Spherical Symmetric Gravitational Collapse in Chern-Simon Modified Gravity
Amir, Muhammad Jamil
2014-01-01
This paper is devoted to investigate the gravitational perfect fluid collapse in the framework of Chern-Simon modified gravity. For this purpose, we assume the spherically symmetric metric as an interior region and the Schwarzchild spacetime is considered as an exterior region of the star. The Israel junction conditions are used to match the interior and exterior spacetimes. For the sake of simplicity, we take the external field $\\Theta$ as a function of time parameter $t$ and obtain the solution of the field equations of Chern-Simon modified gravity. Junction conditions have been used to calculate the gravitational mass. We discuss the apparent horizons and their physical consequences. It is mentioning here that our results will reduce to those of general relativity, available in literature, if the external field is taken to be constant.
Causality aspects of the dynamical Chern-Simons modified gravity
Porfírio, P. J.; Fonseca-Neto, J. B.; Nascimento, J. R.; Petrov, A. Yu.
2016-11-01
We discuss the Gödel-type solutions within the dynamical Chern-Simons modified gravity in four dimensions. Within our study, we show that in the vacuum case causal solutions are possible that cannot take place within the nondynamical framework. Another result of ours consists in the possibility for completely causal solutions for all of the types of matter we study in the paper, that is, relativistic fluid, cosmological constant, scalar, and electromagnetic fields.
Spherical Symmetric Gravitational Collapse in Chern-Simon Modified Gravity
Amir, M. Jamil; Ali, Sarfraz
2016-04-01
This paper is devoted to investigate the gravitational collapse in the framework of Chern-Simon (CS) modified gravity. For this purpose, we assume the spherically symmetric metric as an interior region and the Schwarzchild spacetime is considered as an exterior region of the star. Junction conditions are used to match the interior and exterior spacetimes. In dynamical formulation of CS modified gravity, we take the scalar field Θ as a function of radial parameter r and obtain the solution of the field equations. There arise two cases where in one case the apparent horizon forms first and then singularity while in second case the order of the formation is reversed. It means the first case results a black hole which supports the cosmic censorship hypothesis (CCH). Obviously, the second case yields a naked singularity. Further, we use Junction conditions have to calculate the gravitational mass. In non-dynamical formulation, the canonical choice of scalar field Θ is taken and it is shown that the obtained results of CS modified gravity simply reduce to those of the general relativity (GR). It is worth mentioning here that the results of dynamical case will reduce to those of GR, available in literature, if the scalar field is taken to be constant.
Qiang, Li-E
2015-01-01
High precision Superconductivity Gravity Gradiometers (SGG) are powerful tools for relativistic experiments. In this paper, we work out the tidal signals in non-dynamical Chern-Simons modified gravity, which could be measured by orbiting SGGs around Earth. We find that, with proper orientations of multi-axes SGGs, the tidal signals from the Chern-Simons modification can be isolated in the combined data of different axes. Furthermore, for three-axes SGGs, such combined data is the trace of the total tidal matrix, which is invariant under the rotations of SGG axes and thus free from axis pointing errors. Following nearly circular orbits, the tests of the parity-violating Chern-Simons modification and the measurements of the gravitomagnetic sector in parity-conserving metric theories can be carried out independently in the same time. A first step analysis on noise sources is also included.
Perturbations of Schwarzschild black holes in Dynamical Chern-Simons modified gravity
Cardoso, V
2009-01-01
Dynamical Chern-Simons (DCS) modified gravity is an attractive, yet relatively unexplored, candidate to an alternative theory of gravity. The DCS correction couples a dynamical scalar field to the gravitational field. In this framework, we analyze the perturbation formalism and stability properties of spherically symmetric black holes. Assuming that no background scalar field is present, gravitational perturbations with polar and axial parities decouple. We find no effect of the Chern-Simons coupling on polar sector, while axial perturbations couple to the Chern-Simons scalar field. The axial sector can develop strong instabilities if the coupling parameter beta, associated to the dynamical coupling of the scalar field, is enough small; this yields a constraint on beta which is much stronger than the constraints previously known in the literature.
Qiang, Li-E
2016-01-01
With continuous advances in related technologies, relativistic gravitational experiments with orbiting gradiometers becomes feasible, which could naturally be incorporated into future satellite gravity missions. Tests of Chern-Simons modified gravity are meaningful since such a modification gives us insights into (possible) parity-violations in gravitation. In this work, we derive, at the post-Newtonian level, the new observables of secular gradients from the non-dynamical Chern-Simons modified gravity, which will greatly improve the constraint on the mass scale $M_{CS}$ that may be drawn from satellite gradiometry measurements. For superconducting gradiometers, a strong bound $M_{CS}\\geq 10^{-7}\\ eV$ could in principle be obtained. For future optical gradiometers based on similar technologies from the LISA PathFinder mission, a even stronger bound $M_{CS}\\geq 10^{-5}\\ eV$ might be expected.
Chern-Simons modified gravity and closed time-like curves
Porfirio, P J; Nascimento, J R; Petrov, A Yu; Ricardo, J; Santos, A F
2016-01-01
We verify the consistency of the G\\"odel-type solutions within the four-dimensional Chern-Simons modified gravity with the non-dynamical Chern-Simons coefficient, for different forms of matter including dust, fluid, scalar field and electromagnetic field, and the related causality issues. Unlike the general relativity, the vacuum solution turns out to be possible in our theory. Another essentially new result of our theory having no analogue in the general relativity consists in the existence of the hyperbolic causal solutions for the physically well-motivated matter.
On the causality aspects of the dynamical Chern-Simons modified gravity
Porfirio, P J; Nascimento, J R; Petrov, A Yu
2016-01-01
We verify the consistency of the G\\"odel-type solutions within the dynamical Chern-Simons modified gravity in four dimensions, for different forms of matter including dust, fluid, scalar and electromagnetic fields and their combinations, and discuss the possibility of arising the closed timelike curves.
A Study of Holographic Dark Energy Models in Chern-Simon Modified Gravity
Ali, Sarfraz; Amir, M. Jamil
2016-12-01
This paper is devoted to study some holographic dark energy models in the context of Chern-Simon modified gravity by considering FRW universe. We analyze the equation of state parameter using Granda and Oliveros infrared cut-off proposal which describes the accelerated expansion of the universe under the restrictions on the parameter α. It is shown that for the accelerated expansion phase -1tachyon and dilaton field models and holographic dark energy models on similar fashion. To discuss the accelerated expansion of the universe, we explore the potential and the dynamics of quintessence, K-essence, tachyon and dilaton field models.
Kikuchi, Daiki; Yamada, Kei; Asada, Hideki
2014-01-01
Toward a test of parity violation in a gravity theory, possible effects of Chern-Simons (CS) gravity on an interferometer have been recently discussed. Continuing work initiated in an earlier publication [Okawara, Yamada and Asada, Phys. Rev. Lett. 109, 231101 (2012)], we study possible altitudinal and directional dependence of relativistic Sagnac effect in CS modified gravity. We compare the CS effects on Sagnac interferometers with the general relativistic Lense-Thirring (LT) effects. Numerical calculations show that the eastbound Sagnac interferometer might be preferred for testing CS separately, because LT effects on this interferometer cancel out. The size of the phase shift induced in the CS model might have an oscillatory dependence also on the altitude of the interferometer through the CS mass parameter $m_{CS}$. Therefore, the international space station site as well as a ground-based experiment is also discussed.
Cosmological Analysis of Dynamical Chern-Simons Modified Gravity via Dark Energy Scenario
Directory of Open Access Journals (Sweden)
Abdul Jawad
2015-01-01
Full Text Available The purpose of this paper is to study the cosmological evolution of the universe in the framework of dynamical Chern-Simons modified gravity. We take pilgrim dark energy model with Hubble and event horizons in interacting scenario with cold dark matter. For this scenario, we discuss cosmological parameters such as Hubble and equation of state and cosmological plane like ωϑ-ωϑ′ and squared speed of sound. It is found that Hubble parameter approaches the ranges 75-0.5+0.5 (for u=2 and (74, 74.30 (for u=1,-1,-2 for Hubble horizon pilgrim dark energy. It implies the ranges 74.80-0.005+0.005 (for u=2 and (73.4, 74 (for u=-2 for event horizon pilgrim dark energy. The equation of state parameter provides consistent ranges with different observational schemes. Also, ωϑ-ωϑ′ planes lie in the range (ωϑ=-1.13-0.25+0.24,ωϑ′<1.32. The squared speed of sound shows stability for all present models in the present scenario. We would like to mention here that our results of various cosmological parameters show consistency with different observational data like Planck, WP, BAO, H0, SNLS, and WMAP.
Remarks on the Taub-NUT solution in Chern-Simons modified gravity
Brihaye, Yves; Radu, Eugen
2017-01-01
We discuss the generalization of the NUT spacetime in General Relativity (GR) within the framework of the (dynamical) Einstein-Chern-Simons (ECS) theory with a massless scalar field. These configurations approach asymptotically the NUT spacetime and are characterized by the 'electric' and 'magnetic' mass parameters and a scalar 'charge'. The solutions are found both analytically and numerically. The analytical approach is perturbative around the Einstein gravity background. Our results indicate that the ECS configurations share all basic properties of the NUT spacetime in GR. However, when considering the solutions inside the event horizon, we find that in contrast to the GR case, the spacetime curvature grows (apparently) without bound.
Canizares, Priscilla; Gair, Jonathan R.; Sopuerta, Carlos F.
2012-08-01
The detection of gravitational waves from extreme-mass-ratio inspirals (EMRI) binaries, comprising a stellar-mass compact object orbiting around a massive black hole, is one of the main targets for low-frequency gravitational-wave detectors in space, like the Laser Interferometer Space Antenna (LISA) or evolved LISA/New Gravitational Observatory (eLISA/NGO). The long-duration gravitational-waveforms emitted by such systems encode the structure of the strong field region of the massive black hole, in which the inspiral occurs. The detection and analysis of EMRIs will therefore allow us to study the geometry of massive black holes and determine whether their nature is as predicted by general relativity and even to test whether general relativity is the correct theory to describe the dynamics of these systems. To achieve this, EMRI modeling in alternative theories of gravity is required to describe the generation of gravitational waves. However, up to now, only a restricted class of theories has been investigated. In this paper, we explore to what extent EMRI observations with a space-based gravitational-wave observatory like LISA or eLISA/NGO might be able to distinguish between general relativity and a particular modification of it, known as dynamical Chern-Simons modified gravity. Our analysis is based on a parameter estimation study which uses approximate gravitational waveforms obtained via a radiative-adiabatic method. In this framework, the trajectory of the stellar object is modeled as a sequence of geodesics in the spacetime of the modified-gravity massive black hole. The evolution between geodesics is determined by flux formulae based on general relativistic post-Newtonian and black hole perturbation theory computations. Once the trajectory of the stellar compact object has been obtained, the waveforms are computed using the standard multipole formulae for gravitational radiation applied to this trajectory. Our analysis is restricted to a five
Remarks on the Taub-NUT solution in Chern-Simons modified gravity
Brihaye, Yves
2016-01-01
We discuss the generalization of the NUT spacetime in General Relativity (GR) within the framework of the (dynamical) Einstein--Chern-Simons (ECS) theory with a massless scalar field. These configurations approach asymptotically the NUT spacetime and are characterized by the `electric' and `magnetic' mass parameters and a scalar `charge'. %NUT parameter, the mass and a scalar 'charge'. The solutions are found both analytically and numerically. The analytical approach is perturbative around the Einstein gravity background. Our results indicate that the ECS configurations share all basic properties of the NUT spacetime in GR. However, when considering the solutions inside the event horizon, we find that in contrast to the GR case, the spacetime curvature grows (apparently) without bound.
Transgressions and Holographic Conformal Anomalies for Chern-Simons Gravities
Mora, Pablo
2010-01-01
I present two calculations of the holographic Weyl anomalies induced by Chern-Simons gravity theories alternative to the ones presented in the literature. The calculations presented here rest on the extension from Chern-Simons to Transgression forms as lagrangians, motivated by gauge invariance, which automatically yields the boundary terms suitable to regularize the theory. The procedure followed here sheds light in the structure of Chern-Simons gravities and their regularization.
Qiang, Li-E
2014-01-01
Having great accuracy in the range and range rate measurements, the operating GRACE mission and the planed GRACE Follow On mission can in principle be employed to place strong constraints on certain relativistic gravity theories. In this paper, we work out in details the range observable in the non-dynamical Chern-Simons modified gravity for these Satellite-Satellite Tracking measurements. We find out that an characteristic time accumulating signal appears in the range observable in the non-dynamical Chern-Simons gravity, which has no analogy found in the standard metric theories of gravity. The magnitude of this Chern-Simons range signal will reach to a few times of $(\\frac{\\dot{\\theta}}{100r})meters$ for each free flight of these SST missions, here $\\dot{\\theta}$ measures the length scale of the theory and $r$ denotes the orbital radius of the SST mission. Therefore, with the 12 years data from the GRACE mission and the proper data analysis methods, one expects that the mass scale of the non-dynamical CS gr...
AdS Chern-Simons Gravity induces Conformal Gravity
Aros, Rodrigo
2013-01-01
The leitmotif of this paper is the question of whether four- and higher even-dimensional Conformal Gravities do have a Chern-Simons pedigree. We show that Weyl gravity can be obtained as dimensional reduction of a five-dimensional Chern-Simons action for a suitable (gauged-fixed, tractor-like) five-dimensional AdS connection. The gauge-fixing and dimensional reduction program admits a readily generalization to higher dimensions for the case of certain conformal gravities obtained by contractions of the Weyl tensor.
Extremal Black Holes in Dynamical Chern-Simons Gravity
McNees, Robert; Yunes, Nicolás
2015-01-01
Rapidly rotating black hole solutions in theories beyond general relativity play a key role in experimental gravity, as they allow us to compute observables in extreme spacetimes that deviate from the predictions of general relativity (GR). Such solutions are often difficult to find in beyond-GR theories due to the inclusion of additional fields that couple to the metric non-linearly and non-minimally. In this paper, we consider rotating black hole solutions in one such theory, dynamical Chern-Simons gravity, where the Einstein-Hilbert action is modified by the introduction of a dynamical scalar field that couples to the metric through the Pontryagin density. We treat dynamical Chern-Simons gravity as an effective field theory and thus work in the decoupling limit, where corrections are treated as small perturbations from general relativity. We perturb about the maximally-rotating Kerr solution, the so-called extremal limit, and develop mathematical insight into the analysis techniques needed to construct sol...
Dirac matrices for Chern-Simons gravity
Izaurieta, Fernando; Ramírez, Ricardo; Rodríguez, Eduardo
2012-10-01
A genuine gauge theory for the Poincaré, de Sitter or anti-de Sitter algebras can be constructed in (2n - 1)-dimensional spacetime by means of the Chern-Simons form, yielding a gravitational theory that differs from General Relativity but shares many of its properties, such as second order field equations for the metric. The particular form of the Lagrangian is determined by a rank n, symmetric tensor invariant under the relevant algebra. In practice, the calculation of this invariant tensor can be reduced to the computation of the trace of the symmetrized product of n Dirac Gamma matrices Γab in 2n-dimensional spacetime. While straightforward in principle, this calculation can become extremely cumbersome in practice. For large enough n, existing computer algebra packages take an inordinate long time to produce the answer or plainly fail having used up all available memory. In this talk we show that the general formula for the trace of the symmetrized product of 2n Gamma matrices Γab can be written as a certain sum over the integer partitions s of n, with every term being multiplied by a numerical cofficient αs. We then give a general algorithm that computes the α-coefficients as the solution of a linear system of equations generated by evaluating the general formula for different sets of tensors Bab with random numerical entries. A recurrence relation between different coefficients is shown to hold and is used in a second, "minimal" algorithm to greatly speed up the computations. Runtime of the minimal algorithm stays below 1 min on a typical desktop computer for up to n = 25, which easily covers all foreseeable applications of the trace formula.
Dirac matrices for Chern-Simons gravity
Energy Technology Data Exchange (ETDEWEB)
Izaurieta, Fernando; Ramirez, Ricardo; Rodriguez, Eduardo [Departamento de Matematica y Fisica Aplicadas, Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, 4090541 Concepcion (Chile)
2012-10-06
A genuine gauge theory for the Poincare, de Sitter or anti-de Sitter algebras can be constructed in (2n- 1)-dimensional spacetime by means of the Chern-Simons form, yielding a gravitational theory that differs from General Relativity but shares many of its properties, such as second order field equations for the metric. The particular form of the Lagrangian is determined by a rank n, symmetric tensor invariant under the relevant algebra. In practice, the calculation of this invariant tensor can be reduced to the computation of the trace of the symmetrized product of n Dirac Gamma matrices {Gamma}{sub ab} in 2n-dimensional spacetime. While straightforward in principle, this calculation can become extremely cumbersome in practice. For large enough n, existing computer algebra packages take an inordinate long time to produce the answer or plainly fail having used up all available memory. In this talk we show that the general formula for the trace of the symmetrized product of 2n Gamma matrices {Gamma}{sub ab} can be written as a certain sum over the integer partitions s of n, with every term being multiplied by a numerical cofficient {alpha}{sub s}. We then give a general algorithm that computes the {alpha}-coefficients as the solution of a linear system of equations generated by evaluating the general formula for different sets of tensors B{sup ab} with random numerical entries. A recurrence relation between different coefficients is shown to hold and is used in a second, 'minimal' algorithm to greatly speed up the computations. Runtime of the minimal algorithm stays below 1 min on a typical desktop computer for up to n = 25, which easily covers all foreseeable applications of the trace formula.
Accelerated FRW solutions in Chern-Simons gravity
Energy Technology Data Exchange (ETDEWEB)
Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Concepcion (Chile); Crisostomo, Juan; Gomez, Fernando; Salgado, Patricio [Universidad de Concepcion, Departamento de Fisica, Concepcion (Chile); Campo, Sergio del [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Quinzacara, Cristian C. [Universidad de Concepcion, Departamento de Fisica, Concepcion (Chile); Universidad San Sebastian, Facultad de Ingenieria y Tecnologia, Concepcion (Chile)
2014-10-15
We consider a five-dimensional Einstein-Chern-Simons action which is composed of a gravitational sector and a sector of matter where the gravitational sector is given by a Chern-Simons gravity action instead of the Einstein-Hilbert action and where the matter sector is given by the so-called perfect fluid. It is shown that (i) the Einstein-Chern-Simons (EChS) field equations subject to suitable conditions can be written in a similar way to the Einstein-Maxwell field equations; (ii) these equations have solutions that describe an accelerated expansion for the three possible cosmological models of the universe, namely, spherical expansion, flat expansion, and hyperbolic expansion when α a parameter of the theory, is greater than zero. This result allows us to conjecture that these solutions are compatible with the era of dark energy and that the energy-momentum tensor for the field h{sup a}, a bosonic gauge field from the Chern-Simons gravity action, corresponds to a form of positive cosmological constant. It is also shown that the EChS field equations have solutions compatible with the era of matter: (i) In the case of an open universe, the solutions correspond to an accelerated expansion (α > 0) with a minimum scale factor at initial time that, when time goes to infinity, the scale factor behaves as a hyperbolic sine function. (ii) In the case of a flat universe, the solutions describe an accelerated expansion whose scale factor behaves as an exponential function of time. (iii) In the case of a closed universe there is found only one solution for a universe in expansion, which behaves as a hyperbolic cosine function of time. (orig.)
Standard general relativity from Chern-Simons gravity
Energy Technology Data Exchange (ETDEWEB)
Izaurieta, F. [Departamento de Matematica y Fisica Aplicadas, Universidad, Catolica de la Santisima Concepcion, Alonso de Rivera 2850, Concepcion (Chile); Minning, P. [Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Perez, A. [Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Max Planck Institut fuer Gravitationsphysik, Albert Einstein, Institut. Am Muehlenberg1, D-14476 Golm bei Potsdam (Germany); Rodriguez, E. [Departamento de Matematica y Fisica Aplicadas, Universidad, Catolica de la Santisima Concepcion, Alonso de Rivera 2850, Concepcion (Chile); Salgado, P. [Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)], E-mail: pasalgad@udec.cl
2009-07-13
Chern-Simons models for gravity are interesting because they provide a truly gauge-invariant action principle in the fiber-bundle sense. So far, their main drawback has largely been its perceived remoteness from standard General Relativity, based on the presence of higher powers of the curvature in the Lagrangian (except, remarkably, for three-dimensional spacetime). Here we report on a simple model that suggests a mechanism by which standard General Relativity in five-dimensional spacetime may indeed emerge at a special critical point in the space of couplings, where additional degrees of freedom and corresponding 'anomalous' Gauss-Bonnet constraints drop out from the Chern-Simons action. To achieve this goal, both the Lie algebra g and the symmetric g-invariant tensor that define the Chern-Simons Lagrangian are constructed by means of the Lie algebra S-expansion method with a suitable finite Abelian semigroup S. The results are generalized to arbitrary odd dimensions, and the possible extension to the case of eleven-dimensional supergravity is briefly discussed.
Extremal black holes in dynamical Chern-Simons gravity
McNees, Robert; Stein, Leo C.; Yunes, Nicolás
2016-12-01
Rapidly rotating black hole (BH) solutions in theories beyond general relativity (GR) play a key role in experimental gravity, as they allow us to compute observables in extreme spacetimes that deviate from the predictions of GR. Such solutions are often difficult to find in beyond-general-relativity theories due to the inclusion of additional fields that couple to the metric nonlinearly and non-minimally. In this paper, we consider rotating BH solutions in one such theory, dynamical Chern-Simons (dCS) gravity, where the Einstein-Hilbert action is modified by the introduction of a dynamical scalar field that couples to the metric through the Pontryagin density. We treat dCS gravity as an effective field theory and work in the decoupling limit, where corrections are treated as small perturbations from GR. We perturb about the maximally rotating Kerr solution, the so-called extremal limit, and develop mathematical insight into the analysis techniques needed to construct solutions for generic spin. First we find closed-form, analytic expressions for the extremal scalar field, and then determine the trace of the metric perturbation, giving both in terms of Legendre decompositions. Retaining only the first three and four modes in the Legendre representation of the scalar field and the trace, respectively, suffices to ensure a fidelity of over 99% relative to full numerical solutions. The leading-order mode in the Legendre expansion of the trace of the metric perturbation contains a logarithmic divergence at the extremal Kerr horizon, which is likely to be unimportant as it occurs inside the perturbed dCS horizon. The techniques employed here should enable the construction of analytic, closed-form expressions for the scalar field and metric perturbations on a background with arbitrary rotation.
Lecture notes on Chern-Simons (super-)gravities
Zanelli, J
2005-01-01
This is intended as a broad introduction to Chern-Simons gravity and supergravity. The motivation for these theories lies in the desire to have a gauge invariant system --with a fiber bundle formulation-- in more than three dimensions, which could provide a firm ground for constructing a quantum theory of the gravitational field. The starting point is a gravitational action which generalizes the Einstein theory for dimensions D>4 --Lovelock gravity. It is then shown that in odd dimensions there is a particular choice of the arbitrary parameters of the action that makes the theory gauge invariant under the (anti-)de Sitter or the Poincare groups. The resulting lagrangian is a Chern-Simons form for a connection of the corresponding gauge groups and the vielbein and the spin connection are parts of this connection field. These theories also admit a natural supersymmetric extension for all odd D where the local supersymmetry algebra closes off-shell and without a need for auxiliary fields. No analogous constructi...
Hassaine, Mokhtar
2016-01-01
This book grew out of a set of lecture notes on gravitational Chern–Simons (CS) theories developed over the past decade for several schools and different audiences including graduate students and researchers.CS theories are gauge-invariant theories that can include gravity consistently. They are only defined in odd dimensions and represent a very special class of theories in the Lovelock family. Lovelock gravitation theories are the natural extensions of General Relativity for dimensions greater than four that yield second-order field equations for the metric. These theories also admit local supersymmetric extensions where supersymmetry is an off-shell symmetry of the action, as in a standard gauge theory.Apart from the arguments of mathematical elegance and beauty, the gravitational CS actions are exceptionally endowed with physical attributes that suggest the viability of a quantum interpretation. CS theories are gauge-invariant, scale-invariant and background independent; they have no dimensional couplin...
Chern-Simons states in spin-network quantum gravity
Gambini, R; Pullin, J; Gambini, Rodolfo; Griego, Jorge; Pullin, Jorge
1997-01-01
In the context of canonical quantum gravity in terms of Ashtekar's new variables, it is known that there exists a state that is annihilated by all the quantum constraints and that is given by the exponential of the Chern--Simons form constructed with the Asthekar connection. We make a first exploration of the transform of this state into the spin-network representation of quantum gravity. The discussion is limited to trivalent nets with planar intersections. We adapt an invariant of tangles to construct the transform and study the action of the Hamiltonian constraint on it. We show that the first two coefficients of the expansion of the invariant in terms of the inverse cosmological constant are annihilated by the Hamiltonian constraint. We also discuss issues of framing that arise in the construction.
Chern-Simons expectation values and quantum horizons from loop quantum gravity and the Duflo map.
Sahlmann, Hanno; Thiemann, Thomas
2012-03-16
We report on a new approach to the calculation of Chern-Simons theory expectation values, using the mathematical underpinnings of loop quantum gravity, as well as the Duflo map, a quantization map for functions on Lie algebras. These new developments can be used in the quantum theory for certain types of black hole horizons, and they may offer new insights for loop quantum gravity, Chern-Simons theory and the theory of quantum groups.
Edge Currents and Vertex Operators for Chern-Simons Gravity
Bimonte, G; Stern, A
1993-01-01
We apply elementary canonical methods for the quantization of 2+1 dimensional gravity, where the dynamics is given by E. Witten's $ISO(2,1)$ Chern-Simons action. As in a previous work, our approach does not involve choice of gauge or clever manipulations of functional integrals. Instead, we just require the Gauss law constraint for gravity to be first class and also to be everywhere differentiable. When the spatial slice is a disc, the gravitational fields can either be unconstrained or constrained at the boundary of the disc. The unconstrained fields correspond to edge currents which carry a representation of the $ISO(2,1)$ Kac-Moody algebra. Unitary representations for such an algebra have been found using the method of induced representations. In the case of constrained fields, we can classify all possible boundary conditions. For several different boundary conditions, the field content of the theory reduces precisely to that of 1+1 dimensional gravity theories. We extend the above formalism to include sou...
The effects of Chern-Simons gravity on bodies orbiting the Earth
Smith, Tristan L; Caldwell, Robert R; Kamionkowski, Marc
2007-01-01
One of the possible low-energy consequences of string theory is the addition of a Chern-Simons term to the standard Einstein-Hilbert action of general relativity. It can be argued that the quintessence field should couple to this Chern-Simons term, and if so, it drives in the linearized theory a parity-violating interaction between the gravito-electric and gravitomagnetic fields. In this paper, the linearized spacetime for Chern-Simons gravity around a massive spinning body is found to include new modifications to the gravitomagnetic field that have not appeared in previous work. The orbits of test bodies and the precession of gyroscopes in this spacetime are calculated, leading to new constraints on the Chern-Simons parameter space due to current satellite experiments.
Canizares, Priscilla; Sopuerta, Carlos F
2012-01-01
[abridged] The detection of gravitational waves from extreme-mass-ratio (EMRI) binaries, comprising a stellar-mass compact object orbiting around a massive black hole, is one of the main targets for low-frequency gravitational-wave detectors in space, like the Laser Interferometer Space Antenna (LISA or eLISA/NGO). The long-duration gravitational-waveforms emitted by such systems encode the structure of the strong field region of the massive black hole, in which the inspiral occurs. The detection and analysis of EMRIs will therefore allow us to study the geometry of massive black holes and determine whether their nature is as predicted by General Relativity and even to test whether General Relativity is the correct theory to describe the dynamics of these systems. To achieve this, EMRI modeling in alternative theories of gravity is required to describe the generation of gravitational waves. In this paper, we explore to what extent EMRI observations with LISA or eLISA/NGO might be able to distinguish between G...
Some cosmological solutions in Einstein-Chern-Simons gravity
Avilés, Luis; Quinzacara, Cristian; Salgado, Patricio
2016-01-01
In this paper we find new solutions for the so called Einstein-Chern-Simons Friedmann-Robertson-Walker field equations studied in refs. (Phys. Rev. D 84 (2011) 063506, Eur. Phys. J. C 74 (2014) 3087). We consider three cases:(i) in the first case we find some solutions of the five-dimensional ChS-FRW field equations when the $h^a$ field is a perfect fluid that obeys a barotropic equation of state; (ii) in the second case we study the solutions, for the cases $\\gamma =1/2,\\ 3/4$, when the $h^a$ field is a five dimensional politropic fluid that obeys the equation $P^{(h)}=\\omega ^{(h)}\\rho ^{(h)\\gamma }$; (iii) in the third case we find the scale factor and the state parameter $\\omega (t)$ when the $h^a$ field is a variable modified Chaplygin gas. We consider also a space-time metric which contains as a subspace to the usual four-dimensional FRW and then we study the same three cases considered in the five-dimensional, namely when (i) the $h^a$ field is a perfect fluid, (ii) the $h^a$ field is a five dimensiona...
Gauge Symmetries and Holographic Anomalies of Chern-Simons and Transgression AdS Gravity
Mora, Pablo
2014-01-01
We review the issue of gauge and gravitational anomalies with backgrounds, maybe offering a new outlook on some aspects of these questions. We compute the holographic anomalies of hypothetical theories dual, in the sense of the AdS-CFT correspondence, to Chern-Simons AdS gravities. Those anomalies are either gauge anomalies associated to the AdS gauge group of the theory or diffeomorphism anomalies, with each kind related to the other. As a result of using suitable action principles por Chern-Simons AdS gravities, coming from Transgression forms, we obtain finite results without the need for further regularization. Our results are of potential interest for Lovelock gravity theories, as it has been shown that the boundary terms dictated by the transgressions for Chern-Simons gravities are also suitable to regularize Lovelock theories. The Wess-Zumino consistency condition ensures that anomalies of the generic form computed here should appear for these and other theories.
Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity
Molina, C; Cardoso, Vitor; Gualtieri, Leonardo
2010-01-01
Dynamical Chern-Simons gravity is an extension of General Relativity in which the gravitational field is coupled to a scalar field through a parity-violating Chern-Simons term. In this framework, we study perturbations of spherically symmetric black hole spacetimes, assuming that the background scalar field vanishes. Our results suggest that these spacetimes are stable, and small perturbations die away as a ringdown. However, in contrast to standard General Relativity, the gravitational waveforms are also driven by the scalar field. Thus, the gravitational oscillation modes of black holes carry imprints of the coupling to the scalar field. This is a smoking gun for Chern-Simons theory and could be tested with gravitational-wave detectors, such as LIGO or LISA. For negative values of the coupling constant, ghosts are known to arise, and we explicitly verify their appearance numerically. Our results are validated using both time evolution and frequency domain methods.
Chern-Simons effect on the dual hydrodynamics in the Maxwell-Gauss-Bonnet gravity
Energy Technology Data Exchange (ETDEWEB)
Hu Yapeng, E-mail: huyp@pku.edu.cn [Center for High-Energy Physics, Peking University, Beijing 100871 (China); Center for Quantum Spacetime, Sogang University, Seoul 121-742 (Korea, Republic of); Park, Chanyong, E-mail: cyong21@sogang.ac.kr [Center for Quantum Spacetime, Sogang University, Seoul 121-742 (Korea, Republic of)
2012-08-14
Following the previous work (arXiv:1103.3773 [hep-th]), we give a more general and systematic discussion on the Chern-Simons effect in the 5-dimensional Maxwell-Gauss-Bonnet gravity. After constructing the first order perturbative black brane solution, we extract the stress tensor and charge current of dual fluid. From these results, we find out the dependence of some transport coefficients on the Gauss-Bonnet coupling {alpha} and Chern-Simons coupling {kappa}{sub cs}. We also show that the new anomalous term can provide an additional contribution to the anomalous chiral magnetic conductivity.
Nonrelativistic Chern-Simons theories and three-dimensional Hořava-Lifshitz gravity
Hartong, Jelle; Lei, Yang; Obers, Niels A.
2016-09-01
We show that certain three-dimensional Hořava-Lifshitz gravity theories can be written as Chern-Simons gauge theories on various nonrelativistic algebras. The algebras are specific extensions of the Bargmann, Newton-Hooke and Schrödinger algebras each of which has the Galilean algebra as a subalgebra. To show this we employ the fact that Hořava-Lifshitz gravity corresponds to dynamical Newton-Cartan geometry. In particular, the extended Bargmann (Newton-Hooke) Chern-Simons theory corresponds to projectable Hořava-Lifshitz gravity with a local U (1 ) gauge symmetry without (with) a cosmological constant. Moreover we identify an extended Schrödinger algebra containing three extra generators that are central with respect to the subalgebra of Galilean boosts, momenta and rotations, for which the Chern-Simons theory gives rise to a novel version of nonprojectable conformal Hořava-Lifshitz gravity that we refer to as Chern-Simons Schrödinger gravity. This theory has a z =2 Lifshitz geometry as a vacuum solution and thus provides a new framework to study Lifshitz holography.
Action Principles for Transgression and Chern-Simons AdS Gravities
Mora, Pablo
2014-01-01
Chern-Simons gravities are theories with a lagrangian given by a Chern-Simons form constructed from a space-time gauge group. In previous investigations we showed that, for some special field configurations that are solutions of the field equations, the extension from Chern-Simons to Transgression forms as lagrangians, motivated by gauge invariance, automatically yields the boundary terms required to regularize the theory, giving finite conserved charges and black hole thermodynamics. Further work by other researchers showed that one of the action functionals considered in the above mentioned work yields a well defined action principle in the metric (zero torsion) case and for asymptotically Anti de Sitter (AdS) space-times. In the present work we consider several action functionals for Chern-Simons AdS gravity constructed from Transgression forms, and show the action principles to be well defined and the Noether charges and Euclidean action to be finite for field configurations satisfying only that the gauge...
SL(2,C) Chern-Simons Theory and Quantum Gravity with a Cosmological Constant
Haggard, Hal; Han, Muxin; Kaminski, Wojciech; Riello, Aldo
2015-04-01
We show a relation between 4-dimensional quantum gravity with a cosmological constant and SL(2,C) Chern-Simons theory in 3-dimensions with knotted graph defects. In particular, we study the expectation value of a non-planar Wilson graph operator in SL(2,C) Chern-Simons theory on S3. We analyze its asymptotic behavior in the double-scaling limit in which both the representation labels and the Chern-Simons coupling are taken to be large, but with fixed ratio. We find that a class of flat connections in the graph complement manifold are in correspondence with the geometries of constant curvature 4-simplices. We show that the asymptotic behavior of the amplitude contains an oscillatory part proportional to the Regge action for the single 4-simplex in the presence of a cosmological constant. In particular, the cosmological term contains the full-fledged curved volume of the 4-simplex. Interestingly, the volume term stems from the asymptotics of the Chern-Simons action. Another peculiarity of our approach is that the sign of the curvature of the reconstructed geometry, and hence of the cosmological constant in the Regge action, is not fixed a priori, but rather emerges semiclassically and dynamically from the solution of the equations of motion. This work was supported by the U.S. National Science Foundation, the European Marie Curie actions, and the Perimeter Institute.
Chern-Simons formulation of three-dimensional gravity with torsion and nonmetricity
Cacciatori, S L; Giacomini, A; Klemm, D; Mansi, D S; Cacciatori, Sergio L.; Caldarelli, Marco M.; Giacomini, Alex; Klemm, Dietmar; Mansi, Diego S.
2005-01-01
We consider various models of three-dimensional gravity with torsion or nonmetricity (metric affine gravity), and show that they can be written as Chern-Simons theories with suitable gauge groups. Using the groups ISO(2,1), SL(2,C) or SL(2,R) x SL(2,R), and the fact that they admit two independent coupling constants, we obtain the Mielke-Baekler model for zero, positive or negative effective cosmological constant respectively. Choosing SO(3,2) as gauge group, one gets a generalization of conformal gravity that has zero torsion and only the trace part of the nonmetricity. This characterizes a Weyl structure. Finally, we present a new topological model of metric affine gravity in three dimensions arising from an SL(4,R) Chern-Simons theory.
Non-Relativistic Chern-Simons Theories and Three-Dimensional Horava-Lifshitz Gravity
Hartong, Jelle; Obers, Niels A
2016-01-01
We show that certain three-dimensional Horava-Lifshitz gravity theories can be written as Chern-Simons gauge theories on various non-relativistic algebras. The algebras are specific extensions of the Bargmann, Newton-Hooke and Schroedinger algebra each of which has the Galilean algebra as a subalgebra. To show this we employ the fact that Horava-Lifshitz gravity corresponds to dynamical Newton-Cartan geometry. In particular, the extended Bargmann (Newton-Hooke) Chern-Simons theory corresponds to projectable Horava-Lifshitz gravity with a local U(1) gauge symmetry without (with) a cosmological constant. Moreover we identify an extended Schroedinger algebra containing 3 extra generators that are central with respect to the subalgebra of Galilean boosts, momenta and rotations, for which the Chern-Simons theory gives rise to a novel version of non-projectable conformal Horava-Lifshitz gravity that we refer to as Schroedinger gravity. This theory has a z=2 Lifshitz geometry as a vacuum solution and thus provides a...
3D Gravity, Chern-Simons and Higher Spins: A Mini Introduction
Kiran, K Surya; Raju, Avinash
2014-01-01
These are notes of introductory lectures on (a) elements of 2+1 dimensional gravity, (b) some aspects of its relation to Chern-Simons theory, (c) its generalization to couple higher spins, and (d) cosmic singularity resolution as an application in the context of flat space higher spin theory. A knowledge of the Einstein-Hilbert action, classical non-Abelian gauge theory and some (negotiable amount of) maturity are the only pre-requisites.
Gravitational waves from extreme mass-ratio inspirals in Dynamical Chern-Simons gravity
Pani, Paolo; Gualtieri, Leonardo
2011-01-01
Dynamical Chern-Simons gravity is an interesting extension of General Relativity, which finds its way in many different contexts, including string theory, cosmological settings and loop quantum gravity. In this theory, the gravitational field is coupled to a scalar field by a parity-violating term, which gives rise to characteristic signatures. Here we investigate how Chern-Simons gravity would affect the quasi-circular inspiralling of a small, stellar-mass object into a large non-rotating supermassive black hole, and the accompanying emission of gravitational and scalar waves. We find the relevant equations describing the perturbation induced by the small object, and we solve them through the use of Green's function techniques. Our results show that for a wide range of coupling parameters, the Chern-Simons coupling gives rise to an increase in total energy flux, which translates into a fewer number of gravitational-wave cycles over a certain bandwidth. For space-based gravitational-wave detectors such as LIS...
Gravitational waves from extreme mass-ratio inspirals in dynamical Chern-Simons gravity
Pani, Paolo; Cardoso, Vitor; Gualtieri, Leonardo
2011-05-01
Dynamical Chern-Simons gravity is an interesting extension of general relativity, which finds its way in many different contexts, including string theory, cosmological settings, and loop quantum gravity. In this theory, the gravitational field is coupled to a scalar field by a parity-violating term, which gives rise to characteristic signatures. Here we investigate how Chern-Simons gravity would affect the quasicircular inspiralling of a small, stellar-mass object into a large nonrotating supermassive black hole, and the accompanying emission of gravitational and scalar waves. We find the relevant equations describing the perturbation induced by the small object, and we solve them through the use of Green’s function techniques. Our results show that for a wide range of coupling parameters, the Chern-Simons coupling gives rise to an increase in total energy flux, which translates into a fewer number of gravitational-wave cycles over a certain bandwidth. For space-based gravitational-wave detectors such as LISA, this effect can be used to constrain the coupling parameter effectively.
Transgression forms as source for topological gravity and Chern-Simons-Higgs theories
Valdivia, Omar
2014-01-01
Two main gauge invariant off-shell models are studied in this Thesis. I) Poincare-invariant topological gravity in even dimensions is formulated as a transgression field theory whose gauge connections are associated to linear and nonlinear realizations of the Poincare group ISO(d-1,1). The resulting theory is a gauged Wess-Zumino-Witten model whereby the transition functions relating gauge fields belong to the coset ISO(d-1,1)/SO(d-1,1). The supersymmetric extension leads to topological supergravity in two dimensions starting from a transgression field theory for the super-Poincare group in three dimensions. The construction is extended to a three-dimensional Chern-Simons theory of gravity invariant under the Maxwell algebra, where the corresponding Maxwell gauged Wess-Zumino-Witten model is obtained. II) dimensional reduction of Chern-Simons theories with arbitrary gauge group in a formalism based on equivariant principal bundles is considered. For the classical gauge groups the relations between equivariant...
Finite action principle for Chern-Simons AdS gravity
Mora, P; Troncoso, R; Zanelli, J
2004-01-01
A finite action action principle for Chern-Simons AdS gravity is presented. The construction is carried out in detail first in five dimensions, where the bulk action is given by a particular combination of the Einstein-Hilbert action with negative cosmological constant and a Gauss-Bonnet term; and is then generalized for arbitrary odd dimensions. The boundary term needed to render the action finite is singled out demanding the action to attain an extremum for an appropriate set of boundary conditions. The boundary term is a local function of the fields at the boundary and is sufficient to render the action finite for asymptotically AdS solutions, without requiring background fields. It is shown that the Euclidean continuation of the action correctly describes the black hole thermodynamics in the canonical ensemble. Additionally, background independent conserved charges associated with the asymptotic symmetries can be written as surface integrals by direct application of Noether's theorem.
Two Dimensional Kodaira-Spencer Theory and Three Dimensional Chern-Simons Gravity
Dijkgraaf, Robbert
2007-01-01
Motivated by the six dimensional formulation of Kodaira-Spencer theory for Calabi-Yau threefolds, we formulate a two dimensional version and argue that this is the relevant field theory for the target space of local topological B-model with a geometry based on a Riemann surface. We show that the Ward identities of this quantum theory is equivalent to recursion relations recently proposed by Eynard and Orantin to solve the topological B model. Our derivation provides a conceptual explanation of this link and reveals a hidden affine SL(2,R) symmetry. Moreover we argue that our results provide the strongest evidence yet of the existence of topological M theory in one higher dimension, which in this case can be closely related to SL(2,R)Chern-Simons formulation of three dimensional gravity.
Primordial massive gravitational waves from Einstein-Chern-Simons-Weyl gravity
Energy Technology Data Exchange (ETDEWEB)
Myung, Yun Soo; Moon, Taeyoon, E-mail: ysmyung@inje.ac.kr, E-mail: tymoon@inje.ac.kr [Institute of Basic Sciences and Department of Computer Simulation, Inje University, Gimhae 621-749 (Korea, Republic of)
2014-08-01
We investigate the evolution of cosmological perturbations during de Sitter inflation in the Einstein-Chern-Simons-Weyl gravity. Primordial massive gravitational waves are composed of one scalar, two vector and four tensor circularly polarized modes. We show that the vector power spectrum decays quickly like a transversely massive vector in the superhorizon limit z → 0. In this limit, the power spectrum coming from massive tensor modes decays quickly, leading to the conventional tensor power spectrum. Also, we find that in the limit of m{sup 2} → 0 (keeping the Weyl-squared term only), the vector and tensor power spectra disappear. It implies that their power spectra are not gravitationally produced because they (vector and tensor) are decoupled from the expanding de Sitter background, as a result of conformal invariance.
Randall-Sundrum brane Universe as a ground state for Chern-Simons gravity
Cordonier-Tello, Fabrizio; Izaurieta, Fernando; Mella, Patricio; Rodríguez, Eduardo
2016-12-01
In stark contrast with the three-dimensional case, higher-dimensional Chern-Simons (CS) theories can have non-topological, propagating degrees of freedom. Finding those vacua that allow for the propagation of linear perturbations, however, proves to be surprisingly challenging. The simplest solutions are somehow ‘hyper-stable’, preventing the construction of realistic, four-dimensional physical models. Here, we show that a Randall-Sundrum (RS) brane Universe can be regarded as a vacuum solution of CS gravity in five-dimensional spacetime, with non vanishing torsion along the dimension perpendicular to the brane. Linearized perturbations around this solution not only exist, but behave as standard gravitational waves on a four-dimensional Minkowski background. In the non-perturbative regime, the solution leads to a four-dimensional ‘cosmological function’ {{Λ }}(x) which depends on the Euler density of the brane. Interestingly, the fact that the solution admits nontrivial linear perturbations seems to be related to an often neglected property of the RS spacetime: that it is a group manifold, or, more precisely, two identical group manifolds glued together along the brane. The gravitational theory is then built around this fact, adding the Lorentz generators and one scalar generator needed to close the algebra. In this way, a conjecture emerges: a spacetime that is also a group manifold can be regarded as the ground state of a CS theory for an appropriate Lie algebra.
Setare, M. R.; Adami, H.
2016-01-01
In the first order formalism of gravity theories, there are some theories which are not Lorentz-diffeomorphism covariant. In the framework of such theories we cannot apply the method of conserved charge calculation used in Lorentz-diffeomorphism covariant theories. In this paper we firstly introduce the total variation of a quantity due to an infinitesimal Lorentz-diffeomorphism transformation. Secondly, in order to obtain the conserved charges of Lorentz-diffeomorphism non-covariant theories, we extend the Tachikawa method [1]. This extension includes not only Lorentz gauge transformation but also the diffeomorphism. We apply this method to the Chern-Simons-like theories of gravity (CSLTG) and obtain a general formula for the entropy of black holes in those theories. Finally, some examples on CSLTG are provided and the entropy of the BTZ black hole is calculated in the context of the examples.
Setare, M R
2016-01-01
In the first order formalism of gravity theories, may be exist some theories which are not Lorentz-difeomorphism covariant so for such theories a method for which one can calculate conserved charges of Lorentz-difeomorphism covariant theories are useless. In this letter we introduce the total variation of a quantity due to an infinitesimal Lorentz-diffeomorphism transformation. Then using this concept, in order to obtain the conserved charges in Lorentz-diffeomorphism non-covariant theories, we extend the Tachikawa's method \\cite{3} so that it includes Lorentz gauge transformation in addition to diffeomorphism. We apply this method on the Chern-Simons-like theories of gravity and we find out a general formula for the entropy of black holes in those theories. Eventually, we consider some examples and calculate entropy of the BTZ black hole in the context of this examples.
Holomorphic Chern-Simons theory coupled to off-shell Kodaira-Spencer gravity
Giusto, Stefano; Rosa, Dario
2012-01-01
We construct an action for holomorphic Chern-Simons theory that couples the gauge field to off-shell gravitational backgrounds, comprising the complex structure and the (3,0)-form of the target space. Gauge invariance of the off-shell action is achieved by enlarging the field space to include an appropriate system of Lagrange multipliers, ghost and ghost-for-ghost fields. Both the BRST transformations and the BV action are compactly and neatly written in terms of superfields which include fields, backgrounds and their antifields. We show that the anti-holomorphic target space derivative can be written as a BRST-commutator on a functional space containing the anti-fields of both the dynamical fields and the gravitational backgrounds. We derive from this result a Ward identity that determines the anti-holomorphic dependence of physical correlators.
Holomorphic Chern-Simons theory coupled to off-shell Kodaira-Spencer gravity
Giusto, Stefano; Imbimbo, Camillo; Rosa, Dario
2012-10-01
We construct an action for holomorphic Chern-Simons theory that couples the gauge field to off-shell gravitational backgrounds, comprising the complex structure and the (3,0)-form of the target space. Gauge invariance of the off-shell action is achieved by enlarging the field space to include an appropriate system of Lagrange multipliers, ghost and ghost-for-ghost fields. Both the BRST transformations and the BV action are compactly and neatly written in terms of superfields which include fields, backgrounds and their antifields. We show that the anti-holomorphic target space derivative can be written as a BRST-commutator on a functional space containing the anti-fields of both the dynamical fields and the gravitational backgrounds. We derive from this result a Ward identity that determines the anti-holomorphic dependence of physical correlators.
Haggard, Hal M.; Han, Muxin; Kamiński, Wojciech; Riello, Aldo
2015-11-01
We study the expectation value of a nonplanar Wilson graph operator in SL (2, C) Chern-Simons theory on S3. In particular we analyze its asymptotic behavior in the double-scaling limit in which both the representation labels and the Chern-Simons coupling are taken to be large, but with fixed ratio. When the Wilson graph operator has a specific form, motivated by loop quantum gravity, the critical point equations obtained in this double-scaling limit describe a very specific class of flat connection on the graph complement manifold. We find that flat connections in this class are in correspondence with the geometries of constant curvature 4-simplices. The result is fully non-perturbative from the perspective of the reconstructed geometry. We also show that the asymptotic behavior of the amplitude contains, at the leading order, an oscillatory part proportional to the Regge action for the single 4-simplex in the presence of a cosmological constant. In particular, the cosmological term contains the full-fledged curved volume of the 4-simplex. Interestingly, the volume term stems from the asymptotics of the Chern-Simons action. This can be understood as arising from the relation between Chern-Simons theory on the boundary of a region, and a theory defined by an F2 action in the bulk. Another peculiarity of our approach is that the sign of the curvature of the reconstructed geometry, and hence of the cosmological constant in the Regge action, is not fixed a priori, but rather emerges semiclassically and dynamically from the solution of the equations of motion. In other words, this work suggests a relation between 4-dimensional loop quantum gravity with a cosmological constant and SL (2, C) Chern-Simons theory in 3 dimensions with knotted graph defects.
Holographic Chern-Simons Defects
Fujita, Mitsutoshi; Meyer, Rene; Sugimoto, Shigeki
2016-01-01
We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7-branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for two-dimensional QCD.
Setare, M R
2016-01-01
In this paper we study the near horizon symmetry algebra of the non-extremal black hole solutions of the Chern-Simons-like theories of gravity, which are stationary but are not necessarily spherically symmetric. We define the extended off-shell ADT current which is an extension of the generalized ADT current. We use the extended off-shell ADT current to define quasi-local conserved charges such that they are conserved for Killing vectors and asymptotically Killing vectors which depend on dynamical fields of the considered theory. We apply this formalism to the Generalized Minimal Massive Gravity( GMMG) and obtain conserved charges of a spacetime which describes near horizon geometry of non-extremal black holes. Eventually, we find the algebra of conserved charges in Fourier modes. It is interesting that, similar to the Einstein gravity in the presence of negative cosmological constant, for the GMMG model also we obtain the Heisenberg algebra as the near horizon symmetry algebra of the black flower solutions. ...
Setare, M. R.; Adami, H.
2017-01-01
In this paper we study the near horizon symmetry algebra of the non-extremal black hole solutions of the Chern-Simons-like theories of gravity, which are stationary but are not necessarily spherically symmetric. We define the extended off-shell ADT current which is an extension of the generalized ADT current. We use the extended off-shell ADT current to define quasi-local conserved charges such that they are conserved for Killing vectors and asymptotically Killing vectors which depend on dynamical fields of the considered theory. We apply this formalism to the Generalized Minimal Massive Gravity (GMMG) and obtain conserved charges of a spacetime which describes near horizon geometry of non-extremal black holes. Eventually, we find the algebra of conserved charges in Fourier modes. It is interesting that, similar to the Einstein gravity in the presence of negative cosmological constant, for the GMMG model also we obtain the Heisenberg algebra as the near horizon symmetry algebra of the black flower solutions. Also the vacuum state and all descendants of the vacuum have the same energy. Thus these zero energy excitations on the horizon appear as soft hairs on the black hole.
Setare, M. R.; Adami, H.
2016-08-01
The Chern-Simons-like theories of gravity (CSLTG) are formulated at first order formalism. In this formalism, the derivation of the entropy of a black hole on bifurcation surface, as a quasi-local conserved charge is problematic. In this paper we overcome these problems by considering the concept of total variation and the Lorentz-Lie derivative. We firstly find an expression for the ADT conserved current in the context of the CSLTG which is based on the concept of the Killing vector fields. Then, we generalize it to be conserved for all diffeomorphism generators. Thus, we can extract an off-shell conserved charge for any vector field which generates a diffeomorphism. The formalism presented here is based on the concept of quasi-local conserved charges which are off-shell. The charges can be calculated on any codimension two space-like surface surrounding a black hole and the results are independent of the chosen surface. By using the off-shell quasi-local conserved charge, we investigate the Virasoro algebra and find a formula to calculate the central extension term. We apply the formalism to the BTZ black hole solution in the context of the Einstein gravity and the Generalized massive gravity, then we find the eigenvalues of their Virasoro generators as well as the corresponding central charges. Eventually, we calculate the entropy of the BTZ black hole by the Cardy formula and we show that the result exactly matches the one obtained by the concept of the off-shell conserved charges.
Wavefunction of the Universe and Chern-Simons perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Soo Chopin [Department of Physics, National Cheng Kung University Tainan 70101, Taiwan (China)
2002-03-21
The Chern-Simons exact solution of four-dimensional quantum gravity with nonvanishing cosmological constant is presented in metric variables as the partition function of Chern-Simons theory with nontrivial source. The perturbative expansion is given, and the wavefunction is computed to the lowest order of approximation for the Cauchy surface which is topologically a 3-sphere. The state is well-defined even at degenerate and vanishing values of the dreibein. Reality conditions for the Ashtekar variables are also taken into account, and remarkable features of the Chern-Simons state and their relevance to cosmology are pointed out.
Anomalies, Chern-Simons Terms and Black Hole Entropy
Azeyanagi, Tatsuo; Ng, Gim Seng
2015-01-01
Recent derivations of Cardy-like formulae in higher dimensional field theories have opened up a way of computing, via AdS/CFT, universal contributions to black hole entropy from gravitational Chern-Simons terms. Based on the manifestly covariant formulation of the differential Noether charge for Chern-Simons terms proposed in arXiv:1407.6364, we compute the entropy and asymptotic charges for the rotating charged AdS black holes in higher dimensions at leading order of the fluid/gravity derivative expansion in the Einstein-Maxwell-Chern-Simons system. This gives a result that exactly matches the field theory predictions from Cardy-like formulae.
Haggard, Hal M; Kamiński, Wojciech; Riello, Aldo
2014-01-01
We study the expectation value of a nonplanar Wilson graph operator in SL(2,C) Chern-Simons theory on $S^3$. In particular we analyze its asymptotic behaviour in the double-scaling limit in which both the representation labels and the Chern-Simons coupling are taken to be large, but with fixed ratio. When the Wilson graph operator has a specific form, motivated by loop quantum gravity, the critical point equations obtained in this double-scaling limit describe a very specific class of flat connection on the graph complement manifold. We find that flat connections in this class are in correspondence with the geometries of constant curvature 4-simplices. The result is fully non-perturbative from the perspective of the reconstructed geometry. We also show that the asymptotic behavior of the amplitude contains at the leading order an oscillatory part proportional to the Regge action for the single 4-simplex in the presence of a cosmological constant. In particular, the cosmological term contains the full-fledged ...
Chern-Simons Supersymmetric Branes
Mora, P
2001-01-01
In this paper we continue the study of the model proposed in the previous paper hep-th/0002077. The model consist of a system of extended objects of diverse dimensionalities, with or without boundaries, with actions of the Chern-Simons form for a supergroup. We also discuss possible connections with Superstring/M-theory.
Abelian Chern-Simons theory, Stokes' Theorem, and generalized connections
Sahlmannn, Hanno
2010-01-01
Generalized connections and their calculus have been developed in the context of quantum gravity. Here we apply them to abelian Chern-Simons theory. We derive the expectation values of holonomies in U(1) Chern-Simons theory using Stokes' Theorem, flux operators and generalized connections. A framing of the holonomy loops arises in our construction, and we show how, by choosing natural framings, the resulting expectation values nevertheless define a functional over gauge invariant cylindrical functions. The abelian theory considered in the present article is test case for our method. It can also be applied to the non-abelian theory. Results for that case will be reported elsewhere.
Maxwell-Chern-Simons Hydrodynamics for the Chiral Magnetic Effect
Ozonder, Sener
2010-01-01
The rate of vacuum changing topological solutions of the gluon field, sphalerons, is estimated to be large at the typical temperatures of heavy-ion collisions, particularly at the Relativistic Heavy Ion Collider. Such windings in the gluon field are expected to produce parity-odd bubbles, which cause separation of positively and negatively charged quarks along the axis of the external magnetic field. This Chiral Magnetic Effect can be mimicked by Chern-Simons modified electromagnetism. Here we present a model of relativistic hydrodynamics including the effects of axial anomalies via the Chern-Simons term.
Wave function of the Universe and Chern-Simons Perturbation Theory
Soo, C P
2002-01-01
The Chern-Simons exact solution of four-dimensional quantum gravity with nonvanishing cosmological constant is presented in metric variable as the partition function of a Chern-Simons theory with nontrivial source. The perturbative expansion is given, and the wave function is computed to the lowest order of approximation for the Cauchy surface which is topologically a 3-sphere. The state is well-defined even at degenerate and vanishing values of the dreibein. Reality conditions for the Ashtekar variables are also taken into account; and remarkable features of the Chern-Simons state and their relevance to cosmology are pointed out.
Exact Chern-Simons / Topological String duality
Krefl, Daniel
2015-01-01
We invoke universal Chern-Simons theory to analytically calculate the exact free energy of the refined topological string on the resolved conifold. In the unrefined limit we reproduce non-perturbative corrections for the resolved conifold found elsewhere in the literature, thereby providing strong evidence that the Chern-Simons / topological string duality is exact, and in particular holds at arbitrary N as well. In the refined case, the non-perturbative corrections we find are novel and appear to be non-trivial. We show that non-perturbatively special treatment is needed for rational valued deformation parameter. Above results are also extend to refined Chern-Simons with orthogonal groups.
Maxwell-Chern-Simons theory and an ambiguity in Chern-Simons perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Leblanc, M.; Thomaz, M.T. (Center for Theoretical Physics, Lab. for Nuclear Science, Dept. of Physics, Massachusetts Inst. of Technology, Cambridge, MA (United States))
1992-05-14
We calculate the one-loop effective potential for a matter scalar field in the N=2 supersymmetric Maxwell-Chern-Simons model. It is found that the degeneracy of the classical potential is not lifted by radiative corrections. We show that reduction to the effective potential for the Chern-Simons theory as a limit from the Maxwell-Chern-Simons theory gives rise at one loop to an expression that differs from the result obtained solely within Chern-Simons theory. (orig.).
String theory duals of Lifshitz-Chern-Simons gauge theories
Balasubramanian, Koushik
2011-01-01
We propose candidate gravity duals for a class of non-Abelian z=2 Lifshitz Chern-Simons (LCS) gauge theories studied by Mulligan, Kachru and Nayak. These are nonrelativistic gauge theories in 2+1 dimensions in which parity and time-reversal symmetries are explicitly broken by the presence of a Chern-Simons term. We show that these field theories can be realized as deformations of DLCQ N=4 super Yang-Mills theory. Using the holographic dictionary, we identify the bulk fields that are dual to these deformations. The geometry describing the groundstate of the non-Abelian LCS gauge theory realized here ends smoothly in the infrared region. This is a signal for confinement in the dual field theory, suggesting that non-Abelian Lifshitz gauge theories can indeed flow to strongly-coupled confining theories.
Chern-Simons theory, Stokes' Theorem, and the Duflo map
Sahlmann, Hanno
2011-01-01
We consider a novel derivation of the expectation values of holonomies in Chern-Simons theory, based on Stokes' Theorem and the functional properties of the Chern-Simons action. It involves replacing the connection by certain functional derivatives under the path integral integral. It turns out that ordering choices have to be made in the process, and we demonstrate that, quite surprisingly, the Duflo isomorphism gives the right ordering, at least in the simple cases that we consider. In this way, we determine the expectation values of unknotted, but possibly linked, holonomy loops for SU(2) and SU(3), and sketch how the method may be applied to more complicated cases. Our manipulations of the path integral are formal but well motivated by a rigorous calculus of integration on spaces of generalized connections which has been developed in the context of loop quantum gravity.
Higher-spin Chern-Simons theories in odd dimensions
Energy Technology Data Exchange (ETDEWEB)
Engquist, Johan [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)], E-mail: j.engquist@phys.uu.nl; Hohm, Olaf [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)], E-mail: o.hohm@phys.uu.nl
2007-12-10
We construct consistent bosonic higher-spin gauge theories in odd dimensions D>3 based on Chern-Simons forms. The gauge groups are infinite-dimensional higher-spin extensions of the anti-de Sitter groups SO(D-1,2). We propose an invariant tensor on these algebras, which is required for the definition of the Chern-Simons action. The latter contains the purely gravitational Chern-Simons theories constructed by Chamseddine, and so the entire theory describes a consistent coupling of higher-spin fields to a particular form of Lovelock gravity. It contains topological as well as non-topological phases. Focusing on D=5 we consider as an example for the latter an AdS{sub 4}xS{sup 1} Kaluza-Klein background. By solving the higher-spin torsion constraints in the case of a spin-3 field, we verify explicitly that the equations of motion reduce in the linearization to the compensator form of the Fronsdal equations on AdS{sub 4}.
Frobenius-Chern-Simons gauge theory
Bonezzi, Roberto; Sezgin, Ergin; Sundell, Per
2016-01-01
Given a set of differential forms on an odd-dimensional noncommutative manifold valued in an internal associative algebra H, we show that the most general cubic covariant Hamiltonian action, without mass terms, is controlled by an Z_2-graded associative algebra F with a graded symmetric nondegenerate bilinear form. The resulting class of models provide a natural generalization of the Frobenius-Chern-Simons model (FCS) that was proposed in arXiv:1505.04957 as an off-shell formulation of the minimal bosonic four-dimensional higher spin gravity theory. If F is unital and the Z_2-grading is induced from a Klein operator that is outer to a proper Frobenius subalgebra, then the action can be written on a form akin to topological open string field theory in terms of a superconnection valued in the direct product of H and F. We give a new model of this type based on a twisting of C[Z_2 x Z_4], which leads to self-dual complexified gauge fields on AdS_4. If F is 3-graded, the FCS model can be truncated consistently as...
Frobenius-Chern-Simons gauge theory
Bonezzi, Roberto; Boulanger, Nicolas; Sezgin, Ergin; Sundell, Per
2017-02-01
Given a set of differential forms on an odd-dimensional noncommutative manifold valued in an internal associative algebra H , we show that the most general cubic covariant Hamiltonian action, without mass terms, is controlled by an {{{Z}}2} -graded associative algebra F with a graded symmetric nondegenerate bilinear form. The resulting class of models provide a natural generalization of the Frobenius-Chern-Simons model (FCS) that was proposed in (arXiv:1505.04957) as an off-shell formulation of the minimal bosonic four-dimensional higher spin gravity theory. If F is unital and the {{{Z}}2} -grading is induced from a Klein operator that is outer to a proper Frobenius subalgebra, then the action can be written on a form akin to topological open string field theory in terms of a superconnection valued in H\\otimes F . We give a new model of this type based on a twisting of {C}≤ft[{{{Z}}2}× {{{Z}}4}\\right] , which leads to self-dual complexified gauge fields on AdS 4. If F is 3-graded, the FCS model can be truncated consistently as to contain no zero-form constraints on-shell. Two examples thereof are a twisting of {C}[{{({{{Z}}2})}3}] that yields the original model, and the Clifford algebra C{{\\ell}2n} which provides an FCS formulation of the bosonic Konstein-Vasiliev model with gauge algebra hu≤ft({{4}n-1},0\\right) .
Localization in abelian Chern-Simons theory
DEFF Research Database (Denmark)
McLellan, Brendan Donald Kenneth
2013-01-01
Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected, and abelian. The abelian Chern-Simons partition function is derived using the Faddeev-Popov gauge fixing method. The partition function is then formally computed...... using the technique of non-abelian localization. This study leads to a natural identification of the abelian Reidemeister-Ray-Singer torsion as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections for the class of Sasakian three...
W∞ Algebras from Noncommutative Chern Simons Theory
Pinzul, A.; Stern, A.
We examine Chern Simons theory written on a noncommutative plane with a "hole", and show that the algebra of observables is a nonlinear deformation of the w∞ algebra. The deformation depends on the level (the coefficient in the Chern Simons action), and the noncommutativity parameter, which were identified, respectively, with the inverse filling fraction (minus one) and the inverse density in a recent description of the fractional quantum Hall effect. We remark on the quantization of our algebra. The results are sensitive to the choice of ordering in the Gauss law.
Chern-Simons Theory on Supermanifolds
Grassi, Pietro Antonio
2016-01-01
We consider quantum field theories on supermanifolds using integral forms. The latter are used to define a geometric theory of integration and they are essential for a consistent action principle. The construction relies on Picture Changing Operators, analogous to the one introduced in String Theory. As an application, we construct a geometric action principle for N=1 D=3 super-Chern-Simons theory.
Perturbative Chern-Simons theory revisited
DEFF Research Database (Denmark)
McLellan, Brendan Donald Kenneth
2013-01-01
We reconsider perturbative Chern-Simons theory on a closed and oriented three-manifold with a choice of contact structure following C. Beasley and E. Witten. Closed three manifolds that admit a Sasakian structure are explicitly computed to first order in perturbation in terms of their Seifert dat...
Perturbative expansion of Chern-Simons theory
SAWON, Justin
2005-01-01
An overview of the perturbative expansion of the Chern--Simons path integral is given. The main goal is to describe how trivalent graphs appear: as they already occur in the perturbative expansion of an analogous finite-dimensional integral, we discuss this case in detail.
Quantum Hairs and Isolated Horizon Entropy from Chern-Simons Theory
Majhi, Abhishek
2013-01-01
We articulate the fact that the loop quantum gravity description of the quantum states of black hole horizons, modeled as Quantum Isolated Horizons (QIHs), is completely characterized in terms of two independent integer-valued quantum 'hairs', viz,. the coupling constant of the quantum SU(2) Chern Simons theory describing QIH dynamics, and the number of punctures produced by the bulk spin network edges piercing the isolated horizon (which act as pointlike sources for the Chern Simons fields). We demonstrate that the microcanonical entropy of macroscopic (both parameters assuming very large values) QIHs can be obtained directly from the microstates of this Chern-Simons theory, using standard statistical mechanical methods, without having to additionally postulate the horizon as an ideal gas of punctures, or incorporate any additional classical or semi-classical input from general relativity vis-a-vis the functional dependence of the IH mass on its area, or indeed, without having to restrict to any special clas...
Maxwell-Chern-Simons Casimir Effect
Milton, K A
1992-01-01
In odd-dimensional spaces, gauge invariance permits a Chern-Simons mass term for the gauge fields in addition to the usual Maxwell-Yang-Mills kinetic energy term. We study the Casimir effect in such a (2+1)-dimensional Abelian theory. For the case of parallel conducting lines the result is the same as for a scalar field. For the case of circular boundary conditions the results are completely different, with even the sign of the effect being opposite for Maxwell-Chern-Simons fields and scalar fields. We further examine the effect of finite temperature. The Casimir stress is found to be attractive at both low and high temperature. Possibilities of observing this effect in the laboratory are discussed.
Gauge dependence in Chern-Simons theory
Dilkes, F A; McKeon, D G C; Sherry, T N
1996-01-01
We compute the contribution to the modulus of the one-loop effective action in pure non-Abelian Chern-Simons theory in an arbitrary covariant gauge. We find that the results are dependent on both the gauge parameter (\\alpha) and the metric required in the gauge fixing. A contribution arises that has not been previously encountered; it is of the form (\\alpha / \\sqrt{p^2}) \\epsilon _{\\mu \\lambda \
Self-dual Chern-Simons theories
Dunne, Gerald
1995-01-01
Self-dual Chern-Simons theories form a new class of self-dual gauge theories and provide a field theoretical formulation of anyonic excitations in planar (i.e., two-space-dimensional) systems. Much of the recent attention of these theories is due to the surprising and novel ways in which they differ from the standard Maxwell, or Yang-Mills, gauge theories. These Chern-Simons theories are particular to planar systems and have therefore received added research impetus from recent experimental and theoretical breakthroughs in actual planar condensed-matter systems, such as the quantum Hall effect. This book gives a pedagogical introduction to the basic properties of the "self-dual" Chern-Simons theories, concluding with an overview of more advanced results and an extensive bibliography. Such models possess Bogomol'nyi energy bounds, topological charges, vortex solutions, and supersymmetric extensions, features which are familiar from other well-known self-dual systems such as instantons, monopoles, and vortices....
Maxwell Chern Simons Theory in a Geometric Representation
Leal, L C
2001-01-01
We quantize the Maxwell Chern Simons theory in a geometric representation that generalizes the Abelian Loop Representation of Maxwell theory. We find that in the physical sector, the model can be seen as the theory of a massles scalar field with a topological interaction that enforces the wave functional to be multivalued. This feature allows to relate the Maxwell Chern Simons theory with the quantum mechanics of particles interacting through a Chern Simons field
Chern-Simons Supergravity in D=3 and Maxwell superalgebras
Concha, P K; Rodríguez, E K; Salgado, P
2015-01-01
We present the construction of the $D=3$ Chern-Simons supergravity action from the Maxwell superalgebra $s\\mathcal{M}$, which can be obtained from the anti-De Sitter superalgebra by combining the abelian semigroup expansion procedure and the In\\"{o}n\\"{u}-Wigner contraction. \\ The Chern-Simons supergravity action from a generalized Maxwell superalgebra is also introduced.
W-Infinity Algebras from Noncommutative Chern-Simons Theory
Pinzul, A N
2003-01-01
We examine Chern-Simons theory written on a noncommutative plane with a `hole', and show that the algebra of observables is a nonlinear deformation of the $w_\\infty$ algebra. The deformation depends on the level (the coefficient in the Chern-Simons action), which was identified recently with the inverse filling fraction in the fractional quantum Hall effect.
Generalized self-dual Chern-Simons vortices
Bazeia, D.(Departamento de Física, Universidade Federal da Paraíba, João Pessoa, PB, 58051-970, Brazil); da Hora, E.; Santos, C. dos(Centro de Física e Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, 4169-007, Porto, Portugal); Menezes, R.(Departamento de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, PB, Brazil)
2010-01-01
We search for vortices in a generalized Abelian Chern-Simons model with a nonstandard kinetic term. We illustrate our results, plotting and comparing several features of the vortex solution of the generalized model with those of the vortex solution found in the standard Chern-Simons model.
Abelian Chern-Simons theory and contact torsion
DEFF Research Database (Denmark)
McLellan, Brendan Donald Kenneth
2013-01-01
Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected and abelian. A shift reduced abelian Chern-Simons partition function is introduced using an alternative formulation of the partition function using formal ideas in ...... in quantum field theory. We compare the shift reduced partition function with other formulations of the abelian Chern-Simons partition function. This study naturally motivates an Atiyah-Patodi-Singer type index problem in contact geometry.......Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected and abelian. A shift reduced abelian Chern-Simons partition function is introduced using an alternative formulation of the partition function using formal ideas...
Torsion as a Gauge Field in a Lorentz-Chern-Simons Theory
del Pino, Simón
2016-01-01
We explore a model of gravity that arises from the consideration of the Chern-Simons form in 2+1 dimensions for a spin connection with a contorsion described by a scalar and a vector field. The effective Lagrangian presents a local Weyl symmetry allowing us to gauge the scalar field to a constant value. From a gauge field theory perspective, it is shown that the vector part of the torsion (related to its trace) is a gauge field for the Weyl group, which allows the interpretation of the torsion as an electromagnetic field. In the gauge of constant scalar field we obtain Chiral Gravity coupled to a Chern-Simons-Proca theory for the vector field, that at the level of equations of motion is equivalent to Topologically Massive Electrodynamics minimally coupled to Chiral Gravity. Electrodynamics and gravity appear here unified as geometrical features of a Riemann-Cartan manifold.
Translational Chern-Simons Action and New Planar Particle Dynamics
Lukierski, J; Zakrzewski, W J
2000-01-01
We consider a nonstandard $D=2+1$ gravity described by a translational Chern--Simons action, and couple it to the nonrelativistic point particles. We fix the asymptotic coordinate transformations in such a way that the space part of the metric becomes asymptotically Euclidean. The residual symmetries are (local in time) translations and rigid rotations. The phase space Hamiltonian $H$ describing two-body interactions satisfies a nonlinear equation $H={\\cal H}(\\vec{x},\\vec{p};H)$ what implies, after quantization, a nonstandard form of the Schr\\"{o}dinger equation with energy-dependent fractional angular momentum eigenvalues. Quantum solutions of the two-body problem are discussed. The bound states with discrete energy levels correspond to a confined classical motion (for the planar distance between two particles $r\\leq r_0$) and the scattering states with continuous energy correspond to classical motion for $r>r_0$.
Induced spin from the ISO(2,1) gauge theory with the gravitational Chern-Simons term
Cho, J H; Cho, Jin Ho
1994-01-01
In the context of ISO(2,1) gauge theory, we consider (2+1)-dimensional gravity with the gravitational Chern-Simons term (CST). This formulation allows the `exact' solution for the system coupled to a massive point particle (which is not the case in the conventional Chern-Simons gravity). The solution exhibits locally trivial structure even with the CST, although still shows globally nontrivialness such as the conical space and the helical time structure. Since the solution is exact, we can say the CST induces spin even for noncritical case of \\s+\\al m\
Dynamical Chern-Simons Theory in the Brillouin Zone
Lian, Biao; Vafa, Farzan; Zhang, Shou-Cheng
2016-01-01
Berry connection is conventionally defined as a static gauge field in the Brillouin zone. Here we show that for three-dimensional (3d) time-reversal invariant superconductors, a generalized Berry gauge field behaves as a dynamical fluctuating field of a Chern-Simons gauge theory. The gapless nodal lines in the momentum space play the role of Wilson loop observables, while their linking and knot invariants modify the gravitational theta angle. This angle induces a topological gravitomagnetoelectric effect where a temperature gradient induces a rotational energy flow. We also show how topological strings may be realized in the 6 dimensional phase space, where the physical space defects play the role of topological D-branes.
The Chern-Simons Number as a Dynamical Variable
Tye, S -H Henry
2016-01-01
In the standard electroweak theory that describes nature, the Chern-Simons number associated with the vacua as well as the unstable sphaleron solutions play a crucial role in the baryon number violating processes. We recall why the Chern-Simons number should be generalized from a set of discrete values to a dynamical (quantum) variable. Via the construction of an appropriate Hopf invariant and the winding number, we discuss how the geometric information in the gauge fields is also captured in the Higgs field. We then discuss the choice of the Hopf variable in relation to the Chern-Simons variable.
Level/rank Duality and Chern-Simons-Matter Theories
Hsin, Po-Shen
2016-01-01
We discuss in detail level/rank duality in three-dimensional Chern-Simons theories and various related dualities in three-dimensional Chern-Simons-matter theories. We couple the dual Lagrangians to appropriate background fields (including gauge fields, spin$_c$ connections and the metric). The non-trivial maps between the currents and the line operators in the dual theories is accounted for by mixing of these fields. In order for the duality to be valid we must add finite counterterms depending on these background fields. This analysis allows us to resolve a number of puzzles with these dualities, to provide derivations of some of them, and to find new consistency conditions and relations between them. In addition, we find new level/rank dualities of topological Chern-Simons theories and new dualities of Chern-Simons-matter theories, including new boson/boson and fermion/fermion dualities.
Anomalous spin of the Chern-Simons-Georgi-Glashow model
Qiu-Hong, Huo
2012-01-01
With the Coulomb gauge, the Chern-Simons-Georgi-Glashow (CSGG) model is quantized in the Dirac formalism for the constrained system. Combining the Gauss law and Coulomb gauge consistency condition, the difference between the Schwinger angular momentum and canonical angular momentum of the system is found to be an anomalous spin. The reason for this result lies in that the Schwinger energy momentum tensor and the canonical one have different symmetry properties in presence of the Chern-Simons term.
Real-time Chern-Simons term for hypermagnetic fields
M. Laine
2005-01-01
If non-vanishing chemical potentials are assigned to chiral fermions, then a Chern-Simons term is induced for the corresponding gauge fields. In thermal equilibrium anomalous processes adjust the chemical potentials such that the coefficient of the Chern-Simons term vanishes, but it has been argued that there are non-equilibrium epochs in cosmology where this is not the case and that, consequently, certain fermionic number densities and large-scale (hypermagnetic) field strengths get coupled ...
Kinetic derivation of generalized phase space Chern-Simons theory
Hayata, Tomoya
2016-01-01
We study a kinetic theory in $2d$ phase space when all abelian Berry curvatures are nonzero. We derive the complete form of the Poisson brackets, and calculate transports induced by Berry curvatures. Then we construct the low-energy effective theory to reproduce the transports. Such an effective theory is given by the Chern-Simons theory in $1+2d$ dimensions. Some implications of the Chern-Simons theory are also discussed.
The Chern-Simons diffusion rate in improved holographic QCD
Gürsoy, U.; Iatrakis, I.; Kiritsis, E.; Nitti, F.; O’Bannon, A.
2013-01-01
In (3 + 1)-dimensional SU(N c) Yang-Mills (YM) theory, the Chern-Simons diffusion rate, ΓCS, is determined by the zero-momentum, zero-frequency limit of the retarded two-point function of the CP-odd operator tr [F ∧ F ], with F the YM field strength. The Chern-Simons diffusion rate is a crucial ingr
Chern-Simons Dynamics and the Quantum Hall Effect
Balachandran, A P
1991-01-01
Theoretical developments during the past several years have shown that large scale properties of the Quantum Hall system can be successfully described by effective field theories which use the Chern-Simons interaction. In this article, we first recall certain salient features of the Quantum Hall Effect and their microscopic explanation. We then review one particular approach to their description based on the Chern-Simons Lagrangian and its variants.
Chern-Simons theory in SIM(1) superspace
Energy Technology Data Exchange (ETDEWEB)
Vohanka, Jiri [Masaryk University, Department of Theoretical Physics and Astrophysics, Brno (Czech Republic); Faizal, Mir [University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada)
2015-12-15
In this paper,wewill analyze a three-dimensional supersymmetric Chern-Simons theory in SIM(1) superspace formalism. The breaking of the Lorentz symmetry down to the SIM(1) symmetry breaks half the supersymmetry of the Lorentz invariant theory. So, the supersymmetry of the Lorentz invariant Chern-Simons theory with N = 1 supersymmetry will break down to N = 1/2 supersymmetry, when the Lorentz symmetry is broken down to the SIM(1) symmetry. First, we will write the Chern-Simons action using SIM(1) projections ofN = 1 superfields. However, as the SIM(1) transformations of these projections are very complicated, we will define SIM(1) superfields which transform simply under SIM(1) transformations. We will then express the Chern-Simons action using these SIM(1) superfields. Furthermore, we will analyze the gauge symmetry of this Chern-Simons theory. This is the first time that a Chern-Simons theory with N = 1/2 supersymmetry will be constructed on a manifold without a boundary. (orig.)
Light States in Chern-Simons Theory Coupled to Fundamental Matter
Banerjee, Shamik; Maltz, Jonathan; Shenker, Stephen H
2012-01-01
Motivated by developments in vectorlike holography, we study SU(N) Chern-Simons theory coupled to matter fields in the fundamental representation on various spatial manifolds. On the spatial torus T^2, we find light states at small `t Hooft coupling \\lambda=N/k, where k is the Chern-Simons level, taken to be large. In the free scalar theory the gaps are of order \\sqrt {\\lambda}/N and in the critical scalar theory and the free fermion theory they are of order \\lambda/N. The entropy of these states grows like N Log(k). We briefly consider spatial surfaces of higher genus. Based on results from pure Chern-Simons theory, it appears that there are light states with entropy that grows even faster, like N^2 Log(k). This is consistent with the log of the partition function on the three sphere S^3, which also behaves like N^2 Log(k). These light states require bulk dynamics beyond standard Vasiliev higher spin gravity to explain them.
Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Torsten
2009-05-13
The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)
Deformation of surfaces, integrable systems, and Chern-Simons theory
Martina, L.; Myrzakul, Kur.; Myrzakulov, R.; Soliani, G.
2001-03-01
A few years ago, some of us devised a method to obtain integrable systems in (2+1)-dimensions from the classical non-Abelian pure Chern-Simons action via the reduction of the gauge connection in Hermitian symmetric spaces. In this article we show that the methods developed in studying classical non-Abelian pure Chern-Simons actions can be naturally implemented by means of a geometrical interpretation of such systems. The Chern-Simons equation of motion turns out to be related to time evolving two-dimensional surfaces in such a way that these deformations are both locally compatible with the Gauss-Mainardi-Codazzi equations and completely integrable. The properties of these relationships are investigated together with the most relevant consequences. Explicit examples of integrable surface deformations are displayed and discussed.
Real-time Chern-Simons term for hypermagnetic fields
Laine, Mikko
2005-01-01
If non-vanishing chemical potentials are assigned to chiral fermions, then a Chern-Simons term is induced for the corresponding gauge fields. In thermal equilibrium anomalous processes adjust the chemical potentials such that the coefficient of the Chern-Simons term vanishes, but it has been argued that there are non-equilibrium epochs in cosmology where this is not the case and that, consequently, certain fermionic number densities and large-scale (hypermagnetic) field strengths get coupled to each other. We generalise the Chern-Simons term to a real-time situation relevant for dynamical considerations, by deriving the anomalous Hard Thermal Loop effective action for the hypermagnetic fields, write down the corresponding equations of motion, and discuss some exponentially growing solutions thereof.
Topological boundary conditions in abelian Chern-Simons theory
Energy Technology Data Exchange (ETDEWEB)
Kapustin, Anton [California Institute of Technology, Pasadena, CA 91125 (United States); Saulina, Natalia, E-mail: saulina@theory.caltech.ed [Perimeter Institute, Waterloo (Canada)
2011-04-21
We study topological boundary conditions in abelian Chern-Simons theory and line operators confined to such boundaries. From the mathematical point of view, their relationships are described by a certain 2-category associated to an even integer-valued symmetric bilinear form (the matrix of Chern-Simons couplings). We argue that boundary conditions correspond to Lagrangian subgroups in the finite abelian group classifying bulk line operators (the discriminant group). We describe properties of boundary line operators; in particular we compute the boundary associator. We also study codimension one defects (surface operators) in abelian Chern-Simons theories. As an application, we obtain a classification of such theories up to isomorphism, in general agreement with the work of Belov and Moore.
Anomalous spin of the Chern-Simons-Georgi-Glashow model
Institute of Scientific and Technical Information of China (English)
HUO Qiu-Hong; JIANG Yun-Guo; WANG Ru-Zhi; YAN Hui
2013-01-01
With the Coulomb gauge,the Chern-Simons-Georgi-Glashow (CSGG) model is quantized in the Dirac formalism for the constrained system.Combining the Gauss law and Coulomb gauge consistency condition,the difference between the Schwinger angular momentum and canonical angular momentum of the system is found to be an anomalous spin.The reason for this result lies in the fact that the Schwinger energy momentum tensor and the canonical one have different symmetry properties in the presence of the Chern-Simons term.
Lecture notes on Chern-Simons-Witten theory
Hu, Sen
2001-01-01
This invaluable monograph has arisen in part from E Witten's lectures on topological quantum field theory in the spring of 1989 at Princeton University. At that time Witten unified several important mathematical works in terms of quantum field theory, most notably the Donaldson polynomial, the Gromov-Floer homology and the Jones polynomials. In his lectures, among other things, Witten explained his intrinsic three-dimensional construction of Jones polynomials via Chern-Simons gauge theory. He provided both a rigorous proof of the geometric quantization of the Chern-Simons action and a very ill
Chern-Simons terms and cocycles in physics and mathematics
Energy Technology Data Exchange (ETDEWEB)
Jackiw, R.
1984-12-01
Contemporary topological research in Yang-Mills theory is reviewed, emphasizing the Chern-Simons terms and their relatives. Three applications of the Chern-Simons terms in physical theory are described: to help understanding gauge theories in even dimensional space-time; gauge field dynamics in odd dimensional space-time; and mathematically coherent description of even-dimensional gauge theories with chiral fermions that are apparently inconsistent due to chiral anomalies. Discussion of these applications is preceded by explanation of the mathematical preliminaries and examples in simple quantum mechanical settings. 24 refs. (LEW)
Multiple Chern-Simons fields on a torus
Wesolowski, D J; Ho, C L
1994-01-01
Intertwined multiple Chern-Simons gauge fields induce matrix statistics among particles. We analyse this theory on a torus, focusing on the vacuum structure and the Hilbert space. The theory can be mimicked, although not completely, by an effective theory with one Chern-Simons gauge field. The correspondence between the Wilson line integrals, vacuum degeneracy and wave functions for these two theories are discussed. Further, it is obtained in both of these cases that the two total momenta and Hamiltonian commute only in the physical Hilbert space.
Chern-Simons functional under gauge transformations on flat bundles
Byun, Yanghyun; Kim, Joohee
2017-01-01
We describe the effect of a gauge transformation on the Chern-Simons functional in a thorough and unifying manner. We use the assumptions that the structure group is compact and connected and, in particular, that the principal bundle is flat. The Chern-Simons functional we consider is the one defined by choosing a flat reference connection. The most critical step in arriving at the main result is to show both the existence and the uniqueness of a cohomology class on the adjoint bundle such that it is the class of the so-called Maurer-Cartan 3-form when restricted to each fiber.
Thermodynamics of Relativistic Fermions with Chern-Simons Coupling
Bralic, N; Schaposnik, F A
1994-01-01
We study the thermodynamics of the relativistic Quantum Field Theory of massive fermions in three space-time dimensions coupled to an Abelian Maxwell-Chern-Simons gauge field. We evaluate the specific heat at finite temperature and density and find that the variation with the statistical angle is consistent with the non-relativistic ideas on generalized statistics.
Supersymmetric Chern-Simons terms in ten dimensions
Bergshoeff, E.; Roo, M. de
1989-01-01
We construct a supersymmetric extension of the Lorentz and Yang-Mills Chern-Simons terms in ten dimensions. In terms of dimensionful parameters Î± (Lorentz) and Î² (Yang-Mills), we obtain the complete O(Î±) supersymmetrization. Furthermore, we present the leading O(Î±2) and O(Î±Î²) corrections requi
New Phase Transitions in Chern-Simons Matter Theory
Zahabi, Ali
2015-01-01
Applying the machinery of random matrix theory and Toeplitz determinants we study the level $k$, $U(N)$ Chern-Simons theory coupled with fundamental matter on $S^2\\times S^1$ at finite temperature $T$. This theory admits a discrete matrix integral representation, i.e. a unitary discrete matrix model of two-dimensional Yang-Mills theory. In this study, the partition function and phase structure of the Chern-Simons matter theory in an special case with Gross-Witten-Wadia potential are investigated. We obtain an exact expression for the partition function of the Chern-Simons matter theory as a function of $k,N,T$, for finite values and in the asymptotic regime. In the Gross-Witten-Wadia case, we show that ratio of the Chern-Simons matter partition function and the continuous two-dimensional Yang-Mills partition function, in the asymptotic regime, is the Tracy-Widom distribution. Consequently, using the explicit results for free energy of the theory, new second order and third-order phase transitions are observed...
Ghost dark energy models in specific modified gravity
Jawad, Abdul; Salako, Ines G.; Sohail, Ayesha
2016-09-01
The paper is devoted to the study of the cosmic acceleration through ghost dark energy models (its simple and generalized form) in the dynamical Chern-Simons modified gravity. In order to check the reliability of this scenario, we explore different cosmological parameters, such as deceleration, equation of state parameters and squared speed of sound. The cosmological planes ωD - 'D and r- s are also investigated in this framework. The obtained results are consistent with observational data of various schemes (WMAP+eCAMB+BAO+H0).
Gauged Baby Skyrme Model with Chern-Simons term
Samoilenka, A
2016-01-01
The properties of the multisoliton solutions of the (2+1)-dimensional Maxwell-Chern-Simons-Skyrme model are investigated numerically. Coupling to the Chern-Simons term allows for existence of the electrically charge solitons which may also carry magnetic fluxes. Two particular choices of the potential term is considered: (i) the weakly bounded potential and (ii) the double vacuum potential. In the absence of the gauge interaction in the former case the individual constituents of the multisoliton configuration are well separated, while in the latter case the rotational invariance of the configuration remains unbroken. It is shown that coupling of the planar multi-Skyrmions to the electric and magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, the energies, angular momenta, electric and magnetic fields of the configurations on the gauge coupling constant $g$, and the electric potential. It is found that, generically, ...
Topological entanglement negativity in Chern-Simons theories
Wen, Xueda; Ryu, Shinsei
2016-01-01
We study the topological entanglement negativity between two spatial regions in (2+1)-dimensional Chern-Simons gauge theories by using the replica trick and the surgery method. For a bipartitioned or tripartitioned spatial manifold, we show how the topological entanglement negativity depends on the presence of quasiparticles and the choice of ground states. In particular, for two adjacent non-contractible regions on a tripartitioned torus, the entanglement negativity provides a simple way to distinguish Abelian and non-Abelian theories. Our method applies to a Chern-Simons gauge theory defined on an arbitrary oriented (2+1)-dimensional spacetime manifold. Our results agree with the edge theory approach in a recent work (X. Wen, S. Matsuura and S. Ryu, arXiv:1603.08534).
4-d semistrict higher Chern-Simons theory I
Soncini, Emanuele
2014-01-01
We formulate a 4-dimensional higher gauge theoretic Chern-Simons theory. Its symmetry is encoded in a semistrict Lie 2-algebra equipped with an invariant non singular bilinear form. We analyze the gauge invariance of the theory and show that action is invariant under a higher gauge transformation up to a higher winding number. We find that the theory admits two seemingly inequivalent canonical quantizations. The first is manifestly topological, it does not require a choice of any additional structure on the spacial 3-fold. The second, more akin to that of ordinary Chern-Simons theory, involves fixing a CR structure on the latter. Correspondingly, we obtain two sets of semistrict higher WZW Ward identities and we find the explicit expressions of two higher versions of the WZW action. We speculate that the model could be used to define 2-knot invariants of 4-folds.
Enhancement of hidden symmetries and Chern-Simons couplings
Henneaux, Marc; Lekeu, Victor
2015-01-01
We study the role of Chern--Simons couplings for the appearance of enhanced symmetries of Cremmer--Julia type in various theories. It is shown explicitly that for generic values of the Chern--Simons coupling there is only a parabolic Lie subgroup of symmetries after reduction to three space-time dimensions but that this parabolic Lie group gets enhanced to the full and larger Cremmer--Julia Lie group of hidden symmetries if the coupling takes a specific value. This is heralded by an enhanced isotropy group of the metric on the scalar manifold. Examples of this phenomenon are discussed as well as the relation to supersymmetry. Our results are also connected with rigidity theorems of Borel-like algebras.
Topological entanglement negativity in Chern-Simons theories
Wen, Xueda; Chang, Po-Yao; Ryu, Shinsei
2016-09-01
We study the topological entanglement negativity between two spatial regions in (2+1)-dimensional Chern-Simons gauge theories by using the replica trick and the surgery method. For a bipartitioned or tripartitioned spatial manifold, we show how the topological entanglement negativity depends on the presence of quasiparticles and the choice of ground states. In particular, for two adjacent non-contractible regions on a tripartitioned torus, the entanglement negativity provides a simple way to distinguish Abelian and non-Abelian theories. Our method applies to a Chern-Simons gauge theory defined on an arbitrary oriented (2+1)-dimensional spacetime manifold. Our results agree with the edge theory approach in a recent work [35].
Embedded graph invariants in Chern-Simons theory
Major, Seth A.
1998-01-01
Chern-Simons gauge theory, since its inception as a topological quantum field theory, has proved to be a rich source of understanding for knot invariants. In this work the theory is used to explore the definition of the expectation value of a network of Wilson lines - an embedded graph invariant. Using a slight generalization of the variational method, lowest-order results for invariants for arbitrary valence graphs are derived; gauge invariant operators are introduced; and some higher order ...
Schwinger-Dyson functional in Chern-Simons theory
Guadagnini, Enore
2016-01-01
In perturbative SU(N) Chern-Simons gauge theory, it is shown that the Schwinger-Dyson equations assume a quite simplified form. The generating functional of the correlation functions of the curvature is considered; it is demonstrated that the renormalized Schwinger-Dyson functional is related with the generating functional of the correlation functions of the gauge connections by some kind of duality transformation.
Schwinger-Dyson functional in Chern-Simons theory
Guadagnini, E.
2016-11-01
In perturbative SU (N) Chern-Simons gauge theory, it is shown that the Schwinger-Dyson equations assume a quite simplified form. The generating functional of the correlation functions of the curvature is considered; it is demonstrated that the renormalized Schwinger-Dyson functional is related with the generating functional of the correlation functions of the gauge connections by some kind of duality transformation.
Chern-Simons Invariants of Torus Knots and Links
Stevan, Sébastien
2010-01-01
We compute the vacuum expectation values of torus knot operators in Chern-Simons theory, and we obtain explicit formulae for all classical gauge groups and for arbitrary representations. We reproduce a known formula for the HOMFLY invariants of torus links and we obtain an analogous formula for Kauffman invariants. We also derive a formula for cable knots. We use our results to test a recently proposed conjecture that relates HOMFLY and Kauffman invariants.
Higgs- and Skyrme-Chern-Simons densities in all dimensions
Tchrakian, D H
2015-01-01
Two types of new Chern-Simons (CS) densities, both defined in all odd and even dimensions, are proposed. These new CS densities feature a scalar field interacting with a scalar. In one case this is a Higgs scalar while in the other it is a Skyrme scalar. The motivation is to study the effects of adding these new CS terms to a Lagrangian which supports static soliton solutions prior to their introduction.
The Chern-Simons Source as a Conformal Family and Its Vertex Operators
Balachandran, A P; Sen-Gupta, K; Stern, A
1992-01-01
In a previous work, a straightforward canonical approach to the source-free quantum Chern-Simons dynamics was developed. It makes use of neither gauge conditions nor functional integrals and needs only ideas known from QCD and quantum gravity. It gives Witten's conformal edge states in a simple way when the spatial slice is a disc. Here we extend the formalism by including sources as well. The quantum states of a source with a fixed spatial location are shown to be those of a conformal family, a result also discovered first by Witten. The internal states of a source are not thus associated with just a single ray of a Hilbert space. Vertex operators for both abelian and nonabelian sources are constructed. The regularized abelian Wilson line is proved to be a vertex operator. We also argue in favor of a similar nonabelian result. The spin-statistics theorem is established for Chern-Simons dynamics even though the sources are not described by relativistic quantum fields. The proof employs geometrical methods whi...
Combinatorial quantization of the Hamiltonian Chern-Simons theory, 2
Alekseev, A Yu; Schomerus, V; Grosse, H; Schomerus, V
1994-01-01
This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory advertised in \\cite{AGS}. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathe- matically rigorous definition of the algebra of observables \\A_{CS} of the Chern Simons model. It is a *-algebra of ``functions on the quantum moduli space of flat connections'' and comes equipped with a positive functional \\omega (``integration''). We prove that this data does not depend on the particular choices which have been made in the construction. Following ideas of Fock and Rosly \\cite{FoRo}, the algebra \\A_{CS} provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verl...
Chern-Simons production during preheating in hybrid inflation models
García-Bellido, J; González-Arroyo, A; Garcia-Bellido, Juan; Perez, Margarita Garcia; Gonzalez-Arroyo, Antonio
2004-01-01
We study the onset of symmetry breaking after hybrid inflation in a model having the field content of the SU(2) gauge-scalar sector of the standard model, coupled to a singlet inflaton. This process is studied in (3+1)-dimensions in a fully non-perturbative way with the help of lattice techniques within the classical approximation. We focus on the role played by gauge fields and, in particular, on the generation of Chern-Simons number. Our results are shown to be insensitive to the various cut-offs introduced in our numerical approach. The spectra preserves a large hierarchy between long and short-wavelength modes during the whole period of symmetry breaking and Chern-Simons generation, confirming that the dynamics is driven by the low momentum sector of the theory. We establish that the Chern-Simons production mechanism is associated with local sphaleron-like structures. The corresponding sphaleron rates are of order 10^{-5} m^{-4}, which, within certain scenarios of electroweak baryogenesis and a (not unnat...
Topics In Gauge Theory (effective Action, Quantum Electrodynamics, Chern Simons)
Hall, T M
1998-01-01
This dissertation will present studies in three distinct areas of gauge theories. In Chern-Simons theories, the fate of the quantized Chern-Simons coupling constant upon renormalization of the theory is investigated. We find the Chern-Simons coupling constant remains quantized in the presence of residual non-abelian gauge symmetry. A two-flavor model of fermions is studied to determine the extent at which the vacuum condensate is locally proportional to the magnetic field. We find the proportionality is local in the limit of large flux. Using resolvent techniques, we find the exact effective action in a single pulsed electric background gauge field $E\\sb1$(t) = Esech $\\sp2$($t\\over r$). We derive the zero and first order derivative expansion for this electric field and compare with our exact results. Dispersion relations between the real and imaginary parts of the exact effective action are derived. In a uniform semi-classical approximation, we find the exact effective action for a spatially homogeneous backg...
Induced magnetic moment in noncommutative Chern-Simons scalar QED
Panigrahi, P K; Panigrahi, Prasanta K.
2005-01-01
We compute the one loop, $O(\\th)$ correction to the vertex in the noncommutative Chern-Simons theory with scalar fields in the fundamental representation. Emphasis is placed on the parity odd part of the vertex, since the same leads to the magnetic moment structure. We find that, apart from the commutative term, a $\\th$-dependent magnetic moment type structure is induced. In addition to the usual commutative graph, cubic photon vertices also give a finite $\\th$ dependent contribution. Furthermore, the two two-photon vertex diagrams, that give zero in the commutative case yield finite $\\th$ dependent terms to the vertex function.
Link Invariants from Classical Chern-Simons Theory
Leal, L C
2002-01-01
Taking as starting point a perturbative study of the classical equations of motion of the non-Abelian Chern-Simons Theory with non-dynamical sources, we search for analytical expressions for link invarians. In order to present this expressions in a manifestly diffeomorphism-invariant form, we introduce a set of differential forms associated with submanifolds in Euclidean three-space that allow us to write the link invariants as a kind of surface-dependent diffeomorphism-invariants that present certain Abelian gauge symmetry.
SIM(1)-VSR Maxwell-Chern-Simons electrodynamics
Bufalo, R.
2016-06-01
In this paper we propose a very special relativity (VSR)-inspired generalization of the Maxwell-Chern-Simons (MCS) electrodynamics. This proposal is based upon the construction of a proper study of the SIM (1)-VSR gauge-symmetry. It is shown that the VSR nonlocal effects present a significant and healthy departure from the usual MCS theory. The classical dynamics is analysed in full detail, by studying the solution for the electric field and static energy for this configuration. Afterwards, the interaction energy between opposite charges is derived and we show that the VSR effects play an important part in obtaining a (novel) finite expression for the static potential.
SIM$(1)$--VSR Maxwell-Chern-Simons electrodynamics
Bufalo, R
2016-01-01
In this paper we propose a very special relativity (VSR)-inspired generalization of the Maxwell-Chern-Simons (MCS) electrodynamics. This proposal is based upon the construction of a proper study of the SIM$(1)$--VSR gauge-symmetry. It is shown that the VSR nonlocal effects present a significant and health departure from the usual MCS theory. The classical dynamics is analysed in full detail, by studying the solution for the electric field and static energy for this configuration. Afterwards, the interaction energy between opposite charges are derived and we show that the VSR effects play an important part in obtaining a (novel) finite expression for the static potential.
On Chern-Simons Quivers and Toric Geometry
Belhaj, Adil; del Moral, Maria Pilar Garcia; Segui, Antonio
2011-01-01
We discuss a class of 3-dimensional N=4 Chern-Simons (CS) quiver gauge models obtained from M-theory compactifications on singular complex 4-dimensional hyper-Kahler (HK) manifolds, which are realized explicitly as a cotangent bundle over two-Fano toric varieties V^2. The corresponding CS gauge models are encoded in quivers similar to toric diagrams of V^2. Using toric geometry, it is shown that the constraints on CS levels can be related to toric equations determining V^2.
Giambelli Identity in Super Chern-Simons Matrix Model
Matsuno, Satsuki
2016-01-01
A classical identity due to Giambelli in representation theory states that the character in any representation is expressed as a determinant whose components are characters in the hook representation constructed from all the combinations of the arm and leg lengths of the original representation. Previously it was shown that the identity persists in taking, for each character, the matrix integration in the super Chern-Simons matrix model in the grand canonical ensemble. We prove here that this Giambelli compatibility still holds in the deformation of the fractional-brane background.
Self-Dual Chern-Simons Vortices in Higgs Field
Institute of Scientific and Technical Information of China (English)
DUAN Yi-Shi; ZHONG Wo-Jun; SI Tie-Yan
2005-01-01
@@ By decomposing the Bogomol'nyi self-dual equation in the Abelian Chern-Simons Higgs model, we find a selfdual topological term that was ignored all the time in the Bogomol'nyi self-duality equation due to the improper decomposition of the complex Higgs field. We also present a new self-dual equation that includes the topological term. It is shown that the self-dual vortex just arises from the symmetric phase of the Higgs field φ = 0. Using our φ-mapping theory, the inner topological structure of the vortex and double vortex is given.
Topological aspect of Chern-Simons p-branes
Institute of Scientific and Technical Information of China (English)
Duan Yi-Shi; Zhao Li; Liu Yu-Xiao; Ren Ji-Rong
2007-01-01
By generalizing the topological current of Abelian Chern Simons (CS) vortices, we present a topological tensor current of CS p-branes based on the φ-mapping topological current theory. It is revealed that CS p-branes are located at the isolated zeros of the vector field φ(x), and the topological structure of CS p-branes is characterized by the winding number of the φ-mappings. Furthermore, the Nambu-Goto action and the equation of motion for multi CS p-branes are obtained.
Chern-Simons terms from thermal circles and anomalies
Jensen, Kristan; Yarom, Amos
2013-01-01
We compute the full contribution of flavor and (or) Lorentz anomalies to the thermodynamic partition function. Apart from the Wess-Zumino consistency condition the Euclidean generating function must satisfy an extra requirement which we refer to as `consistency with the Euclidean vacuum.' The latter requirement fixes all Chern-Simons terms that arise in a particular Kaluza-Klein reduction of the theory. The solution to both conditions may be encoded in a `thermal anomaly polynomial' which we compute. Our construction fixes all the thermodynamic response parameters of a hydrodynamic theory associated with anomalies.
Extended higher cup-product Chern-Simons theories
Fiorenza, Domenico; Schreiber, Urs
2013-01-01
It is well known that the proper action functional of (4k+3)-dimensional U(1)-Chern-Simons theory including the instanton sectors is given on gauge equivalence classes of fields by the fiber integration of the cup product square of classes in degree-(2k+2) differential cohomology. We first refine this statement from gauge equivalence classes to the full higher smooth moduli stack of fields, to which the higher-order-ghost BRST complex is the infinitesimal approximation. Then we generalize the refined formulation to cup product Chern-Simons theories of nonabelian and higher nonabelian gauge fields, such as the nonabelian String^c-2-connections appearing in quantum-corrected 11-dimensional supergravity and M-branes. We discuss aspects of the off-shell extended geometric pre-quantization (in the sense of extended or multi-tiered QFT) of these theories, where there is a prequantum circle k-bundle (equivalently: (k-1)-bundle gerbe) in each codimension k. Examples we find include moduli stacks for differential T-du...
Extended higher cup-product Chern-Simons theories
Fiorenza, Domenico; Sati, Hisham; Schreiber, Urs
2013-12-01
The proper action functional of (4k+3)-dimensional U(1)-Chern-Simons theory including the instanton sectors has a well known description: it is given on the moduli space of fields by the fiber integration of the cup product square of classes in degree-(2k+2) differential cohomology. We first refine this statement from the moduli space to the full higher smooth moduli stack of fields, to which the higher-order-ghost BRST complex is the infinitesimal approximation. Then we generalize the refined formulation to cup product Chern-Simons theories of nonabelian and higher nonabelian gauge fields, such as the nonabelian String-2-connections appearing in quantum-corrected 11-dimensional supergravity and M-branes. We discuss aspects of the off-shell extended geometric prequantization (in the sense of extended or multi-tiered QFT) of these theories, where there is a prequantum U(1)-k-bundle (equivalently: a U(1)-(k - 1)-bundle gerbe) in each codimension k. Examples we find include moduli stacks for differential T-duality structures as well as the anomaly line bundles of higher electric/magnetic charges, such as the 5-brane charges appearing in heterotic supergravity, appearing as line bundles with connection on the smooth higher moduli stacks of field configurations.
Chern-Simons-Rozansky-Witten topological field theory
Energy Technology Data Exchange (ETDEWEB)
Kapustin, Anton [California Institute of Technology, Minor Outlying Islands (United States); Saulina, Natalia [California Institute of Technology, Minor Outlying Islands (United States)], E-mail: saulina@theory.caltech.edu
2009-12-21
We construct and study a new topological field theory in three dimensions. It is a hybrid between Chern-Simons and Rozansky-Witten theory and can be regarded as a topologically-twisted version of the N=4d=3 supersymmetric gauge theory recently discovered by Gaiotto and Witten. The model depends on a gauge group G and a hyper-Kaehler manifold X with a tri-holomorphic action of G. In the case when X is an affine space, we show that the model is equivalent to Chern-Simons theory whose gauge group is a supergroup. This explains the role of Lie superalgebras in the construction of Gaiotto and Witten. For general X, our model appears to be new. We describe some of its properties, focusing on the case when G is simple and X is the cotangent bundle of the flag variety of G. In particular, we show that Wilson loops are labeled by objects of a certain category which is a quantum deformation of the equivariant derived category of coherent sheaves on X.
Entanglement from Topology in Chern-Simons Theory
Salton, Grant; Walter, Michael
2016-01-01
The way in which geometry encodes entanglement is a topic of much recent interest in quantum many-body physics and the AdS/CFT duality. This relation is particularly pronounced in the case of topological quantum field theories, where topology alone determines the quantum states of the theory. In this work, we study the set of quantum states that can be prepared by the Euclidean path integral in three-dimensional Chern-Simons theory. Specifically, we consider arbitrary 3-manifolds with a fixed number of torus boundaries in both abelian U(1) and non-abelian SO(3) Chern-Simons theory. For the abelian theory, we find that the states that can be prepared coincide precisely with the set of stabilizer states from quantum information theory. This constrains the multipartite entanglement present in this theory, but it also reveals that stabilizer states can be described by topology. In particular, we find an explicit expression for the entanglement entropy of a many-torus subsystem using only a single replica, as well...
Spontaneous Breaking of Scale Invariance in U(N) Chern-Simons Gauge Theories in Three Dimensions
Energy Technology Data Exchange (ETDEWEB)
Bardeen, William A. [Fermilab
2015-09-24
I explore the existence of a massive phase in a conformally invariant U(N) Chern-Simons gauge theories in D = 3 with matter fields in the fundamental representation. These models have attracted recent attention as being dual, in the conformal phase, to theories of higher spin gravity on AdS 4. Using the 0t Hooft large N expansion, exact solutions are obtained for scalar current correlators in the massive phase where the conformal symmetry is spontaneously broken. A massless dilaton appears as a composite state, and its properties are discussed. Solutions exist for matters field that are either bosons or fermions.
Spontaneous Breaking of Scale Invariance in U(N) Chern-Simons Gauge Theories in Three Dimensions
Energy Technology Data Exchange (ETDEWEB)
Bardeen, William [Fermilab
2014-10-24
I explore the existence of a massive phase in a conformally invariant U(N) Chern-Simons gauge theories in D = 3 with matter fields in the fundamental representation. These models have attracted recent attention as being dual, in the conformal phase, to theories of higher spin gravity on AdS 4. Using the 1t Hooft large N expansion, exact solutions are obtained for scalar current correlators in the massive phase where the conformal symmetry is spontaneously broken. A massless dilaton appears as a composite state, and its properties are discussed. Solutions exist for matters field that are either bosons or fermions.
Chern-Simons theory and Wilson loops in the Brillouin zone
Lian, Biao; Vafa, Cumrun; Vafa, Farzan; Zhang, Shou-Cheng
2017-03-01
Berry connection is conventionally defined as a static gauge field in the Brillouin zone. Here we show that for three-dimensional (3D) time-reversal invariant superconductors, a generalized Berry gauge field behaves as a fluctuating field of a Chern-Simons gauge theory. The gapless nodal lines in the momentum space play the role of Wilson loop observables, while their linking and knot invariants modify the gravitational theta angle. This angle induces a topological gravitomagnetoelectric effect where a temperature gradient induces a rotational energy flow. We also show how topological strings may be realized in the six-dimensional phase space, where the physical space defects play the role of topological D-branes.
Self-dual vortices in Chern-Simons hydrodynamics
Li, D K
2001-01-01
One studies effect of nonlinear quantum potential on planar vortices occurring in (2+1)-dimensional problem for the Schroedinger equation with interaction with the Chern-Simons (CS) gauge field. Classical dynamics of a charged nonrelativistic particle moving in U(1)-gauge field is described in the form of the Schroedinger nonlinear (SN) wave equation with quantum potential. it is shown that deformation introduction into coupling constant of quantum potential depending on the Plank constant results either in the Schroedinger standard model or in diffusion-antidiffusion equations. The gauge theory in the form of the Abelian CS-theory interacting with SN field boils down to the theory of vortex hydrodynamics. Problem for a static flux moving with speed equal to quantum speed boils down to the Liouville equation. Paper contains description of the relevant vortex configurations
Z Extremization in Chiral-Like Chern Simons Theories
Amariti, Antonio
2011-01-01
We study the localized free energy on S^3 of three-dimensional N=2 Chern-Simons matter theories at weak coupling. We compute the two loop R charge in three different ways, namely by the standard perturbative approach, by extremizing the localized partition function at finite N and by applying the standard saddle point approximation for large N. We show that the latter approach does not reproduce the expected result when chiral theories are considered. We circumvent these problems by restoring a reflection symmetry on the eigenvalues in the free energy. Thanks to this symmetrization we find that the three methods employed agree. In particular we match the computation for a model whose four dimensional parent is the quiver gauge theory describing D3 branes probing the Hirzebruch surface. We conclude by commenting on the application of our results and to the strong coupling regime.
Noncommutative ${\\cal N}=2$ Chern-Simons-matter model
Bevilaqua, L Ibiapina
2014-01-01
In this work we study the three-dimensional ${\\cal N}=2$ supersymmetric Chern-Simons-matter model in a noncommutative space-time. We construct the action of the noncommutative $U(N)$ non-Abelian model in terms of explicit ${\\cal N}=2$ supervariables by dimensionally reducing a four-dimensional ${\\cal N}=1$ supermultiplet. We also obtain the on-shell ${\\cal N}=2$ supersymmetric model writing it in terms of ${\\cal N}=1$ superfields. In the noncommutative Abelian case, we show that linear UV divergences are cancelled in Feynman diagrams and logarithmic divergences are absent up to one-loop order, stating that our model is free of UV/IR mixing.
Toric Fano varieties and Chern-Simons quivers
Closset, Cyril
2012-01-01
In favourable cases the low energy dynamics of a stack of M2-branes at a toric Calabi-Yau fourfold singularity can be described by an N=2 supersymmetric Chern-Simons quiver theory, but there still does not exists an "inverse algorithm" going from the toric data of the CY_4 to the CS quiver. We make progress in that direction by deriving CS quiver theories for M2-branes probing cones over a large class of geometries Ypq(B_4), which are S^3/\\bZ_p bundles over toric Fano varieties B_4. We rely on the type IIA understanding of CS quivers, giving a firm string theory footing to our CS theories. In particular we give a derivation of some previously conjectured CS quivers in the case B_4= CP^1*CP^1, as field theories dual to M-theory backgrounds with nontrivial torsion G_4 fluxes.
Resolution of Chern--Simons--Higgs Vortex Equations
Han, Xiaosen; Yang, Yisong
2015-01-01
It is well known that the presence of multiple constraints of non-Abelian relativisitic Chern--Simons--Higgs vortex equations makes it difficult to develop an existence theory when the underlying Cartan matrix $K$ of the equations is that of a general simple Lie algebra and the strongest result in the literature so far is when the Cartan subalgebra is of dimension 2. In this paper we overcome this difficulty by implicitly resolving the multiple constraints using a degree-theorem argument, utilizing a key positivity property of the inverse of the Cartan matrix deduced in an earlier work of Lusztig and Tits, which enables a process that converts the equality constraints to inequality constraints in the variational formalism. Thus this work establishes a general existence theorem which settles a long-standing open problem in the field regarding the general solvability of the equations.
Chern-Simons theory for frustrated quantum magnets
Kumar, Krishna; Fradkin, Eduardo
2013-03-01
We study the problem of frustrated quantum magnets by mapping models with Heisenberg spins, which are hard-core bosons, onto a problem of fermions coupled to a Chern-Simons gauge field. Similar methods have been used successfully in the case of unfrustrated systems like the square lattice. However, in the case of frustrated systems there always exists some arbitrariness in defining the problem. At the mean-field level these issues can be over looked but the effects of fluctuations, which are generally strong in these systems, are expected to alter the mean-field physics. We discuss the difficulties involved in setting up this problem on a triangular or kagome lattice and some approaches to tackle these issues. We study the effects of fluctuations in these systems and the possibility of spin-liquid type phases.
η-INVARIANT AND CHERN-SIMONS CURRENT
Institute of Scientific and Technical Information of China (English)
ZHANG WEIPING
2005-01-01
The author presents an alternate proof of the Bismut-Zhang localization formula of ηinvariants, when the target manifold is a sphere, by using ideas of mod k index theory instead of the difficult analytic localization techniques of Bismut-Lebeau. As a consequence, it is shown that the R/Z part of the aualytically defined η invariant of Atiyah-Patodi-Singer for a Dirac operator on an odd dimensional closed spin manifold can be expressed purely geometrically through a stable Chern-Simons current on a higher dimensional sphere. As a preliminary application, the author discusses the relation with the Atiyah-Patodi-Singer R/Z index theorem for unitary flat vector bundles,and proves an R refinement in the case where the Dirac operator is replaced by the Signature operator.
Quantum modularity and complex Chern-Simons theory
Dimofte, Tudor
2015-01-01
The Quantum Modularity Conjecture of Zagier predicts the existence of a formal power series with arithmetically interesting coefficients that appears in the asymptotics of the Kashaev invariant at each root of unity. Our goal is to construct a power series from a Neumann-Zagier datum (i.e., an ideal triangulation of the knot complement and a geometric solution to the gluing equations) and a complex root of unity $\\zeta$. We prove that the coefficients of our series lie in the trace field of the knot, adjoined a complex root of unity. We conjecture that our series are those that appear in the Quantum Modularity Conjecture and confirm that they match the numerical asymptotics of the Kashaev invariant (at various roots of unity) computed by Zagier and the first author. Our construction is motivated by the analysis of singular limits in Chern-Simons theory with gauge group $SL(2,C)$ at fixed level $k$, where $\\zeta^k=1$.
On eleven-dimensional supergravity and Chern-Simons theory
Energy Technology Data Exchange (ETDEWEB)
Izaurieta, Fernando, E-mail: fizaurie@ucsc.cl [Departamento de Matematica y Fisica Aplicadas, Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, 4090541 Concepcion (Chile); Instituto de Matematicas, Universidad Nacional Autonoma de Mexico, Av. Insurgentes Sur s/n, D.F. (Mexico); Departament de Fisica Teorica, Universitat de Valencia, C/ Dr. Moliner 50, 46100 Burjassot, Valencia (Spain); Rodriguez, Eduardo, E-mail: edurodriguez@ucsc.cl [Departamento de Matematica y Fisica Aplicadas, Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, 4090541 Concepcion (Chile)
2012-02-11
We probe in some depth into the structure of eleven-dimensional, osp(32|1)-based Chern-Simons supergravity, as put forward by Troncoso and Zanelli (TZ) in 1997. We find that the TZ Lagrangian may be cast as a polynomial in 1/l, where l is a length, and compute explicitly the first three dominant terms. The term proportional to 1/l{sup 9} turns out to be essentially the Lagrangian of the standard 1978 supergravity theory of Cremmer, Julia and Scherk, thus establishing a previously unknown relation between the two theories. The computation is nontrivial because, when written in a sufficiently explicit way, the TZ Lagrangian has roughly one thousand non-explicitly Lorentz-covariant terms. Specially designed algebraic techniques are used to accomplish the results.
L∞-algebra models and higher Chern-Simons theories
Ritter, Patricia; Sämann, Christian
2016-10-01
We continue our study of zero-dimensional field theories in which the fields take values in a strong homotopy Lie algebra. In the first part, we review in detail how higher Chern-Simons theories arise in the AKSZ-formalism. These theories form a universal starting point for the construction of L∞-algebra models. We then show how to describe superconformal field theories and how to perform dimensional reductions in this context. In the second part, we demonstrate that Nambu-Poisson and multisymplectic manifolds are closely related via their Heisenberg algebras. As a byproduct of our discussion, we find central Lie p-algebra extensions of 𝔰𝔬(p + 2). Finally, we study a number of L∞-algebra models which are physically interesting and which exhibit quantized multisymplectic manifolds as vacuum solutions.
Adiabatic pumping of Chern-Simons axion coupling.
Taherinejad, Maryam; Vanderbilt, David
2015-03-06
We study the adiabatic pumping of the Chern-Simons axion (CSA) coupling along a parametric loop characterized by a nonzero second Chern number C^{(2)} from the viewpoint of the hybrid Wannier representation, in which the Wannier charge centers are visualized as sheets defined over a projected 2D Brillouin zone. We derive a new formula for the CSA coupling, expressing it as an integral involving Berry curvatures and potentials defined on the Wannier charge center sheets. We show that a loop characterized by a nonzero C^{(2)} requires a series of sheet-touching events at which 2π quanta of Berry curvature are passed from sheet to sheet, in such a way that e^{2}/h units of CSA coupling are pumped by a lattice vector by the end of the cycle. We illustrate these behaviors via explicit calculations on a model tight-binding Hamiltonian and discuss their implications.
Fermionic impurities in Chern-Simons-matter theories
Benincasa, Paolo; Ramallo, Alfonso V.
2012-02-01
We study the addition of quantum fermionic impurities to the mathcal{N} = 6 super-symmetric Chern-Simons-matter theories in 2 + 1 spacetime dimensions. The impurities are introduced by means of Wilson loops in the antisymmetric representation of the gauge group. In a holographic setup, the system is represented by considering D6-branes probing the AdS 4 × mathbb{C}mathbb{P} 3 background of type IIA supergravity. We study the thermodynamic properties of the system and show how a Kondo lattice model with holographic dimers can be constructed. By computing the Kaluza-Klein fluctuation modes of the probe brane we determine the complete spectrum of dimensions of the impurity operators. A very rich structure is found, depending both on the Kaluza-Klein quantum numbers and on the filling fraction of the impurities.
Fermionic impurities in Chern-Simons-matter theories
Benincasa, Paolo
2011-01-01
We study the addition of quantum fermionic impurities to the N=6 supersymmetric Chern-Simons-matter theories in 2+1 spacetime dimensions. The impurities are introduced by means of Wilson loops in the antisymmetric representation of the gauge group. In a holographic setup, the system is represented by considering D6-branes probing the AdS_4 x CP^3 background of type IIA supergravity. We study the thermodynamic properties of the system and show how a Kondo lattice model with holographic dimers can be constructed. By computing the Kaluza-Klein fluctuation modes of the probe brane we determine the complete spectrum of dimensions of the impurity operators. A very rich structure is found, depending both on the Kaluza-Klein quantum numbers and on the filling fraction of the impurities.
Dense Chern-Simons Matter with Fermions at Large N
Geracie, Michael; Son, Dam T
2015-01-01
In this paper we investigate properties of Chern-Simons theory coupled to massive fermions in the large N limit. We demonstrate that at low temperatures the system is in a Fermi liquid state whose features can be systematically compared to the standard phenomenological theory of Landau Fermi liquids. This includes matching microscopically derived Landau parameters with thermodynamic predictions of Landau Fermi liquid theory. We also calculate the exact conductivity and viscosity tensors at zero temperature and finite chemical potential. In particular we point out that the Hall conductivity of an interacting system is not entirely accounted for by the Berry flux through the Fermi sphere. Furthermore, investigation of the thermodynamics in the non-relativistic limit reveals novel phenomena at strong coupling. As the 't Hooft coupling approaches 1, the system exhibits an extended intermediate temperature regime in which the thermodynamics is described by neither the quantum Fermi liquid theory nor the classical ...
Low regularity solutions of the Chern-Simons-Higgs equations in the Lorentz gauge
Directory of Open Access Journals (Sweden)
Nikolaos Bournaveas
2009-09-01
Full Text Available We prove local well-posedness for the 2+1-dimensional Chern-Simons-Higgs equations in the Lorentz gauge with initial data of low regularity. Our result improves earlier results by Huh [10, 11].
Derivative expansion and the induced Chern-Simons term in N=1, d=3 superspace
Gama, F S; Petrov, A Yu
2015-01-01
In this paper we apply a supersymmetric generalization of the method of derivative expansion to compute the induced non-Abelian Chern-Simons term in $\\mathcal{N}=1$, $d=3$ superspace, for an arbitrary gauge group.
Eta-invariants and anomalies in U(1)-Chern-Simons theory
Jeffrey, Lisa
2010-01-01
This paper studies U(1)-Chern-Simons theory and its relation to a construction of Chris Beasley and Edward Witten. The natural geometric setup here is that of a three-manifold with a Seifert structure. Based on a suggestion of Edward Witten we are led to study the stationary phase approximation of the path integral for U(1)-Chern-Simons theory after one of the three components of the gauge field is decoupled. This gives an alternative formulation of the partition function for U(1)-Chern-Simons theory that is conjecturally equivalent to the usual U(1)-Chern-Simons theory. The goal of this paper is to establish this conjectural equivalence rigorously through appropriate regularization techniques. This approach leads to some rather surprising results and opens the door to studying hypoelliptic operators and their associated eta invariants in a new light.
Dynamical Mass Generation and Confinement in Maxwell-Chern-Simons Planar Quantum Electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Sanchez Madrigal, S; Raya, A [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio C-3, Ciudad Universitaria, Morelia, Michoacan 58040 (Mexico); Hofmann, C P, E-mail: saul@ifm.umicri.mx, E-mail: christoph@ucol.mx, E-mail: raya@ifm.umich.mx [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima, Colima 28045 (Mexico)
2011-04-01
We study the non-perturbative phenomena of Dynamical Mass Generation and Confinement by truncating at the non-perturbative level the Schwinger-Dyson equations in Maxwell-Chern-Simons planar quantum electrodynamics. We obtain numerical solutions for the fermion propagator in Landau gauge within the so-called rainbow approximation. A comparison with the ordinary theory without the Chern-Simons term is presented.
Loop Representation of charged particles interacting with Maxwell and Chern-Simons fields
Fuenmayor, E; Revoredo, R; Fuenmayor, Ernesto; Leal, Lorenzo; Revoredo., Ryan
2002-01-01
The loop representation formulation of non-relativistic particles coupled with abelian gauge fields is studied. Both Maxwell and Chern-Simons interactions are separately considered. It is found that the loop-space formulations of these models share significant similarities, although in the Chern-Simons case there exists an unitary transformation that allows to remove the degrees of freedom associated with the paths. As a general result, we find that charge quantization is necessary for the geometric representation to be consistent.
Matrix Model of Chern-Simons Matter Theories Beyond The Spherical Limit
Yokoyama, Shuichi
2016-01-01
A general class of matrix models which arises as partition function in U(N) Chern-Simons matter theories on three sphere is investigated. Employing the standard technique of the 1/N expansion we solve the system beyond the planar limit. We confirm that the subleading correction in the free energy correctly reproduces the one obtained by expanding the past exact result in the case of pure Chern-Simons theory.
Chern-Simons diffusion rate across different phase transitions
Rougemont, Romulo
2016-01-01
We investigate how the dimensionless ratio given by the Chern-Simons diffusion rate $\\Gamma_{\\textrm{CS}}$ divided by the product of the entropy density $s$ and temperature $T$ behaves across different kinds of phase transitions in the class of bottom-up non-conformal Einstein-dilaton holographic models originally proposed by Gubser and Nellore. By tuning the dilaton potential, one is able to holographically mimic a first order, a second order, or a crossover transition. In a first order phase transition, $\\Gamma_{\\textrm{CS}}/sT$ jumps at the critical temperature (as previously found in the holographic literature), while in a second order phase transition it develops an infinite slope. On the other hand, in a crossover, $\\Gamma_{\\textrm{CS}}/sT$ behaves smoothly, although displaying a fast variation around the pseudo-critical temperature. Furthermore, we also find that $\\Gamma_{\\textrm{CS}}/sT$ increases by orders of magnitude below the critical temperature in a second order phase transition and in a crossov...
Embedded graph invariants in Chern-Simons theory
Major, Seth A.
1999-06-01
Chern-Simons gauge theory, since its inception as a topological quantum field theory, has proved to be a rich source of understanding for knot invariants. In this work the theory is used to explore the definition of the expectation value of a network of Wilson lines — an embedded graph invariant. Using a generalization of the variational method, lowest-order results for invariants for graphs of arbitrary valence and general vertex tangent space structure are derived. Gauge invariant operators are introduced. Higher order results are found. The method used here provides a Vassiliev-type definition of graph invariants which depend on both the embedding of the graph and the group structure of the gauge theory. It is found that one need not frame individual vertices. However, without a global projection of the graph there is an ambiguity in the relation of the decomposition of distinct vertices. It is suggested that framing may be seen as arising from this ambiguity — as a way of relating frames at distinct vertices.
Embedded graph invariants in Chern-Simons theory
Major, S A
1999-01-01
Chern-Simons gauge theory, since its inception as a topological quantum field theory, has proved to be a rich source of understanding for knot invariants. In this work the theory is used to explore the definition of the expectation value of a network of Wilson lines - an embedded graph invariant. Using a slight generalization of the variational method, lowest-order results for invariants for arbitrary valence graphs are derived; gauge invariant operators are introduced; and some higher order results are found. The method used here provides a Vassiliev-type definition of graph invariants which depend on both the embedding of the graph and the group structure of the gauge theory. It is found that one need not frame individual vertices. Though, without a global projection of the graph, there is an ambiguity in the relation of the decomposition of distinct vertices. It is suggested that framing may be seen as arising from this ambiguity - as a way of relating frames at distinct vertices.
The Chern-Simons term in a dual Josephson junction
Grigorio, L S; Rougemont, R; Wotzasek, C; Zarro, C A D
2013-01-01
A dual Josephson junction corresponding to a (2+1)-dimensional non-superconducting layer sandwiched between two (3+1)-dimensional dual superconducting regions constitutes a model of localization of a U(1) gauge field within the layer. Monopole tunneling currents flow from one dual superconducting region to another due to a phase difference between the wave functions of the monopole condensate below and above the non-superconducting layer. These magnetic currents appear within the (2+1)-dimensional layer as a gas of magnetic instanton events and a weak electric charge confinement is expected to take place at very long distances within the layer. In the present work, we consider what happens when one introduces fermions in this physical scenario. Due to the dual Meissner effect featured in the dual superconducting bulk, it is argued that unconfined fermions would be localized within the (2+1)-dimensional layer, where their quantum fluctuations radiatively induce a Chern-Simons term, which is known to destroy th...
Superconformal Chern-Simons-matter theories in N =4 superspace
Kuzenko, Sergei M.; Samsonov, Igor B.
2015-11-01
In three dimensions, every known N =4 supermultiplet has an off-shell completion. However, there is no off-shell N =4 formulation for the known extended superconformal Chern-Simons (CS) theories with eight and more supercharges. To achieve a better understanding of this issue, we provide N =4 superfield realizations for the equations of motion which correspond to various N =4 and N =6 superconformal CS theories, including the Gaiotto-Witten theory and the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory. These superfield realizations demonstrate that the superconformal CS theories with N ≥4 (except for the Gaiotto-Witten theory) require a reducible long N =4 vector multiplet, from which the standard left and right N =4 vector multiplets are obtained by constraining the field strength to be either self-dual or antiself-dual. Such a long multiplet naturally originates upon reduction of any off-shell N >4 vector multiplet to N =4 superspace. For the long N =4 vector multiplet we develop a prepotential formulation. It makes use of two prepotentials being subject to the constraint which defines the so-called hybrid projective multiplets introduced in the framework of N =4 supergravity-matter systems in arXiv:1101.4013. We also couple N =4 superconformal CS theories to N =4 conformal supergravity.
Vortex Solutions in the Chern-Simons Stueckelberg Model
McKeon, D G C
1998-01-01
Vortex solutions to the classical field equations in a massive, renormalizable U(1) gauge model are considered in (2+1) dimensions. A vector field whose kinetic term consists of a Chern-Simons term plus a Stuekelberg mass term is coupled to a scalar field. If the classical scalar field is set equal to zero, then there are classical configurations of the vector field in which the magnetic flux is non-vanishing and finite. In contrast to the Nielsen-Olesen vortex, the magnetic field vanishes exponentially at large distances and diverges logarithmicly at short distances. This divergence, although not so severe as to cause the flux to diverge, results in the Hamiltonian becoming infinite. If the classical scalar field is no longer equal to zero, then the magnetic flux is not only finite, but quantized and the asymptotic behaviour of the field is altered so that the Hamiltonian no longer suffers from a divergence due to the field configuration at the origin. Furthermore, the asymptotic behaviour at infinity is dep...
Entropy for gravitational Chern-Simons terms by squashed cone method
Guo, Wu-zhong
2015-01-01
In this paper we investigate the entropy of gravitational Chern-Simons terms for the horizon with non-vanishing extrinsic curvatures, or the holographic entanglement entropy for arbitrary entangling surface. In 3D we find no anomaly of entropy appears. But the squashed cone method can not be used directly to get the correct result. For higher dimensions the anomaly of entropy would appear, still, we can not use the squashed cone method directly. That is becasuse the Chern-Simons action is not gauge invariant. To get a reasonable result we suggest two methods. One is by adding a boundary term to recover the gauge invariance. This boundary term can be derived from the variation of the Chern-Simons action. The other one is by using the Chern-Simons relation $d\\bm{\\Omega_{4n-1}}=tr(\\bm{R}^{2n})$. We notice that the entropy of $tr(\\bm{R}^{2n})$ is a total derivative locally, i.e. $S=d s_{CS}$. We propose to identify $s_{CS}$ with the entropy of gravitational Chern-Simons terms $\\Omega_{4n-1}$. In the first method ...
‘Quantum hairs’ and entropy of the quantum isolated horizon from Chern-Simons theory
Majhi, Abhishek; Majumdar, Parthasarathi
2014-10-01
We articulate the fact that the loop quantum gravity (LQG) description of the quantum macrostates of black hole horizons, modeled as quantum isolated horizons (QIHs), is completely characterized in terms of two independent integer-valued ‘quantum hairs’, viz, the coupling constant (k) of the quantum SU(2) Chern-Simons (CS) theory describing QIH dynamics, and the number of punctures (N) produced by the bulk spin network edges piercing the isolated horizon (which act as pointlike sources for the CS fields). We demonstrate that the microcanonical entropy of macroscopic (both parameters assuming very large values) QIHs can be obtained directly from the microstates of this CS theory using standard statistical mechanical methods, without having to additionally postulate the horizon as an ideal gas of punctures, or incorporate any additional classical or semiclassical input from general relativity vis-a-vis the functional dependence of the isolated horizon mass on its area, or indeed, without having to restrict to any special class of spins. Requiring the validity of the Bekenstein-Hawking area law relates these two parameters (as an equilibrium ‘equation of state’), and consequently allows the Barbero-Immirzi parameter to take any real and positive value depending on the value of k/N. The logarithmic correction to the area law obtained a decade ago by R Kaul and one of us (PM), ensues straightforwardly, with precisely the coefficient -3/2, making it a signature of the LQG approach to black hole entropy.
The Topological Inner Structure of Chern-Simons Tensor Current and the World-Sheet of Strings
Institute of Scientific and Technical Information of China (English)
DUAN Yi-Shi; YANG Jie
2005-01-01
@@ Using the decomposition theory of U(1) gauge potential and φ-mapping topological current theory, we investigate the topological inner structure of Chern-Simons tensor current. It is proven that the U(1) Chern-Simons tensor current in four-dimensional manifold is just the topological current of creating the string world-sheets.
Batalin-Tyutin quantization of the Chern-Simons-Proca theory
Park, E B; Park, Y J; Kim, Y; Kim, W T; Park, Ei Byung; Kim, Yong Wan; Park, Young Jai; Kim, Yongduk; Kim, Won Tae
1995-01-01
We quantize the Chern-Simons-Proca theory in three dimensions by using the Batalin-Tyutin Hamiltonian method, which systematically embeds second class constraint system into first class by introducing new fields in the extended phase space. As results, we obtain simultaneously the St\\"uckelberg scalar term, which is needed to cancel the gauge anomaly due to the mass term, and the new type of Wess-Zumino action, which is irrelevant to the gauge symmetry. We also investigate the infrared property of the Chern-Simons-Proca theory by using the Batalin-Tyutin formalism comparing with the symplectic formalism. As a result, we observe that the resulting theory is precisely the gauge invariant Chern-Simons-Proca quantum mechanical version of this theory.
Chern-Simons theory on a lattice and a new description of 3-manifolds invariants
Buffenoir, E
1995-01-01
A new approach to the quantization of Chern-Simons theory has been developed in recent papers of the author. It uses a "simulation" of the moduli space of flat connections modulo the gauge group which reveals to be related to a lattice gauge theory based on a quantum group. After a generalization of the formalism of q-deformed gauge theory to the case of root of unity, we compute explicitely the correlation functions associated to Wilson loops (and more generally to graphs) on a surface with punctures, which are the interesting quantity in the study of moduli space. We then give a new description of Chern-Simons three manifolds invariants based on a description in terms of the mapping class group of a surface. At last we introduce a three dimensional lattice gauge theory based on a quantum group which is a lattice regularization of Chern-Simons theory.
Remarks on the solutions of the Maxwell- Chern-Simons theories
Németh, Z A
1998-01-01
The large distance behavior of the Maxwell- Chern-Simons (MCS) equations is analyzed, and it is found that the pure Chern-Simons limit, (when the Maxwell term is dropped from the equations), does not describe the large distance limit of the MCS model. This necessitates the solution of the original problem. The MCS gauge theory coupled to a nonrelativistic matter field, (governed by the gauged non-linear Schrödinger equation), is studied. It turns out, that there are no regular self-dual solutions as in the pure Chern-Simons case, but the model admits interesting, though singular self-dual solutions. The properties of these solutions, and their large distance limits are analyzed.
Chern-Simons invariants on hyperbolic manifolds and topological quantum field theories
Energy Technology Data Exchange (ETDEWEB)
Bonora, L. [International School for Advanced Studies (SISSA/ISAS), Trieste (Italy); INFN, Sezione di Trieste (Italy); Bytsenko, A.A.; Goncalves, A.E. [Universidade Estadual de Londrina, Departamento de Fisica, Londrina-Parana (Brazil)
2016-11-15
We derive formulas for the classical Chern-Simons invariant of irreducible SU(n)-flat connections on negatively curved locally symmetric three-manifolds. We determine the condition for which the theory remains consistent (with basic physical principles). We show that a connection between holomorphic values of Selberg-type functions at point zero, associated with R-torsion of the flat bundle, and twisted Dirac operators acting on negatively curved manifolds, can be interpreted by means of the Chern-Simons invariant. On the basis of the Labastida-Marino-Ooguri-Vafa conjecture we analyze a representation of the Chern-Simons quantum partition function (as a generating series of quantum group invariants) in the form of an infinite product weighted by S-functions and Selberg-type functions. We consider the case of links and a knot and use the Rogers approach to discover certain symmetry and modular form identities. (orig.)
Gauge and supersymmetry invariance of N = 2 boundary Chern-Simons theory
Faizal, Mir; Luo, Yuan; Smith, Douglas J.; Tan, Meng-Chwan; Zhao, Qin
2017-01-01
In this paper, we study the restoration of gauge symmetry and up to half the supersymmetry (N = (2 , 0) or N = (1 , 1) in two dimensions) for N = 2 non-Abelian Chern-Simons theories in the presence of a boundary. We describe the boundary action which is a supersymmetric WZW model coupled to the bulk Chern-Simons theory. Unlike the N = 1 case, higher supersymmetry (N = (2 , 0)) will endow the group manifold of the WZW model with a complex structure. Therefore, the N = (2 , 0) WZW model in our paper is constructed via a coset space Gc / G, where G is the same as the gauge group in the Chern-Simons action.
Seiberg duality for Chern-Simons quivers and D-brane mutations
Closset, Cyril
2012-03-01
Chern-Simons quivers for M2-branes at Calabi-Yau singularities are best understood as the low energy theory of D2-branes on a dual type IIA background. We show how the D2-brane point of view naturally leads to three dimensional Seiberg dualities for Chern-Simons quivers with chiral matter content: They arise from a change of brane basis (or mutation), in complete analogy with the better known Seiberg dualities for D3-brane quivers. This perspective reproduces the known rules for Seiberg dualities in Chern-Simons-Yang-Mills theories with unitary gauge groups. We provide explicit examples of dual theories for the quiver dual to the {Y^{{p,q}}}left( {mathbb{C}{mathbb{P}^{{2}}}} right) geometries. We also comment on the string theory derivation of CS quivers dual to massive type IIA geometries.
Seiberg duality for Chern-Simons quivers and D-brane mutations
Closset, Cyril
2012-01-01
Chern-Simons quivers for M2-branes at Calabi-Yau singularities are best understood as the low energy theory of D2-branes on a dual type IIA background. We show how the D2-brane point of view naturally leads to three dimensional Seiberg dualities for Chern-Simons quivers with chiral matter content: They arise from a change of brane basis (or mutation), in complete analogy with the better known Seiberg dualities for D3-brane quivers. This perspective reproduces the known rules for Seiberg dualities in Chern-Simons-Yang-Mills theories with unitary gauge groups. We provide explicit examples of dual theories for the quiver dual to the Y^{p,q}(CP^2) geometries. We also comment on the string theory derivation of CS quivers dual to massive type IIA geometries.
Chern-Simons Invariants on Hyperbolic Manifolds and Topological Quantum Field Theories
Bonora, Loriano; Goncalves, Antonio E
2016-01-01
We derive formulas for the classical Chern-Simons invariant of irreducible $SU(n)$-flat connections on negatively curved locally symmetric three-manifolds. We determine the condition for which the theory remains consistent (with basic physical principles). We show that a connection between holomorphic values of Selberg-type functions at point zero, associated with R-torsion of the flat bundle, and twisted Dirac operators acting on negatively curved manifolds, can be interpreted by means of the Chern-Simons invariant. On the basis of Labastida-Marino-Ooguri-Vafa conjecture we analyze a representation of the Chern-Simons quantum partition function (as a generating series of quantum group invariants) in the form of an infinite product weighted by S-functions and Selberg-type functions. We consider the case of links and a knot and use the Rogers approach to discover certain symmetry and modular form identities.
Dyon of a non-Abelian Chern-Simons-Yang-Mills-Higgs system in 3+1 dimensions
Navarro-Lerida, Francisco
2013-01-01
Dyons of an SO(5) Chern-Simons-Yang-Mills-Higgs system in 3+1 dimensions are presented. These solitons carry both magnetic and electric global charges. The SO(3)xSO(2) solutions are constructed numerically. These are Chern-Simons dyons, differing radically from Julia-Zee dyons. The Chern-Simons densities employed are defined in 3+1 dimensions, and they are the first two of the 'new' Chern-Simons densities introduced recently. They are defined in terms of both Yang-Mills fields and a 5-component isomultiplet Higgs. When two or more of these Chern-Simons densities are present in the Lagrangian, solutions with vanishing electric charge but nonvanishing electrostatic potential may exist.
Abelian tensor hierarchy and Chern-Simons actions in 4D N=1 conformal supergravity
Yokokura, Ryo
2016-01-01
We consider Chern-Simons actions of Abelian tensor hierarchy of $p$-form gauge fields in four-dimensional ${\\cal N}=1$ supergravity. Using conformal superspace formalism, we solve the constraints on the field strengths of the $p$-form gauge superfields in the presence of the tensor hierarchy. The solutions are expressed by the prepotentials of the $p$-form gauge superfields. We show the internal and superconformal transformation laws of the prepotentials. The descent formalism for the Chern-Simons actions is exhibited.
Self-Dual Chern-Simons Solitons and Generalized Heisenberg Ferromagnet Models
Oh, P; Oh, Phillial
1996-01-01
We consider the (2+1)-dimensional gauged Heisenberg ferromagnet model coupled with the Chern-Simons gauge fields. Self-dual Chern-Simons solitons, the static zero energy solution saturating Bogomol'nyi bounds, are shown to exist when the generalized spin variable is valued in the Hermitian symmetric spaces G/H. By gauging the maximal torus subgroup of H, we obtain self-dual solitons which satisfy vortex-type nonlinear equations thereby extending the two dimensional instantons in a nontrivial way. An explicit example for the CP(N) case is given.
Dirac Branes and Anomalies/Chern-Simons terms in any D
Hill, Christopher T
2009-01-01
The Dirac quantization procedure of a magnetic monopole can be used to derive the coefficient of the D=3 Chern-Simons term through a self-consistency argument, and generalized to any odd D. This yields consistent and covariant axial anomaly coefficients on a D-1 boundary, and Chern-Simons term coefficients. In D=3 magnetic monopoles cannot exist if the Chern-Simons AdA term is present, but the Dirac solenoid becomes a physical closed string carrying electric current. The charge carriers on the string must be consistent with the charge used to quantize the Dirac solenoidal flux, yielding the Chern-Simons term coefficient. In higher odd D the intersection of (D-1)/2 Dirac branes yields a charged world-line permitting the consistency argument. The covariant anomaly coefficients follow readily from generalizing the counterterm. This purely bosonic derivation of anomalies is simple, involving semiclassical evaluation of operators like dAdA...dA in a coherent state representing the brane intersection, and determine...
Explicit connection between conformal field theory and 2+1 Chern-Simons theory
Cabra, D C
1995-01-01
We give explicit field theoretical representations for the observables in the transverse lattice version of 2+1 dimensional Chern-Simons theory in terms of gauge invariant composites of 2D WZW fields. Wilson loop correlators are evaluated in the path integral framework using decoupling techniques, thus confirming previous results.
The genus one Complex Quantum Chern-Simons representation of the Mapping Class Group
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Marzioni, Simone
In this paper we compute explicitly, following Witten’s prescription, the quantum representation of the mapping class group in genus one for complex quantum Chern-Simons theory associated to the complex gauge group SL(2, C). We use the k’th order Weil-Gel’fand-Zak transform to exhibit an explicit...
The ambiguity-free four-dimensional Lorentz-breaking Chern-Simons action
Energy Technology Data Exchange (ETDEWEB)
Brito, F.A. [Departamento de Fisica, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraiba (Brazil); Nascimento, J.R.; Passos, E. [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58051-970 Joao Pessoa, Paraiba (Brazil); Petrov, A.Yu. [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58051-970 Joao Pessoa, Paraiba (Brazil)], E-mail: petrov@fisica.ufpb.br
2008-06-12
The four-dimensional Lorentz-breaking finite and determined Chern-Simons like action is generated as a one-loop perturbative correction via an appropriate Lorentz-breaking coupling of the gauge field with the spinor field. Unlike the known schemes of calculations, within this scheme this term is found to be regularization independent.
A first-class approach of higher derivative Maxwell-Chern-Simons-Proca model
Energy Technology Data Exchange (ETDEWEB)
Sararu, Silviu-Constantin [University of Craiova, Department of Physics, Craiova (Romania)
2015-11-15
The equivalence between a higher derivative extension of Maxwell-Chern-Simons-Proca model and some gauge invariant theories from the point of view of the Hamiltonian path integral quantization in the framework of the gauge-unfixing approach is investigated. The Hamiltonian path integrals of the first-class systems take manifestly Lorentz-covariant forms. (orig.)
Quaternion based generalization of Chern-Simons theories in arbitrary dimensions
D'Adda, Alessandro; Shimode, Naoki; Tsukioka, Takuya
2016-01-01
A generalization of Chern-Simons gauge theory is formulated in any dimension and arbitrary gauge group where gauge fields and gauge parameters are differential forms of any degree. The quaternion algebra structure of this formulation is shown to be equivalent to a three Z(2)-gradings structure, thus clarifying the quaternion role in a previous formulation.
The Chern-Simons invariant as the natural time variable for classical and quantum cosmology
Smolin, L; Smolin, Lee; Soo, Chopin
1995-01-01
We propose that the Chern-Simons invariant of the Ashtekar-Sen connection is the natural internal time coordinate for classical and quantum cosmology. The reasons for this are a number of interesting properties of this functional, which we describe here. 1)It is a function on the gauge and diffeomorphism invariant configuration space, whose gradient is orthogonal to the two physical degrees of freedom, in the metric defined by the Ashtekar formulation of general relativity. 2)The imaginary part of the Chern-Simons form reduces in the limit of small cosmological constant, \\Lambda, and solutions close to DeSitter spacetime, to the York extrinsic time coordinate. 3)Small matter-field excitations of the Chern-Simons state satisfy, by virtue of the quantum constraints, a functional Schroedinger equation in which the matter fields evolve on a DeSitter background in the Chern-Simons time. We then n propose this is the natural vacuum state of the theory for \\Lambda \
Chern-Simons-matter dualities with $SO$ and $USp$ gauge groups
Aharony, Ofer; Hsin, Po-Shen; Seiberg, Nathan
2016-01-01
In the last few years several dualities were found between the low-energy behaviors of Chern-Simons-matter theories with unitary gauge groups coupled to scalars, and similar theories coupled to fermions. In this paper we generalize those dualities to orthogonal and symplectic gauge groups. In particular, we conjecture dualities between $SO(N)_k$ Chern-Simons theories coupled to $N_f$ real scalars in the fundamental representation, and $SO(k)_{-N+N_f/2}$ coupled to $N_f$ real (Majorana) fermions in the fundamental. For $N_f=0$ these are just level-rank dualities of pure Chern-Simons theories, whose precise form we clarify. They lead us to propose new gapped boundary states of topological insulators and superconductors. For $k=1$ we get an interesting low-energy duality between $N_f$ free Majorana fermions and an $SO(N)_1$ Chern-Simons theory coupled to $N_f$ scalar fields (with $N_f \\leq N-2$).
Knots in $SU\\left(M|N\\right) $ Chern-Simons Field Theory
Liu, Xin
2010-01-01
Knots in the Chern-Simons field theory with Lie super gauge group $SU\\left(M|N\\right) $ are studied, and the $% S_{L}\\left(\\alpha,\\beta,z\\right) $ polynomial invariant with skein relations are obtained under the fundamental representation of $\\mathfrak{su}\\left(M|N\\right) $.
Chern-Simons forms and four-dimensional N=1 superspace geometry
Energy Technology Data Exchange (ETDEWEB)
Girardi, G.; Grimm, R.
1987-09-21
The complete superspace geometry for Yang-Mills, chiral U(1) and Lorentz Chern-Simons forms is constructed. The analysis is completely off-shell and covers the cases of minimal, new minimal and 16-16 supergravity. Supersymmetry is guaranteed by construction. Invariant superfield actions are proposed.
Chern-Simons matrix model coherent states and relation to Laughlin wavefunctions
Karabali, Dimitra; Karabali, Dimitra; Sakita, Bunji
2001-01-01
We present two coherent state representations for the Chern-Simons matrix model proposed by Polychronakos and compare the resulting probability distributions to the Laughlin ones. We find that there is agreement on the long distance behavior, but the short distance behavior is different.
Canonical quantization of the WZW model with defects and Chern-Simons theory
DEFF Research Database (Denmark)
Sarkissian, Gor
2010-01-01
We perform canonical quantization of the WZW model with defects and permutation branes. We establish symplectomorphism between phase space of WZW model with $N$ defects on cylinder and phase space of Chern-Simons theory on annulus times $R$ with $N$ Wilson lines, and between phase space of WZW mo...
Institute of Scientific and Technical Information of China (English)
DUAN Yi-Shi; LIU Xin; FU Li-Bin
2003-01-01
In this paper, the decomposition of SU(2) gauge potential in terms of Pauli spinor is studied. Using thisdecomposition, the spinor structures of Chern-Simons form and the Chern density are obtained. Furthermore, the knotquantum number of non-Abelian gauge theory can be expressed by the Chern-Simons spinor structure, and the secondChern number is characterized by the Hopf indices and the Brouwer degrees of φ-mapping.
Institute of Scientific and Technical Information of China (English)
DUANYi-Shi; LIUXin; FULi-Bin
2003-01-01
In this paper, the decomposition of SU(2) gauge potential in terms of Pauli spinor is studied. Using this decomposition, the spinor structures of Chern Simons form and the Chern density are obtained. Furthermore, the knot quantum number of non-Abelian gauge theory can be expressed by the Chern-Simons spinor structure, and the second Chern number is characterized by the Hopf indices and the Brouwer degrees of Φ-mapping.
Electron-electron attractive interaction in Maxwell-Chern-Simons QED{sub 3} at zero temperature
Energy Technology Data Exchange (ETDEWEB)
Belich, H.; Ferreira Junior, M.M.; Helayel-Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: belich@cbpf.br; manojr@cbpf.br; helayel@gft.ucp.br; Ferreira Junior, M.M. [Universidade Catolica de Petropolis, RJ (Brazil). Grupo de Fisica Teorica. E-mail: delcima@gft.ucp.br
2001-04-01
One discusses the issue of low-energy electron-electron bound states in the Maxwell-Chern-Simons model coupled to QED{sub 3} with spontaneous breaking of a local U(1)-symmetry. The scattering potential, in the non-relativistic limit, steaming from the electron-electron Moeller scattering, mediated by the Maxwell-Chern-Simons-Proca gauge field and the Higgs scalar, might be attractive by fine-tuning properly the physical parameters of the model. (author)
Girardi, G; Girardi, Georges; Grimm, Richard
1999-01-01
The superspace geometry of Chern-Simons forms is shown to be closely related to that of the 3-form multiplet. This observation allows to simplify considerably the geometric structure of supersymmetric Chern-Simons forms and their coupling to linear multiplets. The analysis is carried through in U_K(1) superspace, relevant at the same time for supergravity-matter couplings and for chirally extended supergravity.
Cabra, D C; Rossini, L; Schaposnik, F A; Fradkin, Eduardo
1995-01-01
We discuss the behavior of theories of fermions coupled to Chern-Simons gauge fields with a non-abelian gauge group in three dimensions and at finite temperature. Using non-perturbative arguments and gauge invariance, and in contradiction with perturbative results, we show that the coefficient of the Chern-Simons term of the effective actions for the gauge fields at finite temperature can be {\\it at most} an integer function of the temperature. This is in a sense a generalized no-renormalization theorem. We also discuss the case of abelian theories and give indications that a similar condition should hold there too. We discuss consequences of our results to the thermodynamics of anyon superfluids and fractional quantum Hall systems.
F-theorem, duality and SUSY breaking in one-adjoint Chern-Simons-Matter theories
Morita, Takeshi
2011-01-01
We extend previous work on N=2 Chern-Simons theories coupled to a single adjoint chiral superfield using localization techniques and the F-maximization principle. We provide tests of a series of proposed 3D Seiberg dualities and a new class of tests of the conjectured F-theorem. In addition, a proposal is made for a modification of the F-maximization principle that takes into account the effects of decoupling fields. Finally, we formulate and provide evidence for a new general non-perturbative constraint on spontaneous supersymmetry breaking in three dimensions based on Q-deformed S^3 partition functions computed via localization. An explicit illustration based on the known analytic solution of the Chern-Simons matrix model is presented.
Charged Rotating AdS Black Holes with Chern-Simons coupling
Mir, Mozhgan
2016-01-01
We obtain a perturbative solution for rotating charged black holes in 5-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant. We start from a small undeformed Kerr-AdS solution and use the electric charge as a perturbative parameter to build up black holes with equal-magnitude angular momenta up to forth order. These black hole solutions are described by three parameters, the charge, horizon radius and horizon angular velocity. We determine the physical quantities of these black holes and study their dependence on the parameters of black holes and arbitrary Chern-Simons coefficient. In particular, for values of CS coupling constant beyond its supergravity amount, due to a rotational instability, counterrotating black holes arise. Also the rotating solutions appear to have vanishing angular momenta and do not manifest uniquely by their global charges.
Wilson lines and Chern-Simons flux in explicit heterotic Calabi-Yau compactifications
Apruzzi, Fabio; Parameswaran, Susha; Zagermann, Marco
2014-01-01
We study to what extent Wilson lines in heterotic Calabi-Yau compactifications lead to non-trivial H-flux via Chern-Simons terms. Wilson lines are basic ingredients for Standard Model constructions but their induced H-flux may affect the consistency of the leading order background geometry and of the two-dimensional worldsheet theory. Moreover H-flux in heterotic compactifications would play an important role for moduli stabilization and could strongly constrain the supersymmetry breaking scale. We show how to compute H-flux and the corresponding superpotential, given an explicit complete intersection Calabi-Yau compactification and choice of Wilson lines. We do so by classifying special Lagrangian submanifolds in the Calabi-Yau, understanding how the Wilson lines project onto these submanifolds, and computing their Chern-Simons invariants. We illustrate our procedure with the quintic hypersurface as well as the split-bicubic, which can provide a potentially realistic three generation model.
Quantum spectral curve of the N=6 supersymmetric Chern-Simons theory.
Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto
2014-07-11
Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N=6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here.
Diphoton signal via Chern-Simons interaction in a warped geometry scenario
Chakrabarty, Nabarun; Mukhopadhyaya, Biswarup; SenGupta, Soumitra
2017-01-01
The Kalb-Ramond field, identifiable with bulk torsion in a five-dimensional Randall Sundrum (RS) scenario, has Chern-Simons interactions with gauge bosons, from the requirement of gauge anomaly cancellation. Its lowest Kaluza Klein (KK) mode on the visible 3-brane can be identified with a spin-0 C P -odd field, namely, the axion. By virtue of the warped geometry and Chern-Simons couplings, this axion has unsuppressed interactions with gauge bosons in contrast to ultra-suppressed interactions with fermions. The ensuing dynamics can lead to a peak in the diphoton spectrum, which could be observed at the LHC, subject to the prominence of the signal. Moreover, the results can be numerically justified when the warp factor is precisely in the range required for stabilization of the electroweak scale.
Quantum Spectral Curve of the N =6 Supersymmetric Chern-Simons Theory
Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto
2014-07-01
Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N =6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here.
Inner Structure of Statistical Gauge Potential in Chern-Simons-Ginzburg-Landau Theory
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Based on the decomposition theory of the U(1) gauge potential, the inner structure of the statistical gauge potential in the Chern-Simons-Ginzburg-Landau (CSGL) theory is studied. We give a new creation mechanism of the statistical gauge potential. Furthermore, making use of the φ-mapping topological current theory, we obtain the precise topological expression of the statistical magnetic field, which takes the topological information of the vortices.
Vortex solutions in axial or chiral coupled non-relativistic spinor- Chern-Simons theory
Németh, Z A
1997-01-01
The interaction of a spin 1/2 particle (described by the non-relativistic "Dirac" equation of Lévy-Leblond) with Chern-Simons gauge fields is studied. It is shown, that similarly to the four dimensional spinor models, there is a consistent possibility of coupling them also by axial or chiral type currents. Static self dual vortex solutions together with a vortex-lattice are found with the new couplings.
Split Chern-Simons theory in the BV-BFV formalism
Cattaneo, Alberto; Wernli, Konstantin
2015-01-01
The goal of this note is to give a brief overview of the BV-BFV formalism developed by the first two authors and Reshetikhin in [arXiv:1201.0290], [arXiv:1507.01221] in order to perform perturbative quantisation of Lagrangian field theories on manifolds with boundary, and present a special case of Chern-Simons theory as a new example.
Higgs-and Skyrme-Chern-Simons densities in all dimensions
Tchrakian, D. H.
2015-09-01
Two types of new Chern-Simons (CS) densities, both defined in all odd and even dimensions, are proposed. These new CS densities feature a scalar field interacting with the gauge field. In one case this is a Higgs scalar while in the other it is a Skyrme scalar. The motivation is to study the effects of adding these new CS terms to a Lagrangian which supports static soliton solutions prior to their introduction.
N=2-Maxwell-Chern-Simons Model with Anomalous Magnetic Moment Coupling via Dimensional Reduction
Christiansen, H R; Helayël-Neto, José A; Mansur, L R; Nogueira, A L M A
1999-01-01
An N=1--supersymmetric version of the Cremmer-Scherk-Kalb-Ramond model with non-minimal coupling to matter is built up both in terms of superfields and in a component-field formalism. By adopting a dimensional reduction procedure, the N=2--D=3 counterpart of the model comes out, with two main features: a genuine (diagonal) Chern-Simons term and an anomalous magnetic moment coupling between matter and the gauge potential.
Non-minimal Maxwell-Chern-Simons theory and the composite Fermion model
Energy Technology Data Exchange (ETDEWEB)
Paschoal, Ricardo C. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Servico Nacional de Aprendizagem Industrial (SENAI), Rio de Janeiro, RJ (Brazil). Centro de Tecnologia da Industria Quimica e Textil (CETIQT); Helayel Neto, Jose A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); E-mails: paschoal@cbpf.br; helayel@cbpf.br
2003-01-01
The magnetic field redefinition in Jain's composite fermion model for the fractional quantum Hall effect is shown to be effective described by a mean-field approximation of a model containing a Maxwell-Chern-Simons gauge field nominally coupled to matter. Also an explicit non-relativistic limit of the non-minimal (2+1) D Dirac's equation is derived. (author)
Chern-Simons functions on toric Calabi-Yau threefolds and virtual motives
Hua, Zheng
2011-01-01
In this note, we give a construction of Chern-Simons functions for toric Calabi-Yau stacks of dimension three using strong exceptional collections. The moduli spaces of sheaves on such stacks can be identified with critical loci of these functions. As an application, we prove a dimension reduction formula for virtual motives. We also compute several recursion formulas for motivic Donaldson-Thomas invariants.
Symmetry algebras in Chern-Simons theories with boundary: canonical approach
Energy Technology Data Exchange (ETDEWEB)
Park, Mu-In. E-mail: mipark@physics.sogang.ac.kr
1999-04-05
I consider the classical Kac-Moody algebra and Virasoro algebra in Chern-Simons theory with boundary within Dirac's canonical method and Noether's procedure. It is shown that the usual (bulk) Gauss law constraint becomes a second-class constraint because of the boundary effect. From this fact, the Dirac bracket can be constructed explicitly without introducing additional gauge conditions and the classical Kac-Moody and Virasoro algebras are obtained within the usual Dirac method. The equivalence to the symplectic reduction method is presented and the connection to the Banados' work is clarified. Also the generalization to the Yang-Mills-Chern-Simons theory is considered where the diffeomorphism symmetry is broken by the (three-dimensional) Yang-Mills term. In this case, the same Kac-Moody algebras are obtained although the two theories are sharply different in the canonical structures. Both models realize the holography principle explicitly and the pure CS theory reveals the correspondence of the Chern-Simons theory with boundary/conformal field theory, which is more fundamental and generalizes the conjectured anti-de Sitter/conformal field theory correspondence.
Blázquez-Salcedo, Jose Luis; Navarro-Lérida, Francisco; Radu, Eugen
2016-01-01
We consider rotating black hole solutions in five-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant and a generic value of the Chern-Simons coupling constant $\\lambda$. Using both analytical and numerical techniques, we focus on cohomogeneity-1 configurations, with two equal-magnitude angular momenta, which approach at infinity a globally AdS background. We find that the generic solutions share a number of basic properties with the known Cvetic, L\\"u and Pope black holes which have $\\lambda=1$. New features occur as well, for example, when the Chern-Simons coupling constant exceeds a critical value, the solutions are no longer uniquely determined by their global charges. Moreover, the black holes possess radial excitations which can be labelled by the node number of the magnetic gauge potential function. Solutions with small values of $\\lambda$ possess other distinct features. For instance, the extremal black holes there form two disconnected branches, while not all near-h...
Refined BPS invariants, Chern-Simons theory, and the quantum dilogarithm
Dimofte, Tudor Dan
In this thesis, we consider two main subjects: the refined BPS invariants of Calabi-Yau threefolds, and three-dimensional Chern-Simons theory with complex gauge group. We study the wall-crossing behavior of refined BPS invariants using a variety of techniques, including a four-dimensional supergravity analysis, statistical-mechanical melting crystal models, and relations to new mathematical invariants. We conjecture an equivalence between refined invariants and the motivic Donaldson-Thomas invariants of Kontsevich and Soibelman. We then consider perturbative Chern-Simons theory with complex gauge group, combining traditional and novel approaches to the theory (including a new state integral model) to obtain exact results for perturbative partition functions. We thus obtain a new class of topological invariants, which are not of finite type, defined in the background of genuinely nonabelian flat connections. The two main topics, BPS invariants and Chern-Simons theory, are connected at both a formal and (we believe) deeper conceptual level by the striking central role that the quantum dilogarithm function plays in each.
Chern-Simons theory for Heisenberg spins on the Kagome Lattice
Kumar, Krishna; Sun, Kai; Fradkin, Eduardo
2015-03-01
We study the problem of Heisenberg spins on the frustrated Kagome lattice using a 2D Jordan-Wigner transformation that maps the spins (hard-core bosons) onto a system of (interacting) fermions coupled to a Chern-Simons gauge field. This mapping requires us to define a discretized version of the Chern-Simons term on the lattice. Using a recently developed result on how to define Chern-Simons theories on a class of planar lattices, we can consistently study spin models beyond the mean-field level and include the effects of fluctuations, which are generally strong in frustrated systems. Here, we apply these results to study magnetization plateau type states on the Kagome lattice in the regime of XY anisotropy. We find that the 1/3 and 2/3 magnetization plateaus are chiral spin liquid states equivalent to a primary Laughlin fractional quantum Hall state of bosons with (spin) Hall conductivity 1/2 1/4 π and semionic excitations. The 5/9 plateau is a chiral spin liquid equivalent to the first Jain descendant. We also consider the spin-1/2 Heisenberg model on the Kagome lattice with a chirality-breaking term on the triangular plaquettes. This situation also leads to a primary Laughlin bosonic fractional quantum Hall type state with filling fraction 1 / 2 .
Anacleto, M A; Nascimento, J R S; Ribeiro, R F; Wotzasek, C
2001-01-01
We study the equivalence between the self-dual and the Maxwell-Chern-Simons (MCS) models coupled to dynamical, U(1) charged matter, both fermionic and bosonic. This is done through an iterative procedure of gauge embedding that produces the dual mapping of the self-dual vector field theory into a Maxwell-Chern-Simons version. In both cases, to establish this equivalence a current-current interaction term is needed to render the matter sector unchanged. Moreover, the minimal coupling of the original self-dual model is replaced by a non-minimal magnetic like coupling in the MCS side. Unlike the fermionic instance however, in the bosonic example the dual mapping proposed here leads to a Maxwell-Chern-Simons theory immersed in a field dependent medium.
Visible and hidden sectors in a model with Maxwell and Chern-Simons gauge dynamics
Ireson, Edwin; Schaposnik, Fidel A.; Tallarita, Gianni
2016-11-01
We study a U(1) × U(1) gauge theory discussing its vortex solutions and supersymmetric extension. In our set-up, the dynamics of one of two Abelian gauge fields is governed by a Maxwell term, the other by a Chern-Simons term. The two sectors interact via a BF gauge field mixing and a Higgs portal term that connects the two complex scalars. We also consider the supersymmetric version of this system which allows to find for the bosonic sector BPS equations in which an additional real scalar field enters into play. We study numerically the field equations finding vortex solutions with both magnetic flux and electric charge.
Chern-Simons interactions in AdS$_3$ and the current conformal block
Keranen, Ville
2014-01-01
We compute the four point function of scalar fields in AdS$_3$ charged under $U(1)$ Chern-Simons fields using the bulk version of the operator state mapping. Then we show how this four point function is reproduced from a CFT$_2$ with a global $U(1)$ symmetry, through the contribution of the corresponding current operator in the operator product expansion, i.e. through the conformal block of the current operator. We work in a "probe approximation" where the gravitational interactions are ignored, which corresponds to leaving out the energy momentum tensor from the operator product expansion.
Evolution of Nielsen-Olesen's String from Chern-Simons Field Theory
Institute of Scientific and Technical Information of China (English)
DUAN Yi-Shi; SHI Xu-Guang
2007-01-01
We study the topology of Nielsen-Olesen's local field theory of single dual string. Based on the Chern-Simons field theory in three dimensons, we find many strings that can form world sheets in four dimensions. These strings have important relation to the zero point of the complex scalar field. These world sheets of strings can be expressed by the topological invariant number, Hopf index, and Brower degree. Nambu-Goto's action is obtained from the Nielsen's action definitely by using o-mapping theory.
Vanishing magnetic mass in QED$_{3}$ with a Chern-Simons term
Das, Ashok; Perez, Silvana
2002-01-01
We show that, at one loop, the magnetic mass vanishes at finite temperature in QED in any dimension. In QED$_{3}$, even the zero temperature part can be regularized to zero. We calculate the two loop contributions to the magnetic mass in QED$_{3}$ with a Chern-Simons term and show that it vanishes. We give a simple proof which shows that the magnetic mass vanishes to all orders at finite temperature in this theory. This proof also holds for QED in any dimension.
Mimetic discretization of the Abelian Chern-Simons theory and link invariants
Di Bartolo, Cayetano; Leal, Lorenzo
2012-01-01
A mimetic discretization of the Abelian Chern-Simons theory is presented. The study relies on the formulation of a theory of differential forms in the lattice, including a consistent definition of the Hodge duality operation. Explicit expressions for the Gauss Linking Number in the lattice, which correspond to their continuum counterparts are given. A discussion of the discretization of metric structures in the space of transverse vector densities is presented. The study of these metrics could serve to obtain explicit formulae for knot an link invariants in the lattice.
A geometric discretisation scheme applied to the Abelian Chern-Simons theory
Sen, S; Sexton, J C; Adams, D H; Sen, Samik; Sen, Siddhartha; Sexton, James C.; Adams, David H
2000-01-01
We give a detailed general description of a recent geometrical discretisation scheme and illustrate, by explicit numerical calculation, the scheme's ability to capture topological features. The scheme is applied to the Abelian Chern-Simons theory and leads, after a necessary field doubling, to an expression for the discrete partition function in terms of untwisted Reidemeister torsion and of various triangulation dependent factors. The discrete partition function is evaluated computationally for various triangulations of $S^3$ and of lens spaces. The results confirm that the discretisation scheme is triangulation independent and coincides with the continuum partition function
Chern-Simons Actions and Their Gaugings in 4D, N=1 Superspace
Becker, Katrin; Linch, William D; Robbins, Daniel
2016-01-01
We gauge the abelian hierarchy of tensor fields in 4D by a Lie algebra. The resulting non-abelian tensor hierarchy can be interpreted via an equivariant chain complex. We lift this structure to N=1 superspace by constructing superfield analogs for the tensor fields, along with covariant superfield strengths. Next we construct Chern-Simons actions, for both the bosonic and N=1 cases, and note that the condition of gauge invariance can be presented cohomologically. Finally, we provide an explicit realization of these structures by dimensional reduction, for example by reducing the three-form of eleven-dimensional supergravity into a superspace with manifest 4D, N=1 supersymmetry.
Observables, skein relations, and tetrahedra in Chern-Simons gauge theory
Martin, Stephen P.
1990-07-01
The observables in three-dimensional Chern-Simons gauge theory are Wilson lines and Wilson graphs. Skein relations are non-trivial identities between expectation values of distinct Wilson graphs. We discuss various kinds of skein relations and the relationships between them. By comparing different kinds of skein relations, we show how to calculate the expectation value of a general tetrahedral Wilson graph. This is shown to be the last and most difficult step in a systematic procedure for calculating the expectation values of arbitrary Wilson graphs in arbitrary representations of arbitrary gauge groups.
Instability of Chern-Simons Theory with Fermions at Large N
Zhang, Chen
2016-01-01
We study the (in)stability around the dynamical gap solution of the $U(N)$ Chern-Simons gauge theory with fundamental fermions (massless or massive) coupled in $D=3$ at large $N$. Explicit analyses on both the Auxiliary-Field (AF) and the Cornwall-Jackiw-Tomboulis (CJT) effective potentials are given. In both approaches we manage to analytically identify the saddle-point instability around the gap solution. We also give a comparison with the QCD-like theories. This study can help understanding the scale symmetry breaking picture of this theory.
Higher derivative extensions of 3d Chern-Simons models: conservation laws and stability
Energy Technology Data Exchange (ETDEWEB)
Kaparulin, D.S.; Karataeva, I.Yu.; Lyakhovich, S.L. [Tomsk State University, Physics Faculty, Tomsk (Russian Federation)
2015-11-15
We consider the class of higher derivative 3d vector field models with the field equation operator being a polynomial of the Chern-Simons operator. For the nth-order theory of this type, we provide a general recipe for constructing n-parameter family of conserved second rank tensors. The family includes the canonical energy-momentum tensor, which is unbounded, while there are bounded conserved tensors that provide classical stability of the system for certain combinations of the parameters in the Lagrangian. We also demonstrate the examples of consistent interactions which are compatible with the requirement of stability. (orig.)
Dimensionally compactified Chern-Simon theory in 5D as a gravitation theory in 4D
Morales, Ivan; Oporto, Zui; Piguet, Olivier
2016-01-01
We propose a gravitation theory in 4 dimensional space-time obtained by compacting to 4 dimensions the five dimensional topological Chern-Simons theory with the gauge group SO(1,5) or SO(2,4) -- the de Sitter or anti-de Sitter group of 5-dimensional space-time. In the resulting theory, torsion, which is solution of the field equations as in any gravitation theory in the first order formalism, is not necessarily zero. However, a cosmological solution with zero torsion exists, which reproduces the Lambda-CDM cosmological solution of General Relativity. A realistic solution with spherical symmetry is also obtained.
Visible and hidden sectors in a model with Maxwell and Chern-Simons gauge dynamics
Ireson, Edwin; Tallarita, Gianni
2016-01-01
We study a $U(1) \\times U(1)$ gauge theory discussing its vortex solutions and supersymmetric extension. In our set-upon the dynamics of one of two Abelian gauge fields is governed by a Maxwell term, the other by a Chern-Simons term. The two sectors via a BF gauge field mixing and a Higgs portal term that connects the two complex scalars. We also consider the supersymmetric version of this system which allows to find for the bosonic sector BPS equations in which an additional real scalar field enters into play. We study numerically the field equations finding vortex solutions with both magnetic flux and electric charge.
The Hitchin-Witten Connection and Complex Quantum Chern-Simons Theory
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Gammelgaard, Niels Leth
We give a direct calculation of the curvature of the Hitchin connection, in geometric quantization on a symplectic manifold, using only differential geometric techniques. In particular, we establish that the curvature acts as a first-order operator on the quantum spaces. Projective flatness follows...... if the Kähler structures do not admit holomorphic vector fields. Following Witten, we define a complex variant of the Hitchin connection on the bundle of prequantum spaces. The curvature is essentially unchanged, so projective flatness holds in the same cases. Finally, the results are applied to quantum Chern......-Simons theory, both for compact and complex gauge groups....
Chern-Simons-Higgs theory with visible and hidden sectors and its N = 2 SUSY extension
Arias, Paola; Ireson, Edwin; Schaposnik, Fidel A.; Tallarita, Gianni
2015-10-01
We study vortex solutions in Abelian Chern-Simons-Higgs theories with visible and hidden sectors. We first consider the case in which the two sectors are connected through a BF-like gauge mixing term with no explicit interaction between the two scalars. Since first order Bogomolny equations do not exist in this case, we derive the second order field equations. We then proceed to an N = 2 supersymmetric extension including a Higgs portal mixing among the visible and hidden charged scalars. As expected, Bogomolny equations do exist in this case and we study their string-like solutions numerically.
Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories
Marino, Marcos
2011-01-01
In these lectures I give a pedagogical presentation of some of the recent progress in supersymmetric Chern-Simons-matter theories, coming from the use of localization and matrix model techniques. The goal is to provide a simple derivation of the exact interpolating function for the free energy of ABJM theory on the three-sphere, which implies in particular the N^{3/2} behavior at strong coupling. I explain in detail part of the background needed to understand this derivation, like holographic renormalization, localization of path integrals, and large N techniques in matrix models
Novel BPS Wilson loops in three-dimensional quiver Chern-Simons-matter theories
Ouyang, Hao; Wu, Jun-Bao; Zhang, Jia-ju
2016-02-01
We show that generic three-dimensional N = 2 quiver super Chern-Simons-matter theories admit Bogomol'nyi-Prasad-Sommerfield (BPS) Drukker-Trancanelli (DT) type Wilson loops. We investigate both Wilson loops along timelike infinite straight lines in Minkowski spacetime and circular Wilson loops in Euclidean space. In Aharnoy-Bergman-Jafferis-Maldacena theory, we find that generic BPS DT type Wilson loops preserve the same number of supersymmetries as Gaiotto-Yin type Wilson loops. There are several free parameters for generic BPS DT type Wilson loops in the construction, and supersymmetry enhancement for Wilson loops happens for special values of the parameters.
Heavy operators in superconformal Chern-Simons theory
de Mello Koch, Robert; Kreyfelt, Rocky; Smith, Stephanie
2014-12-01
We study the anomalous dimensions for scalar operators in Aharony-Bergman-Jafferis-Maldacena theory in the S U (2 ) sector. The operators we consider have a classical dimension that grows as N in the large N limit. Consequently, the large N limit is not captured by summing planar diagrams—nonplanar contributions have to be included. We find that the mixing matrix at two-loop order is diagonalized using a double coset ansatz, reducing it to the Hamiltonian of a set of decoupled oscillators. The spectrum of anomalous dimensions, when interpreted in the dual gravity theory, shows that the energy of the fluctuations of the corresponding giant graviton is dependent on the size of the giant. The first subleading corrections to the large N limit are also considered. These subleading corrections to the dilatation operator do not commute with the leading terms, indicating that integrability may not survive beyond the large N limit.
A New Look at Chern-Simons on Circle Bundles I: The Caloron Correspondence
Mickler, Ryan
2015-01-01
We consider Chern-Simons theory on 3-manifold $M$ that is the total space of a circle bundle over a 2d base $\\Sigma$. We show that this theory is equivalent to a new 2d TQFT on the base, which we call Caloron BF theory, that can be obtained by an appropriate type of push-forward. This is a gauge theory on a bundle with structure group given by the full affine level $k$ central extension of the loop group $LG$. The space of fields of this 2d theory is naturally symplectic, and this provides a new formulation of a result of Beasley-Witten about the equivariant localization of the Chern-Simons path integral. The main tool that we employ is the Caloron correspondence, originally due to Murray-Garland, that relates the space of gauge fields on $M$ with a certain enlarged space of connections on an equivariant version of the loop space of the $G$-bundle. We show that the symplectic structure that Beasley-Witten found is related to a looped version of the Atiyah-Bott construction in 2-dimensional Yang-Mills theory. ...
Dimensional Reduction of a Lorentz- and CPT-violating Chern-Simons Model
Belich, H; Orlando, M T D
2003-01-01
Taking as starting point a Lorentz and CPT non-invariant Chern-Simons-like model defined in 1+3 dimensions, we proceed realizing its dimensional reduction to D=1+2. One then obtains a new planar model, composed by the Maxwell-Chern-Simons (MCS)sector, a Klein-Gordon massless scalar field, and a coupling term that mixes the gauge field to the external vector, $v^{\\mu}$. In spite of breaking Lorentz invariance in the particle frame, this model may preserve the CPT symmetry for a single particular choice of $v^{\\mu}$. The solution of the wave equations shows a behavior similar but which deviates from the usual MCS electrodynamics by some correction-terms (dependent on the background field). These solutions also indicate the existence of spatial-anisotropy in the case $v^{\\mu}$ is purely space-like, which is consistent with the determination of a privileged direction is space, v. The reduced model exhibits stability, but the causality can be jeopardized by some modes. PACS numbers: 11.10.Kk; 11.30.Cp; 11.30.Er; 1...
Duality, Quantum Vortices and Anyons in Maxwell-Chern-Simons-Higgs Theories
Marino, E C
1993-01-01
The order-disorder duality structure is exploited in order to obtain a quantum description of anyons and vortices in: a) the Maxwell theory; b) the Abelian Higgs Model; c) the Maxwell-Chern-Simons theory; d) the Maxwell-Chern-Simons-Higgs theory. A careful construction of a charge bearing order operator($\\sigma$) and a magnetic flux bearing disorder operator (vortex operator) ($\\mu$) is performed, paying attention to the necessary requirements for locality. An anyon operator is obtained as the product $\\varphi=\\sigma\\mu$. A detailed and comprehensive study of the euclidean correlation functions of $\\sigma$, $\\mu$ and $\\varphi$ is carried on in the four theories above. The exact correlation functions are obtained in cases $\\underline{a}$ and $\\underline{c}$. The large distance behavior of them is obtained in cases $\\underline{b}$ and $\\underline{d}$. The study of these correlation functions allows one to draw conclusions about the condensation of charge and magnetic flux, establishing thereby an analogy with t...
Yelnykov, O V
2005-01-01
This thesis addresses three topics: calculation of the invariant measure for the pure Yang-Mills configuration space in (3 + 1) dimensions, Hamiltonian analysis of the pure Chern-Simons theory on the noncommutative plane and noncommutative quantum mechanics in the presence of singular potentials. In Chapter 1 we consider a gauge-invariant Hamiltonian analysis for Yang-Mills theories in three spatial dimensions. The gauge potentials are parameterized in terms of a matrix variable which facilitates the elimination of the gauge degrees of freedom. We develop an approximate calculation of the volume element on the gauge-invariant configuration space. We also make a rough estimate of the ratio of 0++ glueball mass and the square root of string tension by comparison with (2 + 1)-dimensional Yang-Mills theory. In Chapter 2 the Hamiltonian analysis of the pure Chern- Simons theory on the noncommutative plane is performed. We use the techniques of geometric quantization to show that the classical reduced phase space o...
String Theory Origin of Dyonic N=8 Supergravity and Its Chern-Simons Duals.
Guarino, Adolfo; Jafferis, Daniel L; Varela, Oscar
2015-08-28
We clarify the higher-dimensional origin of a class of dyonic gaugings of D=4 N=8 supergravity recently discovered, when the gauge group is chosen to be ISO(7). This dyonically gauged maximal supergravity arises from consistent truncation of massive IIA supergravity on S^6, and its magnetic coupling constant descends directly from the Romans mass. The critical points of the supergravity uplift to new four-dimensional anti-de Sitter space (AdS4) massive type IIA vacua. We identify the corresponding three-dimensional conformal field theory (CFT3) duals as super-Chern-Simons-matter theories with simple gauge group SU(N) and level k given by the Romans mass. In particular, we find a critical point that uplifts to the first explicit N=2 AdS4 massive IIA background. We compute its free energy and that of the candidate dual Chern-Simons theory by localization to a solvable matrix model, and find perfect agreement. This provides the first AdS4/CFT3 precision match in massive type IIA string theory.
Battistel, O A
2001-01-01
We investigate the possibility of Lorentz and CPT violations in the photon sector, of the Chern-Simons form, be induced by radiative corrections arising from the Lorentz and CPT non-invariant fermionic sector of an extended version of QED. By analyzing the modified vacuum polarization tensor, three contributions are considered: two of them can be identified with well known amplitudes; the (identical) QED vacuum polarization tensor and the (closely related) $AVV$ triangular amplitude. These amplitudes are evaluated in their most general form (to include in our discussion automatically the question of ambiguities) on the point of view of a strategy to manipulate and calculate divergent amplitudes that can avoid the explicit calculation of divergent integrals. Rather than this only general properties are used in intermediary steps. With this treatment, the results obtained by others authors can be easily recovered and we show that, if we choose to impose U(1) gauge invariance maintenance in the pure QED calculat...
Renormalization of the N = 1 Abelian super-Chern-Simons theory coupled to parity-preserving matter
Energy Technology Data Exchange (ETDEWEB)
Colatto, L.P.; Andrade, M.A. de; Franco, D.H.T.; Helayel Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Del Cima, O.M. [Technische Universitat Wien (Austria). Institut fuer Theoretische Physik; Piguet, O. [Espirito Santo Univ., Vitoria, ES (Brazil). Dept. de Fisica
1997-12-01
We analyse the renormalizability of an Abelian N=1 super-Chern-Simons model coupled to parity-preserving matter on the light of the regularization independent algebraic method. The model shows to be stable under radiative corrections and to gauge anomaly free. (author) 7 refs.
Does the Higgs mechanism favour electron-electron bound states in Maxwell-Chern-Simons $QED_{3}$?
Belich, H; Helayël-Neto, José A
2000-01-01
The low-energy electron-electron scattering potential is derived and discussed for the Maxwell-Chern-Simons model coupled to QED_3 with spontaneous symmetry breaking. One shows that the Higgs mechanism might favour electron-electron bound states.
Ham, Ji-Young; Lee, Joongul
2016-11-01
We calculate the Chern-Simons invariants of the hyperbolic orbifolds of the knot with Conway's notation C(2n, 3) using the Schläfli formula for the generalized Chern-Simons function on the family of C(2n, 3) cone-manifold structures. We present the concrete and explicit formula of them. We apply the general instructions of Hilden, Lozano, and Montesinos-Amilibia and extend the Ham and Lee's methods. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic C(2n, 3) orbifolds.
Some aspects of holographic W-gravity
Li, Wei
2015-01-01
We use the Chern-Simons formulation of higher spin theories in three dimensions to study aspects of holographic W-gravity. Concepts which were useful in studies of pure bulk gravity theories, such as the Fefferman-Graham gauge and the residual gauge transformations, which induce Weyl transformations in the boundary theory and their higher spin generalizations, are reformulated in the Chern-Simons language. Flat connections that correspond to conformal and lightcone gauges in the boundary theory are considered.
Some aspects of holographic W-gravity
Li, Wei; Theisen, Stefan
2015-08-01
We use the Chern-Simons formulation of higher spin theories in three dimensions to study aspects of holographic W-gravity. Concepts which were useful in studies of pure bulk gravity theories, such as the Fefferman-Graham gauge and the residual gauge transformations, which induce Weyl transformations in the boundary theory and their higher spin generalizations, are reformulated in the Chern-Simons language. Flat connections that correspond to conformal and lightcone gauges in the boundary theory are considered.
Mutual Chern-Simons theory and its applications in condensed matter physics
Institute of Scientific and Technical Information of China (English)
KOU Su-peng; WENG Zheng-yu; WEN Xiao-gang
2007-01-01
In this paper, the mutual Chern-Simons (MCS) theory is introduced as a new kind of topological gauge theory in 2+1 dimensions. We use the MCS theory in gapped phase as an effective low energy theory to describe the Z2 topological order of the Kitaev-Wen model. Our results show that the MCS theory can catch the key properties for the Z2 topological order. On the other hand, we use the MCS theory as an effective model to deal with the doped Mott insulator. Based on the phase string theory, the t-J model reduces to a MCS theory for spinons and holons. The related physics in high Tc cuprates is discussed.
Deformed N = 8 supergravity from IIA strings and its Chern-Simons duals
Energy Technology Data Exchange (ETDEWEB)
Guarino, Adolfo [Nikhef Theory Group, Amsterdam (Netherlands); Jafferis, Daniel L. [Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA (United States); Varela, Oscar [Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA (United States); Centre de Physique Theorique, Ecole Polytechnique, CNRS UMR 7644, Palaiseau (France)
2016-04-15
Do electric/magnetic deformations of N = 8 supergravity enjoy a string/M-theory origin, or are they just a fourdimensional artefact? We address this question for the gauging of a group closely related to SO(8): its contraction ISO(7). We argue that the deformed ISO(7) supergravity arises from consistent truncation of massive IIA supergravity on S{sup 6}, and its electric/magnetic deformation parameter descends directly from the Romans mass. The critical points of the supergravity uplift to AdS{sub 4} massive type IIA vacua and the corresponding CFT{sub 3} duals are identified as super-Chern-Simons-matter theories with gauge group SU(N) and level k given also by the Romans mass. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Quinto, A. G.; Ferrari, A. F.; Lehum, A. C.
2016-06-01
In this work, we investigate the consequences of the Renormalization Group Equation (RGE) in the determination of the effective superpotential and the study of Dynamical Symmetry Breaking (DSB) in an N = 1 supersymmetric theory including an Abelian Chern-Simons superfield coupled to N scalar superfields in (2 + 1) dimensional spacetime. The classical Lagrangian presents scale invariance, which is broken by radiative corrections to the effective superpotential. We calculate the effective superpotential up to two-loops by using the RGE and the beta functions and anomalous dimensions known in the literature. We then show how the RGE can be used to improve this calculation, by summing up properly defined series of leading logs (LL), next-to-leading logs (NLL) contributions, and so on... We conclude that even if the RGE improvement procedure can indeed be applied in a supersymmetric model, the effects of the consideration of the RGE are not so dramatic as it happens in the non-supersymmetric case.
Extension of the Chern-Simons Theory: Conservation Laws, Lagrange Structures, and Stability
Kaparulin, D. S.; Karataeva, I. Yu.; Lyakhovich, S. L.
2017-03-01
We consider the class of higher derivative 3d vector field models with the wave operator being a polynomial of the Chern-Simons operator. For the nth order theory of this type, we provide a covariant procedure for constructing n-parameter family of conservation laws associated with spatiotemporal symmetries. This family includes the canonical energy that is unbounded from below, whereas others conservation laws from the family can be bounded from below for certain combinations of the Lagrangian parameters, even though higher derivatives are present in the Lagrangian. We prove that any conserved quantity bounded from below is related with invariance of the theory with respect to the time translations and ensures the stability of the model.
Poles in the $S$-Matrix of Relativistic Chern-Simons Matter theories from Quantum Mechanics
Dandekar, Yogesh; Minwalla, Shiraz
2014-01-01
An all orders formula for the $S$-matrix for 2 $\\rightarrow$ 2 scattering in large N Chern-Simons theory coupled to a fundamental scalar has recently been conjectured. We find a scaling limit of the theory in which the pole in this $S$-matrix is near threshold. We argue that the theory must be well described by non-relativistic quantum mechanics in this limit, and determine the relevant Schroedinger equation. We demonstrate that the $S$-matrix obtained from this Schroedinger equation agrees perfectly with this scaling limit of the relativistic $S$-matrix; in particular the pole structures match exactly. We view this matching as a nontrivial consistency check of the conjectured field theory $S$-matrix.
Diphoton excess via Chern-Simons interaction in a warped geometry scenario
Chakrabarty, Nabarun; SenGupta, Soumitra
2016-01-01
We offer an explanation of the recently observed 750 GeV diphoton peak at the Large Hadron Collider (LHC) in terms of an axion related to the 5-dimensional Kalb-Ramond (KR) field in a Randall-Sundrum warped geometry scenario. The KR field, identifiable with bulk torsion, has Chern-Simons interactions with gauge boson pairs. These in turn yield unsuppressed coupling of the torsion to gluon as well as photon pairs in (3+1) dimensions, while the warped geometry enforces ultra-suppressed interaction with fermion pairs . We show that the observed results can be numerically justified when the warp factor is precisely in the range required for stabilisation of the electroweak scale.
Phase space structure of non-abelian Chern-Simons particles
Kim, M H; Myung-Ho Kim; Phillial Oh
1994-01-01
We investigate the classical phase space structure of N SU(n+1) non-Abelian Chern-Simons (NACS) particles by first constructing the product space of associated SU(n+1) bundle with {\\bf CP}^n as the fiber. We calculate the Poisson bracket using the symplectic structure on the associated bundle and find that the minimal substitution in the presence of external gauge fields is equivalent to the modification of symplectic structure by the addition of field strength two form. Then, we take a direct product of the associated bundle by the space of all connections and choose a specific connection by the condition of vanishing momentum map corresponding to the gauge transformation, thus recovering the quantum mechanical model of NACS particles in Ref.\\cite{lo1}.
Time dependent solitons of noncommutative Chern-Simons theory coupled to scalar fields
Hadasz, L; Rocek, M; Von Unge, R; Hadasz, Leszek; Lindstrom, Ulf; Rocek, Martin; Unge, Rikard von
2003-01-01
We study one- and two-soliton solutions of noncommutative Chern-Simons theory coupled to a nonrelativistic or a relativistic scalar field. In the nonrelativistic case it is not possible to find the dynamics of the solitons using traditional moduli space techniques. To do better we have found exact time dependent one soliton solutions to the full equations of motion. They represent solitons moving in straight lines with constant velocity. Surprisingly we find that the set of allowed velocities is quantized! The allowed velocities are proportional to the square root of an integer. In the relativistic case we find the metric on the two soliton moduli space and using techinques developed in the nonrelativistic case we also find exact time dependent one-soliton solutions. Again the allowed velocities are quantized, though in a slightly more complicated fashion.
3d N = 1 Chern-Simons-matter theory and localization
Tsimpis, Dimitrios; Zhu, Yaodong
2016-10-01
We consider the most general, classically-conformal, three-dimensional N = 1 Chern-Simons-matter theory with global symmetry Sp (2) and gauge group U (N) × U (N). We show that the Lagrangian in the on-shell formulation of the theory admits one more free parameter as compared to the theory formulated in off-shell N = 1 superspace. The theory on T3 can be formally localized. We partially carry out the localization procedure for the theory on T3 with periodic boundary conditions. In particular we show that restricting to the saddle points with vanishing gauge connection gives a trivial contribution to the partition function, i.e. the bosonic and fermionic contributions exactly cancel each other.
Construction of novel BPS Wilson loops in three-dimensional quiver Chern-Simons-matter theories
Ouyang, Hao; Zhang, Jia-ju
2015-01-01
In this paper, we construct novel Drukker-Trancanelli (DT) type BPS Wilson loops along infinite straight lines in $\\mathcal N=2,3$ quiver super Chern-Simons-matter (CSM) theories, Aharony-Bergman-Jafferis-Maldacena (ABJM) theory, and $\\mathcal N=4$ orbifold ABJM theory. There are several free complex parameters in the DT type BPS Wilson loops, and for Wilson loops in ABJM theory and $\\mathcal N=4$ orbifold ABJM theory there are supersymmetry enhancements at special values of the parameters. We check that the differences of the DT type and Gaiotto-Yin (GY) type Wilson loops are $Q$-exact with $Q$ being some supercharges preserved by both the DT type and GY type Wilson loops. The results would be useful to calculate vacuum expectation values of the Wilson loops in matrix models if they are still BPS quantum mechanically.
Quantum moduli space of Chern-Simons quivers, wrapped D6-branes and AdS4/CFT3
Benini, Francesco; Cremonesi, Stefano
2011-01-01
We study the quantum moduli space of N=2 Chern-Simons quivers with generic ranks and CS levels, proving along the way exact formulas for the charges of bare monopole operators. We then derive N=2 Chern-Simons quiver theories dual to AdS_4 x Y^{p,q}(CP2) M-theory backgrounds, for the whole family of Sasaki-Einstein seven-manifolds and for any value of the torsion G_4 flux. The derivation of the gauge theories relies on the reduction to type IIA string theory, in which M2-branes become D2-branes while the conical geometry maps to RR flux and D6-branes wrapped on compact four-cycles. M5-branes on torsion cycles map to flux and wrapped D4-branes. The moduli space of the quiver is shown to contain the corresponding CY_4 cone and all its crepant resolutions.
Kauffman Knot Invariant from SO(N) or Sp(N) Chern-Simons theory and the Potts Model
Astorino, Marco
2010-01-01
The expectation value of Wilson loop operators in three-dimensional SO(N) Chern-Simons gauge theory gives a known knot invariant: the Kauffman polynomial. Here this result is derived, at the first order, via a simple variational method. With the same procedure the skein relation for Sp(N) are also obtained. Jones polynomial arises as special cases: Sp(2), SO(-2) and SL(2,R). These results are confirmed and extended up to the second order, by means of perturbation theory, which moreover let us establish a duality relation between SO(+/-N) and Sp(-/+N) invariants. A correspondence between the firsts orders in perturbation theory of SO(-2), Sp(2) or SU(2) Chern-Simons quantum holonomies and the partition function of the Q=4 Potts Model is built.
Quantum Gravity in D=5 Dimensions
Pinheiro, C; Pinheiro, Carlos
2000-01-01
We propose a topological Chern-Simons term in D=5 dimensions coupled to Einstein Hilbert theory. Hartree approximation for topological Lagrangian and the Chern-Simons term in D=3 is considered. An effective model of Quantum Gravity in D=5 dimensions is presented here. The analysis of residues is considered and the unitarity is guaranteed at tree level. The propagator is ghost and tachyon free.
The sky is the limit: free boundary conditions in AdS$_3$ Chern-Simons theory
Apolo, Luis
2016-01-01
We test the effects of new diffeomorphism invariant boundary terms in SL(2,R)$\\times$SL(2,R) Chern-Simons theory. The gravitational interpretation corresponds to free AdS$_3$ boundary conditions, without restrictions on the boundary geometry. The boundary theory is the theory of a string in a target AdS$_3$. Its Virasoro conditions can eliminate ghosts. Generalisations to SL(N,R)$\\times$SL(N,R) higher spin theories and many other questions are still unexplored.
Santangelo, E M
2008-01-01
This talk presents a study of massless relativistic Dirac fields in three Euclidean dimensions, at finite temperature and density, in the presence of a uniform electromagnetic background. Apart from explaining the behavior of Hall's conductivity for graphene, our results show a direct relationship between the selection of a phase for the Dirac determinant and the generation (or lack thereof) of Berry's phases and Chern-Simons terms.
Rostam Zadeh, S.; Gousheh, S. S.
2017-03-01
In this paper, we study the significance of the UY(1 ) Chern-Simons term in general, and its baryonic contribution in particular, for the evolution of the matter asymmetries and the hypermagnetic field in the temperature range 100 GeV ≤T ≤10 TeV . We show that an initial helical hypermagnetic field, denoted by BY(0 ), can grow matter asymmetries from zero initial value. However, the growth which is initially quadratic with respect to BY(0 ) saturates for values larger than a critical value. The inclusion of the baryonic contribution reduces this critical value, leading to smaller final matter asymmetries. Meanwhile, BY(TEW) becomes slightly larger than BY(0 ). In the absence of the UY(1 ) Chern-Simons term, the final values of matter asymmetries grow without saturation. Conversely, we show that an initial matter asymmetry can grow an initial seed of a hypermagnetic field, provided the Chern-Simons term is taken into account. The growth process saturates when the matter asymmetry drops abruptly. When the baryonic contribution is included, the saturation occurs at an earlier time, and BY(TEW) becomes larger. We also show that the baryonic asymmetry and the magnetic field strength can be within the acceptable range of present day data, provided the inverse cascade process is also taken into account; however, the magnetic field scale obtained from this simple model is much lower than the ones usually assumed for gamma-ray propagation.
Ham, J.-Y.; Lee, J.
2016-09-01
We calculate the Chern-Simons invariants of twist-knot orbifolds using the Schläfli formula for the generalized Chern-Simons function on the family of twist knot cone-manifold structures. Following the general instruction of Hilden, Lozano, and Montesinos-Amilibia, we here present concrete formulae and calculations. We use the Pythagorean Theorem, which was used by Ham, Mednykh and Petrov, to relate the complex length of the longitude and the complex distance between the two axes fixed by two generators. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic twist-knot orbifolds. We also derive some interesting results. The explicit formulae of the A-polynomials of twist knots are obtained from the complex distance polynomials. Hence the edge polynomials corresponding to the edges of the Newton polygons of the A-polynomials of twist knots can be obtained. In particular, the number of boundary components of every incompressible surface corresponding to slope -4n+2 turns out to be 2. Bibliography: 39 titles.
Effective action of 6D F-Theory with U(1) factors: Rational sections make Chern-Simons terms jump
Grimm, Thomas W; Keitel, Jan
2013-01-01
We derive the six-dimensional (1,0) effective action arising from F-theory on an elliptically fibered Calabi-Yau threefold with multiple sections. The considered theories admit both non-Abelian and Abelian gauge symmetries. Our derivation employs the M-theory to F-theory duality in five-dimensions after circle reduction. Five-dimensional gauge and gravitational Chern-Simons terms are shown to arise at one-loop by integrating out massive Coulomb branch and Kaluza-Klein modes. In the presence of a non-holomorphic zero section, we find an improved systematic for performing the F-theory limit by using the concept of the extended relative Mori cone. In this situation Kaluza-Klein modes can become lighter than Coulomb branch modes and a jump in the Chern-Simons levels occurs. By determining Chern-Simons terms for various threefold examples we are able to compute the complete six-dimensional charged matter spectrum and show consistency with six-dimensional anomalies.
Quantum Computation and Non-Abelian Statistics in Chern-Simons-Higgs Theory
Brozeguini, J C
2013-01-01
We naturally obtain the NOT and CNOT logic gates, which are key pieces of quantum computing algorithms, in the framework of the non-Abelian Chern-Simons-Higgs theory in two spatial dimensions. For that, we consider the anyonic quantum vortex topological excitations occurring in this system and show that self-adjoint (Majorana-like) combinations of these vortices and anti-vortices have in general non-Abelian statistics. The associated unitary monodromy braiding matrices become the required logic gates in the special case when the vortex spin is $s=1/4$. We explicitly construct the vortex field operators, show that they carry both magnetic flux and charge and obtain their euclidean correlation functions by using the method of quantization of topological excitations, which is based on the order-disorder duality. These correlators are in general multivalued, the number of sheets being determined by the vortex spin. This, by its turn, is proportional to the vacuum expectation value of the Higgs field and therefore...
Doubled Lattice Chern-Simons-Yang-Mills Theories with Discrete Gauge Group
Caspar, Stephan; Olesen, Therkel Z; Vlasii, Nadiia D; Wiese, Uwe-Jens
2016-01-01
We construct doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group $G$ in the Hamiltonian formulation. Here, these theories are considered on a square spatial lattice and the fundamental degrees of freedom are defined on pairs of links from the direct lattice and its dual, respectively. This provides a natural lattice construction for topologically-massive gauge theories, which are invariant under parity and time-reversal symmetry. After defining the building blocks of the doubled theories, paying special attention to the realization of gauge transformations on quantum states, we examine the dynamics in the group space of a single cross, which is spanned by a single link and its dual. The dynamics is governed by the single-cross electric Hamiltonian and admits a simple quantum mechanical analogy to the problem of a charged particle moving on a discrete space affected by an abstract electromagnetic potential. Such a particle might accumulate a phase shift equivalent to an Aharonov-Bohm pha...
D2-brane Chern-Simons theories: F-maximization = a-maximization
Fluder, Martin
2015-01-01
We study a system of N D2-branes probing a generic Calabi-Yau three-fold singularity in the presence of a non-zero quantized Romans mass n. We argue that the low-energy effective N = 2 Chern-Simons quiver gauge theory flows to a superconformal fixed point in the IR, and construct the dual AdS_4 solution in massive IIA supergravity. We compute the free energy F of the gauge theory on S^3 using localization. In the large N limit we find F = c(nN)^{1/3}a^{2/3}, where c is a universal constant and a is the a-function of the "parent" four-dimensional N = 1 theory on N D3-branes probing the same Calabi-Yau singularity. It follows that maximizing F over the space of admissible R-symmetries is equivalent to maximizing a for this class of theories. Moreover, we show that the gauge theory result precisely matches the holographic free energy of the supergravity solution, and provide a similar matching of the VEV of a BPS Wilson loop operator.
Unquenched flavor and tropical geometry in strongly coupled Chern-Simons-matter theories
Santamaria, Ricardo Couso; Putrov, Pavel
2010-01-01
We study various aspects of the matrix models calculating free energies and Wilson loop observables in supersymmetric Chern-Simons-matter theories on the three-sphere. We first develop techniques to extract strong coupling results directly from the spectral curve describing the large N master field. We show that the strong coupling limit of the gauge theory corresponds to the so-called tropical limit of the spectral curve. In this limit, the curve degenerates to a planar graph, and matrix model calculations reduce to elementary line integrals along the graph. As an important physical application of these tropical techniques, we study N=3 theories with fundamental matter, both in the quenched and in the unquenched regimes. We calculate the exact spectral curve in the Veneziano limit, and we evaluate the planar free energy and Wilson loop observables at strong coupling by using tropical geometry. The results are in agreement with the predictions of the AdS duals involving tri-Sasakian manifolds
Unquenched flavor and tropical geometry in strongly coupled Chern-Simons-matter theories
Couso Santamaría, Ricardo; Mariño, Marcos; Putrov, Pavel
2011-10-01
We study various aspects of the matrix models calculating free energies and Wilson loop observables in supersymmetric Chern-Simons-matter theories on the three-sphere. We first develop techniques to extract strong coupling results directly from the spectral curve describing the large N master field. We show that the strong coupling limit of the gauge theory corresponds to the so-called tropical limit of the spectral curve. In this limit, the curve degenerates to a planar graph, and matrix model calculations reduce to elementary line integrals along the graph. As an important physical application of these tropical techniques, we study mathcal{N} = 3 theories with fundamental matter, both in the quenched and in the unquenched regimes. We calculate the exact spectral curve in the Veneziano limit, and we evaluate the planar free energy and Wilson loop observables at strong coupling by using tropical geometry. The results are in agreement with the predictions of the AdS duals involving tri-Sasakian manifolds.
On superconformal Chern-Simons-matter theories in N=4 superspace
Kuzenko, Sergei M
2015-01-01
In three dimensions, every known N=4 supermultiplet has an off-shell completion. However, there is no off-shell N=4 formulation for the known extended superconformal Chern-Simons (CS) theories with eight and more supercharges. To achieve a better understanding of this issue, we provide N=4 superfield realisations for the equations of motion which correspond to various N=4 and N=6 superconformal CS theories, including the Gaiotto-Witten theory and the ABJM theory. These superfield realisations demonstrate that the superconformal CS theories with N>3 (except for the Gaiotto-Witten theory) require a reducible long N=4 vector multiplet, from which the standard left and right N=4 vector multiplets are obtained by constraining the field strength to be either self-dual or anti self-dual. Such a long multiplet naturally originates upon reduction of any off-shell N>4 vector multiplet to N=4 superspace. For the long N=4 vector multiplet we develop a prepotential formulation. It makes use of two prepotentials being subj...
Multi-Boundary Entanglement in Chern-Simons Theory and Link Invariants
Balasubramanian, Vijay; Leigh, Robert G; Parrikar, Onkar
2016-01-01
We consider Chern-Simons theory for gauge group $G$ at level $k$ on 3-manifolds $M_n$ with boundary consisting of $n$ topologically linked tori. The Euclidean path integral on $M_n$ defines a quantum state on the boundary, in the $n$-fold tensor product of the torus Hilbert space. We focus on the case where $M_n$ is the link-complement of some $n$-component link inside the three-sphere $S^3$. The entanglement entropies of the resulting states define new, framing-independent link invariants which are sensitive to the topology of the chosen link. For the Abelian theory at level $k$ ($G= U(1)_k$) we give a general formula for the entanglement entropy associated to an arbitrary $(m|n-m)$ partition of a generic $n$-component link into sub-links. The formula involves the number of solutions to certain Diophantine equations with coefficients related to the Gauss linking numbers (mod $k$) between the two sublinks. This formula connects simple concepts in quantum information theory, knot theory, and number theory, and...
Chern-Simons improved Hamiltonians for strings in three space dimensions
Gordeli, Ivan; Melnikov, Dmitry; Niemi, Antti J.; Sedrakyan, Ara
2016-07-01
In the case of a structureless string the extrinsic curvature and torsion determine uniquely its shape in three-dimensional ambient space, by way of solution of the Frenet equation. In many physical scenarios there are in addition symmetries that constrain the functional form of the ensuing energy function. For example, the energy of a structureless string should be independent of the way the string is framed in the Frenet equation. Thus the energy should only involve the curvature and torsion as dynamical variables, in a manner that resembles the Hamiltonian of the Abelian Higgs model. Here we investigate the effect of symmetry principles in the construction of Hamiltonians for structureless strings. We deduce from the concept of frame independence that in addition to extrinsic curvature and torsion, the string can also engage a three-dimensional Abelian bulk gauge field as a dynamical variable. We find that the presence of a bulk gauge field gives rise to a long-range interaction between different strings. Moreover, when this gauge field is subject to Chern-Simons self-interaction, it becomes plausible that interacting strings are subject to fractional statistics in three space dimensions.
On the Higher-Spin Spectrum in Large N Chern-Simons Vector Models
Giombi, S; Kirilin, V; Prakash, S; Skvortsov, E
2016-01-01
Chern-Simons gauge theories coupled to massless fundamental scalars or fermions define interesting non-supersymmetric 3d CFTs that possess approximate higher-spin symmetries at large N. In this paper, we compute the scaling dimensions of the higher-spin operators in these models, to leading order in the 1/N expansion and exactly in the 't Hooft coupling. We obtain these results in two independent ways: by using conformal symmetry and the classical equations of motion to fix the structure of the current non-conservation, and by a direct Feynman diagram calculation. The full dependence on the 't Hooft coupling can be restored by using results that follow from the weakly broken higher-spin symmetry. This analysis also allows us to obtain some explicit results for the non-conserved, parity-breaking structures that appear in planar three-point functions of the higher-spin operators. At large spin, we find that the anomalous dimensions grow logarithmically with the spin, in agreement with general expectations. This...
Chern-Simons theory on spherical Seifert manifolds, topological strings and integrable systems
Borot, Gaetan
2015-01-01
We consider the Gopakumar-Ooguri-Vafa correspondence, relating U(N) Chern-Simons theory at large N to topological strings, in the context of spherical Seifert 3-manifolds. These are quotients $S^\\Gamma=S^3/\\Gamma$ of the three-sphere by the free action of a finite isometry group. Guided by string theory dualities, we propose a large N dual description in terms of both A- and B-twisted topological strings on (in general non-toric) local Calabi-Yau threefolds. The target space of the B-model theory is obtained from the spectral curve of Toda-type integrable systems constructed on the double Bruhat cells of the simply-laced group identified by the ADE label of $\\Gamma$. Its mirror A-model theory is realized as the local Gromov-Witten theory of suitable ALE fibrations on $CP^1$ generalizing the results known for lens spaces. We propose an explicit construction of the family of target manifolds relevant for the correspondence, which we verify through a large N analysis of the matrix model that expresses the contri...
Construction and classification of novel BPS Wilson loops in quiver Chern-Simons-matter theories
Ouyang, Hao; Wu, Jun-Bao; Zhang, Jia-ju
2016-09-01
In this paper we construct and classify novel Drukker-Trancanelli (DT) type BPS Wilson loops along infinite straight lines and circles in N = 2 , 3 quiver superconformal Chern-Simons-matter theories, Aharony-Bergman-Jafferis-Maldacena (ABJM) theory, and N = 4 orbifold ABJM theory. Generally we have four classes of Wilson loops, and all of them preserve the same supersymmetries as the BPS Gaiotto-Yin (GY) type Wilson loops. There are several free complex parameters in the DT type BPS Wilson loops, and for two classes of Wilson loops in ABJM theory and N = 4 orbifold ABJM theory there are supersymmetry enhancements at special values of the parameters. We check that the differences of the DT type and GY type Wilson loops are Q-exact with Q being some supercharges preserved by both the DT type and GY type Wilson loops. The results would be useful to calculate vacuum expectation values of the DT type Wilson loops in matrix models if they are still BPS quantum mechanically.
On the higher-spin spectrum in large N Chern-Simons vector models
Giombi, S.; Gurucharan, V.; Kirilin, V.; Prakash, S.; Skvortsov, E.
2017-01-01
Chern-Simons gauge theories coupled to massless fundamental scalars or fermions define interesting non-supersymmetric 3d CFTs that possess approximate higher-spin symmetries at large N . In this paper, we compute the scaling dimensions of the higher-spin operators in these models, to leading order in the 1 /N expansion and exactly in the 't Hooft coupling. We obtain these results in two independent ways: by using conformal symmetry and the classical equations of motion to fix the structure of the current non-conservation, and by a direct Feynman diagram calculation. The full dependence on the 't Hooft coupling can be restored by using results that follow from the weakly broken higher-spin symmetry. This analysis also allows us to obtain some explicit results for the non-conserved, parity-breaking structures that appear in planar three-point functions of the higher-spin operators. At large spin, we find that the anomalous dimensions grow logarithmically with the spin, in agreement with general expectations. This logarithmic behavior disappears in the strong coupling limit, where the anomalous dimensions turn into those of the critical O( N ) or Gross-Neveu models, in agreement with the conjectured 3d bosonization duality.
Modifications of Einstein's theory of gravity at large distances
2015-01-01
In the last few years modified gravity theories have been proposed as extensions of Einstein's theory of gravity. Their main motivation is to explain the latest cosmological and astrophysical data on dark energy and dark matter. The study of general relativity at small scales has already produced important results (cf e.g. LNP 863 Quantum Gravity and Quantum Cosmology) while its study at large scales is challenging because recent and upcoming observational results will provide important information on the validity of these modified theories. In this volume, various aspects of modified gravity at large scales will be discussed: high-curvature gravity theories; general scalar-tensor theories; Galileon theories and their cosmological applications; F(R) gravity theories; massive, new massive and topologically massive gravity; Chern-Simons modifications of general relativity (including holographic variants) and higher-spin gravity theories, to name but a few of the most important recent developments. Edite...
Doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group
Caspar, S.; Mesterházy, D.; Olesen, T. Z.; Vlasii, N. D.; Wiese, U.-J.
2016-11-01
We construct doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group G in the Hamiltonian formulation. Here, these theories are considered on a square spatial lattice and the fundamental degrees of freedom are defined on pairs of links from the direct lattice and its dual, respectively. This provides a natural lattice construction for topologically-massive gauge theories, which are invariant under parity and time-reversal symmetry. After defining the building blocks of the doubled theories, paying special attention to the realization of gauge transformations on quantum states, we examine the dynamics in the group space of a single cross, which is spanned by a single link and its dual. The dynamics is governed by the single-cross electric Hamiltonian and admits a simple quantum mechanical analogy to the problem of a charged particle moving on a discrete space affected by an abstract electromagnetic potential. Such a particle might accumulate a phase shift equivalent to an Aharonov-Bohm phase, which is manifested in the doubled theory in terms of a nontrivial ground-state degeneracy on a single cross. We discuss several examples of these doubled theories with different gauge groups including the cyclic group Z(k) ⊂ U(1) , the symmetric group S3 ⊂ O(2) , the binary dihedral (or quaternion) group D¯2 ⊂ SU(2) , and the finite group Δ(27) ⊂ SU(3) . In each case the spectrum of the single-cross electric Hamiltonian is determined exactly. We examine the nature of the low-lying excited states in the full Hilbert space, and emphasize the role of the center symmetry for the confinement of charges. Whether the investigated doubled models admit a non-Abelian topological state which allows for fault-tolerant quantum computation will be addressed in a future publication.
Bazeia, D; Nascimento, J R S; Ribeiro, R F; Wotzasek, C
2001-01-01
We study the equivalence between a nonlinear self-dual model (NSD) with the Born-Infeld-Chern-Simons (BICS) models using an iterative gauge embedding procedure that produces the duality mapping, including the case where the NSD model is minimally coupled to dynamical, U(1) charged fermionic matter. The duality mapping introduces a current-current interaction term while at the same time the minimal coupling of the original nonlinear self-dual model is replaced by a non-minimal magnetic like coupling in the BICS side.
N=6 super Chern-Simons theory S-matrix and all-loop Bethe ansatz equations
Ahn, Changrim
2008-01-01
We propose the exact S-matrix for the planar limit of the N=6 super Chern-Simons theory recently proposed by Aharony, Bergman, Jafferis, and Maldacena for the AdS_4/CFT_3 correspondence. Assuming SU(2|2) symmetry, factorizability and certain crossing-unitarity relations, we find the S-matrix including the dressing phase. We use this S-matrix to formulate the asymptotic Bethe ansatz. Our result for the Bethe-Yang equations and corresponding Bethe ansatz equations confirms the all-loop Bethe ansatz equations recently conjectured by Gromov and Vieira.
Copsey, Keith
2011-01-01
We point out that the metrics recently proposed by K. Balasubramanian and J. McGreevy \\cite{BalaMcGreevyLifshitz} as gravitational duals to Lifshitz Chern-Simons gauge theories contain both a hidden null singularity and a region of closed timelike curves accessible to asymptotic observers. Like the singularity in the original Liftshitz spacetime given by Kachru, Liu, and Mulligan, this singularity does not include large $\\alpha'$ or $g_s$ corrections and hence appears to be singular in string theory as well as classically.
Chern-Simons-Higgs Theory with Visible and Hidden Sectors and its ${\\cal N}=2$ SUSY Extension
Arias, Paola; Schaposnik, Fidel A; Tallarita, Gianni
2015-01-01
We study vortex solutions in Abelian Chern-Simons-Higgs theories with visible and hidden sectors. We first consider the case in which the two sectors are connected through a BF-like gauge mixing term with no explicit interaction between the the two scalars. Since first order Bogomolny equations do not exist in this case, we derive the second order field equations. We then proceed to an ${\\cal N}=2$ supersymmetric extension including a Higgs portal mixing among the visible and hidden charged scalars. As expected, Bogomolnyi equations do exist in this case and we study their string-like solutions numerically.
Fermion zero modes in the vortex background of a Chern-Simons-Higgs theory with a hidden sector
Lozano, Gustavo; Schaposnik, Fidel A
2015-01-01
In this paper we study a $2+1$ dimensional system in which fermions are coupled to the self-dual topological vortex in $U(1) \\times U(1)$ Chern-Simons theory, where both $U(1)$ gauge symmetries are spontaneously broken. We consider two Abelian Higgs scalars with visible and hidden sectors coupled to a fermionic field through three interaction Lagrangians, where one of them violates the fermion number. Using a fine tuning procedure, we could obtain the number of the fermionic zero modes which is equal to the absolute value of the sum of the vortex numbers in the visible and hidden sectors.
Ouyang, Hao; Zhang, Jia-ju
2015-01-01
We show that generic three-dimensional $\\mathcal N=2$ quiver Chern-Simons-matter theories admit Bogomol'nyi-Prasad-Sommerfield (BPS) Drukker-Trancanelli (DT) type Wilson loops. In Aharnoy-Bergman-Jafferis-Maldacena theory, we find that the generic BPS DT type Wilson loops preserve the same number of supersymmetries as Gaiotto-Yin type Wilson loops. There are several free parameters for the generic BPS DT type Wilson loops in the construction, and supersymmetry enhancement for Wilson loops only happens for special values of the parameters.
Rostam Zadeh, S.; Gousheh, S. S.
2016-09-01
We study the simultaneous evolution of electron, neutrino, and quark asymmetries and large-scale hypermagnetic fields in the symmetric phase of the electroweak plasma in the temperature range 100 GeV ≤T ≤10 TeV , taking into account the chirality flip processes via inverse Higgs decays and fermion number violation due to Abelian anomalies. We present a derivation of the coefficient of the Chern-Simons term for the hypercharge gauge field, showing that the left-handed and right-handed components of each fermion species contribute with opposite sign. This is in contrast to the results presented in some of the previous works. The UY(1 ) Chern-Simons term affects the resulting anomalous magnetohydrodynamic equations. We solve the resulting coupled evolution equations for the lepton and baryon asymmetries, as well as the hypermagnetic field to obtain their time evolution along with their values at the electroweak phase transition (TEW˜100 GeV ) for a variety of critical ranges for their initial values at T =10 TeV . We first investigate the results of this sign change by directly comparing our results with those obtained in one of the previous works and find that matter asymmetry generation increases considerably in the presence of a strong hypermagnetic field. Furthermore, we find that a strong hypermagnetic field can generate matter asymmetry starting from absolutely zero asymmetry, while matter asymmetry can generate a hypermagnetic field provided the initial value of the latter is nonzero.
Fainberg, V Ya; Shikakhwa, M S
1996-01-01
The cvariant path integral quantization of the theory of the scalar and spinor particles interacting through the abelian and non-Abelian Chern-Simons gauge fields is carried out and is shown to be mathematically ill defined due to the absence of the transverse components of these gauge fields. This is remedied by the introduction of the Maxwell or the Maxwell-type (in the non-Abelian case)term which makes the theory superrenormalizable and guarantees its gauge-invariant regularization and renormalization. The generating functionals are constructed and shown to be formally the same as those of QED (or QCD) in 2+1 dimensions with the substitution of the Chern-Simons propagator for the photon (gluon) propagator. By constructing the propagator in the general case, the existence of two limits; pure Chern-Simons and QED (QCD) after renormalization is demonstrated. By carrying out carefully the path integral quantization of the non-Abelian Chern-Simons theories using the De Witt-Fadeev-Popov and the Batalin-Fradkin-...
The quantum 1/2 BPS Wilson loop in ${\\cal N}=4$ Chern-Simons-matter theories
Bianchi, Marco S; Leoni, Matias; Mauri, Andrea; Penati, Silvia; Seminara, Domenico
2016-01-01
In three dimensional ${\\cal N}=4$ Chern-Simons-matter theories two independent fermionic Wilson loop operators can be defined, which preserve half of the supersymmetry charges and are cohomologically equivalent at classical level. We compute their three-loop expectation value in a convenient color sector and prove that the degeneracy is uplifted by quantum corrections. We expand the matrix model prediction in the same regime and by comparison we conclude that the quantum 1/2 BPS Wilson loop is the average of the two operators. We provide an all-loop argument to support this claim at any order. As a by-product, we identify the localization result at three loops as a correction to the framing factor induced by matter interactions. Finally, we comment on the quantum properties of the non-1/2 BPS Wilson loop operator defined as the difference of the two fermionic ones.
Quinto, A G
2016-01-01
We studied the Dynamical Symmetry Breaking (DSB) mechanism in a supersymmetric Chern-Simons theory in $\\left(2+1\\right)$ dimensions coupled to $N$ matter superfields in the superfield formalism. For this purpose, we developed a mechanism to calculate the effective superpotencial $K_{\\mathrm{eff}}\\left(\\sigma_{\\mathrm{cl}},\\alpha\\right)$, where $\\sigma_{\\mathrm{cl}}$ is a background superfield, and $\\alpha$ a gauge-fixing parameter that is introduced in the quantization process. The possible dependence of the effective potential on the gauge parameter have been studied in the context of quantum field theory. We developed the formalism of the Nielsen identities in the superfield language, which is the appropriate formalism to study DSB when the effective potential is gauge dependent. We also discuss how to calculate the effective superpotential via the Renormalization Group Equation (RGE) from the knowledge of the renormalization group functions of the theory, i.e., $\\beta$ functions and anomalous dimensions $\\...
Palese, Marcella; Winterroth, Ekkehart
2017-02-01
We relate the existence of Noether global conserved currents associated with locally variational field equations to the existence of global solutions for a local variational problem generating global equations. Both can be characterized as the vanishing of certain cohomology classes. In the case of a 3-dimensional Chern-Simons gauge theory, the variationally featured cohomological obstruction to the existence of global solutions is sharp and equivalent to the usual obstruction in terms of the Chern characteristic class for the flatness of a principal connection. We suggest a parallelism between the geometric interpretation of characteristic classes as obstruction to the existence of flat principal connections and the interpretation of certain de Rham cohomology classes to be the obstruction to the existence of global extremals for a local variational principle.
Palese, Marcella
2016-01-01
We relate the existence of Noether global conserved currents associated with locally variational field equations to existence of global solutions for a local variational problem generating global equations. Both can be characterized as the vanishing of certain cohomology classes. In the case of a 3-dimensional Chern-Simons gauge theory, the variationally featured cohomological obstruction to the existence of global solutions is sharp and equivalent to the usual obstruction in terms of the Chern characteristic class for the flatness of a principal connection. We suggest a parallelism between the geometric interpretation of characteristic classes as obstruction to the existence of flat principal connections and the interpretation of certain de Rham cohomology classes to be the obstruction to the existence of global extremals for a local variational principle.
The moduli spaces of $3d$ ${\\cal N} \\ge 2$ Chern-Simons gauge theories and their Hilbert series
Cremonesi, Stefano; Zaffaroni, Alberto
2016-01-01
We present a formula for the Hilbert series that counts gauge invariant chiral operators in a large class of 3d ${\\cal N} \\ge 2$ Yang-Mills-Chern-Simons theories. The formula counts 't Hooft monopole operators dressed by gauge invariants of a residual gauge theory of massless fields in the monopole background. We provide a general formula for the case of abelian theories, where nonperturbative corrections are absent, and consider a few examples of nonabelian theories where nonperturbative corrections are well understood. We also analyze in detail nonabelian ABJ(M) theories as well as worldvolume theories of M2-branes probing Calabi-Yau fourfold and hyperK\\"ahler twofold singularities with ${\\cal N} = 2$ and ${\\cal N} = 3$ supersymmetry.
Quinto, A G
2016-01-01
In this paper we study the Nielsen identity for the supersymmetric Chern-Simons-matter model in the superfield formalism, in three spacetime dimensions. The Nielsen identity is essential to understand the gauge invariance of the symmetry breaking mechanism, and it is calculated by using the BRST invariance of the model. We discuss the technical difficulties in applying this identity to the complete effective superpotential, but we show how we can study in detail the gauge independence of one part of the effective superpotential, $K_{eff}$. We calculate the renormalization group functions of the model for arbitrary gauge-fixing parameter, finding them to be independent of the gauge choice. This result can be used to argue that $K_{eff}$ also does not depend on the gauge parameter. We discuss the possibility of the extension of these results to the complete effective superpotential.
Chern-Simons in the Seiberg-Witten map for non-commutative Abelian gauge theories in 4D
Picariello, M; Sorella, S P; Picariello, Marco; Quadri, Andrea; Sorella, Silvio P.
2002-01-01
A cohomological BRST characterization of the Seiberg-Witten (SW) map is given. We prove that the coefficients of the SW map can be identified with elements of the cohomology of the BRST operator modulo a total derivative. As an example, it will be illustrated how the first coefficients of the SW map can be written in terms of the Chern-Simons three form. This suggests a deep topological and geometrical origin of the SW map. The existence of the map for both Abelian and non-Abelian case is discussed. By using a recursive argument and the associativity of the $\\star$-product, we shall be able to prove that the Wess-Zumino consistency condition for non-commutative BRST transformations is fulfilled. The recipe of obtaining an explicit solution by use of the homotopy operator is briefly reviewed in the Abelian case.
Gaete, Patricio
2016-01-01
By using the gauge-invariant but path-dependent, variables formalism, we consider a recently proposed topologically massive $U{\\left( 1 \\right)_{\\cal W}} \\times U{(1)_{\\cal Y}}$ Chern-Simons-Higgs theory in $2+1$ dimensions. In particular, we inspect the impact of a Chern-Simons mixing term between two Abelian gauge fields on physical observables. We pursue our investigation by analysing the model in two different situations. In the first case, where we integrate out the massive excitation and consider an effective model for the massless field, we show that the interaction energy contains a linear term leading to the confinement of static charge probes along with a screening contribution. The second situation, where the massless field can be exactly integrated over with its constraint duly taken into account, the interesting feature is that the resulting effective model describes a purely screening phase, without any trace of a confining regime.
Energy Technology Data Exchange (ETDEWEB)
Cantanhede, Carlisson M. [Instituto de Fisica Teorica (IFT/UNESP), Sao Paulo, SP (Brazil); Casana, Rodolfo; Ferreira Junior, Manoel M. [Universidade Federal do Maranhao (UFMA), MA (Brazil). Dept. de Fisica; Hora, Eduardo da [Universidade Federal da Paraiba (UFPB), PB (Brazil). Dept. de Fisica
2012-07-01
Full text: Since the seminal works by Abrikosov [1] and Nielsen-Olesen [2] showing the existence of uncharged vortex, such nonperturbative solutions have been a theoretical issue of enduring interest. Already, the electrically charged vortices are obtained only in abelian models endowed with the Chern-Simons term [3,4]. This remains valid even in the context of highly nonlinear models, such as the Born-Infield electrodynamics. In this work, we demonstrated the existence of electrically charged BPS vortices in a Maxwell-Higgs model without the Chern- Simons term but endowed with a CPT-even and parity-odd Lorentz-violating (LV) structure. The LV term belonging to the CPT-even electrodynamics of the Standard Model Extension [5] plays a similar role that of the Chern-Simons term, mixing the electric and magnetic sectors. Besides the LV coefficients provide a very rich set of vortex configurations exhibiting electric's field inversion also are responsible by controlling the characteristic length of the vortex and by the flipping of the magnetic flux. [1] A. Abrikosov, Sov. Phys. JETP 32, 1442 (1957). [2] H. Nielsen, P. Olesen, Nucl. Phys. B 61, 45 (1973). [3] R. Jackiw and E. J. Weinberg, Phys. Rev. Lett. 64, 2234 (1990). [4] C.K. Lee, K.M. Lee, H. Min, Phys. Lett. B 252, 79 (1990) [5] D. Colladay and V. A. Kostelecky, Phys. Rev. D 55, 6760 (1997); Phys. Rev. D 58, 116002 (1998). (author)
Comments on Dirac-like monopole, Maxwell and Maxwell-Chern-Simons electrodynamics in D=(2+1)
Energy Technology Data Exchange (ETDEWEB)
Moura-Melo, Winder A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: winder@cbpf.br; Helayel Neto, J.A. [Universidade Catolica de Petropolis, RJ (Brazil). Grupo de Fisica Teorica. E-mail: helayel@cbpf.br
2000-05-01
Classical Maxwell and Maxwell-Chern-Simons Electrodynamics in (2+1) D are studied in some details. General expressions for the potential and fields are obtained for both models, and some particular cases are explicitly solved. Conceptual and technical difficulties arise, however, for accelerated charges. The propagation of electromagnetic signals is also studied and their reverberation is worked out and discussed. Furthermore, we show that a Dirac-like monopole yields a (static) tangential electric field. We also discuss some classical and quantum consequences of the field created by such a monopole when acting upon an usual electric charge. In particular, we show that at large distances, the dynamics of one single charged particle under the action of such a potential and a constant (external) magnetic field as well, reduces to that of one central harmonic oscillator, presenting, however, an interesting angular sector which admits energy-eigenvalues. For example, the quantisation of these eigenvalues yields a Dirac-like condition on the product of the charges. Moreover, such eigenvalues are shown to feel (and respond) to discrete shift of the angle variable. We also raise the question on the possibility of the formation pf bound states in this system. (author)
Wen, Xueda; Matsuura, Shunji; Ryu, Shinsei
2016-06-01
We develop an approach based on edge theories to calculate the entanglement entropy and related quantities in (2+1)-dimensional topologically ordered phases. Our approach is complementary to, e.g., the existing methods using replica trick and Witten's method of surgery, and applies to a generic spatial manifold of genus g , which can be bipartitioned in an arbitrary way. The effects of fusion and braiding of Wilson lines can be also straightforwardly studied within our framework. By considering a generic superposition of states with different Wilson line configurations, through an interference effect, we can detect, by the entanglement entropy, the topological data of Chern-Simons theories, e.g., the R symbols, monodromy, and topological spins of quasiparticles. Furthermore, by using our method, we calculate other entanglement/correlation measures such as the mutual information and the entanglement negativity. In particular, it is found that the entanglement negativity of two adjacent noncontractible regions on a torus provides a simple way to distinguish Abelian and non-Abelian topological orders.
de Azcárraga, J A; Picon, M; Varela, O; Azcarraga, Jose A. de; Izquierdo, Jose M.; Picon, Moises; Varela, Oscar
2003-01-01
We study how to generate new Lie algebras $\\mathcal{G}(N_0,..., N_p,...,N_n)$ from a given one $\\mathcal{G}$. The (order by order) method consists in expanding its Maurer-Cartan one-forms in powers of a real parameter $\\lambda$ which rescales the coordinates of the Lie (super)group $G$, $g^{i_p} \\to \\lambda^p g^{i_p}$, in a way subordinated to the splitting of $\\mathcal{G}$ as a sum $V_0 \\oplus ... \\oplus V_p \\oplus ... \\oplus V_n$ of vector subspaces. We also show that, under certain conditions, one of the obtained algebras may correspond to a generalized \\.In\\"on\\"u-Wigner contraction in the sense of Weimar-Woods, but not in general. The method is used to derive the M-theory superalgebra, including its Lorentz part, from $osp(1|32)$. It is also extended to include gauge free differential (super)algebras and Chern-Simons theories, and then applied to D=3 CS supergravity.
Lu, Yuan-Ming; Vishwanath, Ashvin
2016-04-01
We study (2+1)-dimensional phases with topological order, such as fractional quantum Hall states and gapped spin liquids, in the presence of global symmetries. Phases that share the same topological order can then differ depending on the action of symmetry, leading to symmetry-enriched topological (SET) phases. Here, we present a K -matrix Chern-Simons approach to identify distinct phases with Abelian topological order, in the presence of unitary or antiunitary global symmetries. A key step is the identification of a smooth edge sewing condition that is used to check if two putative phases are indeed distinct. We illustrate this method by classifying Z2 topological order (Z2 spin liquids) in the presence of an internal Z2 global symmetry for which we find six distinct phases. These include two phases with an unconventional action of symmetry that permutes anyons leading to symmetry-protected Majorana edge modes. Other routes to realizing protected edge states in SET phases are identified. Symmetry-enriched Laughlin states and double-semion theories are also discussed. Somewhat surprisingly, we observe that (i) gauging the global symmetry of distinct SET phases leads to topological orders with the same total quantum dimension, and (ii) a pair of distinct SET phases can yield the same topological order on gauging the symmetry.
Topological Strings, Two-Dimensional Yang-Mills Theory and Chern-Simons Theory on Torus Bundles
Caporaso, N; Griguolo, L; Pasquetti, S; Seminara, D; Szabó, R J
2006-01-01
We study the relations between two-dimensional Yang-Mills theory on the torus, topological string theory on a Calabi-Yau threefold whose local geometry is the sum of two line bundles over the torus, and Chern-Simons theory on torus bundles. The chiral partition function of the Yang-Mills gauge theory in the large N limit is shown to coincide with the topological string amplitude computed by topological vertex techniques. We use Yang-Mills theory as an efficient tool for the computation of Gromov-Witten invariants and derive explicitly their relation with Hurwitz numbers of the torus. We calculate the Gopakumar-Vafa invariants, whose integrality gives a non-trivial confirmation of the conjectured nonperturbative relation between two-dimensional Yang-Mills theory and topological string theory. We also demonstrate how the gauge theory leads to a simple combinatorial solution for the Donaldson-Thomas theory of the Calabi-Yau background. We match the instanton representation of Yang-Mills theory on the torus with ...
Constraining Gravity with LISA Detections of Binaries
Canizares, P.; Gair, J. R.; Sopuerta, C. F.
2013-01-01
General Relativity (GR) describes gravitation well at the energy scales which we have so far been able to achieve or detect. However, we do not know whether GR is behind the physics governing stronger gravitational field regimes, such as near neutron stars or massive black-holes (MBHs). Gravitational-wave (GW) astronomy is a promising tool to test and validate GR and/or potential alternative theories of gravity. The information that a GW waveform carries not only will allow us to map the strong gravitational field of its source, but also determine the theory of gravity ruling its dynamics. In this work, we explore the extent to which we could distinguish between GR and other theories of gravity through the detection of low-frequency GWs from extreme-mass-ratio inspirals (EMRIs) and, in particular, we focus on dynamical Chern-Simons modified gravity (DCSMG). To that end, we develop a framework that enables us, for the first time, to perform a parameter estimation analysis for EMRIs in DCSMG. Our model is described by a 15-dimensional parameter space, that includes the Chern-Simons (CS) parameter which characterises the deviation between the two theories, and our analysis is based on Fisher information matrix techniques together with a (maximum-mismatch) criterion to assess the validity of our results. In our analysis, we study a 5-dimensional parameter space, finding that a GW detector like the Laser Interferometer Space Antenna (LISA) or eLISA (evolved LISA) should be able to discriminate between GR and DCSMG with fractional errors below 5%, and hence place bounds four orders of magnitude better than current Solar System bounds.
A massive graviton in topologically new massive gravity
Kim, Yong-Wan; Park, Young-Jai
2013-01-01
We investigate the topologically new massive gravity in three dimensions. It turns out that a single massive mode is propagating in the flat spacetime, comparing to the conformal Chern-Simons gravity which has no physically propagating degrees of freedom. Also we discuss the realization of the BMS/GCA correspondence.
Charged Black Holes in New Massive Gravity
Ghodsi, Ahmad; Moghadassi, Mohammad
2010-01-01
We construct charged black hole solutions to three-dimensional New Massive Gravity (NMG), by adding electromagnetic Maxwell and Chern-Simons actions. We find charged black holes in the form of warped AdS_3 and "log" solutions in specific critical point. The entropy, mass and angular momentum of these black holes are computed.
Institute of Scientific and Technical Information of China (English)
DUAN Yi-Shi; REN Ji-Rong; LI Ran
2007-01-01
In this paper, spinor and vector decompositions of SU(2) gauge potential are presented and their equivalence is constructed using a simply proposal. We also obtain the action of Faddeev nonlinear O(3) sigma model from the SU(2)massive gauge field theory, which is proposed according to the gauge invariant principle. At last, the knot structure in SU(2) Chern-Simons filed theory is discussed in terms of the φ-mapping topological current theory. The topological charge of the knot is characterized by the Hopf indices and the Brouwer degrees of φ-mapping.
Navarro-Lerida, Francisco
2014-01-01
We study spherically symmetric finite energy solutions of two Higgs-Chern-Simons--Yang-Mills-Higgs (HCS-YMH) models in $3+1$ dimensions, one with gauge group $SO(5)$ and the other with $SU(3)$. The Chern-Simons (CS) densities are defined in terms of both the Yang-Mills (YM) and Higgs fields and the choice of the two gauge groups is made so they do not vanish. The solutions of the $SO(5)$ model carry only electric charge and zero magnetic charge, while the solutions of the $SU(3)$ model are dyons carrying both electric and magnetic charges like the Julia-Zee (JZ) dyon. Unlike the latter however, the electric charge in both models receives an important contribution from the CS dynamics. We pay special attention to the relation between the energies and charges of these solutions. In contrast with the electrically charged JZ dyon of the Yang-Mills-Higgs (YMH) system, whose mass is larger than that of the electrically neutral (magnetic monopole) solutions, the masses of the electrically charged solutions of our HC...
Navarro-Lérida, Francisco; Tchrakian, D. H.
2015-05-01
We study spherically symmetric finite energy solutions of two Higgs-Chern-Simons-Yang-Mills-Higgs (HCS-YMH) models in 3+1 dimensions, one with gauge group SO(5) and the other with SU(3). The Chern-Simons (CS) densities are defined in terms of both the Yang-Mills (YM) and Higgs fields and the choice of the two gauge groups is made so that they do not vanish. The solutions of the SO(5) model carry only electric charge and zero magnetic charge, while the solutions of the SU(3) model are dyons carrying both electric and magnetic charges like the Julia-Zee (JZ) dyon. Unlike the latter, however, the electric charge in both models receives an important contribution from the CS dynamics. We pay special attention to the relation between the energies and charges of these solutions. In contrast with the electrically charged JZ dyon of the Yang-Mills-Higgs (YMH) system, whose mass is larger than that of the electrically neutral (magnetic monopole) solutions, the masses of the electrically charged solutions of our HCS-YMH models can be smaller than their electrically neutral counterparts in some parts of the parameter space. To establish this is the main task of this work, which is performed by constructing the HCS-YMH solutions numerically. In the case of the SU(3) HCS-YMH, we have considered the question of angular momentum and it turns out that it vanishes.
Zadeh, S Rostam
2015-01-01
We study simultaneous evolution of fermion asymmetries and large scale hypermagnetic fields in the symmetric phase of the electroweak plasma in the temperature range $100$GeV$\\leq T\\leq 10$TeV, taking into account the chirality flip processes via Higgs inverse decays and fermion number violation due to Abelian anomalies for electrons, neutrinos and quarks in the presence of hypermagnetic fields. We present a derivation of the coefficient of the Chern-Simons term for the hypercharge gauge field, showing that the left-handed and right-handed components of each fermion species contribute with opposite sign. This is in contrast to the results presented in some of the previous works. The Chern-Simons term affects the resulting anomalous magnetohydrodynamic (AMHD) equations. We solve the resulting coupled evolution equations for the lepton and baryon asymmetries, as well as the hypermagnetic field to obtain their time evolution along with their values at the electroweak phase transition ($T_{EW} \\sim 100$GeV) for a...
Computing Black Hole entropy in Loop Quantum Gravity from a Conformal Field Theory perspective
Agullo, Ivan; Diaz-Polo, Jacobo
2009-01-01
Motivated by the analogy proposed by Witten between Chern-Simons and Conformal Field Theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in Loop Quantum Gravity. The consistency of the result opens a window for the interplay between Conformal Field Theory and the description of black holes in Loop Quantum Gravity.
Computing black hole entropy in loop quantum gravity from a conformal field theory perspective
Energy Technology Data Exchange (ETDEWEB)
Agulló, Iván [Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL 60637 (United States); Borja, Enrique F. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Facultad de Física, Universidad de Valencia, Burjassot-46100, Valencia (Spain); Díaz-Polo, Jacobo, E-mail: Ivan.Agullo@uv.es, E-mail: Enrique.Fernandez@uv.es, E-mail: Jacobo.Diaz@uv.es [Institute for Gravitation and the Cosmos, Physics Department, Penn State, University Park, PA 16802 (United States)
2009-07-01
Motivated by the analogy proposed by Witten between Chern-Simons and conformal field theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in loop quantum gravity. The consistency of the result opens a window for the interplay between conformal field theory and the description of black holes in loop quantum gravity.
Energy Technology Data Exchange (ETDEWEB)
Huang Yongchang [Institute of Theoretical Physics, Beijing University of Technology, Beijing 100022 (China); CCAST (World Laboratory), Beijing 100080 (China)], E-mail: ychuang@bjut.edu.cn; Huo Qiuhong [Institute of Theoretical Physics, Beijing University of Technology, Beijing 100022 (China)
2008-04-24
Using Faddeev-Senjanovic path integral quantization for constrained Hamilton system, we quantize SU(n) N=2 supersymmetric gauge field system with non-Abelian Chern-Simons topological term in 2+1 dimensions. We use consistency of Coulomb gauge condition to naturally deduce a new gauge condition. Furthermore, we obtain the generating functional of Green function in phase space, deduce the angular momentum based on the global canonical Noether theorem at quantum level, obtain the fractional spin of this supersymmetric system, and show that the total angular momentum is the sum of the orbital angular momentum and spin angular momentum of the non-Abelian gauge field. Finally, we obtain the anomalous fractional spin and discover that the fractional spin has the contributions of both the group superscript components and A{sub 0}{sup s}(x) charge.
Schnitzer, Howard J
2016-01-01
R\\'enyi and entanglement entropies are constructed for 2d q-deformed topological Yang-Mills theories with gauge group $U(N)$, as well as the dual 3d Chern-Simons (CS) theory on Seifert manifolds. When $q=\\exp[2\\pi i/(N+K)]$, and $K$ is odd, the topological R\\'enyi entropy and Wilson line observables of the CS theory can be expressed in terms of the modular transformation matrices of the WZW theory, $\\rm{\\hat{U}(N)}_{K,N(K+N)}$. If both $K$ and $N$ are odd, there is a level-rank duality of the 2d qYM theory and of the associated CS theory, as well as that of the R\\'enyi and entanglement entropies, and Wilson line observables.
Energy Technology Data Exchange (ETDEWEB)
Battistel, O.A. [Dept. of Physics - CCNE, Universidade Federal de Santa Maria, RS (Brazil); Dallabona, G. [Dept. of Physics - ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)
2004-07-01
We consider the possible role played by the anomaly cancellation mechanism in the evaluation of the radiatively induced Chern-Simons (CS) term, arising from the Lorentz and CPT non-invariant fermionic sector, of an extended version of QED. We explicit evaluate the most general mathematical structure associated to the AVV triangle amplitude, closely related to the one involved in the CS term evaluation, using for this purposes an alternative calculational strategy to handle divergences in QFT's. We show that the requirement of consistency with the choices made in the construction of the Standard Model's renormalizability, in the evaluation of the AVV Green function, leave no room for a nonvanishing radiatively induced CS term, independently of the regularization prescription or equivalent philosophy adopted, in accordance with what was previously conjectured by other authors. (orig.)
Cosmological tests of modified gravity
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Haggard, Hal M.; Muxin Han; Wojciech Kamiński; Aldo Riello
2015-01-01
We study the expectation value of a nonplanar Wilson graph operator in SL(2,C) Chern-Simons theory on $S^3$. In particular we analyze its asymptotic behaviour in the double-scaling limit in which both the representation labels and the Chern-Simons coupling are taken to be large, but with fixed ratio. When the Wilson graph operator has a specific form, motivated by loop quantum gravity, the critical point equations obtained in this double-scaling limit describe a very specific class of flat co...
Modified Gravity Explains Dark Matter?
Katsuragawa, Taishi
2016-01-01
We explore a new horizon of modified gravity from the viewpoint of the particle physics. As a concrete example, we take the $F(R)$ gravity to raise a question: can a scalar particle ("scalaron") derived from the $F(R)$ gravity be a dark matter candidate? We place the limit on the form of function $F(R)$ from the constraint on the scalaron as a dark matter. The role of the screening mechanism and compatibility with the dark energy problem are addressed.
Anisotropic singularities and modified gravity
Herfray, Yannick; Shtanov, Yuri
2015-01-01
In four space-time dimensions, there exists a special infinite-parameter family of chiral modified gravity theories. All these theories describe just two propagating polarisations of the graviton. General Relativity with an arbitrary cosmological constant is the only parity-invariant member of this family. Modifications of General Relativity can be arranged so as to become important in regions with large Weyl curvature. We review how these modified gravity theories arise within the framework of pure-connection formulation. We introduce a new parametrisation of this family of theories that, apart from the fundamental connection field, uses certain set of auxiliary fields. We show how the Kasner singularity of General Relativity is resolved in a particular modified gravity theory of this type. There arises a new asymptotically De Sitter region "behind" the would-be singularity, the complete solution thus being of a bounce type. Although the effective metric based on this solution still contains singularities an...
Energy conditions in modified gravity
Energy Technology Data Exchange (ETDEWEB)
Capozziello, Salvatore, E-mail: capozzie@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II”, Napoli (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); Lobo, Francisco S.N., E-mail: flobo@cii.fc.ul.pt [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Edifício C8, 1749-016 Lisboa (Portugal); Mimoso, José P., E-mail: jpmimoso@cii.fc.ul.pt [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Edifício C8, 1749-016 Lisboa (Portugal); Departamento de Física, Faculdade de Ciências da Universidade de Lisboa, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, P-1749-016 Lisbon (Portugal)
2014-03-07
We consider generalized energy conditions in modified theories of gravity by taking into account the further degrees of freedom related to scalar fields and curvature invariants. The latter are usually recast as generalized geometrical fluids that have different meanings with respect to the standard matter fluids generally adopted as sources of the field equations. More specifically, in modified gravity the curvature terms are grouped in a tensor H{sup ab} and a coupling g(Ψ{sup i}) that can be reorganized in effective Einstein field equations, as corrections to the energy–momentum tensor of matter. The formal validity of such inequalities does not assure some basic requirements such as the attractive nature of gravity, so that the energy conditions have to be considered in a wider sense.
Modified Gravity or Dark Matter?
Moffat, J W
2011-01-01
Modified Gravity (MOG) has been used successfully to explain the rotation curves of galaxies, the motion of galaxy clusters, the Bullet Cluster, and cosmological observations without the use of dark matter or Einstein's cosmological constant. We review the main theoretical ideas and applications of the theory to astrophysical and cosmological data.
Minimal parameterizations for modified gravity
Scott, Ali Narimani Douglas
2013-01-01
The increasing precision of cosmological data provides us with an opportunity to test general relativity (GR) on the largest accessible scales. Parameterizing modified gravity models facilitates the systematic testing of the predictions of GR, and gives a framework for detecting possible deviations from it. Several different parameterizations have already been suggested, some linked to classifications of theories, and others more empirically motivated. Here we describe a particular new approach which casts modifications to gravity through two free functions of time and scale, which are directly linked to the field equations, but also easy to confront with observational data. We compare our approach with other existing methods of parameterizing modied gravity, specifically the parameterized post-Friedmann approach and the older method using the parameter set $\\{\\mu,\\gamma\\}$. We explain the connection between our parameters and the physics that is most important for generating cosmic microwave background aniso...
Turnaround radius in modified gravity
Faraoni, Valerio
2015-01-01
In an accelerating universe in General Relativity there is a maximum radius above which a shell of test particles cannot collapse, but is dispersed by the cosmic expansion. This radius could be used in conjunction with observations of large structures to constrain the equation of state of the universe. We extend the concept of turnaround radius to modified theories of gravity for which the gravitational slip is non-vanishing.
Constraining Gravity with LISA Detections of Binaries
Canizares, Priscilla; Sopuerta, Carlos F
2012-01-01
General Relativity (GR) describes gravitation well at the energy scales which we have so far been able to achieve or detect. However, we do not know whether GR is behind the physics governing stronger gravitational field regimes, such as near neutron stars or massive black-holes (MBHs). Gravitational-wave (GW) astronomy is a promising tool to test and validate GR and/or potential alternative theories of gravity. The information that a GW waveform carries not only will allow us to map the strong gravitational field of its source, but also determine the theory of gravity ruling its dynamics. In this work, we explore the extent to which we could distinguish between GR and other theories of gravity through the detection of low-frequency GWs from extreme-mass-ratio inspirals (EMRIs) and, in particular, we focus on dynamical Chern-Simons modified gravity (DCSMG). To that end, we develop a framework that enables us, for the first time, to perform a parameter estimation analysis for EMRIs in DCSMG. Our model is descr...
Cosmological Hints of Modified Gravity ?
Di Valentino, Eleonora; Silk, Joseph
2016-01-01
The recent measurements of Cosmic Microwave Background temperature and polarization anisotropies made by the Planck satellite have provided impressive confirmation of the $\\Lambda$CDM cosmological model. However interesting hints of slight deviations from $\\Lambda$CDM have been found, including a $95 \\%$ c.l. preference for a "modified gravity" structure formation scenario. In this paper we confirm the preference for a modified gravity scenario from Planck 2015 data, find that modified gravity solves the so-called $A_{lens}$ anomaly in the CMB angular spectrum, and constrains the amplitude of matter density fluctuations to $\\sigma_8=0.815_{-0.048}^{+0.032}$, in better agreement with weak lensing constraints. Moreover, we find a lower value for the reionization optical depth of $\\tau=0.059\\pm0.020$ (to be compared with the value of $\\tau= 0.079 \\pm 0.017$ obtained in the standard scenario), more consistent with recent optical and UV data. We check the stability of this result by considering possible degeneraci...
Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly
Megias, Eugenio
2013-01-01
We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed.
Observables in Loop Quantum Gravity with a cosmological constant
Dupuis, Maïté
2013-01-01
An open issue in loop quantum gravity (LQG) is the introduction of a non-vanishing cosmological constant $\\Lambda$. In 3d, Chern-Simons theory provides some guiding lines: $\\Lambda$ appears in the quantum deformation of the gauge group. The Turaev-Viro model, which is an example of spin foam model is also defined in terms of a quantum group. By extension, it is believed that in 4d, a quantum group structure could encode the presence of $\\Lambda\
Wave Propagation in Modified Gravity
Lindroos, Jan Ø; Mota, David F
2015-01-01
We investigate the propagation of scalar waves induced by matter sources in the context of scalar-tensor theories of gravity which include screening mechanisms for the scalar degree of freedom. The usual approach when studying these theories in the non-linear regime of cosmological perturbations is based on the assumption that scalar waves travel at the speed of light. Within General Relativity such approximation is good and leads to no loss of accuracy in the estimation of observables. We find, however, that mass terms and non-linearities in the equations of motion lead to propagation and dispersion velocities significantly different from the speed of light. As the group velocity is the one associated to the propagation of signals, a reduction of its value has direct impact on the behavior and dynamics of nonlinear structures within modified gravity theories with screening. For instance, the internal dynamics of galaxies and satellites submerged in large dark matter halos could be affected by the fact that t...
Knot Invariants and M-Theory I: Hitchin Equations, Chern-Simons Actions, and the Surface Operators
Dasgupta, Keshav; Ramadevi, P; Tatar, Radu
2016-01-01
Recently Witten introduced a type IIB brane construction with certain boundary conditions to study knot invariants and Khovanov homology. The essential ingredients used in his work are the topologically twisted N = 4 Yang-Mills theory, localization equations and surface operators. In this paper we extend his construction in two possible ways. On one hand we show that a slight modification of Witten's brane construction could lead, using certain well defined duality transformations, to the model used by Ooguri-Vafa to study knot invariants using gravity duals. On the other hand, we argue that both these constructions, of Witten and of Ooguri-Vafa, lead to two different seven-dimensional manifolds in M-theory from where the topological theories may appear from certain twisting of the G-flux action. The non-abelian nature of the topological action may also be studied if we take the wrapped M2-brane states in the theory. We discuss explicit constructions of the seven-dimensional manifolds in M-theory, and show th...
Thermodynamics in Modified Gravity Theories
Bamba, Kazuharu; Tsujikawa, Shinji
2011-01-01
We demonstrate that there does exist an equilibrium description of thermodynamics on the apparent horizon in the expanding cosmological background for a wide class of modified gravity theories with the Lagrangian density $f(R, \\phi, X)$, where $R$ is the Ricci scalar and $X$ is the kinetic energy of a scalar field $\\phi$. This comes from a suitable definition of an energy momentum tensor of the "dark" component obeying the local energy conservation law in the Jordan frame. It is shown that the equilibrium description in terms of the horizon entropy $S$ is convenient because it takes into account the contribution of the horizon entropy $\\hat{S}$ in non-equilibrium thermodynamics as well as an entropy production term.
Modifying Gravity at Low Redshift
Brax, Philippe; Davis, Anne-Christine; Shaw, Douglas
2010-01-01
We consider the growth of cosmological perturbations in modified gravity models where a scalar field mediates a non-universal Yukawa force between different matter species. The growth of the density contrast is altered for scales below the Compton wave-length of the scalar field. As the universe expands, the Compton wave-length varies in time in such a way that scales which where outside the range of the scalar field force may feel it at a lower redshift. In this case, both the exponent $\\gamma$ measuring the growth of Cold Dark Matter perturbations and the shift function representing the ratio of the two Newtonian potentials $\\psi$ and $\\phi$ may differ from their values in General Relativity at low redshift.
Sectors of solutions in three-dimensional gravity and black holes
Energy Technology Data Exchange (ETDEWEB)
Fjelstad, Jens E-mail: jens.fjelstad@kau.se; Hwang, Stephen E-mail: stephen.hwang@kau.se
2002-04-29
We examine the connection between three-dimensional gravity with negative cosmological constant and two-dimensional CFT via the Chern-Simons formulation. A set of generalized spectral flow transformations are shown to yield new sectors of solutions. One implication is that the microscopic calculation of the entropy of the Banados-Teitelboim-Zanelli (BTZ) black hole is corrected by a multiplicative factor with the result that it saturates the Bekenstein-Hawking expression.
Generalized Galilean Algebras and Newtonian Gravity
Albornoz, N L González; Salgado, P; Salgado, S
2016-01-01
The non-relativistic versions of the generalized Poincar\\'{e} algebras and generalized $AdS$-Lorentz algebras are obtained. This non-relativistic algebras are called, generalized Galilean algebras type I and type II and denoted by $\\mathcal{G}\\mathfrak{B}_{n}$ and $\\mathcal{G}\\mathfrak{L}_{_{n}}$ respectively. Using a generalized In\\"{o}n\\"{u}--Wigner contraction procedure we find that the generalized Galilean algebras type I can be obtained from the generalized Galilean algebras type II. The $S$-expansion procedure allows us to find the $\\mathcal{G}\\mathfrak{B}_{_{5}}$ algebra from the Newton--Hooke algebra with central extension. The procedure developed in Ref. \\cite{newton} allow us to show that the non-relativistic limit of the five dimensional Einstein--Chern--Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.
Modified gravity from the quantum part of the metric
Energy Technology Data Exchange (ETDEWEB)
Dzhunushaliev, Vladimir [KazNU, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); IETP, Al-Farabi Kazakh National University, Almaty (Kazakhstan); NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan). Institute of Physicotechnical Problems and Material Science; Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany); Folomeev, Vladimir [IETP, Al-Farabi Kazakh National University, Almaty (Kazakhstan); NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan). Institute of Physicotechnical Problems and Material Science; Kleihaus, Burkhard; Kunz, Jutta [Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany)
2014-01-15
It is shown that if a metric in quantum gravity can be decomposed as a sum of classical and quantum parts, then Einstein quantum gravity looks approximately like modified gravity with a nonminimal interaction between gravity and matter. (orig.)
Thermodynamic properties of modified gravity theories
Bamba, Kazuharu
2016-01-01
We review thermodynamic properties of modified gravity theories such as $F(R)$ gravity and $f(T)$ gravity, where $R$ is the scalar curvature and $T$ is the torsion scalar in teleparallelism. In particular, we explore the equivalence between the equations of motion for modified gravity theories and the Clausius relation in thermodynamics. In addition, thermodynamics of the cosmological apparent horizon is investigated in $f(T)$ gravity. We show both equilibrium and non-equilibrium descriptions of thermodynamics. It is demonstrated that the second law of thermodynamics in the universe can be met when the temperature of the outside of the apparent horizon is equivalent to that of the inside of it.
Equivalence of modified gravity equation to the Clausius relation
Bamba, Kazuharu; Nojiri, Shin'ichi; Odintsov, Sergei D
2009-01-01
We show that the equations of motion for modified gravity theories are equivalent to the Clausius relation in thermodynamics. For modified gravity theories, we study $F(R)$-gravity, the scalar-Gauss-Bonnet gravity, $F(\\mathcal{G})$-gravity and the non-local gravity. In addition, we discuss the relation between the expression of the entropy and the contribution from the modified gravity as well as the matter to the definition of the energy flux (heat).
Conformally-modified gravity and vacuum energy
Henke, Christian
2016-01-01
The paper deals with a modified theory of gravity and the cosmological consequences. Instead of concerning the field equations directly, we modify a conformally-related and equivalent equation, such that a spontaneous symmetry breaking at Planck scale occurs in the trace equation. As the consequence the cosmological constant problem is solved.
Cosmological acceleration. Dark energy or modified gravity?
Energy Technology Data Exchange (ETDEWEB)
Bludman, S.
2006-05-15
We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model {lambda}CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)
Gravity with background fields and diffeomorphism breaking
Bluhm, Robert
2016-01-01
Effective gravitational field theories with background fields break local Lorentz symmetry and diffeomorphism invariance. Examples include Chern-Simons gravity, massive gravity, and the Standard-Model Extension (SME). The physical properties and behavior of these theories depend greatly on whether the spacetime symmetry breaking is explicit or spontaneous. With explicit breaking, the background fields are fixed and nondynamical, and the resulting theories are fundamentally different from Einstein's General Relativity (GR). However, when the symmetry breaking is spontaneous, the background fields are dynamical in origin, and many of the usual features of Einstein's GR still apply.
Quasilocal energy in modified gravity
Faraoni, Valerio
2015-01-01
A new generalization of the Hawking-Hayward quasilocal energy to scalar-tensor gravity is proposed without assuming symmetries, asymptotic flatness, or special spacetime metrics. The procedure followed is simple but powerful and consists of writing the scalar-tensor field equations as effective Einstein equations and then applying the standard definition of quasilocal mass.
Exact Solutions in Modified Gravity Models
Directory of Open Access Journals (Sweden)
Valery V. Obukhov
2012-06-01
Full Text Available We review the exact solutions in modified gravity. It is one of the main problems of mathematical physics for the gravity theory. One can obtain an exact solution if the field equations reduce to a system of ordinary differential equations. In this paper we consider a number of exact solutions obtained by the method of separation of variables. Some applications to Cosmology and BH entropy are briefly mentioned.
Exact Solutions in Modified Gravity Models
Makarenko, Andrey N
2012-01-01
We review the exact solutions in modified gravity. It is one of the main problems of mathematical physics for the gravity theory. One can obtain an exact solution if the field equations reduce to a system of ordinary differential equations. In this paper we consider a number of exact solutions obtained by the method of separation of variables. Some applications to Cosmology and BH entropy are briefly mentioned.
Lineal gravity from planar gravity
Achúcarro, A
1993-01-01
We show how to obtain the two-dimensional black hole action by dimensional reduction of the three-dimensional Einstein action with a non-zero cosmological constant. Starting from the Chern-Simons formulation of 2+1 gravity, we obtain the 1+1 dimensional gauge formulation given by Verlinde. Remarkably, the proposed reduction shares the relevant features of the formulation of Cangemi and Jackiw, without the need for a central charge in the algebra. We show how the Lagrange multipliersin these formulations appear naturally as the remnants of the three dimensional connection associated to symmetries that have been lostin the dimensional reduction. The proposed dimensional reduction involves a shift in the three dimensional connection whose effect is to make the length of the extra dimension infinite.
Modelling Void Abundance in Modified Gravity
Voivodic, Rodrigo; Llinares, Claudio; Mota, David F
2016-01-01
We use a spherical model and an extended excursion set formalism with drifting diffusive barriers to predict the abundance of cosmic voids in the context of general relativity as well as f(R) and symmetron models of modified gravity. We detect spherical voids from a suite of N-body simulations of these gravity theories and compare the measured void abundance to theory predictions. We find that our model correctly describes the abundance of both dark matter and galaxy voids, providing a better fit than previous proposals in the literature based on static barriers. We use the simulation abundance results to fit for the abundance model free parameters as a function of modified gravity parameters, and show that counts of dark matter voids can provide interesting constraints on modified gravity. For galaxy voids, more closely related to optical observations, we find that constraining modified gravity from void abundance alone may be significantly more challenging. In the context of current and upcoming galaxy surv...
Early Modified Gravity: Implications for Cosmology
Brax, Philippe; Clesse, Sebastien; Davis, Anne-Christine; Sculthorpe, Gregory
2013-01-01
We study the effects of modifications of gravity after Big Bang Nucleosynthesis (BBN) which would manifest themselves mainly before recombination. We consider their effects on the Cosmic Microwave Background (CMB) radiation and on the formation of large scale structure. The models that we introduce here represent all screened modifications of General Relativity (GR) which evade the local tests of gravity such as the violation of the strong equivalence principle as constrained by the Lunar Ranging experiment. We use the tomographic description of modified gravity which defines models with screening mechanisms of the chameleon or Damour-Polyakov types and allows one to relate the temporal evolution of the mass and the coupling to matter of a scalar field to its Lagrangian and also to cosmological perturbations. The models with early modifications of gravity all involve a coupling to matter which is stronger in the past leading to effects on perturbations before recombination while minimising deviations from Lam...
A New Model of Nonlocal Modified Gravity
Dimitrijevic, Ivan; Grujic, Jelena; Rakic, Zoran
2014-01-01
We consider a new modified gravity model with nonlocal term of the form $R^{-1} \\mathcal{F}(\\Box) R. $ This kind of nonlocality is motivated by investigation of applicability of a few unusual ans\\"atze to obtain some exact cosmological solutions. In particular, we find attractive and useful quadratic ansatz $\\Box R = q R^{2}.$
Generalized gravity from modified DFT
Sakatani, Yuho; Yoshida, Kentaroh
2016-01-01
Recently, generalized equations of type IIB supergravity have been derived from the requirement of classical kappa-symmetry of type IIB superstring theory in the Green-Schwarz formulation. These equations are covariant under generalized T-duality transformations and hence one may expect a formulation similar to double field theory (DFT). In this paper, we consider a modification of the DFT equations of motion by relaxing a condition for the generalized covariant derivative with an extra generalized vector. In this modified double field theory (mDFT), we show that the flatness condition of the modified generalized Ricci tensor leads to the NS-NS part of the generalized equations of type IIB supergravity. In particular, the extra vector fields appearing in the generalized equations correspond to the extra generalized vector in mDFT. We also discuss duality symmetries and a modification of the string charge in mDFT.
Goldstone models of modified gravity
Brax, Philippe; Valageas, Patrick
2017-02-01
We investigate scalar-tensor theories where matter couples to the scalar field via a kinetically dependent conformal coupling. These models can be seen as the low-energy description of invariant field theories under a global Abelian symmetry. The scalar field is then identified with the Goldstone mode of the broken symmetry. It turns out that the properties of these models are very similar to the ones of ultralocal theories where the scalar-field value is directly determined by the local matter density. This leads to a complete screening of the fifth force in the Solar System and between compact objects, through the ultralocal screening mechanism. On the other hand, the fifth force can have large effects in extended structures with large-scale density gradients, such as galactic halos. Interestingly, it can either amplify or damp Newtonian gravity, depending on the model parameters. We also study the background cosmology and the linear cosmological perturbations. The background cosmology is hardly different from its Λ -CDM counterpart while cosmological perturbations crucially depend on whether the coupling function is convex or concave. For concave functions, growth is hindered by the repulsiveness of the fifth force while it is enhanced in the convex case. In both cases, the departures from the Λ -CDM cosmology increase on smaller scales and peak for galactic structures. For concave functions, the formation of structure is largely altered below some characteristic mass, as smaller structures are delayed and would form later through fragmentation, as in some warm dark matter scenarios. For convex models, small structures form more easily than in the Λ -CDM scenario. This could lead to an over-abundance of small clumps. We use a thermodynamic analysis and show that although convex models have a phase transition between homogeneous and inhomogeneous phases, on cosmological scales the system does not enter the inhomogeneous phase. On the other hand, for galactic
Cosmological Evidence for Modified Gravity (MOG)
Moffat, J W
2015-01-01
Deviations from the standard $\\Lambda$CDM model motivate an interpretation of early universe cosmology using the Scalar-Tensor-Vector-Gravity (STVG) theory. A constraint analysis carried out by Valentino, Melchiorri and Silk, revealed deviations from the growth of structure predicted by General Relativity, and a lensing anomaly in the angular CMB power spectrum data with a $95\\%$ c.l. The modified gravity (MOG) theory resolves the lensing deviation from the standard model and provides an explanation of the CMB and structure growth data.
The Kauffman bracket and the Jones polynomial in quantum gravity
Griego, J R
1995-01-01
An analysis of the action of the Hamiltonian constraint of quantum gravity on the Kauffman bracket and Jones knot polynomials is proposed. It is explicitely shown that the Kauffman bracket is a formal solution of the Hamiltonian constraint with cosmological constant (\\Lambda) to third order in \\Lambda. The calculation is performed in the extended loop representation of quantum gravity. The analysis makes use of the analytical expressions of the knot invariants in terms of the two and three point propagators of the Chern-Simons theory. Some particularities of the extended loop calculus are considered and the implications of the results to the case of the conventional loop representation are discussed.
On the addition of torsion to chiral gravity
Santamaria, Ricardo Couso; Garbarz, Alan; Giribet, Gaston
2011-01-01
Three-dimensional gravity in Anti-de Sitter space is considered, including torsion. The derivation of the central charges of the algebra that generates the asymptotic isometry group of the theory is reviewed, and a special point of the theory, at which one of the central charges vanishes, is compared with the chiral point of topologically massive gravity. This special point corresponds to a singular point in Chern-Simons theory, where one of the two coupling constants of the SL(2,R) actions vanishes. A prescription to approach this point in the space of parameters is discussed, and the canonical structure of the theory is analyzed.
5D Lovelock gravity: new exact solutions with torsion
Cvetković, B
2016-01-01
We investigate Lovelock gravity in five dimensions in first order formalism. We construct a new class of solutions: BTZ black ring with(out) torsion. We show that our solution with torsion exists in the different sector of the Lovelock gravity compared to Lovelock Chern-Simons and the sector investigated by Canfora et al. We compute conserved charges of the solutions by using Nester's formula, and confirm the results by canonical method. We show that the theory linearized around the background with torsion possesses additional degrees of freedom compared to general relativity.
Strings from 3D gravity: asymptotic dynamics of AdS$_3$ gravity with free boundary conditions
Apolo, Luis
2015-01-01
Pure three-dimensional gravity in anti-de Sitter space can be formulated as an SL(2,R) $\\times$ SL(2,R) Chern-Simons theory, and the latter can be reduced to a WZW theory at the boundary. In this paper we show that AdS$_3$ gravity with free boundary conditions is described by a string theory at the boundary whose target spacetime is also AdS$_3$. While boundary conditions in the standard construction of Coussaert, Henneaux, and van Driel are enforced through constraints on the WZW currents, we find that free boundary conditions are partially enforced through the string Virasoro constraints.
Directory of Open Access Journals (Sweden)
Iver Brevik
2012-11-01
Full Text Available A bulk viscosity is introduced in the formalism of modified gravity. It is shownthat, based on a natural scaling law for the viscosity, a simple solution can be found forquantities such as the Hubble parameter and the energy density. These solutions mayincorporate a viscosity-induced Big Rip singularity. By introducing a phase transition inthe cosmic fluid, the future singularity can nevertheless in principle be avoided.
Constraining Modified Gravity with SN 1987A
Zukin, Phillip; Bertschinger, Edmund
2009-05-01
In the 1950's, Papapetrou found that extended bodies with spin, in general relativity, do not move along geodesics because of a spin-curvature coupling. Using an Eikonal approximation, we reproduce these results for Dirac and Majorana particles. We generalize these results to modified theories of gravity with a non-minimally coupled matter lagrangian and place constraints on the coupling field based on the arrival times of SN 1987A neutrinos.
Anisotropic singularities in chiral modified gravity
Herfray, Yannick; Krasnov, Kirill; Shtanov, Yuri
2016-12-01
In four spacetime dimensions, there exists a special infinite-parameter family of chiral modified gravity theories. All these theories describe just two propagating polarisations of the graviton. General relativity (GR) with an arbitrary cosmological constant is the only parity-invariant member of this family. We review how these modified gravity theories arise within the framework of pure-connection formulation. We introduce a new convenient parametrisation of this family of theories by using a certain set of auxiliary fields. Modifications of GR can be arranged so as to become important in regions with large Weyl curvature, while the behaviour is indistinguishable from GR where Weyl curvature is small. We show how the Kasner singularity of GR is resolved in a particular class of modified gravity theories of this type, leading to solutions in which the fundamental connection field is regular all through the spacetime. There arises a new asymptotically De Sitter region ‘behind’ the would-be singularity, the complete solution thus being of a bounce type.
Cluster mass estimates in screened modified gravity
Gronke, Max; Mota, David F; Winther, Hans A
2016-01-01
We use cosmological hydrodynamical simulations to study the effect of screened modified gravity models on the mass estimates of galaxy clusters. In particular, we focus on two novel aspects: (i) we study modified gravity models in which baryons and dark matter are coupled with different strengths to the scalar field, and, (ii) we put the simulation results into the greater context of a general screened-modified gravity parametrization. We compare the mass of clusters inferred via lensing versus the mass inferred via kinematical measurements as a probe of violations of the equivalence principle at Mpc scales. We find that estimates of cluster masses via X-ray observations is mainly sensitive to the coupling between the scalar degree of freedom and baryons -- while the kinematical mass is mainly sensitive to the coupling to dark matter. Therefore, the relation between the two mass estimates is a probe of a possible non-universal coupling between the scalar field, the standard model fields, and dark matter. Fina...
Lorentz Invariance Violation in Modified Gravity
Brax, Philippe
2012-01-01
We consider an environmentally dependent violation of Lorentz invariance in scalar-tensor models of modified gravity where General Relativity is retrieved locally thanks to a screening mechanism. We find that fermions have a modified dispersion relation and would go faster than light in an anisotropic and space-dependent way along the scalar field lines of force. We analyse briefly the OPERA results and show that they could be reproduced with chameleon models. We suggest that neutrinos emitted radially, at different energies, and observed on the other side of the earth would provide a test of these models.
Halo Scale Predictions of Symmetron Modified Gravity
Clampitt, Joseph; Khoury, Justin
2011-01-01
We offer predictions of symmetron modified gravity in the neighborhood of realistic dark matter halos. The predictions for the fifth force are obtained by solving the nonlinear symmetron equation of motion in the spherical NFW approximation. In addition, we compare the three major known screening mechanisms: Vainshtein, Chameleon, and Symmetron around such dark matter sources, emphasizing the significant differences between them and highlighting observational tests which exploit these differences. Finally, we demonstrate the host halo environmental screening effect ("blanket screening") on smaller satellite halos by solving for the modified forces around a density profile which is the sum of satellite and approximate host components.
Institute of Scientific and Technical Information of China (English)
张龙; 翁征宇
2015-01-01
The fermion sign plays a dominant role in Fermi liquid theory. However, in Mott insulators, the strong Coulomb interaction suppresses the charge fluctuations and eliminates the fermion signs due to electron permutation. In this article, we first review the phase string theory of the Hubbard model for a bipartite lattice, which unifies the Fermi liquid at weak coupling and the antiferromagnetic Mott insulator at strong coupling. We first derive the exact sign structure of the Hubbard model for an arbitrary Coulomb interaction U . In small U limit, the conventional fermion sign is restored, while at large U limit, it leads to the phase string sign structure of the t-J model. For half filling, we construct an electron fractionalization representation, in which chargons and spinons are coupled to each other via emergent mutual Chern-Simons gauge fields. The corresponding ground state ansatz and low energy effective theory capture the ground state phase diagram of the Hubbard model qualitatively. For weak coupling regime, the Fermi liquid quasiparticle is formed by the bound state of a chargon and a spinon, and the long range phase coherence is determined by the background spin correlation. The Mott transition can be realized either by forming the chargon gap or by condensing the background spinons.
Cosmological consequences of Modified Gravity (MOG)
Toth, Viktor T
2010-01-01
As an alternative to the LCDM concordance model, Scalar-Tensor-Vector Modified Gravity (MOG) theory reproduces key cosmological observations without postulating the presence of an exotic dark matter component. MOG is a field theory based on an action principle, with a variable gravitational constant and a repulsive vector field with variable range. MOG yields a phenomenological acceleration law that includes strong tensorial gravity partially canceled by a repulsive massive vector force. This acceleration law can be used to model the CMB acoustic spectrum and the matter power spectrum yielding good agreement with observation. A key prediction of MOG is the presence of strong baryonic oscillations, which will be detectable by future surveys. MOG is also consistent with Type Ia supernova data. We also describe on-going research of the coupling between MOG and continuous matter, consistent with the weak equivalence principle and solar system observations.
The Integrated Bispectrum in Modified Gravity Theories
Munshi, Dipak
2016-01-01
Gravity-induced non-Gaussianity can provide important clues to Modified Gravity (MG) Theories. Several recent studies have suggested using the {\\it Integrated Bispectrum} (IB) as a probe for squeezed configuration of bispectrum. Extending previous studies on the IB, we include redshift-space distortions to study a class of (parametrised) MG theories that include the string-inspired Dvali, Gabadadze \\& Porrati (DGP) model. Various contributions from redshift-space distortions are derived in a transparent manner, and squeezed contributions from these terms are derived separately. Results are obtained using the Zel'dovich Approximation (ZA). Results are also presented for projected surveys (2D). We use the Press-Schechter (PS) and Sheth-Torman (ST) mass functions to compute the IB for collapsed objects that can readily be extended to peak-theory based approaches. The {\\em cumulant correlators} (CCs) generalise the ordinary {\\em cumulants} and are known to probe collapsed configurations of higher order correl...
A unified approach to variational derivatives of modified gravitational actions
Energy Technology Data Exchange (ETDEWEB)
Baykal, Ahmet [Department of Physics, Faculty of Science and Letters, Nigde University, 51240 Nigde (Turkey); Delice, Oezguer, E-mail: abaykal@nigde.edu.tr, E-mail: ozgur.delice@marmara.edu.tr [Department of Physics, Faculty of Science and Letters, Marmara University, 34722 Istanbul (Turkey)
2011-01-07
Our main aim in this paper is to promote the coframe variational method as a unified approach to derive field equations for any given gravitational action containing the algebraic functions of the scalars constructed from the Riemann curvature tensor and its contractions. We are able to derive a master equation which expresses the variational derivatives of the generalized gravitational actions in terms of the variational derivatives of its constituent curvature scalars. Using the Lagrange multiplier method relative to an orthonormal coframe, we investigate the variational procedures for modified gravitational Lagrangian densities in spacetime dimensions n {>=} 3. We study the well-known gravitational actions such as those involving the Gauss-Bonnet and Ricci-squared, Kretchmann scalar, Weyl-squared terms and their algebraic generalizations similar to generic f(R) theories and the algebraic generalization of sixth order gravitational Lagrangians. We put forth a new model involving the gravitational Chern-Simons term and also give three-dimensional new massive gravity equations in a new form in terms of the Cotton 2-form.
Tests of Modified Gravity with Dwarf Galaxies
Jain, Bhuvnesh
2011-01-01
In modified gravity theories that seek to explain cosmic acceleration, dwarf galaxies in low density environments can be subject to enhanced forces. The class of scalar-tensor theories, which includes f(R) gravity, predict such a force enhancement (massive galaxies like the Milky Way can evade it through a screening mechanism that protects the interior of the galaxy from this "fifth" force). We study observable deviations from GR in the disks of late-type dwarf galaxies moving under gravity. The fifth-force acts on the dark matter and HI gas disk, but not on the stellar disk owing to the self-screening of main sequence stars. We find four distinct observable effects in such disk galaxies: 1. A displacement of the stellar disk from the HI disk. 2. Warping of the stellar disk along the direction of the external force. 3. Enhancement of the rotation curve measured from the HI gas compared to that of the stellar disk. 4. Asymmetry in the rotation curve of the stellar disk. We estimate that the spatial effects can...
Affine group representation formalism for four dimensional, Lorentzian, quantum gravity
Ching-Yi, Chou; Soo, Chopin
2012-01-01
The Hamiltonian constraint of 4-dimensional General Relativity is recast explicitly in terms of the Chern--Simons functional and the local volume operator. In conjunction with the algebraic quantization program, application of the affine quantization concept due to Klauder facilitates the construction of solutions to all of the the quantum constraints in the Ashtekar variables and their associated Hilbert space. A physical Hilbert space is constructed for Lorentzian signature gravity with nonzero cosmological constant in the form of unitary, irreducible representations of the affine group.
Holographic Ward identities: Examples from 2+1 gravity
Bañados, M; Banados, Maximo; Caro, Rodrigo
2004-01-01
In the AdS/CFT correspondence the boundary Ward identities are encoded in the bulk constraints. We study the three-dimensional version of this result using the Chern-Simons formulation of gravity. Due the metric boundary conditions the conformal identities cannot be derived in a straightforward way from the chiral ones. We pay special attention to this case and find the necessary modifications to the chiral currents in order to find the two Virasoro operators. The supersymmetric Ward identities are studied as well.
First law of entanglement entropy in topologically massive gravity
Cheng, Long; Hung, Ling-Yan; Liu, Si-Nong; Zhou, Hong-Zhe
2016-09-01
In this paper we explore the validity of the first law of entanglement entropy in the context of topologically massive gravity (TMG). We find that the variation of the holographic entanglement entropy under perturbation from the pure anti-de Sitter background satisfies the first law upon imposing the bulk equations of motion in a given time slice, despite the appearance of instabilities in the bulk for generic gravitational Chern-Simons coupling μ . The Noether-Wald entropy is different from the holographic entanglement entropy in a general boosted frame. However, this discrepancy does not affect the entanglement first law.
The holographic ward identity: examples from 2+1 gravity
Energy Technology Data Exchange (ETDEWEB)
Banados, Maximo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile)]. E-mail: mbanados@fis.puc.cl; Caro, Rodrigo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile)]. E-mail: mbanados@fis.puc.cl
2004-12-01
In the AdS/CFT correspondence the boundary Ward identities are encoded in the bulk constraints. We study the three-dimensional version of this result using the Chern-Simons formulation of gravity. Due to the metric boundary conditions the conformal identities cannot be derived in a straightforward way from the chiral ones. We pay special attention to this case and find the necessary modifications to the chiral currents in order to find the two Virasoro operators. The supersymmetric Ward identities are studied as well. (author)
The integrated bispectrum in modified gravity theories
Munshi, Dipak
2017-01-01
Gravity-induced non-Gaussianity can provide important clues to Modified Gravity (MG) Theories. Several recent studies have suggested using the Integrated Bispectrum (IB) as a probe for squeezed configuration of bispectrum. Extending previous studies on the IB, we include redshift-space distortions to study a class of (parametrised) MG theories that include the string-inspired Dvali, Gabadadze & Porrati (DGP) model. Various contributions from redshift-space distortions are derived in a transparent manner, and squeezed contributions from these terms are derived separately. Results are obtained using the Zel'dovich Approximation (ZA). Results are also presented for projected surveys (2D). We use the Press-Schechter (PS) and Sheth-Tormen (ST) mass functions to compute the IB for collapsed objects that can readily be extended to peak-theory based approaches. The cumulant correlators (CCs) generalise the ordinary cumulants and are known to probe collapsed configurations of higher order correlation functions. We generalise the concept of CCs to halos of different masses. We also introduce a generating function based approach to analyse more general non-local biasing models. The Fourier representations of the CCs, the skew-spectrum, or the kurt-spctra are discussed in this context. The results are relevant for the study of the Minkowski Functionals (MF) of collapsed tracers in redshift-space.
Crossing of the phantom divide in modified gravity
Bamba, Kazuharu; Nojiri, Shin'ichi; Odintsov, Sergei D
2009-01-01
We reconstruct an explicit model of modified gravity in which a crossing of the phantom divide can be realized. It is shown that the Big Rip singularity appears in the model of modified gravity, whereas that the (finite-time) Big Rip singularity in modified gravity is transformed to the infinite-time singularity in the corresponding scalar field theory obtained through the conformal transformation. Furthermore, we investigate the relations between the scalar field theories realizing a crossing of the phantom divide and the corresponding modified gravitational theories by using the inverse conformal transformation. It is demonstrated that the scalar field theories describing the non-phantom phase (phantom one with the Big Rip) can be represented as the theories of real (complex) $F(R)$ gravity through the inverse (complex) conformal transformation. We also study a viable model of modified gravity in which the transition from the de Sitter universe to the phantom phase can occur.
Imperfect fluid cosmological model in modified gravity
Samanta, G C
2016-01-01
In this article, we considered the bulk viscous fluid in the formalism of modified gravity in which the general form of a gravitational action is $f(R, T)$ function, where $R$ is the curvature scalar and $T$ is the trace of the energy momentum tensor within the frame of flat FRW space time. The cosmological model dominated by bulk viscous matter with total bulk viscous coefficient expressed as a linear combination of the velocity and acceleration of the expansion of the universe in such a way that $\\xi=\\xi_0+\\xi_1\\frac{\\dot{a}}{a}+\\xi_2\\frac{\\ddot{a}}{\\dot{a}}$, where $\\xi_0$, $\\xi_1$ and $\\xi_2$ are constants. We take $p=(\\gamma-1)\\rho$, where $0\\le\\gamma\\le2$ as an equation of state for perfect fluid. The exact solutions to the corresponding field equations are obtained by assuming a particular model of the form of $f(R, T)=R+2f(T)$, where $f(T)=\\lambda T$, $\\lambda$ is constant. We studied the four possible scenarios for different values of $\\gamma$, such as $\\gamma=0$, $\\gamma=\\frac{2}{3}$, $\\gamma=1$ and...
Observable physical modes of modified gravity
Hojjati, Alireza; Silvestri, Alessandra; Zhao, Gong-Bo
2013-01-01
At linear order in cosmological perturbations, departures from the growth in the cosmological standard model can be quantified in terms of two functions of redshift z and Fourier number k. Previous studies have performed principal component forecasts for several choices of these two functions, based on expected capabilities of upcoming large structure surveys. It is typically found that there will be many well-constrained degrees of freedom. However, not all and, probably most, of these degrees of freedom were physical if the parametrization had allowed for an arbitrary k-dependence. In this paper, we restrict the k-dependence to that allowed in local theories of gravity under the quasi-static approximation, i.e. ratios of polynomials in k, and identify the best constrained features in the (z,k)-dependence of the commonly considered functions $\\mu$ and $\\gamma$ as measured by an LSST-like weak lensing survey. We find that about 10 eigenmodes of modified growth can be constrained with a better than a percent a...
Testing Modified Gravity with Dwarf Spheroidal Galaxies
Haghi, Hosein; Amiri, Vahid
2016-08-01
The observed velocity dispersion of the classical dwarf spheroidal (dSph) galaxies of the Milky Way (MW) requires the Newtonian stellar mass-to-light (M★/L) ratios in the range of about 10 to more than 100 solar units, that are well outside the acceptable limit predicted by stellar population synthesis (SPS) models. Using Jeans analysis, we calculate the line-of-sight velocity dispersion (σ _ph {los}) of stars in eight MW dSphs in the context of the Modified Gravity (MOG) theory of Moffat, assuming a constant M★/L ratio without invoking the exotic cold dark matter. First, we use the weak field approximation of MOG and assume the two parameters α and μ of the theory to be constant as has already been inferred from fitting to the observed rotational data of the THINGS catalog of galaxies. We find that the derived M★/L ratios for almost all dSphs are too large to be explained by the stellar population values. In order to fit the line-of-sight velocity dispersions of the dSph with reasonable M★/L values we must vary α and μ on a case by case basis. A common pair of values cannot be found for all dSphs. Comparing with the values found from rotation curve fitting, it appears that μ correlates strongly with galaxy luminosity, shedding doubt on it as a universal constant.
Testing modified gravity with dwarf spheroidal galaxies
Haghi, Hosein
2016-01-01
The observed velocity dispersion of the classical dwarf spheroidal (dSph) galaxies of the Milky Way (MW) requires the Newtonian stellar mass-to-light ($M_*/L$) ratios in the range of about 10 to more than 100 solar units that are well outside the acceptable limit predicted by stellar population synthesis models. Using Jeans analysis, we calculate the line-of-sight velocity dispersion ($\\sigma_{\\emph{los}}$) of stars in eight MW dSphs in the context of the modified gravity (MOG) theory of Moffat, assuming a constant $M_*/L$ ratio without invoking the exotic cold dark matter. First, we use the weak field approximation of MOG and assume the two parameters $ \\alpha $ and $ \\mu $ of the theory to be constant as has already been inferred from fitting to the observed rotational data of The HI Nearby Galaxy Survey catalogue of galaxies. We find that the derived $M_*/L$ ratios for almost all dSphs are too large to be explained by the stellar population values. In order to fit the line-of-sight velocity dispersions of ...
Testing modified gravity with dwarf spheroidal galaxies
Haghi, Hosein; Amiri, Vahid
2016-12-01
The observed velocity dispersion of the classical dwarf spheroidal (dSph) galaxies of the Milky Way (MW) requires the Newtonian stellar mass-to-light (M*/L) ratios in the range of about 10 to more than 100 solar units that are well outside the acceptable limit predicted by stellar population synthesis models. Using Jeans analysis, we calculate the line-of-sight velocity dispersion (σlos) of stars in eight MW dSphs in the context of the modified gravity (MOG) theory of Moffat, assuming a constant M*/L ratio without invoking the exotic cold dark matter. First, we use the weak field approximation of MOG and assume the two parameters α and μ of the theory to be constant as has already been inferred from fitting to the observed rotational data of The H I Nearby Galaxy Survey catalogue of galaxies. We find that the derived M*/L ratios for almost all dSphs are too large to be explained by the stellar population values. In order to fit the line-of-sight velocity dispersions of the dSph with reasonable M*/L values, we must vary α and μ on a case by case basis. A common pair of values cannot be found for all dSphs. Comparing with the values found from rotation curve fitting, it appears that μ correlates strongly with galaxy luminosity, shedding doubt on it as a universal constant.
A topological-like model for gravity in 4D space-time
Energy Technology Data Exchange (ETDEWEB)
Morales, Ivan; Neves, Bruno; Oporto, Zui; Piguet, Olivier [Universidade Federal de Vicosa-UFV, Departamento de Fisica, Vicosa, MG (Brazil)
2016-04-15
In this paper we consider a model for gravity in four-dimensional space-time originally proposed by Chamseddine, which may be derived by dimensional reduction and truncation from a five-dimensional Chern-Simons theory. Its topological origin makes it an interesting candidate for an easier quantization, e.g., in the loop quantization framework. The present paper is dedicated to a classical analysis of the model's properties. Cosmological solutions as well as wave solutions are found and compared with the corresponding solutions of Einstein's general relativity with cosmological constant. (orig.)
Matter Loops Corrected Modified Gravity in Palatini Formulation
Institute of Scientific and Technical Information of China (English)
MENG Xin-He; WANG Peng
2008-01-01
Recently,corrections to the standard Einstein Hilbert action were proposed to explain the current cosmic acceleration in stead of introducing dark energy.In the Palatini formulation of those modified gravity models,there is an important observation due to Arkani-Hamed:matter loops will give rise to a correction to the modified gravity action proportional to the Ricci scalar of the metric.In the presence of such a term,we show that the current forms of modified gravity models in Palatini formulation,specifically,the 1/ R gravity and in R gravity,will have phantoms.Then we study the possible instabilities due to the presence of phantom fields.We show that the strong instability in the metric formulation of 1/ R gravity indicated by Dolgov and Kawasaki will not appear and the decay timescales for the phantom fields may be long enough for the theories to make sense as effective field theory.On the other hand,if we change the sign of the modification terms to eliminate the phantoms,some other inconsistencies will arise for the various versions of the modified gravity models.Finally,we comment on the universal property of the Palatini formulation of the matter loops corrected modified gravity models and its implications.
Modified gravity and binary pulsars: the Lorentz violating case
Blas, Diego
2016-01-01
The dynamics of binary pulsars can be used to test different aspects of gravitation. This is particularly important to constrain alternatives to general relativity in regimes which are not probed by other methods. In this short contribution, I will describe the case of theories of gravity without Lorentz invariance. The latter are important in the context of quantum gravity and modify the laws of gravity at basically all scales.
Symmetric Space Cartan Connections and Gravity in Three and Four Dimensions
Directory of Open Access Journals (Sweden)
Derek K. Wise
2009-08-01
Full Text Available Einstein gravity in both 3 and 4 dimensions, as well as some interesting generalizations, can be written as gauge theories in which the connection is a Cartan connection for geometry modeled on a symmetric space. The relevant models in 3 dimensions include Einstein gravity in Chern-Simons form, as well as a new formulation of topologically massive gravity, with arbitrary cosmological constant, as a single constrained Chern-Simons action. In 4 dimensions the main model of interest is MacDowell-Mansouri gravity, generalized to include the Immirzi parameter in a natural way. I formulate these theories in Cartan geometric language, emphasizing also the role played by the symmetric space structure of the model. I also explain how, from the perspective of these Cartan-geometric formulations, both the topological mass in 3d and the Immirzi parameter in 4d are the result of non-simplicity of the Lorentz Lie algebra so(3,1 and its relatives. Finally, I suggest how the language of Cartan geometry provides a guiding principle for elegantly reformulating any 'gauge theory of geometry'.
Stability of the Einstein static universe in modified theories of gravity
Boehmer, Christian G.; Hollenstein, Lukas; Lobo, Francisco S. N.; Seahra, Sanjeev S.
2010-01-01
We present a brief overview of the stability analysis of the Einstein static universe in various modified theories of gravity, like f(R) gravity, Gauss-Bonnet or f(G) gravity, and Horava-Lifshitz gravity.
Bouncing cosmology in modified Gauss–Bonnet gravity
Energy Technology Data Exchange (ETDEWEB)
Bamba, Kazuharu [Leading Graduate School Promotion Center, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Makarenko, Andrey N. [Tomsk State Pedagogical University, ul. Kievskaya, 60, 634061 Tomsk (Russian Federation); National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk (Russian Federation); Myagky, Alexandr N. [National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050 Tomsk (Russian Federation); Odintsov, Sergei D. [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain); Institut de Ciencies de l' Espai (CSIC–IEEC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); King Abdulaziz University (KAU), Jeddah (Saudi Arabia)
2014-05-01
We explore bounce cosmology in F(G) gravity with the Gauss–Bonnet invariant G. We reconstruct F(G) gravity theory to realize the bouncing behavior in the early universe and examine the stability conditions for its cosmological solutions. It is demonstrated that the bouncing behavior with an exponential as well as a power-law scale factor naturally occurs in modified Gauss–Bonnet gravity. We also derive the F(G) gravity model to produce the ekpyrotic scenario. Furthermore, we construct the bounce with the scale factor composed of a sum of two exponential functions and show that not only the early-time bounce but also the late-time cosmic acceleration can occur in the corresponding modified Gauss–Bonnet gravity. Also, the bounce and late-time solutions in this unified model are explicitly analyzed.
Bouncing cosmology in modified Gauss-Bonnet gravity
Bamba, Kazuharu; Myagky, Alexandr N; Odintsov, Sergei D
2014-01-01
We explore bounce cosmology in $F(\\mathcal{G})$ gravity with the Gauss-Bonnet invariant $\\mathcal{G}$. We reconstruct $F(\\mathcal{G})$ gravity theory to realize the bouncing behavior in the early universe and examine the stability conditions for its cosmological solutions. It is demonstrated that the bouncing behavior with an exponential as well as a power-law scale factor naturally occurs in modified Gauss-Bonnet gravity. We also derive the $F(\\mathcal{G})$ gravity model to produce the ekpyrotic scenario. Furthermore, we construct the bounce with the scale factor composed of a sum of two exponential functions and show that not only the early-time bounce but also the late-time cosmic acceleration can occur in the corresponding modified Gauss-Bonnet gravity. Also, the bounce and late-time solutions in this unified model is explicitly analyzed.
Asymptotic dynamics of three-dimensional gravity
Donnay, Laura
2016-01-01
These are the lectures notes of the course given at the Eleventh Modave Summer School in Mathematical Physics, 2015, aimed at PhD candidates and junior researchers in theoretical physics. We review in details the result of Coussaert-Henneaux-van Driel showing that the asymptotic dynamics of $(2+1)$- dimensional gravity with negative cosmological constant is described at the classical level by Liouville theory. Boundary conditions implement the asymptotic reduction in two steps: the first set reduces the $SL(2,\\mathbb R)\\times SL(2,\\mathbb R)$ Chern-Simons action, equivalent to the Einstein action, to a non-chiral $SL(2,\\mathbb R)$ Wess-Zumino-Witten model, while the second set imposes constraints on the WZW currents that reduce further the action to Liouville theory. We discuss the issues of considering the latter as an effective description of the dual conformal field theory describing AdS$_3$ gravity beyond the semi-classical regime.
White Dwarf Critical Tests for Modified Gravity
Jain, Rajeev Kumar; Nielsen, Niklas Grønlund
2015-01-01
Scalar-tensor theories of gravity can lead to modifications of the gravitational force inside astrophysical objects. We exhibit that compact stars such as white dwarfs provide a unique set-up to test such deviations from Newtonian gravitational physics inside the stars. We obtain stringent and independent constraints on the parameter $\\Upsilon$ characterizing the deviations from gravity using the mass-radius relation, the Chandrasekhar mass limit and the maximal rotational frequency of white dwarfs. We find that white dwarfs impose stronger constraints on $\\Upsilon$ than the red and brown dwarfs.
Isolated Horizons and Black Hole Entropy in Loop Quantum Gravity
Directory of Open Access Journals (Sweden)
Jacobo Diaz-Polo
2012-08-01
Full Text Available We review the black hole entropy calculation in the framework of Loop Quantum Gravity based on the quasi-local definition of a black hole encoded in the isolated horizon formalism. We show, by means of the covariant phase space framework, the appearance in the conserved symplectic structure of a boundary term corresponding to a Chern-Simons theory on the horizon and present its quantization both in the U(1 gauge fixed version and in the fully SU(2 invariant one. We then describe the boundary degrees of freedom counting techniques developed for an infinite value of the Chern-Simons level case and, less rigorously, for the case of a finite value. This allows us to perform a comparison between the U(1 and SU(2 approaches and provide a state of the art analysis of their common features and different implications for the entropy calculations. In particular, we comment on different points of view regarding the nature of the horizon degrees of freedom and the role played by the Barbero-Immirzi parameter. We conclude by presenting some of the most recent results concerning possible observational tests for theory.
Analyzing modified unimodular gravity via Lagrange multipliers
Sáez-Gómez, Diego
2016-06-01
The so-called unimodular version of general relativity is revisited. Unimodular gravity is constructed by fixing the determinant of the metric, which leads to the trace-free part of the equations instead of the usual Einstein field equations. Then a cosmological constant naturally arises as an integration constant. While unimodular gravity turns out to be equivalent to general relativity (GR) at the classical level, it provides important differences at the quantum level. Here we extend the unimodular constraint to some extensions of general relativity that have drawn a lot of attention over the last years—f (R ) gravity (or its scalar-tensor picture) and Gauss-Bonnet gravity. The corresponding unimodular version of such theories is constructed as well as the conformal transformation that relates the Einstein and Jordan frames for these nonminimally coupled theories. From the classical point of view, the unimodular versions of such extensions are completely equivalent to their originals, but an effective cosmological constant arises naturally, which may provide a richer description of the evolution of the Universe. Here we analyze the case of Starobisnky inflation and compare it with the original one.
Voids in Modified Gravity: Excursion Set Predictions
Clampitt, Joseph; Li, Baojiu
2013-01-01
We investigate the behavior of the fifth force in voids in chameleon models using the spherical collapse method. Contrary to Newtonian gravity, we find the fifth force is repulsive in voids. The strength of the fifth force depends on the density inside and outside the void region as well as its radius. It can be many times larger than the Newtonian force and their ratio is in principle unbound. This is very different from the case in halos, where the fifth force is no more than 1/3 of gravity. The evolution of voids is governed by the Newtonian gravity, the effective dark energy force and the fifth force. While the first two forces are common in both LCDM and chameleon universes, the fifth force is unique to the latter. Driven by the outward-pointing fifth force, individual voids in chameleon models expand faster and grow larger than in a LCDM universe. The expansion velocity of the void shell can be 20% to 30% larger for voids of a few Mpc/h in radius, while their sizes can be larger by ~10%. These differenc...
Black holes in modified gravity theories
de la Cruz-Dombriz, Alvaro; Maroto, Antonio L
2010-01-01
In the context of $f(R)$ gravity theories, the issue of finding static and spherically symmetric black hole solutions is addressed. Two approaches to study the existence of such solutions are considered: first, constant curvature solutions, and second, the general case (without imposing constant curvature) is also studied. Performing a perturbative expansion around the Einstein-Hilbert action, it is found that only solutions of the Schwarzschild-(Anti-) de Sitter type are present (up to second order in perturbations) and the explicit expressions for these solutions are provided in terms of the $f(R)$ function. Finally we consider the thermodynamics of black holes in Anti-de Sitter space-time and study their local and global stability.
Modified Gravity and the Radiation Dominated Epoch
van de Bruck, C
2012-01-01
In this paper we consider scalar-tensor theories, allowing for both conformal and disformal couplings to a fluid with a generic equation of state. We derive the effective coupling for both background cosmology and for perturbations in that fluid. As an application we consider the scalar degree of freedom to be coupled to baryons and study the dynamics of the tightly coupled photon-baryon fluid in the early universe. We derive an expression for the effective speed of sound, which differs from its value in General Relativity. We apply our findings to the \\mu-distortion of the cosmic microwave background radiation, which depends on the effective sound-speed of the photon-baryon fluid, and show that the predictions differ from General Relativity. Thus, the \\mu-distortion provides further information about gravity in the very early universe well before decoupling.
Quantum gravity as a Fermi liquid
Alexander, Stephon H S
2008-01-01
We present a reformulation of loop quantum gravity with a cosmological constant and no matter as a Fermi-liquid theory. When the topological sector is deformed and large gauge symmetry is broken, we show that the Chern-Simons state reduces to Jacobson's degenerate sector describing 1+1 dimensional propagating fermions with nonlocal interactions. The Hamiltonian admits a dual description which we realize in the simple BCS model of superconductivity. On one hand, Cooper pairs are interpreted as wormhole correlations at the de Sitter horizon; their number yields the de Sitter entropy. On the other hand, BCS is mapped into a deformed conformal field theory reproducing the structure of quantum spin networks. When area measurements are performed, Cooper-pair insertions are activated on those edges of the spin network intersecting the given area, thus providing a description of quantum measurements in terms of excitations of a Fermi sea to superconducting levels. The cosmological constant problem is naturally addres...
Time delays across saddles as a test of modified gravity
Magueijo, Joao
2012-01-01
Modified gravity theories can produce strong signals in the vicinity of the saddles of the total gravitational potential. In a sub-class of these models this translates into diverging time-delays for echoes crossing the saddles. Such models arise from the possibility that gravity might be infrared divergent or confined, and if suitably designed they are very difficult to rule out. We show that Lunar Laser Ranging during an eclipse could probe the time-delay effect within meters of the saddle, thereby proving or excluding these models. Very Large Baseline Interferometry, instead, could target delays across the Jupiter-Sun saddle. Such experiments would shed light on the infrared behaviour of gravity and examine the puzzling possibility that there might be well-hidden regions of strong gravity and even singularities inside the solar system.
Massive and modified gravity as self-gravitating media
Ballesteros, Guillermo; Pilo, Luigi
2016-01-01
We study the effective field theory that describes the low-energy physics of self-gravitating media. The field content consists of four derivatively coupled scalar fields that can be identified with the internal comoving coordinates of the medium. Imposing SO(3) internal spatial invariance, the theory describes supersolids. Stronger symmetry requirements lead to superfluids, solids and perfect fluids, at lowest order in derivatives. In the unitary gauge, massive gravity emerges, being thus the result of a continuous medium propagating in spacetime. Our results can be used to explore systematically the effects and signatures of modifying gravity consistently at large distances. The dark sector is then described as a self-gravitating medium with dynamical and thermodynamic properties dictated by internal symmetries. These results indicate that the divide between dark energy and modified gravity, at large distance scales, is simply a gauge choice.
Cosmic acceleration and the challenge of modifying gravity
Trodden, Mark
2010-01-01
I briefly discuss the challenges presented by attempting to modify general relativity to obtain an explanation for the observed accelerated expansion of the universe. Foremost among these are the questions of theoretical consistency - the avoidance of ghosts in particular - and the constraints imposed by precision local tests of gravity within the solar system. For those models that clear these highly constraining hurdles, modern observational cosmology offers its own suite of tests, improving with upcoming datasets, that offer the possibility of ruling out modified gravity approaches or providing an intriguing hint of new infrared physics. In the second half of the talk, I discuss a recent approach to extracting cosmology from higher-dimensional induced gravity models.
Galactic space-times in modified theories of gravity
Dey, Dipanjan; Sarkar, Tapobrata
2014-01-01
We study Bertrand space-times (BSTs), which have been proposed as viable models of space-times seeded by galactic dark matter, in modified theories of gravity. We first critically examine the issue of galactic rotation curves in General Relativity, and establish the usefulness of BSTs to fit experimental data in this context. We then study BSTs in metric $f(R)$ gravity and in Brans-Dicke theories. For the former, the nature of the Newtonian potential is established, and we also compute the effective equation of state and show that it can provide good fits to some recent experimental results. For the latter, we calculate the Brans-Dicke scalar analytically in some limits and numerically in general, and find interesting constraints on the parameters of the theory. Our results provide evidence for the physical nature of Bertrand space-times in modified theories of gravity.
Cosmic Tsunamis in Modified Gravity: Scalar waves disrupting screening mechanisms
Hagala, R; Mota, D F
2016-01-01
Extending General Relativity by adding extra degrees of freedom is a popular approach to explain the accelerated expansion of the universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test General Relativity in a wide range of scales. The viability of a given modified theory of gravity therefore strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of the screening mechanisms, thereby spoiling the viability of modified gravity theories. Specifically, we show that the waves produced can increase the amplitude of the fifth force and the Parametrized Post Newtonian parameters by several orders of magnitude.
Cosmological implications of modified gravity induced by quantum metric fluctuations
Liu, Xing; Liang, Shi-Dong
2016-01-01
We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a nonminimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For...
Modified gravity from the nonperturbative quantization of a metric
Energy Technology Data Exchange (ETDEWEB)
Dzhunushaliev, Vladimir [Al-Farabi Kazakh National University, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); IETP, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physicotechnical Problems and Material Science, NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan); Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany); Eurasian National University, Institute for Basic Research, Astana (Kazakhstan); Folomeev, Vladimir [IETP, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physicotechnical Problems and Material Science, NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan); Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany); Kleihaus, Burkhard; Kunz, Jutta [Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany)
2015-04-01
Based on certain assumptions for the expectation value of a product of the quantum fluctuating metric at two points, the gravitational and scalar field Lagrangians are evaluated. Assuming a vanishing expectation value of the first-order terms of the metric, the calculations are performed with an accuracy of second order. It is shown that such quantum corrections give rise to modified gravity. (orig.)
Non-minimal curvature-matter couplings in modified gravity
Bertolami, Orfeu; Lobo, Francisco S N; Páramos, Jorge
2008-01-01
Recently, in the context of f(R) modified theories of gravity, it was shown that a curvature-matter coupling induces a non-vanishing covariant derivative of the energy-momentum, implying non-geodesic motion and, under appropriate conditions, leading to the appearance of an extra force. We study the implications of this proposal and discuss some directions for future research.
$pp$-waves in modified gravity
Baykal, Ahmet
2015-01-01
The family of metrics corresponding to the plane-fronted gravitational waves with parallel propagation, commonly referred to as the family of pp-wave metrics, is studied in the context of various modified gravitational models in a self-contained and coherent manner by using a variant of the null coframe formulation of Newman and Penrose and the exterior algebra of differential forms on pseudo-Riemannian manifolds.
A parametrisation of modified gravity on nonlinear cosmological scales
Lombriser, Lucas
2016-01-01
Viable modifications of gravity on cosmological scales predominantly rely on screening mechanisms to recover Einstein's Theory of General Relativity in the Solar System, where it has been well tested. A parametrisation of the effects of such modifications in the spherical collapse model is presented here for the use of modelling the modified nonlinear cosmological structure. The formalism allows an embedding of the different screening mechanisms operating in scalar-tensor theories through large values of the gravitational potential or its first or second derivatives as well as of linear suppression effects or more general transitions between modified and Einstein gravity limits. Each screening or suppression mechanism is parametrised by a time, mass, and environment dependent screening scale, an effective modified gravitational coupling in the fully unscreened limit that can be matched to linear theory, the exponent of a power-law radial profile of the screened coupling, determined by derivatives, symmetries,...
Modified Bekenstein-Hawking System in f( R) Gravity
Dutta, Jibitesh; Mitra, Saugata; Chetry, Binod
2016-10-01
The present work deals with four alternative formulation of Bekenstein system on event horizon in f( R) gravity. While thermodynamical laws holds in universe bounded by apparent horizon, these laws break down on event horizon. With alternative formulation of thermodynamical parameters (temperature and entropy), thermodynamical laws hold on event horizon in Einstein Gravity. With this motivation, we extend the idea of generalised Hawking temperature and modified Bekenstein entropy in homogeneous and isotropic model of universe on event horizon and examine whether thermodynamical laws hold in f(R) gravity. Specifically, we examine and compare validity of generalised second law of thermodynamics (GSLT) and thermodynamical equilibrium (TE) in four alternative modified Bekenstein scenarios. As Dark energy is a possible dominant candidate for matter in the univerese and Holographic Dark Energy (HDE) can give effective description of f(R) gravity, so matter in the universe is taken as in the form interacting HDE. In order to understand the complicated expressions, finally the above laws are examined from graphical representation using three Planck data sets and it is found that generalised/modified Hawking temperature has a crucial role in making perfect thermodynamical system.
Time machines and traversable wormholes in modified theories of gravity
Directory of Open Access Journals (Sweden)
Lobo Francisco S.N.
2013-09-01
Full Text Available We review recent work on wormhole geometries in the context of modified theories of gravity, in particular, in f(R gravity and with a nonminimal curvature-matter coupling, and in the recently proposed hybrid metric-Palatini theory. In principle, the normal matter threading the throat can be shown to satisfy the energy conditions and it is the higher order curvatures terms that sustain these wormhole geometries. We also briefly review the conversion of wormholes into time-machines, explore several of the time travel paradoxes and possible remedies to these intriguing side-effects in wormhole physics.
Observational signatures of modified gravity on ultra-large scales
Baker, Tessa
2015-01-01
Extremely large surveys with future experiments like Euclid and the SKA will soon allow us to access perturbation modes close to the Hubble scale, with wavenumbers $k \\sim {\\cal H}$. If a modified gravity theory is responsible for cosmic acceleration, the Hubble scale is a natural regime for deviations from General Relativity (GR) to become manifest. The majority of studies to date have concentrated on the consequences of alternative gravity theories for the subhorizon, quasi-static regime, however. We investigate how modifications to the gravitational field equations affect perturbations around the Hubble scale, and how this translates into deviations of ultra large-scale relativistic observables from their GR behaviour. Adopting a model-independent ethos that relies only on the broad physical properties of gravity theories, we find that the deviations of the observables are small unless modifications to GR are drastic. The angular dependence and redshift evolution of the deviations is highly parameterisatio...
Can background cosmology hold the key for modified gravity tests?
Ceron-Hurtado, Juan J; Li, Baojiu
2016-01-01
Modified gravity theories are a popular alternative to dark energy as a possible explanation for the observed accelerating cosmic expansion, and their cosmological tests are currently an active research field. Studies in recent years have been increasingly focused on testing these theories in the nonlinear regime, which is computationally demanding. Here we show that, under certain circumstances, a whole class of theories can be ruled out by using background cosmology alone. This is possible because certain classes of models (i) are fundamentally incapable of producing specific background expansion histories, and (ii) said histories are incompatible with local gravity tests. As an example, we demonstrate that a popular class of models, $f(R)$ gravity, would not be viable if observations suggest even a slight deviation of the background expansion history from that of the $\\Lambda$CDM paradigm.
Extrasolar planets as a probe of modified gravity
Santos, Marcelo Vargas dos
2016-01-01
We propose a new method to test modified gravity theories, taking advantage of the available data on extrasolar planets. We computed the deviations from the Kepler third law and use that to constrain gravity theories beyond General Relativity. We investigate gravity models which incorporate three screening mechanisms: the Chameleon, the Symmetron and the Vainshtein. We find that data from exoplanets orbits put strong constraints in the parameter space for the Chameleon and Symmetron models, complementary to other methods, like interferometers for example. In opposition, the constraints on the $f(R)$ models are weaker with respect to the cosmological ones. With the constraints on Vainshtein we are able to work beyond the hypothesis that the crossover scale is of the same order of magnitude than the Hubble radius $r_c \\sim c^{-1}H_0$, which makes the screening work automatically.
Can background cosmology hold the key for modified gravity tests?
Ceron-Hurtado, Juan J.; He, Jian-hua; Li, Baojiu
2016-09-01
Modified gravity theories are a popular alternative to dark energy as a possible explanation for the observed accelerating cosmic expansion, and their cosmological tests are currently an active research field. Studies in recent years have been increasingly focused on testing these theories in the nonlinear regime, which is computationally demanding. Here we show that, under certain circumstances, a whole class of theories can be ruled out by using background cosmology alone. This is possible because certain classes of models (i) are fundamentally incapable of producing specific background expansion histories, and (ii) said histories are incompatible with local gravity tests. As an example, we demonstrate that a popular class of models, f (R ) gravity, would not be viable if observations suggest even a slight deviation of the background expansion history from that of the Λ CDM paradigm.
Superbounce and Loop Quantum Cosmology Ekpyrosis from Modified Gravity
Oikonomou, V K
2014-01-01
As is known, in modified cosmological theories of gravity many of the cosmologies which could not be generated by standard Einstein gravity, can be consistently described by $F(R)$ theories. Using known reconstruction techniques, we investigate which $F(R)$ theories can lead to a Hubble parameter describing two types of cosmological bounces, the superbounce model, related to supergravity and non-supersymmetric models of contracting ekpyrosis and also the Loop Quantum Cosmology modified ekpyrotic model. Since our method is an approximate method, we investigate the problem at large and small curvatures. As we evince, both models yield power law reconstructed $F(R)$ gravities, with the most interesting new feature being that both lead to an $R+aR^2$ gravity in the large curvature approximation. As we explicitly show, this result is not accidental and we study the general case which, within the approximations imposed by the employed reconstruction method, always leads to an $R^2$ in the large curvature limit. As ...
Constraining gravity with hadron physics: neutron stars, modified gravity and gravitational waves
Llanes-Estrada, Felipe J.
2017-03-01
The finding of Gravitational Waves (GW) by the aLIGO scientific and VIRGO collaborations opens opportunities to better test and understand strong interactions, both nuclear-hadronic and gravitational. Assuming General Relativity holds, one can constrain hadron physics at a neutron star. But precise knowledge of the Equation of State and transport properties in hadron matter can also be used to constrain the theory of gravity itself. I review a couple of these opportunities in the context of modified f (R) gravity, the maximum mass of neutron stars, and progress in the Equation of State of neutron matter from the chiral effective field theory of QCD.
Constraining gravity with hadron physics: neutron stars, modified gravity and gravitational waves
Llanes-Estrada, Felipe J
2016-01-01
The finding of Gravitational Waves by the aLIGO scientific and VIRGO collaborations opens opportunities to better test and understand strong interactions, both nuclear-hadronic and gravitational. Assuming General Relativity holds, one can constrain hadron physics at a neutron star. But precise knowledge of the Equation of State and transport properties in hadron matter can also be used to constrain the theory of gravity itself. I review a couple of these opportunities in the context of modified f(R) gravity, the maximum mass of neutron stars, and progress in the Equation of State of neutron matter from the chiral effective field theory of QCD.
Testing modified gravity at large distances with THINGS' rotation curves
Mastache, Jorge; de la Macorra, Axel
2012-01-01
Recently a new -quantum motivated- theory of gravity has been proposed that modifies the standard Newtonian potential at large distances when spherical symmetry is considered. Accordingly, Newtonian gravity is altered by adding an extra Rindler acceleration term that has to be -phenomenologically- determined. Here we consider a standard and a power-law generalization of the Rindler modified Newtonian potential. The new terms in the gravitational potential are hypothesized to play the role of dark matter in galaxies. Our galactic model includes the mass of the integrated gas, and stars for which we consider three stellar mass functions (Kroupa, diet-Salpeter, and free mass model). We test this idea by fitting rotation curves of seventeen Low Surface Brightness (LSB) galaxies from The HI Nearby Galaxy Survey (THINGS). We find that the Rindler parameters do not perform a suitable fit to the rotation curves in comparison to standard dark matter profiles (NFW and Burkert) and, in addition, the computed parameters ...
A parametrisation of modified gravity on nonlinear cosmological scales
Lombriser, Lucas
2016-11-01
Viable modifications of gravity on cosmological scales predominantly rely on screening mechanisms to recover Einstein's Theory of General Relativity in the Solar System, where it has been well tested. A parametrisation of the effects of such modifications in the spherical collapse model is presented here for the use of modelling the modified nonlinear cosmological structure. The formalism allows an embedding of the different screening mechanisms operating in scalar-tensor theories through large values of the gravitational potential or its first or second derivatives as well as of linear suppression effects or more general transitions between modified and Einstein gravity limits. Each screening or suppression mechanism is parametrised by a time, mass, and environment dependent screening scale, an effective modified gravitational coupling in the fully unscreened limit that can be matched to linear theory, the exponent of a power-law radial profile of the screened coupling, determined by derivatives, symmetries, and potentials in the scalar field equation, and an interpolation rate between the screened and unscreened limits. Along with generalised perturbative methods, the parametrisation may be used to formulate a nonlinear extension to the linear parametrised post-Friedmannian framework to enable generalised tests of gravity with the wealth of observations from the nonlinear cosmological regime.
Canonical quantum gravity in the Vassiliev invariants arena; 1, Kinematical structure
Di Bartolo, C; Griego, J R; Pullin, J; Bartolo, Cayetano Di; Gambini, Rodolfo; Griego, Jorge; Pullin, Jorge
2000-01-01
We generalize the idea of Vassiliev invariants to the spin network context, with the aim of using these invariants as a kinematical arena for a canonical quantization of gravity. This paper presents a detailed construction of these invariants (both ambient and regular isotopic) requiring a significant elaboration based on the use of Chern-Simons perturbation theory which extends the work of Kauffman, Martin and Witten to four-valent networks. We show that this space of knot invariants has the crucial property -from the point of view of the quantization of gravity- of being loop differentiable in the sense of distributions. This allows the definition of diffeomorphism and Hamiltonian constraints. We show that the invariants are annihilated by the diffeomorphism constraint. In a companion paper we elaborate on the definition of a Hamiltonian constraint, discuss the constraint algebra, and show that the construction leads to a consistent theory of canonical quantum gravity.
Cosmological implications of modified gravity induced by quantum metric fluctuations
Energy Technology Data Exchange (ETDEWEB)
Liu, Xing [Sun Yat-Sen University, School of Physics, Guangzhou (China); Sun Yat-Sen University, Yat Sen School, Guangzhou (China); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom); Liang, Shi-Dong [Sun Yat-Sen University, School of Physics, Guangzhou (China); Sun Yat-Sen University, State Key Laboratory of Optoelectronic Material and Technology, Guangdong Province Key Laboratory of Display Material and Technology, School of Physics, Guangzhou (China)
2016-08-15
We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a non-minimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For each considered model we obtain the gravitational field equations, and the generalized Friedmann equations for the case of a flat homogeneous and isotropic geometry. In some of these models the divergence of the matter energy-momentum tensor is non-zero, indicating a process of matter creation, which corresponds to an irreversible energy flow from the gravitational field to the matter fluid, and which is direct consequence of the non-minimal curvature-matter coupling. The cosmological evolution equations of these modified gravity models induced by the quantum fluctuations of the metric are investigated in detail by using both analytical and numerical methods, and it is shown that a large variety of cosmological models can be constructed, which, depending on the numerical values of the model parameters, can exhibit both accelerating and decelerating behaviors. (orig.)
Cosmological implications of modified gravity induced by quantum metric fluctuations
Liu, Xing; Harko, Tiberiu; Liang, Shi-Dong
2016-08-01
We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a non-minimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For each considered model we obtain the gravitational field equations, and the generalized Friedmann equations for the case of a flat homogeneous and isotropic geometry. In some of these models the divergence of the matter energy-momentum tensor is non-zero, indicating a process of matter creation, which corresponds to an irreversible energy flow from the gravitational field to the matter fluid, and which is direct consequence of the non-minimal curvature-matter coupling. The cosmological evolution equations of these modified gravity models induced by the quantum fluctuations of the metric are investigated in detail by using both analytical and numerical methods, and it is shown that a large variety of cosmological models can be constructed, which, depending on the numerical values of the model parameters, can exhibit both accelerating and decelerating behaviors.
Amaral, Marcelo M; Bubuianu, Laurenţiu; Irwin, Klee; Vacaru, Sergiu I; Woolridge, Daniel
2016-01-01
The goal of this work is to elaborate on new geometric methods of constructing exact and parametric quasiperiodic solutions for anamorphic cosmology models in modified gravity theories, MGTs, and general relativity, GR. There exist previously studied generic off-diagonal and diagonalizable cosmological metrics encoding gravitational and matter fields with quasicrystal like structures, QC, and holonomy corrections from loop quantum gravity, LQG. We apply the anholonomic frame deformation method, AFDM, in order to decouple the (modified) gravitational and matter field equations in general form. This allows us to find integral varieties of cosmological solutions determined by generating functions, effective sources, integration functions and constants. The coefficients of metrics and connections for such cosmological configurations depend, in general, on all spacetime coordinates and can be chosen to generate observable (quasi)-periodic/ aperiodic/ fractal / stochastic / (super) cluster / filament / polymer like...
Probing Modified Gravity Theories with ISW and CMB Lensing
Munshi, D; Renzi, A; Heavens, A; Coles, P
2014-01-01
The imprint of the cross-correlation of the Integrated Sachs-Wolfe effect (ISW) and lensing of the cosmic microwave background (CMB) radiation has recently been detected in the bispectrum of temperature maps. In this paper, we use the optimised skew-spectrum as well as skew-spectra associated with Minkowski Functionals (MFs) to test the possibility of using this signal to detect deviations in the theory of gravity away from General Relativity (GR). We find that the although both statistics can put constraints on modified gravity, the optimised skew-spectra are especially sensitive to the parameter $\\rB_0$ that denotes the the {\\em Compton wavelength} of the scalaron at the present epoch, and both can be used to put stringent constraints on any departure from GR, or pinpoint any systematics in the data. We investigate three modified gravity theories, namely: the Post-Parametrised Friedmanian (PPF) formalism; the Hu-Sawicki (HS) model; and the Bertschinger-Zukin (BZ) formalism. Employing a likelihood analysis f...
Exact path integral for 3D higher spin gravity
Honda, Masazumi; Iizuka, Norihiro; Tanaka, Akinori; Terashima, Seiji
2017-02-01
Extending the works of [Phys. Rev. Lett. 115, 161304 (2015), 10.1103/PhysRevLett.115.161304] and [Phys. Rev. D 93, 064014 (2016), 10.1103/PhysRevD.93.064014], we study three dimensional Euclidean higher spin gravity with negative cosmological constant. This theory can be formulated in terms of S L (N ,C ) Chern-Simons theory. By introducing auxiliary fields, we rewrite it in a supersymmetric way and compute its partition function exactly by using the localization method. We obtain a good expression for the partition function in terms of characters for the vacuum and primaries in 2D unitary conformal field theory with WN symmetry. We also check that the coefficients of the character expansion are positive integers and exhibit Cardy formula in the large central charge limit.
Smoothed Transitions in Higher Spin AdS Gravity
Banerjee, Shamik; Hellerman, Simeon; Hijano, Eliot; Lepage-Jutier, Arnaud; Maloney, Alexander; Shenker, Stephen
2012-01-01
We consider CFTs conjectured to be dual to higher spin theories of gravity in AdS_3 and AdS_4. Two dimensional CFTs with W_N symmetry are considered in the lambda=0 (k --> infinity) limit, where they are conjectured to be described by continuous orbifolds. The torus partition function is computed, using reasonable assumptions, and equals that of a free field theory. We find no phase transition at temperatures of order one; the usual Hawking-Page phase transition is removed by the highly degenerate light states associated with conical defect states in the bulk. Three dimensional Chern-Simons-matter CFTs with vector-like matter are considered on T^3, where the dynamics is described by an effective theory for the eigenvalues of the holonomies. Likewise, we find no evidence for a Hawking-Page phase transition at large level k.
Exact Path Integral for 3D Quantum Gravity II
Honda, Masazumi; Tanaka, Akinori; Terashima, Seiji
2015-01-01
Continuing the work arXiv:1504.05991, we discuss various aspects of three dimensional quantum gravity partition function in AdS in the semi-classical limit. The partition function is holomorphic and is the one which we obtained by using the localization technique of Chern-Simons theory in arXiv:1504.05991. We obtain a good expression for it in the summation form over Virasoro characters for the vacuum and primaries. A key ingredient for that is an interpretation of boundary localized fermion. We also check that the coefficients in the summation form over Virasoro characters of the partition function are positive integers and satisfy the Cardy formula. These give physical interpretation that these coefficients represent the number of primary fields in the dual CFT in the large k limit.
Exact Path Integral for 3D Higher Spin Gravity
Honda, Masazumi; Tanaka, Akinori; Terashima, Seiji
2015-01-01
Extending the works arXiv:1504.05991 and arXiv:1510.02142, we study three dimensional Euclidean higher spin gravity with negative cosmological constant. This theory can be formulated in terms of SL(N,C) Chern-Simons theory. By introducing auxiliary fields, we rewrite it in a supersymmetric way and compute its partition function exactly by using the localization method. We obtain a good expression for the partition function in terms of characters for the vacuum and primaries in 2D unitary CFT with W_N symmetry. We also check that the coefficients of the character expansion are positive integers and exhibit Cardy formula in the large central charge limit.
Extended knots and the space of states of quantum gravity
Griego, J R
1996-01-01
In the loop representation the quantum constraints of gravity can be solved. This fact allowed significant progress in the understanding of the space of states of the theory. The analysis of the constraints over loop dependent wavefunctions has been traditionally based upon geometric (in contrast to analytic) properties of the loops. The reason for this preferred way is twofold: for one hand the inherent difficulties associated with the analytic loop calculus, and on the other our limited knowledge about the analytic properties of knots invariants. Extended loops provide a way to overcome the difficulties at both levels. For one hand, a systematic method to construct analytic expressions of diffeomorphism invariants (the extended knots) in terms of the Chern-Simons propagators can be developed. Extended knots are simply related to ordinary knots (at least formally). The analytic expressions of knot invariants could be produced then in a generic way. On the other hand, the evaluation of the Hamiltonian over ex...
Planck 2015 results. XIV. Dark energy and modified gravity
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Maris, M.; Martin, P. G.; Martinelli, M.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Salvatelli, V.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Viel, M.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below ~2% (at 95% confidence) of the critical density, even when forced to play a role for z CMB lensing.
Weak lensing by galaxy troughs with modified gravity
Barreira, Alexandre; Bose, Sownak; Li, Baojiu; Llinares, Claudio
2017-02-01
We study the imprints that theories of gravity beyond GR can leave on the lensing signal around line of sight directions that are predominantly halo-underdense (called troughs) and halo-overdense. To carry out our investigations, we consider the normal branch of DGP gravity, as well as a phenomenological variant thereof that directly modifies the lensing potential. The predictions of these models are obtained with N-body simulation and ray-tracing methods using the ECOSMOG and Ray-Ramses codes. We analyse the stacked lensing convergence profiles around the underdense and overdense lines of sight, which exhibit, respectively, a suppression and a boost w.r.t. the mean in the field of view. The modifications to gravity in these models strengthen the signal w.r.t. ΛCDM in a scale-independent way. We find that the size of this effect is the same for both underdense and overdense lines of sight, which implies that the density field along the overdense directions on the sky is not sufficiently evolved to trigger the suppression effects of the screening mechanism. These results are robust to variations in the minimum halo mass and redshift ranges used to identify the lines of sight, as well as to different line of sight aperture sizes and criteria for their underdensity and overdensity thresholds.
Horava-Lifshitz Gravity and Effective Theory of the Fractional Quantum Hall Effect
Wu, Chaolun
2014-01-01
We show that Horava-Lifshitz gravity theory can be employed as a covariant framework to build an effective field theory for the fractional quantum Hall effect that respects all the spacetime symmetries such as non-relativistic diffeomorphism invariance and anisotropic Weyl invariance as well as the gauge symmetry. The key to this formalism is a set of correspondence relations that maps all the field degrees of freedom in the Horava-Lifshitz gravity theory to external background (source) fields among others in the effective action of the quantum Hall effect, according to their symmetry transformation properties. We originally derive the map as a holographic dictionary, but its form is independent of the existence of holographic duality. This paves the way for the application of Horava-Lifshitz holography on fractional quantum Hall effect. Using the simplest holographic Chern-Simons model, we compute the low energy effective action at leading orders and show that it captures universal electromagnetic and geomet...
Arun, K G
2013-01-01
Gravitational Wave (GW) observations of coalescing compact binaries will be unique probes of strong-field, dynamical aspects of relativistic gravity. We present a short review of various schemes proposed in the literature to test General Relativity (GR) and alternative theories of gravity using inspiral waveforms. Broadly these schemes may be classified into two types: model dependent and model independent. In the model dependent category, GW observations are compared against a specific waveform model representative of a particular theory or a class of theories like Scalar-Tensor theories, Dynamical Chern-Simons theory and Massive graviton theories. Model independent tests are attempts to write down a parametrised gravitational waveform where the free parameters take different values for different theories and (at least some of) which can be constrained by GW observations. We revisit some of the proposed bounds in the case of downscaled LISA configuration (eLISA) and compare them with the original LISA config...
Influence of electric charge and modified gravity on density irregularities
Energy Technology Data Exchange (ETDEWEB)
Bhatti, M.Z. Ul Haq; Yousaf, Z. [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2016-04-15
This work aims to identify some inhomogeneity factors for a plane symmetric topology with anisotropic and dissipative fluid under the effects of both electromagnetic field as well as Palatini f(R) gravity. We construct the modified field equations, kinematical quantities, and mass function to continue our analysis. We have explored the dynamical quantities, conservation equations and modified Ellis equations with the help of a viable f(R) model. Some particular cases are discussed with and without dissipation to investigate the corresponding inhomogeneity factors. For a non-radiating scenario, we examine such factors as dust, and isotropic and anisotropic matter in the presence of charge. For a dissipative fluid, we investigate the inhomogeneity factor with a charged dust cloud. We conclude that the electromagnetic field increases the inhomogeneity in matter while the extra curvature terms make the system more homogeneous with the evolution of time. (orig.)
Influence of Electric Charge and Modified Gravity on Density Irregularities
Bhatti, M Zaeem Ul Haq
2016-01-01
This work aims to identify some inhomogeneity factors for plane symmetric topology with anisotropic and dissipative fluid under the effects of both electromagnetic field as well as Palatini $f(R)$ gravity. We construct the modified field equations, kinematical quantities and mass function to continue our analysis. We have explored the dynamical quantities, conservation equations and modified Ellis equations with the help of a viable $f(R)$ model. Some particular cases are discussed with and without dissipation to investigate the corresponding inhomogeneity factors. For non-radiating scenario, we examine such factors with dust, isotropic and anisotropic matter in the presence of charge. For dissipative fluid, we investigate the inhomogeneity factor with charged dust cloud. We conclude that electromagnetic field increases the inhomogeneity in matter while the extra curvature terms make the system more homogeneous with the evolution of time.
General virial theorem for modified-gravity MOND
Milgrom, Mordehai
2014-01-01
An important and useful relation is known to hold in two specific MOND theories. It pertains to low-acceleration, isolated systems of pointlike masses, m_p, at positions r_p, subject to gravitational forces F_p. It reads sum_p r_p.F_p=-(2/3)(Ga0)^{1/2}[(\\sum_p m_p)^{3/2}-\\sum_p m_p^{3/2}]; a0 is the MOND acceleration constant. Here I show that this relation holds in the nonrelativistic limit of any modified-gravity MOND theory. It follows from only the basic tenets of MOND (as applied to such theories): departure from standard dynamics at accelerations below a0, and space-time scale invariance in the nonrelativistic, low-acceleration limit. This implies space-dilatation invariance of the static, gravitational-field equations, which, in turn, leads to the above point-mass virial relation. Thus, the various MOND predictions and tests based on this relation hold in any modified-gravity MOND theory. Since we do not know that any of the existing MOND theories point in the right direction, it is important to identi...
Gauss-Bonnet modified gravity models with bouncing behavior
Escofet, Anna
2015-01-01
After a short review of the state of the art in Gauss-Bonnet modified gravity, several illustrative examples are introduced and a few original dark energy models with quite interesting properties are discussed which exhibit, in a unified way, the three distinguished possible cosmological phases corresponding to phantom matter, quintessence, and ordinary matter, respectively. A model, in which the equation of state parameter, $w$, is a function of time is seen to lead either to a singularity of the Big Rip kind or to a bouncing solution which evolves into a de Sitter universe with $w=-1$. Gauss-Bonnet modified gravity models with bouncing behavior in the early stages of the universe evolution are found and tested for the validity and stability of the corresponding solutions. They allow for a unified description of a bouncing behavior at early times and the accelerated expansion at present which, as a consequence, may be explained by means of a dark energy model inspired by fundamental physics (string theory) a...
Gravitational wave memory: A new approach to study modified gravity
Du, Song Ming; Nishizawa, Atsushi
2016-11-01
It is well known that two types of gravitational wave memory exist in general relativity (GR): the linear memory and the nonlinear, or Christodoulou, memory. These effects, especially the latter, depend on the specific form of the Einstein equation. It can then be speculated that, in modified theories of gravity, the memory can differ from the GR prediction and provides novel phenomena to study these theories. We support this speculation by considering scalar-tensor theories, for which we find two new types of memory: the T memory and the S memory, which contribute to the tensor and scalar components of a gravitational wave, respectively. Specifically, the former is caused by the burst of energy carried away by scalar radiation, while the latter is intimately related to the no scalar hair property of black holes in scalar-tensor gravity. We estimate the size of these two types of memory in gravitational collapses and formulate a detection strategy for the S memory, which can be singled out from tensor gravitational waves. We show that (i) the S memory exists even in spherical symmetry and is observable under current model constraints, and (ii) while the T memory is usually much weaker than the S memory, it can become comparable in the case of spontaneous scalarization.
The phase-space analysis of modified gravity (MOG)
Jamali, Sara; Roshan, Mahmood
2016-09-01
We investigate the cosmological consequences of a scalar-vector-tensor theory of gravity known as modified gravity (MOG). In MOG, in addition to metric tensor, there are two scalar fields G( x) and μ (x), and one vector field φ _{α }(x). Using the phase space analysis, we explore the cosmological consequences of a model of MOG and find some new interesting features which are absent in Λ CDM model. More specifically we study the possibility that if the extra fields of this theory behave like dark energy to explain the cosmic speedup. More interestingly, with or without cosmological constant, a strongly phantom crossing occurs. Also we find that this theory in its original form (Λ ≠ 0) possesses a true sequence of cosmological epochs. However, we show that, surprisingly, there are two radiation-dominated epochs, f_5 and f_6, two matter-dominated phases, f_3 and f_4, and two late time accelerated eras, f_{12} and f7. Depending on the initial conditions the universe will realize only three of these six eras. However, the matter-dominated phases are dramatically different from the standard matter-dominated epoch. In these phases the cosmic scale factor grows as a(t)˜ t^{0.46} and t^{0.52}, respectively, which are slower than the standard case, i.e. a(t)˜ t^{2/3}. Considering these results we discuss the cosmological viability of MOG.
Gravitational Wave Memory: A New Approach to Study Modified Gravity
Du, Song Ming
2016-01-01
It is well known that two types of gravitational wave memory exist in general relativity (GR): the linear memory and the non-linear, or Christodoulou memory. These effects, especially the latter, depend on the specific form of Einstein equation. It can then be speculated that in modified theories of gravity, the memory can differ from the GR prediction, and provides novel phenomena to study these theories. We support this speculation by considering scalar-tensor theories, for which we find two new types of memory: the T memory and the S memory, which contribute to the tensor and scalar components of gravitational wave, respectively. In particular, the former is caused by the burst of energy carried away by scalar radiation, while the latter is intimately related to the no scalar hair property of black holes in scalar-tensor gravity. We estimate the size of these two types of memory in gravitational collapses, and formulate a detection strategy for the S memory, which can be singled out from tensor gravitation...
Perturbations of single-field inflation in modified gravity theory
Directory of Open Access Journals (Sweden)
Taotao Qiu
2015-05-01
Full Text Available In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form f(R. Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f. system, the (curvature perturbations are not equivalent in two frames, so despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the “real” ones as we always do for pure f(R theory or single field with nonminimal coupling. Here by pulling the results of curvature perturbations back into its original Jordan frame, we show explicitly the power spectrum and spectral index of the perturbations in the Jordan frame, as well as how it differs from the Einstein frame. We also fit our results with the newest Planck data. Since there is large parameter space in these models, we show that it is easy to fit the data very well.
Piercing the Vainshtein screen: Local constraints on modified gravity
Jiménez, Jose Beltrán; Velten, Hermano
2015-01-01
Modifications of gravity of the galileon type rely on the Vainshtein screening to pass solar system tests. Such a mechanism suppresses the fluctuations of the scalar field in the vicinity of localized sources, leaving the gravitons as the only mediators of gravitational interactions. We highlight that, in galileon 4 and 5 models and their shift-symmetric extensions, the inevitable presence of the scalar field gradient modifies the dynamics of the gravitons, leading to unscreened deviations from general relativity. The observational bounds on the gravitational slip parameter constrain the Horndeski-extensions of quartic and quintic galileons to the level of $10^{-5}$. The corresponding beyond-Horndeski models can also be constrained to the level of $10^{-2}$, by adding to the analysis the limits on the speed of gravitational waves coming from the observations of the orbital decay of the Hulse-Taylor pulsar.
Modified gravity in three dimensional metric-affine scenarios
Bambi, Cosimo; Rubiera-Garcia, D
2015-01-01
We consider metric-affine scenarios where a modified gravitational action is sourced by electrovacuum fields in a three dimensional space-time. Such scenarios are supported by the physics of crystalline structures with microscopic defects and, in particular, those that can be effectively treated as bi-dimensional (like graphene). We first study the case of $f(R)$ theories, finding deviations near the center as compared to the solutions of General Relativity. We then consider Born-Infeld gravity, which has raised a lot of interest in the last few years regarding its applications in astrophysics and cosmology, and show that new features always arise at a finite distance from the center. Several properties of the resulting space-times, in particular in presence of a cosmological constant term, are discussed.
Planck 2015 results: XIV. Dark energy and modified gravity
DEFF Research Database (Denmark)
Ade, P. A R; Aghanim, N.; Arnaud, M.
2016-01-01
We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well...... forced to play a role for z models. Lastly, we test a range of specific models, such as k-essence, f(R) theories......-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation...
Noether Symmetries Of A Modified Model In Teleparallel Gravity
Tajahmad, Behzad
2016-01-01
In this paper, we have presented the Noether symmetries of flat FRW spacetime in the context of a new action in Teleparallel Gravity which we construct it based on f(R) version. This modified action contains a coupling between scalar field potential and magnetism. Also, we introduce an innovative approach (B.N.S. Approach) for exact solutions which carry more conserved currents than Noether approach. By data analysis the exact solutions, obtained from Noether approach, late time acceleration and phase crossing are realized, and some deep connections with observational data such as age of universe, the present amount of scale factor, state and deceleration parameters are observed. In B.N.S. approach, we have considered dark energy dominated era.
Planck 2015 results. XIV. Dark energy and modified gravity
Ade, P.A.R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Heavens, A.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Ma, Y.Z.; Macias-Perez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Martin, P.G.; Martinelli, M.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Salvatelli, V.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Schaefer, B.M.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Viel, M.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.
2015-01-01
We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG), beyond the cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state, principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories and coupled DE. In addition to the latest Planck data, for our main analyses we use baryonic acoustic oscillations, type-Ia supernovae and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshif...
Ultralocal models of modified gravity without kinetic term
Brax, Philippe; Rizzo, Luca Alberto; Valageas, Patrick
2016-08-01
We present a class of modified-gravity theories which we call ultralocal models. We add a scalar field, with negligible kinetic terms, to the Einstein-Hilbert action. We also introduce a conformal coupling to matter. This gives rise to a new screening mechanism which is not entirely due to the nonlinearity of the scalar-field potential or the coupling function but to the absence of the kinetic term. As a result this removes any fifth force between isolated objects in vacuum. It turns out that these models are similar to chameleon-type theories with a large mass when considered outside the Compton wavelength but differ on shorter scales. The predictions of these models only depend on a single free function, as the potential and the coupling function are degenerate, with an amplitude given by a parameter α ≲10-6 , whose magnitude springs from requiring a small modification of Newton's potential astrophysically and cosmologically. This singles out a redshift zα˜α-1 /3≳100 where the fifth force is the greatest. The cosmological background follows the Λ cold dark matter (Λ CDM ) history within a 10-6 accuracy, while cosmological perturbations are significantly enhanced (or damped) on small scales, k ≳2 h Mpc-1 at z =0 . The spherical collapse and the halo mass function are modified in the same manner. We find that the modifications of gravity are greater for galactic or subgalactic structures. We also present a thermodynamic analysis of the nonlinear and inhomogeneous fifth-force regime where we find that the Universe is not made more inhomogeneous before zα when the fifth force dominates, and does not lead to the existence of clumped matter on extra small scales inside halos for large masses while this possibility exists for masses M ≲1 011M⊙ where the phenomenology of ultralocal models would be most different from Λ CDM .
Clear and measurable signature of modified gravity in the galaxy velocity field.
Hellwing, Wojciech A; Barreira, Alexandre; Frenk, Carlos S; Li, Baojiu; Cole, Shaun
2014-06-06
The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v_{12} are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ_{12}(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.
A clear and measurable signature of modified gravity in the galaxy velocity field
Hellwing, Wojciech A; Frenk, Carlos S; Li, Baojiu; Cole, Shaun
2014-01-01
The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution, $v_{12}$, are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion, $\\sigma_{12}(r)$, is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon $f(R)$ gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses exhibit deviations from General Relativity at the 5 to 10 $\\sigma$ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a smoking gun for modified gravity.
From Big to Little Rip in modified F(R,G) gravity
Makarenko, A N; Kirnos, I V
2012-01-01
We discuss the cosmological reconstruction in modified Gauss-Bonnet (GB) gravity. It is demonstrated that the modified GB gravity may describe the most interesting features of late-time cosmology. We derive explicit form of effective phantom cosmological models ending by the finite-time future singularity (Big Rip) and without singularities in the future (Little Rip).
Generalized Curvature-Matter Couplings in Modified Gravity
Directory of Open Access Journals (Sweden)
Tiberiu Harko
2014-07-01
Full Text Available In this work, we review a plethora of modified theories of gravity with generalized curvature-matter couplings. The explicit nonminimal couplings, for instance, between an arbitrary function of the scalar curvature R and the Lagrangian density of matter, induces a non-vanishing covariant derivative of the energy-momentum tensor, implying non-geodesic motion and, consequently, leads to the appearance of an extra force. Applied to the cosmological context, these curvature-matter couplings lead to interesting phenomenology, where one can obtain a unified description of the cosmological epochs. We also consider the possibility that the behavior of the galactic flat rotation curves can be explained in the framework of the curvature-matter coupling models, where the extra terms in the gravitational field equations modify the equations of motion of test particles and induce a supplementary gravitational interaction. In addition to this, these models are extremely useful for describing dark energy-dark matter interactions and for explaining the late-time cosmic acceleration.
Cosmological Observations in a Modified Theory of Gravity (MOG
Directory of Open Access Journals (Sweden)
John. W. Moffat
2013-06-01
Full Text Available Our Modified Gravity Theory (MOG is a gravitational theory without exotic dark matter, based on an action principle. MOG has been used successfully tomodel astrophysical phenomena, such as galaxy rotation curves, galaxy cluster masses and lensing. MOG may also be able to account for cosmological observations. We assume that the MOG point source solution can be used to describe extended distributions of matter via an appropriately modified Poisson equation. We use this result to model perturbation growth in MOG and find that it agrees well with the observed matter power spectrum at present. As the resolution of the power spectrum improves with increasing survey size, however, significant differences emerge between the predictions of MOG and the standard Λ-cold dark matter (Λ-CDM model, as in the absence of exotic darkmatter, oscillations of the power spectrum in MOG are not suppressed. We can also use MOG to model the acoustic power spectrum of the cosmic microwave background. A suitably adapted semi-analytical model offers a first indication that MOG may pass this test and correctly model the peak of the acoustic spectrum.
Study of Planar Models in Quantum Mechanics, Field theory and Gravity
Kumar, Sarmistha
2014-01-01
Instantons, monopoles and vortices have become paradigms of topological structures in field theory and quantum mechanics, with important applications in particle physics, astrophysics, condensed matter physics and mathematics. We have discussed here the self-dual Chern-Simons theory specially in (2+1) dimensions. we start with a relevant topological quantum mechanical model (such as Landau problem consisting of two basic chiral oscillators) and extrapolate the analysis to (2+1)dimensional vector field theory. Aspects of selfdual symmetry in topologically massive gravity model were also considered using three different approaches. We have demonstrated how duality symmetric (or chiral) actions are already present in the quantum mechanical examples such as in usual harmonic oscillator. Using the chiral oscillator form, we will briefly develop the key concepts of the soldering mechanism. We have also discussed the non commutative property of such quantum models. Models involving higher order derivative of Abelian...
Holonomies, anomalies and the Fefferman-Graham ambiguity in AdS{sub 3} gravity
Energy Technology Data Exchange (ETDEWEB)
Rooman, M. E-mail: mrooman@ulb.ac.be; Spindel, Ph. E-mail: spindel@umh.ac.be
2001-01-29
Using the Chern-Simons formulation of (2+1)-gravity, we derive, for the general asymptotic metrics given by the Fefferman-Graham-Lee theorems, the emergence of the Liouville mode associated to the boundary degrees of freedom of (2+1)-dimensional anti-de-Sitter geometries. Holonomies are described through multi-valued gauge and Liouville fields and are found to algebraically couple the fields defined on the disconnected components of spatial infinity. In the case of flat boundary metrics, explicit expressions are obtained for the fields and holonomies. We also show the link between the variation under diffeomorphisms of the Einstein theory of gravitation and the Weyl anomaly of the conformal theory at infinity.
The phase-space analysis of modified gravity (MOG)
Energy Technology Data Exchange (ETDEWEB)
Jamali, Sara; Roshan, Mahmood [Ferdowsi University of Mashhad, Department of Physics, P.O. Box 1436, Mashhad (Iran, Islamic Republic of)
2016-09-15
We investigate the cosmological consequences of a scalar-vector-tensor theory of gravity known as modified gravity (MOG). In MOG, in addition to metric tensor, there are two scalar fields G(x) and μ(x), and one vector field φ{sub α}(x). Using the phase space analysis, we explore the cosmological consequences of a model of MOG and find some new interesting features which are absent in ΛCDM model. More specifically we study the possibility that if the extra fields of this theory behave like dark energy to explain the cosmic speedup. More interestingly, with or without cosmological constant, a strongly phantom crossing occurs. Also we find that this theory in its original form (Λ ≠ 0) possesses a true sequence of cosmological epochs. However, we show that, surprisingly, there are two radiation-dominated epochs, f{sub 5} and f{sub 6}, two matter-dominated phases, f{sub 3} and f{sub 4}, and two late time accelerated eras, f{sub 12} and f{sub 7}. Depending on the initial conditions the universe will realize only three of these six eras. However, the matter-dominated phases are dramatically different from the standard matter-dominated epoch. In these phases the cosmic scale factor grows as a(t) ∝ t{sup 0.46} and t{sup 0.52}, respectively, which are slower than the standard case, i.e. a(t) ∝ t{sup 2/3}. Considering these results we discuss the cosmological viability of MOG. (orig.)
Probing modified gravity via the mass-temperature relation of galaxy clusters
Hammami, Amir
2016-01-01
We propose that the mass-temperature relation of galaxy clusters is a prime candidate for testing gravity theories beyond Einstein's general relativity. Using cosmological simulations, we find that in modified gravity the mass-temperature relation varies significantly from the standard gravity prediction $M \\propto T^{1.73}$. To be specific, for symmetron models with a coupling factor of $\\beta = 1$ we find a lower limit to the power law as $M \\propto T^{1.6}$; and for f(R) gravity we compute predictions based on the model parameters. We show that the mass-temperature relation, for screened modified gravities, is significantly different from that of standard gravity for the less massive and colder galaxy clusters, while being indistinguishable from Einstein's gravity at massive, hot galaxy clusters.
Bi-scalar modified gravity and cosmology with conformal invariance
Saridakis, Emmanuel N
2016-01-01
We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally either the Weyl derivative or properly rescaled fields. Such a theory is constructed by considering the action of a non-minimally conformally-coupled scalar field, and adding a second scalar allowing for a nonminimal derivative coupling with the Einstein tensor and the energy-momentum tensor of the first field. At a cosmological framework we obtain an effective dark-energy sector constituted from both scalars. In the absence of an explicit matter sector we extract analytical solutions, which for some parameter regions correspond to an effective matter era and/or to an effective radiation era, thus the two scalars give rise to "mimetic dark matter" or to "dark radiation" respectively. In the case where an explicit matter sector is included we obtain a cosmological evolu...
Gauss-Bonnet modified gravity models with bouncing behavior
Escofet, Anna; Elizalde, Emilio
2016-06-01
The following issue is addressed: How the addition of a Gauss-Bonnet term (generically coming from most fundamental theories, as string and M theories), to a viable model, can change the specific properties, and even the physical nature, of the corresponding cosmological solutions? Specifically, brand new original dark energy models are obtained in this way with quite interesting properties, which exhibit, in a unified fashion, the three distinguished possible cosmological phases corresponding to phantom matter, quintessence and ordinary matter, respectively. A model, in which the equation of state (EoS) parameter, w, is a function of time, is seen to lead either to a singularity of the Big Rip kind or to a bouncing solution which evolves into a de Sitter universe with w = -1. Moreover, new Gauss-Bonnet modified gravity models with bouncing behavior in the early stages of the universe evolution are obtained and tested for the validity and stability of the corresponding solutions. They allow for a remarkably natural, unified description of a bouncing behavior at early times and accelerated expansion at present.
Galaxy Infall Kinematics as a Test of Modified Gravity
Zu, Ying; Jennings, Elise; Li, Baojiu; Wyman, Mark
2013-01-01
Infrared modifications of General Relativity (GR) can be revealed by comparing the mass of galaxy clusters estimated from weak lensing to that from infall kinematics. We measure the 2D galaxy velocity distribution in the cluster infall region by applying the galaxy infall kinematics (GIK) model developed by Zu and Weinberg (2013) to two suites of f(R) and Galileon modified gravity simulations. Despite having distinct screening mechanisms, namely, the Chameleon and the Vainshtein effects, the f(R) and Galileon clusters exhibit very similar deviations in their GIK profiles from GR, with ~ 100-200 k/s enhancement in the characteristic infall velocity at r=5 Mpc/h and 50-100 km/s broadening in the radial and tangential velocity dispersions across the entire infall region, for clusters with mass ~ 10^{14} Msol/h at z=0.25. These deviations are detectable via the GIK reconstruction of the redshift--space cluster-galaxy cross-correlation function, xi_cg^s(r_p,r_\\pi), which shows ~ 1-2 Mpc/h increase in the character...
Scalar wave scattering from Schwarzschild black holes in modified gravity
Sibandze, Dan B; Maharaj, Sunil D; Nzioki, Anne Marie; Dunsby, Peter K S
2016-01-01
We consider the scattering of gravitational waves off a Schwarzschild Black Hole in $f(R)$ gravity. We find that, while the reflection and transmission coefficients for tensor waves are the same as in General Relativity, a larger fraction of scalar waves are reflected compared to what one obtains for tensors. This may provide a novel observational signature for fourth order gravity.
Modified $f(R)$ Gravity and Thermodynamics of Time-Dependent Wormholes at Event Horizon
Saiedi, H
2016-01-01
In the context of modified $f(R)$ gravity theory, we study time-dependent wormhole spacetimes in the radiation background. In this framework, we attempt to generalize the thermodynamic properties of time-dependent wormholes in $f(R)$ gravity. Finally, at event horizon, the rate of change of total entropy has been discussed.
A Neumann Boundary Term for Gravity
Krishnan, Chethan
2016-01-01
The Gibbons-Hawking-York (GHY) boundary term makes the Dirichlet problem for gravity well defined, but no such general term seems to be known for Neumann boundary conditions. In this paper, we view Neumann {\\em not} as fixing the normal derivative of the metric ("velocity") at the boundary, but as fixing the functional derivative of the action with respect to the boundary metric ("momentum"). This leads directly to a new boundary term for gravity: the trace of the extrinsic curvature with a specific dimension-dependent coefficient. In three dimensions this boundary term reduces to a "one-half" GHY term noted in the literature previously, and we observe that our action translates precisely to the Chern-Simons action with no extra boundary terms. In four dimensions the boundary term vanishes, giving a natural Neumann interpretation to the standard Einstein-Hilbert action without boundary terms. We argue that in light of AdS/CFT, ours is a natural approach for defining a "microcanonical" path integral for gravit...
Constraints on decaying early modified gravity from cosmological observations
Lima, Nelson A; Lombriser, Lucas
2016-01-01
Most of the information on our cosmos stems from either late-time observations or the imprint of early-time inhomogeneities on the cosmic microwave background. We explore to what extent early modifications of gravity, which become significant after recombination but then decay towards the present, can be constrained by current cosmological observations. For the evolution of the gravitational modification, we adopt the decaying mode of a hybrid-metric Palatini $f(\\mathcal{R})$ gravity model which is designed to reproduce the standard cosmological background expansion history and due to the decay of the modification is naturally compatible with Solar-System tests. We embed the model in the effective field theory description of Horndeski scalar-tensor gravity with an early-time decoupling of the gravitational modification. Since the quasistatic approximation for the perturbations in the model breaks down at high redshifts, where modifications remain relevant, we introduce a computationally efficient correction t...
The Quantum Hall Effect in Supersymmetric Chern-Simons Theories
Tong, David
2015-01-01
In d=2+1 dimensions, there exist gauge theories which are supersymmetric but non-relativistic. We solve the simplest U(1) gauge theory in this class and show that the low-energy physics is that of the fractional quantum Hall effect, with ground states given by the Laughlin wavefunctions. We do this by quantising the vortices and relating them to the quantum Hall matrix model. We further construct coherent state representations of the excitations of vortices. These are quasi-holes. By an explicit computation of the Berry phase, without resorting to a plasma analogy, we show that these excitations have fractional charge and spin.
Chern-Simons couplings at order O (α'2)
Babaei Velni, Komeil; Jalali, Ali
2017-01-01
Using the explicit string scattering calculation and the linear T-dual ward identity, we evaluate the string theory disc amplitude of one Ramond-Ramond field C(p +1 ) and two Neveu-Schwarz B-fields in the presence of a single Dp -brane in type I I B string theory. From this amplitude we extract the O (α'2) (or equivalently four-derivative) part of the Dp-brane couplings involving these fields.
Chern-Simons theory with finite gauge group
Freed, Daniel S.; Quinn, Frank
1993-10-01
We construct in detail a 2+1 dimensional gauge field theory with finite gauge group. In this case the path integral reduces to a finite sum, so there are no analytic problems with the quantization. The theory was originally introduced by Dijkgraaf and Witten without details. The point of working it out carefully is to focus on the algebraic structure, and particularly the construction of quantum Hilbert spaces on closed surfaces by cutting and pasting. This includes the “Verlinde formula”. The careful development may serve as a model for dealing with similar issues in more complicated cases.
On Holographic R\\'enyi Entropy in Some Modified Theories of Gravity
Dey, Anshuman; Sarkar, Tapobrata
2016-01-01
We perform a detailed analysis of holographic entanglement R\\'enyi entropy in some modified theories of gravity with four dimensional conformal field theory duals. First, we construct perturbative black hole solutions in a recently proposed model of Einsteinian cubic gravity in five dimensions, and compute the R\\'enyi entropy as well as the scaling dimension of the twist operators in the dual field theory. Consistency of these results are verified from the AdS/CFT correspondence, via a corresponding computation of the Weyl anomaly on the gravity side. Similar analyses are then carried out for three other examples of modified gravity in five dimensions that include a chemical potential, namely Born-Infeld gravity, charged quasi-topological gravity and a class of Weyl corrected gravity theories with a gauge field, with the last example being treated perturbatively. Some interesting bounds in the dual conformal field theory parameters in quasi-topological gravity are pointed out. We also provide arguments on the...
Design Modified Fuzzy PD Gravity Controller with Application to Continuum Robot
Directory of Open Access Journals (Sweden)
Mansour Bazregar
2014-02-01
Full Text Available Refer to this research, a position modified parallel error-based fuzzy Proportional Derivative (PD gravity controller is proposed for continuum robot manipulator. The main problem of the pure conventional nonlinear controller was equivalent dynamic formulation in uncertain systems. The main challenge of linear controllers is linearization techniques and the quality of performance. The nonlinear equivalent dynamic problem in uncertain system is solved by applied fuzzy logic theory to modified PD gravity. To estimate the continuum robot manipulator system’s dynamic, proportional plus modified derivative with 7 rules Mamdani inference system is design and applied to modified PD gravity methodology. The proportional coefficient of controller is tuned by new methodology in limitation uncertainties. The results demonstrate that the proposed controller is a partly model-free controllers which works well in certain and partly uncertain system.
Tensor-vector-scalar-modified gravity: from small scale to cosmology
Bekenstein, Jacob D
2012-01-01
The impressive success of the standard cosmological model has suggested to many that its ingredients are all one needs to explain galaxies and their systems. I summarize a number of known problems with this program. They might signal the failure of standard gravity theory on galaxy scales. The requisite hints as to the alternative gravity theory may lie with the MOND paradigm which has proved an effective summary of galaxy phenomenology. A simple nonlinear modified gravity theory does justice to MOND at the nonrelativistic level, but cannot be consistently promoted to relativistic status. The obstacles were first sidestepped with the formulation of TeVeS, a covariant modified gravity theory. I review its structure, its MOND and Newtonian limits, and its performance in face of galaxy phenomenology. I also summarize features of TeVeS cosmology and describe the confrontation with data from strong and weak gravitational lensing
Constraining the Schwarzschild-de Sitter Solution in Models of Modified Gravity
Iorio, Lorenzo; Radicella, Ninfa; Saridakis, Emmanuel N
2016-01-01
The Schwarzschild-de Sitter (SdS) solution exists in the large majority of modified gravity theories, as expected, and in particular the effective cosmological constant is determined by the specific parameters of the given theory. We explore the possibility to use future extended radio-tracking data from the currently ongoing New Horizons mission in the outskirts peripheries of the Solar System, at about 40 au, in order to constrain this effective cosmological constant, and thus to impose constrain on each scenario's parameters. We investigate some of the recently most studied modified gravities, namely $f(R)$ and $f(T)$ theories, dRGT massive gravity, and Ho\\v{r}ava-Lifshitz gravity, and we show that New Horizons mission may bring an improvement of one-two orders of magnitude with respect to the present bounds from planetary orbital dynamics.
Cluster Density Profiles as a Test of Modified Gravity
Lombriser, Lucas; Baldauf, Tobias; Mandelbaum, Rachel; Seljak, Uros; Smith, Robert E
2011-01-01
We present a new test of gravitational interactions at the r\\simeq(0.2-20)Mpc scale, around the virial radius of dark matter halos measured through cluster-galaxy lensing of maxBCG clusters from the Sloan Digital Sky Survey (SDSS). We employ predictions from self-consistent simulations of f(R) gravity to find an upper bound on the background field amplitude of f_R0<3.5x10^-3 at the 1D-marginalized 95% confidence level. We also constrain the amplitude F_0 of a phenomenological fit modeled on the profile enhancement induced by f(R) gravity when not including effects from the increased cluster abundance in f(R). In both scenarios, dark-matter-only simulations of the concordance model corresponding to f_R0=0 and F_0=0 are consistent with the lensing measurements at the 68% confidence level.
Cylindrically symmetric cosmological model of the universe in modified gravity
Mishra, B.; Vadrevu, Samhita
2017-02-01
In this paper, we have constructed the cosmological models of the universe in a cylindrically symmetric space time in two classes of f(R,T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011). We have discussed two cases: one in the linear form and the other in the quadratic form of R. The matter is considered to be in the form of perfect fluid. It is observed that in the first case, the pressure and energy density remain the same, which reduces to a Zeldovich fluid. In the second case we have studied the quadratic function of f(R,T) gravity in the form f(R)=λ(R+R2) and f(T)=λ T. In the second case the pressure is in the negative domain and the energy density is in the positive domain, which confirms that the equation of state parameter is negative. The physical properties of the constructed models are studied.
Self-accelerating Universe in modified gravity with dynamical torsion
Nikiforova, V; Rubakov, V
2016-01-01
We consider a model belonging to the class of Poincare gauge gravities. The model is free of ghosts and gradient instabilities about Minkowski and torsionless Einstein backgrounds. We find that at zero cosmological constant, the model admits a self-accelerating solution with non-Riemannian connection. Small value of the effective cosmological constant is obtained at the expense of the hierarchy between the dimensionless couplings.
Reconstructing cosmic acceleration from f(R) modified gravity
López-Revelles, Antonio Jesús
2013-01-01
A variant of the accelerating cosmology reconstruction program is developed for $f(R)$ gravity. Reconstruction schemes in terms of e-foldings and by using an auxiliary scalar field are developed. An example of a model with a transient phantom behavior without real matter is explicitly discussed in both schemes. Detailed comparison of the two schemes of reconstruction is presented. It seems to support physical non-equivalence of the two frames.
Particlelike solutions in modified gravity: the Higgs monopole
Schlogel, Sandrine; Staelens, Francois; Fuzfa, Andre
2014-01-01
Higgs inflation has received a remarkable attention in the last few years due to its simplicity and predictive power. The key point of this model is the nonminimal coupling to gravity in unitary gauge. As such, this theory is in fact a scalar-tensor modification of gravity that needs to be studied also below the energy scales of inflation. Motivated by this goal, we study in great analytical and numerical detail the static and spherically symmetric solutions of the equations of motion in the presence of standard baryonic matter, called "Higgs monopoles" and presented in \\cite{monopole}. These particlelike solutions may arise naturally in tensor-scalar gravity with mexican hat potential and are the only globally regular asymptotically flat solutions with finite classical energy. In the case when the parameters of the potential are taken to be the ones of the standard model, we find that the deviations from general relativity are extremely small, especially for bodies of astrophysical size and density. This all...
Constraints on decaying early modified gravity from cosmological observations
Lima, Nelson A.; Smer-Barreto, Vanessa; Lombriser, Lucas
2016-10-01
Most of the information on our cosmos stems from either late-time observations or the imprint of early-time inhomogeneities on the cosmic microwave background. We explore to what extent early modifications of gravity, which become significant after recombination but then decay toward the present, can be constrained by current cosmological observations. For the evolution of the gravitational modification, we adopt the decaying mode of a hybrid metric-Palatini f (R ) gravity model which is designed to reproduce the standard cosmological background expansion history and due to the decay of the modification is naturally compatible with Solar System tests. We embed the model in the effective field theory description of Horndeski scalar-tensor gravity with an early-time decoupling of the gravitational modification. Since the quasistatic approximation for the perturbations in the model breaks down at high redshifts, where modifications remain relevant, we introduce a computationally efficient correction to describe the evolution of the scalar field fluctuation in this regime. We compare the decaying early-time modification against geometric probes and recent Planck measurements and find no evidence for such effects in the observations. Current data constrains the scalar field value at |fR(z =zon)|≲10-2 for modifications introduced at redshifts zon˜(500 - 1000 ) with the present-day value |fR 0|≲10-8. Finally, we comment on constraints that will be achievable with future 21-cm surveys and gravitational wave experiments.
Modified teleparallel theories of gravity: Gauss-Bonnet and trace extensions
Energy Technology Data Exchange (ETDEWEB)
Bahamonde, Sebastian; Boehmer, Christian G. [University College London, Department of Mathematics, London (United Kingdom)
2016-10-15
We investigate modified theories of gravity in the context of teleparallel geometries with possible Gauss-Bonnet contributions. The possible coupling of gravity with the trace of the energy-momentum tensor is also taken into account. This is motivated by the various different theories formulated in the teleparallel approach and the metric approach without discussing the exact relationship between them. Our formulation clarifies the connections between different well-known theories. For instance, we are able to formulate the correct teleparallel equivalent of Gauss-Bonnet modified general relativity, amongst other results. Finally, we are able to identify modified gravity models which have not been studied in the past. These appear naturally within our setup and would make a interesting starting point for further studies. (orig.)
Johnson-McDaniel, Nathan; Ghosh, Abhirup; Ghosh, Archisman; Samajdar, Anuradha; Ajith, Parameswaran; Del Pozzo, Walter
2016-03-01
We describe a variety of self-consistent modifications of the effective-one-body framework that yield kludge modified gravity inspiral-merger-ringdown (IMR) waveforms. These waveforms do not correspond to any particular modified theory of gravity, but offer parametrized deviations from general relativity in various regimes. They can thus be used to test the performance of various gravitational wave tests of general relativity (GR). As an example, we introduce the IMR consistency test, which tests for consistency between the estimations of the final mass and spin from the inspiral and merger-ringdown portions of a binary black hole waveform. We show that for reasonable source parameters and SNRs in Advanced LIGO, this test is able to detect a deviation from GR with high confidence for certain modifications of the GR energy flux that are not constrained by observations of the double pulsar. We also consider the performance of a parameterized test of GR on these kludge modified gravity waveforms.
Cluster density profiles as a test of modified gravity
Lombriser, Lucas; Schmidt, Fabian; Baldauf, Tobias; Mandelbaum, Rachel; Seljak, Uroš; Smith, Robert E.
2012-05-01
We present a new test of gravitational interactions at the r≃(0.2-20)Mpc scale, around the virial radius of dark matter halos measured through cluster-galaxy lensing of maxBCG clusters from the Sloan Digital Sky Survey (SDSS). We employ predictions from self-consistent simulations of f(R) gravity to find an upper bound on the background field amplitude of |fR0|confidence level. As a model-independent assessment of the constraining power of cluster profiles measured through weak gravitational lensing, we also constrain the amplitude F0 of a phenomenological modification based on the profile enhancement induced by f(R) gravity when not including effects from the increased cluster abundance in f(R). In both scenarios, dark-matter-only simulations of the concordance model corresponding to |fR0|=0 and F0=0 are consistent with the lensing measurements, i.e., at the 68% and 95% confidence level, respectively.
Modified gravity and Space-Time-Matter theory
Darabi, F
2009-01-01
The correspondence between $f(R)$ theories of gravity and model theories explaining induced dark energy in a 5D Ricci-flat universe, known as the Space-Time-Matter theory (STM), is studied. It is shown that such correspondence may be used to interpret the four dimensional expressions, induced from geometry in 5D STM theories, in terms of the extra terms appearing in $f(R)$ theories of gravity. The method is demonstrated by providing an explicit example in which a given $f(R)$ is used to predict the properties of the corresponding 5D Ricci-flat universe. The accelerated expansion and the induced dark energy in a 5D Ricci-flat universe characterized by a big bounce is studied and it is shown that an arbitrary function $\\mu(t)$ in the 5D solutions can be rewritten, in terms of the redshift $z$, as a new arbitrary function $F(z)$ which corresponds to the 4D curvature quintessence models.
Gravity can significantly modify classical and quantum Poincare recurrence theorems
Dong, Ruifeng
2016-01-01
Poincare recurrence theorem states that any finite system will come arbitrary close to its initial state after some very long but finite time. At the statistical level, this by itself does not represent a paradox, but apparently violates the second law of thermodynamics, which may lead to some confusing conclusions for macroscopic systems. However, this statement does not take gravity into account. If two particles with a given center of mass energy come at the distance shorter than the Schwarzschild diameter apart, according to classical gravity they will form a black hole. In the classical case, a black hole once formed will always grow and effectively quench the Poincare recurrence. We derive the condition under which the classical black hole production rate is higher than the classical Poincare recurrence rate. In the quantum case, if the temperature of the black hole is lower than the temperature of the surrounding gas, such a black hole cannot disappear via Hawking evaporation. We derive the condition w...
Star formation triggered by galaxy interactions in modified gravity
Renaud, Florent; Kroupa, Pavel
2016-01-01
Together with interstellar turbulence, gravitation is one key player in star formation. It acts both at galactic scales in the assembly of gas into dense clouds, and inside those structures for their collapse and the formation of pre-stellar cores. To understand to what extent the large scale dynamics govern the star formation activity of galaxies, we present hydrodynamical simulations in which we generalise the behaviour of gravity to make it differ from Newtonian dynamics in the low acceleration regime. We focus on the extreme cases of interacting galaxies, and compare the evolution of galaxy pairs in the dark matter paradigm to that in the Milgromian Dynamics (MOND) framework. Following up on the seminal work by Tiret & Combes, this paper documents the first simulations of galaxy encounters in MOND with a detailed Eulerian hydrodynamical treatment of baryonic physics, including star formation and stellar feedback. We show that similar morphologies of the interacting systems can be produced by both the ...
The phase space analysis of modified gravity (MOG)
Jamali, Sara
2016-01-01
We investigate the cosmological consequences of a scalar-vector-tensor theory of gravity known as MOG. In MOG, in addition to metric tensor, there are two scalar fields $G(x)$ and $\\mu(x)$, and one vector field $\\phi_{\\alpha}(x)$. Using the phase space analysis, we explore the cosmological consequences of a model of MOG and find some new interesting features which are absent in $\\Lambda$CDM model. More specifically we study the possibility that if the extra fields of this theory behave like dark energy to explain the cosmic speedup. More interestingly, with or without cosmological constant, strongly phantom crossing happens. Also we find that this theory in its original form ($\\Lambda\
Some Observable Effects of Modified Gravity in Cosmology and Astrophysics
Reverberi, Lorenzo
2014-01-01
In Chapter 1 I present the current picture of the universe and brieï¬y review the cosmological constant problem and some of the theories proposed to solve it. The following Chapters essentially contain the published papers with some modiï¬cations and additions: in Chapter 2 I study the radiation-dominated epoch in $R^2$ gravity, gravitational particle production and its implications for the early and contemporary universe; in Chapter 3 I investigate the formation of curvature singularities in contracting astronomical systems; in Chapter 4, I discuss some mechanisms to prevent such singularities and calculate the related cosmic-ray production; ï¬nally, in Chapter 5, I deal with spherically symmetric solutions and explore the possibility of gravitational repulsion.
Integrability conditions of quasi-Newtonian cosmologies in modified gravity
Abebe, Amare; Solomons, Deon
2016-01-01
We investigate the integrability conditions of a class of shear-free perfect-fluid cosmological models within the framework of anisotropic fluid sources, applying our results to f(R) dark energy models. Generalising earlier general relativistic results for time-like geodesics, we extend the potential and acceleration terms of the quasi-Newtonian formulation of integrable dust cosmological models about a linearized Friedmann-Lemaitre-Robertson-Walker background and derive the equations that describe their dynamical evolutions. We show that in general, models with an anisotropic fluid source are not consistent, but because of the particular form the anisotropic stress takes in f(R) gravity, the general integrability conditions, in this case, are satisfied.
Randall-Sundrum brane-world in modified gravity
Nakada, Hiroshi
2016-01-01
We modify Randall-Sundrum model of brane-world (with two branes) by adding the scalar curvature squared term in five dimensions. We find that it does not destabilize Randall-Sundrum solution to the hierarchy problem of the Standard Model in particle physics.
Cosmic Tsunamis in Modified Gravity: Disruption of Screening Mechanisms from Scalar Waves
Hagala, R.; Llinares, C.; Mota, D. F.
2017-03-01
Extending general relativity by adding extra degrees of freedom is a popular approach for explaining the accelerated expansion of the Universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test general relativity in a wide range of scales. The viability of a given modified theory of gravity, therefore, strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of some screening mechanisms, thereby threatening the viability of these modified gravity theories. Specifically, we show that the waves produced in the symmetron model can increase the amplitude of the fifth force and the parametrized post Newtonian parameters by several orders of magnitude.
Dynamical analysis of modified gravity with non-minimal gravitational coupling to matter
An, Rui; Wang, Bin; Gong, Yungui
2016-01-01
We perform a phase space analysis of a generalized modified gravity theory with non-minimal coupling between geometry and matter. We apply the dynamical system approach to this generalized model and find that in the cosmological context, different choices of Lagrangian density will apparently result in different phases of the universe. By carefully choosing the variables, we prove that there is an attractor solution to describe the late time accelerating universe when the modified gravity is chosen in a simple power-law form of the curvature scalar. We further examine the temperature evolution based on the thermodynamic understanding of the model. Confronting the model with temperature-redshift and supernova type Ia data sets, we find that the non-minimally coupled theory of gravity is a viable model to describe the late time universe acceleration.
Exact solutions in modified massive gravity and off-diagonal wormhole deformations
Energy Technology Data Exchange (ETDEWEB)
Vacaru, Sergiu I. [Alexandru Ioan Cuza University, Rector' s Office, Iasi (Romania); CERN, Theory Division, Geneva 23 (Switzerland)
2014-03-15
We explore off-diagonal deformations of 'prime' metrics in Einstein gravity (for instance, for wormhole configurations) into 'target' exact solutions in f(R,T)-modified and massive/bi-metric gravity theories. The new classes of solutions may, or may not, possess Killing symmetries and can be characterized by effective induced masses, anisotropic polarized interactions, and cosmological constants. For nonholonomic deformations with (conformal) ellipsoid/ toroid and/or solitonic symmetries and, in particular, for small eccentricity rotoid configurations, we can generate wormhole-like objects matching an external black ellipsoid--de Sitter geometries. We conclude that there are nonholonomic transforms and/or non-trivial limits to exact solutions in general relativity when modified/massive gravity effects are modeled by off-diagonal and/or nonholonomic parametric interactions. (orig.)
Modified Newton's Law of Gravitation Due to Minimal Length in Quantum Gravity
Ali, Ahmed Farag
2013-01-01
A recent theory about the origin of the gravity suggests that the gravity is originally an entropic force. In this work, we discuss the effects of generalized uncertainty principle (GUP) which is proposed by some approaches to quantum gravity such as string theory, black hole physics and doubly special relativity theories (DSR), on the area law of the entropy. This leads to a $\\sqrt{Area}$-type correction to the area law of entropy which imply that the number of bits $N$ is modified. Therefore, we obtain a modified Newton's law of gravitation. Surprisingly, this modification agrees with different sign with the prediction of Randall-Sundrum II model which contains one uncompactified extra dimension. Furthermore, such modification may have observable consequences at length scales much larger than the Planck scale.
Modified gravity (MOG) can fit the acceleration data for the cluster Abell 1689
Moffat, J W
2016-01-01
The galaxy cluster system Abell 1689 has been well studied and yields good lensing and X-ray gas data. Modified gravity (MOG) is applied to the cluster Abell 1689 and the acceleration data is well fitted without assuming dark matter. Newtonian dynamics and Modified Newtonian dynamics (MOND) are shown not to fit the acceleration data, while a dark matter model based on the Navarro-Frenk-White (NFW) mass profile is shown not to fit the acceleration data below ~ 200 kpc.
Modified Gravity Theories: Alternatives To The Missing Mass And Missing Energy Problems
Soussa, M E
2005-01-01
Modified theories of gravity are examined and shown to be alternative possibilities to the standard paradigms of dark matter and dark energy in explaining the currently observed cosmological phenomenology. Special consideration is given to the relativistic extension of Modified Newtonian Dynamics (MOND) in supplanting the need for dark matter. A specific modification of the Einstein-Hilbert action (whereby an inverse power of the Ricci scalar is added) is shown to serve as an alternative to dark energy.
Tian, David Wenjie
2014-01-01
Inspired by the Wald-Kodama entropy $S=A/(4G_{\\text{eff}})$ where $A$ is the horizon area and $G_{\\text{eff}}$ is the effective gravitational coupling strength in modified gravity with field equation $R_{\\mu\
Conserved Charges of Minimal Massive Gravity Coupled to Scalar Field
Setare, M R
2016-01-01
Recently, the theory of Topologically massive gravity non-minimally coupled to a scalar field has been proposed which comes from Lorentz-Chern-Simons theory \\cite{1}. That theory is a torsion free one. We extend that theory by adding an extra term which makes torsion to be non-zero. The extended theory can be regarded as an extension of Minimal massive gravity such that it is non-minimally coupled to a scalar field. We obtain equations of motion of extended theory such that they are expressed in terms of usual torsion free spin-connection. We show that BTZ spacetime is a solution of this theory when scalar field is constant. We define quasi-local conserved charge by the concept of generalized off-shell ADT current which both are conserved for any asymptotically Killing vector field as well as a Killing vector field which is admitted by spacetime everywhere. Also we find general formula for entropy of stationary black hole solution in the context of considered theory. We apply the obtained formulas on BTZ blac...
Star formation triggered by galaxy interactions in modified gravity
Renaud, Florent; Famaey, Benoit; Kroupa, Pavel
2016-09-01
Together with interstellar turbulence, gravitation is one key player in star formation. It acts both at galactic scales in the assembly of gas into dense clouds, and inside those structures for their collapse and the formation of pre-stellar cores. To understand to what extent the large scale dynamics govern the star formation activity of galaxies, we present hydrodynamical simulations in which we generalise the behaviour of gravity to make it differ from Newtonian dynamics in the low acceleration regime. We focus on the extreme cases of interacting galaxies, and compare the evolution of galaxy pairs in the dark matter paradigm to that in the Milgromian Dynamics (MOND) framework. Following up on the seminal work by Tiret & Combes, this paper documents the first simulations of galaxy encounters in MOND with a detailed Eulerian hydrodynamical treatment of baryonic physics, including star formation and stellar feedback. We show that similar morphologies of the interacting systems can be produced by both the dark matter and MOND formalisms, but require a much slower orbital velocity in the MOND case. Furthermore, we find that the star formation activity and history are significantly more extended in space and time in MOND interactions, in particular in the tidal debris. Such differences could be used as observational diagnostics and make interacting galaxies prime objects in the study of the nature of gravitation at galactic scales.
Effects of standard and modified gravity on interplanetary ranges
Iorio, Lorenzo
2010-01-01
We numerically investigate the impact on the two-body range by several Newtonian and non-Newtonian dynamical effects for some Earth-planet pairs in view of the expected cm-level accuracy in future planned or proposed interplanetary ranging operations. The general relativistic gravitomagnetic Lense-Thirring effect should be modeled and solved-for in future, accurate ranging tests of Newtonian and post-Newtonian gravity because it falls within their measurability domain. It could a-priori "imprint" the determination of some of the target parameters of the tests considered. Moreover, the ring of the minor asteroids, Ceres, Pallas, Vesta and the Trans-Neptunian Objects (TNOs) act as sources of non-negligible systematic uncertainty on the larger gravitoelectric post-Newtonian signals from which it is intended to determine the parameters \\gamma and \\beta of the Parameterized Post Newtonian (PPN) formalism with very high precision (orders of magnitude better than the current 10^-4-10^-5 levels). Also other putative,...
On the stability conditions for theories of modified gravity in the presence of matter fields
De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios
2017-03-01
We present a thorough stability analysis of modified gravity theories in the presence of matter fields. We use the Effective Field Theory framework for Dark Energy and Modified Gravity to retain a general approach for the gravity sector and a Sorkin-Schutz action for the matter one. Then, we work out the proper viability conditions to guarantee in the scalar sector the absence of ghosts, gradient and tachyonic instabilities. The absence of ghosts can be achieved by demanding a positive kinetic matrix, while the lack of a gradient instability is ensured by imposing a positive speed of propagation for all the scalar modes. In case of tachyonic instability, the mass eigenvalues have been studied and we work out the appropriate expressions. For the latter, an instability occurs only when the negative mass eigenvalue is much larger, in absolute value, than the Hubble parameter. We discuss the results for the minimally coupled quintessence model showing for a particular set of parameters two typical behaviours which in turn lead to a stable and an unstable configuration. Moreover, we find that the speeds of propagation of the scalar modes strongly depend on matter densities, for the beyond Horndeski theories. Our findings can be directly employed when testing modified gravity theories as they allow to identify the correct viability space.
Arun, K. G.; Pai, Archana
2013-01-01
Gravitational wave (GW) observations of coalescing compact binaries will be unique probes of strong-field, dynamical aspects of relativistic gravity. We present a short review of various schemes proposed in the literature to test general relativity (GR) and alternative theories of gravity using inspiral waveforms. Broadly these schemes may be classified into two types: model dependent and model independent. In the model dependent category, GW observations are compared against a specific waveform model representative of a particular theory or a class of theories such as scalar-tensor theories, dynamical Chern-Simons theory and massive graviton theories. Model independent tests are attempts to write down a parametrized gravitational waveform where the free parameters take different values for different theories and (at least some of) which can be constrained by GW observations. We revisit some of the proposed bounds in the case of downscaled LISA configuration (eLISA) and compare them with the original LISA configuration. We also compare the expected bounds on alternative theories of gravity from ground-based and space-based detectors and find that space-based GW detectors can test GR and other theories of gravity with unprecedented accuracies. We then focus on a recent proposal to use singular value decomposition of the Fisher information matrix to improve the accuracies with which post-Newtonian theory can be tested. We extend those results to the case of space-based detector eLISA and discuss its implications.
Palatini Approach to Modified Gravity: f(R) Theories and Beyond
Olmo, Gonzalo J
2011-01-01
We review the recent literature on modified theories of gravity in the Palatini approach. After discussing the motivations that lead to consider alternatives to Einstein's theory and to treat the metric and the connection as independent objects, we review several topics that have been recently studied within this framework. In particular, we provide an in-depth analysis of the cosmic speedup problem, laboratory and solar systems tests, the structure of stellar objects, the Cauchy problem, and bouncing cosmologies. We also discuss the importance of going beyond the f(R) models to capture other phenomenological aspects related with dark matter/energy and quantum gravity.
Structure formation in modified gravity models alternative to dark energy
Koyama, K
2006-01-01
We study structure formation in phenomenological models in which the Friedmann equation receives a correction of the form $H^{\\alpha}/r_c^{2-\\alpha}$, which realize an accelerated expansion without dark energy. In order to address structure formation in these model, we construct simple covariant gravitational equations which give the modified Friedmann equation with $\\alpha=2/n$ where $n$ is an integer. For $n=2$, the underlying theory is known as a 5D braneworld model (the DGP model). Thus the models interpolate between the DGP model ($n=2, \\alpha=1$) and the LCDM model in general relativity ($n \\to \\infty, \\alpha \\to 0$). Using the covariant equations, cosmological perturbations are analyzed. It is shown that in order to satisfy the Bianchi identity at a perturbative level, we need to introduce a correction term $E_{\\mu \
Modified Gravity: the CMB, Weak Lensing and General Parameterisations
Thomas, Shaun A; Weller, Jochen
2011-01-01
We examine general physical parameterisations for viable gravitational models in the $f(R)$ framework. This is related to the mass of an additional scalar field, called the scalaron, that is introduced by the theories. Using a simple parameterisation for the scalaron mass $M(a)$ we show there is an exact correspondence between the model and popular parameterisations of the modified Poisson equation $\\mu(a,k)$ and the ratio of the Newtonian potentials $\\eta(a,k)$. However, by comparing the aforementioned model against other viable scalaron theories we highlight that the common form of $\\mu(a,k)$ and $\\eta(a,k)$ in the literature does not accurately represent $f(R)$ behaviour. We subsequently construct an improved description for the scalaron mass (and therefore $\\mu(a,k)$ and $\\eta(a,k)$) which captures their essential features and has benefits derived from a more physical origin. We study the scalaron's observational signatures and show the modification to the background Friedmann equation and CMB power spect...
Looking for empty topological whormhole spacetimes in $F(R)$-modified gravity
Di Criscienzo, R; Sebastiani, L
2013-01-01
Much attention has been recently devoted to modified theories of gravity in the attempt to efficiently describe both early inflation and late-time acceleration of our universe without referring to the cosmological constant or other ad hoc kinds of fluids. The simplest models overcome General Relativity simply by replacing $R$ with $F(R)$ in the Einstein--Hilbert action. Unfortunately, such models typically lack most of the beautiful solutions discovered in Einstein's gravity. Nonetheless, in $F(R)$ gravity, it has been possible to get at least few black holes, but still we do not know any empty wormhole-like spacetime solution. The present paper aims to explain why it is so hard to get such solutions (given that they exist!). Few solutions are derived in the simplest cases while only an implicit form has been obtained in the non-trivial case.
Solar system constraints on asymptotically flat IR modified Horava gravity through light deflection
Liu, Molin; Yu, Benhai; Lu, Jianbo
2010-01-01
In this paper, we study the motion of photons around a Kehagias-Sfetsos (KS) black hole and obtain constraints on IR modified Ho$\\check{r}$ava gravity without cosmological constant ($\\sim \\Lambda_{W}$). An analytic formula for the light deflection angle is obtained. For a propagating photon, the deflection angle $\\delta \\varphi$ increases with large values of the Ho$\\check{r}$ava gravity parameter $\\omega$. Under the UV limit $\\omega \\longrightarrow \\infty$, deflection angle reduces to the result of usual Schwarzschild case, $4GM/R$. It is also found that with increasing scale of astronomical observation system the Ho$\\check{r}$ava-Lifshitz gravity should satisfy $|\\omega M^2|>1.1725 \\times10^{-16}$ with $12%$ precision for Earth system, $|\\omega M^2| > 8.27649 \\times 10^{-17}$ with $17%$ precision for Jupiter system and $|\\omega M^2| > 8.27650\\times 10^{-15}$ with $0.17%$ precision for solar system.
How Do You Solve a Problem Like Modified Gravity? Challenges in Connecting Theory and Observations
Linder, Eric V
2016-01-01
Cosmic acceleration may be due to modifications of cosmic gravity. To test this we need robust connections between theory and observations. However, in a model independent approach like effective field theory or a broad class like Horndeski gravity, several free functions of time enter the theory. We demonstrate that no simple parametrizations of these functions are valid, with first approximations such as $\\alpha_i(t)\\propto\\Omega_{\\rm de}(t)$ drastically misestimating the observables. Quantifying the bias, we find that even a few percent inaccuracy on the property functions $\\alpha_i(t)$ give many expected-sigma bias on cosmic survey observables (often missing the signature of modified gravity). We also address the challenge of generally valid consistency relations and the role of tensor (gravitational wave) perturbations.
Lensing-induced morphology changes in CMB temperature maps in modified gravity theories
Munshi, D; Matsubara, T; Coles, P; Heavens, A
2016-01-01
Lensing of the Cosmic Microwave Background (CMB) changes the morphology of pattern of temperature fluctuations, so topological descriptors such as Minkowski Functionals can probe the gravity model responsible for the lensing. We show how the recently introduced two-to-two and three-to-one kurt-spectra (and their associated correlation functions), which depend on the power spectrum of the lensing potential, can be used to probe modified gravity theories such as $f({R})$ theories of gravity and quintessence models. We also investigate models based on effective field theory, which include the constant-$\\Omega$ model, and low-energy Ho\\vrava theories. Estimates of the cumulative signal-to-noise for detection of lensing-induced morphology changes, reaches ${\\cal O}(10^3)$ for the future planned CMB polarization mission COrE$^{+}$. Assuming foreground removal is possible to $\\ell_{max}=3000$, we show that many modified gravity theories can be rejected with a high level of significance, making this technique compara...
Lensing-induced morphology changes in CMB temperature maps in modified gravity theories
Munshi, D.; Hu, B.; Matsubara, T.; Coles, P.; Heavens, A.
2016-04-01
Lensing of the Cosmic Microwave Background (CMB) changes the morphology of pattern of temperature fluctuations, so topological descriptors such as Minkowski Functionals can probe the gravity model responsible for the lensing. We show how the recently introduced two-to-two and three-to-one kurt-spectra (and their associated correlation functions), which depend on the power spectrum of the lensing potential, can be used to probe modified gravity theories such as f(R) theories of gravity and quintessence models. We also investigate models based on effective field theory, which include the constant-Ω model, and low-energy Hořava theories. Estimates of the cumulative signal-to-noise for detection of lensing-induced morphology changes, reaches Script O(103) for the future planned CMB polarization mission COrE+. Assuming foreground removal is possible to lmax=3000, we show that many modified gravity theories can be rejected with a high level of significance, making this technique comparable in power to galaxy weak lensing or redshift surveys. These topological estimators are also useful in distinguishing lensing from other scattering secondaries at the level of the four-point function or trispectrum. Examples include the kinetic Sunyaev-Zel'dovich (kSZ) effect which shares, with lensing, a lack of spectral distortion. We also discuss the complication of foreground contamination from unsubtracted point sources.
Speeding up N-body simulations of modified gravity: chameleon screening models
Bose, Sownak; Li, Baojiu; Barreira, Alexandre; He, Jian-hua; Hellwing, Wojciech A.; Koyama, Kazuya; Llinares, Claudio; Zhao, Gong-Bo
2017-02-01
We describe and demonstrate the potential of a new and very efficient method for simulating certain classes of modified gravity theories, such as the widely studied f(R) gravity models. High resolution simulations for such models are currently very slow due to the highly nonlinear partial differential equation that needs to be solved exactly to predict the modified gravitational force. This nonlinearity is partly inherent, but is also exacerbated by the specific numerical algorithm used, which employs a variable redefinition to prevent numerical instabilities. The standard Newton-Gauss-Seidel iterative method used to tackle this problem has a poor convergence rate. Our new method not only avoids this, but also allows the discretised equation to be written in a form that is analytically solvable. We show that this new method greatly improves the performance and efficiency of f(R) simulations. For example, a test simulation with 5123 particles in a box of size 512 Mpc/h is now 5 times faster than before, while a Millennium-resolution simulation for f(R) gravity is estimated to be more than 20 times faster than with the old method. Our new implementation will be particularly useful for running very high resolution, large-sized simulations which, to date, are only possible for the standard model, and also makes it feasible to run large numbers of lower resolution simulations for covariance analyses. We hope that the method will bring us to a new era for precision cosmological tests of gravity.
Orbifold matrix models and fuzzy extra dimensions
Chatzistavrakidis, Athanasios; Zoupanos, George
2011-01-01
We revisit an orbifold matrix model obtained as a restriction of the type IIB matrix model on a Z_3-invariant sector. An investigation of its moduli space of vacua is performed and issues related to chiral gauge theory and gravity are discussed. Modifications of the orbifolded model triggered by Chern-Simons or mass deformations are also analyzed. Certain vacua of the modified models exhibit higher-dimensional behaviour with internal geometries related to fuzzy spheres.
Alternatives to dark matter: Modified gravity as an alternative to dark matter
Bekenstein, Jacob D
2010-01-01
The premier alternative to the dark matter paradigm is modified gravity. Following an introduction to the relevant phenomenology of galaxies, I review the MOND paradigm, an effective summary of the observations which any theory must reproduce. A simple nonlinear modified gravity theory does justice to MOND at the nonrelativistic level, but cannot be elevated to the relativistic level in a unique way. I go in detail into the covariant tensor-vector-theory (TeVeS) which not only recovers MOND but can also deal in detail with gravitational lensing and cosmology. Problems with MOND and TeVeS at the level of clusters of galaxies are given attention. I also summarize the status of TeVeS cosmology.
Kirk, Donnacha; Bridle, Sarah; Jouvel, Stephanie; Abdalla, Filipe B; Frieman, Joshua A
2013-01-01
The combination of multiple cosmological probes can produce measurements of cosmological parameters much more stringent than those possible with any individual probe. We examine the combination of two highly correlated probes of late-time structure growth: (i) weak gravitational lensing from a survey with photometric redshifts and (ii) galaxy clustering and redshift space distortions from a survey with spectroscopic redshifts. We choose generic survey designs so that our results are applicable to a range of current and future photometric redshift (e.g. KiDS, DES, HSC, Euclid) and spectroscopic redshift (e.g. DESI, 4MOST, Sumire) surveys. Combining the surveys greatly improves their power to measure both dark energy and modified gravity. An independent, non-overlapping combination sees a dark energy figure of merit more than 4 times larger than that produced by either survey alone. The powerful synergies between the surveys are strongest for modified gravity, where their constraints are orthogonal, producing a...
What is modified gravity and how to differentiate it from particle dark matter?
Calmet, Xavier; Kuntz, Iberê
2017-02-01
An obvious criterion to classify theories of modified gravity is to identify their gravitational degrees of freedom and their coupling to the metric and the matter sector. Using this simple idea, we show that any theory which depends on the curvature invariants is equivalent to general relativity in the presence of new fields that are gravitationally coupled to the energy-momentum tensor. We show that they can be shifted into a new energy-momentum tensor. There is no a priori reason to identify these new fields as gravitational degrees of freedom or matter fields. This leads to an equivalence between dark matter particles gravitationally coupled to the standard model fields and modified gravity theories designed to account for the dark matter phenomenon. Due to this ambiguity, it is impossible to differentiate experimentally between these theories and any attempt of doing so should be classified as a mere interpretation of the same phenomenon.
Breaking the Cosmic Degeneracy between Modified Gravity and Massive Neutrinos with the Cosmic Web
Shim, Junsup; Baldi, Marco
2014-01-01
In a recent work, Baldi et al. highlighted the issue of cosmic degeneracies, consisting in the fact that the standard statistics of the large-scale structure might not be sufficient to conclusively test cosmological models beyond $\\Lambda $CDM when multiple extensions of the standard scenario coexist in nature. In particular, it was shown that the characteristic features of an $f(R)$ Modified Gravity theory and of massive neutrinos with an appreciable total mass $\\Sigma _{i}m_{\
Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly***
Megías, Eugenio; Pena-Benitez, Francisco
2014-03-01
We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed. Talk given by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2009-07908, FPA2011-25948), Spanish MICINN Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Comunidad de Madrid HEP-HACOS S2009/ESP-1473, Spanish MINECO's Centro de Excelencia Severo Ochoa Program (SEV-2012-0234, SEV-2012-0249), and the Juan de la Cierva Program.
Witten-Nester energy in topologically massive gravity
Energy Technology Data Exchange (ETDEWEB)
Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Tanii, Yoshiaki, E-mail: sezgin@physics.tamu.ed, E-mail: tanii@phy.saitama-u.ac.j [Division of Material Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan)
2009-12-07
We formulate topologically massive supergravity with a cosmological constant in the first-order formalism and construct the Noether supercurrent and superpotential associated with its local supersymmetry. Using these results, we construct in ordinary topologically massive gravity the Witten-Nester integral for conserved charges containing spinors which satisfy a generalized version of the Witten equation on the initial value surface. We show that the Witten-Nester charge, represented as an integral over the boundary of the initial value surface, produces the Abbott-Deser-Tekin energy for asymptotically anti-de Sitter spacetimes. We consider all values of the Chern-Simons coupling constant, including the critical value known as the chiral point, and study the cases of standard Brown-Henneaux boundary conditions, as well as their weaker version that allows a slower fall-off. Studying the Witten-Nester energy as a bulk integral over the initial value surface instead, we find a bound on the energy, and through it the sufficient condition for the positivity of the energy. In particular, we find that spacetimes of Petrov type N that admit globally well-defined solutions of the generalized Witten equation have positive energy.