its correction was set by physician in polyclinic. Brief multifactor questionnaire for personality analysis was used to study psychological status. Results. 57 patients completed the study, 28 in MG and 29 in CG. In MG target blood pres-sure (BP levels were reached in 22 (78.6% patients, in CG – in 11 (38% patients (p<0.01. The main feature of psychological status of liquidators with AH was hypochondriac, depressive and anxious disorders. Controlled AHT made it possible to reach improvement in psychological status, i.e. growth of optimism and activity of patients, more often, than standard treatment in out-patient clinics. Increase in number of patients with pronounced anxious changes was observed in CG. Effi-ciency of AHT in liquidators with AH is connected with severity of depressive disturbances: in subgroups with inefficient treatment patients had the highest level of depression. In liquidators with AH, possessing neurotic disturbances, spirapril was efficient both as monotherapy, and in combina-tion with diuretic hydrochlorothiazide and beta-blocker atenolol. Conclusion. Controlled AHT in liquidators with AH has advantages over standard treatment in out-patient clinic and results in more frequent target BP level

  8. FUEL COMPOSITION FOR NUCLEAR REACTORS

    Science.gov (United States)

    Andersen, J.C.

    1963-08-01

    A process for making refractory nuclear fuel elements involves heating uranium and silicon powders in an inert atmosphere to 1600 to 1800 deg C to form USi/sub 3/; adding silicon carbide, carbon, 15% by weight of nickel and aluminum, and possibly also molybdenum and silicon powders; shaping the mixture; and heating to 1700 to 2050 deg C again in an inert atmosphere. Information on obtaining specific compositions is included. (AEC)

  9. Cold nuclear fusion reactor and nuclear fusion rocket

    Directory of Open Access Journals (Sweden)

    Huang Zhenqiang

    2013-10-01

    Full Text Available "Nuclear restraint inertial guidance directly hit the cold nuclear fusion reactor and ion speed dc transformer" [1], referred to as "cold fusion reactor" invention patents, Chinese Patent Application No. CN: 200910129632.7 [2]. The invention is characterized in that: at room temperature under vacuum conditions, specific combinations of the installation space of the electromagnetic field, based on light nuclei intrinsic magnetic moment and the electric field, the first two strings of the nuclei to be bound fusion on the same line (track of. Re-use nuclear spin angular momentum vector inherent nearly the speed of light to form a super strong spin rotation gyro inertial guidance features, to overcome the Coulomb repulsion strong bias barrier to achieve fusion directly hit. Similar constraints apply nuclear inertial guidance mode for different speeds and energy ion beam mixing speed, the design of ion speed dc transformer is cold fusion reactors, nuclear fusion engines and such nuclear power plants and power delivery systems start important supporting equipment, so apply for a patent merger

  10. Medical Radioisotopes Production Without A Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Van der Keur, H.

    2010-05-15

    This report is answering the key question: Is it possible to ban the use of research reactors for the production of medical radioisotopes? Chapter 2 offers a summarized overview on the history of nuclear medicine. Chapter 3 gives an overview of the basic principles and understandings of nuclear medicine. The production of radioisotopes and its use in radiopharmaceuticals as a tracer for imaging particular parts of the inside of the human body (diagnosis) or as an agent in radiotherapy. Chapter 4 lists the use of popular medical radioisotopes used in nuclear imaging techniques and radiotherapy. Chapter 5 analyses reactor-based radioisotopes that can be produced by particle accelerators on commercial scale, other alternatives and the advantages of the cyclotron. Chapter 6 gives an overview of recent developments and prospects in worldwide radioisotopes production. Chapter 7 presents discussion, conclusions and recommendations, and is answering the abovementioned key question of this report: Is it possible to ban the use of a nuclear reactor for the production of radiopharmaceuticals? Is a safe and secure production of radioisotopes possible?.

  11. The spatial distribution of caesium-137 over Northern Ireland from fallout from the Chernobyl nuclear accident

    OpenAIRE

    Rawlins, B. G.; Scheib, C.; Tyler, A.N.; Jones, D.; Webster, R; Young, M. E.

    2009-01-01

    The spatial distribution of caesium-137 (137Cs) across the land is of much interest because it can tell us about the redistribution of the radionuclide as a result of soil erosion, differential migration through the soil—or its complement, differential retention in the soil. Any such inferences from survey measurements depend on the assumption of a broadly even distribution from weapons testing fallout, and the substantial deposition of 137Cs in rain following the Chernobyl accide...

  12. [90Sr and 137Cs in higher aquatic plants of the Chernobyl nuclear plant exlusion zone

    Science.gov (United States)

    Gudkov, D I; Derevets, V V; Kuz'menko, M I; Nazarov, A B

    2001-01-01

    The content of radionuclides 90Sr and 137Cs in higher aquatic plants of water objects within Chernobyl NPP exclusion zone has been analysed. Biodiversity of phytocenose was studied and species-indicators of radioactive contamination were revealed. The seasonal dynamics of radionuclide content in macrophytes was studied and the role of main aquatic plant clumps in processes of 137Cs and 90Sr distribution in abiotic component of biohydrocenose was demonstrated.

  13. Investigations on Health Conditions of Chernobyl Nuclear Power Plant Accident Recovery Workers from Latvia in Late Period after Disaster

    Directory of Open Access Journals (Sweden)

    Reste Jeļena

    2016-10-01

    Full Text Available The paper summarises the main findings on Chernobyl Nuclear Power Plant (CNPP accident recovery workers from Latvia and their health disturbances, which have been studied by the authors during the last two decades. Approximately 6000 persons from Latvia participated in CNPP clean-up works in 1986–1991. During their work period in Chernobyl they were exposed to external as well as to internal irradiation, but since their return to Latvia they were living in a relatively uncontaminated area. Regular careful medical examinations and clinical studies of CNPP clean-up workers have been conducted during the 25 years after disaster, gathering knowledge on radiation late effects. The aim of the present review is to summarise the most important information about Latvian CNPP clean-up worker health revealed by thorough follow-up and research conducted in the period of 25 years after the accident. This paper reviews data of the Latvian State Register of Persons Exposed to Radiation due to CNPP Accident and gives insight in main health effects found by the researchers from the Centre of Occupational and Radiological Medicine (Pauls Stradiņš Clinical University Hospital and Rīga Stradiņš University in a number of epidemiological, clinical, biochemical, immunological, and physiological studies. Latvian research data on health condition of CNPP clean-up workers in the late period after disaster indicate that ionising radiation might cause premature ageing and severe polymorbidity in humans.

  14. Wire core reactor for nuclear thermal propulsion

    Science.gov (United States)

    Harty, Richard B.; Brengle, Robert G.

    1993-01-01

    Studies have been performed of a compact high-performance nuclear rocket reactor that incorporates a tungsten alloy wire fuel element. This reactor, termed the wire core reactor, can deliver a specific impulse of 1,000 s using an expander cycle and a nozzle expansion ratio of 500 to 1. The core is constructed of layers of 0.8-mm-dia fueled tungsten wires wound over alternate layers of spacer wires, which forms a rugged annular lattice. Hydrogen flow in the core is annular, flowing from inside to outside. In addition to the concepts compact size and good heat transfer, the core has excellent power-flow matching features and can resist vibration and thermal stresses during star-up and shutdown.

  15. An overview of future sustainable nuclear power reactors

    OpenAIRE

    Andreas Poullikkas

    2013-01-01

    In this paper an overview of the current and future nuclear power reactor technologies is carried out. In particular, the nuclear technology is described and the classification of the current and future nuclear reactors according to their generation is provided. The analysis has shown that generation II reactors currently in operation all around the world lack significantly in safety precautions and are prone to loss of coolant accident (LOCA). In contrast, generation III reactors, which are ...

  16. Muon trackers for imaging a nuclear reactor

    Science.gov (United States)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  17. Reference Neutron Radiographs of Nuclear Reactor Fuel

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    Reference neutron radiographs of nuclear reactor fuel were produced by the Euraton Neutron Radiography Working Group and published in 1984 by the Reidel Publishing Company. In this collection a classification is given of the various neutron radiographic findings, that can occur in different parts...... of pelletized, annular and vibro-conpacted nuclear fuel pins. Those parts of the pins are shown where changes of appearance differ from those for the parts as fabricated. Also radiographs of those as fabricated parts are included. The collection contains 158 neutron radiographs, reproduced on photographic paper...

  18. Some views on nuclear reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Tanguy, P.Y. [Electricite de France, Paris (France)

    1995-04-01

    This document is the text of a speech given by Pierre Y. Tanguy (Electricite de France) at the 22nd Water Reactor Safety Meeting held in Bethesda, MD in 1994. He describes the EDF nuclear program in broad terms and proceeds to discuss operational safety results with EDF plants. The speaker also outlines actions to enhance safety planned for the future, and he briefly mentions French cooperation with the Chinese on the Daya Bay project.

  19. Multivariable Feedback Control of Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Rune Moen

    1982-07-01

    Full Text Available Multivariable feedback control has been adapted for optimal control of the spatial power distribution in nuclear reactor cores. Two design techniques, based on the theory of automatic control, were developed: the State Variable Feedback (SVF is an application of the linear optimal control theory, and the Multivariable Frequency Response (MFR is based on a generalization of the traditional frequency response approach to control system design.

  20. Nuclear vapor thermal reactor propulsion technology

    Science.gov (United States)

    Maya, Isaac; Diaz, Nils J.; Dugan, Edward T.; Watanabe, Yoichi; McClanahan, James A.; Wen-Hsiung Tu, Carman, Robert L.

    1993-01-01

    The conceptual design of a nuclear rocket based on the vapor core reactor is presented. The Nuclear Vapor Thermal Rocket (NVTR) offers the potential for a specific impulse of 1000 to 1200 s at thrust-to-weight ratios of 1 to 2. The design is based on NERVA geometry and systems with the solid fuel replaced by uranium tetrafluoride (UF4) vapor. The closed-loop core does not rely on hydrodynamic confinement of the fuel. The hydrogen propellant is separated from the UF4 fuel gas by graphite structure. The hydrogen is maintained at high pressure (˜100 atm), and exits the core at 3,100 K to 3,500 K. Zirconium carbide and hafnium carbide coatings are used to protect the hot graphite from the hydrogen. The core is surrounded by beryllium oxide reflector. The nuclear reactor core has been integrated into a 75 klb engine design using an expander cycle and dual turbopumps. The NVTR offers the potential for an incremental technology development pathway to high performance gas core reactors. Since the fuel is readily available, it also offers advantages in the initial cost of development, as it will not require major expenditures for fuel development.

  1. Oklo reactors and implications for nuclear science

    Science.gov (United States)

    Davis, E. D.; Gould, C. R.; Sharapov, E. I.

    2014-04-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross-sections are input to all Oklo modeling and we discuss a parameter, the 175Lu ground state cross-section for thermal neutron capture leading to the isomer 176mLu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant α and the ratio Xq = mq/Λ (where mq is the average of the u and d current quark masses and Λ is the mass scale of quantum chromodynamics (QCD)). We suggest a formula for the combined sensitivity to α and Xq that exhibits the dependence on proton number Z and mass number A, potentially allowing quantum electrodynamic (QED) and QCD effects to be disentangled if a broader range of isotopic abundance data becomes available.

  2. Atmospheric transport of radionuclides emitted due to wildfires near the Chernobyl Nuclear Power Plant in 2015

    Science.gov (United States)

    Evangeliou, Nikolaos; Zibtsev, Sergey; Myroniuk, Viktor; Zhurba, Marina; Hamburger, Thomas; Stohl, Andreas; Balkanski, Yves; Paugam, Ronan; Mousseau, Timothy A.; Møller, Anders P.; Kireev, Sergey I.

    2016-04-01

    In 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) have caused concerns about the secondary radioactive contamination that might have spread over Europe. The total active burned area was estimated to be about 15,000 hectares, of which 9000 hectares burned in April and 6000 hectares in August. The present paper aims to assess, for the first time, the transport and impact of these fires over Europe. For this reason, direct observations of the prevailing deposition levels of 137Cs and 90Sr, 238Pu, 239Pu, 240Pu and 241Am in the CEZ were processed together with burned area estimates. Based on literature reports, we made the conservative assumption that 20% of the deposited labile radionuclides 137Cs and 90Sr, and 10% of the more refractory 238Pu, 239Pu, 240Pu and 241Am, were resuspended by the fires. We estimate that about 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events. These releases could be classified as of "Level 3" on the relative INES (International Nuclear Events Scale) scale, which corresponds to a serious incident, in which non-lethal deterministic effects are expected from radiation. To simulate the dispersion of the resuspended radionuclides in the atmosphere and their deposition onto the terrestrial environment, we used a Lagrangian dispersion model. Spring fires redistributed radionuclides over the northern and eastern parts of Europe, while the summer fires also affected Central and Southern Europe. The more labile elements escaped more easily from the CEZ and then reached and deposited in areas far from the source, whereas the larger refractory particles were removed more efficiently from the atmosphere and thus did mainly affect the CEZ and its vicinity. For the spring 2015 fires, we estimate that about 80% of 137Cs and 90Sr and about 69% of 238Pu, 239Pu, 240Pu and 241Am were deposited over areas outside the CEZ. 93% of the labile and 97% of

  3. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    OpenAIRE

    Djurcic, Z.(Argonne National Laboratory, Argonne, Illinois, 60439, U.S.A.); Detwiler, J. A.; Piepke, A.; Foster Jr., V. R.; Miller, L.; Gratta, G.

    2008-01-01

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

  4. The monitoring of herbaceous seeds in the 30-km zone of the Chernobyl nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Taskaev, A.I.; Frolova, N.P.; Popova, O.N.; Shevchenko, V.A. (AN SSSR, Syktyvkar (Russian Federation). Komi Filial AN SSSR, Moscow (Russian Federation). Inst. Obshchej Genetiki)

    1992-02-01

    Species of wild herbaceous plants growing over a period of 3 years under chronic irradiation resulting from the Chernobyl accident were studied. Examining the mass of 1000 seeds and their germination did not yield any significant differences between groups of seeds of the same species collected from the different contaminated zones. Nor did the frequency of aberrant cells in roots of germinated seeds reveal any significant differences between the zones. Seeds of Plantago lanceolata growing in areas with higher levels of radiation, did appear to be more sensitive to additional gamma-irradiation. (author). 5 refs.; 7 figs.; 5 tabs.

  5. Chernobyl, 12 years later; Tchernobyl, douze ans apres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report draws an account of the consequences of Chernobyl accident 12 years after the disaster. It is made up of 7 chapters whose titles are: (1) Some figures about Chernobyl accident, (2) The Chernobyl nuclear power plant, (3) Sanitary consequences of Chernobyl accident, (4) The management of contaminated lands, (5) The impact in France of Chernobyl fallout, (6) The Franco-German cooperation, and (7) Glossary.

  6. Exploring new coolants for nuclear breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lafuente, A., E-mail: anlafuente@etsii.upm.e [ETSII-UPM, c/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Piera, M. [ETSII:UNED, c/Juan del Rosal, 12, 28040 Madrid (Spain)

    2010-06-15

    Breeder reactors are considered a unique tool for fully exploiting natural nuclear resources. In current Light Water Reactors (LWR), only 0.5% of the primary energy contained in the nuclei removed from a mine is converted into useful heat. The rest remains in the depleted uranium or spent fuel. The need to improve resource-efficiency has stimulated interest in Fast-Reactor-based fuel cycles, which can exploit a much higher fraction of the energy content of mined uranium by burning U-238, mainly after conversion into Pu-239. Thorium fuel cycles also offer several potential advantages over a uranium fuel cycle. The coolant initially selected for most of the FBR programs launched in the 1960s was sodium, which is still considered the best candidate for these reactors. However, Na-cooled FBRs have a positive void reactivity coefficient. Among other factors, this fundamental drawback has resulted in the canceled deployment of these reactors. Therefore, it seems reasonable to explore new options for breeder coolants. In this paper, a proposal is presented for a new molten salt (F{sub 2}Be) coolant that could overcome the safety issues related to the positive void reactivity coefficient of molten metal coolants. Although it is a very innovative proposal that would require an extensive R and D program, this paper presents the very appealing properties of this salt when using a specific type of fuel that is similar to that of pebble bed reactors. The F{sub 2}Be concept was studied over a typical MOX composition and extended to a thorium-based cycle. The general analysis took into account the requirements for criticality (opening the option of hybrid subcritical systems); the requirements for breeding; and the safety requirement of having a negative coolant void reactivity coefficient. A design window was found in the definition of a F{sub 2}Be cooled reactor where the safety requirement was met, unlike for molten metal-cooled reactors, which always have positive void

  7. Designed porosity materials in nuclear reactor components

    Science.gov (United States)

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  8. Advanced nuclear reactor public opinion project

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  9. Thermophotovoltaic Energy Conversion in Space Nuclear Reactor Power Systems

    Science.gov (United States)

    2004-12-01

    contrasted with nuclear thermal rockets which use the heat from a nuclear fission reactor to heat propellant to provide rocket thrust and radioisotope...K. Note that the highest temperature (2550 K by the Pewee reactor) was for a nuclear thermal rocket application and has the shortest duration (40 min

  10. Exploring new coolants for nuclear breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lafuente, A. [ETSI Industriales-Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal, 2. 28006 Madrid (Spain)

    2010-07-01

    Breeder reactors are considered the unique tool for fully exploiting the natural nuclear resources. In current LWR, only a 0.5% of the primary energy contained in the nuclei removed from the mine is converted into useful heat, with the rest remaining in the depleted uranium or in the spent fuel. The objective of resource-efficiency stimulated the interest in Fast- Reactor-based fuel cycles which can exploit a much higher fraction of the energy content of the mined uranium by burning U-238, mainly after conversion into Pu-239. Thorium fuel cycles would also offers several potential advantages over a uranium fuel cycle. The coolant initially chosen for most of the FBR programs launched in the 60's was sodium, which still is considered the best candidate for these reactors. However, Na-cooled FBR have a positive void reactivity coefficient, which has been among others, a fundamental drawback that has cancelled the deployment of these reactors. Therefore, it seems reasonable to explore totally new options on coolants for breeders. In this paper, a proposal is presented on a new molten salt (F{sub 2}Be) coolant that could overcome the safety issues related to the positive void reactivity coefficient of molten metal coolants. Although it is a very innovative proposal that would need an extensive R and D programme, this paper presents the very appealing properties of this salt, in the case of using a specific type of fuel, similar to that of pebble bed reactors. The concept will be studied over a typical MOX composition and extended to a Thorium-based cycle. The general analysis takes into account requirements for criticality (opening the option of hybrid subcritical systems); requirements for breeding; and the safety requirement of having a negative coolant void reactivity coefficient. A design window is found in the definition of a F{sub 2}Be cooled reactor where the safety requirement is met, unlike for molten metal cooled reactors which always have positive void

  11. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    Science.gov (United States)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  12. Solution of heat removal from nuclear reactors by natural convection

    Directory of Open Access Journals (Sweden)

    Zitek Pavel

    2014-03-01

    Full Text Available This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR.The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.

  13. Collective control of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rognin, L.

    1995-06-01

    Nowadays, mainly related to the increasing complexity of working environments, working activities become more and collective. The present research on the paradoxical nature of working teams, considered from a reliability point of view. This document is composed of four Sections. The first Section introduces the context of the research, its objectives and the underlying assumptions. In the second Section, we describe a working situation, which is the control of a nuclear reactor. Relations between cooperative work and reliability are discussed in the third Section. Finally, in the fourth Section, a synthesis of the research and some perspectives are proposed. (authors). 7 refs.

  14. Accumulation of transuranic elements in the aquatic biota of the Belarusian sector of contaminated area near the Chernobyl nuclear power plant - Accumulation of transuranic elements in aquatic biota of Belarusian sector of contaminated area of Chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, Alexander; Mironov, Vladislav [International Sakharov Environmental University. Box 220070, 23 Dolgobrodskaya Street, Minsk, 220070 (Belarus)

    2014-07-01

    The evolution of nuclear contamination of Belarus territory after Chernobyl accident includes the four stages: 1. Iodine-neptunium stage, caused mainly by short-lived radionuclides {sup 131}I, {sup 239}Np and others with a half-life period of several weeks; II. Intermediate stage, caused by radionuclides with a half-life period of a year ({sup 144}Ce, {sup 106}Ru, {sup 134}Cs, etc.); III. Strontium-cesium stage, caused by {sup 90}Sr and {sup 137}Cs with a half-life period of about 30 years; IV. Plutonium-americium, caused by long-lived α-emitting radionuclides {sup 241}Am (period of half-life of 432 years) and {sup 239+240}Pu, having high radio and chemo-toxicity. According to forecasts, activity of {sup 241}Am to 2050 year will increase by 2.5 times and it will be the most important dose-related factor for the aquatic biota within the Chernobyl accident zone. In 2002 - 2008 years we have studied the accumulation of trans-uranic elements (TUE, {sup 241}Am, {sup 239+240}Pu) in basic components of water body ecosystems within the Chernobyl zone - non-flowing Perstok Lake, weak-flowing Borschevka flooding and small Braginka River. Among investigated components are water, bottom sediments, submerged macrophytes (Ceratophyllum submersum, Hydrocharis morsus-ranae, Lemna minor, Nuphar lutea, Stratiotes aloides), emergent macrophytes (Typha spp.), shellfish and fish. In the soil cover in the vicinity of the Perstok Lake activity of {sup 241}Am at present is equivalent to 300 - 600 Bq.kg{sup -1}, that is the basic source of its income to the lake. Radionuclides mobility in the water environment is higher than in the soil, that facilitates the rapid incorporation of {sup 241}Am to the trophic nets of water bodies and its removal by near-water animals in the terrestrial biotopes, including outside Chernobyl zone. Thus, the activity of {sup 241}Am in bottom sediments in the Perstok Lake and Borschevka flooding in 2008 year reach respectively 324 and 131 Bq.kg{sup -1}, and the

  15. 15 years after Chernobyl. Nuclear plus greenhouse effect?; 15 ans apres Tchernobyl. Nucleaire plus effet de serre?

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M. [Wise-Paris, 75 (France); Rosen, M. [International Atomic Energy Agency (IAEA), Vienna (Austria)

    2001-04-15

    Today, the argument in favour of nuclear energy is not an economical one nor linked to energy resources but is at the level of climatic change. Nuclear energy is seen as the only energy source without carbon dioxide emissions. A more detailed analysis of greenhouse gases on the life cycle shows that nuclear energy gives as greenhouse gases as big hydroelectric power plants or wind power plants, these emissions are more important than for biogas installations with cogeneration. The strategy of energy efficiency is certainly more competitive than the new reactors in other terms it is more efficiency to reduce the consumption than to increase the nuclear production. (N.C.)

  16. Radioecological transfer of {sup 137}Cs from ground deposition to man from Chernobyl debris and from nuclear weapons fallout in different Swedish populations

    Energy Technology Data Exchange (ETDEWEB)

    Raeaef, C.L. [Malmoe Univ. Hospital, Lund Univ., Dept. of Radiation Physics, Malmoe (Sweden)

    2005-07-01

    A comparison of the estimated committed effective dose per unit activity deposition on ground was made between different critical groups in Sweden. The time-integrated aggregate transfer of {sup 137}Cs for the global fallout was 2-3 times higher than from Chernobyl debris for Swedish urban populations. For reindeer herders this difference is even more marked, with a factor of three to four higher time-integrated transfer factor of nuclear weapons fallout. Considering the transfer of Chernobyl {sup 137}Cs debris the time-integrated transfer factor appears to be more than 25 times higher for reindeer herders in Sweden than for the urban reference groups. An even more pronounced relative difference between the time integrated aggregate transfer was observed between reindeer herders and urban reference populations for the pre-Chernobyl fallout (a factor of 30). The projected committed effective dose from internal contamination of Chernobyl {sup 137}Cs per unit activity deposition is observed to be 2030 {mu}Sv/kBq m{sup -2}. The highest values in Sweden are obtained for reindeer herders with an estimated radioecological transfer of 0.5 mSv/kBq m{sup -2}. (au)

  17. Electrochemistry of Water-Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

    2006-08-08

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

  18. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    Energy Technology Data Exchange (ETDEWEB)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  19. Nonlinear Ultrasonic Measurements in Nuclear Reactor Environments

    Science.gov (United States)

    Reinhardt, Brian T.

    Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this thesis, two ultrasonic characterization techniques will be explored. The first, finite amplitude wave propagation has been demonstrated to be sensitive to microstructural material property changes. It is a strong candidate to determine fuel evolution; however, it has not been demonstrated for in-situ reactor applications. In this thesis, finite amplitude wave propagation will be used to measure the microstructural evolution in Al-6061. This is the first demonstration of finite amplitude wave propagation at temperatures in excess of 200 °C and during an irradiation test. Second, a method based on contact nonlinear acoustic theory will be developed to identify compressed cracks. Compressed cracks are typically transparent to ultrasonic wave propagation; however, by measuring harmonic content developed during finite amplitude wave propagation, it is shown that even compressed cracks can be characterized. Lastly, piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts

  20. Reconversion of nuclear weapons

    CERN Document Server

    Kapitza, Sergei P

    1993-01-01

    The nuclear predicament or nuclear option. Synopsis of three lectures : 1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separration of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?

  1. Fallout from Chernobyl [Letters to the editor

    Energy Technology Data Exchange (ETDEWEB)

    Williams, E.D. (Addenbrooke' s Hospital, Cambridge (United Kingdom)); Abelin, T.; Egger, M. (Bern Univ. (Switzerland)) (and others)

    1994-11-12

    Six brief letters discuss the possible health effects of fallout from the Chernobyl reactor accident including an increase in thyroid cancer in children in Belarus, chromosomal abnormalities in workers from Latvia who cleared up the Chernobyl accident site, an increased trisomy 21 in Berlin but a lack of increased childhood leukaemia incidence in Greece. (UK).

  2. Conceptual Design of a Nuclear Reactor Dedicated for Desalination

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Hun; Moon, Jang Sik; Jeong, Yong Hoon [Korea Adavanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    The many advantages of nuclear desalination, the nuclear safety issues still remain a perennial problem today. To respond to such needs, the development of a desalination-dedicated nuclear reactor with maximized safety features was proposed. From the feasibility study, the desalination-dedicated reactor was found to be a good solution for meeting future water demand during the winter season in some countries like UAE by decoupling water and electricity supply. The economic analysis results indicated that under certain conditions, the desalination-dedicated reactor can produce freshwater at lower cost than the target nuclear cogeneration reactor using steam extraction technologies. A conceptual design of the desalination-dedicated nuclear reactor is in progress. The design features of the desalination-dedicated nuclear reactor could significantly enhance safety, reliability, and simplicity, and facilitate the extensive use of innovative passive safety systems. These maximized safety features of desalination-dedicated reactor could provide advanced capabilities for passive reactor shutdown and residual heat removal, and eventually prevent radioactivity release into the environment. The conceptual design achieved will provide a foothold for the future commercialization of the desalination-dedicated nuclear reactor and eventually help to address both a serious water crisis and nuclear safety issues.

  3. The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities: comment.

    Science.gov (United States)

    Krämer, Walter

    2012-05-01

    The recent claim made in this journal that nuclear bomb tests and the Chernobyl disaster caused distortions in the secondary sex ratio is shown to be a likely artifact of data mining, misused statistics, and misreading of the evidence. In particular, the concept of statistical "significance" and its limitations do not seem to be fully understood, and important confounding factors have not been accounted for.

  4. ANALISIS TRANSIEN PADA FIXED BED NUCLEAR REACTOR

    Directory of Open Access Journals (Sweden)

    M. Rizaal

    2015-03-01

    Full Text Available Desain teras Fixed Bed Nuclear Reactor (FBNR yang modular memungkinkan pengendalian daya dapat dilakukan dengan mengatur ketinggian suspended core dan laju aliran massa pendingin. Tujuan penelitian ini adalah mempelajari perubahan daya termal teras sebagai akibat perubahan laju aliran massa pendingin yang masuk ke teras reaktor dan perubahan ketinggian suspended core serta mempelajari karakteristik keselamatan melekat yang dimiliki FBNR saat terjadi kegagalan pelepasan kalor (loss of heat sink. Keadaan neutronik teras dimodelkan pada kondisi tunak dengan menggunakan paket program Standard Reactor Analysis Code (SRAC untuk memperoleh data fluks neutron, konstanta grup, fraksi neutron kasip, konstanta peluruhan prekursor neutron kasip, dan beberapa parameter teras penting lainnya. Selanjutnya data tersebut digunakan pada perhitungan transien sebagai syarat awal. Analisis transien dilakukan pada tiga kondisi, yaitu saat terjadi penurunan laju aliran massa pendingin, saat terjadi penurunan ketinggian suspended core, dan saat terjadi kegagalan sistem pelepasan kalor. Hasil yang diperoleh dari penelitian ini menunjukkan bahwa penurunan laju aliran massa pendingin sebesar 50%, dari kondisi normal, menyebabkan daya termal teras turun 28% dibanding daya sebelumnya. Penurunan ketinggian suspended core sebesar 30% dari ketinggian normal menyebabkan daya termal teras turun 17% dibanding daya sebelumnya. Sementara untuk kondisi kegagalan sistem pelepasan kalor, daya termal teras mengalami penurunan sebesar 76%. Dengan demikian, pengendalian daya pada FBNR dapat dilakukan dengan mengatur laju aliran massa pendingin dan ketinggian suspended core, serta keselamatan melekat yang handal pada kondisi kegagalan sistem pelepasan kalor. Kata kunci: FBNR, transien, daya, laju aliran massa, suspended core Modular in design enables Fixed Bed Nuclear Reactor (FBNR power controlled by the adjustment of suspended core and coolant flow rate. The main purposes of this paper

  5. Hybrid reactors: Nuclear breeding or energy production?

    Energy Technology Data Exchange (ETDEWEB)

    Piera, Mireia [UNED, ETSII-Dp Ingenieria Energetica, c/Juan del Rosal 12, 28040 Madrid (Spain); Lafuente, Antonio; Abanades, Alberto; Martinez-Val, J.M. [ETSII-UPM, c/Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2010-09-15

    After reviewing the long-standing tradition on hybrid research, an assessment model is presented in order to characterize the hybrid performance under different objectives. In hybrids, neutron multiplication in the subcritical blanket plays a major role, not only for energy production and nuclear breeding, but also for tritium breeding, which is fundamental requirement in fusion-fission hybrids. All three objectives are better achieved with high values of the neutron multiplication factor (k-eff) with the obvious and fundamental limitation that it cannot reach criticality under any event, particularly, in the case of a loss of coolant accident. This limitation will be very important in the selection of the coolant. Some general considerations will be proposed, as guidelines for assessing the hybrid potential in a given scenario. Those guidelines point out that hybrids can be of great interest for the future of nuclear energy in a framework of Sustainable Development, because they can contribute to the efficient exploitation of nuclear fuels, with very high safety features. Additionally, a proposal is presented on a blanket specially suited for fusion-fission hybrids, although this reactor concept is still under review, and new work is needed for identifying the most suitable blanket composition, which can vary depending on the main objective of the hybrid. (author)

  6. Nuclear reactors built, being built, or planned 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1993. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: civilian, production, military, export, and critical assembly.

  7. Nuclear waste disposal utilizing a gaseous core reactor

    Science.gov (United States)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  8. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    OpenAIRE

    Vladimir Petrochenko; Georgy Toshinsky

    2012-01-01

    On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral) design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing...

  9. Spent nuclear fuel discharges from U.S. reactors 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

  10. Inherently safe reactors and a second nuclear era.

    Science.gov (United States)

    Weinberg, A M; Spiewak, I

    1984-06-29

    The Swedish PIUS reactor and the German-American small modular high-temperature gas-cooled reactor are inherently safe-that is, their safety relies not upon intervention of humans or of electromechanical devices but on immutable principles of physics and chemistry. A second nuclear era may require commercialization and deployment of such inherently safe reactors, even though existing light-water reactors appear to be as safe as other well-accepted sources of central electricity, particularly hydroelectric dams.

  11. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Djurcic, Zelimir; Detwiler, Jason A.; Piepke, Andreas; Foster Jr., Vince R.; Miller, Lester; Gratta, Giorgio

    2008-08-06

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in {bar {nu}}{sub e} detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor {bar {nu}}{sub e} experiments.

  12. Nuclear reactor materials at the atomic scale

    Directory of Open Access Journals (Sweden)

    Emmanuelle A. Marquis

    2009-11-01

    Full Text Available With the renewed interest in nuclear energy, developing new materials able to respond to the stringent requirements of the next-generation fission and future fusion reactors has become a priority. An efficient search for such materials requires detailed knowledge of material behaviour under irradiation, high temperatures and corrosive environments. Minimizing the rates of materials degradation will be possible only if the mechanisms by which it occurs are understood. Atomic-scale experimental probing as well as modelling can provide some answers and help predict in-service behaviour. This article illustrates how this approach has already improved our understanding of precipitation under irradiation, corrosion behaviour, and stress corrosion cracking. It is also now beginning to provide guidance for the development of new alloys.

  13. Neutron measurements at nuclear power reactors [55

    CERN Document Server

    Scherpelz, R I

    2002-01-01

    Staff from the Pacific Northwest National Laboratory (operated by Battelle Memorial Institute), have performed neutron measurements at a number of commercial nuclear power plants in the United States. Neutron radiation fields at light water reactor (LWR) power plants are typically characterized by low-energy distributions due to the presence of large amounts of scattering material such as water and concrete. These low-energy distributions make it difficult to accurately monitor personnel exposures, since most survey meters and dosimeters are calibrated to higher-energy fields such as those produced by bare or D sub 2 O-moderated sup 2 sup 5 sup 2 Cf sources. Commercial plants typically use thermoluminescent dosimeters in an albedo configuration for personnel dosimetry and survey meters based on a thermal-neutron detector inside a cylindrical or spherical moderator for dose rate assessment, so their methods of routine monitoring are highly dependent on the energy of the neutron fields. Battelle has participate...

  14. Structural integrity of nuclear reactor pressure vessels

    Science.gov (United States)

    Knott, John F.

    2013-09-01

    The paper starts from concerns expressed by Sir Alan Cottrell, in the early 1970s, related to the safety of the pressurized water reactor (PWR) proposed at that time for the next phase of electrical power generation. It proceeds to describe the design and operation of nuclear generation plant and gives details of the manufacture of PWR reactor pressure vessels (RPVs). Attention is paid to stress-relief cracking and under-clad cracking, experienced with early RPVs, explaining the mechanisms for these forms of cracking and the means taken to avoid them. Particular note is made of the contribution of non-destructive inspection to structural integrity. Factors affecting brittle fracture in RPV steels are described: in particular, effects of neutron irradiation. The use of fracture mechanics to assess defect tolerance is explained, together with the failure assessment diagram embodied in the R6 procedure. There is discussion of the Master Curve and how it incorporates effects of irradiation on fracture toughness. Dangers associated with extrapolation of data to low probabilities are illustrated. The treatment of fatigue-crack growth is described, in the context of transients that may be experienced in the operation of PWR plant. Detailed attention is paid to the thermal shock associated with a large loss-of-coolant accident. The final section reviews the arguments advanced to justify 'Incredibility of Failure' and how these are incorporated in assessments of the integrity of existing plant and proposed 'new build' PWR pressure vessels.

  15. Meteodiffusive Characterization of Algiers' Nuclear Research Reactor

    Directory of Open Access Journals (Sweden)

    Mourad Messaci

    2007-01-01

    Full Text Available In the framework of the environmental impact studies of the nuclear research reactor of Algiers, we will present the work related to the atmospheric dispersion of releases due to the installation in normal operation, which dealt with the assessment of spatial distribution of yearly average values of atmospheric dilution factor. The aim of this work is a characterization of the site in terms of diffusivity, which is basic for the radiological impact evaluation of the reactor. The meteorological statistics result from the National Office of Meteorology and concern 15 years of hourly records. According to the nature and features of these data, a Gaussian-type model with wind direction sectors was used. Values of wind speed at release height were estimated from measurement values at 10 m from ground. For the assessment of vertical dispersion coefficient, we used Briggs' formulas related to a sampling time of one hour. Areas of maximum impact were delimited and points of highest concentration within these zones were identified.

  16. Role of research reactors for nuclear power program in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Soentono, S.; Arbie, B. [National Atomic Energy Agency, Batan (Indonesia)

    1994-12-31

    The main objectives of nuclear development program in Indonesia are to master nuclear science and technology, as well as to utilise peaceful uses of nuclear know-how, aiming at stepwisely socioeconomic development. A Triga Mark II, previously of 250 kW, reactor in Bandung has been in operation since 1965 and its design power has been increased to 1000 kW in 1972. Using core grid of the Triga 250 kW, BATAN designed and constructed the Kartini Reactor in Yogyakarta which started its operation in 1979. Both of these Triga reactors have served a wide spectrum of utilisation, such as training of manpower in nuclear engineering as well as radiochemistry, isotope production and beam research activities in solid state physics. In order to support the nuclear power development program in general and to suffice the reactor experiments further, simultaneously meeting the ever increasing demand for radioisotope, the third reactor, a multipurpose reactor of 30 MW called GA. Siwabessy (RSG-GAS) has been in operation since 1987 at Serpong near Jakarta. Each of these reactors has strong cooperation with Universities, namely the Bandung Institute of Technology at Bandung, the Gadjah Mada University at Yogyakarta, and the Indonesia University at Jakarta and has facilitated the man power development required. The role of these reactors, especially the multipurpose GA. Siwabessy reactor, as essential tools in nuclear power program are described including the experience gained during preproject, construction and commissioning, as well as through their operation, maintenance and utilisation.

  17. Study of a cohort of Latvian workers having participated to the decontamination of the nuclear site of Chernobyl; Etude d`une cohorte de travailleurs lettons ayant participe a la decontamination du site nucleaire de Tchernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Viel, J.F. [Faculte de Medecine de Besancon, 25 (France)

    1999-11-01

    In the consequences attributable to the accident at the Chernobyl nuclear power plant, it is debated whether post-disaster psycho-pathology is related to the perception of the level of contamination or the level of contamination itself. To address this issue, the authors have assessed the association of various exposure mental and psychosomatic distress, on a sample of 1,1412 Latvian liquidators drawn from the State Latvian Chernobyl clean-up workers registry. The outcome considered was a mixed mental/psychosomatic disorder occurring during the time period 1986-1995. Comparisons between subgroups of the cohort, classified according to exposure type or level, were based on the proportional hazards model. Length of work ({>=} 28 days) in a 10 km radius from the reactor (relative risk (RR) = 1.39, 95 percent confidence interval (CI) 1.14-1.70), work (> 1 time) on the damaged reactor roof (RR 1.46, 95 percent CI 1.02-2.09), forest work (RR 1.41,95 percent CI 1.19-1.68), and fresh fruits consumption ({>=} 1 time/day) (RR 1.72,95 percent CI 1.12-2.65) are risk factors for mixed mental/ psychosomatic disorder. Construction of the sarcophagus (RR 1.82, 95 percent CI 0.89-3.72), is also associated with this outcome, although non significantly. These findings confirm that some exposure variables represent risk factors for mental disorders and suggest some radiation-induced consequences although surely overweight by stress-related effects. (author)

  18. Nuclear safety in light water reactors severe accident phenomenology

    CERN Document Server

    Sehgal, Bal Raj

    2011-01-01

    This vital reference is the only one-stop resource on how to assess, prevent, and manage severe nuclear accidents in the light water reactors (LWRs) that pose the most risk to the public. LWRs are the predominant nuclear reactor in use around the world today, and they will continue to be the most frequently utilized in the near future. Therefore, accurate determination of the safety issues associated with such reactors is central to a consideration of the risks and benefits of nuclear power. This book emphasizes the prevention and management of severe accidents to teach nuclear professionals

  19. First international workshop on severe accidents and their consequences. [Chernobyl Accident

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    An international workshop on past severe nuclear accidents and their consequences was held in Dagomys region of Sochi, USSR on October 30--November 3, 1989. The plan of this meeting was approved by the USSR Academy of Sciences and by the USSR State Committee of the Utilization of Atomic Energy. The meeting was held under the umbrella of the ANS-SNS agreement of cooperation. Topics covered include analysis of the Chernobyl accident, safety measures for RBMK type reactors and consequences of the Chernobyl accident including analysis of the ecological, genetic and psycho-social factors. Separate reports are processed separately for the data bases. (CBS)

  20. Sustainable and safe nuclear fission energy technology and safety of fast and thermal nuclear reactors

    CERN Document Server

    Kessler, Günter

    2012-01-01

    Unlike existing books of nuclear reactor physics, nuclear engineering and nuclear chemical engineering this book covers a complete description and evaluation of nuclear fission power generation. It covers the whole nuclear fuel cycle, from the extraction of natural uranium from ore mines, uranium conversion and enrichment up to the fabrication of fuel elements for the cores of various types of fission reactors. This is followed by the description of the different fuel cycle options and the final storage in nuclear waste repositories. In addition the release of radioactivity under normal and possible accidental conditions is given for all parts of the nuclear fuel cycle and especially for the different fission reactor types.

  1. Radioactivity monitoring and import regulation of the contaminated foodstuffs in Japan following the Chernobyl nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Izumo, Yoshiro [Institute of Public Health, Tokyo (Japan)

    1997-03-01

    Radioactivity monitoring and import regulation of the contaminated foodstuffs executed by Minstry of Health and Welfare following the Chernobyl nuclear plant accident were reviewed as follows; (1) background of socio-psychological effects and environmental radioactivity leading to the regulation (to may 3, 1986); (2) intial intervention for imported foodstuffs in Japan (may 8, `86), and (3) in european countries (to may 31, `86), immediately after the Accident, respectively; (4) determination of the interim driven intervention level for radionuclides in imported foodstuffs (({sup 134}Cs + {sup 137}Cs): 370 Bq/Kg) and activation of the monitoring, (5) outline of the monitoring with elapsed time, number of foodstuffs monitored, number of foodstuffs exceeded radioactivity of the intervention level and re-exported; (6) guideline in international trade of radioactive contaminated foodstuffs adopted by CODEX Alimentarius Commission (FAO/WHO) and the intervention level recommended by ICRP following the Accident; (7) discussion for problems and scopes in future based on the results of monitoring. As the results, a number of imported foodstuffs (about 75,000 samples at present) has been monitored, 55 samples exceeding the interim intervention level were re-exported to each export`s country, and socio-psychological doubts for radioactive contamination of imported foodstuffs have been dispersed. In addition, problems for several factors based on calculation of the interim intervention level, radioactivity level of foodstuffs exceeding about 50 Bq/Kg as radiocesiums and necessity of monitoring for the other radionuclides in foods except radiocesiums were also discussed. (author)

  2. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science in Radiation and Dynamics Extremes

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  3. A brief history of design studies on innovative nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, Hiroshi, E-mail: hsekimot@gmail.com [Emeritus Professor, Tokyo Institute of Technology (Japan)

    2014-09-30

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  4. A brief history of design studies on innovative nuclear reactors

    Science.gov (United States)

    Sekimoto, Hiroshi

    2014-09-01

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970's the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980's the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  5. Nuclear reactors built, being built, or planned, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  6. Theory of neutron slowing down in nuclear reactors

    CERN Document Server

    Ferziger, Joel H; Dunworth, J V

    2013-01-01

    The Theory of Neutron Slowing Down in Nuclear Reactors focuses on one facet of nuclear reactor design: the slowing down (or moderation) of neutrons from the high energies with which they are born in fission to the energies at which they are ultimately absorbed. In conjunction with the study of neutron moderation, calculations of reactor criticality are presented. A mathematical description of the slowing-down process is given, with particular emphasis on the problems encountered in the design of thermal reactors. This volume is comprised of four chapters and begins by considering the problems

  7. The current status of nuclear research reactor in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sittichai, C.; Kanyukt, R.; Pongpat, P. [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1998-10-01

    Since 1962, the Thai Research Reactor has been serving for various kinds of activities i.e. the production of radioisotopes for medical uses and research and development on nuclear science and technology, for more than three decades. The existing reactor site should be abandoned and relocated to the new suitable site, according to Thai cabinet`s resolution on the 27 December 1989. The decommissioning project for the present reactor as well as the establishment of new nuclear research center were planned. This paper discussed the OAEP concept for the decommissioning programme and the general description of the new research reactor and some related information were also reported. (author)

  8. A study on future nuclear reactor technology and development strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Kim, S. H.; Sohn, D. S.; Suk, S. D.; Zee, S. K.; Yang, M. H.; Kim, H. J.; Park, W. S

    2000-12-01

    Development of nuclear reactor and fuel cycle technology for future is essential to meet the current issues such as enhancement of nuclear power reactor safety, economically competitive with gas turbine power generation, less production of radioactive waste, proliferation resistant fuel cycle, and public acceptance in consideration of lack of energy resources in the nuclear countries worldwide as well as in Korea. This report deals with as follows, 1) Review the world energy demand and supply perspective and analyse nature of energy and sustainable development to set-up nuclear policy in Korea 2) Recaptitulate the current long term nuclear R and D activities 3) Review nuclear R and D activities and programs of USA, Japan, France, Russia, international organizations such as IAEA, OECD/NEA 4) Recommend development directions of nuclear reactors and fuels.

  9. The necessity of nuclear reactors for targeted radionuclide therapies.

    Science.gov (United States)

    Krijger, Gerard C; Ponsard, Bernard; Harfensteller, Mark; Wolterbeek, Hubert T; Nijsen, Johannes W F

    2013-07-01

    Nuclear medicine has been contributing towards personalized therapies. Nuclear reactors are required for the working horses of both diagnosis and treatment, i.e., Tc-99m and I-131. In fact, reactors will remain necessary to fulfill the demand for a variety of radionuclides and are essential in the expanding field of targeted radionuclide therapies for cancer. However, the main reactors involved in the global supply are ageing and expected to shut down before 2025. Therefore, the fields of (nuclear) medicine, nuclear industry and politics share a global responsibility, faced with the task to secure future access to suitable nuclear reactors. At the same time, alternative production routes should be industrialized. For this, a coordinating entity should be put into place.

  10. Chernobyl; Tchernobyl

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report relates the Chernobylsk accident, why following a succession of technical malfunctions and human errors, reactor no. 4 of the Chernobylsk nuclear power plant explodes on April 26. 1986. Radioactive dust, aerosols and gases (including caesium and iodine) are ejected into atmosphere. The regions worst hit are in the immediate vicinity of the plant, but deposits are very uneven, producing a leopard spot type of pattern. Propelled by easterly winds, the radioactive cloud disperses increasingly, scattering deposits over the whole of Europe. At the beginning of May, the cloud arrives in France. the eastern portion of the country is most strongly affected. Ground, water and agriculture are contaminated by caesium deposits in Belarus, Ukraine and Russian Federation. About the contamination in France, ground contamination is slight, fourteen years later, however, it is still detectable. Relative to the impact on health in the vicinity of Chernobylsk plant, it is hard to assess this impact. Among children in Southern Belarus, the number of thyroid cancers has risen one hundred-fold. In France, the doses delivered represents generally less than 1% of the average annual dose from radioactivity of natural origin. But some of the doses received were higher. Today, the protective sarcophagus covering the damaged reactor is fragile. Reactor no.3, still in operation, continues to pose a risk but the shutdown is provided for december 2000. (N.C.)

  11. SUBSTANTIAL AND STRUCTURAL COMPONENTS OF THE MENTAL STATUS OF THE PERSONS WHO HAVE RECEIVED SMALL DOSES OF RADIATION DURING LIGUIDATION OF THE ACCIDENT AT THE CHERNOBYL NUCLEAR POWER PLANT

    Directory of Open Access Journals (Sweden)

    О. V. Baranova

    2012-01-01

    Full Text Available In the article the peculiarities of ideas about the catastrophe at the Chernobyl nuclear power plant disaster at the persons who have suffered from radiation during liquidation of the accident’s consequences. View of the accident was considered as a key element of a person’s mind, in particular the adaptive. There were 30 persons, who took part in the research – participants of Chernobyl disaster’s liquidation, veterans of division of an extra risk. The subjective assessment of mental health at persons who survived in Chernobyl disaster was defined; personal properties of victims were revealed; interrelations between personal properties and subjective assessment of mental health were established. It is possible to assume that in process of moving away from the moment of the accident the content of view of Chernobyl disaster shows concentration of the person on experience of mental health and the personal potential.

  12. Nuclear reactors built, being built, or planned 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled.

  13. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  14. Neutron spectrometer for fast nuclear reactors

    CERN Document Server

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Angelone, M; Verona-Rinati, G; Cardarelli, R; Mila, G; Argiro, S

    2015-01-01

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  15. Development of nuclear fuel for integrated reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kim, H. K.; Kang, H. S.; Yoon, K. H.; Chun, T. H.; In, W. K.; Oh, D. S.; Kim, D. W.; Woo, Y. M

    1999-04-01

    The spacer grid assembly which provides both lateral and vertical support for the fuel rods and also provides a flow channel between the fuel rods to afford the heat transfer from the fuel pellet into the coolant in a reactor, is one of the major structural components of nuclear fuel for LWR. Therefore, the spacer grid assembly is a highly ranked component when the improvement of hardware is pursued for promoting fuel performance. Main objective of this project is to develop the inherent spacer grid assembly and to research relevant technologies on the spacer grid assembly. And, the UO{sub 2}-based SMART fuel is preliminarily designed for the 330MWt class SMART, which is planned to produce heat as well as electricity. Results from this project are listed as follows. 1. Three kinds of spacer grid candidates have been invented and applied for domestic and US patents. In addition, the demo SG(3x3 array) were fabricated, which the mechanical/structural test was carried out with. 2. The mechanical/structural technologies related to the spacer grid development are studied and relevant test requirements were established. 3. Preliminary design data of the UO{sub 2}-based SMART fuel have been produced. The structural characteristics of several components such as the top/bottom end piece and the holddown spring assembly were analysed by consulting the numerical method.

  16. Experimental determination of nuclear parameters for RP-0 reactor core; Determinacion experimental de los parametros nucleares para el nucleo tipo MTR del reactor nuclear RP-0

    Energy Technology Data Exchange (ETDEWEB)

    Cajacuri, Rafael A. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    2000-07-01

    In the nuclear reactor for investigations RP-0 which is in Lima, Peru, that is a open pool class reactor with 1 to 10 watts of power and as a nuclear fuel uranium 238 enriched to 20% constituted by elements of Material Testing Reactor fuel class. This has reflectors of graphite and moderator of water demineralized. In 1996/1997 was measured in this reactor the following parameters: position of the control bar that make critic the reactor, critic height of moderator, excess of reactivity of the nucleus, parameter of reactivity for vacuum, parameter of reactivity for temperature, reactivity of its control bar, levels of doses in the reactor. (author)

  17. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

    2012-09-01

    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors’ spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  18. LONG-TERM DYNAMICS OF RADIONUCLIDE VERTICAL MIGRATION IN SOILS OF THE CHERNOBYL NUCLEAR POWER PLANT EXCLUSION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E

    2009-11-19

    The radioactive fallout from the Chernobyl Nuclear Power Plant (ChNPP) accident consisted of fuel and condensation components. An important radioecological task associated with the late phase of the accident is to evaluate the dynamics of radionuclide mobility in soils. Identification of the variability (or invariability) in the radionuclide transfer parameters makes it possible to (1) accurately predict migration patterns and biological availability of radionuclides and (2) evaluate long-term exposure trends for the population who may reoccupy the remediated abandoned areas. In 1986-1987, a number of experimental plots were established within various tracts of the fallout plume to assist with the determination of the long-term dynamics of radionuclide vertical migration in the soils. The transfer parameters for {sup 137}Cs, {sup 90}Sr, and {sup 239,240}Pu in the soil profile, as well as their ecological half-time of the radionuclide residence (T{sub 1/2}{sup ecol}) values in the upper 5-cm thick soil layers of different grasslands were estimated at various times since the accident. Migration characteristics in the grassland soils tend to decrease as follows: {sup 90}Sr > {sup 137}Cs {ge} {sup 239,240}Pu. It was found that the {sup 137}Cs absolute T{sub 1/2}{sup ecol} values are 3-7 times higher than its radioactive decay half-life value. Therefore, changes in the exposure dose resulting from the soil deposited {sup 137}Cs now depend only on its radioactive decay. The {sup 90}Sr T{sub 1/2}{sup ecol} values for the 21st year after the fallout tend to decrease, indicating an intensification of its migration capabilities. This trend appears consistent with a pool of mobile {sup 90}Sr forms that grows over time due to destruction of the fuel particles.

  19. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  20. The awareness of the functional and near population with the relation to the research nuclear reactor IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Vanni, Silvia R.; Martins, Maria da Penha S. [Centro Tecnologico da Marinha (CTMSP), SP (Brazil); Sabundjian, Gaiane, E-mail: gdjian@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    After the natural accident that hit Japan in the beginning of March of 2011, and that ended into an accident of great proportions in the nuclear installations of Fukushima, it has now the debate over the lack of information that the population in general has over the nuclear energy. The dissemination of information, about the operation and security of the nuclear reactors, has the purpose of softening the effect that the pessimistic atmosphere has over its using. This study was reinforced by the memories of serious consequences due to other nuclear accidents that have already happened (Chernobyl, Three-Mile and Hiroshima/Nagasaki event), bringing insecurity, fear and even revenge from part of the public. Over all, people are not sufficiently informed about the positives and negatives aspects of the nuclear energy. It is necessary the adoption of a clear and aware policy with the population, about the pacific use of nuclear energy. Today, the international and national organizations of control of nuclear energy, the International Atomic Energy Agency (IAEA) and the Comissao Nacional de Energia Nuclear (CNEN), have respectively, published information about this subject using a more professional way and of hard access for the public in general. This work has the goal of checking the level of information that the population of workers and individuals of the close public to the research nuclear reactor IEA-R1, located in the Institute of Nuclear Research (IPEN), University City, Sao Paulo, Brazil, has over it. The way used for this study, involved questionnaires with straight questions and of simple language over the subject, to people of all different social, economic and cultural classes, from 12 to 80 years old. From the results found after this work, it was verified the necessity to elaborate a project of awareness of information and clarification about the nuclear energy, using ways of communication that exist and that are easy for the public to understand. (author)

  1. Nuclear reactors built, being built, or planned, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  2. Nuclear reactors built, being built, or planned: 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  3. Vertical distribution and estimated doses from artificial radionuclides in soil samples around the Chernobyl nuclear power plant and the Semipalatinsk nuclear testing site.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Taira

    Full Text Available For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS, the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides ((241Am, (134Cs, (137Cs, and (60Co were detected in surface soil around CNPP, whereas seven artificial radionuclides ((241Am, (57Co, (137Cs, (95Zr, (95Nb, (58Co, and (60Co were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991. These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP, and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public.

  4. An overview of future sustainable nuclear power reactors

    Directory of Open Access Journals (Sweden)

    Andreas Poullikkas

    2013-01-01

    Full Text Available In this paper an overview of the current and future nuclear power reactor technologies is carried out. In particular, the nuclear technology is described and the classification of the current and future nuclear reactors according to their generation is provided. The analysis has shown that generation II reactors currently in operation all around the world lack significantly in safety precautions and are prone to loss of coolant accident (LOCA. In contrast, generation III reactors, which are an evolution of generation II reactors, incorporate passive or inherent safety features that require no active controls or operational intervention to avoid accidents in the event of malfunction, and may rely on gravity, natural convection or resistance to high temperatures. Today, partly due to the high capital cost of large power reactors generating electricity and partly due to the consideration of public perception, there is a shift towards the development of smaller units. These may be built independently or as modules in a larger complex, with capacity added incrementally as required. Small reactors most importantly benefit from reduced capital costs, simpler units and the ability to produce power away from main grid systems. These factors combined with the ability of a nuclear power plant to use process heat for co-generation, make the small reactors an attractive option. Generally, modern small reactors for power generation are expected to have greater simplicity of design, economy of mass production and reduced installation costs. Many are also designed for a high level of passive or inherent safety in the event of malfunction. Generation III+ designs are generally extensions of the generation III concept, which include advanced passive safety features. These designs can maintain the safe state without the use of any active control components. Generation IV reactors, which are future designs that are currently under research and development, will

  5. Environmental monitoring data around the Chernobyl nuclear power plant used in the cooperative research project between JAERI and CHESCIR (Ukraine). Cooperative research

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Takashi; Matsunaga, Takeshi; Amano, Hikaru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tkachenko, Yuri; Kovalyov, Alexandr; Sukhoruchkin, Andrei; Derevets, Varely [The State Enterprise for Region Monitoring of Environment and Dosimetric Control (Ukraine)

    2003-01-01

    This report is a compilation of the shared data derived from the environmental monitoring by RADEK (The state Enterprise for Region Monitoring of Environment and Dosimetric Control of Ukraine) and the record of environmental characteristics derived from field observations during a research project (1992-1999) between JAERI (Japan Atomic Energy Research Institute) and CHESCIR (Chernobyl Science and Technology Centre for International Research). The compiled data in this report are especially related to one particular research subject (Subject-3) of the project on the migration of radionuclides released into the terrestrial and aquatic environments after a nuclear accident. The present report shows the basis of published works concerning Subject-3. (author)

  6. Long-term therapy for polymorphic mental disorders in liquidators of the consequences of the accident at the Chernobyl nuclear power plant

    Directory of Open Access Journals (Sweden)

    V. N. Krasnov

    2012-01-01

    Full Text Available The paper gives the results of a long-term comparative therapeutic study of a large cohort of more than 500 liquidators of the consequences of the accident at the Chernobyl nuclear power plant in 1986. The patients were followed up (and periodically treated at hospital 5 years or more, usually 10—15 years. The study confirmed mainly the cerebrovascular nature of disorders following the pattern seen in moderate psychoorganic syndrome. Therapy with cerebroprotective agents having vascular vegetotropic properties could yield certain therapeutic results and, to some extent, preserve social functioning capacity in these patients.

  7. The Chernobyl Catastrophe. Consequences on Human Health

    Energy Technology Data Exchange (ETDEWEB)

    Yablokov, A.; Labunska, I.; Blokov, I. (eds.)

    2006-04-15

    Twenty years after the Chernobyl disaster, the need for continued study of its far-reaching consequences remains as great as ever. Several million people (by various estimates, from 5 to 8 million) still reside in areas that will remain highly contaminated by Chernobyl's radioactive pollution for many years to come. Since the half-life of the major (though far from the only) radioactive element released, caesium-137 (137Cs), is a little over 30 years, the radiological (and hence health) consequences of this nuclear accident will continue to be experienced for centuries to come. This event had its greatest impacts on three neighbouring former Soviet republics: Ukraine, Belarus, and Russia. The impacts, however, extended far more widely. More than half of the caesium-137 emitted as a result of the explosion was carried in the atmosphere to other European countries. At least fourteen other countries in Europe (Austria, Sweden, Finland, Norway, Slovenia, Poland, Romania, Hungary, Switzerland, Czech Republic, Italy, Bulgaria, Republic of Moldova and Greece) were contaminated by radiation levels above the 1 Ci/km{sup 2} (or 37 kBq/m{sup 2}), limit used to define areas as 'contaminated'. Lower, but nonetheless substantial quantities of radioactivity linked to the Chernobyl accident were detected all over the European continent, from Scandinavia to the Mediterranean, and in Asia. Despite the documented geographical extent and seriousness of the contamination caused by the accident, the totality of impacts on ecosystems, human health, economic performance and social structures remains unknown. In all cases, however, such impacts are likely to be extensive and long lasting. Drawing together contributions from numerous research scientists and health professionals, including many from the Ukraine, Belarus and the Russian Federation, this report addresses one of these aspects, namely the nature and scope of the long-term consequences for human health. The range

  8. On the possible physical mechanism of Chernobyl catastrophe and the unsoundness of official conclusion

    CERN Document Server

    Rukhadze, A A; Filippov, D V

    2003-01-01

    The official conclusion about the origin and mechanism of the Chernobyl catastrophe is shown to essentially contradict experimental facts available from the accident. In the frame of existing physical models of nuclear fission reactor, it is shown analytically that under conditions of the accident the period of runaway of reactor at the fourth power generating unit of the Chernobyl Nuclear Power Plant (CNPP) should be either 10 times slower or 100 times faster than that observed. A self-consistent hypothesis is suggested for the probable birth of magnetic charges, during the turbine generator test under it's own momentum test, at the fourth power generating unit of CNPP, and for the impact of these charges on the reactivity coefficient.

  9. Physics of nuclear reactors; La physique des reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Marguet, S. [Ecole Nationale Superieure de Risques Industriels de Bourges, 18 (France); Institut de Transfert de Technologie d' EDF, 92 - Clamart (France)

    2011-07-01

    This manual covers all the aspects of the science of neutron transport in nuclear reactors and can be used with great advantage by students, engineers or even reactor experts. It is composed of 18 chapters: 1) basis of nuclear physics, 2) the interactions of neutrons with matter, 3) the interactions of electromagnetic radiations and charged-particles with matter, 4) neutron slowing-down, 5) resonant absorption, 6) Doppler effect, 7) neutron thermalization, 8) Boltzmann equation, 9) calculation methods in neutron transport theory, 10) neutron scattering, 11) reactor reactivity, 12) theory of the critical homogenous pile, 13) the neutron reflector, 14) the heterogeneous reactor, 15) the equations of the fuel cycle, 16) neutron counter-reactions, 17) reactor kinetics, and 18) calculation methods in neutron scattering

  10. An introduction to the engineering of fast nuclear reactors

    CERN Document Server

    Judd, Anthony M

    2014-01-01

    An invaluable resource for both graduate-level engineering students and practising nuclear engineers who want to expand their knowledge of fast nuclear reactors, the reactors of the future! This book is a concise yet comprehensive introduction to all aspects of fast reactor engineering. It covers topics including neutron physics; neutron flux spectra; flux distribution; Doppler and coolant temperature coefficients; the performance of ceramic and metal fuels under irradiation, structural changes, and fission-product migration; the effects of irradiation and corrosion on structural materials, irradiation swelling; heat transfer in the reactor core and its effect on core design; coolants including sodium and lead-bismuth alloy; coolant circuits; pumps; heat exchangers and steam generators; and plant control. The book includes new discussions on lead-alloy and gas coolants, metal fuel, the use of reactors to consume radioactive waste, and accelerator-driven subcritical systems.

  11. Nuclear data and reactor physics activities in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Liem, P.H. [National Atomic Energy Agency, Tangerang (Indonesia). Center for Multipurpose Reactor

    1998-03-01

    The nuclear data and reactor physics activities in Indonesia, especially, in the National Atomic Energy Agency are presented. In the nuclear data field, the Agency is now taking the position of a user of the main nuclear data libraries such as JENDL and ENDF/B. These nuclear data libraries become the main sources for producing problem dependent cross section sets that are needed by cell calculation codes or transport codes for design, analysis and safety evaluation of research reactors. In the reactor physics field, besides utilising the existing core analysis codes obtained from bilateral and international co-operation, the Agency is putting much effort to self-develop Batan`s codes for reactor physics calculations, in particular, for research reactor and high temperature reactor design, analysis and fuel management. Under the collaboration with JAERI, Monte Carlo criticality calculations on the first criticality of RSG GAS (MPR-30) first core were done using JAERI continuous energy, vectorized Monte Carlo code, MVP, with JENDL-3.1 and JENDL-3.2 nuclear data libraries. The results were then compared with the experiment data collected during the commissioning phase. Monte Carlo calculations with both JENDL-3.1 and -3.2 libraries produced k{sub eff} values with excellent agreement with experiment data, however, systematically, JENDL-3.2 library showed slightly higher k{sub eff} values than JENDL-3.1 library. (author)

  12. Nuclear Technology Series. Course 8: Reactor Safety.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutians in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  13. Monitoring Akkuyu Nuclear Reactor Using Anti-Neutrino Flux Measurement

    CERN Document Server

    Ozturk, Sertac; Ozcan, V Erkcan; Unel, Gokhan

    2016-01-01

    We present a simulation based study for monitoring Akkuyu Nuclear Power Plant's activity using anti-neutrino flux originating from the reactor core. A water Cherenkov detector has been designed and optimization studies have been performed using Geant4 simulation toolkit. A first study for the design of a monitoring detector facility for Akkuyu Nuclear Power Plant has been discussed in this paper.

  14. Fuel element concept for long life high power nuclear reactors

    Science.gov (United States)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  15. Economics and utilization of thorium in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Information on thorium utilization in power reactors is presented concerning the potential demand for nuclear power, the potential supply for nuclear power, economic performance of thorium under different recycle policies, ease of commercialization of the economically preferred cases, policy options to overcome institutional barriers, and policy options to overcome technological and regulatory barriers.

  16. 76 FR 14437 - Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of...

    Science.gov (United States)

    2011-03-16

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of... GE Hitachi Nuclear Energy (GEH) for the economic simplified boiling water reactor (ESBWR)...

  17. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.''...

  18. New reactor technology: safety improvements in nuclear power systems.

    Science.gov (United States)

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  19. Spent nuclear fuel discharges from US reactors 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-05

    This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactive Waste Management.

  20. SNIF: A Futuristic Neutrino Probe for Undeclared Nuclear Fission Reactors

    CERN Document Server

    Lasserre, Thierry; Mention, Guillaume; Reboulleau, Romain; Cribier, Michel; Letourneau, Alain; Lhuillier, David

    2010-01-01

    Today reactor neutrino experiments are at the cutting edge of fundamental research in particle physics. Understanding the neutrino is far from complete, but thanks to the impressive progress in this field over the last 15 years, a few research groups are seriously considering that neutrinos could be useful for society. The International Atomic Energy Agency (IAEA) works with its Member States to promote safe, secure and peaceful nuclear technologies. In a context of international tension and nuclear renaissance, neutrino detectors could help IAEA to enforce the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). In this article we discuss a futuristic neutrino application to detect and localize an undeclared nuclear reactor from across borders. The SNIF (Secret Neutrino Interactions Finder) concept proposes to use a few hundred thousand tons neutrino detectors to unveil clandestine fission reactors. Beyond previous studies we provide estimates of all known background sources as a function of the detecto...

  1. Spent nuclear fuel discharges from US reactors 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

  2. Designing a mini subcritical nuclear reactor; Diseno de un mini reactor nuclear subcritico

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo G, C. R.; Vega C, H. R.; Davila H, V. M., E-mail: rafelaescobedo@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Jardin Juarez 147, Col. Centro, 98000 Zacatecas, Zac. (Mexico)

    2015-10-15

    In this work the design of a mini subcritical nuclear reactor formed by means of light water moderator, uranium as fuel, and isotopic neutron source of {sup 239}PuBe was carried out. The design was done by Monte Carlo methods with the code MCNP5 in which uranium was modeled in an array of concentric holes cylinders of 8.5, 14.5, 20.5, 26.5, 32.5 cm of internal radius and 3 cm of thickness, 36 cm of height. Different models were made from a single fuel cylinder (natural uranium) to five. The neutron source of {sup 239}PuBe was situated in the center of the mini reactor; in each arrangement was used water as moderator. Cross sections libraries Endf/Vi were used and the number of stories was large enough to ensure less uncertainty than 3%. For each case the effective multiplication factor k{sub e}-f{sub f}, the amplification factor and the power was calculated. Outside the mini reactor the ambient dose equivalent H (10) was calculated for different cases. The value of k{sub eff}, the amplification factor and power are directly related to the number of cylinders of uranium as fuel. Although the average energy of the neutrons {sup 239}PuBe is between 4.5 and 5 MeV in the case of the mini reactor for a cylinder, in the neutron spectrum the presence of thermal neutrons does not exist, so that produced fissions are generated with fast neutrons, and in designs of two and three rings the neutron spectra shows the presence of thermal neutrons, however the fissions are being generated with fast neutrons. Finally in the four and five cases the amount of moderator is enough to thermalized the neutrons and thereby produce the fission. The maximum value for k{sub eff} was 0.82; this value is very close to the assembly of Universidad Autonoma de Zacatecas generating a k{sub eff} of 0.86. According to the safety and radiation protection standards for the design of mini reactor of one, two and three cylinders they comply with the established safety, while designs of four and five

  3. Congenital malformations and infant mortality from the Chernobyl reactor accident; Angeborene Fehlbildungen und Saeuglingssterblichkeit nach dem Reaktorunfall in Tschernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Schoetzau, A.; Santen, F. van; Irl, C.; Grosche, B.

    1994-12-01

    The health impact of radiological contamination in Bavaria from the Chernobyl accident was evaluated. According to caesium 137 levels in soil samples, Bavaria was subdivided in a higher contaminated region (Southern Bavaria) and a lower contaminated region (Northern Bavaria). Indicators for health effects were congenital malformations, perinatal mortality, and infant mortality. Definition of the study periods accounted for the temporal relationship between conception as well as organogenesis and the time of highest exposure to radioactivity during the first weeks of May 1986. Statistical analysis was based on a combined spatial and temporal comparison. The results of the study do not show a significant increase in any of the outcome variables. Consequently, this study provides no evidence that radiation from Chernobyl caused a rise in the birth prevalence of congenital malformations or perinatal and infant mortality in the Bavarian population. (orig.) [Deutsch] Der vorliegende Bericht beschaeftigt sich mit den Folgen der Strahlenexposition in Bayern nach dem Reaktorunfall in Tschernobyl. Es wurde der Frage nachgegangen, ob eine Zunahme negativer gesundheitlicher Wirkungen in hoeher exponierten Bevoelkerungsgruppen im Vergleich zu niedriger exponierten feststellbar war. Der Expositionsstatus wurde nach der Bodenkontamination des Wohnortes bestimmt. Entsprechend der unterschiedlichen Hoehe des Radiocaesium-Gehaltes in Bodenproben wurde die Bevoelkerung der drei suedlichen bayerischen Regierungsbezirke `Oberbayern`, `Niederbayern` und `Schwaben` (Suedbayern) als hoeher und die Bevoelkerung der vier noerdlichen Regierungsbezirke `Oberpfalz`, `Oberfanken`, `Mittelfranken` und `Unterfranken` (Nordbayern) als niedriger exponiert definiert. Als Indikatoren fuer gesundheitliche Wirkungen wurden Veraenderungen der Geburtspraevalenz von Kindern mit ausgewaehlten angeborenen Fehlbildungen sowie Veraenderungen in den Raten der perinatalen Mortalitaet und der Gesamtsterblichkeit

  4. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated

  5. Chernobyl radionuclide distribution and migration.

    Science.gov (United States)

    Izrael, Yury A

    2007-11-01

    The accident at Unit No. 4 of the Chernobyl Nuclear Power Plant on 26 April 1986 presented severe challenges in radiation protection. Early activity measurements defined the contaminated areas in order to determine what persons should be evacuated on the basis of the exposure limit at that time of 100 mSv (10 rem) for accidents. The immediate definition of these areas was accomplished with specially equipped aircraft capable of measuring external gamma-exposure rate and radionuclide spectra. Over time, maps of 137Cs contamination (the most important long-lived radionuclide) have become more and more sophisticated and have been used for further determinations of the control of the consequences of the accident. About 70% of the total release of 137Cs was deposited in Belarus, the Russian Federation, and Ukraine; but there was also widespread deposition throughout the countries of Western Europe. Two atlases of contamination throughout Europe were prepared, and the Russian atlas included data on other radionuclides and on external gamma-exposure rates. The radiocesiums behaved as volatile radionuclides because of the volatility of cesium. In contrast to the typical pattern after nuclear weapons tests, 90Sr behaved only as a refractory element, as its volatile precursors krypton and rubidium had already decayed within the reactor. Nearly all of the refractory elements (strontium, plutonium, etc.) released by the accident were confined to the 30-km zone around the reactor. A proposal is made to develop a more complete atlas of 137Cs deposition from the accident that would include the entire Northern Hemisphere. Water was not an important vector of exposure to human beings following the accident.

  6. Multiscale Methods for Nuclear Reactor Analysis

    Science.gov (United States)

    Collins, Benjamin S.

    The ability to accurately predict local pin powers in nuclear reactors is necessary to understand the mechanisms that cause fuel pin failure during steady state and transient operation. In the research presented here, methods are developed to improve the local solution using high order methods with boundary conditions from a low order global solution. Several different core configurations were tested to determine the improvement in the local pin powers compared to the standard techniques, that use diffusion theory and pin power reconstruction (PPR). Two different multiscale methods were developed and analyzed; the post-refinement multiscale method and the embedded multiscale method. The post-refinement multiscale methods use the global solution to determine boundary conditions for the local solution. The local solution is solved using either a fixed boundary source or an albedo boundary condition; this solution is "post-refinement" and thus has no impact on the global solution. The embedded multiscale method allows the local solver to change the global solution to provide an improved global and local solution. The post-refinement multiscale method is assessed using three core designs. When the local solution has more energy groups, the fixed source method has some difficulties near the interface: however the albedo method works well for all cases. In order to remedy the issue with boundary condition errors for the fixed source method, a buffer region is used to act as a filter, which decreases the sensitivity of the solution to the boundary condition. Both the albedo and fixed source methods benefit from the use of a buffer region. Unlike the post-refinement method, the embedded multiscale method alters the global solution. The ability to change the global solution allows for refinement in areas where the errors in the few group nodal diffusion are typically large. The embedded method is shown to improve the global solution when it is applied to a MOX/LEU assembly

  7. Simulation of {sup 137}Cs transport and deposition after the Chernobyl Nuclear Power Plant accident and radiological doses over the Anatolian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, V.; Pozzoli, L.; Unal, A.; Kindap, T., E-mail: kindap@itu.edu.tr; Karaca, M.

    2014-11-15

    The Chernobyl Nuclear Power Plant (CNPP) accident occurred on April 26 of 1986, it is still an episode of interest, due to the large amount of radionuclides dispersed in the atmosphere. Caesium-137 ({sup 137}Cs) is one of the main radionuclides emitted during the Chernobyl accident, with a half-life of 30 years, which can be accumulated in humans and animals, and for this reason the impacts on population are still monitored today. One of the main parameters in order to estimate the exposure of population to {sup 137}Cs is the concentration in the air, during the days after the accident, and the deposition at surface. The transport and deposition of {sup 137}Cs over Europe occurred after the CNPP accident has been simulated using the WRF-HYSPLIT modeling system. Four different vertical and temporal emission rate profiles have been simulated, as well as two different dry deposition velocities. The model simulations could reproduce fairly well the observations of {sup 137}Cs concentrations and deposition, which were used to generate the ‘Atlas of Caesium deposition on Europe after the Chernobyl accident’ and published in 1998. An additional focus was given on {sup 137}Cs deposition and air concentrations over Turkey, which was one of the main affected countries, but not included in the results of the Atlas. We estimated a total deposition of 2–3.5 PBq over Turkey, with 2 main regions affected, East Turkey and Central Black Sea coast until Central Anatolia, with values between 10 kBq m{sup −2} and 100 kBq m{sup −2}. Mean radiological effective doses from simulated air concentrations and deposition has been estimated for Turkey reaching 0.15 mSv/year in the North Eastern part of Turkey, even if the contribution from ingestion of contaminated food and water is not considered, the estimated levels are largely below the 1 mSv limit indicated by the International Commission on Radiological Protection. - Highlights: • Chernobyl Nuclear Power Plant accident

  8. US Department of Energy Chernobyl accident bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R A; Mahaffey, J A; Carr, F Jr

    1992-04-01

    This bibliography has been prepared by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Office of Health and Environmental Research to provide bibliographic information in a usable format for research studies relating to the Chernobyl nuclear accident that occurred in the Ukrainian Republic, USSR in 1986. This report is a product of the Chernobyl Database Management project. The purpose of this project is to produce and maintain an information system that is the official United States repository for information related to the accident. Two related products prepared for this project are the Chernobyl Bibliographic Search System (ChernoLit{trademark}) and the Chernobyl Radiological Measurements Information System (ChernoDat). This report supersedes the original release of Chernobyl Bibliography (Carr and Mahaffey, 1989). The original report included about 2200 references. Over 4500 references and an index of authors and editors are included in this report.

  9. Total cancer incidence in relation to 137Cs fallout in the most contaminated counties in Sweden after the Chernobyl nuclear power plant accident: a register-based study

    Science.gov (United States)

    Alinaghizadeh, Hassan; Wålinder, Robert; Vingård, Eva; Tondel, Martin

    2016-01-01

    Objectives To determine the total cancer incidence in relation to a 5-year exposure to caesium-137 (137Cs) from the 1986 Chernobyl nuclear power plant accident. Methods A closed cohort was defined as all individuals living in the three most contaminated counties in mid-Sweden in 1986. Fallout of 137Cs was retrieved as a digital map from the Geological Survey of Sweden, demographic data from Statistics Sweden, and cancer diagnosis from the National Board of Health and Welfare. Individuals were assigned an annual 137Cs exposure based on their place of residence (1986–1990), from which 5-year cumulative 137Cs exposures were calculated, accounting for the physical decay of 137Cs and changing residencies. HRs were adjusted for age, sex, rural/non-rural residence and pre-Chernobyl total cancer incidence. Results The 734 537 people identified were categorised by exposure: the first quartile was low exposure (0.0–45.4 kBq/m2), the second and third quartiles were intermediate exposure (45.41–118.8 kBq/m2), and the fourth quartile was the highest exposure (118.81–564.71 kBq/m2). Between 1991 and 2010, 82 495 cancer cases were registered in the 3 counties. Adjusted HRs (95% CI) were 1.03 (1.01 to 1.05) for intermediate exposure and 1.05 (1.03 to 1.07) for the highest exposure compared to the reference exposure. Conclusions We found a small overall exposure–response pattern of the total cancer incidence related to 137Cs after adjustment for age, sex, rural residence and pre-Chernobyl cancer incidence. PMID:27998898

  10. Nuclear Security Summit and Workshop 2015: Preventing, Understanding and Recovering from Nuclear Accidents lessons learned from Chernobyl and Fukushima

    Science.gov (United States)

    2016-09-01

    world security, economy, environment, prosperity. Fossil fuel carbon emissions are the world’s biggest problem. Renewable energies can already...3 ) pound-force (lbf avoirdupois) 4.448 222 newton (N) Energy /Work/Power electron volt (eV) 1.602 177 × 10 –19 joule (J) erg 1 × 10 –7 joule (J...and Fukushima disasters measured Level 7 on the International Nuclear Event Scale (INES) according to the International Atomic Energy Agency (IAEA

  11. Primary loop simulation of the SP-100 space nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Eduardo M.; Braz Filho, Francisco A.; Guimaraes, Lamartine N.F., E-mail: eduardo@ieav.cta.b, E-mail: fbraz@ieav.cta.b, E-mail: guimarae@ieav.cta.b [Instituto de Estudos Avancados (IEAv/DCTA) Sao Jose dos Campos, SP (Brazil)

    2011-07-01

    Between 1983 and 1992 the SP-100 space nuclear reactor development project for electric power generation in a range of 100 to 1000 kWh was conducted in the USA. Several configurations were studied to satisfy different mission objectives and power systems. In this reactor the heat is generated in a compact core and refrigerated by liquid lithium, the primary loops flow are controlled by thermoelectric electromagnetic pumps (EMTE), and thermoelectric converters produce direct current energy. To define the system operation point for an operating nominal power, it is necessary the simulation of the thermal-hydraulic components of the space nuclear reactor. In this paper the BEMTE-3 computer code is used to EMTE pump design performance evaluation to a thermalhydraulic primary loop configuration, and comparison of the system operation points of SP-100 reactor to two thermal powers, with satisfactory results. (author)

  12. Advanced gas cooled nuclear reactor materials evaluation and development program

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Results of work performed from January 1, 1977 through March 31, 1977 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Process Heat and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (impure Helium), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes progress to date on alloy selection for VHTR Nuclear Process Heat (NPH) applications and for DCHT applications. The present status on the simulated reactor helium loop design and on designs for the testing and analysis facilities and equipment is discussed.

  13. The role of nuclear reactors in space exploration and development

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new

  14. Fractional calculus with applications for nuclear reactor dynamics

    CERN Document Server

    Ray, Santanu Saha

    2015-01-01

    Introduces Novel Applications for Solving Neutron Transport EquationsWhile deemed nonessential in the past, fractional calculus is now gaining momentum in the science and engineering community. Various disciplines have discovered that realistic models of physical phenomenon can be achieved with fractional calculus and are using them in numerous ways. Since fractional calculus represents a reactor more closely than classical integer order calculus, Fractional Calculus with Applications for Nuclear Reactor Dynamics focuses on the application of fractional calculus to describe the physical behavi

  15. Development of a research nuclear reactor simulator using LABVIEW®

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo Marcio Fonseca; Mesquita, Amir Zacarias; Pinto, Antonio Juscelino; Souza, Luiz Claudio Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. The most important variable in the nuclear reactors control is the power released by fission of the fuel in the core which is directly proportional to neutron flux. It was developed a digital system to simulate the neutron evolution flux and monitoring their interaction on the other operational parameters. The control objective is to bring the reactor power from its source level (mW) to a few W. It is intended for education of basic reactor neutronic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron and control by rods. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Center - CDTN (Belo Horizonte/Brazil) was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. They are cooled by light water under natural convection and are characterized by being inherently safety. The simulation system was developed using the LabVIEW® (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's). The main purpose of the system is to provide to analyze the behavior, and the tendency of some processes that occur in the reactor using a user-friendly operator interface. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility.(author)

  16. Development of an educational nuclear research reactor simulator

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim [Atomic Energy Authority, Cairo (Egypt). Radiation Engineering Dept.; Ashoub, Nagieb [Atomic Energy Authority, Cairo (Egypt). Reactor Physics Dept.

    2014-12-15

    This paper introduces the development of a research reactor educational simulator based on LabVIEW that allows the training of operators and studying different accident scenarios and the effects of operational parameters on the reactor behavior. Using this simulator, the trainee can test the interaction between the input parameters and the reactor activities. The LabVIEW acts as an engine implements the reactor mathematical models. In addition, it is used as a tool for implementing the animated graphical user interface. This simulator provides the training requirements for both of the reactor staff and the nuclear engineering students. Therefore, it uses dynamic animation to enhance learning and interest for a trainee on real system problems and provides better visual effects, improved communications, and higher interest levels. The benefits of conducting such projects are to develop the expertise in this field and save costs of both operators training and simulation courses.

  17. Spectral Structure of Electron Antineutrinos from Nuclear Reactors

    CERN Document Server

    Dwyer, D A

    2014-01-01

    Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principle calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructure in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of this substructure can constrain nuclear reactor physics. The substructure can be a systematic uncertainty for measurements utilizing the detailed spectral shape.

  18. Spectral structure of electron antineutrinos from nuclear reactors.

    Science.gov (United States)

    Dwyer, D A; Langford, T J

    2015-01-01

    Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principles calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructures in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of these substructures can elucidate the nuclear processes occurring within reactors. These substructures can be a systematic issue for measurements utilizing the detailed spectral shape.

  19. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  20. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next

  1. Radiation monitoring using imaging plate technology: A case study of leaves affected by the Chernobyl nuclear power plant and JCO criticality accidents

    Directory of Open Access Journals (Sweden)

    Kimura Shinzo

    2006-01-01

    Full Text Available This paper describes the use of a photostimulable phosphor screen imaging technique to detect radioactive contamination in the leaves of wormwood (Artemisia vulgaris L and fern (Dryopteris filix-max CL. Schoff plants affected by the Chernobyl nuclear power plant accident. The imaging plate technology is well known for many striking performances in two-dimensional radiation detection. Since imaging plate comprises an integrated detection system, it has been extensively applied to surface contamination distribution studies. In this study, plant samples were collected from high- and low-contaminated areas of Ukraine and Belarus, which were affected due to the Chernobyl accident and exposed to imaging technique. Samples from the highly contaminated areas revealed the highest photo-stimulated luminescence on the imaging plate. Moreover, the radio nuclides detected in the leaves by gamma and beta ray spectroscopy were 137Cs and 90Sr, respectively. Additionally, in order to assess contamination, a comparison was also made with leaves of plants affected during the JCO criticality accident in Japan. Based on the results obtained, the importance of imaging plate technology in environmental radiation monitoring has been suggested.

  2. The role of integral experiments and nuclear cross section evaluations in space nuclear reactor design

    Science.gov (United States)

    Moses, David L.; McKnight, Richard D.

    The importance of the nuclear and neutronic properties of candidate space reactor materials to the design process has been acknowledged as has been the use of benchmark reactor physics experiments to verify and qualify analytical tools used in design, safety, and performance evaluation. Since June 1966, the Cross Section Evaluation Working Group (CSEWG) has acted as an interagency forum for the assessment and evaluation of nuclear reaction data used in the nuclear design process. CSEWG data testing has involved the specification and calculation of benchmark experiments which are used widely for commercial reactor design and safety analysis. These benchmark experiments preceded the issuance of the industry standards for acceptance, but the benchmarks exceed the minimum acceptance criteria for such data. Thus, a starting place has been provided in assuring the accuracy and uncertainty of nuclear data important to space reactor applications.

  3. Production capabilities in US nuclear reactors for medical radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  4. Application of a Russian nuclear reactor simulator VVER-1000; Aplicacion de un simulador de reactor nuclear ruso VVER-1000

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Peniche S, A. [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04360 Mexico D. F. (Mexico); Salazar S, E., E-mail: alpsordo@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, 62250 Jiutepec, Morelos (Mexico)

    2012-10-15

    The objective of the present work is to give to know the most important characteristics in the Russian nuclear reactor of pressurized light water VVER-1000, doing emphasis in the differences that has with the western equivalent the reactor PWR in the design and the safety systems. Therefore, a description of the computerized simulation of the reactor VVER-1000 developed by the company Eniko TSO that the International Atomic of Energy Agency distributes to the states members with academic purposes will take place. The simulator includes mathematical models that represent to the essential systems in the real nuclear power plant, for what is possible to reproduce common faults and transitory characteristic of the nuclear industry with a behavior sufficiently attached to the reality. In this work is analyzed the response of the system before a turbine shot. After the accident in the nuclear power plant of Three Mile Island (US) they have been carried out improvements in the design of the reactor PWR and their safety systems. To know the reach and the limitations of the program, the events that gave place to this accident will be reproduced in the simulator VVER-1000. With base to the results of the simulation we will conclude that so reliable is the response of the safety system of this reactor. (Author)

  5. Handbook of nuclear engineering: vol 1: nuclear engineering fundamentals; vol 2: reactor design; vol 3: reactor analysis; vol 4: reactors of waste disposal and safeguards

    CERN Document Server

    2013-01-01

    The Handbook of Nuclear Engineering is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all academic levels, this five volume set provides the latest findings in nuclear data and experimental techniques, reactor physics, kinetics, dynamics and control. Readers will also find a detailed description of data assimilation, model validation and calibration, sensitivity and uncertainty analysis, fuel management and cycles, nuclear reactor types and radiation shielding. A discussion of radioactive waste disposal, safeguards and non-proliferation, and fuel processing with partitioning and transmutation is also included. As nuclear technology becomes an important resource of non-polluting sustainable energy in the future, The Handbook of Nuclear Engineering is an excellent reference for practicing engineers, researchers and professionals.

  6. Nuclear reactor (1960); Reacteurs nucleaires (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Maillard, M.L. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Leo, M.B. [Electricite de France (EDF), 75 - Paris (France)

    1960-07-01

    The first French plutonium-making reactors G1, G2 and G3 built at Marcoule research center are linked to a power plant. The G1 electrical output does not offset the energy needed for operating this reactor. On the contrary, reactors G2 and G3 will each generate a net power of 25 to 30 MW, which will go into the EDF grid. This power is relatively small, but the information obtained from operation is great and will be helpful for starting up the power reactor EDF1, EDF2 and EDF3. The paper describes how, previous to any starting-up operation, the tests performed, especially those concerned with the power plant and the pressure vessel, have helped to bring the commissioning date closer. (author) [French] Les premiers reacteurs industriels plutonigenes francais G1 - G2 - G3 du Centre de Marcoule comportent une installation de recuperation d'energie. La production d'electricite de G1 ne compense pas l'energie depensee par ailleurs pour le fonctionnement de l'ensemble, par contre, G2 et G3 doivent fournir chacun une puissance de 25 a 30 MW au reseau national d'Electricite de France. Cette puissance est modeste, mais l'experience acquise grace a ces reacteurs est tres grande et c'est grace a elle qu'il nous sera possible de mettre en exploitation les reacteurs energetiques EDF1 - EDF2 - EDF3. Le memoire decrit comment, avant tout demarrage du reacteur, les essais effectues, en particulier ceux concernant l'installation de recuperation d'energie et le caisson, ont permis d'abreger la phase de montee en puissance. (auteur)

  7. Radioecology of Vertebrate Animals in the Area Adjacent to the Chernobyl Nuclear Power Plant Site in 1986-2008

    Science.gov (United States)

    Farfan, E. B.; Gashchak, S. P.; Makliuk, Y. A.; Maksymenko, A. M.; Bondarkov, M. D.; Jannik, G. T.; Marra, J. C.

    2009-12-01

    A widespread environmental contamination of the areas adjacent to the Chernobyl Nuclear Power Plant (ChNPP) site attracted a great deal of publicity to the biological consequences of the ChNPP catastrophe. However, only a few studies focused on a detailed analysis of radioactive contamination of the local wild fauna and most of them were published in Eastern European languages, making them poorly accessible for Western scientists. In addition, evaluation of this information appears difficult due to significant differences in raw data acquisition and analysis methodologies and final data presentation formats. Using an integrated approach to assessment of all available information, the International Radioecology Laboratory scientists showed that the ChNPP accident had increased the average values of the animals 137Cs and 90Sr contamination by a factor of thousands, followed by its decrease by a factor of tens, primarily resulting from a decrease in the biological accessibility of the radionuclides. However, this trend depended on many factors. Plant and bottom feeding fish species were the first to reach the maximum contamination levels. No data are available on other vertebrates, but it can be assumed that the same trend was true for all plant feeding animals and animals searching for food on the soil surface. The most significant decrease of the average values occurred during the first 3-5 years after the accident and it was the most pronounced for elks and plant and plankton feeding fish. Their diet included elements “alienated” from the major radionuclide inventory; for example, upper soil layers and bottom deposits where the fallout that had originally precipitated on plants, water and soils gradually migrated. Further radionuclide penetration into deeper layers of soils and its bonding with their mineral components intensified decontamination of the fauna. It took a while for the contamination of predatory fish and mammals (wolves) to reach the maximum

  8. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  9. Synergistic Smart Fuel For In-pile Nuclear Reactor Measurements

    Energy Technology Data Exchange (ETDEWEB)

    James A. Smith; Dale K. Kotter; Randall A. Ali; Steven L . Garrett

    2013-10-01

    In March 2011, an earthquake of magnitude 9.0 on the Richter scale struck Japan with its epicenter on the northeast coast, near the Tohoku region. In addition to the immense physical destruction and casualties across the country, several nuclear power plants (NPP) were affected. It was the Fukushima Daiichi NPP that experienced the most severe and irreversible damage. The earthquake brought the reactors at Fukushima to an automatic shutdown and because the power transmission lines were damaged, emergency diesel generators (EDGs) were activated to ensure that there was continued cooling of the reactors and spent fuel pools. The situation was being successfully managed until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to the reactors.2 At this point, the situation became critical. There was a loss of the sensors and instrumentation within the reactor that could have provided valuable information to guide the operators to make informed decisions and avoid the unfortunate events that followed. In the light of these events, we have developed and tested a potential self-powered thermoacoustic system, which will have the ability to serve as a temperature sensor and can transmit data independently of electronic networks. Such a device is synergistic with the harsh environment of the nuclear reactor as it utilizes the heat from the nuclear fuel to provide the input power.

  10. Natural and man-made radioactivity: Chernobyl soils.

    Science.gov (United States)

    Gillmore, Gavin; Flowers, Alan

    2014-05-01

    In 1986 a reactor at the Chernobyl Nuclear Plant suffered a large explosion. The result had wide-ranging impacts. 31 severely exposed emergency workers died from acute radiation syndrome and 19 more later died from different causes. The perhaps controversial prediction by some authors is that around 4,000 will eventually die as a result of the increased cancer risk. A 19-mile restriction zone exists around the former reactor, but during the past 25 years radiation levels have fallen and it is now possible to take part in conducted tours of the deserted city of Pripyat, and the Chernobyl reactor site. Soil levels, however, remain highly radioactive, particularly in the restricted area. Kingston University holds:- • Soil profile sets from 3 locations in Belarus, with repeats at same location 1996 and 2000. • Lake sediment core samples. • Soil profiles at forestry sites. • Surface samples in a region suspected to have actinide content at 200km from Chernobyl. In addition to the above the impact of naturally occurring radon on human health around Chernobyl should not be ignored. About 23 per cent of homes in Ukraine are estimated to have radon levels above 100 Bq m-3, whilst concentrations of 10,000 Bq m-3 or more are known to exist in public water supplies. Some researchers have also suggested that mean annual doses of irradiation of the population caused by radon and it's progeny in air in buildings exceeds the doses received now by inhabitants of settlements located in the territories polluted by Chernobyl-derived nuclides in the Mogilev and Gomel regions in Belarus. This project incorporates a temporal comparison of transport results in undisturbed soils variously over a number of years, demonstrating relative measurements using both the original and new samples. This project will also focus on lake sediments from Southern Belarus and is a 'work in progress'. However, what we can say at this stage is that it is notable that the long lived isotopes of Cs-137

  11. Neutron Capture and the Antineutrino Yield from Nuclear Reactors.

    Science.gov (United States)

    Huber, Patrick; Jaffke, Patrick

    2016-03-25

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ∼0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.

  12. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    Directory of Open Access Journals (Sweden)

    Vladimir Petrochenko

    2012-09-01

    Full Text Available On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing mode. The reactor is distinct in that it has a high level of self-protection and passive safety, it is factory manufactured and the assembled reactor can be transported by railway. Multipurpose application of the reactor is presumed, primarily, it can be used for regional power to produce electricity, heat and for water desalination. The Project is being realized within the framework of state-private partnership with joint venture OJSC “AKME-Engineering” established on a parity basis by the State Atomic Energy Corporation “Rosatom” and the Limited Liability Company “EuroSibEnergo”.

  13. Neutron Capture and the Antineutrino Yield from Nuclear Reactors

    Science.gov (United States)

    Huber, Patrick; Jaffke, Patrick

    2016-03-01

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ˜0.9 % of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.

  14. Piezoelectric material for use in a nuclear reactor core

    Science.gov (United States)

    Parks, D. A.; Reinhardt, Brian; Tittmann, B. R.

    2012-05-01

    In radiation environments ultrasonic nondestructive evaluation has great potential for improving reactor safety and furthering the understanding of radiation effects and materials. In both nuclear power plants and materials test reactors, elevated temperatures and high levels of radiation present challenges to ultrasonic NDE methodologies. The challenges are primarily due to the degradation of the ultrasonic sensors utilized. We present results from the operation of a ultrasonic piezoelectric transducer, composed of bulk single crystal AlN, in a nuclear reactor core for over 120 MWHrs. The transducer was coupled to an aluminum cylinder and operated in pulse echo mode throughout the irradiation. In addition to the pulse echo testing impedance data were obtained. Further, the piezoelectric coefficient d33 was measured prior to irradiation and found to be 5.5 pC/N which is unchanged from as-grown samples, and in fact higher than the measured d33 for many as-grown samples.

  15. Alloying of steel and graphite by hydrogen in nuclear reactor

    Science.gov (United States)

    Krasikov, E.

    2017-02-01

    In traditional power engineering hydrogen may be one of the first primary source of equipment damage. This problem has high actuality for both nuclear and thermonuclear power engineering. Study of radiation-hydrogen embrittlement of the steel raises the question concerning the unknown source of hydrogen in reactors. Later unexpectedly high hydrogen concentrations were detected in irradiated graphite. It is necessary to look for this source of hydrogen especially because hydrogen flakes were detected in reactor vessels of Belgian NPPs. As a possible initial hypothesis about the enigmatical source of hydrogen one can propose protons generation during beta-decay of free neutrons поскольку inasmuch as protons detected by researches at nuclear reactors as witness of beta-decay of free neutrons.

  16. Optimizing Nuclear Reactor Operation Using Soft Computing Techniques

    NARCIS (Netherlands)

    Entzinger, J.O.; Ruan, D.; Kahraman, Cengiz

    2006-01-01

    The strict safety regulations for nuclear reactor control make it di±cult to implement new control techniques such as fuzzy logic control (FLC). FLC however, can provide very desirable advantages over classical control, like robustness, adaptation and the capability to include human experience into

  17. Use of hafnium in control bars of nuclear reactors; Uso de hafnio en barras de control de reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin-mx

    2003-07-01

    Recently the use of hafnium as neutron absorber material in nuclear reactors has been reason of investigation by virtue of that this material has nuclear properties as to the neutrons absorption and structural that can prolong the useful life of the control mechanisms of the nuclear reactors. In this work some of those more significant hafnium properties are presented like nuclear material. Also there are presented calculations carried out with the HELIOS code for fuel cells of uranium oxide and of uranium and plutonium mixed oxides under controlled conditions with conventional bars of boron carbide and also with similar bars to which are substituted the absorbent material by metallic hafnium, the results are presented in this work. (Author)

  18. Chernobyl-what do we need to know?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Following a succession of technical malfunctions and human errors, reactor No.4 of Chernobyl nuclear power plant explodes on April 26, 1986. Radioactive dust, aerosols, and gases (including iodine and caesium) are ejected into the atmosphere. The regions worst hit are in the immediate vicinity of the plant (Belarus, Ukraine) but deposits are very uneven, producing a 'leopard spot' type of pattern (Russian Federation). In Europe, propelled by easterly winds, the radioactive cloud disperses increasingly, scattering deposits over the whole Europe. At the beginning of May, the cloud arrives over France. The eastern portion of the country is most strongly affected. For the contamination, ground, water, and agriculture are contaminated by caesium deposits in Belarus, Ukraine and Russian Federation. In France, ground contamination is slight, fourteen years later, however, it is still detectable. It is hard to assess the impact on health in the vicinity of the Chernobyl plant; among children in southern Belarus, the number of thyroid cancers has risen one hundred-fold. The doses delivered in France represent generally less than 1% of the average annual dose from radioactivity of natural origin. But some of the doses received were higher. Today, the protective sarcophagus covering the damaged reactor is fragile. Reactor No.3, still in operation, continues to pose a risk but the shutdown is provide for december 2000. (N.C.)

  19. Performance tests for integral reactor nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Dong-Seong; Yim, Jeong-Sik; Lee, Chong-Tak; Kim, Han-Soo; Koo, Yang-Hyun; Lee, Byung-Ho; Cheon, Jin-Sik; Oh, Je-Yong

    2006-02-15

    An integral type reactor SMART plans to utilize metallic Zr-U fuel which is Zr-based alloy with 34{approx}38 wt% U. In order to verify the technologies for the design and manufacturing of the fuel and get a license, performance tests were carried out. Experimental Fuel Assembly (EFA) manufactured in KAERI is being successfully irradiated in the MIR reactor of RIAR from September 4 2004, and it has achieved burnup of 0.21 g/cc as of January 25 2006. Thermal properties of irradiated Zr-U fuel were measured. Up to the phase transformation temperature, thermal diffusivity increased linearly in proportion to temperature. However its dependence on the burnup was not significant. RIA tests with 4 unirradiated Zr-U fuel rods were performed in Kurchatov Institute to establish a safety criterion. In the case of the un-irradiated Zr-U fuel, the energy deposition during the control rod ejection accident should be less than 172 cal/g to prevent the failure accompanying fuel fragmentation and dispersal. Finally the irradiation tests of fuel rods have been performed at HANARO. The HITE-2 test was successfully completed up to a burnup of 0.31 g/cc. The HITE-3 test began in February 2004 and will be continued up to a target burnup of 0.6 g/cc.

  20. Chernobyl and after

    Energy Technology Data Exchange (ETDEWEB)

    Daglish, J.; Gittus, J.

    1986-10-01

    The paper contains two reports on the Chernobyl post-accident review meeting. The first is a factual account of the meeting, the topics discussed include: the accident, preventative action, outcome of the accident, and future interactions with the Russians on nuclear power issues. This report also describes two Accident Conventions, drawn up at the time of the meeting, which cover notification, information, and commitment of assistance in the event of a nuclear accident. The second report is by a member of the International Atomic Energy Agency, who reviews the accident, health effects, human factors, man-machine interference, positive void coefficient, and handling of the accident by the Soviet Authorities. (U.K.).

  1. 77 FR 39521 - Application for a License To Export Nuclear Reactor Major Components and Equipment

    Science.gov (United States)

    2012-07-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Application for a License To Export Nuclear Reactor Major Components and Equipment Pursuant to 10... Reactor internals, Components and For use in Braka nuclear power Company LLC reactor coolant equipment...

  2. Advanced methods for nuclear reactor gas laser coupling

    Energy Technology Data Exchange (ETDEWEB)

    Miley, G.H.; Verdeyen, J.T.

    1978-06-01

    Research is described that led to the discovery of three nuclear-pumped lasers (NPLs) using mixtures of Ne--N/sub 2/, He--Hg, and He or Ne with CO or CO/sub 2/. The Ne--N/sub 2/ NPL was the first laser obtained with modest neutron fluxes from a TRIGA reactor (vs fast burst reactors used elsewhere in such work), the He--Hg NPL was the first visible nuclear-pumped laser, while the Ne--CO and He--CO/sub 2/ lasers are the first to provide energy storage on a millisecond time scale. Important potential applications of NPLs include coupling and power transmission from remote power stations such as nuclear plants in satellites and neutron-feedback operation of inertial confinement fusion plants.

  3. Methodology for the integral comparison of nuclear reactors: selecting a reactor for Mexico; Metodologia para la comparacion integral de reactores nucleares: seleccion de un reactor para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Reyes R, R.; Martin del Campo M, C. [UNAM, Facultad de Ingenieria, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: ricarera@yahoo.com.mx

    2006-07-01

    In this work it was built a methodology to compare nuclear reactors of third generation that can be contemplated for future electric planning in Mexico. This methodology understands the selection of the reactors to evaluate eliminating the reactors that still are not sufficiently mature at this time of the study. A general description of each reactor together with their main ones characteristic is made. It was carried out a study for to select the group of parameters that can serve as evaluation indicators, which are the characteristics of the reactors with specific values for each considered technology, and it was elaborated an evaluation matrix indicators including the reactors in the columns and those indicators in the lines. Since that none reactor is the best in all the indicators were necessary to use a methodology for multi criteria taking decisions that we are presented. It was used the 'Fuzzy Logic' technique, the which is based in those denominated diffuse groups and in a system of diffuse inference based on heuristic rules in the way 'If Then consequence> ', where the linguistic values of the condition and of the consequence is defined by diffuse groups, it is as well as the rules always they transform a diffuse group into another. Later on they combine all the diffuse outputs to create a single output and an inverse transformation is made that it transfers the output from the diffuse domain to the real one. They were carried out two studies one with the entirety of the indicators and another in which the indicators were classified in three approaches: the first one refers to indicators related with the planning of the plants inside the context of the general electric sector, the second approach includes indicators related with the characteristics of the fuel and the third it considers indicators related with the acting of the plant in safety and environmental impact. This second study allowed us to know the qualities of

  4. Neutron capture and the antineutrino yield from nuclear reactors

    CERN Document Server

    Huber, Patrick

    2015-01-01

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low-energies below 3.2MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach 0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the non-equilibrium correction...

  5. Fundamental aspects of nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO/sub 2/, fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO/sub 2/, radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies. (DG)

  6. Nuclear reactor melt arrest and coolability device

    Energy Technology Data Exchange (ETDEWEB)

    Theofanous, Theo G.; Dinh, Nam Truc; Wachowiak, Richard M.

    2016-06-14

    Example embodiments provide a Basemat-Internal Melt Arrest and Coolability device (BiMAC) that offers improved spatial and mechanical characteristics for use in damage prevention and risk mitigation in accident scenarios. Example embodiments may include a BiMAC having an inclination of less than 10-degrees from the basemat floor and/or coolant channels of less than 4 inches in diameter, while maintaining minimum safety margins required by the Nuclear Regulatory Commission.

  7. Parallelization and automatic data distribution for nuclear reactor simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liebrock, L.M. [Liebrock-Hicks Research, Calumet, MI (United States)

    1997-07-01

    Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directly affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed.

  8. Lessons from Chernobyl.

    Science.gov (United States)

    Takamura, Noboru; Yamashita, Shunichi

    2011-01-01

    The Chernobyl disaster on April 26th, 1986, led to the emission of radioactive substances such as iodine-131 and radioactive cesium. As the Soviet Union did not control food distribution and intake, residents were exposed to high levels of internal radiation, leading to the internal radiation exposure of the thyroid gland by iodine-131. As a result, the number of people who had thyroid cancer increased drastically among those who had been under 15 years old at the time of the accident. The age predilection is about to move to 25 or older. However, there has been no scientific evidence of impacts for solid tumor other than thyroid cancer, leukemia, benign diseases, or inheritance including unborn babies. On the other hand, the accident was thought to have caused social unrest and mental damage which had far more impact than that caused by radiation exposure. In this paper, we would like to summarize the impacts on the health of the people in Chernobyl compared to those caused by the accident at the Fukushima Daiichi Nuclear Power Plant.

  9. Nuclear reactor for breeding U.sup.233

    Science.gov (United States)

    Bohanan, Charles S.; Jones, David H.; Raab, Jr., Harry F.; Radkowsky, Alvin

    1976-01-01

    A light-water-cooled nuclear reactor capable of breeding U.sup.233 for use in a light-water breeder reactor includes physically separated regions containing U.sup.235 fissile material and U.sup.238 fertile material and Th.sup.232 fertile material and Pu.sup.239 fissile material, if available. Preferably the U.sup.235 fissile material and U.sup.238 fertile material are contained in longitudinally movable seed regions and the Pu.sup.239 fissile material and Th.sup.232 fertile material are contained in blanket regions surrounding the seed regions.

  10. iDREAM: an industrial detector for nuclear reactor monitoring

    Science.gov (United States)

    Gribov, I. V.; Gromov, M. B.; Lukjanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2016-02-01

    Prototype of industrial reactor antineutrino detector iDREAM is dedicated for an experiment to demonstrate the possibility of remote monitoring of PWR reactor operational modes by neutrino method in real-time in order to avoid undeclared exposure modes for nuclear fuel and unauthorized removal of isotopes. The prototype detector was started up in 2014. To test the detector elements and components of electronics distilled water has been used as a target, which enables the use of Cerenkov radiation from cosmic muons as a physical signal. Also parallel measuring of the long-term stability has been doing for samples of liquid organic scintillator doped with gadolinium and synthesized by different methods

  11. Transient behavior of a nuclear reactor coupled to an accelerator

    Science.gov (United States)

    Sadineni, Suresh Babu

    Accelerator Driven Systems (ADS) present one of the most viable solutions for transmutation and effective utilization of nuclear fuel. Spent fuel from reactors will be partitioned to separate plutonium and other minor actinides to be transmuted in the ADS. Without the ADS, minor actinides must be stored at a geologic repository for long periods of time. One problem with ADS is understanding the control issues that arise when coupling an accelerator to a reactor. "ADSTRANS" was developed to predict the transient behavior of a nuclear reactor coupled to an accelerator. It was based on MCNPX, a radiation transport code developed at the LANL, and upon a numerical model of the neutron transport equation. MCNPX was used to generate the neutron "source" term that occurs when the accelerator is fired. ADSTRANS coupled MCNPX to a separate finite difference code that solved the transient neutron transport equation. A cylindrical axisymmetric reactor with steel shielding was considered for this analysis. Multiple neutron energy groups, neutron precursor groups and neutron poisons were considered. ENDF/B cross-section data obtained through MCNPX was also employed. The reactor was assumed to be isothermal and near zero power level. Unique features of this code are: (1) it predicts the neutron behavior of an ADS for different reactor geometry, material concentration, both electron and proton particle accelerators, and target material, (2) it develops input files for MCNPX to simulate neutron production, runs MCNPX, and retrieves information from the MCNPX output files. Neutron production predicted by MCNPX for a 20 MeV electron accelerator and lead target was compared with experimental data from the Idaho Accelerator Center and found to be in good agreement. The spatial neutron flux distribution and transient neutron flux in the reactor as predicted by the code were compared with analytical solutions and found to be in good agreement. Fuel burnup and poison buildup were also as

  12. Basic Model of a Control Assembly Drop in Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Radek BULÍN

    2013-06-01

    Full Text Available This paper is focused on the modelling and dynamic analysis of a nonlinear system representing a control assembly of the VVER 440/V213 nuclear reactor. A simple rigid body model intended for basic dynamic analyses is introduced. It contains the influences of the pressurized water and mainly the eects of possible control assembly contacts with guiding tubes inside the reactor. Another approach based on a complex multibody model is further described and the suitability of both modelling approaches is discussed.

  13. Installation of a new type of nuclear reactor in Mexico: advantages and disadvantages; Instalacion de un nuevo tipo de reactor nuclear en Mexico: ventajas y desventajas

    Energy Technology Data Exchange (ETDEWEB)

    Jurado P, M.; Martin del Campo M, C. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: mjp_green@hotmail.com

    2005-07-01

    In this work the main advantages and disadvantages of the installation of a new type of nuclear reactor different to the BWR type reactor in Mexico are presented. A revision of the advanced reactors is made that are at the moment in operation and of the advanced reactors that are in construction or one has already planned its construction in the short term. Specifically the A BWR and EPR reactors are analyzed. (Author)

  14. Thermohydraulic and nuclear modeling of natural fission reactors

    Science.gov (United States)

    Viggato, Jason Charles

    Experimental verification of proposed nuclear waste storage schemes in geologic repositories is not possible, however, a natural analog exists in the form of ancient natural reactors that existed in uranium-rich ores. Two billion years ago, the enrichment of natural uranium was high enough to allow a sustained chain reaction in the presence of water as a moderator. Several natural reactors occurred in Gabon, Africa and were discovered in the early 1970's. These reactors operated at low power levels for hundreds of thousands of years. Heated water generated from the reactors also leached uranium from the surrounding rock strata and deposited it in the reactor cores. This increased the concentration of uranium in the core over time and served to "refuel" the reactor. This has strong implications in the design of modern geologic repositories for spent nuclear fuel. The possibility of accidental fission events in man-made repositories exists and the geologic evidence from Oklo suggests how those events may progress and enhance local concentrations of uranium. Based on a review of the literature, a comprehensive code was developed to model the thermohydraulic behavior and criticality conditions that may have existed in the Oklo reactor core. A two-dimensional numerical model that incorporates modeling of fluid flow, temperatures, and nuclear fission and subsequent heat generation was developed for the Oklo natural reactors. The operating temperatures ranged from about 456 K to about 721 K. Critical reactions were observed for a wide range of concentrations and porosity values (9 to 30 percent UO2 and 10 to 20 percent porosity). Periodic operation occurred in the computer model prediction with UO2 concentrations of 30 percent in the core and 5 percent in the surrounding material. For saturated conditions and 30 percent porosity, the model predicted temperature transients with a period of about 5 hours. Kuroda predicted 3 to 4 hour durations for temperature transients

  15. Wildfires in Chernobyl-contaminated forests and risks to the population and the environment: a new nuclear disaster about to happen?

    Science.gov (United States)

    Evangeliou, Nikolaos; Balkanski, Yves; Cozic, Anne; Hao, Wei Min; Møller, Anders Pape

    2014-12-01

    Radioactive contamination in Ukraine, Belarus and Russia after the Chernobyl accident left large rural and forest areas to their own fate. Forest succession in conjunction with lack of forest management started gradually transforming the landscape. During the last 28 years dead wood and litter have dramatically accumulated in these areas, whereas climate change has increased temperature and favored drought. The present situation in these forests suggests an increased risk of wildfires, especially after the pronounced forest fires of 2010, which remobilized Chernobyl-deposited radioactive materials transporting them thousand kilometers far. For the aforementioned reasons, we study the consequences of different forest fires on the redistribution of (137)Cs. Using the time frequency of the fires that occurred in the area during 2010, we study three scenarios assuming that 10%, 50% and 100% of the area are burnt. We aim to sensitize the scientific community and the European authorities for the foreseen risks from radioactivity redistribution over Europe. The global model LMDZORINCA that reads deposition density of radionuclides and burnt area from satellites was used, whereas risks for the human and animal population were calculated using the Linear No-Threshold (LNT) model and the computerized software ERICA Tool, respectively. Depending on the scenario, whereas between 20 and 240 humans may suffer from solid cancers, of which 10-170 may be fatal. ERICA predicts insignificant changes in animal populations from the fires, whereas the already extreme radioactivity background plays a major role in their living quality. The resulting releases of (137)Cs after hypothetical wildfires in Chernobyl's forests are classified as high in the International Nuclear Events Scale (INES). The estimated cancer incidents and fatalities are expected to be comparable to those predicted for Fukushima. This is attributed to the fact that the distribution of radioactive fallout after the

  16. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    Energy Technology Data Exchange (ETDEWEB)

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  17. Synergistic smart fuel for in-pile nuclear reactor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.A.; Kotter, D.K. [Idaho National Laboratories, Idaho Falls (United States); Ali, R.A.; Garrett, S.L. [Penn State University, University Park, State College, PA 16801 (United States)

    2013-07-01

    The thermo-acoustic fuel rod sensor developed in this research has demonstrated a novel technique for monitoring the temperature within the core of a nuclear reactor or the temperature of the surrounding heat-transfer fluid. It uses the heat from the nuclear fuel to generate sustained acoustic oscillations whose frequency will be indicative of the temperature. Converting a nuclear fuel rod into this type of thermo-acoustic sensor simply requires the insertion of a porous material (stack). This sensor has demonstrated a synergy with the elevated temperatures that exist within the nuclear reactor using materials that have only minimal susceptibility to high-energy particle fluxes. When the sensor is in operation, the sound waves radiated from the fuel rod resonator will propagate through the surrounding cooling fluid. The frequency of these oscillations is directly correlated with an effective temperature within the fuel rod resonator. This device is self-powered and is operational even in case of total loss of power of the reactor.

  18. Optimization Algorithms for Nuclear Reactor Power Control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Min; Oh, Won Jong; Oh, Seung Jin; Chun, Won Gee; Lee, Yoon Joon [Jeju National University, Jeju (Korea, Republic of)

    2010-10-15

    One of the control techniques that could replace the present conventional PID controllers in nuclear plants is the linear quadratic regulator (LQR) method. The most attractive feature of the LQR method is that it can provide the systematic environments for the control design. However, the LQR approach heavily depends on the selection of cost function and the determination of the suitable weighting matrices of cost function is not an easy task, particularly when the system order is high. The purpose of this paper is to develop an efficient and reliable algorithm that could optimize the weighting matrices of the LQR system

  19. Application of probabilistic risk assessment in nuclear and environmental licensing processes of nuclear reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Jonatas F.C. da; Vasconcelos, Vanderley de; Mesquita, Amir Z., E-mail: jonatasfmata@yahoo.com.br, E-mail: vasconv@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The nuclear accident at Fukushima Daiichi, occurred in Japan in 2011, brought reflections, worldwide, on the management of nuclear and environmental licensing processes of existing nuclear reactors. One of the key lessons learned in this matter, is that the studies of Probabilistic Safety Assessment and Severe Accidents are becoming essential, even in the early stage of a nuclear development project. In Brazil, Brazilian Nuclear Energy Commission, CNEN, conducts the nuclear licensing. The organism responsible for the environmental licensing is Brazilian Institute of Environment and Renewable Natural Resources, IBAMA. In the scope of the licensing processes of these two institutions, the safety analysis is essentially deterministic, complemented by probabilistic studies. The Probabilistic Safety Assessment (PSA) is the study performed to evaluate the behavior of the nuclear reactor in a sequence of events that may lead to the melting of its core. It includes both probability and consequence estimation of these events, which are called Severe Accidents, allowing to obtain the risk assessment of the plant. Thus, the possible shortcomings in the design of systems are identified, providing basis for safety assessment and improving safety. During the environmental licensing, a Quantitative Risk Analysis (QRA), including probabilistic evaluations, is required in order to support the development of the Risk Analysis Study, the Risk Management Program and the Emergency Plan. This article aims to provide an overview of probabilistic risk assessment methodologies and their applications in nuclear and environmental licensing processes of nuclear reactors in Brazil. (author)

  20. Reconstructing the Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique database of air concentration and deposition measurements over Europe.

    Science.gov (United States)

    Evangeliou, Nikolaos; Hamburger, Thomas; Talerko, Nikolai; Zibtsev, Sergey; Bondar, Yuri; Stohl, Andreas; Balkanski, Yves; Mousseau, Timothy A; Møller, Anders P

    2016-09-01

    30 years after the Chernobyl Nuclear Power Plant (CNPP) accident, its radioactive releases still remain of great interest mainly due to the long half-lives of many radionuclides emitted. Observations from the terrestrial environment, which hosts radionuclides for many years after initial deposition, are important for health and environmental assessments. Furthermore, such measurements are the basis for validation of atmospheric transport models and can be used for constraining the still not accurately known source terms. However, although the "Atlas of cesium deposition on Europe after the Chernobyl accident" (hereafter referred to as "Atlas") has been published since 1998, less than 1% of the direct observations of (137)Cs deposition has been made publicly available. The remaining ones are neither accessible nor traceable to specific data providers and a large fraction of these data might have been lost entirely. The present paper is an effort to rescue some of the data collected over the years following the CNPP accident and make them publicly available. The database includes surface air activity concentrations and deposition observations for (131)I, (134)Cs and (137)Cs measured and provided by Former Soviet Union authorities the years that followed the accident. Using the same interpolation tool as the official authorities, we have reconstructed a deposition map of (137)Cs based on about 3% of the data used to create the Atlas map. The reconstructed deposition map is very similar to the official one, but it has the advantage that it is based exclusively on documented data sources, which are all made available within this publication. In contrast to the official map, our deposition map is therefore reproducible and all underlying data can be used also for other purposes. The efficacy of the database was proved using simulated activity concentrations and deposition of (137)Cs from a Langrangian and a Euleurian transport model.

  1. THE ROLE OF BELARUS NATIONAL COMMISSION ON RADIATION PROTECTION IN THE MINIMIZATION OF CONSEQUENCES OF THE ACCIDENT AT THE CHERNOBYL NUCLEAR POWER PLANT

    Directory of Open Access Journals (Sweden)

    A. N. Stozharov

    2016-01-01

    Full Text Available The Belarus National Commission on Radiation Protection was established in 1991, based on the former Byelorussian Soviet Socialist Republic Supreme Council Resolution. The Commission works out recommendations on the radiation protection to submit to the state authorities, state institutions under the Republic of Belarus Government and state research institutions, reviews and assesses scientific data in the field of radiation protection and makes suggestions in regards of the implementation of the achieved developments. The Commission engages leading scientists and practitioners from Belarus, involved in the provision of the radiation protection and safety in the state. The methodological cornerstone for the Commission activities was chosen to be the committment to the worldwide accepted approach of the nature and magnitude of the undertaken protective measures justification in the field of radiation safety. The Commission adheres the ALARA optimization criteria as the core of the aforementioned approach. The Commission has also submited to the Government a number of developments which were crucial in the highest level managerial decisions elaboration. The latter impacted directly the state tactics and strategy in the environmental, health and social consequences of the Chernobyl disaster minimization. Following the recommendations of the international institutions (ICRP, IAEA, UNSCEAR, FAO/WHO, developments of the colleagues in the Russian Federation, Ukraine and the local regional experience, the Commission proceeds with the expert observation of the ongoing protective measures to reduce the radiation impact and population exposure resulted from the Chernobyl accident, is actively occupied in the radiation safety ensuring at the Belarussian nuclear power plant being under construction, much contributes to elaboration of the new version of the state Law “On Radiation Protection of Population” and other regulatory documents.

  2. Sub-Critical Nuclear Reactor Based on FFAG-Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Seok; Kang, Hung Sik; Lee, Tae Yeon [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    2011-10-15

    After the East-Japan earthquake and the subsequent nuclear disaster, the anti-nuclear mood has been wide spread. It is very unfortunate both for nuclear science community and for the future of mankind, which is threatened by two serious challenges, the global warming caused by the greenhouse effect and the shortage of energy cause by the petroleum exhaustion. While the nuclear energy seemed to be the only solution to these problems, it is clear that it has its own problems, one of which broke out so strikingly in Japan. There are also other problems such as the radiotoxic nuclear wastes that survive up to even tens of thousands years and the limited reserves of Uranium. To solve these problems of nuclear fission energy, accelerator-based sub-critical nuclear reactor was once proposed. (Its details will be explained below.) First of all, it is safe in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of the accelerator-driven nuclear reactor was proposed long time ago, it has not been utilized yet first by technical difficulty and economical reasons. The accelerator-based system needs 1 GeV, 10 MW power proton accelerator. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. However, recent technologies make it possible to realize that scale accelerator by a reasonable size. That is the fixed-field alternating gradient (FFAG) accelerator that is described in this article

  3. Neutron analysis of the fuel of high temperature nuclear reactors; Analisis neutronico del combustible de reactores nucleares de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Bastida O, G. E.; Francois L, J. L., E-mail: gbo729@yahoo.com.mx [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    In this work a neutron analysis of the fuel of some high temperature nuclear reactors is presented, studying its main features, besides some alternatives of compound fuel by uranium and plutonium, and of coolant: sodium and helium. For this study was necessary the use of a code able to carry out a reliable calculation of the main parameters of the fuel. The use of the Monte Carlo method was convenient to simulate the neutrons transport in the reactor core, which is the base of the Serpent code, with which the calculations will be made for the analysis. (Author)

  4. A probabilistic safety analysis of incidents in nuclear research reactors.

    Science.gov (United States)

    Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi

    2012-06-01

    This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.

  5. Software reliability and safety in nuclear reactor protection systems

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.D. [Lawrence Livermore National Lab., CA (United States)

    1993-11-01

    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor.

  6. Passive heat-transfer means for nuclear reactors. [LMFBR

    Science.gov (United States)

    Burelbach, J.P.

    1982-06-10

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  7. ZEEP: Canada's first nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.E.; Okazaki, A. [retired, Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2015-09-15

    In 1905 Albert Einstein published his historic paper on special relativity, which contained the equation E=mc 2. The significance of this mass-energy relationship became evident with the discovery of nuclear fission in 1939, when it was realized that large amounts of energy would be released in a fission chain reaction. Canadian scientists were involved in this field from the beginning and their efforts resulted in the startup in September 1945 of the ZEEP reactor at Chalk River, the first reactor to go critical outside the USA. In this paper we recall some of the events that led to the construction of ZEEP, and describe the role it played in the development of the Canadian nuclear energy program. (author)

  8. Systems and methods for dismantling a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Heim, Robert R; Adams, Scott Ryan; Cole, Matthew Denver; Kirby, William E; Linnebur, Paul Damon

    2014-10-28

    Systems and methods for dismantling a nuclear reactor are described. In one aspect the system includes a remotely controlled heavy manipulator ("manipulator") operatively coupled to a support structure, and a control station in a non-contaminated portion of a workspace. The support structure provides the manipulator with top down access into a bioshield of a nuclear reactor. At least one computing device in the control station provides remote control to perform operations including: (a) dismantling, using the manipulator, a graphite moderator, concrete walls, and a ceiling of the bioshield, the manipulator being provided with automated access to all internal portions of the bioshield; (b) loading, using the manipulator, contaminated graphite blocks from the graphite core and other components from the bioshield into one or more waste containers; and (c) dispersing, using the manipulator, dust suppression and contamination fixing spray to contaminated matter.

  9. Fission-Produced (99)Mo Without a Nuclear Reactor.

    Science.gov (United States)

    Youker, Amanda J; Chemerisov, Sergey D; Tkac, Peter; Kalensky, Michael; Heltemes, Thad A; Rotsch, David A; Vandegrift, George F; Krebs, John F; Makarashvili, Vakho; Stepinski, Dominique C

    2017-03-01

    (99)Mo, the parent of the widely used medical isotope (99m)Tc, is currently produced by irradiation of enriched uranium in nuclear reactors. The supply of this isotope is encumbered by the aging of these reactors and concerns about international transportation and nuclear proliferation. Methods: We report results for the production of (99)Mo from the accelerator-driven subcritical fission of an aqueous solution containing low enriched uranium. The predominately fast neutrons generated by impinging high-energy electrons onto a tantalum convertor are moderated to thermal energies to increase fission processes. The separation, recovery, and purification of (99)Mo were demonstrated using a recycled uranyl sulfate solution. Conclusion: The (99)Mo yield and purity were found to be unaffected by reuse of the previously irradiated and processed uranyl sulfate solution. Results from a 51.8-GBq (99)Mo production run are presented.

  10. Advanced Space Nuclear Reactors from Fiction to Reality

    Science.gov (United States)

    Popa-Simil, L.

    The advanced nuclear power sources are used in a large variety of science fiction movies and novels, but their practical development is, still, in its early conceptual stages, some of the ideas being confirmed by collateral experiments. The novel reactor concept uses the direct conversion of nuclear energy into electricity, has electronic control of reactivity, being surrounded by a transmutation blanket and very thin shielding being small and light that at its very limit may be suitable to power an autonomously flying car. It also provides an improved fuel cycle producing minimal negative impact to environment. The key elements started to lose the fiction attributes, becoming viable actual concepts and goals for the developments to come, and on the possibility to achieve these objectives started to become more real because the theory shows that using the novel nano-technologies this novel reactor might be achievable in less than a century.

  11. Inception and evolution of Oklo natural nuclear reactors

    Science.gov (United States)

    Bentridi, Salah-Eddine; Gall, Benoît; Gauthier-Lafaye, François; Seghour, Abdeslam; Medjadi, Djamel-Eddine

    2011-11-01

    The occurrence of more than 15 natural nuclear Reactor Zones (RZ) in a geological environment remains a mystery even 40 years after their discovery. The present work gives for the first time an explanation of the chemical and physical processes that caused the start-up of the fission reactions with two opposite processes, uranium enrichments and progressive impoverishment in 235U. Based on Monte-Carlo neutronics simulations, a solution space was defined taking into account realistic combinations of relevant parameters acting on geological conditions and neutron transport physics. This study explains criticality occurrence, operation, expansion and end of life conditions of Oklo natural nuclear reactors, from the smallest to the biggest ones.

  12. Temperature measuring analysis of the nuclear reactor fuel assembly

    Science.gov (United States)

    F., Urban; Ľ., Kučák; Bereznai, J.; Závodný, Z.; Muškát, P.

    2014-08-01

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuel assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.

  13. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option nuclear reactor

    CERN Document Server

    Int. At. Energy Agency, Wien

    2002-01-01

    This document describes the specific dispositions relative to the nuclear reactor domain, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the nuclear reactor and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  14. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Science.gov (United States)

    2010-01-01

    ... designed for inserting or removing fuel in an operating nuclear reactor. (3) Complete reactor control rod... contain fuel elements and the primary coolant in a nuclear reactor at an operating pressure in excess of... diffuser plates especially designed or prepared for use in a nuclear reactor. (8) Reactor control......

  15. Towards an efficient multiphysics model for nuclear reactor dynamics

    Directory of Open Access Journals (Sweden)

    Obaidurrahman K.

    2015-01-01

    Full Text Available Availability of fast computer resources nowadays has facilitated more in-depth modeling of complex engineering systems which involve strong multiphysics interactions. This multiphysics modeling is an important necessity in nuclear reactor safety studies where efforts are being made worldwide to combine the knowledge from all associated disciplines at one place to accomplish the most realistic simulation of involved phenomenon. On these lines coupled modeling of nuclear reactor neutron kinetics, fuel heat transfer and coolant transport is a regular practice nowadays for transient analysis of reactor core. However optimization between modeling accuracy and computational economy has always been a challenging task to ensure the adequate degree of reliability in such extensive numerical exercises. Complex reactor core modeling involves estimation of evolving 3-D core thermal state, which in turn demands an expensive multichannel based detailed core thermal hydraulics model. A novel approach of power weighted coupling between core neutronics and thermal hydraulics presented in this work aims to reduce the bulk of core thermal calculations in core dynamics modeling to a significant extent without compromising accuracy of computation. Coupled core model has been validated against a series of international benchmarks. Accuracy and computational efficiency of the proposed multiphysics model has been demonstrated by analyzing a reactivity initiated transient.

  16. Testing piezoelectric sensors in a nuclear reactor environment

    Science.gov (United States)

    Reinhardt, Brian T.; Suprock, Andy; Tittmann, Bernhard

    2017-02-01

    Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this work piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65×1020 nf/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 × 1020 nf/cm2, Zinc Oxide is capable of transduction up to at least 6.27 × 1020 nf/cm2, and Aluminum Nitride is capable of transduction up to at least 8.65 × 1020 nf/cm2.

  17. Neutron physics for nuclear reactors unpublished writings by Enrico Fermi

    CERN Document Server

    Fermi, Enrico; Pisanti, O

    2010-01-01

    This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on

  18. A Nuclear Reactor Transient Methodology Based on Discrete Ordinates Method

    Directory of Open Access Journals (Sweden)

    Shun Zhang

    2014-01-01

    Full Text Available With the rapid development of nuclear power industry, simulating and analyzing the reactor transient are of great significance for the nuclear safety. The traditional diffusion theory is not suitable for small volume or strong absorption problem. In this paper, we have studied the application of discrete ordinates method in the numerical solution of space-time kinetics equation. The fully implicit time integration was applied and the precursor equations were solved by analytical method. In order to improve efficiency of the transport theory, we also adopted some advanced acceleration methods. Numerical results of the TWIGL benchmark problem presented demonstrate the accuracy and efficiency of this methodology.

  19. Expert system for online surveillance of nuclear reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Gross, K.C.; Singer, R.M.; Humenik, K.E.

    1992-12-31

    This report describes an expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  20. Using ORIGEN2 to Predict Nuclear Reactor Fuel Compositions.

    Science.gov (United States)

    1988-03-01

    Although the principal use of ORIGEN2 is to calculate the isotopic composition of nuclear materials, the following parameters may also be computed with...V’v inal vector by a second vector before storing in the destination vector. BUP: Burnup calculation . Identifies the beginning and end of a series of...has no effect on the accuracy of the calculations . Pressurized Water Reactor (PWR), 33 GWd/MTIHM The ORIGEN2 PWR models are based on a Westinghouse

  1. Determination of 36Cl in nuclear waste from reactor decommissioning

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Frøsig, Lars; Nielsen, Sven Poul

    2007-01-01

    An analytical method for the determination of Cl-36 in nuclear waste such as graphite, heavy concrete, steel, aluminum, and lead was developed. Several methods were investigated for decomposing the samples. AgCl precipitation was used to separate Cl-36 from the matrix elements, followed by ion...... of this analytical method for Cl-36 is 14 mBq. The method has been used to determine Cl-36 in heavy concrete, aluminum, and graphite from the Danish DR-2 research reactor....

  2. Neutron dose estimation in a zero power nuclear reactor

    Science.gov (United States)

    Triviño, S.; Vedelago, J.; Cantargi, F.; Keil, W.; Figueroa, R.; Mattea, F.; Chautemps, A.; Santibañez, M.; Valente, M.

    2016-10-01

    This work presents the characterization and contribution of neutron and gamma components to the absorbed dose in a zero power nuclear reactor. A dosimetric method based on Fricke gel was implemented to evaluate the separation between dose components in the mixed field. The validation of this proposed method was performed by means of direct measurements of neutron flux in different positions using Au and Mg-Ni activation foils. Monte Carlo simulations were conversely performed using the MCNP main code with a dedicated subroutine to incorporate the exact complete geometry of the nuclear reactor facility. Once nuclear fuel elements were defined, the simulations computed the different contributions to the absorbed dose in specific positions inside the core. Thermal/epithermal contributions of absorbed dose were assessed by means of Fricke gel dosimetry using different isotopic compositions aimed at modifying the sensitivity of the dosimeter for specific dose components. Clear distinctions between gamma and neutron capture dose were obtained. Both Monte Carlo simulations and experimental results provided reliable estimations about neutron flux rate as well as dose rate during the reactor operation. Simulations and experimental results are in good agreement in every positions measured and simulated in the core.

  3. THE PREVENTION PROGRAMS OF PHYSICAL REHABILITATION FOR CHERNOBYL DISASTER SURVIVORS

    Directory of Open Access Journals (Sweden)

    Korobeynikov G.V.

    2013-01-01

    Full Text Available The purpose of the study: approbation of the prevention program of physical rehabilitation for Chernobyl disaster survivors in lifestyle aspects. Sixty persons who were disaster survivors and workers of Chernobyl Nuclear Power Plant aged 32-60 have rehabilitation during 21 days. The complex of training prevention programs of physical and psycho-emotional rehabilitation methods was elaborated. The study of efficacy of training prevention programs among Chernobyl disaster survivors. The results showed the improvement of psycho-emotional status and normalization of cardiovascular vegetative regulation after training prevention programs in Chernobyl disasters survivors. The studies show that the preventive programs for Chernobyl disaster survivors in lifestyle aspects had the high effect. This displays the decrease of tempo of aging and the improving of physical and psychological health status of Chernobyl disaster survivors during preventive course.

  4. DYNAMICS OF THE RADIOACTIVE POLLUTION IN THE SURFACE LAYER OF SOILS IN BULGARIA TWENTY YEARS AFTER THE CHERNOBYL NUCLEAR POWER PLANT ACCIDENT

    Directory of Open Access Journals (Sweden)

    I YORDANOVA

    2008-05-01

    Full Text Available The twenty years period past after the contamination with radionuclides in 1986, as a result of the accident in the Chernobyl’s NPP, allowed the accumulation of rich data base for the radiation status of the soils in Bulgaria. Objective of many years studies were virgin soils from high mountain areas, hilly and flat (the region of Kozlodouy NPP and the Danube river valley. Ceasium-137 and strontium-90 were the main men-made radionuclides detected in the examined Bulgarian soils, few years after the accident. The content of ceasium-137 and strontium-90 in the soils from high mountain areas (Rodopa and Rila mountains is several times higher then that in the soils from Northern Bulgaria and Sofia field. High non-homogeneity in the pollution within small areas (scores of square meters even was determined. No significant horizontal redistribution was observed for the period after 1986. The tendency of changes in the radioactive status of the soils in Bulgaria after the accident at the Chernobyl Nuclear Power Plant is not due to trans-border transfer of radioactive materials or to any breakdown at the Kosloduy Nuclear Power Plant.

  5. Unusual nuclide concentrations in air after the 1986 Chernobyl event

    Energy Technology Data Exchange (ETDEWEB)

    Faller, S.H.; Kuroda, P.K. (Environmental Protection Agency, Las Vegas, NV (USA). Environmental Monitoring Systems Lab.)

    1990-01-01

    Concentrations of 1.0-year {sup 106}Ru, 2.8-year {sup 125}Sb, 2.1-year {sup 134}Cs, and 30-year {sup 137}Cs were measured for a total of 39 air filter samples collected at Chico, California, and Reno, Nevada, during the month of May 1986. Radioactive debris in which {sup 106}Ru, {sup 125}Sb, and {sup 134}Cs were enriched relative to {sup 137}Cs reached the west coast of the United States during the first week of May 1986. The air mass that carried this debris seems to have circled the world and reached the west coast for the second time 3 weeks later during the last week of May 1986. Results obtained in this study indicate that the initial release of nuclear debris from the Chernobyl reactor took place in a manner similar to the atmospheric injection of radionuclides from a nuclear weapon's test. (orig.).

  6. The Dynamic Monte Carlo Method for Transient Analysis of Nuclear Reactors

    NARCIS (Netherlands)

    Sjenitzer, B.L.

    2013-01-01

    In this thesis a new method for the analysis of power transients in a nuclear reactor is developed, which is more accurate than the present state-of-the-art methods. Transient analysis is important tool when designing nuclear reactors, since they predict the behaviour of a reactor during changing co

  7. Design and axial optimization of nuclear fuel for BWR reactors; Diseno y optimizacion axial de combustible nuclear para reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Garcia V, M.A

    2006-07-01

    In the present thesis, the modifications made to the axial optimization system based on Tabu Search (BT) for the axial design of BWR fuel type are presented, developed previously in the Nuclear Engineering Group of the UNAM Engineering Faculty. With the modifications what is mainly looked is to consider the particular characteristics of the mechanical design of the GE12 fuel type, used at the moment in the Laguna Verde Nucleo electric Central (CNLV) and that it considers the fuel bars of partial longitude. The information obtained in this thesis will allow to plan nuclear fuel reloads with the best conditions to operate in a certain cycle guaranteeing a better yield and use in the fuel burnt, additionally people in charge in the reload planning will be favored with the changes carried out to the system for the design and axial optimization of nuclear fuel, which facilitate their handling and it reduces their execution time. This thesis this developed in five chapters that are understood in the following way in general: Chapter 1: It approaches the basic concepts of the nuclear energy, it describes the physical and chemical composition of the atoms as well as that of the uranium isotopes, the handling of the uranium isotope by means of the nuclear fission until arriving to the operation of the nuclear reactors. Chapter 2: The nuclear fuel cycle is described, the methods for its extraction, its conversion and its enrichment to arrive to the stages of the nuclear fuel management used in the reactors are described. Beginning by the radial design, the axial design and the core design of the nuclear reactor related with the fuel assemblies design. Chapter 3: the optimization methods of nuclear fuel previously used are exposed among those that are: the genetic algorithms method, the search methods based on heuristic rules and the application of the tabu search method, which was used for the development of this thesis. Chapter 4: In this part the used methodology to the

  8. Pellet bed reactor concept for nuclear electric propulsion

    Science.gov (United States)

    El-Genk, Mohamed S.; Morley, Nicholas J.; Juhasz, Albert

    1993-01-01

    For Nuclear Electric Propulsion (NEP) applications, gas cooled nuclear reactors with dynamic energy conversion systems offer high specific power and low total mass. This paper describes the Pellet Bed Reactor (PeBR) concept for potential NEP missions to Mars. The helium cooled, 75-80 MWt PeBR, consists of a single annular fuel region filled with a randomly packed bed of spherical fuel pellets, is designed for multiple starts, and offers unique safety and operation features. Each fuel pellet, about 8-10 mm in diameter, is composed of hundreds of TRISO type fuel microspheres embedded in a graphite matrix for a full retention of fission products. To eliminate the likelihood of a single-point failure, the annular core of the PeBR is divided into three 120° sectors. Each sector is self contained and separate and capable of operating and being cooled on its own and in cooperation with either one or two other sectors. Each sector is coupled to a separate, 5 MWe Closed Brayton Cycle (CBC) energy conversion unit and is subcritical for safe handling and launching. In the event of a failure of the cooling system of a core sector, the reactor power level may be reduced, allowing adjacent sectors to convect the heat away using their own cooling system, thus maintaining reactor operation. Also, due to the absence of an internal core structure in the PeBR core, fueling of the reactor can easily be performed either at the launch facility or in orbit, and refueling can be accomplished in orbit as needed to extend the power system lifetime

  9. The MAUS nuclear space reactor with ion propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, Enrico [DINCE - Dipartimento di Ingegneria Nucleare e Conversioni Energetiche, University of Rome ' La Sapienza' , C.so V. Emanuele II, 244, 00186 Rome (Italy)]. E-mail: mainardi@frascati.enea.it

    2006-06-01

    MAUS (Moltiplicatore Avanzato Ultracompatto Spaziale) is a nuclear reactor concept design capable to ensure a reliable, long-lasting, low-mass, compact energy supply needed for advanced, future space missions. The exploration of the solar system and the space beyond requires the development of nuclear energy generators for supplying electricity to space-bases, spacecrafts, probes or satellites, as well as for propelling ships in long space missions. For propulsion, the MAUS nuclear reactor could be used to power electric ion drive engines. An ion engine is able to build up to very high velocities, far greater than chemical propulsion systems, but has high power and long service requirements. The MAUS concept is described, together with the ion propulsion engine and together with the reference thermoionic process used to convert the thermal power into electricity. The design work has been performed at the Nuclear Engineering and Energy Conversion Department of the University of Rome 'La Sapienza' starting from 1992 on an issue submitted by the Italian Space Agency (ASI), in cooperation with the research laboratories of ENEA.

  10. The Maus nuclear space reactor with ion propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Enrico Mainardi [DINCE - Dipartimento di Ingegneria Nucleare e Conversioni Energetiche, University of Rome ' La Sapienza' , C.so V. EmanueleII, 244, 00186 Roma (Italy)

    2006-07-01

    MAUS (Moltiplicatore Avanzato Ultracompatto Spaziale) is a nuclear reactor concept design capable to ensure a reliable, long lasting, low mass, compact energy supply needed for advanced, future space missions. The exploration of the solar system and the space beyond requires the development of nuclear energy generators for supplying electricity to space-bases, spacecrafts, probes or satellites, as well as for propelling ships in long space missions. For propulsion, the MAUS nuclear reactor could be used to power electric ion drive engines. An ion engine is able to build up to very high velocities, far greater than chemical propulsion systems, but has high power and long service requirements. The MAUS concept is described, together with the ion propulsion engine and together with the reference thermionic process used to convert the thermal power into electricity. The design work has been performed at the Nuclear Engineering and Energy Conversion Department of the University of Rome 'La Sapienza' starting from 1992 on an issue submitted by the Italian Space Agency (ASI), in cooperation with the research laboratories of ENEA. (author)

  11. Investigation of Thermal Hydraulics of a Nuclear Reactor Moderator

    Science.gov (United States)

    Sarchami, Araz

    A three-dimensional numerical modeling of the thermo hydraulics of Canadian Deuterium Uranium (CANDU) nuclear reactor is conducted. The moderator tank is a Pressurized heavy water reactor which uses heavy water as moderator in a cylindrical tank. The main use of the tank is to bring the fast neutrons to the thermal neutron energy levels. The moderator tank compromises of several bundled tubes containing nuclear rods immersed inside the heavy water. It is important to keep the water temperature in the moderator at sub-cooled conditions, to prevent potential failure due to overheating of the tubes. Because of difficulties in measuring flow characteristics and temperature conditions inside a real reactor moderator, tests are conducted using a scaled moderator in moderator test facility (MTF) by Chalk River Laboratories of Atomic Energy of Canada Limited (CRL, AECL). MTF tests are conducted using heating elements to heat tube surfaces. This is different than the real reactor where nuclear radiation is the source of heating which results in a volumetric heating of the heavy water. The data recorded inside the MTF tank have shown levels of fluctuations in the moderator temperatures and requires in depth investigation of causes and effects. The purpose of the current investigation is to determine the causes for, and the nature of the moderator temperature fluctuations using three-dimensional simulation of MTF with both (surface heating and volumetric heating) modes. In addition, three dimensional simulation of full scale actual moderator tank with volumetric heating is conducted to investigate the effects of scaling on the temperature distribution. The numerical simulations are performed on a 24-processor cluster using parallel version of the FLUENT 12. During the transient simulation, 55 points of interest inside the tank are monitored for their temperature and velocity fluctuations with time.

  12. Global and local cancer risks after the Fukushima Nuclear Power Plant accident as seen from Chernobyl: a modeling study for radiocaesium ((134)Cs &(137)Cs).

    Science.gov (United States)

    Evangeliou, Nikolaos; Balkanski, Yves; Cozic, Anne; Møller, Anders Pape

    2014-03-01

    The accident at the Fukushima Daiichi Nuclear Power Plant (NPP) in Japan resulted in the release of a large number of fission products that were transported worldwide. We study the effects of two of the most dangerous radionuclides emitted, (137)Cs (half-life: 30.2years) and (134)Cs (half-life: 2.06years), which were transported across the world constituting the global fallout (together with iodine isotopes and noble gasses) after nuclear releases. The main purpose is to provide preliminary cancer risk estimates after the Fukushima NPP accident, in terms of excess lifetime incident and death risks, prior to epidemiology, and compare them with those occurred after the Chernobyl accident. Moreover, cancer risks are presented for the local population in the form of high-resolution risk maps for 3 population classes and for both sexes. The atmospheric transport model LMDZORINCA was used to simulate the global dispersion of radiocaesium after the accident. Air and ground activity concentrations have been incorporated with monitoring data as input to the LNT-model (Linear Non-Threshold) frequently used in risk assessments of all solid cancers. Cancer risks were estimated to be small for the global population in regions outside Japan. Women are more sensitive to radiation than men, although the largest risks were recorded for infants; the risk is not depended on the sex at the age-at-exposure. Radiation risks from Fukushima were more enhanced near the plant, while the evacuation measures were crucial for its reduction. According to our estimations, 730-1700 excess cancer incidents are expected of which around 65% may be fatal, which are very close to what has been already published (see references therein). Finally, we applied the same calculations using the DDREF (Dose and Dose Rate Effectiveness Factor), which is recommended by the ICRP, UNSCEAR and EPA as an alternative reduction factor instead of using a threshold value (which is still unknown). Excess lifetime cancer

  13. Advanced nuclear reactor public opinion project. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  14. Plutonium, {sup 137}Cs and {sup 90}Sr in selected invertebrates from some areas around Chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mietelski, Jerzy W., E-mail: jerzy.mietelski@ifj.edu.p [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow (Poland); Maksimova, Svetlana, E-mail: soilzool@biobel.bas-net.b [Institute of Zoology, National Academy of Sciences, Akademicheskaya 27, 220072 Minsk (Belarus); Szwalko, Przemyslaw [Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Slawkowska 17, 31-016 Krakow (Poland); Wnuk, Katarzyna [Holycross Cancer Center, Department on Nuclear Medicine, Artwinskiego 3, 25-734 Kielce (Poland); Zagrodzki, Pawel [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow (Poland); Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow (Poland); Blazej, Sylwia; Gaca, Pawel; Tomankiewicz, Ewa [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow (Poland); Orlov, Olexandr, E-mail: station@zt.ukrpack.ne [Poleskiy Branch of Ukrainian Scientific Research Institute of Forestry and Agro-Forest-Amelioration, Prospect Mira 38, Zhytomyr 10004 (Ukraine)

    2010-06-15

    Results are presented for {sup 137}Cs, {sup 90}Sr and plutonium activity concentrations in more than 20 samples of terrestrial invertebrates, including species of beetles, ants, spiders and millipedes, collected in the highly contaminated area of the Chernobyl exclusion zone. The majority of samples were collected in Belarus, with some also collected in the Ukraine. Three other samples were collected in an area of lower contamination. Results show that seven samples exceed an activity concentration of 100 kBq/kg (ash weight - a.w.) for {sup 137}Cs. The maximum activity concentration for this isotope was 1.52 +- 0.08 MBq/kg (a.w.) determined in ants (Formica cynerea). Seven results for {sup 90}Sr exceeded 100 kBq/kg (a.w.), mostly for millipedes. Relatively high plutonium activity concentrations were found in some ants and earth-boring dung beetles. Analyses of activity ratios showed differences in transfer of radionuclides between species. To reveal the correlation structure of the multivariate data set, the Partial Least-Squares method (PLS) was used. Results of the PLS model suggest that high radiocesium activity concentrations in animal bodies can be expected mainly for relatively small creatures living on the litter surface. In contrast, high strontium activity concentrations can be expected for creatures which conduct their lives within litter, having mixed trophic habits and a moderate lifespan. No clear conclusions could be made for plutonium.

  15. Comparative radiation impact on biota and man in the area affected by the accident at the Chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, S.V. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation) and International Atomic Energy Agency, Agency' s Laboratories, Seibersdorf A-2444 (Austria)]. E-mail: s.fesenko@iaea.org; Alexakhin, R.M. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Geras' kin, S.A. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Sanzharova, N.I. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Spirin, Ye.V. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Spiridonov, S.I. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Gontarenko, I.A. [Russian Institute of Agricultural Radiology and Agroecology, Kievskoe shosse, Kaluga region, Obninsk 249020 (Russian Federation); Strand, P. [Norwegian Radiation Protection Authority, Oesteras (Norway)

    2005-07-01

    A methodological approach for a comparative assessment of ionising radiation effects on man and non-human species, based on the use of Radiation Impact Factor (RIF) - ratios of actual exposure doses to biota species and man to critical dose is described. As such doses, radiation safety standards limiting radiation exposure of man and doses at which radiobiological effects in non-human species were not observed after the Chernobyl accident, were employed. For the study area within the 30 km ChNPP zone dose burdens to 10 reference biota groups and the population (with and without evacuation) and the corresponding RIFs were calculated. It has been found that in 1986 (early period after the accident) the emergency radiation standards for man do not guarantee adequate protection of the environment, some species of which could be affected more than man. In 1991 RIFs for man were considerably (by factor of 20.0-1.1 x 10{sup 5}) higher compared with those for selected non-human species. Thus, for the long term after the accident radiation safety standards for man are shown to ensure radiation safety for biota as well.

  16. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment

    Science.gov (United States)

    Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T. A.; Møller, A. P.; Kireev, S. I.

    2016-05-01

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y-1 in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray.

  17. Commercial US nuclear reactors and waste: the current status

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Robinson, J.V.

    1980-09-01

    Between March 1 and June 15, 1980, the declared size of the commercial light waste reactor (LWR) nuclear power industry in the US has decreased another 9 GWe. For the presently declared size: the 165 declared reactors will peak at a capacity of 153 GWe in 2001 and will consume about 870,000 MTU as enrichment feed; the theoretical rate of enrichment requirements will peak at about 19,000,000 SWUs/y in the year 2014; as few as two repositories each with capacity equivalent to 100,000 MTU would hold the waste; and predisposal storage reactor basins and AFRs (away-from-reactor basins) would peak at <85,000 MTU in the year 2020 if the two respositories were commissioned in the years 1997 and 2020. It should be noted that the number of declared LWRs has dropped from 226 on December 31, 1974 to 165 as of this writing. The oil equivalent of the energy loss, assuming a 50% efficiency in use as in cars, is 17,000 million barrels. This is about 10 years of the current rate of US consumption of OPEC oil.

  18. Light weight space power reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H.; Mughabghab, S.; Lazareth, O.; Perkins, K.; Schmidt, E.; Powell, J.R.

    1991-01-01

    A Nuclear Electric Propulsion (NEP) unit capable of propelling a manned vehicle to MARS will be required to have a value of {alpha} (kg/kWe) which is less than five. In order to meet this goal the reactor mass, and thus its contribution to the value of {alpha} will have to be minimized. In this paper a candidate for such a reactor is described. It consists of a gas cooled Particle Bed Reactor (PBR), with specially chosen materials which allow it to operate at an exit temperature of approximately 2000 K. One of the unique features of a PBR is the direct cooling of particulate fuel by the working fluid. This feature allows for high power densities, highest possible gas exit temperatures, for a given fuel temperature and because of the thin particle bed a low pressure drop. The PBR's described in this paper will have a ceramic moderator (Be{sub 2}C), ZrC coated fuel particles and a carbon/carbon hot frit. All the reactors will be designed with sufficient fissile loading to operate at full power for seven years. The burn up possible with particulate fuel is approximately 30%--50%. These rector designs achieve a value of {alpha} less than unity in the power range of interest (5 MWe). 5 refs., 3 figs.

  19. Development of an automated core model for nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mosteller, R.D.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop an automated package of computer codes that can model the steady-state behavior of nuclear-reactor cores of various designs. As an added benefit, data produced for steady-state analysis also can be used as input to the TRAC transient-analysis code for subsequent safety analysis of the reactor at any point in its operating lifetime. The basic capability to perform steady-state reactor-core analysis already existed in the combination of the HELIOS lattice-physics code and the NESTLE advanced nodal code. In this project, the automated package was completed by (1) obtaining cross-section libraries for HELIOS, (2) validating HELIOS by comparing its predictions to results from critical experiments and from the MCNP Monte Carlo code, (3) validating NESTLE by comparing its predictions to results from numerical benchmarks and to measured data from operating reactors, and (4) developing a linkage code to transform HELIOS output into NESTLE input.

  20. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and/or Mars. These reactors require robust automatic control systems using low mass, rapid...

  1. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and Mars. These reactors require robust automatic control systems using low mass, rapid...

  2. Human metabolism and ecological transfer of radioactive caesium. Comparative studies of Chernobyl debris and nuclear weapons fallout, in southern Sweden and in Bryansk, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Raeaef, C.L

    2000-05-01

    The whole-body content of radiocaesium was measured in a South Swedish urban group of people residing in the city of Lund between 1960 and 1994. The results from the survey have been analysed in order to estimate the ecological half time, T{sub eff,eco} of fallout radiocaesium, and the aggregate transfer from ground deposition to man in the region. After 1987, the biological half times, T{sub e} of {sup 137}Cs and {sup 40}K in man were also determined in the reference group through whole-body content measurements in combination with 24-hour urine sampling. Relationships between 24-hour urinary excretion and body burden of {sup 137}Cs in the group together with data from the literature were then applied to urine samples collected in 1994 and 1995 from adult subjects living in the highly contaminated region of Bryansk, Russia, in order to estimate their average body burden of {sup 137}Cs. The equivalent biological half-time for {sup 137}Cs in females of the Lund reference group was, on average 66{+-}3 d, which agrees with other findings, whereas the value for the males, 81{+-}4 d, was, on average, significantly lower than what is found in the literature. This is partly explained by the elevated mean age and relatively low mean body muscle mass of the males investigated. The {sup 137}Cs from nuclear weapons tests in the 1950s and 1960s still gave a significant contribution to the total {sup 137}Cs levels in man during the post-Chernobyl study period (1987-1994). About 10% of the peak post-Chernobyl concentration level of {sup 137}Cs (3.5-4 Bq/kg) in 1987, was attributed to pre-Chernobyl {sup 137}Cs. The effective ecological half-time for {sup 137}Cs from Chernobyl was found to be 1.8{+-}0.2 y. The time-integrated aggregate transfer of {sup 137}Cs from ground deposition to mean activity concentration in man was estimated to be 0.4 Bq/kg/kBq/m{sup 2}. These values may be compared with an effective ecological half-time of 1.3 years found in the Lund reference group in

  3. Qualitative diagnosis for transients analysis on nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lorre, J.P.; Dorlet, E.; Evrard, J.M.

    1995-12-31

    One of the major aims of an intelligent monitoring system, is the supervision task which assist the operator in understanding what occurs on a process. Failures hypotheses must be located and the inferring process must be explained. This paper demonstrate a second generation expert system (SEXTANT) decided to the transients analysis on PWR nuclear reactors. This system detects failures by simulating the process with a numerical model. A diagnosis module uses an even graph built from a causal graph model of the plant to generate hypotheses, and a numerical model to validate these hypotheses. Hypotheses are stored into scenarios which are concurrent possible interpretations of the process evolution. The approach is illustrated by an application for the analysis of the house load operation on a pressurized water reactor. (authors). 9 refs., 10 figs.

  4. SIMODIS - a software package for simulating nuclear reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine; Borges, Eduardo M. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados. E-mail: guimarae@ieav.cta.br; Oliveira Junior, Nilton S.; Santos, Glauco S.; Bueno, Mariana F. [Universidade Bras Cubas, Mogi das Cruzes, SP (Brazil)

    2000-07-01

    In this paper it is presented the initial development effort in building a nuclear reactor component simulation package. This package was developed to be used in the MATLAB simulation environment. It uses the graphical capabilities from MATLAB and the advantages of compiled languages, as for instance FORTRAN and C{sup ++}. From the MATLAB it takes the facilities for better displaying the calculated results. From the compiled languages it takes processing speed. So far models from reactor core, UTSG and OTSG have been developed. Also, a series a user-friendly graphical interfaces have been developed for the above models. As a by product a set of water and sodium thermal and physical properties have been developed and may be used directly as a function from MATLAB, or by being called from a model, as part of its calculation process. The whole set was named SIMODIS, which stands for SIstema MODular Integrado de Simulacao. (author)

  5. A model for the release, dispersion and environmental impact of a postulated reactor accident from a submerged commercial nuclear power plant

    Science.gov (United States)

    Bertch, Timothy Creston

    1998-12-01

    Nuclear power plants are inherently suitable for submerged applications and could provide power to the shore power grid or support future underwater applications. The technology exists today and the construction of a submerged commercial nuclear power plant may become desirable. A submerged reactor is safer to humans because the infinite supply of water for heat removal, particulate retention in the water column, sedimentation to the ocean floor and inherent shielding of the aquatic environment would significantly mitigate the effects of a reactor accident. A better understanding of reactor operation in this new environment is required to quantify the radioecological impact and to determine the suitability of this concept. The impact of release to the environment from a severe reactor accident is a new aspect of the field of marine radioecology. Current efforts have been centered on radioecological impacts of nuclear waste disposal, nuclear weapons testing fallout and shore nuclear plant discharges. This dissertation examines the environmental impact of a severe reactor accident in a submerged commercial nuclear power plant, modeling a postulated site on the Atlantic continental shelf adjacent to the United States. This effort models the effects of geography, decay, particle transport/dispersion, bioaccumulation and elimination with associated dose commitment. The use of a source term equivalent to the release from Chernobyl allows comparison between the impacts of that accident and the postulated submerged commercial reactor plant accident. All input parameters are evaluated using sensitivity analysis. The effect of the release on marine biota is determined. Study of the pathways to humans from gaseous radionuclides, consumption of contaminated marine biota and direct exposure as contaminated water reaches the shoreline is conducted. The model developed by this effort predicts a significant mitigation of the radioecological impact of the reactor accident release

  6. Summary of space nuclear reactor power systems, 1983--1992

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  7. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  8. Radiation dose assessment for the biota of terrestrial ecosystems in the shoreline zone of the Chernobyl nuclear power plant cooling pond.

    Science.gov (United States)

    Oskolkov, Boris Ya; Bondarkov, Mikhail D; Gaschak, Sergey P; Maksimenko, Andrey M; Hinton, Thomas G; Coughlin, Daniel; Jannik, G Timothy; Farfán, Eduardo B

    2011-10-01

    Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. This paper addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from 90Sr and 137Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to draw down naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.

  9. Deposition of artificial radionuclides from atmospheric Nuclear Weapon Tests estimated by soil inventories in French areas low-impacted by Chernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, Gael, E-mail: gael.leroux@ensat.f [Institut de Radioprotection et Surete Nucleaire, DEI/SESURE, Laboratoires d' Etudes Radioecologiques en milieu Continental et Marin, CEN Cadarache Bat. 153 BP 3, 13115 St Paul lez Durance (France); Duffa, Celine; Vray, Francoise; Renaud, Philippe [Institut de Radioprotection et Surete Nucleaire, DEI/SESURE, Laboratoires d' Etudes Radioecologiques en milieu Continental et Marin, CEN Cadarache Bat. 153 BP 3, 13115 St Paul lez Durance (France)

    2010-03-15

    Soil inventories of anthropogenic radionuclides were investigated in altitudinal transects in 2 French regions, Savoie and Montagne Noire. Rain was negligible in these 2 areas the days after the Chernobyl accident. Thus anthropogenic radionuclides are coming hypothetically only from Global Fallout following Atmospheric Nuclear Weapon Tests. This is confirmed by the isotopic signatures ({sup 238}Pu/{sup 239+240}Pu; {sup 137}Cs/{sup 239+240}Pu; and {sup 241}Am/{sup 239+240}Pu) close to Global Fallout value. In Savoie, a peat core age-dated by {sup 210}Pb{sub ex} confirmed that the main part of deposition of anthropogenic radionuclides occurred during the late sixties and the early seventies. In agreement with previous studies, the anthropogenic radionuclide inventories are well correlated with the annual precipitations. However, this is the first time that a study investigates such a large panel of annual precipitation and therefore of anthropogenic radionuclide deposition. It seems that at high-altitude sites, deposition of artificial radionuclides was higher possibly due to orographic precipitations.

  10. RADIATION DOSE ASSESSMENT FOR THE BIOTA OF TERRESTRIAL ECOSYSTEMS IN THE SHORELINE ZONE OF THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Jannik, T.

    2011-10-01

    Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. The article addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from {sup 90}Sr and {sup 137}Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to drawdown naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.

  11. Nuclear renaissance in the reactor training of Areva

    Energy Technology Data Exchange (ETDEWEB)

    De Braquilanges, Bertrand [Reactor Training Center/France Manager, La Tour Areva - 1, place Jean Millier - 92084 Paris - La Defense (France); Napior, Amy [Reactor Training Center/USA Manager, 1300 Old Graves Mill Road - Lynchburg VA, 2450 (United States); Schoenfelder, Christian [Reactor Training Center/Germany Manager, Kaiserleistrasse 29 - 63067 Offenbach (Germany)

    2010-07-01

    Because of the perspectives of new builds, a significant increase in the number of design, construction and management personnel working in AREVA, their clients and sub-contractors has been estimated for the next future. In order to cope with the challenge to integrate newly hired people quickly and effectively into the AREVA workforce, a project - 'Training Task Force (TTF)' - was launched in 2008. The objective was to develop introductory and advanced courses and related tools harmonized between AREVA Training Centers in France, Germany and USA. First, a Global Plants Introductory Session (GPIS) was developed for newly hired employees. GPIS is a two weeks training course introducing in a modular way AREVA and specifically the activities and the reactors technical basics. As an example, design and operation of a nuclear power plant is illustrated on EPRTM. Since January 2009, these GPIS are held regularly in France, Germany and the US with a mixing of employees from these 3 regions. Next, advanced courses for more experienced employees were developed: - Advanced EPR{sup TM}, giving a detailed presentation of the EPR{sup TM} reactor design; - Codes and Standards; - Technical Nuclear Safety. Finally, feasibility studies on a Training Material Management (TMM) system, able to manage the training documentation, and on a worldwide training administration tool, were performed. The TTF project was completed mid of 2009; it transferred their recurrent activities to a new AREVA training department. This unit now consists of the French, German and US Reactors Training Centers. In particular, all courses developed by the TTF are now implemented worldwide with an opening to external trainees. The current worldwide course catalogue includes training courses for operation and maintenance personnel as well as for managers, engineers and non technical personnel of nuclear operators, suppliers, safety authorities and expert organizations. Training delivery is supported

  12. Nuclear reactor fuel element with vanadium getter on cladding

    Science.gov (United States)

    Johnson, Carl E.; Carroll, Kenneth G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.

  13. Evaluation of a hydrogen sensor for nuclear reactor containment monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hoffheins, B.S.; McKnight, T.E.; Lauf, R.J.; Smith, R.R. [Oak Ridge National Lab., TN (United States); James, R.E. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-02-01

    Measurement of hydrogen concentration in containment atmospheres in nuclear plants is a key safety capability. Current technologies require extensive sampling systems and subsequent maintenance and calibration costs can be very expensive. A new hydrogen sensor has been developed that is small and potentially inexpensive to install and maintain. Its size and low power requirement make it suitable in distributed systems for pinpointing hydrogen buildup. This paper will address the first phase of a testing program conducted to evaluate this sensor for operation in reactor containments.

  14. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR)

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, B.G.; Richards, R.E.; Reece, W.J.; Gertman, D.I.

    1992-10-01

    This Reference Guide contains instructions on how to install and use Version 3.5 of the NRC-sponsored Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR). The NUCLARR data management system is contained in compressed files on the floppy diskettes that accompany this Reference Guide. NUCLARR is comprised of hardware component failure data (HCFD) and human error probability (HEP) data, both of which are available via a user-friendly, menu driven retrieval system. The data may be saved to a file in a format compatible with IRRAS 3.0 and commercially available statistical packages, or used to formulate log-plots and reports of data retrieval and aggregation findings.

  15. Thermo-magnetic systems for space nuclear reactors an introduction

    CERN Document Server

    Maidana, Carlos O

    2014-01-01

    Introduces the reader to engineering magnetohydrodynamics applications and presents a comprehensive guide of how to approach different problems found in this multidisciplinary field. An introduction to engineering magnetohydrodynamics, this brief focuses heavily on the design of thermo-magnetic systems for liquid metals, with emphasis on the design of electromagnetic annular linear induction pumps for space nuclear reactors. Alloy systems that are liquid at room temperature have a high degree of thermal conductivity far superior to ordinary non-metallic liquids. This results in their use for

  16. Computation system for nuclear reactor core analysis. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.

    1977-04-01

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals.

  17. Human metabolism and ecological transfer of radioactive caesium: Comparative studies of Chernobyl debris and nuclear weapons fallout, in Southern Sweden and in Bryansk, Russia

    Science.gov (United States)

    Raaf, Christopher Leopold

    The whole-body content of radiocaesium was measured in a South-Swedish urban group of people residing in the city of Lund (55.7°N, 13.2°E) between 1960 and 1994. The results from the survey have been analysed in order to estimate the ecological half-time, Teff,eco, of fallout radiocaesium and the aggregate transfer from ground deposition to man in the region. After 1987, the biological half-times, Ts, of 137Cs and 40K in man were also determined in the reference group through whole-body content measurements in combination with 24-hour urine sampling. Relationships between 24-hour urinary excretion and body burden of 137Cs in the group together with data from the literature were then applied to urine samples collected in 1994 and 1995 from adult subjects living in the highly contaminated region of Bryansk, Russia, in order to estimate their average body burden of 137Cs. The equivalent biological half-time for 137Cs in females of the Lund reference group was, on average (+/-1 WSE), 66 +/- 3 d, which agrees with other findings, whereas the value for the males, 81 +/- 4 d, was, on average, significantly lower than what is found in the literature. This is partly explained by the elevated mean age and relatively low mean body muscle mass of the males investigated in the group during the post-Chernobyl study period. The effective ecological half-time for 137Cs from Chernobyl was found to be 1.8 +/- 0.2 y. The aggregate transfer of 137Cs from deposition to mean activity concentration in man was estimated to be 1.7 Bq kg-1/kBq m-2. These vales may be compared with an effective ecological half-time of 1.3 years found in the reference group in the 1960s, and an aggregate transfer factor of 9.8 Bq kg-1/kBq m-2. The average committed effective dose from ingested 137Cs Chernobyl fallout in the study group was estimated to be 0.02 mSv and from the nuclear weapons fallout to 0.20 mSv. The estimates of whole-body content of 137Cs in the Russian subjects obtained through

  18. Airborne and deposited radioactivity from the Chernobyl accident. A review of investigations in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Paatero, J. (Finnish Meteorogical Inst., Helsinki (Finland)); Haemeri, K. (Helsinki Univ., Dept. of Physics (Finland)); Jaakkola, T. (Helsinki Univ., Lab. of Radiochemistry (Finland)); Jantunen, M. (National Public Health Inst., Kuopio (Finland)); Koivukoski, J. (Ministry of the Interior, Rescue Dept., Government (Finland)); Saxen, R. (STUK Radiation and Nuclear Safety Authority, Helsinki (Finland))

    2010-07-01

    The Chernobyl nuclear accident happened in the former Soviet Union on 26 April 1986. The accident destroyed one of the RBMK-1000 type reactors and released significant radioactive contamination into the environment. At first the emissions were transported north-westwards over Poland, the Baltic States, Finland, Sweden and Norway. During 27 April 1986 emissions were spreading to eastern-central Europe, southern Germany, Italy and Yugoslavia. Radioactivity mapping over Finland between 29 April and 16 May 1986 showed that the ground deposition in Finland covered southern and central parts of the country but had an irregular distribution. The highest (over 100 muR h-1 [1 muSv h-1]) contamination disclosed by the mapping was around the city of Uusikaupunki in western Finland and the city of Kotka in southeastern Finland. The Uusikaupunki region was an area of heavy fallout associated with the air mass that was located in the Chernobyl area at the time of the accident. The fallout pattern of reftractory nuclides, e.g. plutonium isotopes, had their spatial maximum in this region. Medical consequences in Finland were luckily mild, the most important symptoms being psychological ones. No increase in thyroid cancer or birth defect occurrence has been observed. The Chernobyl accident boosted the radioecological research which had already been calming down after the last atmospheric nuclear test in China in October 1980. Important new results concerning e.g. hot particles have been achieved. The most important effects of the accident in Finland were, however, the increase of public awareness of environmental issues in general and especially of nuclear energy. In Finland, the nuclear energy programme was halted until 2002 when the Parliament of Finland granted a licence to build the fifth nuclear reactor in Finland. (orig.)

  19. A cermet fuel reactor for nuclear thermal propulsion

    Science.gov (United States)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  20. Computer simulation of two-phase flow in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W.

    1992-09-01

    Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter`s closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.

  1. Computer simulation of two-phase flow in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W.

    1992-01-01

    Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter's closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.

  2. Nordic Nuclear Materials Forum for Generation IV Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, C. (Studsvik Nuclear AB, Nykoeping (Sweden)); Penttilae, S. (Technical Research Centre of Finland, VTT (Finland))

    2010-03-15

    A network for material issues for Generation IV nuclear power has been initiated within the Nordic countries. The objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) are to put the basis of a sustainable forum for Gen IV issues, especially focussing on fuels, cladding, structural materials and coolant interaction. Other issues include reactor physics, dynamics and diagnostics, core and fuel design. The present report summarizes the work performed during the year 2009. The efforts made include identification of organisations involved in Gen IV issues in the Nordic countries, update of the forum website, http://www.studsvik.se/GenerationIV, and investigation of capabilities for research within the area of Gen IV. Within the NOMAGE4 project a seminar on Generation IV Nuclear Energy Systems has been organized during 15-16th of October 2009. The aim of the seminar was to provide a forum for exchange of information, discussion on future research needs and networking of experts on Generation IV reactor concepts. As an outcome of the NOMAGE4, a few collaboration project proposals have been prepared/planned in 2009. The network was welcomed by the European Commission and was mentioned as an exemplary network with representatives from industries, universities, power companies and research institutes. NOMAGE4 has been invited to participate to the 'European Energy Research Alliance, EERA, workshop for nuclear structural materials' http://www.eera-set.eu/index.php?index=41 as external observers. Future plans include a new Nordic application for continuation of NOMAGE4 network. (author)

  3. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    Science.gov (United States)

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  4. Urinary bladder lesions after the chernobyl accident. Immunohistochemical assessment of p53, proliferating cell nuclear antigen, cyclin D1 and p21[sup WAF1/Cip1

    Energy Technology Data Exchange (ETDEWEB)

    Romanenko, A.; Zaparin, W.; Vinnichenko, W.; Vozianov, A. (Academy of Medical Sciences of Ukraine, Kiev (Ukraine)); Lee, C.C.R.; Yamamoto, Shinji; Hori, Taka-aki; Wanibuchi, Hideki; Fukushima, Shoji

    1999-02-01

    During the 11-year period subsequent to the Chernobyl accident, the incidence of urinary bladder cancer in Ukraine has increased from 26.2 to 36.1 per 100,000 population. Cesium-137 ([sup 137]Cs) accounts for 80-90% of the incorporated radioactivity in this population, which has been exposed to long-term, low-dose ionizing radiation, and 80% of the more labile pool of cesium is excreted via the urine. The present study was performed to evaluate the histopathological features and the immunohistochemical status of p53, p21[sup WAF1/Cip1], cyclin D1 and PCNA (proliferating cell nuclear antigen) in urinary bladder mucosa of 55 males (49-92 years old) with benign prostatic hyperplasia who underwent surgery in Kiev, Ukraine, in 1995 and 1996. Group I (28 patients) inhabiting radiocontaminated areas of the country, group II (17 patients) from Kiev city with less radiocontamination and a control group III (10 patients) living in so-called ''clean'' areas of Ukraine were compared. In groups I and II, an increase in multiple areas of moderate or severe dysplasia or carcinoma in situ was seen in 42 (93%) of 45 cases. In addition, two small transitional cell carcinomas were found in one patient in each of groups I and II. Nuclear accumulation of p53, PCNA, cyclin D1, and to a lesser extent p21[sup WAF1/Cip1], was significantly increased in both groups I and II as compared with the control group III, indicating possible transformation events or enhancement of repair activities, that may precede the defect in the regulatory pathway itself, at least in the G1 phase of the cell cycle. Our results suggest that early malignant transformation is taking place in the bladder urothelium of people in the radiocontaminated areas of Ukraine and that this could possibly lead sometime in the future to an increased incidence of urinary bladder cancer. (author)

  5. Application of CFD Codes in Nuclear Reactor Safety Analysis

    Directory of Open Access Journals (Sweden)

    T. Höhne

    2010-01-01

    Full Text Available Computational Fluid Dynamics (CFD is increasingly being used in nuclear reactor safety (NRS analyses as a tool that enables safety relevant phenomena occurring in the reactor coolant system to be described in more detail. Numerical investigations on single phase coolant mixing in Pressurised Water Reactors (PWR have been performed at the FZD for almost a decade. The work is aimed at describing the mixing phenomena relevant for both safety analysis, particularly in steam line break and boron dilution scenarios, and mixing phenomena of interest for economical operation and the structural integrity. For the experimental investigation of horizontal two phase flows, different non pressurized channels and the TOPFLOW Hot Leg model in a pressure chamber was build and simulated with ANSYS CFX. In a common project between the University of Applied Sciences Zittau/Görlitz and FZD the behaviour of insulation material released by a LOCA released into the containment and might compromise the long term emergency cooling systems is investigated. Moreover, the actual capability of CFD is shown to contribute to fuel rod bundle design with a good CHF performance.

  6. RTC-control of power transients in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ratemi, Wajdi Mohamed [Alfateh University, PO Box 13040, Tripoli (Libyan Arab Jamahiriya)

    2006-07-01

    In this paper, the new Reactivity Trace Curve (RTC) method (Ratemi 1993,1994), which is based on the dynamic period studies (Bernard et al.,1984), has been studied for maneuvering of the nuclear reactor power without power shooting. The reactor is modeled with one group of delayed neutrons with temperature feedback effect, as well as, Xenon feedback effect. A precursors concentration model is used to provide for the effective dynamic decay constant (in one group case, it is a static one). The RTC-identifier which is given by a differential equation is then solved at each sampling time (for one group, it has an analytical solution). Its solution is what is called the Reactivity Trace Curve which keeps the power steady at the desired power. An inverse kinetic model which uses the on-line power data for reactivity calculation is used to provide initial condition (initial reactivity) for the RTC- power controller. Also feedback model are needed to evaluate both the temperature and Xenon reactivities which when subtracted from the RTC-value, one then can determine the reactivity required to keep the reactor power steady without power shooting. (authors)

  7. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  8. Fractional neutron point kinetics equations for nuclear reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, Gilberto, E-mail: gepe@xanum.uam.mx [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico, D.F. 09340 (Mexico); Polo-Labarrios, Marco-A. [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico, D.F. 09340 (Mexico); Espinosa-Martinez, Erick-G. [Retorno Quebec 6, Col. Burgos de Cuernavaca 62580, Temixco, Mor. (Mexico); Valle-Gallegos, Edmundo del [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional s/n, Col. San Pedro Zacatenco, Mexico, D.F. 07738 (Mexico)

    2011-02-15

    The fractional point-neutron kinetics model for the dynamic behavior in a nuclear reactor is derived and analyzed in this paper. The fractional model retains the main dynamic characteristics of the neutron motion in which the relaxation time associated with a rapid variation in the neutron flux contains a fractional order, acting as exponent of the relaxation time, to obtain the best representation of a nuclear reactor dynamics. The physical interpretation of the fractional order is related with non-Fickian effects from the neutron diffusion equation point of view. The numerical approximation to the solution of the fractional neutron point kinetics model, which can be represented as a multi-term high-order linear fractional differential equation, is calculated by reducing the problem to a system of ordinary and fractional differential equations. The numerical stability of the fractional scheme is investigated in this work. Results for neutron dynamic behavior for both positive and negative reactivity and for different values of fractional order are shown and compared with the classic neutron point kinetic equations. Additionally, a related review with the neutron point kinetics equations is presented, which encompasses papers written in English about this research topic (as well as some books and technical reports) published since 1940 up to 2010.

  9. Application of gaseous core reactors for transmutation of nuclear waste

    Science.gov (United States)

    Schnitzler, B. G.; Paternoster, R. R.; Schneider, R. T.

    1976-01-01

    An acceptable management scheme for high-level radioactive waste is vital to the nuclear industry. The hazard potential of the trans-uranic actinides and of key fission products is high due to their nuclear activity and/or chemical toxicity. Of particular concern are the very long-lived nuclides whose hazard potential remains high for hundreds of thousands of years. Neutron induced transmutation offers a promising technique for the treatment of problem wastes. Transmutation is unique as a waste management scheme in that it offers the potential for "destruction" of the hazardous nuclides by conversion to non-hazardous or more manageable nuclides. The transmutation potential of a thermal spectrum uranium hexafluoride fueled cavity reactor was examined. Initial studies focused on a heavy water moderated cavity reactor fueled with 5% enriched U-235-F6 and operating with an average thermal flux of 6 times 10 to the 14th power neutrons/sq cm-sec. The isotopes considered for transmutation were I-129, Am-241, Am-242m, Am-243, Cm-243, Cm-244, Cm-245, and Cm-246.

  10. Chernobyl Studies Project: Working group 7.0, Environmental transport and health effects. Progress report, March--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Anspaugh, L.R.; Hendrickson, S.M. [eds.

    1994-12-01

    In April 1988, the US and the former-USSR signed a Memorandum of Cooperation (MOC) for Civilian Nuclear Reactor Safety; this MOC was a direct result of the accident at the Chernobyl Nuclear Power Plant Unit 4 and the following efforts by the two countries to implement a joint program to improve the safety of nuclear power plants and to understand the implications of environmental releases. A Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS) was formed to implement the MOC. The JCCCNRS established many working groups; most of these were the responsibility of the Nuclear Regulatory Commission, as far as the US participation was concerned. The lone exception was Working Group 7 on Environmental Transport and Health Effects, for which the US participation was the responsibility of the US Department of Energy (DOE). The purpose of Working Group 7 was succintly stated to be, ``To develop jointly methods to project rapidly the health effects of any future nuclear reactor accident.`` To implement the work DOE then formed two subworking groups: 7.1 to address Environmental Transport and 7.2 to address Health Effects. Thus, the DOE-funded Chernobyl Studies Project began. The majority of the initial tasks for this project are completed or near completion. The focus is now turned to the issue of health effects from the Chernobyl accident. Currently, we are involved in and making progress on the case-control and co-hort studies of thyroid diseases among Belarussian children. Dosimetric aspects are a fundamental part of these studies. We are currently working to implement similar studies in Ukraine. A major part of the effort of these projects is supporting these studies, both by providing methods and applications of dose reconstruction and by providing support and equipment for the medical teams.

  11. A design study of reactor core optimization for direct nuclear heat-to-electricity conversion in a space power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Takahashi, Makoto; Shimoda, Hiroshi; Takeoka, Satoshi [Kyoto Univ. (Japan); Nakagawa, Masayuki; Kugo, Teruhiko

    1998-01-01

    To propose a new design concept of a nuclear reactor used in the space, research has been conducted on the conceptual design of a new nuclear reactor on the basis of the following three main concepts: (1) Thermionic generation by thermionic fuel elements (TFE), (2) reactivity control by rotary reflector, and (3) reactor cooling by liquid metal. The outcomes of the research are: (1) A calculation algorithm was derived for obtaining convergent conditions by repeating nuclear characteristic calculation and thermal flow characteristic calculation for the space nuclear reactor. (2) Use of this algorithm and the parametric study established that a space nuclear reactor using 97% enriched uranium nitride as the fuel and lithium as the coolant and having a core with a radius of about 25 cm, a height of about 50 cm and a generation efficiency of about 7% can probably be operated continuously for at least more than ten years at 100 kW only by reactivity control by rotary reflector. (3) A new CAD/CAE system was developed to assist design work to optimize the core characteristics of the space nuclear reactor comprehensively. It is composed of the integrated design support system VINDS using virtual reality and the distributed system WINDS to collaboratively support design work using Internet. (N.H.)

  12. About Chernobyl - Twenty Years Later; Propos sur Tchernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Tubiana, M

    2006-07-01

    The author discusses the reactor accident of Chernobyl, the information on its consequences so contradictory in the former USSR countries, the status of the effects observed, the forecasting concerning the onset of cancers in the coming years among the populations that were exposed to radiations, the public opinion facing the pessimists. He concludes on the lessons which can be drawn from Chernobyl. (A.L.B.)

  13. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Approvals § 50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium...

  14. Sites for locations of nuclear reactors; Sitios para emplazamientos de reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Huerta, M.; Lopez, A., E-mail: miguel.balcazar@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    A restriction on sites of nuclear energy is the history of seismic activity, in its magnitude (Richter) and intensity (Mercalli). This article delimits the areas of greatest magnitude and national seismic intensity, with restrictions of ground acceleration; the supplement areas with a low magnitude of seismic activity are shown. Potential sites for the location of these sites are introduced into a geographic information system. The set of geo-referenced data contains the location of the active volcanic manifestations; the historical record of earthquake epicenters, magnitudes and intensities; major geological faults; surface hydrology and water bodies; location of population density; protected areas; contour lines; the rock type or geology. The geographic information system allows entering normative criteria and environmental restrictions that correlate with geo-referenced data described above, forms both probable and exclusion areas for the installation of nuclear sites. (Author)

  15. A Spouted Bed Reactor Monitoring System for Particulate Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Wendt; R. L. Bewley; W. E. Windes

    2007-06-01

    Conversion and coating of particle nuclear fuel is performed in spouted (fluidized) bed reactors. The reactor must be capable of operating at temperatures up to 2000°C in inert, flammable, and coating gas environments. The spouted bed reactor geometry is defined by a graphite retort with a 2.5 inch inside diameter, conical section with a 60° included angle, and a 4 mm gas inlet orifice diameter through which particles are removed from the reactor at the completion of each run. The particles may range from 200 µm to 2 mm in diameter. Maintaining optimal gas flow rates slightly above the minimum spouting velocity throughout the duration of each run is complicated by the variation of particle size and density as conversion and/or coating reactions proceed in addition to gas composition and temperature variations. In order to achieve uniform particle coating, prevent agglomeration of the particle bed, and monitor the reaction progress, a spouted bed monitoring system was developed. The monitoring system includes a high-sensitivity, low-response time differential pressure transducer paired with a signal processing, data acquisition, and process control unit which allows for real-time monitoring and control of the spouted bed reactor. The pressure transducer is mounted upstream of the spouted bed reactor gas inlet. The gas flow into the reactor induces motion of the particles in the bed and prevents the particles from draining from the reactor due to gravitational forces. Pressure fluctuations in the gas inlet stream are generated as the particles in the bed interact with the entering gas stream. The pressure fluctuations are produced by bulk movement of the bed, generation and movement of gas bubbles through the bed, and the individual motion of particles and particle subsets in the bed. The pressure fluctuations propagate upstream to the pressure transducer where they can be monitored. Pressure fluctuation, mean differential pressure, gas flow rate, reactor

  16. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  17. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  18. Vital area identification for U.S. Nuclear Regulatory Commission nuclear power reactor licensees and new reactor applicants.

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Donnie Wayne; Varnado, G. Bruce

    2008-09-01

    U.S. Nuclear Regulatory Commission nuclear power plant licensees and new reactor applicants are required to provide protection of their plants against radiological sabotage, including the placement of vital equipment in vital areas. This document describes a systematic process for the identification of the minimum set of areas that must be designated as vital areas in order to ensure that all radiological sabotage scenarios are prevented. Vital area identification involves the use of logic models to systematically identify all of the malicious acts or combinations of malicious acts that could lead to radiological sabotage. The models available in the plant probabilistic risk assessment and other safety analyses provide a great deal of the information and basic model structure needed for the sabotage logic model. Once the sabotage logic model is developed, the events (or malicious acts) in the model are replaced with the areas in which the events can be accomplished. This sabotage area logic model is then analyzed to identify the target sets (combinations of areas the adversary must visit to cause radiological sabotage) and the candidate vital area sets (combinations of areas that must be protected against adversary access to prevent radiological sabotage). Any one of the candidate vital area sets can be selected for protection. Appropriate selection criteria will allow the licensee or new reactor applicant to minimize the impacts of vital area protection measures on plant safety, cost, operations, or other factors of concern.

  19. Heterogeneous Nuclear Reactor Models for Optimal Xenon Control.

    Science.gov (United States)

    Gondal, Ishtiaq Ahmad

    Nuclear reactors are generally modeled as homogeneous mixtures of fuel, control, and other materials while in reality they are heterogeneous-homogeneous configurations comprised of fuel and control rods along with other materials. Similarly, for space-time studies of a nuclear reactor, homogeneous, usually one-group diffusion theory, models are used, and the system equations are solved by either nodal or modal expansion approximations. Study of xenon-induced problems has also been carried out using similar models and with the help of dynamic programming or classical calculus of variations or the minimum principle. In this study a thermal nuclear reactor is modeled as a two-dimensional lattice of fuel and control rods placed in an infinite-moderator in plane geometry. The two-group diffusion theory approximation is used for neutron transport. Space -time neutron balance equations are written for two groups and reduced to one space-time algebraic equation by using the two-dimensional Fourier transform. This equation is written at all fuel and control rod locations. Iodine -xenon and promethium-samarium dynamic equations are also written at fuel rod locations only. These equations are then linearized about an equilibrium point which is determined from the steady-state form of the original nonlinear system equations. After studying poisonless criticality, with and without control, and the stability of the open-loop system and after checking its controllability, a performance criterion is defined for the xenon-induced spatial flux oscillation problem in the form of a functional to be minimized. Linear -quadratic optimal control theory is then applied to solve the problem. To perform a variety of different additional useful studies, this formulation has potential for various extensions and variations; for example, different geometry of the problem, with possible extension to three dimensions, heterogeneous -homogeneous formulation to include, for example, homogeneously

  20. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control for nuclear power reactors. (a) Definitions—(1) Inerted atmosphere means a containment atmosphere...

  1. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Science.gov (United States)

    2010-01-01

    ... fuel and nuclear waste. 71.97 Section 71.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... advance notification of transportation of nuclear waste was published in the Federal Register on June...

  2. 10 CFR 110.26 - General license for the export of nuclear reactor components.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license for the export of nuclear reactor components. 110.26 Section 110.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.26 General license for the export of nuclear...

  3. Evaluation of thyroid antibodies and benign disease prevalence among young adults exposed to 131I more than 25 years after the accident at the Chernobyl Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Yuko Kimura

    2016-03-01

    Full Text Available Background. The Chernobyl Nuclear Power Plant (CNPP accident exposed a large number of inhabitants to internal 131I radiation. The associations between internal 131I exposure and thyroid autoimmunity and benign thyroid diseases remain controversial in the population living in the contaminated area around the CNNP. In this study, we evaluate the association of 131I with benign thyroid diseases. Methods. We compared the prevalence of Anti-Thyroid Autoantibodies (ATAs, thyroid function, and prevalence of thyroid ultrasound finding outcomes in 300 residents of the contaminated area of Ukraine who were 0–5 years of age at the time of the CNPP accident (group 1 and 300 sex-matched residents who were born after the accident (group 2. Results. We did not find any differences of the prevalence of Antithyroglobulin Antibodies (TGAb positive, Antithyroid Peroxidase Antibodies (TPOAb positive, and TGAb and/or TPOAb positive between the study groups. (11.7% vs 10.3%; p = 0.602, 17.3% vs 13.0%; p = 0.136, 21.0% vs 17.3%; p = 0.254, respectively; after adjusting for age and sex, the prevalence was not associated with the 131I exposure status in the study groups. The prevalence of subclinical and overt hypothyroidism cases was not significantly different (p = 0.093 and p = 0.320 in the two groups, nor was the prevalence of goiter (p = 0.482. On the other hand, the prevalence of nodules was significantly higher in group 1 (p = 0.003, though not significantly so after adjustment for age and sex. Discussion. Working 26–27 years after the CNNP accident, we found no increased prevalence of ATAs or benign thyroid diseases in young adults exposed to 131I fallout during early childhood in the contaminated area of Ukraine. Long-term follow-up is needed to clarify the effects of radiation exposure on autoimmunity reaction in the thyroid.

  4. Measuring of fissile isotopes partial antineutrino spectra in direct experiment at nuclear reactor

    CERN Document Server

    Sinev, V V

    2009-01-01

    The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta decay positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-proliferation purposes.

  5. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    OpenAIRE

    Sungjoo Lee; Byungun Yoon; Juneseuk Shin

    2016-01-01

    We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indic...

  6. Determination of the fission coefficients in thermal nuclear reactors for antineutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Lenilson M. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Cabral, Ronaldo G., E-mail: rgcabral@ime.eb.b [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Anjos, Joao C.C. dos, E-mail: janjos@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Dept. GLN - G

    2011-07-01

    The nuclear reactors in operation periodically need to change their fuel. It is during this process that these reactors are more vulnerable to occurring of several situations of fuel diversion, thus the monitoring of the nuclear installations is indispensable to avoid events of this nature. Considering this fact, the most promissory technique to be used for the nuclear safeguard for the nonproliferation of nuclear weapons, it is based on the detection and spectroscopy of antineutrino from fissions that occur in the nuclear reactors. The detection and spectroscopy of antineutrino, they both depend on the single contribution for the total number of fission of each actinide in the core reactor, these contributions receive the name of fission coefficients. The goal of this research is to show the computational and mathematical modeling used to determinate these coefficients for PWR reactors. (author)

  7. Risks of nuclear energy technology safety concepts of light water reactors

    CERN Document Server

    Kessler, Günter; Schlüter, Franz-Hermann

    2014-01-01

    The book analyses the risks of nuclear power stations. The security concept of reactors is explained. Measures against the spread of radioactivity after a severe accident, accidents of core melting and a possible crash of an air plane on?reactor containment are discussed. The book covers three scientific subjects of the safety concepts of Light Water Reactors: ? A first part describes the basic safety design concepts of operating German Pressurized Water Reactors and Boiling Water Reactors including accident management measures introduced after the reactor accidents of Three Mile Island and Ch

  8. Determination of 36Cl in nuclear waste from reactor decommissioning.

    Science.gov (United States)

    Hou, Xiaolin; Ostergaard, Lars Frøsig; Nielsen, Sven P

    2007-04-15

    An analytical method for the determination of 36Cl in nuclear waste such as graphite, heavy concrete, steel, aluminum, and lead was developed. Several methods were investigated for decomposing the samples. AgCl precipitation was used to separate 36Cl from the matrix elements, followed by ion-exchange chromatography to remove interfering radionuclides. The purified 36Cl was then measured by liquid scintillation counting. The chemical yield of chlorine, as measured by ICPMS, is above 70% and the decontamination factors for all interfering radionuclides are greater than 10(6). The detection limit of this analytical method for 36Cl is 14 mBq. The method has been used to determine 36Cl in heavy concrete, aluminum, and graphite from the Danish DR-2 research reactor.

  9. Preloading of bolted connections in nuclear reactor component supports

    Energy Technology Data Exchange (ETDEWEB)

    Yahr, G T

    1984-10-01

    A number of failures of threaded fasteners in nuclear reactor component supports have been reported. Many of those failures were attributed to stress corrosion cracking. This report discusses how stress corrosion cracking can be avoided in bolting by controlling the maximum bolt preloads so that the sustained stresses in the bolts are below the level required to cause stress corrosion cracking. This is a basic departure from ordinary bolted joint design where the only limits on preload are on the minimum preload. Emphasis is placed on the importance of detailed analysis to determine the acceptable range of preload and the selection of a method for measuring the preload that is sufficiently accurate to ensure that the preload is actually within the acceptable range. Procedures for determining acceptable preload range are given, and the accuracy of various methods of measuring preload is discussed.

  10. Search for neutrino oscillations at the palo verde nuclear reactors

    Science.gov (United States)

    Boehm; Busenitz; Cook; Gratta; Henrikson; Kornis; Lawrence; Lee; McKinny; Miller; Novikov; Piepke; Ritchie; Tracy; Vogel; Wang; Wolf

    2000-04-24

    We report on the initial results from a measurement of the antineutrino flux and spectrum at a distance of about 800 m from the three reactors of the Palo Verde Nuclear Generating Station using a segmented gadolinium-loaded scintillation detector. We find that the antineutrino flux agrees with that predicted in the absence of oscillations excluding at 90% C.L. nu;(e)-nu;(x) oscillations with Deltam(2)>1.12x10(-3) eV(2) for maximal mixing and sin (2)2straight theta>0.21 for large Deltam(2). Our results support the conclusion that the atmospheric neutrino oscillations observed by Super-Kamiokande do not involve nu(e).

  11. Multiphysics modeling of porous CRUD deposits in nuclear reactors

    Science.gov (United States)

    Short, M. P.; Hussey, D.; Kendrick, B. K.; Besmann, T. M.; Stanek, C. R.; Yip, S.

    2013-11-01

    The formation of porous CRUD deposits on nuclear reactor fuel rods, a longstanding problem in the operation of pressurized water reactors (PWRs), is a significant challenge to science-based multiscale modeling and simulation. While existing, published studies have focused on individual or loosely coupled processes, such as heat transfer, fluid flow, and compound dissolution/precipitation, none have addressed their coupled effects sufficiently to enable a comprehensive, scientific understanding of CRUD. Here we present the formulation and results of a model, MAMBA-BDM, which begins to incorporate mechanistic details in describing CRUD in PWRs. CRUD is treated as a chemical deposition process in an environment of variable concentration, an arbitrary level of heating, and a complex fractal-based flow geometry. We present results on spatial distributions of temperature, pressure, velocity, and concentration that give insight into the interplay between these physical properties and geometrical parameters. We show the role of heat convection which has not been discussed previously. Furthermore, we suggest that the assumption of liquid saturation in the CRUD deserves scrutiny, as a result of our attempt to determine an effective CRUD thermal conductivity.

  12. SAFETY ANALYSIS METHODOLOGY FOR AGED CANDU® 6 NUCLEAR REACTORS

    Directory of Open Access Journals (Sweden)

    WOLFGANG HARTMANN

    2013-10-01

    Full Text Available This paper deals with the Safety Analysis for CANDU® 6 nuclear reactors as affected by main Heat Transport System (HTS aging. Operational and aging related changes of the HTS throughout its lifetime may lead to restrictions in certain safety system settings and hence some restriction in performance under certain conditions. A step in confirming safe reactor operation is the tracking of relevant data and their corresponding interpretation by the use of appropriate thermalhydraulic analytic models. Safety analyses ranging from the assessment of safety limits associated with the prevention of intermittent fuel sheath dryout for a slow Loss of Regulation (LOR analysis and fission gas release after a fuel failure are summarized. Specifically for fission gas release, the thermalhydraulic analysis for a fresh core and an 11 Effective Full Power Years (EFPY aged core was summarized, leading to the most severe stagnation break sizes for the inlet feeder break and the channel failure time. Associated coolant conditions provide the input data for fuel analyses. Based on the thermalhydraulic data, the fission product inventory under normal operating conditions may be calculated for both fresh and aged cores, and the fission gas release may be evaluated during the transient. This analysis plays a major role in determining possible radiation doses to the public after postulated accidents have occurred.

  13. A world class nuclear research reactor complex for South Africa's nuclear future

    Energy Technology Data Exchange (ETDEWEB)

    Keshaw, Jeetesh [South African Young Nuclear Professional Society, PO Box 9396, Centurion, 0157 (South Africa)

    2008-07-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  14. Radiochemical analysis of concrete samples for decommission of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zapata-Garcia, Daniel; Wershofen, Herbert [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100 38116, Braunschweig (Germany); Larijani, Cyrus; Sobrino-Petrirena, Maitane; Garcia-Miranda, Maria; Jerome, Simon M. [National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2014-07-01

    Decommissioning of the oldest nuclear power reactors are some of the most challenging technological legacy issues many countries will face in forthcoming years, as many power reactors reach the end of their design lives. Decommissioning of nuclear reactors generates large amounts of waste that need to be classified according to their radioactive content. Approximately 10 % of the contaminated material ends up in different repositories (depending on their level of contamination) while the rest is decontaminated, measured and released into the environment or sent for recycling. Such classification needs to be done accurately in order to ensure that both the personnel involved in decommissioning and the population at large are not needlessly exposed to radiation or radioactive material and to minimise the environmental impact of such work. However, too conservative classification strategies should not be applied, in order to make proper use of radioactive waste repositories since space is limited and the full process must be cost-effective. Implicit in decommissioning and classification of waste is the need to analyse large amounts of material which usually combine a complex matrix with a non-homogeneous distribution of the radionuclides. Because the costs involved are large, it is possible to make great savings by the adoption of best available practices, such as the use of validated methods for on-site measurements and simultaneous determination of more than one radionuclide whenever possible. The work we present deals with the development and the validation of a procedure for the simultaneous determination of {sup 241}Am, plutonium isotopes, uranium isotopes and {sup 90}Sr in concrete samples. Samples are firstly ground and fused with LiBO{sub 2} and Li{sub 2}B{sub 4}O{sub 7}. After dissolution of the fused sample, silicate and alkaline elements are removed followed by radiochemical separation of the target radionuclides using extraction chromatography. Measurement

  15. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Renier, J.A.

    2002-04-17

    Burnable poisons are used in all modern nuclear reactors to permit higher loading of fuel without the necessity of an overly large control rod system. This not only permits a longer core life but can also be used to level the power distribution. Commercial nuclear reactors commonly use B{sub 4}C in separate non-fueled rods and more recently, zirconium boride coatings on the fuel pellets or gadolinium oxide mixed with the fuel. Although the advantages are great, there are problems with using these materials. Boron, which is an effective neutron absorber, transmutes to lithium and helium upon absorption of a neutron. Helium is insoluble and is eventually released to the interior of the fuel rod, where it produces an internal pressure. When sufficiently high, this pressure stress could cause separation of the cladding from the fuel, causing overly high centerline temperatures. Gadolinium has several very strongly absorbing isotopes, but not all have large cross sections and result in residual burnable poison reactivity worth at the end of the fuel life. Even if the amount of this residual absorber is small and the penalty in operation small, the cost of this penalty, even if only several days, can be very high. The objective of this investigation was to study the performance of single isotopes in order to reduce the residual negative reactivity left over at the end of the fuel cycle. Since the behavior of burnable poisons can be strongly influenced by their configuration, four forms for the absorbers were studied: homogeneously mixed with the fuel, mixed with only the outer one-third of the fuel pellet, coated on the perimeter of the fuel pellets, and alloyed with the cladding. In addition, the numbers of fuel rods containing burnable poison were chosen as 8, 16, 64, and 104. Other configurations were chosen for a few special cases. An enrichment of 4.5 wt% {sup 235}U was chosen for most cases for study in order to achieve a 4-year fuel cycle. A standard pressurized

  16. Dosimetry for a study of low-dose radiation cataracts among Chernobyl clean-up workers.

    Science.gov (United States)

    Chumak, V V; Worgul, B V; Kundiyev, Y I; Sergiyenko, N M; Vitte, P M; Medvedovsky, C; Bakhanova, E V; Junk, A K; Kyrychenko, O Y; Musijachenko, N V; Sholom, S V; Shylo, S A; Vitte, O P; Xu, S; Xue, X; Shore, R E

    2007-05-01

    A cohort of 8,607 Ukrainian Chernobyl clean-up workers during 1986-1987 was formed to study cataract formation after ionizing radiation exposure. Study eligibility required the availability of sufficient exposure information to permit the reconstruction of doses to the lens of the eye. Eligible groups included civilian workers, such as those who built the "sarcophagus" over the reactor, Chernobyl Nuclear Power Plant Workers, and military reservists who were conscripted for clean-up work. Many of the official doses for workers were estimates, because only a minority wore radiation badges. For 106 military workers, electron paramagnetic resonance (EPR) measurements of extracted teeth were compared with the recorded doses as the basis to adjust the recorded gamma-ray doses and provide estimates of uncertainties. Beta-particle doses to the lens were estimated with an algorithm devised to take into account the nature and location of Chernobyl work, time since the accident, and protective measures taken. A Monte Carlo routine generated 500 random estimates for each individual from the uncertainty distributions of the gamma-ray dose and of the ratio of beta-particle to gamma-ray doses. The geometric mean of the 500 combined beta-particle and gamma-ray dose estimates for each individual was used in the data analyses. The median estimated lens dose for the cohort was 123 mGy, while 4.4% received >500 mGy.

  17. Reactor Fuel Isotopics and Code Validation for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Matthew W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weber, Charles F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pigni, Marco T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    Experimentally measured isotopic concentrations of well characterized spent nuclear fuel (SNF) samples have been collected and analyzed by previous researchers. These sets of experimental data have been used extensively to validate the accuracy of depletion code predictions for given sets of burnups, initial enrichments, and varying power histories for different reactor types. The purpose of this report is to present the diversity of data in a concise manner and summarize the current accuracy of depletion modeling. All calculations performed for this report were done using the Oak Ridge Isotope GENeration (ORIGEN) code, an internationally used irradiation and decay code solver within the SCALE comprehensive modeling and simulation code. The diversity of data given in this report includes key actinides, stable fission products, and radioactive fission products. In general, when using the current ENDF/B-VII.0 nuclear data libraries in SCALE, the major actinides are predicted to within 5% of the measured values. Large improvements were seen for several of the curium isotopes when using improved cross section data found in evaluated nuclear data file ENDF/B-VII.0 as compared to ENDF/B-V-based results. The impact of the flux spectrum on the plutonium isotope concentrations as a function of burnup was also shown. The general accuracy noted for the actinide samples for reactor types with burnups greater than 5,000 MWd/MTU was not observed for the low-burnup Hanford B samples. More work is needed in understanding these large discrepancies. The stable neodymium and samarium isotopes were predicted to within a few percent of the measured values. Large improvements were seen in prediction for a few of the samarium isotopes when using the ENDF/B-VII.0 libraries compared to results obtained with ENDF/B-V libraries. Very accurate predictions were obtained for 133Cs and 153Eu. However, the predicted values for the stable ruthenium and rhodium isotopes varied

  18. Photography and nuclear catastrophe. The visual representation of the occurrences in Hiroshima/Nagasaki and Chernobyl; Fotografie und atomare Katastrophe. Die visuelle Repraesentation der Ereignisse von Hiroshima/Nagasaki und Tschernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Buerkner, Daniel

    2014-02-13

    The dissertation project seeks to analyse the photographic positions that deal with the atomic bomb attacks on Hiroshima and Nagasaki and the accident of the nuclear power plant in Chernobyl. This focus includes press photographs of the events as well as artistic, documentary and touristic images that take an approach towards the disasters often years after and hereby form iconographic or material references to the events. The study reveals central strategies for photographic images of atomic catastrophes, be they of military or civil nature. It is the inability to visualize non-visible nuclear rays or the complexity of processes on an atomic level that has turned out to be crucial. This incapacity of making images, a paradigm of invisibility, substantially coins the cultural role of the events. The question of how a society deals with these abstract potentials of nuclear technology has turned out to be always anew of high relevance in regard to ecological, social and technological policies of images.

  19. Chernobyl, 16 years later; Tchernobyl, 16 ans apres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    This document on the Chernobyl site evolution is constituted around four main questions. What about the future of the Chernobyl site, the damaged reactor and the ''sarcophagus'' constructed around the reactor? What about the sanitary consequences of the accident on the liquidators asked to blot out the radiation and the around people exposed to radiation? What about the contaminated land around the power plant and their management? Concerning the France, what were the ''radioactive cloud'' sanitary consequences? (A.L.B.)

  20. Above-ground antineutrino detection for nuclear reactor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sweany, M.; Brennan, J.; Cabrera-Palmer, B.; Kiff, S.; Reyna, D.; Throckmorton, D.

    2015-01-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times (Klimov et al., 1994 [1]; Bowden et al., 2009 [2]; Oguri et al., 2014 [3]), however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detection media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by {sup 6}LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of {sup 6}Li. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron's annihilation gammas, a signature that is absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe that this technology will ultimately be applicable to potential safeguards scenarios such as those recently described by Huber et al. (2014) [4,5].

  1. Controlling the power output of a nuclear reactor with fuzzy logic

    NARCIS (Netherlands)

    Ruan, D.; Wal, A.J. van der

    1998-01-01

    The application of fuzzy logic control (FLC) in the domain of nuclear industry presents a tremendous challenge. The main reason for this is the public awareness of the risks of nuclear reactors and the very strict safety regulations in force for nuclear power plants. The very same regulations preven

  2. Controlling the Power Output of a Nuclear Reactor with Fuzzy Logic

    NARCIS (Netherlands)

    Ruan, D.; Wal, A.J. van der

    1997-01-01

    The application of fuzzy logic control (FLC) in the domain of nuclear industry presents a tremendous challenge. The main reason for this is the public awareness of the risks of nuclear reactors and the very strict safety regulations in force for nuclear power plants. The very same regulations preven

  3. Validity aspects in Chernobyl at twenty years of the accident; Aspectos vigentes en Chernobyl a veinte anos del accidente

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo, C. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: cas@nuclear.inin.mx

    2006-07-01

    For April 25, 1986 the annual stop of the unit 4 of the nuclear power plant of Chernobyl was programmed, in order to carry out maintenance tasks. This unit was equipped with a reactor of 1000 MW, type RBMK, developed in the former Soviet Union, this type of reactors uses graphite like moderator, the core is refrigerated with common water in boil, and the fuel is uranium enriched to 2%. Also it had been programmed to carry out, before stopping the operation of the power station, a test with one of the two turbogenerators, which would not affect to the reactor. However, the intrinsic characteristics of the design of the reactor and the fact that the operators disconnected intentionally several systems of security that had stopped the reactor automatically, caused a decontrolled increase of the power (a factor 1000 in 4 seconds), with the consequent fusion of the fuel and the generation of a shock wave, produced by the fast evaporation of the refrigeration water and caused by the interaction of the fuel fused with the same one. It broke the core in pieces and destroy the structure of the reactor building that was not resistant to the pressure. When being exposed to the air, the graphite of the moderator entered in combustion, while the radioactive material was dispersed in the environment. The radionuclides liberation was prolong during 10 days, and only it was stopped by means of the one poured from helicopters, of some 5000 tons of absorbent materials on the destroyed reactor, as long as tunnels were dug to carry out the cooling of the core with liquid nitrogen. Later on, the whole building of the damaged reactor was contained inside a concrete building. The immediate consequence of the accident was the death of 31 people, between operators of the nuclear power station and firemen. One of people died as consequence of the explosion and 30 died by cause of the irradiation, with dose of the order of 16 Gy. The liberated radioactive material was the entirety of the

  4. Turbulence coefficients and stability studies for the coaxial flow or dissimiliar fluids. [gaseous core nuclear reactors

    Science.gov (United States)

    Weinstein, H.; Lavan, Z.

    1975-01-01

    Analytical investigations of fluid dynamics problems of relevance to the gaseous core nuclear reactor program are presented. The vortex type flow which appears in the nuclear light bulb concept is analyzed along with the fluid flow in the fuel inlet region for the coaxial flow gaseous core nuclear reactor concept. The development of numerical methods for the solution of the Navier-Stokes equations for appropriate geometries is extended to the case of rotating flows and almost completes the gas core program requirements in this area. The investigations demonstrate that the conceptual design of the coaxial flow reactor needs further development.

  5. Selection of nuclear reactors through the hierarchic analysis process: the Mexican case; Seleccion de reactores nucleares mediante el proceso de analisis jerarquico: el caso Mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo, C.; Nelson, P.F.; Francois, J.L. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, 62550 Morelos (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2008-07-01

    In this work the decision making method known as hierarchical analysis process for the selection of a new reactor in Mexico was applied. The main objective of the process it is to select the nuclear reactor technology more appropriate for Mexico, to begin the bid process inside one or two years to begin their operation in 2016. The options were restricted to four reactors that fulfill the following ones approaches: 1) its are advanced reactors, from the technological point of view, with regard to the reactors that at the moment operate in the Laguna Verde Power Station, 2) its are reactors that have the totally finished design, 3) its are reactors that already have the certification on the part of the regulator organism of the origin country or that they are in an advanced state of the certification process and 4) its are reactors offered by the companies that they have designed and built the greater number of reactors that are at the moment in operation at world level. Taking into account these restrictions it was decided to consider as alternative at the reactors: Advanced Boiling Water Reactor (A BWR), European Reactor of Pressurized Water (EPR), Water at Pressure reactor (AP1000) and Simplified Economic Reactor of Boiling Water (ESBWR). The evaluation approaches include economic and of safety indicators, qualitative some of them and other quantitative ones. Another grade of complexity in the solution of the problem is that there are actors that can be involved in the definition of the evaluation approaches and in the definition of the relative importance among them, according to each actor's interests. To simplify the problem its were only considered two actors or groups of interest that can influence in more significant way and that are the Federal Commission of Electricity and the National Commission of Nuclear Safety and Safeguards. The qualifications for each reactor in function of the evaluation approaches were obtained, being the A BWR the best

  6. A comparative study of kinetics of nuclear reactors

    Directory of Open Access Journals (Sweden)

    Obaidurrahman Khalilurrahman

    2009-01-01

    Full Text Available The paper deals with the study of reactivity initiated transients to investigate major differences in the kinetics behavior of various reactor systems under different operating conditions. The article also states guidelines to determine the safety limits on reactivity insertion rates. Three systems, light water reactors (pressurized water reactors, heavy water reactors (pressurized heavy water reactors, and fast breeder reactors are considered for the sake of analysis. The upper safe limits for reactivity insertion rate in these reactor systems are determined. The analyses of transients are performed by a point kinetics computer code, PKOK. A simple but accurate method for accounting total reactivity feedback in kinetics calculations is suggested and used. Parameters governing the kinetics behavior of the core are studied under different core states. A few guidelines are discussed to project the possible kinetics trends in the next generation reactors.

  7. Replacement Nuclear Research Reactor. Supplement to Draft Environmental Impact Statement. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The Draft Environmental Impact Statement for a replacement research reactor at Lucas Heights, was available for public examination and comment for some three months during 1998. A Supplement to the Draft Environmental Impact Statement (Draft EIS) has been completed and was lodged with Environment Australia on 18 January 1999. The Supplement is an important step in the overall environmental assessment process. It reviews submissions received and provides the proponent`s response to issues raised in the public review period. General issues extracted from submissions and addressed in the Supplement include concern over liability issues, Chernobyl type accidents, the ozone layer and health issues. Further studies, relating to issues raised in the public submission process, were undertaken for the Supplementary EIS. These studies confirm, in ANSTO`s view, the findings of the Draft EIS and hence the findings of the Final EIS are unchanged from the Draft EIS

  8. Study of fuel assemblies for the nuclear reactor GFR; Estudio de ensambles de combustible para el reactor nuclear GFR

    Energy Technology Data Exchange (ETDEWEB)

    Reyes R, R.; Martin del Campo M, C.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: ricarera@yahoo.com.mx

    2008-07-01

    In the present work the criticality calculations for two models of fuel assembly were realized to study the nuclear reactor cooled by gas (Gas Fast Reactor) of IV Generation. Model 1 is an assembly with hexagonal adjustment of fuel rods with reflector in the axial ends higher and lower, the coolant flows between the rods. Model 2 is an hexagonal assembly type block with spheres dispersion and cylindrical channels for where the coolant with reflector in the axial ends also flows. The materials selected for each component of the assemblies, should be resistant to the radiation of fast neutrons and high operation temperatures, for what in both models the following materials were chosen: a mixture of uranium carbide more plutonium for the fuel; a mixture of silicon carbide in different theoretical density percentages for structures and shieldings; helium gas like coolant and a zirconium carbide mixture like reflector, which fulfill the restrictions of being resistant to the high operation temperatures and means of irradiation. General considerations were taken, which are common parameters to both types of assemblies, like size and materials used in the different parts of each model of assembly. The criticality calculations were obtained with the help of the MCNPx code, based on the Monte Carlo method. It was realized a validation of the atomic density data of each component of the assemblies, to have the certainty of the proportionate values that they were introduced of correct way in the code. The results show that model 1 makes better use of the fissile material in a assembly that has the same dimensions externally. That is to say, that from the only considered viewpoint, the neutron one, model 1 is better than model 2. (Author)

  9. Reactors

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1988-01-01

    This standard applies to the following types of reactors: shunt reactors, current-limiting reactors including neutral-earthing reactors, damping reactors, tuning (filter) reactors, earthing transformers (neutral couplers), arc-suppression reactors, smoothing reactors, with the exception of the following reactors: small reactors with a rating generally less than 2 kvar single-phase and 10 kvar three-phase, reactors for special purposes such as high-frequency line traps or reactors mounted on rolling stock.

  10. A safety assessment of the use of graphite in nuclear reactors licensed by the US NRC

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, D.G.; Gurinsky, D.H.; Kaplan, E.; Sastre, C.

    1987-09-01

    This report reviews existing literature and knowledge on graphite burning and on stored energy accumulation and releases in order to assess what role, if any, a stored energy release can have in initiating or contributing to hypothetical graphite burning scenarios in research reactors. It also addresses the question of graphite ignition and self-sustained combustion in the event of a loss-of-coolant accident (LOCA). The conditions necessary to initiate and maintain graphite burning are summarized and discussed. From analyses of existing information it is concluded that only stored energy accumulations and releases below the burning temperature (650/sup 0/C) are pertinent. After reviewing the existing knowledge on stored energy it is possible to show that stored energy releases do not occur spontaneously, and that the maximum stored energy that can be released from any reactor containing graphite is a very small fraction of the energy produced during the first few minutes of a burning incident. The conclusions from these analyses are that the potential to initiate or maintain a graphite burning incident is essentially independent of the stored energy in the graphite, and depends on other factors that are unique for these reactors, research reactors, and for Fort St. Vrain. In order to have self-sustained rapid graphite oxidation in any of these reactors, certain necessary conditions of geometry, temperature, oxygen supply, reaction product removal, and a favorable heat balance must be maintained. There is no new evidence associated with either the Windscale Accident or the Chernobyl Accident that indicates a credible potential for a graphite burning accident in any of the reactors considered in this review.

  11. Sustainability and the Fixed Bed Nuclear Reactor (FBNR

    Directory of Open Access Journals (Sweden)

    Farhang Sefidvash

    2012-08-01

    Full Text Available Sustainability as a multifaceted and holistic concept is analyzed. Sustainability involves human relationship with elements such as natural environment, economy, power, governance, education and technology with the ultimate purpose of carrying forward an ever-advancing civilization. The Fixed Bed Nuclear Reactor (FBNR is an innovative, small, simple in design, inherently safe, non-proliferating, and environmentally friendly concept that its deployment can generate energy in a sustainable manner contributing to the prosperity of humanity. The development of FBNR will provide electricity as well as desalinated water through a simple but advanced technology for the developing, as well as developed countries. FBNR is environmentally friendly due to its inherent safety and the convenience of using its spent fuel as the source of radiation for irradiation purposes in agriculture, industry, and medicine. Politically, if a ping pong game brought peace between China and USA, a program of development of FBNR supported by the peace loving international community can become a more mature means to bring peace among certain apparently hostile nations who crave sustainable energy, desalinated water and simple advanced technology.

  12. Chernobyl record. The definitive history of the Chernobyl catastrophe

    Energy Technology Data Exchange (ETDEWEB)

    Mould, R.F

    2000-07-01

    The contents of Chernobyl Record have taken 14 years to compile and this period of time was necessary to enable information to be released from Soviet sources, measurements to be made in the environment, for estimation of radiation doses and for follow-up of the health of population groups which had been exposed. This time frame also includes the 10th anniversary conferences and the completion of joint projects of the European Commission, Ukraine, Belarus and the Russian Federation. It has also enabled me to visit the power plant site, Chernobyl town and Pripyat relatively soon after the accident and also some 10 years later: December 1987 and June 1998. Without such visits some of the photographs in this Record could not have been obtained. Information is also contained in these pages of comparisons of various aspects of the Chernobyl accident with data from the Three Mile Island accident in the USA in 1979, the Hiroshima and Nagasaki atomic bombs, the highly contaminated Techa river area in the Urals in Russia and the accident in Tokaimura, Japan in 1999. The first two chapters are introductory in that they describe terminology which is necessary for an understanding of the remaining chapters. Chapters 3-6 describes the early events: including those leading up to the explosion and then what followed in the immediate aftermath. Chapters 7-8 describe the Sarcophagus and the past and future of nuclear power for electricity generation, including the future of the Chernobyl power station. Chapters 9-11 consider the radiation doses received by various populations, including liquidators, evacuees and those living on contaminated territories: and the contamination of milk by {sup 131}I, and the contamination of other parts of the food chain by {sup 137}Cs. Chapters 12-14 describe the environmental impact of the accident, as does chapter 11. Chapters 15-18 detail the long-term effects on health, including not only the incidence of cancer, but also of non

  13. Future development of the research nuclear reactor IRT-2000 in Sofia

    Energy Technology Data Exchange (ETDEWEB)

    Apostolov, T.G. [Institute for Nuclear Research and Nuclear Energy, BAS, Sofia (Bulgaria)

    1999-07-01

    The present paper presents a short description of the research reactor IRT-2000 Sofia, started in 1961 and operated for 28 years. Some items are considered, connected to the improvements made in the contemporary safety requirements and the unrealized project for modernization to 5 MW. Proposals are considered for reconstruction of reactor site to a 'reactor of low power' for education purposes and as a basis for the country's nuclear technology development. (author)

  14. The application of research reactor Maria for analysis of thorium use in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chwaszczewski, S.; Andrzejewski, K.; Myslek-Laurikainen, B.; Pytel, B.; Szczurek, J. [Dep. Thorium Project, Institute of Atomic Energy POLATOM, 05-400 Otwock-Swierk (Poland); Polkowska-Motrenko, H. [Institute of Nuclear Chemistry and Technology, ul.Dorodna 16 03-195 Warszawa (Poland)

    2010-07-01

    The MARIA reactor, pool-type light-water cooled and beryllium moderated nuclear research reactor was used to evaluate the {sup 233}U breeding during the experimental irradiation of the thorium samples. The level of impurities concentrations was determined using ICP-MS method. The associated development of computer programs for analysis of application of thorium in EPR reactor consist of PC version of CORD-2/GNOMER system are presented. (authors)

  15. Contribution of recently measured nuclear data to reactor antineutrino energy spectra predictions

    OpenAIRE

    Fallot M.; Cormon S.; Estienne M.; Algora A.; Bui V.M.; Cucoanes A.; Elnimr M.; Giot L.; Jordan D.; Martino J.; Onillon A.; Porta A.; Pronost G.; Remoto A.; Taín J.L.

    2013-01-01

    This paper attempts to summarize the actual problematic of reactor antineutrino energy spectra in the frame of fundamental and applied neutrino physics. Nuclear physics is an important ingredient of reactor antineutrino experiments. These experiments are motivated by neutrino oscillations, i.e. the measure of the θ13 mixing angle. In 2011, after a new computation of the reactor antineutrino energy spectra, based on the conversion of integral data of the beta spectra from 235U, and 239;241Pu, ...

  16. The role of nuclear law in nuclear safety after Fukushima; El rol del derecho nuclear en seguridad nuclear luego de Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Cardozo, Diva E. Puig, E-mail: d.puig@adinet.com.uy [International Nuclear Law Association (INLA), Montevideo (Uruguay)

    2013-07-01

    The paper contains the following topics: nuclear law, origin and evolution, role of the legal instruments on nuclear safety, nuclear safety the impact of major nuclear accidents: Chernobyl and Fukushima. The response of the nuclear law post Fukushima. Safety and security. International framework for nuclear safety: nuclear convention joint convention on safety on spent fuel management and on the safety of radioactive waste management. The Fukushima World Conference on Nuclear Safety. Convention on Prompt Notification and Assistance in case of a Nuclear Accident or Radiological Emergency. Plan of Action for Nuclear Safety. IAEA recommendations for the safety transport of radioactive material. International framework for nuclear security. Convention on the Physical Protection of Nuclear Materials. International Convention for the Suppression of Acts Against Nuclear Terrorism. Resolution No. 1540 of the Security Council of United Nations (2004). Measures to strengthen international safety. Code of conduct on the safety research reactor.

  17. The reactor ALLEGRO and the sustainable nuclear energy in Central Europe

    Directory of Open Access Journals (Sweden)

    Gadó János

    2014-01-01

    Full Text Available The Visegrád-4 countries (CZ, HU, PL and SK would like to use nuclear energy on the long run. The construction of new Generation 3+ nuclear units probably belong in each country to this realm. These reactors will provide safe and cheap electric energy approximately until the end of the 21st century. In order to use nuclear energy in the 22nd century, sustainability of fuel supply shall be achieved by applying Generation 4 breeder reactors with fast spectrum. The corresponding research and development is organized now in the framework of the V4G4 Centre of Excellence establshed by the nuclear research institutes of the region with a strong technical support from the French CEA. The most important milestone of these efforts is the start-up of the ALLEGRO reactor that shall demonstrate the viability of the gas cooled fast reactor technology.

  18. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  19. The scheme for evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    Science.gov (United States)

    Saldikov, I. S.; Ternovykh, M. Yu; Fomichenko, P. A.; Gerasimov, A. S.

    2017-01-01

    The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of power. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. To solve the closed nuclear fuel modeling tasks REPRORYV code was developed. It simulates the mass flow for nuclides in the closed fuel cycle. This paper presents the results of modeling of a closed nuclear fuel cycle, nuclide flows considering the influence of the uncertainty on the outcome of neutron-physical characteristics of the reactor.

  20. Twenty years of Radiology in RP-10 nuclear reactor protection; Veinte anos de proteccion radiologica en el reactor nuclear RP-10

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Alejandro L.; Ramos, Fernando T.; Arrieta, Rolando W.B.; Vela Mora, Mariano, E-mail: lzapata@ipen.gob.pe, E-mail: framos@ipen.gob.pe, E-mail: rarrieta@ipen.gob.pe, E-mail: mvela@ipen.gob.pe [Instituto Peruano de Energia Nuclear (IPEN), Lima (Peru)

    2013-07-01

    In this report we present the results about radiation controls during 1990 - 2010, carried out in the Nuclear Reactor RP-10 of the Nuclear Center of Huarangal. These controls and radiological evaluation are of much utility for the radio personnel protection of this one and other reactors, since it allows to compares these variables with respect to the time. From the results obtained in monitoring and radiation controls, we conclude that in no case it has been reached the limits allowed by the Peruvian Regulating Authority. (author)

  1. Nuclear energy was the way of the future; 50 anniversary of the research reactor

    NARCIS (Netherlands)

    Wassink, J.

    2013-01-01

    It was the hidden jewel of TU Delft, according to the employees of the nuclear reactor. Others protested against it and insisted that it be eliminated. Following a major mid-life crisis, the Delft research reactor is now in better shape than ever before.

  2. Discussion about modeling the effects of neutron flux exposure for nuclear reactor core analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1986-04-01

    Methods used to calculate the effects of exposure to a neutron flux are described. The modeling of the nuclear-reactor core history presents an analysis challenge. The nuclide chain equations must be solved, and some of the methods in use for this are described. Techniques for treating reactor-core histories are discussed and evaluated.

  3. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    King, Jeffrey C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines (CSM), Golden, CO (United States); Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F., E-mail: guimaraes@ieav.cta.br, E-mail: mencarini@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW{sub e} and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k{sub eff} = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  4. Analysis and application of a simulator of a nuclear reactor AP-600; Analisis y aplicacion de un simulador de un reactor nuclear AP-600

    Energy Technology Data Exchange (ETDEWEB)

    Medina S, V. S. [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Salazar S, E., E-mail: medina_victor@comunidad.unam.mx [UNAM, Facultad de Ingenieria, Division de Ingenieria Electrica, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, 62250 Jiutepec, Morelos (MX)

    2011-11-15

    In front of the resurgence of interest in the nuclear power production, several national organizations have considered convenient to have highly specialized human resources in the technologies of nuclear reactors of III + and IV generation. For this task, the intensive and extensive applications of the computation should been considered, as the virtual instrumentation. The present work analyzes the possible applications of a nuclear simulator provided by the IAEA with base in the design of the reactor AP-600, using a focusing of modular model developed in FORTRAN. One part of the work that was made with the simulator includes the evaluation of 21 transitory events of operation, including the recreation of the accident happened in the nuclear power plant of Three Mile Island in 1979, comparing the actions flow and the answer of the systems under the intrinsic security of a III + generation reactor. The impact that had the mentioned accident was analyzed in the growing of the nuclear energy sector and in the public image with regard to the nuclear power plants. An application for this simulator was proposed, its use as tool for the instruction in the nuclear engineering courses using it to observe the operation of the different security systems and its interrelation inside the power plant as well as a theoretical/practical approach for the student. (Author)

  5. Accidents - Chernobyl accident; Accidents - accident de Tchernobyl

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  6. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    Science.gov (United States)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  7. Challenges to deployment of twenty-first century nuclear reactor systems

    Science.gov (United States)

    Ion, Sue

    2017-02-01

    The science and engineering of materials have always been fundamental to the success of nuclear power to date. They are also the key to the successful deployment and operation of a new generation of nuclear reactor systems and their associated fuel cycles. This article reflects on some of the historical issues, the challenges still prevalent today and the requirement for significant ongoing materials R&D and discusses the potential role of small modular reactors.

  8. Issues and future direction of thermal-hydraulics research and development in nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Saha, P., E-mail: pradip.saha@ge.com [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Aksan, N. [GRNSPG Group, University of Pisa (Italy); Andersen, J. [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Yan, J. [Westinghouse Electric Co., Columbia, SC (United States); Simoneau, J.P. [AREVA, Lyon (France); Leung, L. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada); Bertrand, F. [CEA, DEN, DER, F-13108 Saint-Paul-Lez-Durance (France); Aoto, K.; Kamide, H. [Japan Atomic Energy Agency, Chiyoda-ku, Tokyo (Japan)

    2013-11-15

    The paper archives the proceedings of an expert panel discussion on the issues and future direction of thermal-hydraulic research and development in nuclear power reactors held at the NURETH-14 conference in Toronto, Canada, in September 2011. Thermal-hydraulic issues related to both operating and advanced reactors are presented. Advances in thermal-hydraulics have significantly improved the performance of operating reactors. Further thermal-hydraulics research and development is continuing in both experimental and computational areas for operating reactors, reactors under construction or ready for near-term deployment, and advanced Generation-IV reactors. As the computing power increases, the fine-scale multi-physics computational models, coupled with the systems analysis code, are expected to provide answers to many challenging problems in both operating and advanced reactor designs.

  9. Risk reporting in the Chinese news media in response to radiation threat from the Fukushima nuclear reactor crisis

    Energy Technology Data Exchange (ETDEWEB)

    Wen Wang [Greenlee School of Journalism and Communication, Iowa State University, Ames, Iowa (United States)

    2013-07-01

    On March 11, 2011, the northeastern coast of Japan was struck by 9.0-magnitude earthquake that triggered a devastating tsunami. Aside from the huge toll in people's lives and severe damages to property, the tremor sent the Fukushima Daiichi Nuclear Power Plant on a tailspin, causing hydrogen explosions in three reactors, and sending radioactive materials into the air and bodies of water. Declared the largest nuclear disaster since Chernobyl, the crisis threatened neighboring countries, including China (International Business Times, 2011). On March 28, low levels of iodine-131, cesium-137 and strontium, believed to have drifted from Japan, were detected in the air over Heilongjiang province in the northeast part of China and in seawater samples collected in the eastern coastal areas (Qianjiang Eve News, 2011). Because these chemicals can enter the food chain and adversely affect human health (Ifeng.com, 2011), people became understandably anxious and the government had to avert panic. This study asks: How did the Chinese media report the risks attendant to this event? A content analysis of 45 straight news reports published by the Chinese press from March 16, 2011 to April 25, 2011 was conducted. The analysis focused on how the media explained the risk, portrayed potential harm, reported on government actions to safeguard public health, and provided suggestions to reduce public fear. The sources of information cited in the reports were also identified. The articles examined were collected from People.com, a comprehensive online archive of news reports, using 'Fukushima' and 'nuclear radiation' as search terms. The results indicated journalistic practices that left much to be desired in terms of risk reporting. First, the articles explained little about the technical aspects of the radiation leaks and failed to give audiences a general indication of levels of risk. Second, the media over-emphasized the government's position that the

  10. Analysis of environmental contamination and human health effects in the southeastern of Belorussia 13 years after the nuclear accident of Chernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Fueller, J.; Schweitzer, S. [Friedrich-Schiller-University Jena (Germany); Trojanov, M.W. [District Hospital Krasnopolje, Krasnopolje (Belarus)

    2000-05-01

    Associated with the humanitarian aid of the Chernobyl association and the University of Jena for the last 6 years simultaneous analysis of the radioactive contamination and the health situation is performed in the white-russian district of Krasnopolje (200 km north of the reactor, 23.000 inhabitants, 30% of the population evacuated since 1988). The retrospective analysis of incidences of malignant and non-malignant diseases is based on the annual epidemiologic reports of the district physician, comprising data from the past 13 years with a cutoff data of December 31, 1998. The level of contamination of the soil with Cesium 137 measures 1-5 Ci/km{sup 2} in 14% of the territory, 5-15 Ci/km{sup 2} in 50%, 15-40 Ci/km{sup 2} in 25% and >40 Ci/km{sup 2} in 11% (evacuated zone). The gamma-radiation dose rate in still inhabited areas fluctuates from 0,2 to 1,0 micro-Sv/h (normal values: 0,1-0,2 micro-Sv/h). In areas which have been evacuated and closed for agricultural use, levels exceeding 9 micro-Sv/h have been recorded. As expected comparing 1996 to 1998, no decrease of the radiation dose rate in corresponding places of measurement was seen. The existing dosimetry of food which does not fully cover the area shows only slight exceedings of the limits for the basic food supplied by the government controlled trade. With mushrooms, game and berries, peak levels up to 200 times of the Bq-levels per kg were measured. The annual rate of newly diagnosed malignant diseases was relatively constant until 1992 with 23/10.000, but did increase to 43/10.000 in 1993, followed by a decrease to 27/10.000 in 1997 and a increase to 35/10.000 in 1998. Pediatric thyroid carcinoma (n=9) have been observed since 1992. A tendency of growing incidence without significance was seen with tumors of the lungs, the urogenital and the colorectal tract, but barely with leucemia and malignant lymphomas. A significant increase in the incidences of endocrine disorders (hypothyroidism, autonomic adenoma

  11. Chernobyl - state of the art; Chernobyl - o estado da arte

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Daiane C.B. de; Vicente, Roberto; Rostelato, Maria Elisa C.M.; Borges, Jessica F.; Tiezzi, Rodrigo; Peleias Junior, Fernando S.; Souza, Carla D.; Rodrigues, Bruna T.; Benega, Marcos A.G.; Souza, Anderson S. de; Silva, Thais H. da, E-mail: dcsouza@ipen.br, E-mail: rvicente@ipen.br, E-mail: elisaros@ipen.br, E-mail: rtiezzi@ipen.br, E-mail: carladdsouza@yahoo.com.br, E-mail: marcosagbenega@ipen.br, E-mail: bteigarodrigues@gmail.com, E-mail: thaishunk@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    This article aims to analyze what has been done so far in relation to damage caused by the accident and the state of art in Chernobyl, as well as the impact on radiation protection applied safety nuclear power plants. In the first part of the work a data survey was done through a bibliographic review and the in the second part data was collected during a visit, in June 2013 at the crash site, when was observed dose values in the affected areas and the works of repairs that have been made in the sarcophagus and surroundings as well as in official reports available through active international bodies. The main results indicate significant improvements in radiation protection systems.

  12. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

    1990-12-01

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

  13. Conceptual Nuclear Design of a 20 MW Multipurpose Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, Hak Sung; Park, Cheol [KAERI, Daejeon (Korea, Republic of); Nghiem, Huynh Ton; Vinh, Le Vinh; Dang, Vo Doan Hai [Dalat Nuclear Research Reactor, Hanoi (Viet Nam)

    2007-08-15

    A conceptual nuclear design of a 20 MW multi-purpose research reactor for Vietnam has been jointly done by the KAERI and the DNRI (VAEC). The AHR reference core in this report is a right water cooled and a heavy water reflected open-tank-in-pool type multipurpose research reactor with 20 MW. The rod type fuel of a dispersed U{sub 3}Si{sub 2}-Al with a density of 4.0 gU/cc is used as a fuel. The core consists of fourteen 36-element assemblies, four 18-element assemblies and has three in-core irradiation sites. The reflector tank filled with heavy water surrounds the core and provides rooms for various irradiation holes. Major analyses have been done for the relevant nuclear design parameters such as the neutron flux and power distributions, reactivity coefficients, control rod worths, etc. For the analysis, the MCNP, MVP, and HELIOS codes were used by KAERI and DNRI (VAEC). The results by MCNP (KAERI) and MVP (DNRI) showed good agreements and can be summarized as followings. For a clean, unperturbed core condition such that the fuels are all fresh and there are no irradiation holes in the reflector region, the fast neutron flux (E{sub n}{>=}1.0 MeV) reaches 1.47x10{sup 14} n/cm{sup 2}s and the maximum thermal neutron flux (E{sub n}{<=}0.625 eV) reaches 4.43x10{sup 14} n/cm{sup 2}s in the core region. In the reflector region, the thermal neutron peak occurs about 28 cm far from the core center and the maximum thermal neutron flux is estimated to be 4.09x10{sup 14} n/cm{sup 2}s. For the analysis of the equilibrium cycle core, the irradiation facilities in the reflector region were considered. The cycle length was estimated as 38 days long with a refueling scheme of replacing three 36-element fuel assemblies or replacing two 36-element and one 18-element fuel assemblies. The excess reactivity at a BOC was 103.4 mk, and 24.6 mk at a minimum was reserved at an EOC. The assembly average discharge burnup was 54.6% of initial U-235 loading. For the proposed fuel management

  14. New options for developing of nuclear energy using an accelerator-driven reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi

    1997-09-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor. Thus, the necessity of early introduction of the fast reactor can be moderated. High reliability of the proton accelerator, which is essential to implementing an accelerator-driven reactor in the nuclear energy field can be achieved by a slight extension of the accelerator`s length, with only a small economical penalty. Subcritical operation provides flexible nuclear energy options including high neutron economy producing the fuel, transmuting high-level wastes, such as minor actinides, and of converting efficiently the excess Pu and military Pu into proliferation-resistant fuel.

  15. Nuclear resurrection: Must Ontario fire up more reactors to power its future?

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, E.

    2005-06-01

    An extensive historical review of Canada's nuclear reactor program is provided. The author also examines the role of nuclear power generation in Ontario's energy future, concluding that given the limited capacity for additional hydro power, and the uncertainty of natural gas supply, nuclear power will likely remain a significant source of energy for Ontario for the foreseeable future. Nevertheless, the challenge to bring nuclear power generation under control remains, considering that despite the best efforts of generations of nuclear engineers, politicians and regulators the industry appears close to being unmanageable, and Ontario taxpayers are likely to be paying its old debt far into the future. The current contingent of reactors is rapidly aging and the disposal of used nuclear fuel still defies a satisfactory solution. These formidable challenges notwithstanding, best estimates are that Ontario has few viable alternatives, and will have to embark on a new cycle of nuclear construction before the end of this decade.

  16. International academic program in technologies of light-water nuclear reactors. Phases of development and implementation

    Science.gov (United States)

    Geraskin, N. I.; Glebov, V. B.

    2017-01-01

    The results of implementation of European educational projects CORONA and CORONA II dedicated to preserving and further developing nuclear knowledge and competencies in the area of technologies of light-water nuclear reactors are analyzed. Present article addresses issues of design and implementation of the program for specialized training in the branch of technologies of light-water nuclear reactors. The systematic approach has been used to construct the program for students of nuclear specialties, which corresponding to IAEA standards and commonly accepted nuclear principles recognized in the European Union. Possibilities of further development of the international cooperation between countries and educational institutions are analyzed. Special attention is paid to e-learning/distance training, nuclear knowledge preservation and interaction with European Nuclear Education Network.

  17. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option nuclear reactor-borne

    CERN Document Server

    Int. At. Energy Agency, Wien

    2002-01-01

    This document describes the specific dispositions relative to the nuclear reactor-borne domain, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the nuclear reactor-borne and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  18. Review of nuclear data improvement needs for nuclear radiation measurement techniques used at the CEA experimental reactor facilities

    Directory of Open Access Journals (Sweden)

    Destouches Christophe

    2016-01-01

    Full Text Available The constant improvement of the neutron and gamma calculation codes used in experimental nuclear reactors goes hand in hand with that of the associated nuclear data libraries. The validation of these calculation schemes always requires the confrontation with integral experiments performed in experimental reactors to be completed. Nuclear data of interest, straight as cross sections, or elaborated ones such as reactivity, are always derived from a reaction rate measurement which is the only measurable parameter in a nuclear sensor. So, in order to derive physical parameters from the electric signal of the sensor, one needs specific nuclear data libraries. This paper presents successively the main features of the measurement techniques used in the CEA experimental reactor facilities for the on-line and offline neutron/gamma flux characterizations: reactor dosimetry, neutron flux measurements with miniature fission chambers and Self Power Neutron Detector (SPND and gamma flux measurements with chamber ionization and TLD. For each technique, the nuclear data necessary for their interpretation will be presented, the main identified needs for improvement identified and an analysis of their impact on the quality of the measurement. Finally, a synthesis of the study will be done.

  19. Review of nuclear data improvement needs for nuclear radiation measurement techniques used at the CEA experimental reactor facilities

    Science.gov (United States)

    Destouches, Christophe

    2016-03-01

    The constant improvement of the neutron and gamma calculation codes used in experimental nuclear reactors goes hand in hand with that of the associated nuclear data libraries. The validation of these calculation schemes always requires the confrontation with integral experiments performed in experimental reactors to be completed. Nuclear data of interest, straight as cross sections, or elaborated ones such as reactivity, are always derived from a reaction rate measurement which is the only measurable parameter in a nuclear sensor. So, in order to derive physical parameters from the electric signal of the sensor, one needs specific nuclear data libraries. This paper presents successively the main features of the measurement techniques used in the CEA experimental reactor facilities for the on-line and offline neutron/gamma flux characterizations: reactor dosimetry, neutron flux measurements with miniature fission chambers and Self Power Neutron Detector (SPND) and gamma flux measurements with chamber ionization and TLD. For each technique, the nuclear data necessary for their interpretation will be presented, the main identified needs for improvement identified and an analysis of their impact on the quality of the measurement. Finally, a synthesis of the study will be done.

  20. Irradiation of members of the general public from radioactive caesium following the Chernobyl reactor accident. Field studies in a highly contaminated area in the Bryansk region, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Thornberg, C

    2000-11-01

    From 1990 to 1999, estimations of the effective dose from external as well as internal irradiation from {sup 137}Cs and {sup 134}Cs were carried out for inhabitants in rural villages in the Bryansk region, Russia, highly contaminated due to the Chernobyl accident in 1986. The villages were situated about 180 km from the Chernobyl power plant and the deposition of {sup 137}Cs was in the range 0.9-2.7 MBq/m{sup 2}. Yearly expeditions were conducted in autumn by members of the Departments of Radiation Physics in Malmoe and Goeteborg, Institute of Radiation Hygiene, St. Petersburg and the the first 5 years also by the Norwegian Radiation Protection Authority. The dose levels and their change in time were estimated for various groups of the general public. The body burden of {sup 134,137}Cs and hence, the effective dose, was estimated from measurements of the urinary concentration of cesium radionuclides, together with direct measurements of the body content using a portable detector. The effective dose from external irradiation was estimated from measurements with thermoluminescent dosemeters worn by the participants during one month each year. In a special case study, the changes in biokinetics of {sup 137}Cs during pregnancy was investigated in a woman with an unintended intake of {sup 137}Cs via mushrooms from a highly contaminated forest in the area. During pregnancy there is an increased excretion of cesium resulting in a biological half-time of cesium which was 54% of the half-time before pregnancy. The ratio of the {sup 137}Cs concentration in breast milk (Bq/l) to that in the mother's body (Bq/kg) was 15% one month after the child was born. The body burden of {sup 137}Cs in the Russian individuals calculated from the concentration of {sup 137}Cs in urine showed a good agreement with the body burden estimated from in vivo measurements in the same individuals. Normalisation of the cesium concentration in the urine samples by the use of potassium or

  1. Contribution of recently measured nuclear data to reactor antineutrino energy spectra predictions

    Directory of Open Access Journals (Sweden)

    Fallot M.

    2013-12-01

    Full Text Available This paper attempts to summarize the actual problematic of reactor antineutrino energy spectra in the frame of fundamental and applied neutrino physics. Nuclear physics is an important ingredient of reactor antineutrino experiments. These experiments are motivated by neutrino oscillations, i.e. the measure of the θ13 mixing angle. In 2011, after a new computation of the reactor antineutrino energy spectra, based on the conversion of integral data of the beta spectra from 235U, and 239;241Pu, a deficit of reactor antineutrinos measured by short baseline experiments was pointed out. This is called the “reactor anomaly”, a new puzzle in the neutrino physics area. Since then, numerous new experimental neutrino projects have emerged. In parallel, computations of the antineutrino spectra independant from the ILL data would be desirable. One possibility is the use of the summation method, summing all the contributions of the fission product beta decay branches that can be found in nuclear databases. Studies have shown that in order to obtain reliable summation antineutrino energy spectra, new nuclear physics measurements of selected fission product beta decay properties are required. In these proceedings, we will present the computation methods of reactor antineutrino energy spectra and the impact of recent beta decay measurements on summation method spectra. The link of these nuclear physics studies with short baseline line oscillation search will be drawn and new neutrino physics projects at research reactors will be briefly presented.

  2. Empirical Risk Analysis of Severe Reactor Accidents in Nuclear Power Plants after Fukushima

    Directory of Open Access Journals (Sweden)

    Jan Christian Kaiser

    2012-01-01

    Full Text Available Many countries are reexamining the risks connected with nuclear power generation after the Fukushima accidents. To provide updated information for the corresponding discussion a simple empirical approach is applied for risk quantification of severe reactor accidents with International Nuclear and Radiological Event Scale (INES level ≥5. The analysis is based on worldwide data of commercial nuclear facilities. An empirical hazard of 21 (95% confidence intervals (CI 4; 62 severe accidents among the world’s reactors in 100,000 years of operation has been estimated. This result is compatible with the frequency estimate of a probabilistic safety assessment for a typical pressurised power reactor in Germany. It is used in scenario calculations concerning the development in numbers of reactors in the next twenty years. For the base scenario with constant reactor numbers the time to the next accident among the world's 441 reactors, which were connected to the grid in 2010, is estimated to 11 (95% CI 3.7; 52 years. In two other scenarios a moderate increase or decrease in reactor numbers have negligible influence on the results. The time to the next accident can be extended well above the lifetime of reactors by retiring a sizeable number of less secure ones and by safety improvements for the rest.

  3. Applicability of base-isolation R and D in non-reactor facilities to a nuclear reactor plant

    Energy Technology Data Exchange (ETDEWEB)

    Seidensticker, R.W. (Argonne National Lab., IL (USA))

    1991-06-01

    Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. The level of assurance of performance for such isolation systems for a nuclear power plant will be much greater than that required for non-nuclear facilities. The question is to what extent can R and D for non-nuclear use of seismic isolation be applied to a nuclear power plant. Experience shows that considerable effort is needed to adapt any technology to nuclear power facilities. This paper reviews the R and D programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R and D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R and D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant. (orig.).

  4. Modeling of operating history of the research nuclear reactor

    Science.gov (United States)

    Naymushin, A.; Chertkov, Yu; Shchurovskaya, M.; Anikin, M.; Lebedev, I.

    2016-06-01

    The results of simulation of the IRT-T reactor operation history from 2012 to 2014 are presented. Calculations are performed using continuous energy Monte Carlo code MCU-PTR. Comparison is made between calculation and experimental data for the critical reactor.

  5. Core Physics of Pebble Bed High Temperature Nuclear Reactors

    NARCIS (Netherlands)

    Auwerda, G.J.

    2014-01-01

    To more accurately predict the temperature distribution inside the reactor core of pebble bed type high temperature reactors, in this thesis we investigated the stochastic properties of randomly stacked beds and the effects of the non-homogeneity of these beds on the neutronics and thermal-hydraulic

  6. Comparative assessment of nuclear fuel cycles. Light-water reactor once-through, classical fast breeder reactor, and symbiotic fast breeder reactor cycles

    Energy Technology Data Exchange (ETDEWEB)

    Hardie, R.W.; Barrett, R.J.; Freiwald, J.G.

    1980-06-01

    The object of the Alternative Nuclear Fuel Cycle Study is to perform comparative assessments of nuclear power systems. There are two important features of this study. First, this evaluation attempts to encompass the complete, integrated fuel cycle from mining of uranium ore to disposal of waste rather than isolated components. Second, it compares several aspects of each cycle - energy use, economics, technological status, proliferation, public safety, and commercial potential - instead of concentrating on one or two assessment areas. This report presents assessment results for three fuel cycles. These are the light-water reactor once-through cycle, the fast breeder reactor on the classical plutonium cycle, and the fast breeder reactor on a symbiotic cycle using plutonium and /sup 233/U as fissile fuels. The report also contains a description of the methodology used in this assessment. Subsequent reports will present results for additional fuel cycles.

  7. Hanging core support system for a nuclear reactor. [LMFBR

    Science.gov (United States)

    Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.

    1984-04-26

    For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform.

  8. Safeguards Issues at Nuclear Reactors and Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Brian D [Los Alamos National Laboratory

    2012-08-15

    The Agency's safeguards technical objective is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection.

  9. 78 FR 64029 - Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ... COMMISSION Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors AGENCY... Systems for Light-Water-Cooled Nuclear Power Reactors,'' in which the NRC made editorial corrections and... analysis for liquid and gaseous radwaste system components for light water nuclear power...

  10. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    Science.gov (United States)

    Carmack, W. J.; Husser, D. L.; Mohr, T. C.; Richardson, W. C.

    2004-02-01

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  11. Systems and methods for processing irradiation targets through a nuclear reactor

    Science.gov (United States)

    Dayal, Yogeshwar; Saito, Earl F.; Berger, John F.; Brittingham, Martin W.; Morales, Stephen K.; Hare, Jeffrey M.

    2016-05-03

    Apparatuses and methods produce radioisotopes in instrumentation tubes of operating commercial nuclear reactors. Irradiation targets may be inserted and removed from instrumentation tubes during operation and converted to radioisotopes otherwise unavailable during operation of commercial nuclear reactors. Example apparatuses may continuously insert, remove, and store irradiation targets to be converted to useable radioisotopes or other desired materials at several different origin and termination points accessible outside an access barrier such as a containment building, drywell wall, or other access restriction preventing access to instrumentation tubes during operation of the nuclear plant.

  12. Radionuclide inventories for short run-time space nuclear reactor systems

    Science.gov (United States)

    Coats, Richard L.

    1993-01-01

    Space Nuclear Reactor Systems, especially those used for propulsion, often have expected operation run times much shorter than those for land-based nuclear power plants. This produces substantially different radionuclide inventories to be considered in the safety analyses of space nuclear systems. This presentation describes an analysis utilizing ORIGEN2 and DKPOWER to provide comparisons among representative land-based and space systems. These comparisons enable early, conceptual considerations of safety issues and features in the preliminary design phases of operational systems, test facilities, and operations by identifying differences between the requirements for space systems and the established practice for land-based power systems. Early indications are that separation distance is much more effective as a safety measure for space nuclear systems than for power reactors because greater decay of the radionuclide activity occurs during the time to transport the inventory a given distance. In addition, the inventories of long-lived actinides are very low for space reactor systems.

  13. Emergency planning and response: An independent safety assessment of Department of Energy nuclear reactor facilities

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, D.; Boyd, R.

    1981-02-01

    The Department of Energy (DOE) has formed a Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee to assess the implications of the recommendations contained in the President's Commission Report on the Three Mile Island (TMI) Accident (the Kemeny Commission report) that are applicable to DOE's nuclear reactor operations. Thirteen DOE nuclear reactors have been reviewed. The assessments of the 13 facilities are based on information provided by the individual operator organizations and/or cognizant DOE Field Offices. Additional clarifying information was supplied in some, but not all, instances. This report indicates how these 13 reactor facilities measure up in light of the Kemeny and other TMI-related studies and recommendations, particularly those that have resulted in upgraded Nuclear Regulatory Commission (NRC) requirements in the area of emergency planning and response.

  14. Irradiation of members of the general public from radioactive caesium following the Chernobyl reactor accident: Field studies in a highly contaminated area in the Bryansk region, Russia

    Science.gov (United States)

    Thornberg, Charlotte

    From 1990 to 1998, estimations of the effective dose due to irradiation from 137Cs and 134Cs were carried out for inhabitants in rural villages in the Bryansk region, Russia. The villages, situated about 180 km from the Chernobyl power plant received deposition of 137Cs in the range 0.9-2.7 MBq m-2 due to the accident in 1986. The body burden of 137,134Cs was estimated from measurements of the urinary concentration of caesium radionuclides, together with in vivo measurements using a portable detector. The external effective dose was estimated from measurements with thermoluminescent (TL)-dosemeters worn by the participants during one month each year. In a case study, the changes in biokinetics of 137Cs during pregnancy was investigated in a woman with an unintended intake of 137Cs via mushrooms grown in the area. During pregnancy the biological half-time of caesium was 54% of that before pregnancy. The ratio of the 137Cs concentration in breast milk (Bq L-1) to that in the mother's body (Bq kg-1) was 15% one month after the child was born. The body burden of 137Cs in the Russian individuals calculated from urine samples showed a good agreement with the body burden estimated from in vivo measurements in the same individuals. Normalisation of the caesium concentration in the urine samples by the use of potassium or creatinine excretion introduced systematic differences and a larger spread in the calculated values of the 137Cs body burden as compared with calculations without normalisation. The yearly effective dose to inhabitants in the Russian villages varied between 1.2 and 2.5 mSv as a mean for all villages between 1991 and 1998 and the internal effective dose was 30-50% of the total effective dose. The external effective dose decreased on average 15% per year, while the internal effective dose varied, depending to a great extent on the availability of mushrooms. The cumulated effective dose for a 70-year period after the accident was calculated to be 100 m

  15. Perspective of Using the Results of Monitoring and Modeling of the Chernobyl Nuclear Power Plant's Cooling Pond as Analogue for the US DOE Contaminated Sites

    Science.gov (United States)

    Faybishenko, B.; Voitsekhovich, O. V.; Bugay, D.; Skalskjj, A.; Shestopalov, V. M.; Zheleznyak, M.; Kashparov, V. A.; Antropov, A. S.; Kireev, S. I.; Bondarkov, M. D.; Ivanov, Y.; Oskolkov, B.; Marra, J.; Jannik, T.; Farfan, E.; Monken-Fernandes, H.; Hinton, T.; Smith, J.; Onishi, Y.; Konoplev, A.

    2010-12-01

    Although there are many contaminated sites that may be suitable candidates for providing analogue information for the development and testing of environmental modeling and risk assessment approaches, of particular scientific and practical interests is the feasibility study of planned decommissioning and remediation of the highly contaminated Chernobyl Cooling Pond (CP), located within the Chernobyl Exclusion Zone (ChEZ). The presence of the CP has caused an artificially high groundwater table within the ChEZ. After the planned cessation of water pumping from the Pripyat River to the CP, substantial areas of sediments, containing 137Cs, 90Sr, and hot particles with U, Pu, and Am. will be exposed to the atmosphere, and the groundwater level is expected to decline by as much as 7 m. The areal extent of the exposed zone, the dissolution rate, mobility and bioavailability of radionuclides will vary over time, depending on the dynamics of seepage losses from the pond and climatic conditions. The objective of the presentation is to discuss hydrological and geochemical processes, a conceptual model, and the results and perspectives of numerical modeling of coupled surface water-groundwater flow and transport, including the parameter estimation and uncertainty evaluation for various decommissioning and remediation options of the CP. In particular, the results of 1D, 2D, and 3D simulations of radionuclide transport in surface water and groundwater will be discussed, along with the evaluation of Kd parameters from the results of field monitoring and modeling of seasonal variations of 137Cs concentrations in pond water and sediments. It will be shown that the results of field monitoring and modeling of the Chernobyl CP can be used as analogue for several US DOE sites to improve scientific and practical understanding of subsurface hydrological and geochemical processes, as well as to obtain a better understanding of processes affecting natural attenuation of radionuclides in

  16. Modeling and Testing of Non-Nuclear, Highpower Simulated Nuclear Thermal Rocket Reactor Elements

    Science.gov (United States)

    Kirk, Daniel R.

    2005-01-01

    When the President offered his new vision for space exploration in January of 2004, he said, "Our third goal is to return to the moon by 2020, as the launching point for missions beyond," and, "With the experience and knowledge gained on the moon, we will then be ready to take the next steps of space exploration: human missions to Mars and to worlds beyond." A human mission to Mars implies the need to move large payloads as rapidly as possible, in an efficient and cost-effective manner. Furthermore, with the scientific advancements possible with Project Prometheus and its Jupiter Icy Moons Orbiter (JIMO), (these use electric propulsion), there is a renewed interest in deep space exploration propulsion systems. According to many mission analyses, nuclear thermal propulsion (NTP), with its relatively high thrust and high specific impulse, is a serious candidate for such missions. Nuclear rockets utilize fission energy to heat a reactor core to very high temperatures. Hydrogen gas flowing through the core then becomes superheated and exits the engine at very high exhaust velocities. The combination of temperature and low molecular weight results in an engine with specific impulses above 900 seconds. This is almost twice the performance of the LOX/LH2 space shuttle engines, and the impact of this performance would be to reduce the trip time of a manned Mars mission from the 2.5 years, possible with chemical engines, to about 12-14 months.

  17. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    Science.gov (United States)

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  18. A Study on Comparison of HANARO and KIJANG Research Reactor in Nuclear Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juang; Lee, Sung Ho; Kim, Hyun-Jo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    As one of major national projects for nuclear science and engineering in Korea, the KIJANG Research Reactor(KJRR) project was commenced in order to develop the core research reactor(RR) technologies for strengthening the competitiveness of the RR export and also to stabilize the supply of key radioisotopes for medical and industrial applications. This paper is about applying IAEA safeguards at new nuclear facility (KJRR). The beginning of this project is comparing of HANARO and KIJANG research reactor in nuclear safeguards for nuclear material accountancy method. As mentioned before, research reactor is basically item counting facility. In Fig 1, first two processes are belonging to item counting. But last two processes are for bulk handling. So KIJANG RR would be treated item counting facility as well as bulk handling facility by fission moly production facility. For this reason, nuclear material accountancy method for KJRR is not easy compared to existing one. This paper accounted for solution of KJRR nuclear material accountancy briefly. Future study on the suitable nuclear material accountancy method for mixed facility between item counting facility and bulk handling facility will be conducted more specifically.

  19. Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, R.P.; Zenzen, J.M.

    1994-01-01

    This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story of fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.

  20. Role of Halden Reactor Project for world-wide nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M.A.; Volkov, B.

    2011-07-01

    The great interest for utilization of nuclear materials to produce energy in the middle of last century needed special investigations using first class research facilities. Common problems in the area of nuclear fuel development motivated the establishment of joint research efforts. The OECD Halden Reactor Project (HRP) is a good example of such a cooperative research effort, which has been performing for more than 50 years. During that time, the Halden Reactor evolved from a prototype heavy water reactor envisaged as a power source for different applications to a research reactor that is able to simulate in-core conditions of modern commercial power reactors. The adaptability of the Halden Reactor enables the HRP to be an important international test facility for nuclear fuels and materials development. The long-term international cooperation is based on the flexible HRP organizational structure which also provides the continued success. [1,2] This paper gives a brief history of the Halden Reactor Project and its contribution to world-wide nuclear energy development. Recent expansion of the Project to the East and Asian countries may also assist and stimulate the development of a nuclear industry within these countries. The achievements of the HRP rely on the versatility of the research carried out in the reactor with reliable testing techniques and in-pile instrumentation. Diversification of scientific activity in the areas of development of alternative energy resources and man-machine technology also provide the HRP with a stable position as one of the leaders in the world scientific community. All of these aspects are described in this paper together with current experimental works, including the investigation of ULBA (Kazakhstan) production fuel in comparison with other world fuel suppliers, as well as other future and prospective plans of the Project.(Author)

  1. Meeting nuclear data needs for advanced reactor system

    OpenAIRE

    Harada, H.; Shibata, K; Nishio, K.; IGASHIRA M.; PLOMPEN Arjan; Hambsch, Franz-Josef; Schillebeeckx, Peter; Gunsing, F.; Ledoux, X.; PALMIOTTI G.; Haight, R; ULLMANN J. L.; Tovesson, F.; Nelson, R.; Herman, M.

    2014-01-01

    The Working Party on International Nuclear Data Evaluation Co-operation (WPEC) has been established under the aegis of the OECD/NEA Nuclear Science Committee (NSC) to promote the exchange of information on nuclear data evaluations, validation and related topics. Its aim is also to provide a framework for co-operative activities between the members of the major nuclear data evaluation projects. This includes the possible exchange of scientists in order to encourage co-operation. Requirements f...

  2. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Science.gov (United States)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  3. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A. N., E-mail: shmelan@mail.ru; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kurnaev, V. A., E-mail: kurnaev@yandex.ru; Salahutdinov, G. H., E-mail: saip07@mail.ru; Kulikov, E. G., E-mail: egkulikov@mephi.ru; Apse, V. A., E-mail: apseva@mail.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  4. Linear stability analysis of a nuclear reactor using the lumped model

    Directory of Open Access Journals (Sweden)

    Kale Vivek A.

    2016-01-01

    Full Text Available The stability analysis of a nuclear reactor is an important aspect in the design and operation of the reactor. A stable neutronic response to perturbations is essential from the safety point of view. In this paper, a general methodology has been developed for the linear stability analysis of nuclear reactors using the lumped reactor model. The reactor kinetics has been modelled using the point kinetics equations and the reactivity feedbacks from fuel, coolant and xenon have been modelled through the appropriate time dependent equations. These governing equations are linearized considering small perturbations in the reactor state around a steady operating point. The characteristic equation of the system is used to establish the stability zone of the reactor considering the reactivity coefficients as parameters. This methodology has been used to identify the stability region of a typical pressurized heavy water reactor. It is shown that the positive reactivity feedback from xenon narrows down the stability region. Further, it is observed that the neutron kinetics parameters (such as the number of delayed neutron precursor groups considered, the neutron generation time, the delayed neutron fractions, etc. do not have a significant influence on the location of the stability boundary. The stability boundary is largely influenced by the parameters governing the evolution of the fuel and coolant temperature and xenon concentration.

  5. Applicability of base-isolation R D in non-reactor facilities to a nuclear reactor plant

    Energy Technology Data Exchange (ETDEWEB)

    Seidensticker, R.W.; Chang, Y.W.

    1990-01-01

    Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. While the fundamental principles and technology are applicable to all of these facilities, the degree of assurance that the actual behavior of the isolation systems is as specified varies with the nature of the facility involved. Obviously, the level of effort to provide such assurance for a nuclear power plant will be much greater than that required for, say, a critical computer facility. The question, therefore, is to what extent can research and development (R D) for non-nuclear use be used to provide technological data needed for seismic isolation of a nuclear power plant. This question, of course is not unique to seismic isolation. Virtually every structural component, system, or piece of equipment used in nuclear power plants is also used in non- nuclear facilities. Experience shows that considerable effort is needed to adapt conventional technology into a nuclear power plant. Usually, more thorough analysis is required, material and fabrication quality-control requirements are more stringent as are controls on field installation. In addition, increased emphasis on maintainability and inservice inspection throughout the life of the plant is generally required to gain acceptance in nuclear power plant application. This paper reviews the R D programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant. 2 refs.

  6. Reactor safety study. An assessment of accident risks in U. S. commercial nuclear power plants. Appendices VII, VIII, IX, and X. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    Information is presented concerning the release of radioactivity in reactor accidents; physical processes in reactor meltdown accidents; safety design rationale for nuclear power plants; and design adequacy.

  7. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    Science.gov (United States)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  8. A spherical torus nuclear fusion reactor space propulsion vehicle concept for fast interplanetary travel

    Science.gov (United States)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1999-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a>5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including payload, central truss, nuclear reactor (including diverter and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, and component design.

  9. Modeling and Control of a Large Nuclear Reactor A Three-Time-Scale Approach

    CERN Document Server

    Shimjith, S R; Bandyopadhyay, B

    2013-01-01

    Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property,...

  10. Influence of DC Supply Systems on Unplanned Reactor Trips in Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    李君利; 童节娟; 茆定远

    2001-01-01

    Operational experience has shown that some components in nuclearpower plants are so important that their failures, which would be a single failure, may cause the entire plant to shutdown. Such shutdowns have often occurred in the past in commercial nuclear power plants. Nuclear power plant authorities try to avoid such unplanned plant shutdowns because of the large economic loss. Unfortunately, it is difficult to identify all the important components from the numerous components in each complex nuclear power plant system. FMEA and FTA methods, which are often applied to probabilistic risk assessments, are used in this paper to identify the key components that may cause unplanned reactor trips. As an example, the 48 V DC power supply system in a typical Chinese nuclear power plant, which is a major cause of many unplanned reactor trips, was analyzed to show how to identify these key components and the causes for nuclear power plant trips.

  11. The nuclear data, A key component for reactor studies, Overview of AREVA NP needs and applications

    Directory of Open Access Journals (Sweden)

    Ravaux Simon

    2016-01-01

    Full Text Available The quality of the nuclear data is essential for AREVA NP. Indeed, many AREVA NP activities such as reactor design, safety studies or reactor instrumentation use them as input data. So, the nuclear data can be considered as a key element for AREVA NP. REVA NP’s contribution in the improvement of the nuclear data consists in a joint effort with the CEA. It means a financing and a sharing of information which can give an orientation to the future research axis. The aim of this article is to present the industrial point of view from AREVA NP on the research on nuclear data. Several examples of collaborations with the CEA which have resulted in an improvement of the nuclear data are presented.

  12. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    OpenAIRE

    Galvez, Cristhian

    2011-01-01

    The Pebble Bed Advanced High Temperature Reactor (PB-AHTR) is a pebble fueled, liquid salt cooled, high temperature nuclear reactor design that can be used for electricity generation or other applications requiring the availability of heat at elevated temperatures. A stage in the design evolution of this plant requires the analysis of the plant during a variety of potential transients to understand the primary and safety cooling system response. This study focuses on the performance of the pa...

  13. Nuclear reactor decommissioning. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The bibliography contains citations concerning nuclear power and research reactor decommissioning and decontamination plans, costs, and safety standards. References discuss the design and evaluation of protective confinement, entombment, and dismantling systems. Topics include decommissioning regulations and rules, public and occupational radiation exposure estimates, comparative evaluation, and reactor performance under high neutron flux conditions. Waste packaging and disposal, environmental compliance, and public opinion are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)

  15. Systems and methods for managing shared-path instrumentation and irradiation targets in a nuclear reactor

    Science.gov (United States)

    Heinold, Mark R.; Berger, John F.; Loper, Milton H.; Runkle, Gary A.

    2015-12-29

    Systems and methods permit discriminate access to nuclear reactors. Systems provide penetration pathways to irradiation target loading and offloading systems, instrumentation systems, and other external systems at desired times, while limiting such access during undesired times. Systems use selection mechanisms that can be strategically positioned for space sharing to connect only desired systems to a reactor. Selection mechanisms include distinct paths, forks, diverters, turntables, and other types of selectors. Management methods with such systems permits use of the nuclear reactor and penetration pathways between different systems and functions, simultaneously and at only distinct desired times. Existing TIP drives and other known instrumentation and plant systems are useable with access management systems and methods, which can be used in any nuclear plant with access restrictions.

  16. Prospects for development of an innovative water-cooled nuclear reactor for supercritical parameters of coolant

    Science.gov (United States)

    Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.

    2014-08-01

    The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.

  17. Uranium droplet nuclear reactor core with MHD generator

    Science.gov (United States)

    Anghaie, Samim; Kumar, Ratan

    An innovative concept employing liquid uranium droplets as fuel in an ultrahigh-temperature vapor core reactor (UTVR) magnetohydrodynamic (MHD) generator power system for space power generation has been studied. Metallic vapor in superheated form acts as a working fluid for a closed-Rankine-type thermodynamic cycle. Usage of fuel and working fluid in this form assures certain advantages. The major technical issues emerging as a result involve a method for droplet generation, droplet transport in the reactor core, heat generation in the fuel and transport to the metallic vapor, and materials compatibility. A qualitative and quantitative attempt to resolve these issues has indicated the promise and tentative feasibility of the system.

  18. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States)

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe2+) irradiation.

  19. Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    William Anderson; James Tulenko; Bradley Rearden; Gary Harms

    2008-09-11

    The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

  20. Análisis de fluctuaciones en reactores nucleares: modelos no lineales y no markovianos

    OpenAIRE

    1983-01-01

    El análisis de las fluctuaciones en reactores nucleares es hoy día un valioso instrumento de diagnosis y control del reactor sus fundamentos teóricos están enmarcados en la melanica estadística del no equilibrio y en la teoría de procesos estocásticos. Bajo estos supuestos se estudia en primer lugar los fundamentos de una descripción estocástica con ruidos externos e internos. En segundo lugar analizamos modelos de reactores no lineales con efecto de temperatura y ruidos externos. Es...

  1. Materials technology for an advanced space power nuclear reactor concept: Program summary

    Science.gov (United States)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  2. Análisis de fluctuaciones en reactores nucleares: modelos no lineales y no markovianos

    OpenAIRE

    Rodríguez Díaz, Miguel Ángel

    2011-01-01

    RESUMEN: El análisis de las fluctuaciones en reactores nucleares es hoy día un valioso instrumento de diagnosis y control del reactor. Sus fundamentos teóricos están enmarcados en la mecánica estadística del no equilibrio y en la teoría de procesos estocásticos. Bajo estos supuestos se estudia en primer lugar los fundamentos de una descripción estocástica con ruidos externos e internos. En segundo lugar analizamos modelos de reactores no lineales con efecto de temperatura y ruidos externos. E...

  3. Use of MCNP for characterization of reactor vessel internals waste from decommissioned nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Love, E.F.; Pauley, K.A.; Reid, B.D.

    1995-09-01

    This study describes the use of the Monte Carlo Neutron-Photon (MCNP) code for determining activation levels of irradiated reactor vessel internals hardware. The purpose of the analysis is to produce data for the Department of Energy`s Greater-Than-Class C Low-Level Radioactive Waste Program. An MCNP model was developed to analyze the Yankee Rowe reactor facility. The model incorporates reactor geometry, material compositions, and operating history data acquired from Yankee Atomic Electric Company. In addition to the base activation analysis, parametric studies were performed to determine the sensitivity of activation to specific parameters. A component sampling plan was also developed to validate the model results, although the plan was not implemented. The calculations for the Yankee Rowe reactor predict that only the core baffle and the core support plates will be activated to levels above the Class C limits. The parametric calculations show, however, that the large uncertainties in the material compositions could cause errors in the estimates that could also increase the estimated activation level of the core barrel to above the Class C limits. Extrapolation of the results to other reactor facilities indicates that in addition to the baffle and support plates, core barrels may also be activated to above Class C limits; however the classification will depend on the specific operating conditions of the reactor and the specific material compositions of the metal, as well as the use of allowable concentration averaging practices in packaging and classifying the waste.

  4. Fuel supply of nuclear power industry with the introduction of fast reactors

    Science.gov (United States)

    Muraviev, E. V.

    2014-12-01

    The results of studies conducted for the validation of the updated development strategy for nuclear power industry in Russia in the 21st century are presented. Scenarios with different options for the reprocessing of spent fuel of thermal reactors and large-scale growth of nuclear power industry based on fast reactors of inherent safety with a breeding ratio of ˜1 in a closed nuclear fuel cycle are considered. The possibility of enhanced fuel breeding in fast reactors is also taken into account in the analysis. The potential to establish a large-scale nuclear power industry that covers 100% of the increase in electric power requirements in Russia is demonstrated. This power industry may be built by the end of the century through the introduction of fast reactors (replacing thermal ones) with a gross uranium consumption of up to ˜1 million t and the termination of uranium mining even if the reprocessing of spent fuel of thermal reactors is stopped or suffers a long-term delay.

  5. Nuclear fission sustainability with subcritical reactors driven by external neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Lafuente, A., E-mail: anlafuente@etsii.upm.es [ETSII-UPM, c/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Piera, M. [ETSII:UNED, c/Juan del Rosal, 12, 28040 Madrid (Spain)

    2011-04-15

    Although nuclear breeder reactors are a promising way to enhance the potential energy currently retrievable from the Uranium reserves, they still have disadvantages because of their safety features (i.e. poor stabilizing mechanisms) and the security of their fuel cycle (diversion of Pu for non-civilian purposes). Loading natural nuclear fuels to a reactor and completely burning them without reprocessing would be ideal, however, this is not possible in critical reactors due to the limitations imposed by the maximum achievable burn-up. An alternative option to attain very high percentages of nuclear natural materials exploitation, while meeting other objectives of Nuclear Sustainability, could consist of using externally-driven subcritical reactors to reach the desired high burn-ups (of the order of 30% and more) without reprocessing. Such scheme would lead to an efficient exploitation of the available raw material, without any risk of proliferation. Exploring this type of reactor concept, this paper analyzes the different ways to accomplish this goal while identifying potential setbacks.

  6. Jules Horowitz Reactor, a new irradiation facility: Improving dosimetry for the future of nuclear experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, G.; Beretz, D.; Destouches, C. [CEA, DEN, DER/SPEX, F-13108 Saint-Paul-lez-Durance (France)

    2011-07-01

    Document available in abstract form only, full text of document follows: The Jules Horowitz Reactor (JHR) is an experimental reactor under construction at the French Nuclear Energy and Alternative Energies Commission (CEA) facility at Cadarache. It will achieve its first criticality by the end of 2014. Experiments that will be conducted at JHR will deal with fuel, cladding, and material behavior. The JHR will also produce medical radio-isotopes and doped silicon for the electronic industry. As a new irradiation facility, its instrumentation will benefit from recent improvements. Nuclear instrumentation will include reactor dosimetry, as it is a reference technique to determine neutron fluence in experimental devices or characterize irradiation locations. Reactor dosimetry has been improved with the progress of simulation tools and nuclear data, but at the same time the customer needs have increased: Experimental results must have reduced and assessed uncertainties. This is now a necessary condition to perform an experimental irradiation in a test reactor. Items improved, in the framework of a general upgrading of the dosimetry process based on uncertainty minimization, will include dosimeter, nuclear data, and modelling scheme. (authors)

  7. Nuclear power industry: Tendencies in the world and Ukraine

    Science.gov (United States)

    Babenko, V. A.; Jenkovszky, L. L.; Pavlovych, V. N.

    2007-11-01

    This review deals with new trends in nuclear reactors physics. It opens by an easily understood introduction to nuclear fission energy physics, starting with some history, including the achievements of the Kharkov nuclear physics school. Attention has been given to the development of fission theory, the Strutinsky theory, and the possible use of “nonstandard” fissile elements. The evolution of the design of nuclear reactors, including the merits and demerits of various structures used worldwide, is given in detail. A detailed description of nuclear power plants operating in Ukraine and their (large!) contribution to Ukraine’s total electricity production as compared with other countries is presented. A comparative evaluation of different energy sources influencing environment contamination and the pollution caused by the Chernobyl accident are presented. The lessons of the Chernobyl accident are summarized, including the features of the shelter (“Sarkofag”) covering the remaining of the power plant fourth block and some examples of calculations of the radioactive evolution of the station’s fuel-containing mass (by authors of the present review). The evolution of traditional nuclear reactors designs set forth under the separate heading of next-generation reactors including new projects such as subcritical assemblies controlled by an external beam of particles (neutrons and protons). The Feoktistov reactor operation and the possibility of its realization are discussed among the new ideas.

  8. Spectrographic determination of metallic impurities in organic coolants for nuclear reactors; Determinacion espectrografica de impurezas metalicas en refrigerantes organicos para reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Martin Munoz, M.; Alvarez Gonzalez, F.

    1969-07-01

    A spectrochemical method for determining metallic impurities in organic coolants for nuclear reactors is given. The organic matter in solid samples is eliminated by controlled distillation and dry ashing in the presence of magnesium oxide as carrier. Liquid, samples are vacuum distillated. The residue is analyzed by carrier distillation and by total burning techniques. The analytical results are discussed and compared with those obtained destroying the organic matter without carrier and using the copper spark technique. (Author) 12 refs.

  9. Study of the neutronic activation of the stainless steel in a nuclear reactor; Estudios de la activacion neutronica del acero inoxidable en un reactor nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro Roche, I.; Rodenas Diago, J.; Marques, J. G.

    2013-07-01

    During operation of a nuclear reactor, various components can be activated by neutron reactions. The activity thus generated produces a dose that is a potential risk to workers and environment. Was simulated using the MCNP and CINDER'90 such activation codes on a piece of steel and the values obtained compared with experimental measurements. The equivalence of both methods is verified to calculate neutron activation and evolution of the dose rate with the cooling time.

  10. Technical support to the Nuclear Regulatory Commission for the boiling water reactor blowdown heat transfer program

    Energy Technology Data Exchange (ETDEWEB)

    Rice, R.E.

    1976-09-01

    Results are presented of studies conducted by Aerojet Nuclear Company (ANC) in FY 1975 to support the Nuclear Regulatory Commission (NRC) on the boiling water reactor blowdown heat transfer (BWR-BDHT) program. The support provided by ANC is that of an independent assessor of the program to ensure that the data obtained are adequate for verification of analytical models used for predicting reactor response to a postulated loss-of-coolant accident. The support included reviews of program plans, objectives, measurements, and actual data. Additional activity included analysis of experimental system performance and evaluation of the RELAP4 computer code as applied to the experiments.

  11. Transitioning nuclear fuel cycles with uncertain fast reactor costs

    Energy Technology Data Exchange (ETDEWEB)

    Phathanapirom, U.B., E-mail: bphathanapirom@utexas.edu; Schneider, E.A.

    2016-06-15

    This paper applies a novel decision making methodology to a case study involving choices leading to the transition from the current once-through light water reactor fuel cycle to one relying on continuous recycle of plutonium and minor actinides in fast reactors in the face of uncertain fast reactor capital costs. Unique to this work is a multi-stage treatment of a range of plausible trajectories for the evolution of fast reactor capital costs over time, characterized by first-of-a-kind penalties as well as time- and unit-based learning. The methodology explicitly incorporates uncertainties in key parameters into the decision-making process by constructing a stochastic model and embedding uncertainties as bifurcations in the decision tree. “Hedging” strategies are found by applying a choice criterion to select courses of action which mitigate “regrets”. These regrets are calculated by evaluating the performance of all possible transition strategies for every feasible outcome of the uncertain parameter. The hedging strategies are those that preserve the most flexibility for adjusting the fuel cycle strategy in response to new information as uncertainties are resolved.

  12. Influence of operation of national experimental nuclear reactor on the natural environment

    Directory of Open Access Journals (Sweden)

    Agnieszka Kaczmarek-Kacprzak

    2012-09-01

    Full Text Available This paper presents the impact of experimental nuclear reactor operations on the national environment, based on assessment reports of the radiological protection of active nuclear technology sources. Using the analysis of measurements carried out in the last 15 years, the trends are presented in selected elements of the environment on the Świerk Nuclear Centre site and its surroundings. In addition, the impact of research results is presented from the fi fteen year period of environmental analysis on building public confi dence on the eve of the start of construction of the first Polish nuclear power plant.

  13. The Chernobyl reactor accident, ten years on. Teaching projects for mathematics instruction in interdisciplinary working groups; 10 Jahre nach Tschernobyl. Unterrichtsprojekte fuer den Mathematikunterricht in faecheruebergreifenden Kooperationen

    Energy Technology Data Exchange (ETDEWEB)

    Boer, H. [comp.; Delle, E. [comp.; Mies, K. [comp.; Warmeling, A. [comp.

    1996-10-01

    The booklet presents background information and addresses the following aspects: ionizing radiation and radiation effects; safety of German nuclear power plants; statistical evidence of radiation injuries; short-lived and long-lived ionizing radiation; radioactive waste; CO{sub 2} emissions as an argument in favour of nuclear power generation. The material presented is intended for use by a school project team interested in the subjects, or as a basis for collaborative, interdisciplinary teaching in working groups, and it offers information and problems for mathematics teaching. (HP) [Deutsch] Neben vielen Informationen behandelt die Broschuere: Strahlen und Strahlenwirkungen; Sicherheit deutscher Kernkraftwerke; statistischer Nachweis von Strahlenschaeden; Kurz- und Langfestigkeit der Strahlenbelastung; radioaktiver Abfall; CO{sub 2}-Problematik als Argument fuer die Kernenergie. Die Broschuere ist gedacht z.B. fuer eine Projektgruppe, einen Projekttag, fuer eine Lerngruppe in faecheruebergreifender Kooperation. Die Materialien sind ausgearbeitet fuer die Themembearbeitung im Mathematikunterricht mit Uebungsaufgaben. (HP)

  14. Trauma management: Chernobyl in Belarus and Ukraine.

    Science.gov (United States)

    Zhukova, Ekatherina

    2016-06-01

    Although the Chernobyl nuclear disaster happened in the Soviet Union in 1986, we still do not know how the most affected states - Ukraine and Belarus - have managed this tragedy since independence. Drawing on the concept of cultural trauma, this article compares Chernobyl narratives in Belarus and Ukraine over the past 28 years. It shows that national narratives of Chernobyl differ, representing the varying ways in which the state overcomes trauma. Our understanding of post-communist transformations can be improved by analysing trauma management narratives and their importance for new national identity construction. These narratives also bring new insights to our vision of cultural trauma by linking it to ontological insecurity. The article demonstrates how the state can become an arena of trauma process as it commands material and symbolic resources to deal with trauma. In general, it contributes to a better understanding of how the same traumatic event can become a source of solidarity in one community, but a source of hostility in another.

  15. Exploring Stochastic Sampling in Nuclear Data Uncertainties Assessment for Reactor Physics Applications and Validation Studies

    Directory of Open Access Journals (Sweden)

    Alexander Vasiliev

    2016-12-01

    Full Text Available The quantification of uncertainties of various calculation results, caused by the uncertainties associated with the input nuclear data, is a common task in nuclear reactor physics applications. Modern computation resources and improved knowledge on nuclear data allow nowadays to significantly advance the capabilities for practical investigations. Stochastic sampling is the method which has received recently a high momentum for its use and exploration in the domain of reactor design and safety analysis. An application of a stochastic sampling based tool towards nuclear reactor dosimetry studies is considered in the given paper with certain exemplary test evaluations. The stochastic sampling not only allows the input nuclear data uncertainties propagation through the calculations, but also an associated correlation analysis performance with no additional computation costs and for any parameters of interest can be done. Thus, an example of assessment of the Pearson correlation coefficients for several models, used in practical validation studies, is shown here. As a next step, the analysis of the obtained information is proposed for discussion, with focus on the systems similarities assessment. The benefits of the employed method and tools with respect to practical reactor dosimetry studies are consequently outlined.

  16. Applications, progress, and the business of small, mini, and modular nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, F. [Hyperion Power Generation, Santa Fe, NM (United States)

    2010-07-01

    This presentation discussed the activities of Hyperion Power Generation, a privately-owned company that is currently commercialized a small civilian nuclear reactor developed in the Los Alamos National Laboratory. The company is developing small, mini, and modular nuclear reactors ranging in cost from $75 million to $500 million. Nuclear power currently accounts for 18 percent of the total electricity produced by the United States, and large-scale nuclear power plants (NPP) typically cost between $6 billion to $9 billion. Smaller-scale nuclear plants can be used with smaller electricity grids and can be added as demand for electricity increases. The average cost per kWh for a mini-NPP is $0.04487 compared with $0.05072 for a large-scale NPP. The widespread use of smaller and modular reactors will lead to increased employment. The reactors have been designed to ensure a high level of safety and security. Issues related to training, operations, and maintenance were also reviewed. tabs., figs.

  17. Nuclear energy; Le dossier du nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Ch. [Ministere de l' Industrie et de l' Amenagement du Territoire, 75 - Paris (France); Bacher, P.; Tanguy, P. [and others

    2001-11-01

    11 contributions written by experts are gathered in this document dedicated to nuclear energy (N.E): 1) could we live without N.E?, 2) do we have to fear N.E?, 3) a critical point of view on N.E, 4) the sanitary consequences of Chernobyl accident, 5) the impact of low radiation doses, 6) the management of a nuclear power plant, 7) the optimisation of wastes at The Hague facility, 8) the management of radioactive wastes in France, 9) the next generation of nuclear reactors, 10) N.E and public acceptance, and 11) is N.E the energy for the future? (A.C.)

  18. Neutronic study of a nuclear reactor of fused salts; Estudio neutronico de un reactor nuclear de sales fundidas

    Energy Technology Data Exchange (ETDEWEB)

    Garcia B, F. B.; Francois L, J. L., E-mail: faviolabelen@gmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The reactors of fused salts called Molten Salt Reactor have presented a resurgence of interest in the last decade, due to they have a versatility in particular to operate, either with a thermal or fast neutrons spectrum. The most active development was by the middle of 1950 and principles of 1970 in the Oak Ridge National Laboratory. In this work some developed models are presented particularly and studied with the help of the MCNPX code, for the development of the neutronic study of this reactor, starting of proposed models and from a simple and homogeneous geometry until other more complex models and approximate to more real cases. In particular the geometry conditions and criticality of each model were analyzed, the isotopic balance, as well as the concentrations of the salts and different assigned fuel types. (Author)

  19. Specific complex of non-radiation risk factors for socially significant pathologies could affect the liquidators of Chernobyl nuclear power plant accident

    Directory of Open Access Journals (Sweden)

    Koterov A.N.

    2014-12-01

    Full Text Available The review considers the complex of non-radiation factors that could affect the liquidators of the Chernobyl accident: the demographic, social and professional group heterogeneity to warrant differentiation of risk, the effects of heavy metals, 'hot particles', chemicals, psychogenic stress, social dislocation in the post-perestroika period, alcohol abuse, smoking, and the effect of screening. All these factors tend to have a significant intensity, unlike the radiation exposure for the majority of subjects. It is concluded that the increased frequency and severity of some large socially significant pathologies in contingent liquidators may be due to a unique set of predominantly non-radiation factors associated, however, with a particular radiation accident.

  20. Status of neutron beam utilization at the Dalat nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dien, Nguyen Nhi; Hai, Nguyen Canh [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    The 500-kW Dalat nuclear research reactor was reconstructed from the USA-made 250-kW TRIGA Mark II reactor. After completion of renovation and upgrading, the reactor has been operating at its nominal power since 1984. The reactor is used mainly for radioisotope production, neutron activation analysis, neutron beam researches and reactor physics study. In the framework of the reconstruction and renovation project of the 1982-1984 period, the reactor core, the control and instrumentation system, the primary and secondary cooling systems, as well as other associated systems were newly designed and installed by the former Soviet Union. Some structures of the reactor, such as the reactor aluminum tank, the graphite reflector, the thermal column, horizontal beam tubes and the radiation concrete shielding have been remained from the previous TRIGA reactor. As a typical configuration of the TRIGA reactor, there are four neutron beam ports, including three radial and one tangential. Besides, there is a large thermal column. Until now only two-neutron beam ports and the thermal column have been utilized. Effective utilization of horizontal experimental channels is one of the important research objectives at the Dalat reactor. The research program on effective utilization of these experimental channels was conducted from 1984. For this purpose, investigations on physical characteristics of the reactor, neutron spectra and fluxes at these channels, safety conditions in their exploitation, etc. have been carried out. The neutron beams, however, have been used only since 1988. The filtered thermal neutron beams at the tangential channel have been extracted using a single crystal silicon filter and mainly used for prompt gamma neutron activation analysis (PGNAA), neutron radiography (NR) and transmission experiments (TE). The filtered quasi-monoenergetic keV neutron beams using neutron filters at the piercing channel have been used for nuclear data measurements, study on

  1. Chernobyl - 30 years thereafter. Has radiation protection in Switzerland been improved for the handling of emergency situations and the long-term consequences?; Tschernobyl. 30 Jahre danach. Hat sich der Strahlenschutz in der Schweiz zur Bewaeltigung einer Notfallsituation und deren langfristiger Konsequenzen verbessert?

    Energy Technology Data Exchange (ETDEWEB)

    Murith, Christophe [Bundesamt fuer Gesundheit (BAG), Bern (Switzerland). Abt. Strahlenschutz

    2016-05-01

    30 years ago the Chernobyl reactor accident has surprised the whole world. It was shown that severe nuclear accidents contaminating large areas for a long time are possible. At this time each state was overstrained and unable to cope with the situation. Switzerland was oscillating between the French disregard and the German psychosis resulting in chaotic communication increased by incoherency and missing consultation with the neighboring countries.

  2. Chernobyl - 20 years and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Lacronique, J.F. [Institut de Radioprotection et de Surete Nucleaire, 92 - Fontenay-aux-Roses (France); Deconinck, F.; Govaerts, P.; Eggermont, C. [SCK-CEN - Studiecentrum voor Kernenergie, Centre d' Etude de l' Energie Nucleaire, Mol (Belgium); Cort, M. de [Institute for Environment and Sustainability, DG JRC EC (Italy); Joulia, J.P. [EuropeAid Co-operation Office, EC, Brussels (Belgium); Dal, A.H.; Balonov, M. [International Atomic Energy Agency (IAEA), Vienna (Austria); Kenigsberg, J. [Commission on Radiation protection, council of ministry (Belarus); Hindie, E. [Universites Paris, 75 (France); Havenaar, M. [Amsterdam Univ. (Netherlands)

    2006-07-01

    In commemoration of the Chernobyl accident 20 years ago, the French society for radiation protection (S.F.R.P.) and the Belgian society for radiation protection (B.V.S.A.B.R.) organise jointly a one day colloquium in Brussels. This colloquium is divided in two parts: the first one concerns the technical and organisational aspects of the accident with the scenario and its global impact, the international environmental radioactivity information exchange through the Chernobyl experience, the European Union (E.U.) assistance to mitigate the Chernobyl accident consequences, the crisis communication and management and the lessons learned from them; the second part is devoted to the medical and humanitarian aspects through the thyroid cancers after Chernobyl accident, the health effects in the European Union (E.U.) and the psychological factors affecting health after the Chernobyl disaster. (N.C.)

  3. Nuclear reactor pulse tracing using a CdZnTe electro-optic radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Kyle A., E-mail: nuclearengg@gmail.com [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan KS 66506 (United States); Geuther, Jeffrey A. [TRIGA Mark II Nuclear Reactor, Mechanical and Nuclear Engineering, Kansas State University, Manhattan KS 66506 (United States); Neihart, James L.; Riedel, Todd A. [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan KS 66506 (United States); Rojeski, Ronald A. [Nanometrics, Inc., 1550 Buckeye Drive, Milpitas CA 95035 (United States); Ugorowski, Philip B.; McGregor, Douglas S. [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan KS 66506 (United States)

    2012-07-11

    CdZnTe has previously been shown to operate as an electro-optic radiation detector by utilizing the Pockels effect to measure steady-state nuclear reactor power levels. In the present work, the detector response to reactor power excursion experiments was investigated. Peak power levels during an excursion were predicted to be between 965 MW and 1009 MW using the Fuchs-Nordheim and Fuchs-Hansen models and confirmed with experimental data from the Kansas State University TRIGA Mark II nuclear reactor. The experimental arrangement of the Pockels cell detector includes collimated laser light passing through a transparent birefringent crystal, located between crossed polarizers, and focused upon a photodiode. The birefringent crystal, CdZnTe in this case, is placed in a neutron beam emanating from a nuclear reactor beam port. After obtaining the voltage-dependent Pockels characteristic response curve with a photodiode, neutron measurements were conducted from reactor pulses with the Pockels cell set at the 1/4 and 3/4 wave bias voltages. The detector responses to nuclear reactor pulses were recorded in real-time using data logging electronics, each showing a sharp increase in photodiode current for the 1/4 wave bias, and a sharp decrease in photodiode current for the 3/4 wave bias. The polarizers were readjusted to equal angles in which the maximum light transmission occurred at 0 V bias, thereby, inverting the detector response to reactor pulses. A high sample rate oscilloscope was also used to more accurately measure the FWHM of the pulse from the electro-optic detector, 64 ms, and is compared to the experimentally obtained FWHM of 16.0 ms obtained with the {sup 10}B-lined counter.

  4. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Simos, N.

    2011-05-01

    In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the

  5. Preliminary dose assessment of the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Hull, A.P.

    1987-01-01

    From the major accident at Unit 4 of the Chernobyl nuclear power station, a plume of airborne radioactive fission products was initially carried northwesterly toward Poland, thence toward Scandinavia and into Central Europe. Reports of the levels of radioactivity in a variety of media and of external radiation levels were collected in the Department of Energy's Emergency Operations Center and compiled into a data bank. Portions of these and other data which were obtained directly from published and official reports were utilized to make a preliminary assessment of the extent and magnitude of the external dose to individuals downwind from Chernobyl. Radioactive /sup 131/I was the predominant fission product. The time of arrival of the plume and the maximum concentrations of /sup 131/I in air, vegetation and milk and the maximum reported depositions and external radiation levels have been tabulated country by country. A large amount of the total activity in the release was apparently carried to a significant elevation. The data suggest that in areas where rainfall occurred, deposition levels were from ten to one-hundred times those observed in nearby ''dry'' locations. Sufficient spectral data were obtained to establish average release fractions and to establish a reference spectra of the other nuclides in the release. Preliminary calculations indicated that the collective dose equivalent to the population in Scandinavia and Central Europe during the first year after the Chernobyl accident would be about 8 x 10/sup 6/ person-rem. From the Soviet report, it appears that a first year population dose of about 2 x 10/sup 7/ person-rem (2 x 10/sup 5/ Sv) will be received by the population who were downwind of Chernobyl within the U.S.S.R. during the accident and its subsequent releases over the following week. 32 refs., 14 figs., 20 tabs.

  6. A new type of Neutrino Detector for Sterile Neutrino Search at Nuclear Reactors and Nuclear Nonproliferation Applications

    OpenAIRE

    Lane, C.; Usman, S. M.; Blackmon, J.; Rasco, C.; Mumm, H. P.; Markoff, D.; Jocher, G. R.; Dorrill, R.; Duvall, M.; J. G. Learned; Li, V; Maricic, J.; Matsuno, S.; Milincic, R.; Negrashov, S.

    2015-01-01

    We describe a new detector, called NuLat, to study electron anti-neutrinos a few meters from a nuclear reactor, and search for anomalous neutrino oscillations. Such oscillations could be caused by sterile neutrinos, and might explain the "Reactor Antineutrino Anomaly". NuLat, is made possible by a natural synergy between the miniTimeCube and mini-LENS programs described in this paper. It features a "Raghavan Optical Lattice" (ROL) consisting of 3375 boron or $^6$Li loaded plastic scintillator...

  7. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle descriptions

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Nonproliferation Alternative Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates. Volume IX is divided into three sections: Chapter 1, Reactor Systems; Chapter 2, Fuel-Cycle Systems; and the Appendixes. Chapter 1 contains the characterizations of the following 12 reactor types: light-water reactor; heavy-water reactor; water-cooled breeder reactor; high-temperature gas-cooled reactor; gas-cooled fast reactor; liquid-metal fast breeder reactor; spectral-shift-controlled reactor; accelerator-driven reactor; molten-salt reactor; gaseous-core reactor; tokamak fusion-fisson hybrid reactor; and fast mixed-spectrum reactor. Chapter 2 contains similar information developed for fuel-cycle facilities in the following categories: mining and milling; conversion and enrichment; fuel fabrication; spent fuel reprocessing; waste handling and disposal; and transportation of nuclear materials.

  8. Large-scale Flow Pulsation in Tight Square Arrayed Rod Bundles of Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hwan; Kim, Kyung Min; Cho, Hyung Hee [Yonsei University, Seoul (Korea, Republic of); Shin, Chang Hwan; In, Wang Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    As a major component of modern nuclear reactor, the nuclear fuel rod bundles with liquid coolant have been studied by a lot of researchers to understand the flow structure between the fuel rods. Recently, rod arrays with much small pitch-to-diameter ratio have been being tried to increase performance of the nuclear reactor. The liquid coolant flowing axially through these small spaces between the rods is known to show some peculiar phenomena including large-scale, quasi-periodic flow pulsation. These flow pulsation phenomena dominate mixing process in the subchannels. Thus, precise understating of the flow structure is essential to predict thermal-hydraulic phenomena in nuclear rod bundles. In this present paper, the turbulent flow in tight square arrayed rod bundles is investigated with Hot-wire anemometry. Then, the measured velocity data are analyzed by using Fast Fourier Transform analysis to find characteristic frequency of the pulsation

  9. Status of deuterium nuclear data for the simulation of heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S.; Roubtsov, D.; Rao, R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Svenne, J.P. [Univ. of Manitoba, Winnipeg, Manitoba (Canada); Winnipeg Inst. for Theoretical Physics, Winnipeg, Manitoba (Canada); Canton, L. [Inst. Nazionale de Fisica Nucleare, Sezione di Padova, Padova (Italy); Univ. di Padova, Dipartimento di Fisica, Padova (Italy); Plompen, A.J.M. [EC-JRC, Inst. for Reference Materials and Measurements, Retieseweg, Geel (Belgium); Stanoiu, M. [Horia Hulubei National Inst. for Physics and Nuclear Engineering, Magurele (Romania); Nankov, N.; Rouki, C. [EC-JRC, Inst. for Reference Materials and Measurement, Retieseweg, Geel (Belgium)

    2011-07-01

    An overview is presented of the status of the deuterium nuclear data used in reactor physics simulations of heavy water (D{sub 2}O) reactors and of ongoing activities to improve their accuracy. The main subjects having noticeable reactivity impact for critical systems involving D{sub 2}O are the degree of backscatter in D(n,n)D elastic scattering at neutron energies <3.2 MeV, the value of the elastic scattering cross section at thermal neutron energies and the adequacy of their numerical representation in evaluated nuclear data libraries. The scope includes fundamental nuclear-data measurements; three-body nuclear-theory calculations; and MCNP5 simulations of experiments involving D{sub 2}O or deuterated targets. (author)

  10. Monitoring nuclear reactors with anti-neutrino detectors: the ANGRA project

    Energy Technology Data Exchange (ETDEWEB)

    Chimenti, Pietro; Leigui, Marcelo Augusto [UFABC - Universidade Federal do ABC. Rua Santa Adelia, 166. Bairro Bangu. Santo Andre - SP (Brazil); Anjos, Joao; Azzi, Gabriel; Rafael, Gama; Ademarlaudo, Barbosa; Lima, Herman; VAZ, Mario; Villar, Arthur [Centro Brasileiro de Pesquisas Fisicas - CBPF, Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ - 22290-180 (Brazil); Gonzales, Luis Fernando; Bezerra, Thiago; Kemp, Ernesto [Unicamp, State University of Campinas, Cidade Universitaria ' Zeferino Vaz' , Barao Geraldo - Campinas, Sao Paulo (Brazil); Nunokawa, Hiroshi [Department of Physics, Pontifical Catholic University - PUC, Rua Marques de Sao Vicente, 225, 22451-900 Gavea - Rio de Janeiro - RJ (Brazil); Guedes, Germano; Faria, Paulo Cesar [Universidade Estadual de Feira de Santana - UEFS, Avenida Transnordestina, Novo Horizonte (Brazil); Pepe, Iuri [Universidade Federal da Bahia - UFBA (Brazil)

    2010-07-01

    We describe the status of the ANGRA Project, aimed at developing an anti-neutrino detector for monitoring nuclear reactors. Indeed the detection of anti-neutrinos provides a unique handle for non-invasive measurements of the nuclear fuel. This kind of measurements are of deep interest for developing new safeguards tools which may help in nuclear non-proliferation programs. The ANGRA experiment, placed at about 30 m from the core of the 4 GW Brazilian nuclear power reactor ANGRA II, is based on a water Cherenkov detector with about one ton target mass. A few thousand antineutrino interactions per day are expected. The latest results from simulations and the status of the construction are presented. (authors)

  11. DETERMINING THE EFFECTS OF RADIATION ON AGING CONCRETE STRUCTURES OF NUCLEAR REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M.

    2010-01-29

    The U.S. Department of Energy Office of Environmental Management (DOE-EM) is responsible for the Decontamination and Decommissioning (D&D) of nuclear facilities throughout the DOE Complex. Some of these facilities will be completely dismantled, while others will be partially dismantled and the remaining structure will be stabilized with cementitious fill materials. The latter is a process known as In-Situ Decommissioning (ISD). The ISD decision process requires a detailed understanding of the existing facility conditions, and operational history. System information and material properties are need for aged nuclear facilities. This literature review investigated the properties of aged concrete structures affected by radiation. In particular, this review addresses the Savannah River Site (SRS) isotope production nuclear reactors. The concrete in the reactors at SRS was not seriously damaged by the levels of radiation exposure. Loss of composite compressive strength was the most common effect of radiation induced damage documented at nuclear power plants.

  12. Detectability prediction for a thermoacoustic sensor in the breazeale nuclear reactor pool

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James [Idaho National Laboratory, Idaho Falls, ID (United States); Hrisko, Joshua [Idaho National Laboratory, Idaho Falls, ID (United States); Garrett, Steven [Idaho National Laboratory, Idaho Falls, ID (United States)

    2016-03-01

    Laboratory experiments have suggested that thermoacoustic engines can be in- corporated within nuclear fuel rods. Such engines would radiate sounds that could be used to measure and acoustically-telemeter information about the op- eration of the nuclear reactor (e.g., coolant temperature or uxes of neutrons or other energetic particles) or the physical condition of the nuclear fuel itself (e.g., changes in temperature, evolved gases) that are encoded as the frequency and/or amplitude of the radiated sound [IEEE Measurement and Instrumen- tation 16(3), 18-25 (2013)]. For such acoustic information to be detectable, it is important to characterize the vibroacoustical environments within reactors. Measurements will be presented of the background noise spectra (with and with- out coolant pumps) and reverberation times within the 70,000 gallon pool that cools and shields the fuel in the 1 MW research reactor on Penn State's campus using two hydrophones, a piezoelectric projector, and an accelerometer. Sev- eral signal-processing techniques will be demonstrated to enhance the measured results. Background vibrational measurement were also taken at the 250 MW Advanced Test Reactor, located at the Idaho National Laboratory, using ac- celerometers mounted outside the reactor's pressure vessel and on plumbing will also be presented. The detectability predictions made in the thesis were validated in September 2015 using a nuclear ssion-heated thermoacoustic sensor that was placed in the core of the Breazeale Nuclear Reactor on Penn State's campus. Some features of the thermoacoustic device used in that experiment will also be revealed. [Work supported by the U.S. Department of Energy.

  13. Thermal and neutron-physical features of the nuclear reactor for a power pulsation plant for space applications

    Science.gov (United States)

    Gordeev, É. G.; Kaminskii, A. S.; Konyukhov, G. V.; Pavshuk, V. A.; Turbina, T. A.

    2012-05-01

    We have explored the possibility of creating small-size reactors with a high power output with the provision of thermal stability and nuclear safety under standard operating conditions and in emergency situations. The neutron-physical features of such a reactor have been considered and variants of its designs preserving the main principles and approaches of nuclear rocket engine technology are presented.

  14. 77 FR 4807 - Revised Fee Policy for Acceptance of Foreign Research Reactor Spent Nuclear Fuel From High-Income...

    Science.gov (United States)

    2012-01-31

    ... National Nuclear Security Administration Revised Fee Policy for Acceptance of Foreign Research Reactor... Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel'' (61 FR 25092, May..., Department of Energy. ACTION: Notice of a change in the fee policy. SUMMARY: This notice announces a...

  15. Thermodynamic exergy analysis for small modular reactor in nuclear hybrid energy system

    OpenAIRE

    Boldon Lauren; Sabharwall Piyush; Rabiti Cristian; Bragg-Sitton Shannon M.; Liu Li

    2016-01-01

    Small modular reactors (SMRs) provide a unique opportunity for future nuclear development with reduced financial risks, allowing the United States to meet growing energy demands through safe, reliable, clean air electricity generation while reducing greenhouse gas emissions and the reliance on unstable fossil fuel prices. A nuclear power plant is comprised of several complex subsystems which utilize materials from other subsystems and their surroundings. The economic utility of resources, or ...

  16. Compatibility of sodium with ceramic oxides employed in nuclear reactors; Compatibilidad del sodio con oxidos ceramicos utilizados en reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Acena Moreno, V.

    1981-07-01

    This work is a review of experiments carried out up to the present time on the corrosion and compatibility of ceramic oxides with liquid sodium at temperatures corresponding to those in fast breeder reactors. The review also includes the results of a thermo-dynamic/liquid sodium reactions. The exercise has been conducted with a view to effecting experimental studies in the future. (Author)

  17. Advanced gas cooled nuclear reactor materials evaluation and development program. Selection of candidate alloys. Vol. 1. Advanced gas cooled reactor systems definition

    Energy Technology Data Exchange (ETDEWEB)

    Marvin, M.D.

    1978-10-31

    Candidate alloys for a Very High Temperature Reactor (VHTR) Nuclear Process Heal (NPH) and Direct Cycle Helium Turbine (DCHT) applications in terms of the effect of the primary coolant exposure and thermal exposure were evaluated. (FS)

  18. Simulation of a nuclear accident by an academic simulator of a VVER-1000 reactor; Simulacion de un accidente nuclear, mediante un simulador academico de un reactor VVER-1000

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez G, L. [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Salazar S, E., E-mail: laurahg42@gmail.com [UNAM, Facultad de Ingenieria, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, 62250 Jiutepec, Morelos (Mexico)

    2014-10-15

    This work is planned to simulate a scenario in which the same conditions that caused the accident at the Fukushima Daichi nuclear power plant are present, using a simulator of a nuclear power plant with VVER-1000 reactor, a different type of technology to the NPP where the accident occurred, which used BWR reactors. The software where it will take place the simulation was created and distributed by the IAEA for academic purposes, which contains the essential systems that characterize this type of NPP. The simulator has tools for the analysis of the characteristic phenomena of a VVER-1000 reactor in the different systems together and planned training tasks. This makes possible to identify the function of each component and how connects to other systems, thus facilitating the visualization of possible failures and the consequences that they have on the general behavior of the reactor. To program the conditions in the simulator, is necessary to know and synthesize a series of events occurred in Fukushima in 2011 and the realized maneuvers to reduce the effects of the system failures. Being different technologies interpretation of the changes that would suffer the VVER systems in the scenario in question will be developed. The Fukushima accident was characterized by the power loss of regular supply and emergency of the cooling systems which resulted in an increase in reactor temperature and subsequent fusion of their nuclei. Is interesting to reproduce this type of failure in a VVER, and extrapolate the lack of power supply in the systems that comprise, as well as pumping systems for cooling, has a pressure regulating system which involves more variables in the balance of the system. (Author)

  19. Verification of HELIOS/MASTER Nuclear Analysis System for SMART Research Reactor, Rev. 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Kim, Kang Seog; Cho, Jin Young; Lee, Chung Chan; Zee, Sung Quun

    2005-12-15

    Nuclear design for the SMART reactor is performed by using the transport lattice code HELIOS and the core analysis code MASTER. HELIOS code developed by Studsvik Scandpower in Norway is a transport lattice code for the neutron and gamma behavior, and is used to generate few group constants. MASTER code is a nodal diffusion code developed by KAERI, and is used to analyze reactor physics. This nuclear design code package requires verification. Since the SMART reactor is unique, it is impossible to verify this code system through the comparison of the calculation results with the measured ones. Therefore, the uncertainties for the nuclear physics parameters calculated by HELIOS/MASTER have been evaluated indirectly. Since Monte Carlo calculation includes least approximations an assumptions to simulate a neutron behavior, HELIOS/MASTER has been verified by this one. Monte Carlo code has been verified by the Kurchatov critical experiments similar to SMART reactor, and HELIOS/MASTER code package has been verified by Monte Carlo calculations for the SMART research reactor.

  20. Verification of HELIOS/MASTER Nuclear Analysis System for SMART Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, Jin Young; Lee, Chung Chan; Zee, Sung Quun

    2005-07-15

    Nuclear design for the SMART reactor is performed by using the transport lattice code HELIOS and the core analysis code MASTER. HELIOS code developed by Studsvik Scandpower in Norway is a transport lattice code for the neutron and gamma behavior, and is used to generate few group constants. MASTER code is a nodal diffusion code developed by KAERI, and is used to analyze reactor physics. This nuclear design code package requires verification. Since the SMART reactor is unique, it is impossible to verify this code system through the comparison of the calculation results with the measured ones. Therefore, the uncertainties for the nuclear physics parameters calculated by HELIOS/MASTER have been evaluated indirectly. Since Monte Carlo calculation includes least approximations an assumptions to simulate a neutron behavior, HELIOS/MASTER has been verified by this one. Monte Carlo code has been verified by the Kurchatov critical experiments similar to SMART reactor, and HELIOS/MASTER code package has been verified by Monte Carlo calculations for the SMART research reactor.

  1. Modification of Neutron Kinetic Code for Plate Type Fuel Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Salah Ud-Din Khan

    2013-01-01

    Full Text Available The research is conducted on the modification of neutron kinetic code for the plate type fuel nuclear reactor. REMARK is a neutron kinetic code that works only for the cylindrical type fuel nuclear reactor. In this research, our main emphasis is on the modification of this code in order to be applicable for the plate type fuel nuclear reactor. For this purpose, detailed mathematical studies have been performed and are subjected to write the program in Fortran language. Since REMARK code is written in Fortran language, so we have developed the program in Fortran and then inserted it into the source library of the code. The main emphasis is on the modification of subroutine in the source library of the code for hexagonal fuel assemblies with plate type fuel elements in it. The number of steps involved in the modification of the code has been included in the paper. The verification studies were performed by considering the small modular reactor with hexagonal assemblies and plate type fuel in it to find out the power distribution of the reactor core. The purpose of the research is to make the code work for the hexagonal fuel assemblies with plate type fuel element.

  2. Study on the selection of nuclear fuel type for a hybrid power extraction reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dong Han; Park, Won Suk [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    The development of a subcritical transmutation reactor concept is emerging for reducing the amounts of actinides and long-lived nuclides in the spent fuel from nuclear power plants. This technology may make contribution to reduce the human risks associated with constructing radio-waste disposal facilities. One of the important issues for the design of the reactor is the selection of a suitable nuclear fuel type. Choosing the best nuclear fuel type for the reactor may not be easy since there exist several criteria associated with neutronic aspects, thermal performance, safety problem, cost problem, radiation damage in the reactor, etc. The best option should be chosen based on the maximization of our needs in this situation. This study presents a logical decision model for this issue using an analytic hierarchy process (AHP). Hierarchy is a representation of a system to study the functional relations of its components and its impact on the entire system. The study shows first how to construct hierarchy representing their relations and then measure the individual element's impact to the entire system for a quantitative decision making. Current four fuel types; metal, oxide, molten salt, and nitride, were selected and analyzed based on several characteristics with respect to overall comparison. Based on the decision model developed, the study concludes that the metal fuel type is the best choice for the transmutation reactor. The proposed approach is intended to help people be rational and logical in making decisions such complex task. 13 refs., 16 figs., 16 tabs. (Author)

  3. Terracentric Nuclear Fission Reactor: Background, Basis, Feasibility, Structure, Evidence, and Geophysical Implications

    CERN Document Server

    Herndon, J Marvin

    2013-01-01

    The background, basis, feasibility, structure, evidence, and geophysical implications of a naturally occurring Terracentric nuclear fission georeactor are reviewed. For a nuclear fission reactor to exist at the center of the Earth, all of the following conditions must be met: (1) There must originally have been a substantial quantity of uranium within Earth's core; (2) There must be a natural mechanism for concentrating the uranium; (3) The isotopic composition of the uranium at the onset of fission must be appropriate to sustain a nuclear fission chain reaction; (4) The reactor must be able to breed a sufficient quantity of fissile nuclides to permit operation over the lifetime of Earth to the present; (5) There must be a natural mechanism for the removal of fission products; (6) There must be a natural mechanism for removing heat from the reactor; (7) There must be a natural mechanism to regulate reactor power level, and; (8) The location of the reactor or must be such as to provide containment and prevent ...

  4. Nuclear Reactor/Hydrogen Process Interface Including the HyPEP Model

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman

    2007-05-01

    The Nuclear Reactor/Hydrogen Plant interface is the intermediate heat transport loop that will connect a very high temperature gas-cooled nuclear reactor (VHTR) to a thermochemical, high-temperature electrolysis, or hybrid hydrogen production plant. A prototype plant called the Next Generation Nuclear Plant (NGNP) is planned for construction and operation at the Idaho National Laboratory in the 2018-2021 timeframe, and will involve a VHTR, a high-temperature interface, and a hydrogen production plant. The interface is responsible for transporting high-temperature thermal energy from the nuclear reactor to the hydrogen production plant while protecting the nuclear plant from operational disturbances at the hydrogen plant. Development of the interface is occurring under the DOE Nuclear Hydrogen Initiative (NHI) and involves the study, design, and development of high-temperature heat exchangers, heat transport systems, materials, safety, and integrated system models. Research and development work on the system interface began in 2004 and is expected to continue at least until the start of construction of an engineering-scale demonstration plant.

  5. Lessons from Chernobyl

    OpenAIRE

    Takamura, Noboru; Yamashita, Shunichi

    2011-01-01

    The Chernobyl disaster on April 26th, 1986, led to the emission of radioactive substances such as iodine-131 and radioactive cesium. As the Soviet Union did not control food distribution and intake, residents were exposed to high levels of internal radiation, leading to the internal radiation exposure of the thyroid gland by iodine-131. As a result, the number of people who had thyroid cancer increased drastically among those who had been under 15 years old at the time of the accident. The ag...

  6. Chernobyl: the facts

    Energy Technology Data Exchange (ETDEWEB)

    Stanbridge, R. (Stockholm Univ. (Sweden) Dept. of Journalism, Media and Communication Studies)

    1993-08-01

    In these Search Strategies, searchers from different countries and professions are given a question to answer, a budget of Pounds 50 and a time in which to produce their report. We hope that these blow-by-blow accounts, together with the hints and tips picked up along the way, will help readers to develop their own search strategies. Journalists are more and more coming to use online services and here the author gives a journalist's account of tracking down the elusive facts surrounding the Chernobyl disaster. (author).

  7. [Comparative analysis of semiotic shifts, established by LCS of blood plasma from random samples of studied subjects from the zone of the Chernobyl accident, "Ural Radiation Trace", and collaborators from St. Petersburg Institute of Nuclear Physics of the Russian Academy of Sciences].

    Science.gov (United States)

    Ternovoĭ, K S; Selezneva, T N; Akleev, A V; Pashkov, I A; Noskin, L A; Klopov, N V; Noskin, V A; Starodub, N F

    1998-01-01

    Using the developed "semiotic" classifier of laser correlation spectra of blood plasma the authors have carried out the verification of organism states of patients from the zone of Chernobyl accident, "Ural radiation trace" and collaborators from Sanct-Petersbourg Institute of Nuclear Physics. An analysis of results obtained using accidental selections which differed as to the character of radiation injury evidences for high informativeness of "semiotic" classifier of laser correlation spectra of blood plasma.

  8. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  9. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    Science.gov (United States)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  10. Insight on the inconsistencies of Barkhausen signal measurements for radiation damage on nuclear reactor steel

    Energy Technology Data Exchange (ETDEWEB)

    Barroso, Soraia Pirfo; Fitzpatrick, Michael E. [Materials Engineering, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Gillemot, Ferenc; Horváth, Marta; Horváth, Ákos; Szekely, Richard [Hungarian Academy of Sciences Centre for Energy Research (MTA EK), P.O. Box 49 H-1525, Budapest 114 (Hungary)

    2014-02-18

    This paper focuses on the use of magnetic measurements, using Barkhausen signals to determine the irradiation effects, attempting to predict fracture toughness changes on nuclear reactor structural materials and correlating these measurements to mechanical testing and microstructure. For this study, two types of nuclear reactor materials were investigated: one sensitive to irradiation effects, the JRQ IAEA's reference material (A533B- -type); and one resistant material, 15KH2MFA WWER's reactor pressure vessel steel. The samples were carefully identified within the original heat block, i.e. forged or rolled plate. These calibrated samples were irradiated at different neutron fluences up to 10{sup 23} n/m{sup 2}. We show how microstructural anisotropy can mask the irradiation effects in the magnetic measurements. A correlation between irradiation effects and the magnetic measurements is explained based on this study.

  11. FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E.; Hansen, E. K.; Shehee, T. C.

    2012-10-30

    This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the Sodium Reactor Experiment (SRE; thorium fuel), Ford Nuclear Reactor (FNR; aluminum alloy fuel), and Denmark Reactor (DR-3; silicide fuel, aluminum alloy fuel, and aluminum oxide fuel) assemblies in the L-Bundles with respect to the hydrogen levels in the projected peak off-gas rates. This is provided that the number of L-Bundles charged to the dissolver is controlled. Examination of SRE dissolution for potential issues has aided in predicting the optimal batching scenario. The calculations detailed in this report demonstrate that the FNR, SRE, and DR-3 used nuclear fuel (UNF) are bounded by MURR UNF and may be charged using the controls outlined for MURR dissolution in a prior report.

  12. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.

    Science.gov (United States)

    Fillo, J. A.

    This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…

  13. Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Russell

    2006-06-01

    This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

  14. Seawater desalination plant using nuclear heating reactor coupled with MED process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. This seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. The intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10~200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m3/d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented.

  15. On the Optimization of the Fuel Distribution in a Nuclear Reactor

    DEFF Research Database (Denmark)

    Thevenot, Laurent

    2004-01-01

    In this paper we give an optimality condition for the optimization problem of the distribution of fuel assemblies in a nuclear reactor by using the homogenization method. This study deals with purely fissile fuels and is based on the neutron transport equation modeling for continuous models...

  16. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... COMMISSION Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY... License No. R- 112, held by Reed College (the licensee), which authorizes continued operation of the Reed... renewed Facility Operating License No. R-112 will expire 20 years from its date of issuance. The...

  17. Decision-support tool for assessing future nuclear reactor generation portfolios

    NARCIS (Netherlands)

    Jain, S.; Roelofs, F; Oosterlee, C.W.

    2014-01-01

    Capital costs, fuel, operation and maintenance (O&M) costs, and electricity prices play a key role in the economics of nuclear power plants. Often standardized reactor designs are required to be locally adapted, which often impacts the project plans and the supply chain. It then becomes difficult to

  18. Students' Assessment of Interactive Distance Experimentation in Nuclear Reactor Physics Laboratory Education

    Science.gov (United States)

    Malkawi, Salaheddin; Al-Araidah, Omar

    2013-01-01

    Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of research…

  19. Status of DOE efforts to renew acceptance of foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Head, C.R.

    1997-08-01

    This presentation summarizes the efforts being made by the Department of Energy to renew acceptance of spent nuclear fuel shipments from foreign research reactors. The author reviews the actions undertaken in this process in a fairly chronological manner, through the present time, as well as the development of an environmental impact statement to support the proposed actions.

  20. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.E.; Herring, J.S.

    2004-10-03

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim