WorldWideScience

Sample records for chern-simons gauge theories

  1. Anyons in discrete gauge theories with Chern-Simons terms

    International Nuclear Information System (INIS)

    Bais, F.A.; Driel, P. van; Wild Propitius, M. de

    1993-01-01

    A gauge theory with a discrete group H in (2+1)-dimensional space-time is known to describe (non-abelian) anyons. We study the effect of adding a Chern-Simons term to such a theory. As in a previous paper, we emphasize the algebraic structure underlying a discrete H gauge theory, namely the Hopf algebra D(H). For H≅Z N , we argue on physical grounds that a Chern-Simons term in the action leads to a non-trivial 3-cocycle on D(H). Accordingly, the physically inequivalent models are labeled by the elements of the cohomology group H 3 (H, U(1)). It depends periodically on the coefficient of the Chern-Simons term which model is realized. This establishes a relation with the discrete topological field theories of Dijkgraaf and Witten. We extrapolate these results to non-abelian H, and work out the representative example H≅anti D 2 . (orig.)

  2. Chern-Simons as a geometrical set up for three dimensional gauge theories

    International Nuclear Information System (INIS)

    Lemes, V.E.R; Jesus, C. Linhares de; Sorella, S.P.; Villar, L.C.Q.; Ventura, O.S.

    1997-12-01

    Three dimensional Yang-Mills gauge theories in the presence of the Chern-Simons action are seen as being generated by the pure topological Chern-Simons term through nonlinear covariant redefinitions of the gauge field. (author)

  3. A direct derivation of polynomial invariants from perturbative Chern-Simons gauge theory

    International Nuclear Information System (INIS)

    Ochiai, Tomoshiro

    2003-01-01

    There have been several methods to show that the expectation values of Wilson loop operators in the SU(N) Chern-Simons gauge theory satisfy the HOMFLY skein relation. We shall give another method from the perturbative method of the SU(N) Chern-Simons gauge theory in the light-cone gauge, which is more direct than already known methods

  4. Chern-Simons gauge theory on orbifolds: Open strings from three dimensions

    Science.gov (United States)

    Hořava, Petr

    1996-12-01

    Chern-Simons gauge theory is formulated on three-dimensional Z2 orbifolds. The locus of singular points on a given orbifold is equivalent to a link of Wilson lines. This allows one to reduce any correlation function on orbifolds to a sum of more complicated correlation functions in the simpler theory on manifolds. Chern-Simons theory on manifolds is known to be related to two-dimensional (2D) conformal field theory (CFT) on closed-string surfaces; here it is shown that the theory on orbifolds is related to 2D CFT of unoriented closed- and open-string models, i.e. to worldsheet orbifold models. In particular, the boundary components of the worldsheet correspond to the components of the singular locus in the 3D orbifold. This correspondence leads to a simple identification of the open-string spectra, including their Chan-Paton degeneration, in terms of fusing Wilson lines in the corresponding Chern-Simons theory. The correspondence is studied in detail, and some exactly solvable examples are presented. Some of these examples indicate that it is natural to think of the orbifold group Z2 as a part of the gauge group of the Chern-Simons theory, thus generalizing the standard definition of gauge theories.

  5. On the non-renormalization properties of Gauge theories with Chern-Simons term

    International Nuclear Information System (INIS)

    Del Cima, Oswaldo M.; Piguet, Olivier

    1997-12-01

    Considering three-dimensional Chern-Simons theory, either coupled to matter or with a Yang-Mills term, we show the validity of a trace identity, playing the role of a local form of the Callan-Symanzik equation, in all orders of perturbation theory. From this we deduce the vanishing of the β-function associated to the Chern-Simons coupling constant and the full finiteness in the case of the Yang-Mills Chern-Simons theory. The main ingredient in the proof of the latter property is the non invariance of the Chern-Simons from under the gauge transformations. Our results hold for the three-dimensional Chern-Simons model in a general Riemannian manifold. (author)

  6. Unification of gauge and gravity Chern-Simons theories in 3-D space-time

    Energy Technology Data Exchange (ETDEWEB)

    Saghir, Chireen A.; Shamseddine, Laurence W. [American University of Beirut, Physics Department, Beirut (Lebanon)

    2017-11-15

    Chamseddine and Mukhanov showed that gravity and gauge theories could be unified in one geometric construction provided that a metricity condition is imposed on the vielbein. In this paper we are going to show that by enlarging the gauge group we are able to unify Chern-Simons gauge theory and Chern-Simons gravity in 3-D space-time. Such a unification leads to the quantization of the coefficients for both Chern-Simons terms for compact groups but not for non-compact groups. Moreover, it leads to a topological invariant quantity of the 3-dimensional space-time manifold on which they are defined. (orig.)

  7. Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory

    International Nuclear Information System (INIS)

    Schmidt, Torsten

    2009-01-01

    The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)

  8. Abelian Chern-Simons theory and contact torsion

    DEFF Research Database (Denmark)

    McLellan, Brendan Donald Kenneth

    2013-01-01

    Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected and abelian. A shift reduced abelian Chern-Simons partition function is introduced using an alternative formulation of the partition function using formal ideas in ...... in quantum field theory. We compare the shift reduced partition function with other formulations of the abelian Chern-Simons partition function. This study naturally motivates an Atiyah-Patodi-Singer type index problem in contact geometry.......Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected and abelian. A shift reduced abelian Chern-Simons partition function is introduced using an alternative formulation of the partition function using formal ideas...

  9. Localization in abelian Chern-Simons theory

    DEFF Research Database (Denmark)

    McLellan, Brendan Donald Kenneth

    2013-01-01

    Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected, and abelian. The abelian Chern-Simons partition function is derived using the Faddeev-Popov gauge fixing method. The partition function is then formally computed...

  10. Transgression forms and extensions of Chern-Simons gauge theories

    International Nuclear Information System (INIS)

    Mora, Pablo; Olea, Rodrigo; Troncoso, Ricardo; Zanelli, Jorge

    2006-01-01

    A gauge invariant action principle, based on the idea of transgression forms, is proposed. The action extends the Chern-Simons form by the addition of a boundary term that makes the action gauge invariant (and not just quasi-invariant). Interpreting the spacetime manifold as cobordant to another one, the duplication of gauge fields in spacetime is avoided. The advantages of this approach are particularly noticeable for the gravitation theory described by a Chern-Simons lagrangian for the AdS group, in which case the action is regularized and finite for black hole geometries in diverse situations. Black hole thermodynamics is correctly reproduced using either a background field approach or a background-independent setting, even in cases with asymptotically nontrivial topologies. It is shown that the energy found from the thermodynamic analysis agrees with the surface integral obtained by direct application of Noether's theorem

  11. Chern-Simons gauge theory: Ten years after

    International Nuclear Information System (INIS)

    Labastida, J. M. F.

    1999-01-01

    A brief review on the progress made in the study of Chern-Simons gauge theory since its relation to knot theory was discovered ten years ago is presented. Emphasis is made on the analysis of the perturbative study of the theory and its connection to the theory of Vassiliev invariants. It is described how the study of the quantum field theory for three different gauge fixings leads to three different representations for Vassiliev invariants. Two of these gauge fixings lead to well known representations: the covariant Landau gauge corresponds to the configuration space integrals while the non-covariant light-cone gauge to the Kontsevich integral. The progress made in the analysis of the third gauge fixing, the non-covariant temporal gauge, is described in detail. In this case one obtains combinatorial expressions, instead of integral ones, for Vassiliev invariants. The approach based on this last gauge fixing seems very promising to obtain a full combinatorial formula. We collect the combinatorial expressions for all the Vassiliev invariants up to order four which have been obtained in this approach

  12. Dimensional regularisation of Chern-Simons field theory

    International Nuclear Information System (INIS)

    Martin, C.P.

    1990-01-01

    We discuss the dimensional regularisation program as applied to a pure Chern-Simons theory in Minkowski space. In order to make this regularisation program feasible, we propose adding a Yang-Mills term to the pure Chern-Simons action. It is argued that the pure Chern-Simons theory is recovered in a certain limit. Explicit computations are carried out at the one-loop level in the background field gauge. (orig.)

  13. Chern-Simons gauge theories for the fractional-quantum-Hall-effect hierarchy and anyon superconductivity

    International Nuclear Information System (INIS)

    Ezawa, Z.F.; Iwazaki, A.

    1991-01-01

    It is shown that Chern-Simons gauge theories describe both the fractional-quantum-Hall-effect (FQHE) hierarchy and anyon superconductivity, simply by field-theoretically extracting the effects of vortex excitations. Vortices correspond to Laughlin's quasiparticles or bound states of anyons. Both of these phenomena are explained by the condensations of these vortices. We clarify why the anyon systems become incompressible (FQHE) or compressible (anyon superconductivity) depending on the statistics. It is to be emphasized that we can derive an effective Lagrangian describing fully the FQHE hierarchy from a basic Chern-Simons gauge theory

  14. Maxwell-Chern-Simons theory in covariant and Coulomb gauges

    International Nuclear Information System (INIS)

    Haller, K.; Lim-Lombridas, E.

    1996-01-01

    We quantize quantum electrodynamics in 2 + 1 dimensions coupled to a Chern-Simons (CS) term and a charged spinor field, in covariant gauges and in the Coulomb gauge. The resulting Maxwell-Chern-Simons (MCS) theory describes charged fermions interacting with each other and with topologically massive propagating photons. We impose Gauss's law and the gauge conditions and investigate their effect on the dynamics and on the statistics of n-particle states. We construct charged spinor states that obey Gauss's law and the gauge conditions and transform the theory to representations in which these states constitute a Fock space. We demonstrate that, in these representations, the nonlocal interactions between charges and between charges and transverse currents-along with the interactions between currents and massive propagating photons-are identical in the different gauges we analyze in this and in earlier work. We construct the generators of the Poincare group, show that they implement the Poincare algebra, and explicitly demonstrate the effect of rotations and Lorentz boosts on the particle states. We show that the imposition of Gauss's law does not produce any open-quotes exoticclose quotes fractional statistics. In the case of the covariant gauges, this demonstration makes use of unitary transformations that provide charged particles with the gauge fields required by Gauss's law, but that leave the anticommutator algebra of the spinor fields untransformed. In the Coulomb gauge, we show that the anticommutators of the spinor fields apply to the Dirac-Bergmann constraint surfaces, on which Gauss's law and the gauge conditions obtain. We examine MCS theory in the large CS coupling constant limit, and compare that limiting form with CS theory, in which the Maxwell kinetic energy term is not included in the Larangian. 34 refs

  15. Skein relations and Wilson loops in Chern-Simons gauge theory

    International Nuclear Information System (INIS)

    Horne, J.H.

    1990-01-01

    We derive the skein relations for the fundamental representations of SO(N), Sp(2n), SU(mvertical stroken), and OSp(mvertical stroke2n). These relations can be used recursively to calculate the expectation values of Wilson lines in three-dimensional Chern-Simons gauge theory with these gauge groups. A combination of braiding and tying of Wilson lines completely describes the skein relations. (orig.)

  16. Perturbative expansion of Chern-Simons theory with non-compact gauge group

    International Nuclear Information System (INIS)

    Bar-Natan, D.; Witten, E.

    1991-01-01

    Naive imitation of the usual formulas for compact gauge group in quantizing three dimensional Chern-Simons gauge theory with non-compact gauge group leads to formulas that are wrong or unilluminating. In this paper, an appropriate modification is described, which puts the perturbative expansion in a standard manifestly 'unitary' format. The one loop contributions (which differ from naive extrapolation from the case of compact gauge group) are computed, and their topological invariance is verified. (orig.)

  17. Gauge fixing of Chern-Simons N-extended supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ney, W G [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Centro Federal de Educacao Tecnologica (CEFET), Campos dos Goytacazes, RJ (Brazil); Piguet, O [Universidade Federal do Espirito Santo (UFES), ES 29000-001, Vitoria (Brazil); Spalenza, W [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2004-08-01

    We treat N-extended supergravity in 2+1 space-time dimensions as a Yang-Mills gauge field with Chern-Simons action associated to the N-extended Poincare supergroup. We fix the gauge of this theory within the Batalin-Vilkovisky scheme. (orig.)

  18. Gauge fixing of Chern-Simons N-extended supergravity

    International Nuclear Information System (INIS)

    Ney, W.G.; Piguet, O.; Spalenza, W.

    2004-01-01

    We treat N-extended supergravity in 2+1 space-time dimensions as a Yang-Mills gauge field with Chern-Simons action associated to the N-extended Poincare supergroup. We fix the gauge of this theory within the Batalin-Vilkovisky scheme. (orig.)

  19. Kaehler-Chern-Simons theory and symmetries of anti-self-dual gauge fields

    International Nuclear Information System (INIS)

    Nair, V.P.; Schiff, J.

    1992-01-01

    Kaehler-Chern-Simons theory, which was proposed as a generalization of ordinary Chern-Simons theory, is explored in more detail. The theory describes anti-self-dual instantons on a four-dimensional Kaehler manifold. The phase space is the space of gauge potentials, whose symplectic reduction by the constraints of anti-self-duality leads to the moduli space of instantons. We show that infinitesimal Baecklund transformations, previously related to 'hidden symmetries' of instantons, are canonical transformations generated by the anti-self-duality constraints. The quantum wave functions naturally lead to a generalized Wess-Zumino-Witten action, which in turn has associated chiral current algebras. The dimensional reduction of the anti-self-duality equations leading to integrable two-dimensional theories is briefly discussed in this framework. (orig.)

  20. Composite Chern-Simons gauge boson in anyon gas

    International Nuclear Information System (INIS)

    Nguyen Van Hieu; Nguyen Hung Son.

    1990-08-01

    It was shown that in a free anyon gas there exists a composite vector gauge field with the effective action containing a Chern-Simons term. The momentum dependence of the energy of the composite boson was found. The mixing between Chern-Simons boson and photon gives rise to the appearance of new quasiparticles - Chern-Simons polaritons. The dispersion equations of Chern-Simons polaritons were derived. (author). 14 refs

  1. Effective actions for gauge theories with Chern-Simons terms - I

    International Nuclear Information System (INIS)

    Bambah, B.A.; Mukku, C.

    1989-01-01

    The effective Lagrangian for a three-dimensional gauge theory with a Chern-Simons term is evaluated upto one-loop effects. It is shown to be completely finite. It also does not exhibit any imaginary part. The calculation is carried out in a background field analogue of the Feynman gauge and gauge invariance is maintained throughout the calculation. In an appendix an argument is presented as to why this Feynman gauge may be a 'good' gauge for our results to be applied to high temperature QCD and in particular to the quark-gluon plasma. (author). 12 refs

  2. Chern-Simons matrix models, two-dimensional Yang-Mills theory and the Sutherland model

    International Nuclear Information System (INIS)

    Szabo, Richard J; Tierz, Miguel

    2010-01-01

    We derive some new relationships between matrix models of Chern-Simons gauge theory and of two-dimensional Yang-Mills theory. We show that q-integration of the Stieltjes-Wigert matrix model is the discrete matrix model that describes q-deformed Yang-Mills theory on S 2 . We demonstrate that the semiclassical limit of the Chern-Simons matrix model is equivalent to the Gross-Witten model in the weak-coupling phase. We study the strong-coupling limit of the unitary Chern-Simons matrix model and show that it too induces the Gross-Witten model, but as a first-order deformation of Dyson's circular ensemble. We show that the Sutherland model is intimately related to Chern-Simons gauge theory on S 3 , and hence to q-deformed Yang-Mills theory on S 2 . In particular, the ground-state wavefunction of the Sutherland model in its classical equilibrium configuration describes the Chern-Simons free energy. The correspondence is extended to Wilson line observables and to arbitrary simply laced gauge groups.

  3. Observables, skein relations, and tetrahedra in Chern-Simons gauge theory

    International Nuclear Information System (INIS)

    Martin, S.P.

    1990-01-01

    The observables in three-dimensional Chern-Simons gauge theory are Wilson lines and Wilson graphs. Skein relations are non-trivial identities between expectation values of distinct Wilson graphs. We discuss various kinds of skein relations and the relationships between them. By comparing different kinds of skein relations, we show how to calculate the expectation value of a general tetrahedral Wilson graph. This is shown to be the last and most difficult step in a systematic procedure for calculating the expectation values of arbitrary Wilson graphs in arbitrary representations of arbitrary gauge groups. (orig.)

  4. On the phase of Chern-Simons theory with complex gauge group

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, R.; Mokhtari, S. [Dept. of Phys., Louisiana Tech. Univ., Ruston, LA (United States)

    1995-10-07

    We compute the eta function for Chern-Simons quantum field theory with complex gauge group. The calculation is performed using the Schwinger expansion technique. We discuss, in particular, the role of the metric on the field configuration space, and demonstrate that for a certain class of acceptable metrics the one-loop phase contribution to the effective action can be calculated explicitly. The result is found to be proportional to a gauge invariant part of the action. (author)

  5. Lecture notes on Chern-Simons-Witten theory

    CERN Document Server

    Hu, Sen

    2001-01-01

    This invaluable monograph has arisen in part from E Witten's lectures on topological quantum field theory in the spring of 1989 at Princeton University. At that time Witten unified several important mathematical works in terms of quantum field theory, most notably the Donaldson polynomial, the Gromov-Floer homology and the Jones polynomials. In his lectures, among other things, Witten explained his intrinsic three-dimensional construction of Jones polynomials via Chern-Simons gauge theory. He provided both a rigorous proof of the geometric quantization of the Chern-Simons action and a very ill

  6. Combinatorial quantization of the Hamiltonian Chern-Simons theory

    International Nuclear Information System (INIS)

    Alekseev, A.Yu.; Grosse, H.; Schomerus, V.

    1996-01-01

    This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of ''functions on the quantum moduli space of flat connections'' and comes equipped with a positive functional ω (''integration''). We prove that this data does not depend on the particular choices which have been made in the construction. The algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group. (orig.). With 1 fig

  7. A Lie based 4-dimensional higher Chern-Simons theory

    Science.gov (United States)

    Zucchini, Roberto

    2016-05-01

    We present and study a model of 4-dimensional higher Chern-Simons theory, special Chern-Simons (SCS) theory, instances of which have appeared in the string literature, whose symmetry is encoded in a skeletal semistrict Lie 2-algebra constructed from a compact Lie group with non discrete center. The field content of SCS theory consists of a Lie valued 2-connection coupled to a background closed 3-form. SCS theory enjoys a large gauge and gauge for gauge symmetry organized in an infinite dimensional strict Lie 2-group. The partition function of SCS theory is simply related to that of a topological gauge theory localizing on flat connections with degree 3 second characteristic class determined by the background 3-form. Finally, SCS theory is related to a 3-dimensional special gauge theory whose 2-connection space has a natural symplectic structure with respect to which the 1-gauge transformation action is Hamiltonian, the 2-curvature map acting as moment map.

  8. Abelian Chern-Simons theory and linking numbers via oscillatory integrals

    International Nuclear Information System (INIS)

    Albeverio, S.; Schaefer, J.

    1994-06-01

    We introduce a rigorous mathematical model of abelian Chern-Simons theory based on the theory of infinite dimensional oscillatory integrals developed by Albeverio and Hoeegh-Krohn. We construct a gauge-fixed Chern-Simons path integral as a Fresnel integral in a certain Hilbert space. Wilson loop variables are defined as Fresnel integrable functions and it is shown in this context that the expectation value of products of Wilson loops w.r.t. the Chern-Simons path integral is a topological invariant which can be computed in terms of pairwise linking numbers of the loops, as conjectured by Witten. We also propose a lattice Chern-Simons action which converges to the continuum limit. (orig.)

  9. Moyal Deformations of Gravity via SU ( N ) Gauge Theories, Branes and Topological Chern-Simons Matrix Models

    CERN Document Server

    Castro \\C

    2003-01-01

    Moyal noncommutative star-product deformations of higher dimensional gravitational Einstein-Hilbert actions via lower-dimensional SU(\\infty) gauge theories are constructed explicitly based on the holographic reduction principle. New reparametrization invariant p-brane actions and their Moyal star product deformations follows. It is conjectured that topological Chern-Simons brane actions associated with higher-dimensional "knots" have a one-to-one correspondence with topological Chern-Simons Matrix models in the large N limit. The corresponding large N limit of Topological BF Matrix models leads to Kalb-Ramond couplings of antisymmetric-tensor fields to p-branes. The former Chern-Simons branes display higher-spin W_\\infty symmetries which are very relevant in the study of W_\\infty Gravity, the Quantum Hall effect and its higher-dimensional generalizations. We conclude by arguing why this interplay between condensed matter models, higher-dimensional extensions of the Quantum Hall effect, Chern-Simons Matrix mod...

  10. A flat Chern-Simons gauge theory for (2+1)-dimensional gravity coupled to point particles

    International Nuclear Information System (INIS)

    Grignani, G.; Nardelli, G.

    1991-01-01

    We present a classical ISO (2,1) Chern-Simons gauge theory for planar gravity coupled to point-like sources. The theory is defined in terms of flat coordinates whose relation with the space-time coordinates is established. Though flat, the theory is equivalent to Einstein's as we show explicitly in two examples. (orig.)

  11. Chern-Simons-Rozansky-Witten topological field theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapustin, Anton [California Institute of Technology, Minor Outlying Islands (United States); Saulina, Natalia [California Institute of Technology, Minor Outlying Islands (United States)], E-mail: saulina@theory.caltech.edu

    2009-12-21

    We construct and study a new topological field theory in three dimensions. It is a hybrid between Chern-Simons and Rozansky-Witten theory and can be regarded as a topologically-twisted version of the N=4d=3 supersymmetric gauge theory recently discovered by Gaiotto and Witten. The model depends on a gauge group G and a hyper-Kaehler manifold X with a tri-holomorphic action of G. In the case when X is an affine space, we show that the model is equivalent to Chern-Simons theory whose gauge group is a supergroup. This explains the role of Lie superalgebras in the construction of Gaiotto and Witten. For general X, our model appears to be new. We describe some of its properties, focusing on the case when G is simple and X is the cotangent bundle of the flag variety of G. In particular, we show that Wilson loops are labeled by objects of a certain category which is a quantum deformation of the equivariant derived category of coherent sheaves on X.

  12. Chern-Simons theory and three-dimensional surfaces

    International Nuclear Information System (INIS)

    Guven, Jemal

    2007-01-01

    There are two natural Chern-Simons theories associated with the embedding of a three-dimensional surface in Euclidean space: one is constructed using the induced metric connection and involves only the intrinsic geometry? the other is extrinsic and uses the connection associated with the gauging of normal rotations. As such, the two theories appear to describe very different aspects of the surface geometry. Remarkably, at a classical level, they are equivalent. In particular, it will be shown that their stress tensors differ only by a null contribution. Their Euler-Lagrange equations provide identical constraints on the normal curvature. A new identity for the Cotton tensor is associated with the triviality of the Chern-Simons theory for embedded hypersurfaces implied by this equivalence

  13. Abelian Chern-Simons theory as the strong large-mass limit of topologically massive abelian gauge theory: the Wilson loop

    International Nuclear Information System (INIS)

    Giavarini, G.; Martin, C.P.; Ruiz Ruiz, F.

    1993-01-01

    We show that the renormalized vacuum expectation value of the Wilson loop for topologically massive abelian gauge theory in bbfR 3 can be defined so that its large-mass limit be the renormalized vaccum expectation value of the Wilson loop for abelian Chern-Simons theory also in bbfR 3 . (orig.)

  14. Vortex solutions of a Maxwell-Chern-Simons field coupled to four-fermion theory

    International Nuclear Information System (INIS)

    Hyun, S.; Shin, J.; Yee, J.H.; Lee, H.

    1997-01-01

    We find the static vortex solutions of the model of a Maxwell-Chern-Simons gauge field coupled to a (2+1)-dimensional four-fermion theory. Especially, we introduce two matter currents coupled to the gauge field minimally: the electromagnetic current and a topological current associated with the electromagnetic current. Unlike other Chern-Simons solitons the N-soliton solution of this theory has binding energy and the stability of the solutions is maintained by the charge conservation laws. copyright 1997 The American Physical Society

  15. Absence of higher order corrections to noncommutative Chern-Simons coupling

    International Nuclear Information System (INIS)

    Das, Ashok; Sheikh-Jabbari, M.M.

    2001-03-01

    We analyze the structure of noncommutative pure Chern-Simons theory systematically in the axial gauge. We show that there is no IR/UV mixing in this theory in this gauge. In fact, we show, using the usual BRST identities as well as the identities following from vector supersymmetry, that this is a free theory. As a result, the tree level Chern-Simons coefficient is not renormalized. It also holds that the Chern-Simons coefficient is not modified at finite temperature. (author)

  16. Abelian Chern endash Simons theory. I. A topological quantum field theory

    International Nuclear Information System (INIS)

    Manoliu, M.

    1998-01-01

    We give a construction of the Abelian Chern endash Simons gauge theory from the point of view of a 2+1-dimensional topological quantum field theory. The definition of the quantum theory relies on geometric quantization ideas that have been previously explored in connection to the non-Abelian Chern endash Simons theory [J. Diff. Geom. 33, 787 endash 902 (1991); Topology 32, 509 endash 529 (1993)]. We formulate the topological quantum field theory in terms of the category of extended 2- and 3-manifolds introduced in a preprint by Walker in 1991 and prove that it satisfies the axioms of unitary topological quantum field theories formulated by Atiyah [Publ. Math. Inst. Hautes Etudes Sci. Pans 68, 175 endash 186 (1989)]. copyright 1998 American Institute of Physics

  17. Matrix model as a mirror of Chern-Simons theory

    International Nuclear Information System (INIS)

    Aganagic, Mina; Klemm, Albrecht; Marino, Marcos; Vafa, Cumrun

    2004-01-01

    Using mirror symmetry, we show that Chern-Simons theory on certain manifolds such as lens spaces reduces to a novel class of Hermitian matrix models, where the measure is that of unitary matrix models. We show that this agrees with the more conventional canonical quantization of Chern-Simons theory. Moreover, large N dualities in this context lead to computation of all genus A-model topological amplitudes on toric Calabi-Yau manifolds in terms of matrix integrals. In the context of type IIA superstring compactifications on these Calabi-Yau manifolds with wrapped D6 branes (which are dual to M-theory on G2 manifolds) this leads to engineering and solving F-terms for N=1 supersymmetric gauge theories with superpotentials involving certain multi-trace operators. (author)

  18. Chern-Simons Theory, Matrix Models, and Topological Strings

    International Nuclear Information System (INIS)

    Walcher, J

    2006-01-01

    This book is a find. Marino meets the challenge of filling in less than 200 pages the need for an accessible review of topological gauge/gravity duality. He is one of the pioneers of the subject and a clear expositor. It is no surprise that reading this book is a great pleasure. The existence of dualities between gauge theories and theories of gravity remains one of the most surprising recent discoveries in mathematical physics. While it is probably fair to say that we do not yet understand the full reach of such a relation, the impressive amount of evidence that has accumulated over the past years can be regarded as a substitute for a proof, and will certainly help to delineate the question of what is the most fundamental quantum mechanical theory. Here is a brief summary of the book. The journey begins with matrix models and an introduction to various techniques for the computation of integrals including perturbative expansion, large-N approximation, saddle point analysis, and the method of orthogonal polynomials. The second chapter, on Chern-Simons theory, is the longest and probably the most complete one in the book. Starting from the action we meet Wilson loop observables, the associated perturbative 3-manifold invariants, Witten's exact solution via the canonical duality to WZW models, the framing ambiguity, as well as a collection of results on knot invariants that can be derived from Chern-Simons theory and the combinatorics of U (∞) representation theory. The chapter also contains a careful derivation of the large-N expansion of the Chern-Simons partition function, which forms the cornerstone of its interpretation as a closed string theory. Finally, we learn that Chern-Simons theory can sometimes also be represented as a matrix model. The story then turns to the gravity side, with an introduction to topological sigma models (chapter 3) and topological string theory (chapter 4). While this presentation is necessarily rather condensed (and the beginner may

  19. Soliton condensation in some self-dual Chern-Simons theories

    International Nuclear Information System (INIS)

    Olesen, P.

    1991-05-01

    We show that the gauged non-linear Schroedinger equation has a closely packed soliton-condensate as a solution. We also show that the abelian Chern-Simons Higgs theory has a vortex condensate as an approximate solution whent he vortex cells are very small. (orig.)

  20. Lorentz-violating Yang-Mills theory. Discussing the Chern-Simons-like term generation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Tiago R.S.; Sobreiro, Rodrigo F. [UFF-Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil)

    2017-12-15

    We analyze the Chern-Simons-like term generation in the CPT-odd Lorentz-violating Yang-Mills theory interacting with fermions. Moreover, we study the anomalies of this model as well as its quantum stability. The whole analysis is performed within the algebraic renormalization theory, which is independent of the renormalization scheme. In addition, all results are valid to all orders in perturbation theory. We find that the Chern-Simons-like term is not generated by radiative corrections, just like its Abelian version. Additionally, the model is also free of gauge anomalies and quantum stable. (orig.)

  1. Chern-Simons terms and cocycles in physics and mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Jackiw, R.

    1984-12-01

    Contemporary topological research in Yang-Mills theory is reviewed, emphasizing the Chern-Simons terms and their relatives. Three applications of the Chern-Simons terms in physical theory are described: to help understanding gauge theories in even dimensional space-time; gauge field dynamics in odd dimensional space-time; and mathematically coherent description of even-dimensional gauge theories with chiral fermions that are apparently inconsistent due to chiral anomalies. Discussion of these applications is preceded by explanation of the mathematical preliminaries and examples in simple quantum mechanical settings. 24 refs. (LEW)

  2. SU(2) Chern-Simons theory at genus zero

    International Nuclear Information System (INIS)

    Gawedzki, K.; Kupiainen, A.

    1991-01-01

    We present a detailed study of the Schroedinger picture space of states in the SU(2) Chern-Simons topological gauge theory in the simplest geometry. The space coincides with that of the solutions of the chiral Ward identities for the WZW model. We prove that its dimension is given by E. Verlinde's formulae. (orig.)

  3. Chern-Simons theory from first principles

    International Nuclear Information System (INIS)

    Marino, E.C.

    1994-01-01

    A review is made of the main properties of the Chern-Simons field theory. These include the dynamical mass generation to the photon without a Higgs field, the statistical transmutation of charged particles coupled to it and the natural appearance of a transverse conductivity. A review of standard theories proposed for the Quantum Hall Effect which use the Chern-Simons term is also made, emphasizing the fact that this terms is put in an artificial manner. A physical origin for the Chern-Simons term is proposed, starting from QED in 3+1 D with the topological term and imposing that the motion of charged matter is restricted to an infinite plane. (author). 12 refs

  4. Knot invariants and universal R-matrices from perturbative Chern-Simon theory in the almost axial gauge

    International Nuclear Information System (INIS)

    Van de Wetering, J.F.W.H.

    1992-01-01

    Using perturbative Chern-Simons theory in the almost axial gauge on the euclidean manifold S 1 xR 2 , we give a prescription for the computation of knot invariants. The method gives the correct expectation value of the unknot to all orders in perturbation theory and gives the correct answer for the spectral-parameter-dependent universal R-matrix to second order. All results are derived for a general semi-simple Lie algebra. (orig.)

  5. Teichmüller TQFT vs. Chern-Simons theory

    Science.gov (United States)

    Mikhaylov, Victor

    2018-04-01

    Teichmüller TQFT is a unitary 3d topological theory whose Hilbert spaces are spanned by Liouville conformal blocks. It is related but not identical to PSL(2, ℝ) Chern-Simons theory. To physicists, it is known in particular in the context of 3d-3d correspondence and also in the holographic description of Virasoro conformal blocks. We propose that this theory can be defined by an analytically-continued Chern-Simons path-integral with an unusual integration cycle. On hyperbolic three-manifolds, this cycle is singled out by the requirement of invertible vielbein. Mathematically, our proposal translates a known conjecture by Andersen and Kashaev into a conjecture about the Kapustin-Witten equations. We further explain that Teichmüller TQFT is dual to complex SL(2, ℂ) Chern-Simons theory at integer level k = 1, clarifying some puzzles previously encountered in the 3d-3d correspondence literature. We also present a new simple derivation of complex Chern-Simons theories from the 6d (2,0) theory on a lens space with a transversely-holomorphic foliation.

  6. Physically meaningful and not so meaningful symmetries in Chern-Simons theory

    International Nuclear Information System (INIS)

    Giavarini, G.

    1993-01-01

    We explicitly show that the Landau gauge supersymmetry of Chern-Simons theory does not have any physical significance. In fact, the difference between an effective action both BRS invariant and Landau supersymmetric and an effective action only BRS invariant is a finite field redefinition. Having established this, we use a BRS invariant regulator that defines CS theory as the large mass limit of topologically massive Yang-Mills theory to discuss the shift k → k + c v of the bare Chern-Simons parameter k in connection with the Landau supersymmetry. Finally, to convince ourselves that the shift above is not an accident of our regularization method, we comment on the fact that all BRS invariant regulators used as yet yield the same value for the shift. (orig.)

  7. Chern-Simons induced spin factors in noncovariant gauges

    International Nuclear Information System (INIS)

    Tanaka, I.

    1993-01-01

    We study Chern-Simons induced spin factors in noncovariant metric-independent gauges, such as the axial gauge and the Coulomb gauge. These spin factors are defined without loop splitting. We find that they are equal to integers and have particular geometrical meanings. In the axial gauge, this integer is the writhe number of a link diagram defined by the projection of a loop to the time direction. In the Coulomb gauge, it is suggested that this integer is also the writhe number of a link diagram, defined by the projection of a loop to a spatial plane

  8. Analysis of observables in Chern-Simons perturbation theory

    International Nuclear Information System (INIS)

    Alvarez, M.; Labastida, J.M.F.

    1993-01-01

    Chern-Simons theory with gauge group SU(N) is analyzed from a perturbation theory point of view. Computations up to order g 6 of the vacuum expectation value of the unknot are carried out and it is shown that agreement with the exact result by Witten implies no quantum correction at two loops for the two-point function. In addition, it is shown from a perturbation theory point of view that the framing dependence of the vacuum expectation value of an arbitrary knot factorizes in the form predicted by Witten. (orig.)

  9. Embedded graph invariants in Chern-Simons theory

    International Nuclear Information System (INIS)

    Major, Seth A.

    1999-01-01

    Chern-Simons gauge theory, since its inception as a topological quantum field theory, has proved to be a rich source of understanding for knot invariants. In this work the theory is used to explore the definition of the expectation value of a network of Wilson lines -- an embedded graph invariant. Using a generalization of the variational method, lowest-order results for invariants for graphs of arbitrary valence and general vertex tangent space structure are derived. Gauge invariant operators are introduced. Higher order results are found. The method used here provides a Vassiliev-type definition of graph invariants which depend on both the embedding of the graph and the group structure of the gauge theory. It is found that one need not frame individual vertices. However, without a global projection of the graph there is an ambiguity in the relation of the decomposition of distinct vertices. It is suggested that framing may be seen as arising from this ambiguity -- as a way of relating frames at distinct vertices

  10. Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories

    Science.gov (United States)

    Zemba, Guillermo Raul

    A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  11. The integral form of D = 3 Chern-Simons theories probing C{sup n}/Γ singularities

    Energy Technology Data Exchange (ETDEWEB)

    Fre, P. [Dipartimento di Fisica, Universita di Torino (Italy); INFN - Sezione di Torino (Italy); Arnold-Regge Center, Torino (Italy); National Research Nuclear University MEPhI, (Moscow Engineering Physics Institute), Moscow (Russian Federation); Grassi, P.A. [INFN - Sezione di Torino (Italy); Arnold-Regge Center, Torino (Italy); DISIT, Universita del Piemonte Orientale, Alessandria (Italy); Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University (Japan)

    2017-10-15

    We consider D=3 supersymmetric Chern Simons gauge theories both from the point of view of their formal structure and of their applications to the AdS{sub 4}/CFT{sub 3} correspondence. From the structural view-point, we use the new formalism of integral forms in superspace that utilizes the rheonomic Lagrangians and the Picture Changing Operators, as an algorithmic tool providing the connection between different approaches to supersymmetric theories. We provide here the generalization to an arbitrary Kaehler manifold with arbitrary gauge group and arbitrary superpotential of the rheonomic lagrangian of D=3 matter coupled gauge theories constructed years ago. From the point of view of the AdS{sub 4}/CFT{sub 3} correspondence and more generally of M2-branes we emphasize the role of the Kaehler quotient data in determining the field content and the interactions of the Cherns Simons gauge theory when the transverse space to the brane is a non-compact Kaehler quotient K{sub 4} of some flat variety with respect to a suitable group. The crepant resolutions of C{sup n}/Γ singularities fall in this category. In the present paper we anticipate the general scheme how the geometrical data are to be utilized in the construction of the D=3 Chern-Simons Theory supposedly dual to the corresponding M2-brane solution. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. 4D edge currents from 5D Chern-Simons theory

    International Nuclear Information System (INIS)

    Gupta, K.S.; Stern, A.

    1995-01-01

    A class of two dimensional conformal field theories is known to correspond to three dimensional Chern-Simons theory. Here we claim that there is an analogous class of four dimensional field theories corresponding to five dimensional Chern-Simons theory. The four dimensional theories give a coupling between a scalar field and an external divergenceless vector field and they may have some application in magnetohydrodynamics. Like in conformal theories they possess a diffeomorphism symmetry, which for us is along the direction of the vector field, and their generators are analogous to Virasoro generators. Our analysis of the abelian Chern-Simons system uses elementary canonical methods for the quantization of field theories defined on manifolds with boundaries. Edge states appear for these systems and they yield a four dimensional current algebra. We examine the quantization of these algebras in several special cases and claim that a renormalization of the 5D Chern-Simons coupling is necessary for removing divergences. ((orig.))

  13. N = 4 Superconformal Chern-Simons theories with hyper and twisted hyper multiplets

    International Nuclear Information System (INIS)

    Hosomichi, Kazuo; Lee, Ki-Myeong; Lee, Sungjay; Lee, Sangmin; Park, Jaemo

    2008-01-01

    We extend the N = 4 superconformal Chern-Simons theories of Gaiotto and Witten to those with additional twisted hyper-multiplets. The new theories are generically linear quiver gauge theories with the two types of hyper-multiplets alternating between gauge groups. Our construction includes the Bagger-Lambert model of SO(4) gauge group. A family of abelian theories are identified with those proposed earlier in the context of the M-crystal model for M2-branes probing (C 2 /Z n ) 2 orbifolds. Possible extension with non-abelian BF couplings and string/M-theory realization are briefly discussed.

  14. Perturbed Chern-Simons theory, fractional statistics, and Yang-Baxter algebra

    International Nuclear Information System (INIS)

    Chatterjee, A.; Sreedhar, V.V.

    1992-01-01

    Topological Chern-Simons theory coupled to matter fields is analysed in the framework of Dirac's method of quantising constrained systems in a general class of linear, non-local gauges. We show that in the weak coupling limit gauge invariant operators in the theory transform under an exchange according to a higher dimensional representation of the braid group which is built out of the fundamental representation matrices of the gauge group and thus behave like anyons. We also discover new solutions of the Yang-Baxter equation which emerges as a consistency condition on the structure functions of the operator algebra of the matter fields. (orig.)

  15. Anyons, spin, and statistics in (2+1)-dimensional U(1)-scalar Chern-Simons gauge field theory

    International Nuclear Information System (INIS)

    Graziano, E.; Rothe, K.D.

    1994-01-01

    We present a detailed analysis of the quantum field theory of a Chern-Simons field coupled minimally to massive charged bosonic matter. This analysis is carried out in the Coulomb and covariant gauges. Some aspects concerning the transformation law of the fields under Poincare transformations are clarified. Emphasis is placed on gauge-invariant operators. The order and disorder operators are constructed from their dual algebra. The order operator is shown to obey anyonic statistics. The correlator of the disorder operator is computed in the large boson-mass limit, and the corresponding cluster properties are discussed. In the absence of a symmetry-breaking Higgs potential, there is no evidence for the ground state being anyonic

  16. The A-polynomial in Chern-Simons theory

    DEFF Research Database (Denmark)

    Malusà, Alessandro

    One of the most amusing aspects of mathematical physics is the great variety of areas of mathematics it relates to, and builds bridges between. The world of TQFT’s, and in particular Chern-Simons, relates to algebraic geometry via the theory of moduli spaces: one example of this is given by the A......-polynomial. This knot invariant is obtained from the algebraic geometry of character varieties, and takes the meaning of the equation of a constraint central in Chern-Simons theory. In my poster I wish to expose the construction of this invariant, and highlight its strong ties with mathematical physics....

  17. Introductory lectures on Chern-Simons theories

    Science.gov (United States)

    Zanelli, Jorge

    2012-02-01

    The Chern-Simons (CS) form evolved from an obstruction in mathematics into an important object in theoretical physics. In fact, the presence of CS terms in physics is more common than one may think. They are found in the studies of anomalies in quantum field theories and as Lagrangians for gauge fields, including gravity and supergravity. They seem to play an important role in high Tc superconductivity and in recently discovered topological insulators. CS forms are also the natural generalization of the minimal coupling between the electromagnetic field and a point charge when the source is not point-like but an extended fundamental object, a membrane. A cursory review of these ideas is presented at an introductory level.

  18. A stringy origin of M2 brane Chern-Simons theories

    International Nuclear Information System (INIS)

    Aganagic, Mina

    2010-01-01

    We show that string duality relates M-theory on a local Calabi-Yau fourfold singularity X 4 to type IIA string theory on a Calabi-Yau threefold X 3 fibered over a real line, with RR 2-form fluxes turned on. The RR flux encodes how the M-theory circle is fibered over the IIA geometry. The theories on N D2 branes probing X 3 are the well-known quiver theories with N=2 supersymmetry in three dimensions. We show that turning on fluxes, and fibering the X 3 over a direction transverse to the branes, corresponds to turning on N=2 Chern-Simons couplings. String duality implies that, in the strong coupling limit, the N D2 branes on X 3 in this background become N M2 branes on X 4 . This provides a string theory derivation for the recently conjectured description of the M2 brane theories on Calabi-Yau fourfolds in terms of N=2 quiver Chern-Simons theories. We also provide a new N=2 Chern-Simons theory dual to AdS 4 xQ 1,1,1 . Type IIA/M-theory duality also relates IIA string theory on X 3 with only the RR fluxes turned on, to M-theory on a G 2 holonomy manifold. We show that this implies that the N M2 branes probing the G 2 manifold are described by the quiver Chern-Simons theory originating from the D2 branes probing X 3 , except that now Chern-Simons terms preserve only N=1 supersymmetry in three dimensions.

  19. Chern-Simons topological Lagrangians in odd dimensions and their Kaluza-Klein reduction

    International Nuclear Information System (INIS)

    Wu, Y.

    1984-01-01

    Clarifying the behavior of generic Chern-Simons secondary invariants under infinitesimal variation and finite gauge transformation, it is proved that they are eligible to be a candidate term in the Lagrangian in odd dimensions (2k-1 for gauge theories and 4k-1 for gravity). The coefficients in front of these terms may be quantized because of topological reasons. As a possible application, the dimensional reduction of such actions in Kaluza-Klein theory is discussed. The difficulty in defining the Chern-Simons action for topologically nontrivial field configurations is pointed out and resolved

  20. Wavefunction of the Universe and Chern-Simons perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Soo Chopin [Department of Physics, National Cheng Kung University Tainan 70101, Taiwan (China)

    2002-03-21

    The Chern-Simons exact solution of four-dimensional quantum gravity with nonvanishing cosmological constant is presented in metric variables as the partition function of Chern-Simons theory with nontrivial source. The perturbative expansion is given, and the wavefunction is computed to the lowest order of approximation for the Cauchy surface which is topologically a 3-sphere. The state is well-defined even at degenerate and vanishing values of the dreibein. Reality conditions for the Ashtekar variables are also taken into account, and remarkable features of the Chern-Simons state and their relevance to cosmology are pointed out.

  1. Abelian Chern endash Simons theory. II. A functional integral approach

    International Nuclear Information System (INIS)

    Manoliu, M.

    1998-01-01

    Following Witten, [Commun. Math. Phys. 21, 351 endash 399 (1989)] we approach the Abelian quantum Chern endash Simons (CS) gauge theory from a Feynman functional integral point of view. We show that for 3-manifolds with and without a boundary the formal functional integral definitions lead to mathematically proper expressions that agree with the results from the rigorous construction [J. Math. Phys. 39, 170 endash 206 (1998)] of the Abelian CS topological quantum field theory via geometric quantization. copyright 1998 American Institute of Physics

  2. Exact solubility of Chern-Simons theory with compact simple gauge group

    International Nuclear Information System (INIS)

    Hayashi, Masahito

    1993-01-01

    We show that vacuum expectation values of Wilson loop operators in (2+1)-dimensional Chern-Simons theory satisfy algebraic equations. Interestingly enough, vacuum expectation values for unknotted Wilson loop operators in any representation of any compact and simple group are exactly computed by solving the equations. So-called 'skein relations', which give us algebraic equations among vacuum expectation values of different Wilson loop operators, are constructed. In our formalism, quantum group symmetry appears naturally. (orig.)

  3. Lattice implementation of Abelian gauge theories with Chern-Simons number and an axion field

    Science.gov (United States)

    Figueroa, Daniel G.; Shaposhnikov, Mikhail

    2018-01-01

    Real time evolution of classical gauge fields is relevant for a number of applications in particle physics and cosmology, ranging from the early Universe to dynamics of quark-gluon plasma. We present an explicit non-compact lattice formulation of the interaction between a shift-symmetric field and some U (1) gauge sector, a (x)FμνF˜μν, reproducing the continuum limit to order O (dxμ2) and obeying the following properties: (i) the system is gauge invariant and (ii) shift symmetry is exact on the lattice. For this end we construct a definition of the topological number density K =FμνF˜μν that admits a lattice total derivative representation K = Δμ+ Kμ, reproducing to order O (dxμ2) the continuum expression K =∂μKμ ∝ E → ṡ B → . If we consider a homogeneous field a (x) = a (t), the system can be mapped into an Abelian gauge theory with Hamiltonian containing a Chern-Simons term for the gauge fields. This allow us to study in an accompanying paper the real time dynamics of fermion number non-conservation (or chirality breaking) in Abelian gauge theories at finite temperature. When a (x) = a (x → , t) is inhomogeneous, the set of lattice equations of motion do not admit however a simple explicit local solution (while preserving an O (dxμ2) accuracy). We discuss an iterative scheme allowing to overcome this difficulty.

  4. Yang-Mills-Chern-Simons supergravity

    International Nuclear Information System (INIS)

    Lue, H; Pope, C N; Sezgin, E

    2004-01-01

    N = (1, 0) supergravity in six dimensions admits AdS 3 x S 3 as a vacuum solution. We extend our recent results presented in Lue et al (2002 Preprint hep-th/0212323), by obtaining the complete N = 4 Yang-Mills-Chern-Simons supergravity in D = 3, up to quartic fermion terms, by S 3 group manifold reduction of the six-dimensional theory. The SU(2) gauge fields have Yang-Mills kinetic terms as well as topological Chern-Simons mass terms. There is in addition a triplet of matter vectors. After diagonalization, these fields describe two triplets of topologically-massive vector fields of opposite helicities. The model also contains six scalars, described by a GL(3, R)/SO(3) sigma model. It provides the first example of a three-dimensional gauged supergravity that can be obtained by a consistent reduction of string theory or M-theory and that admits AdS 3 as a vacuum solution. There are unusual features in the reduction from six-dimensional supergravity, owing to the self-duality condition on the 3-form field. The structure of the full equations of motion in N = (1, 0) supergravity in D = 6 is also elucidated, and the role of the self-dual field strength as torsion is exhibited

  5. Maxwell-Chern-Simons Casimir effect

    International Nuclear Information System (INIS)

    Milton, K.A.; Ng, Y.J.

    1990-01-01

    The topology of (2+1)-dimensional space permits the construction of quantum electrodynamics with the usual Maxwell action augmented by a gauge-invariant, but P- and T-violating, Chern-Simons mass term. We discuss the Casimir effect between parallel lines in such a theory. The effect of finite temperature is also considered. In principle, our results provide a way to measure the topological mass of the photon

  6. Dynamical Mass Generation and Confinement in Maxwell-Chern-Simons Planar Quantum Electrodynamics

    International Nuclear Information System (INIS)

    Sanchez Madrigal, S; Raya, A; Hofmann, C P

    2011-01-01

    We study the non-perturbative phenomena of Dynamical Mass Generation and Confinement by truncating at the non-perturbative level the Schwinger-Dyson equations in Maxwell-Chern-Simons planar quantum electrodynamics. We obtain numerical solutions for the fermion propagator in Landau gauge within the so-called rainbow approximation. A comparison with the ordinary theory without the Chern-Simons term is presented.

  7. Canonical sectors of five-dimensional Chern-Simons theories

    International Nuclear Information System (INIS)

    Miskovic, Olivera; Troncoso, Ricardo; Zanelli, Jorge

    2005-01-01

    The dynamics of five-dimensional Chern-Simons theories is analyzed. These theories are characterized by intricate self couplings which give rise to dynamical features not present in standard theories. As a consequence, Dirac's canonical formalism cannot be directly applied due to the presence of degeneracies of the symplectic form and irregularities of the constraints on some surfaces of phase space, obscuring the dynamical content of these theories. Here we identify conditions that define sectors where the canonical formalism can be applied for a class of non-Abelian Chern-Simons theories, including supergravity. A family of solutions satisfying the canonical requirements is explicitly found. The splitting between first and second class constraints is performed around these backgrounds, allowing the construction of the charge algebra, including its central extension

  8. Chern-Simons forms in gravitation theories

    International Nuclear Information System (INIS)

    Zanelli, Jorge

    2012-01-01

    The Chern-Simons (CS) form evolved from an obstruction in mathematics into an important object in theoretical physics. In fact, the presence of CS terms in physics is more common than one may think: they seem to play an important role in high Tc superconductivity and in recently discovered topological insulators. In classical physics, the minimal coupling in electromagnetism and to the action for a mechanical system in Hamiltonian form are examples of CS functionals. CS forms are also the natural generalization of the minimal coupling between the electromagnetic field and a point charge when the source is not point like but an extended fundamental object, a membrane. They are found in relation with anomalies in quantum field theories, and as Lagrangians for gauge fields, including gravity and supergravity. A cursory review of the role of CS forms in gravitation theories is presented at an introductory level. (topical review)

  9. Chern-Simons forms in gravitation theories

    Science.gov (United States)

    Zanelli, Jorge

    2012-07-01

    The Chern-Simons (CS) form evolved from an obstruction in mathematics into an important object in theoretical physics. In fact, the presence of CS terms in physics is more common than one may think: they seem to play an important role in high Tc superconductivity and in recently discovered topological insulators. In classical physics, the minimal coupling in electromagnetism and to the action for a mechanical system in Hamiltonian form are examples of CS functionals. CS forms are also the natural generalization of the minimal coupling between the electromagnetic field and a point charge when the source is not point like but an extended fundamental object, a membrane. They are found in relation with anomalies in quantum field theories, and as Lagrangians for gauge fields, including gravity and supergravity. A cursory review of the role of CS forms in gravitation theories is presented at an introductory level.

  10. Chern-Simons theory with vector fermion matter

    International Nuclear Information System (INIS)

    Giombi, Simone; Minwalla, Shiraz; Prakash, Shiroman; Trivedi, Sandip P.; Wadia, Spenta R.; Yin, Xi

    2012-01-01

    We study three-dimensional conformal field theories described by U(N) Chern-Simons theory at level k coupled to massless fermions in the fundamental representation. By solving a Schwinger-Dyson equation in light-cone gauge, we compute the exact planar free energy of the theory at finite temperature on R 2 as a function of the 't Hooft coupling λ=N/k. Employing a dimensional reduction regularization scheme, we find that the free energy vanishes at vertical stroke λvertical stroke =1; the conformal theory does not exist for vertical stroke λvertical stroke >1. We analyze the operator spectrum via the anomalous conservation relation for higher spin currents, and in particular show that the higher spin currents do not develop anomalous dimensions at leading order in 1/N. We present an integral equation whose solution in principle determines all correlators of these currents at leading order in 1/N and present explicit perturbative results for all three-point functions up to two loops. We also discuss a light-cone Hamiltonian formulation of this theory where a W ∞ algebra arises. The maximally supersymmetric version of our theory is ABJ model with one gauge group taken to be U(1), demonstrating that a pure higher spin gauge theory arises as a limit of string theory. (orig.)

  11. Shift versus no-shift in local regularization of Chern-Simons theory

    International Nuclear Information System (INIS)

    Giavarini, G.; Parma Univ.; Martin, C.P.; Ruiz Ruiz, F.

    1994-01-01

    We consider a family of local BRS-invariant higher covariant derivative regularizations of SU(N) Chern-Simons theory that do not shift the value of the Chern-Simons parameter k to k + sign(k) c v at one loop. (orig.)

  12. Low regularity solutions of the Chern-Simons-Higgs equations in the Lorentz gauge

    Directory of Open Access Journals (Sweden)

    Nikolaos Bournaveas

    2009-09-01

    Full Text Available We prove local well-posedness for the 2+1-dimensional Chern-Simons-Higgs equations in the Lorentz gauge with initial data of low regularity. Our result improves earlier results by Huh [10, 11].

  13. BRST Formalism in Self-Dual Chern-Simons Theory with Matter Fields

    Science.gov (United States)

    Dai, Jialiang; Fan, Engui

    2018-04-01

    We apply BRST method to the self-dual Chern-Simons gauge theory with matter fields and the generators of symmetries of the system from an elegant Lie algebra structure under the operation of Poisson bracket. We discuss four different cases: abelian, nonabelian, relativistic, and nonrelativistic situations and extend the system to the whole phase space including ghost fields. In addition, we obtain the BRST charge of the field system and check its nilpotence of the BRST transformation which plays an important role such as in topological quantum field theory and string theory.

  14. Transport in Chern-Simons-matter theories

    Energy Technology Data Exchange (ETDEWEB)

    Gur-Ari, Guy; Hartnoll, Sean; Mahajan, Raghu [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-07-18

    The frequency-dependent longitudinal and Hall conductivities — σ{sub xx} and σ{sub xy} — are dimensionless functions of ω/T in 2+1 dimensional CFTs at nonzero temperature. These functions characterize the spectrum of charged excitations of the theory and are basic experimental observables. We compute these conductivities for large N Chern-Simons theory with fermion matter. The computation is exact in the ’t Hooft coupling λ at N=∞. We describe various physical features of the conductivity, including an explicit relation between the weight of the delta function at ω=0 in σ{sub xx} and the existence of infinitely many higher spin conserved currents in the theory. We also compute the conductivities perturbatively in Chern-Simons theory with scalar matter and show that the resulting functions of ω/T agree with the strong coupling fermionic result. This provides a new test of the conjectured 3d bosonization duality. In matching the Hall conductivities we resolve an outstanding puzzle by carefully treating an extra anomaly that arises in the regularization scheme used.

  15. Tertiary classes–after Chern-Simons theory

    Indian Academy of Sciences (India)

    J.N. Iyer Institute of Mathematical Sciences Chennai, India

    2013-11-08

    Nov 8, 2013 ... Euler characteristic class. In early twentieth century, the notion of local product structure, i.e. fiber spaces and their generalizations appeared, in the study of topological spaces (with additional structures). J.N. Iyer. IMSc, Chennai. Tertiary classes–after Chern-Simons theory ...

  16. Existence of local degrees of freedom for higher dimensional pure Chern-Simons theories

    International Nuclear Information System (INIS)

    Banados, M.; Garay, L.J.; Henneaux, M.

    1996-01-01

    The canonical structure of higher dimensional pure Chern-Simons theories is analyzed. It is shown that these theories have generically a nonvanishing number of local degrees of freedom, even though they are obtained by means of a topological construction. This number of local degrees of freedom is computed as a function of the spacetime dimension and the dimension of the gauge group. copyright 1996 The American Physical Society

  17. Light-front dynamics of Chern-Simons systems

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1994-10-01

    The Chern-Simons theory coupled to complex scalars is quantized on the light-front in the local light-cone gauge by constructing the self-consistent Hamiltonian theory. It is shown that no inconsistency arises on using two local gauge-fixing conditions in the Dirac procedure. The light-front Hamiltonian turns out to be simple and the framework may be useful to construct renormalized field theory of particles with fractional statistics (anyons). The theory is shown to be relativistic and the extra term in the transformation of the matter field under space rotations, interpreted in previous works as anomaly, is argued to be gauge artefact. (author). 20 refs

  18. Superconformal Chern-Simons theories and AdS4/CFT3 correspondence

    International Nuclear Information System (INIS)

    Benna, Marcus; Klebanov, Igor; Klose, Thomas; Smedbaeck, Mikael

    2008-01-01

    We discuss the N = 2 superspace formulation of the N = 8 superconformal Bagger-Lambert-Gustavsson theory, and of the N = 6 superconformal Aharony-Bergman-Jafferis-Maldacena U(N) x U(N) Chern-Simons theory. In particular, we prove the full SU(4) R-symmetry of the ABJM theory. We then consider orbifold projections of this theory that give non-chiral and chiral (U(N) x U(N)) n superconformal quiver gauge theories. We argue that these theories are dual to certain AdS 4 x S 7 /(Z n x Z k -tilde) backgrounds of M-theory. We also study a SU(3) invariant mass term in the superpotential that makes the N = 8 theory flow to a N = 2 superconformal gauge theory with a sextic superpotential. We conjecture that this gauge theory is dual to the U(1) R x SU(3) invariant extremum of the N = 8 gauged supergravity, which was discovered by N. Warner 25 years ago and whose uplifting to 11 dimensions was found more recently.

  19. Integrable lambda models and Chern-Simons theories

    International Nuclear Information System (INIS)

    Schmidtt, David M.

    2017-01-01

    In this note we reveal a connection between the phase space of lambda models on S 1 ×ℝ and the phase space of double Chern-Simons theories on D×ℝ and explain in the process the origin of the non-ultralocality of the Maillet bracket, which emerges as a boundary algebra. In particular, this means that the (classical) AdS 5 ×S 5 lambda model can be understood as a double Chern-Simons theory defined on the Lie superalgebra psu(2,2|4) after a proper dependence of the spectral parameter is introduced. This offers a possibility for avoiding the use of the problematic non-ultralocal Poisson algebras that preclude the introduction of lattice regularizations and the application of the QISM to string sigma models. The utility of the equivalence at the quantum level is, however, still to be explored.

  20. Abelian gauge theories on homogeneous spaces

    International Nuclear Information System (INIS)

    Vassilevich, D.V.

    1992-07-01

    An algebraic technique of separation of gauge modes in Abelian gauge theories on homogeneous spaces is proposed. An effective potential for the Maxwell-Chern-Simons theory on S 3 is calculated. A generalization of the Chern-Simons action is suggested and analysed with the example of SU(3)/U(1) x U(1). (author). 11 refs

  1. ''Topological'' (Chern-Simons) quantum mechanics

    International Nuclear Information System (INIS)

    Dunne, G.V.; Jackiw, R.; Trugenberger, C.A.

    1990-01-01

    We construct quantum-mechanical models that are analogs of three-dimensional, topologically massive as well as Chern-Simons gauge-field theories, and we study the phase-space reductive limiting procedure that takes the former to the latter. The zero-point spectra of operators behave discontinuously in the limit, as a consequence of a nonperturbative quantum-mechanical anomaly. The nature of the limit for wave functions depends on the representation, but is always such that normalization is preserved

  2. Chern-Simons theories of symplectic super-diffeomorphisms

    International Nuclear Information System (INIS)

    Sezgin, E.; Sokatchev, E.

    1989-04-01

    We discuss the symplectic diffeomorphisms of a class of supermanifolds and the structure of the underlying infinite dimensional superalgebras. We construct a Chern-Simons (CS) gauge theory in 2+1 dimensions for these algebras. There exists a finite dimensional supersymmetric truncation which is the (2 n -1)-dimensional Hamiltonian superalgebra H-tilde(n). With a central charge added, it is a superalgebra, C(n), associated with a Clifford algebra. We find an embedding of d=3, N=2 anti-de Sitter superalgebra OSp(2|2)+OSp(2|2) in C(4), and construct a CS action for its infinite dimensional extension. We also discuss the construction of a CS action for the infinite dimensional extension of the d=3, N=2 superconformal algebra OSp(2,4). (author). 18 refs

  3. Integrable lambda models and Chern-Simons theories

    Energy Technology Data Exchange (ETDEWEB)

    Schmidtt, David M. [Departamento de Física, Universidade Federal de São Carlos,Caixa Postal 676, CEP 13565-905, São Carlos-SP (Brazil)

    2017-05-03

    In this note we reveal a connection between the phase space of lambda models on S{sup 1}×ℝ and the phase space of double Chern-Simons theories on D×ℝ and explain in the process the origin of the non-ultralocality of the Maillet bracket, which emerges as a boundary algebra. In particular, this means that the (classical) AdS{sub 5}×S{sup 5} lambda model can be understood as a double Chern-Simons theory defined on the Lie superalgebra psu(2,2|4) after a proper dependence of the spectral parameter is introduced. This offers a possibility for avoiding the use of the problematic non-ultralocal Poisson algebras that preclude the introduction of lattice regularizations and the application of the QISM to string sigma models. The utility of the equivalence at the quantum level is, however, still to be explored.

  4. Holography in Lovelock Chern-Simons AdS gravity

    Science.gov (United States)

    Cvetković, Branislav; Miskovic, Olivera; Simić, Dejan

    2017-08-01

    We analyze holographic field theory dual to Lovelock Chern-Simons anti-de Sitter (AdS) gravity in higher dimensions using first order formalism. We first find asymptotic symmetries in the AdS sector showing that they consist of local translations, local Lorentz rotations, dilatations and non-Abelian gauge transformations. Then, we compute 1-point functions of energy-momentum and spin currents in a dual conformal field theory and write Ward identities. We find that the holographic theory possesses Weyl anomaly and also breaks non-Abelian gauge symmetry at the quantum level.

  5. Chern-Simons theory, 2d Yang-Mills, and Lie algebra wanderers

    International Nuclear Information System (INIS)

    Haro, Sebastian de

    2005-01-01

    We work out the relation between Chern-Simons, 2d Yang-Mills on the cylinder, and Brownian motion. We show that for the unitary, orthogonal and symplectic groups, various observables in Chern-Simons theory on S 3 and lens spaces are exactly given by counting the number of paths of a Brownian particle wandering in the fundamental Weyl chamber of the corresponding Lie algebra. We construct a fermionic formulation of Chern-Simons on S 3 which allows us to identify the Brownian particles as B-model branes moving on a noncommutative two-sphere, and construct 1- and 2-matrix models to compute Brownian motion ensemble averages

  6. Derivation of the Verlinde formula from Chern-Simons theory and the G/G model

    International Nuclear Information System (INIS)

    Blau, M.; Thompson, G.

    1993-01-01

    We give a derivation of the Verlinde formula for the G k WZW model from Chern-Simons theory, without taking recourse to CFT, by calculating explicitly the partition function Z ΣxS 1 of Σ x S 1 with an arbitrary number of labelled punctures. By what is essentially a suitable gauge choice, Z ΣxS 1 is reduced to the partition function of an abelian topological field theory on Σ (a deformation of non-abelian BF and Yang-Mills theory) whose evaluation is straightforward. This relates the Verlinde formula to the Ray-Singer torsion of Σ x S 1 . We derive the G k /G k model from Chern-Simons theory, proving their equivalence, and give an alternative derivation of the Verlinde formula by calculating the G k /G k path integral via a functional version of the Weyl integral formula. From this point of view the Verlinde formula arises from the corresponding jacobian, the Weyl determinant. Also, a novel derivation of the shift k → k + h is given, based on the index of the twisted Dolbeault complex. (orig.)

  7. Wilson loops in 3-dimensional N = 6 supersymmetric Chern-Simons theory and their string theory duals

    International Nuclear Information System (INIS)

    Drukker, Nadav; Plefka, Jan; Young, Donovan

    2008-01-01

    We study Wilson loops in the three-dimensional N = 6 supersymmetric Chern-Simons theory recently constructed by Aharony, Bergman, Jafferis and Maldacena, that is conjectured to be dual to type IIA string theory on AdS 4 x CP 3 . We construct loop operators in the Chern-Simons theory which preserve 1/6 of the supercharges and calculate their expectation value up to 2-loop order at weak coupling. The expectation value at strong coupling is found by constructing the string theory duals of these operators. For low dimensional representations these are fundamental strings, for high dimensional representations these are D2-branes and D6-branes. In support of this identification we demonstrate that these string theory solutions match the symmetries, charges and the preserved supersymmetries of their Chern-Simons theory counterparts.

  8. Anyonic states in Chern-Simons theory

    International Nuclear Information System (INIS)

    Haller, K.; Lim-Lombridas, E.

    1994-01-01

    We discuss the canonical quantization of Chern-Simons theory in 2+1 dimensions, minimally coupled to a Dirac spinor field, first in the temporal gauge and then in the Coulomb gauge. In our temporal gauge formulation, Gauss's law and the gauge condition A 0 =0 are implemented by embedding the formulation in an appropriate physical subspace. We construct a Fock space of charged particle states that satisfy Gauss's law, and show that they obey fermion, not fractional statistics. The gauge-invariant spinor field that creates these charged states from the vacuum obeys the anticommutation rules that generally apply to spinor fields. The Hamiltonian, when described in the representation in which the charged fermions are the propagating particle excitations that obey Gauss's law, contains an interaction between charge and transverse current densities. We observe that the implementation of Gauss's law and the gauge condition does not require us to use fields with graded commutator algebras or particle excitations with fractional statistics. In our Coulomb gauge formulation, we implement Gauss's law and the gauge condition ∂ l A l =0 by the Dirac-Bergmann procedure. In this formulation, the constrained gauge fields become functionals of the spinor fields, and are not independent degrees of freedom. The formulation in the Coulomb gauge confirms the results we obtained in the temporal gauge: The ''Dirac-Bergmann'' anticommutation rule for the charged spinor fiels ψ and ψ degree that have both been constrained to obey Gauss's law is precisely identical to the canonical spinor anticommutation rule that generates standard fermion statistics. And we also show that the Hamiltonians for charged particle states in our temporal and Coulomb gauge formulations are identical, once Gauss's law has been implemented in both cases

  9. Integrable spin chain of superconformal U(M) x U(N)-bar Chern-Simons theory

    International Nuclear Information System (INIS)

    Bak, Dongsu; Gang, Dongmin; Rey, Soo-Jong

    2008-01-01

    N = 6 superconformal Chern-Simons theory with gauge group U(M) x U(N)-bar is dual to N M2-branes and (M-N) fractional M2-branes, equivalently, discrete 3-form holonomy at C 4 /Z k orbifold singularity. We show that, much like its regular counterpart of M = N, the theory at planar limit have integrability structure in the conformal dimension spectrum of single trace operators. We first revisit the Yang-Baxter equation for a spin chain system associated with the single trace operators. We show that the integrability by itself does not preclude parity symmetry breaking. We construct two-parameter family of parity non-invariant, alternating spin chain Hamiltonian involving three-site interactions between 4 and 4-bar of SU(4) R . At weak 't Hooft coupling, we study the Chern-Simons theory perturbatively and calculate anomalous dimension of single trace operators up to two loops. The computation is essentially parallel to the regular case M = N. We find that resulting spin chain Hamiltonian matches with the Hamiltonian derived from Yang-Baxter equation, but to the one preserving parity symmetry. We give several intuitive explanations why the parity symmetry breaking is not detected in the Chern-Simons spin chain Hamiltonian at perturbative level. We suggest that open spin chain, associated with open string excitations on giant gravitons or dibaryons, can detect discrete flat holonomy and hence parity symmetry breaking through boundary field.

  10. Chern--Simons theory in the Schroedinger representation

    International Nuclear Information System (INIS)

    Dunne, G.V.; Jackiw, R.; Trugenberger, C.A.

    1989-01-01

    We quantize the (2+1)-dimensional Chern--Simons theory in the functional Schroedinger representation. The realization of gauge transformations on states involves a 1-cocycle. We determine this cocycle; we show how solving the Gauss law constraint in the non-Abelian theory requires quantizing the parameter that normalizes the action; we trivialize the 1-cocycle with a spatially non-local cochain related to a 2-dimensional fermion determinant and we find the physical states that satisfy the Gauss law constraint. The quantum holonomy of physical states involves a contribution that is missed when the constraint is solved before quantization. We compute this quantity for the Abelian theory in Minkowski space, where it exhibits an interesting group theoretic structure. (In a note added in proof the corresponding non-Abelian computation is presented.) Also we consider coupling to external sources and offer yet another derivation of the anomalous statistics and spin of the charge and flux carrying particles---a calculation which is especially simple in the functional Schroedinger representation. copyright 1989 Academic Press, Inc

  11. Once more about the topologically massive gauge theory

    International Nuclear Information System (INIS)

    Kogan, Ya.I.

    1989-01-01

    The general properties of the three-dimensional gauge theory with the topological mass is discussed namely the long-range interaction of the Aharonov-Bohm type. It is argued that Chern-Simons gauge theories must be considered as the infrared limit of the topologically massive theories. The analogy between the Landau problem of a charged particle in a magnetic field and quantization of this gauge theory is considered, as well as the quantization condition for the Abelian Chern-Simons term. 38 refs.; 5 figs

  12. Self-dual Maxwell-Chern-Simons theory on a cylinder

    International Nuclear Information System (INIS)

    Han, Jongmin; Kim, Seongtag

    2011-01-01

    In this paper, we study the relativistic Maxwell-Chern-Simons vortices on an asymptotically flat cylinder. A topological multivortex solution is constructed by variational methods, and the Maxwell and the Chern-Simons limits are verified.

  13. Anomalous Lorentz and CPT violation from a local Chern-Simons-like term in the effective gauge-field action

    Science.gov (United States)

    Ghosh, K. J. B.; Klinkhamer, F. R.

    2018-01-01

    We consider four-dimensional chiral gauge theories defined over a spacetime manifold with topology R3 ×S1 and periodic boundary conditions over the compact dimension. The effective gauge-field action is calculated for Abelian U (1) gauge fields Aμ (x) which depend on all four spacetime coordinates (including the coordinate x4 ∈S1 of the compact dimension) and have vanishing components A4 (x) (implying trivial holonomies in the 4-direction). Our calculation shows that the effective gauge-field action contains a local Chern-Simons-like term which violates Lorentz and CPT invariance. This result is established perturbatively with a generalized Pauli-Villars regularization and nonperturbatively with a lattice regularization based on Ginsparg-Wilson fermions.

  14. Entanglement from topology in Chern-Simons theory

    Science.gov (United States)

    Salton, Grant; Swingle, Brian; Walter, Michael

    2017-05-01

    The way in which geometry encodes entanglement is a topic of much recent interest in quantum many-body physics and the AdS/CFT duality. This relation is particularly pronounced in the case of topological quantum field theories, where topology alone determines the quantum states of the theory. In this work, we study the set of quantum states that can be prepared by the Euclidean path integral in three-dimensional Chern-Simons theory. Specifically, we consider arbitrary three-manifolds with a fixed number of torus boundaries in both Abelian U (1 ) and non-Abelian S O (3 ) Chern-Simons theory. For the Abelian theory, we find that the states that can be prepared coincide precisely with the set of stabilizer states from quantum information theory. This constrains the multipartite entanglement present in this theory, but it also reveals that stabilizer states can be described by topology. In particular, we find an explicit expression for the entanglement entropy of a many-torus subsystem using only a single replica, as well as a concrete formula for the number of GHZ states that can be distilled from a tripartite state prepared through path integration. For the non-Abelian theory, we find a notion of "state universality," namely that any state can be prepared to an arbitrarily good approximation. The manifolds we consider can also be viewed as toy models of multiboundary wormholes in AdS/CFT.

  15. Accelerated FRW solutions in Chern-Simons gravity

    International Nuclear Information System (INIS)

    Cataldo, Mauricio; Crisostomo, Juan; Gomez, Fernando; Salgado, Patricio; Campo, Sergio del; Quinzacara, Cristian C.

    2014-01-01

    We consider a five-dimensional Einstein-Chern-Simons action which is composed of a gravitational sector and a sector of matter where the gravitational sector is given by a Chern-Simons gravity action instead of the Einstein-Hilbert action and where the matter sector is given by the so-called perfect fluid. It is shown that (i) the Einstein-Chern-Simons (EChS) field equations subject to suitable conditions can be written in a similar way to the Einstein-Maxwell field equations; (ii) these equations have solutions that describe an accelerated expansion for the three possible cosmological models of the universe, namely, spherical expansion, flat expansion, and hyperbolic expansion when α a parameter of the theory, is greater than zero. This result allows us to conjecture that these solutions are compatible with the era of dark energy and that the energy-momentum tensor for the field h a , a bosonic gauge field from the Chern-Simons gravity action, corresponds to a form of positive cosmological constant. It is also shown that the EChS field equations have solutions compatible with the era of matter: (i) In the case of an open universe, the solutions correspond to an accelerated expansion (α > 0) with a minimum scale factor at initial time that, when time goes to infinity, the scale factor behaves as a hyperbolic sine function. (ii) In the case of a flat universe, the solutions describe an accelerated expansion whose scale factor behaves as an exponential function of time. (iii) In the case of a closed universe there is found only one solution for a universe in expansion, which behaves as a hyperbolic cosine function of time. (orig.)

  16. Holographic Chern-Simons defects

    International Nuclear Information System (INIS)

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; Sugimoto, Shigeki

    2016-01-01

    We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

  17. Non-minimal Maxwell-Chern-Simons theory and the composite Fermion model

    International Nuclear Information System (INIS)

    Paschoal, Ricardo C.; Helayel Neto, Jose A.

    2003-01-01

    The magnetic field redefinition in Jain's composite fermion model for the fractional quantum Hall effect is shown to be effective described by a mean-field approximation of a model containing a Maxwell-Chern-Simons gauge field nominally coupled to matter. Also an explicit non-relativistic limit of the non-minimal (2+1) D Dirac's equation is derived. (author)

  18. Chern-Simons gravity in four dimensions

    International Nuclear Information System (INIS)

    Morales, Ivan; Neves, Bruno; Piguet, Olivier; Oporto, Zui

    2017-01-01

    Five-dimensional Chern-Simons theory with (anti-)de Sitter SO(1,5) or SO(2,4) gauge invariance presents an alternative to general relativity with cosmological constant. We consider the zero modes of its Kaluza-Klein compactification to four dimensions. Solutions with vanishing torsion are obtained in the cases of a spherically symmetric 3-space and of a homogeneous and isotropic 3-space, which reproduce the Schwarzshild-de Sitter and ΛCDM cosmological solutions of general relativity. We also check that vanishing torsion is a stable feature of the solutions. (orig.)

  19. Chern-Simons gravity in four dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Ivan; Neves, Bruno; Piguet, Olivier [Universidade Federal de Vicosa (UFV), Departamento de Fisica, Vicosa, MG (Brazil); Oporto, Zui [Universidade Federal de Vicosa (UFV), Departamento de Fisica, Vicosa, MG (Brazil); Universidad Mayor de San Andres, Carrera de Fisica, La Paz (Bolivia, Plurinational State of)

    2017-02-15

    Five-dimensional Chern-Simons theory with (anti-)de Sitter SO(1,5) or SO(2,4) gauge invariance presents an alternative to general relativity with cosmological constant. We consider the zero modes of its Kaluza-Klein compactification to four dimensions. Solutions with vanishing torsion are obtained in the cases of a spherically symmetric 3-space and of a homogeneous and isotropic 3-space, which reproduce the Schwarzshild-de Sitter and ΛCDM cosmological solutions of general relativity. We also check that vanishing torsion is a stable feature of the solutions. (orig.)

  20. The dynamical structure of higher dimensional Chern-Simons theory

    International Nuclear Information System (INIS)

    Banados, M.; Garay, L.J.; Henneaux, M.

    1996-01-01

    Higher dimensional Chern-Simons theories, even though constructed along the same topological pattern as in 2+1 dimensions, have been shown recently to have generically a non-vanishing number of degrees of freedom. In this paper, we carry out the complete Dirac Hamiltonian analysis (separation of first and second class constraints and calculation of the Dirac bracket) for a group G x U(1). We also study the algebra of surface charges that arise in the presence of boundaries and show that it is isomorphic to the WZW 4 discussed in the literature. Some applications are then considered. It is shown, in particular, that Chern-Simons gravity in dimensions greater than or equal to five has a propagating torsion. (orig.)

  1. Chern-Simons invariants on hyperbolic manifolds and topological quantum field theories

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, L. [International School for Advanced Studies (SISSA/ISAS), Trieste (Italy); INFN, Sezione di Trieste (Italy); Bytsenko, A.A.; Goncalves, A.E. [Universidade Estadual de Londrina, Departamento de Fisica, Londrina-Parana (Brazil)

    2016-11-15

    We derive formulas for the classical Chern-Simons invariant of irreducible SU(n)-flat connections on negatively curved locally symmetric three-manifolds. We determine the condition for which the theory remains consistent (with basic physical principles). We show that a connection between holomorphic values of Selberg-type functions at point zero, associated with R-torsion of the flat bundle, and twisted Dirac operators acting on negatively curved manifolds, can be interpreted by means of the Chern-Simons invariant. On the basis of the Labastida-Marino-Ooguri-Vafa conjecture we analyze a representation of the Chern-Simons quantum partition function (as a generating series of quantum group invariants) in the form of an infinite product weighted by S-functions and Selberg-type functions. We consider the case of links and a knot and use the Rogers approach to discover certain symmetry and modular form identities. (orig.)

  2. Chern-Simons term at finite density and temperature

    International Nuclear Information System (INIS)

    Sisakyan, A.N.; Shevchenko, O.Yu.; Solganik, S.B.

    1997-01-01

    The Chern-Simons topological term dynamical generation in the effective action is obtained at arbitrary finite density and temperature. By using the proper time method and perturbation theory it is shown that at zero temperature μ 2 = m 2 is the crucial point for Chern-Simons term. So when μ 2 2 , μ influence disappears and we get the usual Chern-Simons term. On the other hand, when μ 2 > m 2 , the Chern-Simons term vanishes because of nonzero density of background fermions. In particular for massless case parity anomaly is absent at any finite density or temperature. This result holds in any odd dimension both in Abelian and in non-Abelian cases

  3. Integrable spin chain in superconformal Chern-Simons theory

    International Nuclear Information System (INIS)

    Bak, Dongsu; Rey, Soo-Jong

    2008-01-01

    N = 6 superconformal Chern-Simons theory was proposed as gauge theory dual to Type IIA string theory on AdS 4 x CP 3 . We study integrability of the theory from conformal dimension spectrum of single trace operators at planar limit. At strong 't Hooft coupling, the spectrum is obtained from excitation energy of free superstring on OSp(6|4; R)/SO(3, 1) x SU(3) x U(1) supercoset. We recall that the worldsheet theory is integrable classically by utilizing well-known results concerning sigma model on symmetric space. With R-symmetry group SU(4), we also solve relevant Yang-Baxter equation for a spin chain system associated with the single trace operators. From the solution, we construct alternating spin chain Hamiltonian involving three-site interactions between 4 and 4-bar . At weak 't Hooft coupling, we study gauge theory perturbatively, and calculate action of dilatation operator to single trace operators up to two loops. To ensure consistency, we computed all relevant Feynman diagrams contributing to the dilatation opeator. We find that resulting spin chain Hamiltonian matches with the Hamiltonian derived from Yang-Baxter equation. We further study new issues arising from the shortest gauge invariant operators TrY I Y † J = (15, 1). We observe that 'wrapping interactions' are present, compute the true spectrum and find that the spectrum agrees with prediction from supersymmetry. We also find that scaling dimension computed naively from alternating spin chain Hamiltonian coincides with the true spectrum. We solve Bethe ansatz equations for small number of excitations, and find indications of correlation between excitations of 4's and 4-bar 's and of nonexistence of mesonic (44-bar ) bound-state.

  4. Maxwell-Chern-Simons Casimir effect. II. Circular boundary conditions

    International Nuclear Information System (INIS)

    Milton, K.A.; Ng, Y.J.

    1992-01-01

    In odd-dimensional spaces, gauge invariance permits a Chern-Simons mass term for the gauge fields in addition to the usual Maxwell-Yang-Mills kinetic energy term. We study the Casimir effect in such a (2+1)-dimensional Abelian theory. The case of parallel conducting lines was considered by us in a previous paper. Here we discuss the Casimir effect for a circle and examine the effect of finite temperature. The Casimir stress is found to be attractive at both low and high temperatures

  5. Chern-Simons theory and atypical Hall conductivity in the Varma phase

    Science.gov (United States)

    Menezes, Natália; Smith, Cristiane Morais; Palumbo, Giandomenico

    2018-02-01

    In this article, we analyze the topological response of a fermionic model defined on the Lieb lattice in the presence of an electromagnetic field. The tight-binding model is built in terms of three species of spinless fermions and supports a topological Varma phase due to the spontaneous breaking of time-reversal symmetry. In the low-energy regime, the emergent effective Hamiltonian coincides with the so-called Duffin-Kemmer-Petiau (DKP) Hamiltonian, which describes relativistic pseudospin-0 quasiparticles. By considering a minimal coupling between the DKP quasiparticles and an external Abelian gauge field, we first find the Landau-level spectrum by fixing the Landau gauge; then we compute the emergent Chern-Simons theory for a weak-electromagnetic-field regime. The corresponding Hall conductivity reveals an atypical quantum Hall effect, which can be simulated in an artificial Lieb lattice.

  6. Friedan-Shenker bundle from Chern-Simons theory

    International Nuclear Information System (INIS)

    Falceto, F.

    1990-01-01

    In this letter we present a proof of the invariance of the space of quantum states of the Chern-Simons (CS) theory in the presence of Wilson lines under parallel transport with respect to the Knizhnik-Zamolodchikov (KZ) connection for the case of a simple, simply connected, finite-dimensional group and genus-zero surface. The proof is based on the polynomial realization of the space of tensors in which these quantum states take values. (orig.)

  7. Non-existence of natural states for Abelian Chern-Simons theory

    Science.gov (United States)

    Dappiaggi, Claudio; Murro, Simone; Schenkel, Alexander

    2017-06-01

    We give an elementary proof that Abelian Chern-Simons theory, described as a functor from oriented surfaces to C∗-algebras, does not admit a natural state. Non-existence of natural states is thus not only a phenomenon of quantum field theories on Lorentzian manifolds, but also of topological quantum field theories formulated in the algebraic approach.

  8. Entropy for gravitational Chern-Simons terms by squashed cone method

    International Nuclear Information System (INIS)

    Guo, Wu-Zhong; Miao, Rong-Xin

    2016-01-01

    In this paper we investigate the entropy of gravitational Chern-Simons terms for the horizon with non-vanishing extrinsic curvatures, or the holographic entanglement entropy for arbitrary entangling surface. In 3D there is no anomaly of entropy. But the original squashed cone method can not be used directly to get the correct result. For higher dimensions the anomaly of entropy would appear, still, we can not use the squashed cone method directly. That is becasuse the Chern-Simons action is not gauge invariant. To get a reasonable result we suggest two methods. One is by adding a boundary term to recover the gauge invariance. This boundary term can be derived from the variation of the Chern-Simons action. The other one is by using the Chern-Simons relation dΩ_4_n_−_1=tr(R"2"n). We notice that the entropy of tr(R"2"n) is a total derivative locally, i.e. S=ds_C_S. We propose to identify s_C_S with the entropy of gravitational Chern-Simons terms Ω_4_n_−_1. In the first method we could get the correct result for Wald entropy in arbitrary dimension. In the second approach, in addition to Wald entropy, we can also obtain the anomaly of entropy with non-zero extrinsic curvatures. Our results imply that the entropy of a topological invariant, such as the Pontryagin term tr(R"2"n) and the Euler density, is a topological invariant on the entangling surface.

  9. The Origin of Chern-Simons Modified Gravity from an 11 + 3-Dimensional Manifold

    Directory of Open Access Journals (Sweden)

    J. A. Helayël-Neto

    2017-01-01

    Full Text Available It is our aim to show that the Chern-Simons terms of modified gravity can be understood as generated by the addition of a 3-dimensional algebraic manifold to an initial 11-dimensional space-time manifold; this builds up an 11+3-dimensional space-time. In this system, firstly, some fields living in the bulk join the fields that live on the 11-dimensional manifold, so that the rank of the gauge fields exceeds the dimension of the algebra; consequently, there emerges an anomaly. To solve this problem, another 11-dimensional manifold is included in the 11+3-dimensional space-time, and it interacts with the initial manifold by exchanging Chern-Simon fields. This mechanism is able to remove the anomaly. Chern-Simons terms actually produce an extra manifold in the pair of 11-dimensional manifolds of the 11+3-space-time. Summing up the topology of both the 11-dimensional manifolds and the topology of the exchanged Chern-Simons manifold in the bulk, we conclude that the total topology shrinks to one, which is in agreement with the main idea of the Big Bang theory.

  10. A Chern-Simons gauge-fixed Lagrangian in a 'non-canonical' BRST approach

    International Nuclear Information System (INIS)

    Constantinescu, R; Ionescu, C

    2009-01-01

    This paper presents a possible path which starts from the extended BRST Hamiltonian formalism and ends with a covariant Lagrangian action, using the equivalence between the two formalisms. The approach allows a simple account of the form of the master equation and offers a natural identification of some 'non-canonical' operators and variables. These are the main items which solve the major difficulty of the extended BRST Lagrangian formalism, i.e., the gauge-fixing problem. The algorithm we propose applies to a non-Abelian Chern-Simons model coupled with Dirac fields

  11. A profusion of 1/2 BPS Wilson loops in N=4 Chern-Simons-matter theories

    International Nuclear Information System (INIS)

    Cooke, Michael; Drukker, Nadav; Trancanelli, Diego

    2015-01-01

    We initiate the study of 1/2 BPS Wilson loops in N=4 Chern-Simons-matter theories in three dimensions. We consider a circular or linear quiver with Chern-Simons levels k, −k and 0, and focus on loops preserving one of the two SU(2) subgroups of the R-symmetry. In the cases with no vanishing Chern-Simons levels, we find a pair of Wilson loops for each pair of adjacent nodes on the quiver connected by a hypermultiplet (nodes connected by twisted hypermultiplets have Wilson loops preserving another set of supercharges). We expect this classical pairwise degeneracy to be lifted by quantum corrections. In the case with nodes with vanishing Chern-Simons terms connected by twisted hypermultiplets, we find that the usual 1/4 BPS Wilson loops are automatically enlarged to 1/2 BPS, as happens also in 3-dimensional Yang-Mills theory. When the nodes with vanishing Chern-Simons levels are connected by untwisted hypermultiplets, we do not find any Wilson loops coupling to those nodes which are classically invariant. Rather, we find several loops whose supersymmetry variation, while non zero, vanishes in any correlation function, so is weakly zero. We expect only one linear combination of those Wilson loops to remain BPS when quantum corrections are included. We analyze the M-theory duals of those Wilson loops and comment on their degeneracy. We also show that these Wilson loops are cohomologically equivalent to certain 1/4 BPS Wilson loops whose expectation value can be evaluated by the appropriate localized matrix model.

  12. Super-Chern-Simons Theory as Superstring Theory

    CERN Document Server

    Grassi, P A

    2004-01-01

    Superstrings and topological strings with supermanifolds as target space play a central role in the recent developments in string theory. Nevertheless the rules for higher-genus computations are still unclear or guessed in analogy with bosonic and fermionic strings. Here we present a common geometrical setting to develop systematically the prescription for amplitude computations. The geometrical origin of these difficulties is the theory of integration of superforms. We provide a translation between the theory of supermanifolds and topological strings with supertarget space. We show how in this formulation one can naturally construct picture changing operators to be inserted in the correlation functions to soak up the zero modes of commuting ghost and we derive the amplitude prescriptions from the coupling with an extended topological gravity on the worldsheet. As an application we consider a simple model on R^(3|2) leading to super-Chern-Simons theory.

  13. N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals

    International Nuclear Information System (INIS)

    Aharony, Ofer; Bergman, Oren; Maldacena, Juan; Jafferis, Daniel Louis

    2008-01-01

    We construct three dimensional Chern-Simons-matter theories with gauge groups U(N) x U(N) and SU(N) x SU(N) which have explicit N = 6 superconformal symmetry. Using brane constructions we argue that the U(N) x U(N) theory at level k describes the low energy limit of N M2-branes probing a C 4 /Z k singularity. At large N the theory is then dual to M-theory on AdS 4 x S 7 /Z k . The theory also has a 't Hooft limit (of large N with a fixed ratio N/k) which is dual to type IIA string theory on AdS 4 x CP 3 . For k = 1 the theory is conjectured to describe N M2-branes in flat space, although our construction realizes explicitly only six of the eight supersymmetries. We give some evidence for this conjecture, which is similar to the evidence for mirror symmetry in d = 3 gauge theories. When the gauge group is SU(2) x SU(2) our theory has extra symmetries and becomes identical to the Bagger-Lambert theory.

  14. Medium generated gap in gravity and a 3D gauge theory

    Science.gov (United States)

    Gabadadze, Gregory; Older, Daniel

    2018-05-01

    It is well known that a physical medium that sets a Lorentz frame generates a Lorentz-breaking gap for a graviton. We examine such generated "mass" terms in the presence of a fluid medium whose ground state spontaneously breaks spatial translation invariance in d =D +1 spacetime dimensions, and for a solid in D =2 spatial dimensions. By requiring energy positivity and subluminal propagation, certain constraints are placed on the equation of state of the medium. In the case of D =2 spatial dimensions, classical gravity can be recast as a Chern-Simons gauge theory, and motivated by this we recast the massive theory of gravity in AdS3 as a massive Chern-Simons gauge theory with an unusual mass term. We find that in the flat space limit the Chern-Simons theory has a novel gauge invariance that mixes the kinetic and mass terms, and enables the massive theory with a noncompact internal group to be free of ghosts and tachyons.

  15. Solitons and bubbles in models with Chern-Simons term

    International Nuclear Information System (INIS)

    Masperi, L.

    1992-07-01

    It is shown that a gauge theory for complex scalar field with up to sextic self-interactions and a Chern-Simons term in 2 + 1 dimensions has solitons which may become bubbles of the stable broken-symmetry phase in a medium of the symmetric one producing the first-order phase transition. In the non-relativistic limit scale invariance prevents the determination of an optimal bubble size. Possible extensions to 3 + 1 dimensions of bubbles of string type are indicated. (author). 8 refs

  16. The Chern-Simons diffusion rate in improved holographic QCD

    NARCIS (Netherlands)

    Gürsoy, U.; Iatrakis, I.; Kiritsis, E.; Nitti, F.; O’Bannon, A.

    2013-01-01

    In (3 + 1)-dimensional SU(N c) Yang-Mills (YM) theory, the Chern-Simons diffusion rate, ΓCS, is determined by the zero-momentum, zero-frequency limit of the retarded two-point function of the CP-odd operator tr [F ∧ F ], with F the YM field strength. The Chern-Simons diffusion rate is a crucial

  17. String theory duals of Lifshitz–Chern–Simons gauge theories

    International Nuclear Information System (INIS)

    Balasubramanian, Koushik; McGreevy, John

    2012-01-01

    We propose candidate gravity duals for a class of non-Abelian z = 2 Lifshitz Chern–Simons (LCS) gauge theories studied by Mulligan, Kachru and Nayak. These are nonrelativistic gauge theories in 2+1 dimensions in which parity and time-reversal symmetries are explicitly broken by the presence of a Chern–Simons term. We show that these field theories can be realized as deformations of DLCQ N=4 super Yang–Mills theory. Using the holographic dictionary, we identify the bulk fields of type IIB supergravity that are dual to these deformations. The geometries describing the groundstates of the non-Abelian LCS gauge theories realized here exhibit a mass gap. (paper)

  18. Topological resolution of gauge theory singularities

    Science.gov (United States)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-01

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  19. Topological resolution of gauge theory singularities

    Energy Technology Data Exchange (ETDEWEB)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  20. All Chern-Simons invariants of 4D, N=1 gauged superform hierarchies

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Katrin; Becker, Melanie; III, William D. Linch [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Randall, Stephen [Department of Physics, University of California,Berkeley, CA 94720-7300 (United States); Robbins, Daniel [Department of Physics, University at Albany,Albany, NY 12222 (United States)

    2017-04-19

    We give a geometric description of supersymmetric gravity/(non-)abelian p-form hierarchies in superspaces with 4D, N=1 super-Poincaré invariance. These hierarchies give rise to Chern-Simons-like invariants, such as those of the 5D, N=1 graviphoton and the eleven-dimensional 3-form but also generalizations such as Green-Schwarz-like/BF-type couplings. Previous constructions based on prepotential superfields are reinterpreted in terms of p-forms in superspace thereby elucidating the underlying geometry. This vastly simplifies the calculations of superspace field-strengths, Bianchi identities, and Chern-Simons invariants. Using this, we prove the validity of a recursive formula for the conditions defining these actions for any such tensor hierarchy. Solving it at quadratic and cubic orders, we recover the known results for the BF-type and cubic Chern-Simons actions. As an application, we compute the quartic invariant ∼AdAdAdA+… relevant, for example, to seven-dimensional supergravity compactifications.

  1. Wilson loops in superconformal Chern-Simons theory and fundamental strings in Anti-de Sitter supergravity dual

    International Nuclear Information System (INIS)

    Rey, Soo-Jong; Suyama, Takao; Yamaguchi, Satoshi

    2009-01-01

    We study Wilson loop operators in three-dimensional, N = 6 superconformal Chern-Simons theory dual to IIA superstring theory on AdS 4 x CP 3 . Novelty of Wilson loop operators in this theory is that, for a given contour, there are two linear combinations of Wilson loop transforming oppositely under time-reversal transformation. We show that one combination is holographically dual to IIA fundamental string, while orthogonal combination is set to zero. We gather supporting evidences from detailed comparative study of generalized time-reversal transformations in both D2-brane worldvolume and ABJM theories. We then classify supersymmetric Wilson loops and find at most 1/6 supersymmetry. We next study Wilson loop expectation value in planar perturbation theory. For circular Wilson loop, we find features remarkably parallel to circular Wilson loop in N = 4 super Yang-Mills theory in four dimensions. First, all odd loop diagrams vanish identically and even loops contribute nontrivial contributions. Second, quantum corrected gauge and scalar propagators take the same form as those of N = 4 super Yang-Mills theory. Combining these results, we propose that expectation value of circular Wilson loop is given by Wilson loop expectation value in pure Chern-Simons theory times zero-dimensional Gaussian matrix model whose variance is specified by an interpolating function of 't Hooft coupling. We suggest the function interpolates smoothly between weak and strong coupling regime, offering new test ground of the AdS/CFT correspondence.

  2. U(1) x SU(2) Chern-Simons gauge theory of underdoped cuprate superconductors

    International Nuclear Information System (INIS)

    Marchetti, P.A.; Su Zhao-Bin; Yu Lu

    1998-05-01

    The Chern-Simons bosonization with U(1)xSU(2) gauge field is applied to the 2-D t-J model in the limit t>>J, to study the normal state properties of underdoped cuprate superconductors. We prove the existence of an upper bound on the partition function for holons in a spinon background, and we find the optimal spinon configuration saturating the upper bound on average - a coexisting flux phase and s+id-like RVB state. After neglecting the feedback of holon fluctuations on the U(1) field B and spinon fluctuations on the SU(2) field V, the holon field is a fermion and the spinon field is a hard-core boson. Within this approximation we show that the B field produces a π flux phase for the holons, converting them into Dirac-like fermions, while the V field, taking into account the feedback of holons produces a gap for the spinons vanishing in the zero doping limit. The nonlinear σ-model with a mass term describes the crossover from the short-ranged antiferromagnetic (AF) state in doped samples to long range AF order in reference compounds. Moreover, we derive a low-energy effective action in terms of spinons holons and a self-generated U(1) gauge field. Neglecting the gauge fluctuations, the holons are described by the Fermi liquid theory with a Fermi surface consisting of 4 ''half-pockets'' centered at (+-π/2,+-π/2) and one reproduces the results for the electron spectral function obtained in the mean field approximation, in agreement with the photoemission data on underdoped cuprates. The gauge fluctuations are not confining due to coupling to holons, but nevertheless yield an attractive interaction between spinons and holons leading to a bound state with electron quantum numbers. The renormalisation effects due to gauge fluctuations give rise to non-Fermi liquid behaviour for the composite electron, in certain temperature range showing the linear in T resistivity. This formalism provides a new interpretation of the spin gap in the underdoped superconductors

  3. Dynamics of Chern-Simons vortices

    International Nuclear Information System (INIS)

    Collie, Benjamin; Tong, David

    2008-01-01

    We study vortex dynamics in three-dimensional theories with Chern-Simons interactions. The dynamics is governed by motion on the moduli space M in the presence of a magnetic field. For Abelian vortices, the magnetic field is shown to be the Ricci form over M; for non-Abelian vortices, it is the first Chern character of a suitable index bundle. We derive these results by integrating out massive fermions and following the fate of their zero modes.

  4. Superspace formulation in a three-algebra approach to D=3, N=4, 5 superconformal Chern-Simons matter theories

    International Nuclear Information System (INIS)

    Chen Famin; Wu Yongshi

    2010-01-01

    We present a superspace formulation of the D=3, N=4, 5 superconformal Chern-Simons Matter theories, with matter supermultiplets valued in a symplectic 3-algebra. We first construct an N=1 superconformal action and then generalize a method used by Gaitto and Witten to enhance the supersymmetry from N=1 to N=5. By decomposing the N=5 supermultiplets and the symplectic 3-algebra properly and proposing a new superpotential term, we construct the N=4 superconformal Chern-Simons matter theories in terms of two sets of generators of a (quaternion) symplectic 3-algebra. The N=4 theories can also be derived by requiring that the supersymmetry transformations are closed on-shell. The relationship between the 3-algebras, Lie superalgebras, Lie algebras, and embedding tensors (proposed in [E. A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben, and E. Sezgin, J. High Energy Phys. 09 (2008) 101.]) is also clarified. The general N=4, 5 superconformal Chern-Simons matter theories in terms of ordinary Lie algebras can be re-derived in our 3-algebra approach. All known N=4, 5 superconformal Chern-Simons matter theories can be recovered in the present superspace formulation for super-Lie algebra realization of symplectic 3-algebras.

  5. Chern-Simons matrix models and unoriented strings

    International Nuclear Information System (INIS)

    Halmagyi, Nick; Yasnov, Vadim

    2004-01-01

    For matrix models with measure on the Lie algebra of SO/Sp, the sub-leading free energy is given by F 1 (S) ±{1/4}({δF 0 (S)}/{δS}). Motivated by the fact that this relationship does not hold for Chern-Simons theory on S 3 , we calculate the sub-leading free energy in the matrix model for this theory, which is a Gaussian matrix model with Haar measure on the group SO/Sp. We derive a quantum loop equation for this matrix model and then find that F 1 is an integral of the leading order resolvent over the spectral curve. We explicitly calculate this integral for quadratic potential and find agreement with previous studies of SO/Sp Chern-Simons theory. (author)

  6. A Chern-Simons-like action for closed-string field theory

    International Nuclear Information System (INIS)

    Taylor, C.C.

    1989-01-01

    A Chern-Simons-like action is proposed for closed-string field theory. The action involves auxiliary fields of arbitrary ghost number and is defined in terms of the closed-string operations ∫, Q and *, analogous to those introduced by Witten in the construction of open-string field theory. The action is an extension of one proposed for free closed strings and bears a formal relationship to 2 + 1 gravity analogous to that between open-string field theory and (2 + 1)-dimensional Yang-Mills theory. (author)

  7. Electron-electron attractive interaction in Maxwell-Chern-Simons QED3 at zero temperature

    International Nuclear Information System (INIS)

    Belich, H.; Ferreira Junior, M.M.; Helayel-Neto, J.A.; Ferreira Junior, M.M.

    2001-04-01

    One discusses the issue of low-energy electron-electron bound states in the Maxwell-Chern-Simons model coupled to QED 3 with spontaneous breaking of a local U(1)-symmetry. The scattering potential, in the non-relativistic limit, steaming from the electron-electron Moeller scattering, mediated by the Maxwell-Chern-Simons-Proca gauge field and the Higgs scalar, might be attractive by fine-tuning properly the physical parameters of the model. (author)

  8. Chern-Simons couplings for dielectric F-strings in matrix string theory

    International Nuclear Information System (INIS)

    Brecher, Dominic; Janssen, Bert; Lozano, Yolanda

    2002-01-01

    We compute the non-abelian couplings in the Chern-Simons action for a set of coinciding fundamental strings in both the type IIA and type IIB Matrix string theories. Starting from Matrix theory in a weakly curved background, we construct the linear couplings of closed string fields to type IIA Matrix strings. Further dualities give a type IIB Matrix string theory and a type IIA theory of Matrix strings with winding. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  9. Two-dimensional Lorentz-Weyl anomaly and gravitational Chern-Simons theory

    International Nuclear Information System (INIS)

    Chamseddine, A.H.; Froehlich, J.

    1992-01-01

    Two-dimensional chiral fermions and bosons, more generally conformal blocks of two-dimensional conformal field theories, exhibit Weyl-, Lorentz- and mixed Lorentz-Weyl anomalies. A novel way of computing these anomalies for a system of chiral bosons of arbitrary conformal spin j is sketched. It is shown that the Lorentz- and mixed Lorentz-Weyl anomalies of these theories can be cancelled by the anomalies of a three-dimensional classical Chern-Simons action for the spin connection, expressed in terms of the dreibein field. Some tentative applications of this result to string theory are indicated. (orig.)

  10. Instantons, fermions and Chern-Simons terms

    International Nuclear Information System (INIS)

    Collie, Benjamin; Tong, David

    2008-01-01

    In five spacetime dimensions, instantons are finite energy, solitonic particles. We describe the dynamics of these objects in the presence of a Chern-Simons interaction. For U(N) instantons, we show that the 5d Chern-Simons term induces a corresponding Chern-Simons term in the ADHM quantum mechanics. For SU(N) instantons, we provide a description in terms of geodesic motion on the instanton moduli space, modified by the presence of a magnetic field. We show that this magnetic field is equal to the first Chern character of an index bundle. All of these results are derived by a simple method which follows the fate of zero modes as fermions are introduced, made heavy, and subsequently integrated out.

  11. Confinement in Maxwell-Chern-Simons planar quantum electrodynamics and the 1/N approximation

    International Nuclear Information System (INIS)

    Hofmann, Christoph P.; Raya, Alfredo; Madrigal, Saul Sanchez

    2010-01-01

    We study the analytical structure of the fermion propagator in planar quantum electrodynamics coupled to a Chern-Simons term within a four-component spinor formalism. The dynamical generation of parity-preserving and parity-violating fermion mass terms is considered, through the solution of the corresponding Schwinger-Dyson equation for the fermion propagator at leading order of the 1/N approximation in Landau gauge. The theory undergoes a first-order phase transition toward chiral symmetry restoration when the Chern-Simons coefficient θ reaches a critical value which depends upon the number of fermion families considered. Parity-violating masses, however, are generated for arbitrarily large values of the said coefficient. On the confinement scenario, complete charge screening - characteristic of the 1/N approximation - is observed in the entire (N,θ)-plane through the local and global properties of the vector part of the fermion propagator.

  12. Wigner's little group as a gauge generator in linearized gravity theories

    International Nuclear Information System (INIS)

    Scaria, Tomy; Chakraborty, Biswajit

    2002-01-01

    We show that the translational subgroup of Wigner's little group for massless particles in 3 + 1 dimensions generates gauge transformation in linearized Einstein gravity. Similarly, a suitable representation of the one-dimensional translational group T(1) is shown to generate gauge transformation in the linearized Einstein-Chern-Simons theory in 2 + 1 dimensions. These representations are derived systematically from appropriate representations of translational groups which generate gauge transformations in gauge theories living in spacetime of one higher dimension by the technique of dimensional descent. The unified picture thus obtained is compared with a similar picture available for vector gauge theories in 3 + 1 and 2 + 1 dimensions. Finally, the polarization tensor of the Einstein-Pauli-Fierz theory in 2 + 1 dimensions is shown to split into the polarization tensors of a pair of Einstein-Chern-Simons theories with opposite helicities suggesting a doublet structure for the Einstein-Pauli-Fierz theory

  13. Electron-electron attractive interaction in Maxwell-Chern-Simons QED{sub 3} at zero temperature

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Ferreira Junior, M.M.; Helayel-Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: belich@cbpf.br; manojr@cbpf.br; helayel@gft.ucp.br; Ferreira Junior, M.M. [Universidade Catolica de Petropolis, RJ (Brazil). Grupo de Fisica Teorica. E-mail: delcima@gft.ucp.br

    2001-04-01

    One discusses the issue of low-energy electron-electron bound states in the Maxwell-Chern-Simons model coupled to QED{sub 3} with spontaneous breaking of a local U(1)-symmetry. The scattering potential, in the non-relativistic limit, steaming from the electron-electron Moeller scattering, mediated by the Maxwell-Chern-Simons-Proca gauge field and the Higgs scalar, might be attractive by fine-tuning properly the physical parameters of the model. (author)

  14. On Chern-Simons Matrix Models

    CERN Document Server

    Garoufalidis, S; Garoufalidis, Stavros; Marino, Marcos

    2006-01-01

    The contribution of reducible connections to the U(N) Chern-Simons invariant of a Seifert manifold $M$ can be expressed in some cases in terms of matrix integrals. We show that the U(N) evaluation of the LMO invariant of any rational homology sphere admits a matrix model representation which agrees with the Chern-Simons matrix integral for Seifert spheres and the trivial connection.

  15. Fermion zero modes in the vortex background of a Chern-Simons-Higgs theory with a hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, Gustavo [Departamento de Física, FCEYN Universidad de Buenos Aires & IFIBA CONICET,Pabellón 1 Ciudad Universitaria, 1428 Buenos Aires (Argentina); Mohammadi, Azadeh [Departamento de Física, Universidade Federal da Paraíba,58.059-970, Caixa Postal 5.008, João Pessoa, PB (Brazil); Schaposnik, Fidel A. [Departamento de Física, Universidad Nacional de La Plata/IFLP/CICBA,CC 67, 1900 La Plata (Argentina)

    2015-11-06

    In this paper we study a 2+1 dimensional system in which fermions are coupled to the self-dual topological vortex in U(1)×U(1) Chern-Simons theory, where both U(1) gauge symmetries are spontaneously broken. We consider two Abelian Higgs scalars with visible and hidden sectors coupled to a fermionic field through three interaction Lagrangians, where one of them violates the fermion number. Using a fine tuning procedure, we could obtain the number of the fermionic zero modes which is equal to the absolute value of the sum of the vortex numbers in the visible and hidden sectors.

  16. Spatially modulated instabilities of holographic gauge-gravitational anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan [Department of Space Science, and International Research Institute of Multidisciplinary Science,Beihang University,Beijing 100191 (China); Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Pena-Benitez, Francisco [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via A. Pascoli, I-06123 Perugia (Italy)

    2017-05-19

    We performed a study of the perturbative instabilities in Einstein-Maxwell-Chern-Simons theory with a gravitational Chern-Simons term, which is dual to a strongly coupled field theory with both chiral and mixed gauge-gravitational anomaly. With an analysis of the fluctuations in the near horizon regime at zero temperature, we found that there might be two possible sources of instabilities. The first one corresponds to a real mass-squared which is below the BF bound of AdS{sub 2}, and it leads to the bell-curve phase diagram at finite temperature. The effect of mixed gauge-gravitational anomaly is emphasised. Another source of instability is independent of gauge Chern-Simons coupling and exists for any finite gravitational Chern-Simons coupling. There is a singular momentum close to which unstable mode appears. The possible implications of this singular momentum are discussed. Our analysis suggests that the theory with a gravitational Chern-Simons term around Reissner-Nordström black hole is unreliable unless the gravitational Chern-Simons coupling is treated as a small perturbative parameter.

  17. On eleven-dimensional supergravity and Chern-Simons theory

    Energy Technology Data Exchange (ETDEWEB)

    Izaurieta, Fernando, E-mail: fizaurie@ucsc.cl [Departamento de Matematica y Fisica Aplicadas, Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, 4090541 Concepcion (Chile); Instituto de Matematicas, Universidad Nacional Autonoma de Mexico, Av. Insurgentes Sur s/n, D.F. (Mexico); Departament de Fisica Teorica, Universitat de Valencia, C/ Dr. Moliner 50, 46100 Burjassot, Valencia (Spain); Rodriguez, Eduardo, E-mail: edurodriguez@ucsc.cl [Departamento de Matematica y Fisica Aplicadas, Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, 4090541 Concepcion (Chile)

    2012-02-11

    We probe in some depth into the structure of eleven-dimensional, osp(32|1)-based Chern-Simons supergravity, as put forward by Troncoso and Zanelli (TZ) in 1997. We find that the TZ Lagrangian may be cast as a polynomial in 1/l, where l is a length, and compute explicitly the first three dominant terms. The term proportional to 1/l{sup 9} turns out to be essentially the Lagrangian of the standard 1978 supergravity theory of Cremmer, Julia and Scherk, thus establishing a previously unknown relation between the two theories. The computation is nontrivial because, when written in a sufficiently explicit way, the TZ Lagrangian has roughly one thousand non-explicitly Lorentz-covariant terms. Specially designed algebraic techniques are used to accomplish the results.

  18. Even-dimensional topological gravity from Chern-Simons gravity

    International Nuclear Information System (INIS)

    Merino, N.; Perez, A.; Salgado, P.

    2009-01-01

    It is shown that the topological action for gravity in 2n-dimensions can be obtained from the (2n+1)-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a (2n+1)-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).

  19. Dimensional reduction of a Lorentz and CPT-violating Maxwell-Chern-Simons model

    International Nuclear Information System (INIS)

    Belich, H. Jr.; Helayel Neto, J.A.; Ferreira, M.M. Jr.; Maranhao Univ., Sao Luiz, MA; Orlando, M.T.D.; Espirito Santo Univ., Vitoria, ES

    2003-01-01

    Taking as starting point a Lorentz and CPT non-invariant Chern-Simons-like model defined in 1+3 dimensions, we proceed realizing its dimensional to D = 1+2. One then obtains a new planar model, composed by the Maxwell-Chern-Simons (MCS) sector, a Klein-Gordon massless scalar field, and a coupling term that mixes the gauge field to the external vector, ν μ . In spite of breaking Lorentz invariance in the particle frame, this model may preserve the CPT symmetry for a single particular choice of ν μ . Analyzing the dispersion relations, one verifies that the reduced model exhibits stability, but the causality can be jeopardized by some modes. The unitary of the gauge sector is assured without any restriction , while the scalar sector is unitary only in the space-like case. (author)

  20. Extended charged events and Chern-Simons couplings

    International Nuclear Information System (INIS)

    Bunster, Claudio; Gomberoff, Andres; Henneaux, Marc

    2011-01-01

    In three spacetime dimensions, the world volume of a magnetic source is a single point, a magnetically charged event. It has been shown long ago that in three-dimensional spacetime, the Chern-Simons coupling is quantized, because the magnetic event emits an electric charge which must be quantized according to the standard Dirac rule. Recently, the concept of dynamical extended charged events has been introduced, and it has been argued that they should play as central a role as that played by particles or ordinary branes. In this article, we show that in the presence of a Chern-Simons coupling, a magnetically charged extended event emits an extended object, which geometrically is just like a Dirac string, but it is observable, obeys equations of motion, and may be electrically charged. We write a complete action principle which accounts for this effect. The action involves two Chern-Simons terms, one integrated over spacetime and the other integrated over the world volume of the submanifold that is the union of the Dirac world sheet and the history of the emitted physical object. By demanding that the total charge emitted by a composite extended magnetic event be quantized according to Dirac's rule, we find a quantization condition for the Chern-Simons coupling. For a 1-form electric potential in D=2n+1 spacetime dimensions, the composite event is formed by n elementary extended magnetic events separated in time such that the product of their transverse spaces, together with the time axis, is the entire spacetime. We show that the emitted electric charge is given by the integral of the (n-1)-th exterior power of the electromagnetic field strength over the last elementary event, or, equivalently, over an appropriate closed surface. The extension to more general p-form potentials and higher dimensions is also discussed. For the case D=11, p=3, our result for the quantization of the Chern-Simons coupling was obtained previously in the context of M theory, an agreement

  1. Charges and Energy in Chern-Simons Theories and Lovelock Gravity

    OpenAIRE

    Allemandi, G.; Francaviglia, M.; Raiteri, M.

    2003-01-01

    Starting from the SO(2,2n) Chern-Simons form in (2n+1) dimensions we calculate the variation of conserved quantities in Lovelock gravity and Lovelock-Maxwell gravity through the covariant formalism developed in gr-qc/0305047. Despite the technical complexity of the Lovelock Lagrangian we obtain a remarkably simple expression for the variation of the charges ensuing from the diffeomorphism covariance of the theory. The viability of the result is tested in specific applications and the formal e...

  2. Dimensional reduction of a Lorentz and CPT-violating Maxwell-Chern-Simons model

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H. Jr.; Helayel Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas; Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); E-mails: belich@cbpf.br; helayel@cbpf.br; Ferreira, M.M. Jr. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); Maranhao Univ., Sao Luiz, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br; Orlando, M.T.D. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); Espirito Santo Univ., Vitoria, ES (Brazil). Dept. de Fisica e Quimica; E-mail: orlando@cce.ufes.br

    2003-01-01

    Taking as starting point a Lorentz and CPT non-invariant Chern-Simons-like model defined in 1+3 dimensions, we proceed realizing its dimensional to D = 1+2. One then obtains a new planar model, composed by the Maxwell-Chern-Simons (MCS) sector, a Klein-Gordon massless scalar field, and a coupling term that mixes the gauge field to the external vector, {nu}{sup {mu}}. In spite of breaking Lorentz invariance in the particle frame, this model may preserve the CPT symmetry for a single particular choice of {nu}{sup {mu}} . Analyzing the dispersion relations, one verifies that the reduced model exhibits stability, but the causality can be jeopardized by some modes. The unitary of the gauge sector is assured without any restriction , while the scalar sector is unitary only in the space-like case. (author)

  3. Pure Lovelock gravity and Chern-Simons theory

    Science.gov (United States)

    Concha, P. K.; Durka, R.; Inostroza, C.; Merino, N.; Rodríguez, E. K.

    2016-07-01

    We explore the possibility of finding pure Lovelock gravity as a particular limit of a Chern-Simons action for a specific expansion of the AdS algebra in odd dimensions. We derive in detail this relation at the level of the action in five and seven dimensions. We provide a general result for higher dimensions and discuss some issues arising from the obtained dynamics.

  4. The Chern-Simons Current in Systems of DNA-RNA Transcriptions

    Science.gov (United States)

    Capozziello, Salvatore; Pincak, Richard; Kanjamapornkul, Kabin; Saridakis, Emmanuel N.

    2018-04-01

    A Chern-Simons current, coming from ghost and anti-ghost fields of supersymmetry theory, can be used to define a spectrum of gene expression in new time series data where a spinor field, as alternative representation of a gene, is adopted instead of using the standard alphabet sequence of bases $A, T, C, G, U$. After a general discussion on the use of supersymmetry in biological systems, we give examples of the use of supersymmetry for living organism, discuss the codon and anti-codon ghost fields and develop an algebraic construction for the trash DNA, the DNA area which does not seem active in biological systems. As a general result, all hidden states of codon can be computed by Chern-Simons 3 forms. Finally, we plot a time series of genetic variations of viral glycoprotein gene and host T-cell receptor gene by using a gene tensor correlation network related to the Chern-Simons current. An empirical analysis of genetic shift, in host cell receptor genes with separated cluster of gene and genetic drift in viral gene, is obtained by using a tensor correlation plot over time series data derived as the empirical mode decomposition of Chern-Simons current.

  5. Mimetic discretization of the Abelian Chern-Simons theory and link invariants

    Energy Technology Data Exchange (ETDEWEB)

    Di Bartolo, Cayetano; Grau, Javier [Departamento de Física, Universidad Simón Bolívar, Apartado Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Leal, Lorenzo [Departamento de Física, Universidad Simón Bolívar, Apartado Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Centro de Física Teórica y Computacional, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 47270, Caracas 1041-A (Venezuela, Bolivarian Republic of)

    2013-12-15

    A mimetic discretization of the Abelian Chern-Simons theory is presented. The study relies on the formulation of a theory of differential forms in the lattice, including a consistent definition of the Hodge duality operation. Explicit expressions for the Gauss Linking Number in the lattice, which correspond to their continuum counterparts are given. A discussion of the discretization of metric structures in the space of transverse vector densities is presented. The study of these metrics could serve to obtain explicit formulae for knot an link invariants in the lattice.

  6. Classical gauge theories on the coadjoint orbits of infinite dimensional groups

    International Nuclear Information System (INIS)

    Grabowski, M.P.; Virginia Polytechnic Inst. and State Univ., Blacksburg; Tze Chiahsiung

    1991-01-01

    We reformulate several classical gauge theories on the coadjoint orbits of the semidirect product of the gauge group and the Weyl group. The construction is given for the Yang-Mills theories in arbitrary spacetime dimension d, Chern-Simons topological theory (d=3) and higher dimensional topological models of Horowitz (d≥4). (orig.)

  7. A geometric view on topologically massive gauge theories

    International Nuclear Information System (INIS)

    Horvathy, P.A.; Nash, C.

    1985-01-01

    The topologically massive gauge theory of Deser, Jackiw and Templeton is understood from Souriau's Principle of General Covariance. The non-gauge invariant mass term corresponds to a non-trivial class in the first cohomology group of configuration space, generated by the Chern-Simons secondary characteristic class. Quantization requires this class to be integral

  8. Deformed N = 8 supergravity from IIA strings and its Chern-Simons duals

    Energy Technology Data Exchange (ETDEWEB)

    Guarino, Adolfo [Nikhef Theory Group, Amsterdam (Netherlands); Jafferis, Daniel L. [Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA (United States); Varela, Oscar [Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA (United States); Centre de Physique Theorique, Ecole Polytechnique, CNRS UMR 7644, Palaiseau (France)

    2016-04-15

    Do electric/magnetic deformations of N = 8 supergravity enjoy a string/M-theory origin, or are they just a fourdimensional artefact? We address this question for the gauging of a group closely related to SO(8): its contraction ISO(7). We argue that the deformed ISO(7) supergravity arises from consistent truncation of massive IIA supergravity on S{sup 6}, and its electric/magnetic deformation parameter descends directly from the Romans mass. The critical points of the supergravity uplift to AdS{sub 4} massive type IIA vacua and the corresponding CFT{sub 3} duals are identified as super-Chern-Simons-matter theories with gauge group SU(N) and level k given also by the Romans mass. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Superfiled formulation of Chern-Simons supersymmetry

    International Nuclear Information System (INIS)

    Birmingham, D.; Rakowski, M.

    1989-03-01

    We discuss an extra supersymmetry present in the covariantly quantized Chern-Simons action within the superfield formalism. By introducing scalar superfields we show how the component transformations are naturally reproduced from the superfield transformation. When the superspace is extended to include an additional odd coordinate for the BRST symmetry, the entire theory is described by a single odd scalar superfield. The implications of this supersymmetry for the renormalized theory are also discussed. (author). 9 refs

  10. Large N Chern-Simons with massive fundamental fermions — A model with no bound states

    International Nuclear Information System (INIS)

    Frishman, Yitzhak; Sonnenschein, Jacob

    2014-01-01

    In a previous paper http://dx.doi.org/10.1007/JHEP12(2013)091, we analyzed the theory of massive fermions in the fundamental representation coupled to a U(N) Chern-Simons gauge theory in three dimensions at level K. It was done in the large N, large K limits where λ=(N/K) was kept fixed. Among other results, we showed there that there are no high mass “quark anti-quark" bound states. Here we show that there are no bound states at all.

  11. Remarks on Chern-Simons Invariants

    Science.gov (United States)

    Cattaneo, Alberto S.; Mnëv, Pavel

    2010-02-01

    The perturbative Chern-Simons theory is studied in a finite-dimensional version or assuming that the propagator satisfies certain properties (as is the case, e.g., with the propagator defined by Axelrod and Singer). It turns out that the effective BV action is a function on cohomology (with shifted degrees) that solves the quantum master equation and is defined modulo certain canonical transformations that can be characterized completely. Out of it one obtains invariants.

  12. Chern-Simons expectation values and quantum horizons from loop quantum gravity and the Duflo map.

    Science.gov (United States)

    Sahlmann, Hanno; Thiemann, Thomas

    2012-03-16

    We report on a new approach to the calculation of Chern-Simons theory expectation values, using the mathematical underpinnings of loop quantum gravity, as well as the Duflo map, a quantization map for functions on Lie algebras. These new developments can be used in the quantum theory for certain types of black hole horizons, and they may offer new insights for loop quantum gravity, Chern-Simons theory and the theory of quantum groups.

  13. Framing and localization in Chern-Simons theories with matter

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marco S. [Center for Research in String Theory - School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom); Griguolo, Luca [Dipartimento di Fisica e Scienze della Terra, Università di Parma andINFN Gruppo Collegato di Parma,Viale G.P. Usberti 7/A, 43100 Parma (Italy); Leoni, Matias [Physics Department, FCEyN-UBA & IFIBA-CONICET,Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina); Mauri, Andrea [Dipartimento di Fisica, Università degli studi di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Penati, Silvia [Dipartimento di Fisica, Università degli studi di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); INFN, Sezione di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Seminara, Domenico [Dipartimento di Fisica, Università di Firenze and INFN Sezione di Firenze,via G. Sansone 1, 50019 Sesto Fiorentino (Italy)

    2016-06-22

    Supersymmetric localization provides exact results that should match QFT computations in some regularization scheme. The agreement is particularly subtle in three dimensions where complex answers from localization procedure sometimes arise. We investigate this problem by studying the expectation value of the 1/6 BPS Wilson loop in planar ABJ(M) theory at three loops in perturbation theory. We reproduce the corresponding term in the localization result and argue that it originates entirely from a non-trivial framing of the circular contour. Contrary to pure Chern-Simons theory, we point out that for ABJ(M) the framing phase is a non-trivial function of the couplings and that it potentially receives contributions from vertex-like diagrams. Finally, we briefly discuss the intimate link between the exact framing factor and the Bremsstrahlung function of the 1/2-BPS cusp.

  14. Equivalence of several Chern-Simons matter models

    International Nuclear Information System (INIS)

    Chen, W.; Itoi, C.

    1994-01-01

    Chern-Simons (CS) coupling characterizes not only statistics, but also spin and scaling dimension of matter fields. We demonstrate spin transmutation in relativistic CS matter theory, and moreover show equivalence of several models. We study the CS vector model in some detail, which provides a consistent check to the assertion of the equivalence

  15. Scattering amplitude and bosonization duality in general Chern-Simons vector models

    Science.gov (United States)

    Yokoyama, Shuichi

    2016-09-01

    We present the exact large N calculus of four point functions in general Chern-Simons bosonic and fermionic vector models. Applying the LSZ formula to the four point function we determine the two body scattering amplitudes in these theories taking a special care for a non-analytic term to achieve unitarity in the singlet channel. We show that the S-matrix enjoys the bosonization duality, an unusual crossing relation and a non-relativistic reduction to Aharonov-Bohm scattering. We also argue that the S-matrix develops a pole in a certain range of coupling constants, which disappears in the range where the theory reduces to the Chern-Simons theory interacting with free fermions.

  16. Monopole Solutions in Topologically Massive Gauge Theory

    International Nuclear Information System (INIS)

    Teh, Rosy; Wong, Khai-Ming; Koh, Pin-Wai

    2010-01-01

    Monopoles in topologically massive SU(2) Yang-Mils-Higgs gauge theory in 2+1 dimensions with a Chern-Simon mass term have been studied by Pisarski some years ago. He argued that there is a monopole solution that is regular everywhere, but found that it does not possess finite action. There were no exact or numerical solutions being presented by him. Hence it is our purpose to further investigate this solution in more detail. We obtained numerical regular solutions that smoothly interpolates between the behavior at small and large distances for different values of Chern-Simon term strength and for several fixed values of Higgs field strength.

  17. Gauge theories of infinite dimensional Hamiltonian superalgebras

    International Nuclear Information System (INIS)

    Sezgin, E.

    1989-05-01

    Symplectic diffeomorphisms of a class of supermanifolds and the associated infinite dimensional Hamiltonian superalgebras, H(2M,N) are discussed. Applications to strings, membranes and higher spin field theories are considered: The embedding of the Ramond superconformal algebra in H(2,1) is obtained. The Chern-Simons gauge theory of symplectic super-diffeomorphisms is constructed. (author). 29 refs

  18. Lie-algebra expansions, Chern-Simons theories and the Einstein-Hilbert Lagrangian

    International Nuclear Information System (INIS)

    Edelstein, Jose D.; Hassaine, Mokhtar; Troncoso, Ricardo; Zanelli, Jorge

    2006-01-01

    Starting from gravity as a Chern-Simons action for the AdS algebra in five dimensions, it is possible to modify the theory through an expansion of the Lie algebra that leads to a system consisting of the Einstein-Hilbert action plus non-minimally coupled matter. The modified system is gauge invariant under the Poincare group enlarged by an Abelian ideal. Although the resulting action naively looks like general relativity plus corrections due to matter sources, it is shown that the non-minimal couplings produce a radical departure from GR. Indeed, the dynamics is not continuously connected to the one obtained from Einstein-Hilbert action. In a matter-free configuration and in the torsionless sector, the field equations are too strong a restriction on the geometry as the metric must satisfy both the Einstein and pure Gauss-Bonnet equations. In particular, the five-dimensional Schwarzschild geometry fails to be a solution; however, configurations corresponding to a brane-world with positive cosmological constant on the worldsheet are admissible when one of the matter fields is switched on. These results can be extended to higher odd dimensions

  19. Topologically massive gauge theories and their dual factorized gauge-invariant formulation

    International Nuclear Information System (INIS)

    Bertrand, Bruno; Govaerts, Jan

    2007-01-01

    There exists a well-known duality between the Maxwell-Chern-Simons theory and the 'self-dual' massive model in (2 + 1) dimensions. This dual description may be extended to topologically massive gauge theories (TMGT) for forms of arbitrary rank and in any dimension. This communication introduces the construction of this type of duality through a reparametrization of the 'master' theory action. The dual action thereby obtained preserves the full gauge symmetry structure of the original theory. Furthermore, the dual action is factorized into a propagating sector of massive gauge-invariant variables and a decoupled sector of gauge-variant variables defining a pure topological field theory. Combining the results obtained within the Lagrangian and Hamiltonian formulations, a completed structure for a gauge-invariant dual factorization of TMGT is thus achieved. (fast track communication)

  20. Chern-Simons (super)gravity

    CERN Document Server

    Hassaine, Mokhtar

    2016-01-01

    This book grew out of a set of lecture notes on gravitational Chern–Simons (CS) theories developed over the past decade for several schools and different audiences including graduate students and researchers.CS theories are gauge-invariant theories that can include gravity consistently. They are only defined in odd dimensions and represent a very special class of theories in the Lovelock family. Lovelock gravitation theories are the natural extensions of General Relativity for dimensions greater than four that yield second-order field equations for the metric. These theories also admit local supersymmetric extensions where supersymmetry is an off-shell symmetry of the action, as in a standard gauge theory.Apart from the arguments of mathematical elegance and beauty, the gravitational CS actions are exceptionally endowed with physical attributes that suggest the viability of a quantum interpretation. CS theories are gauge-invariant, scale-invariant and background independent; they have no dimensional couplin...

  1. d=3 Chern-Simons action, supergravity and quantization

    International Nuclear Information System (INIS)

    Dayi, O.F.

    1989-01-01

    An interpretation of three-dimensional simple supergravity as a pure Chern-Simons gauge action is shown to be valid up to the one loop level. Canonical quantization of this system does not lead to an explicit definition of the physical Hilbert space. Hence another formulation of the N = 1 three-dimensional supergravity is introduced. In this formalism an explicit definition of the physical Hilbert space is possible, but still one has to solve the problems of showing that there exists a global set of coordinates and of defining the inner product. (author). 10 refs

  2. Periodic electromagnetic vacuum in the two-dimensional Yang-Mills theory with the Chern-Simons mass

    International Nuclear Information System (INIS)

    Skalozub, V.V.; Vilensky, S.A.; Zaslavsky, A.Yu.

    1993-06-01

    The periodic vacuum structure formed from magnetic and electric fields is derived in the two-dimensional Yang-Mills theory with the Chern-Simons term. It is shown that both the magnetic flux quantization in the fundamental sell and conductivity quantization inherent to the vacuum. Hence, the quantum Hall effect gets its natural explanation. (author). 10 refs

  3. Moving vortices in noncommutative gauge theory

    International Nuclear Information System (INIS)

    Horvathy, P.A.; Stichel, P.C.

    2004-01-01

    Exact time-dependent solutions of nonrelativistic noncommutative Chern-Simons gauge theory are presented in closed analytic form. They are different from (indeed orthogonal to) those discussed recently by Hadasz, Lindstroem, Rocek and von Unge. Unlike theirs, our solutions can move with an arbitrary constant velocity, and can be obtained from the previously known static solutions by the recently found 'exotic' boost symmetry

  4. Maxwell-Chern-Simons theory for curved spacetime backgrounds

    International Nuclear Information System (INIS)

    Kant, E.; Klinkhamer, F.R.

    2005-01-01

    We consider a modified version of four-dimensional electrodynamics, which has a photonic Chern-Simons-like term with spacelike background vector in the action. Light propagation in curved spacetime backgrounds is discussed using the geometrical-optics approximation. The corresponding light path is modified, which allows for new effects. In a Schwarzschild background, for example, there now exist stable bounded orbits of light rays and the two polarization modes of light rays in unbounded orbits can have different gravitational redshifts

  5. Multi-boundary entanglement in Chern-Simons theory and link invariants

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, Vijay [David Rittenhouse Laboratory, University of Pennsylvania,209 S.33rd Street, Philadelphia, PA 19104 (United States); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB) andInternational Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Fliss, Jackson R.; Leigh, Robert G. [Department of Physics, University of Illinois,1110 W. Green Street, Urbana, IL 61801 (United States); Parrikar, Onkar [David Rittenhouse Laboratory, University of Pennsylvania,209 S.33rd Street, Philadelphia, PA 19104 (United States)

    2017-04-11

    We consider Chern-Simons theory for gauge group G at level k on 3-manifolds M{sub n} with boundary consisting of n topologically linked tori. The Euclidean path integral on M{sub n} defines a quantum state on the boundary, in the n-fold tensor product of the torus Hilbert space. We focus on the case where M{sub n} is the link-complement of some n-component link inside the three-sphere S{sup 3}. The entanglement entropies of the resulting states define framing-independent link invariants which are sensitive to the topology of the chosen link. For the Abelian theory at level k (G=U(1){sub k}) we give a general formula for the entanglement entropy associated to an arbitrary (m|n−m) partition of a generic n-component link into sub-links. The formula involves the number of solutions to certain Diophantine equations with coefficients related to the Gauss linking numbers (mod k) between the two sublinks. This formula connects simple concepts in quantum information theory, knot theory, and number theory, and shows that entanglement entropy between sublinks vanishes if and only if they have zero Gauss linking (mod k). For G=SU(2){sub k}, we study various two and three component links. We show that the 2-component Hopf link is maximally entangled, and hence analogous to a Bell pair, and that the Whitehead link, which has zero Gauss linking, nevertheless has entanglement entropy. Finally, we show that the Borromean rings have a “W-like' entanglement structure (i.e., tracing out one torus does not lead to a separable state), and give examples of other 3-component links which have “GHZ-like” entanglement (i.e., tracing out one torus does lead to a separable state).

  6. Time dependent solitons of noncommutative Chern-Simons theory coupled to scalar fields

    Science.gov (United States)

    Hadasz, Leszek; Lindström, Ulf; Roček, Martin; von Unge, Rikard

    2004-05-01

    We study one- and two-soliton solutions of noncommutative Chern-Simons theory coupled to a nonrelativistic or a relativistic scalar field. In the nonrelativistic case, we find a tower of new stationary time-dependent solutions, all with the same charge density, but with increasing energies. The dynamics of these solitons cannot be studied using traditional moduli space techniques, but we do find a nontrivial symplectic form on the phase space indicating that the moduli space is not flat. In the relativistic case we find the metric on the two soliton moduli space.

  7. Time dependent solitons of noncommutative Chern-Simons theory coupled to scalar fields

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Lindstroem, Ulf; Rocek, Martin; Unge, Rikard von

    2004-01-01

    We study one- and two-soliton solutions of noncommutative Chern-Simons theory coupled to a nonrelativistic or a relativistic scalar field. In the nonrelativistic case, we find a tower of new stationary time-dependent solutions, all with the same charge density, but with increasing energies. The dynamics of these solitons cannot be studied using traditional moduli space techniques, but we do find a nontrivial symplectic form on the phase space indicating that the moduli space is not flat. In the relativistic case we find the metric on the two soliton moduli space

  8. Signature of biased range in the non-dynamical Chern-Simons modified gravity and its measurements with satellite-satellite tracking missions: theoretical studies

    Science.gov (United States)

    Qiang, Li-E.; Xu, Peng

    2015-08-01

    Having great accuracy in the range and range rate measurements, the GRACE mission and the planed GRACE follow on mission can in principle be employed to place strong constraints on certain relativistic gravitational theories. In this paper, we work out the range observable of the non-dynamical Chern-Simons modified gravity for the satellite-to-satellite tracking (SST) measurements. We find out that a characteristic time accumulating range signal appears in non-dynamical Chern-Simons gravity, which has no analogue found in the standard parity-preserving metric theories of gravity. The magnitude of this Chern-Simons range signal will reach a few times of cm for each free flight of these SST missions, here is the dimensionless post-Newtonian parameter of the non-dynamical Chern-Simons theory. Therefore, with the 12 years data of the GRACE mission, one expects that the mass scale of the non-dynamical Chern-Simons gravity could be constrained to be larger than eV. For the GRACE FO mission that scheduled to be launched in 2017, the much stronger bound that eV is expected.

  9. Classical optics in generalized Maxwell Chern-Simons theory

    International Nuclear Information System (INIS)

    Burgess, M.; Leinaas, J.M.; Loevvik, O.M.

    1993-03-01

    The authors consider the propagation of electromagnetic waves in a two-dimensional polarizable medium endowed with Chern-Simons terms. The dispersion relation (refractive index) of the waves is computed and the existence of linear birefringence and anomalous dispersion is shown. When absorption is taken into account, the classic signature of a Voigt effect is found. In the case where linearly-polarized, three-dimensional waves pass through a two-dimensional plane, it is shown that there is optical activity, and the analogue of Verdet's constant is computed. 19 refs., 2 figs

  10. Papapetrou energy-momentum tensor for Chern-Simons modified gravity

    International Nuclear Information System (INIS)

    Guarrera, David; Hariton, A. J.

    2007-01-01

    We construct a conserved, symmetric energy-momentum (pseudo-)tensor for Chern-Simons modified gravity, thus demonstrating that the theory is Lorentz invariant. The tensor is discussed in relation to other gravitational energy-momentum tensors and analyzed for the Schwarzschild, Reissner-Nordstrom, and Friedmann-Robertson-Walker solutions. To our knowledge this is the first confirmation that the Reissner-Nordstrom and Friedmann-Robertson-Walker metrics are solutions of the modified theory

  11. What we think about the higher dimensional Chern-Simons theories

    International Nuclear Information System (INIS)

    Fock, V.V.; Nekrasov, N.A.; Rosly, A.A.; Selivanov, K.G.

    1992-01-01

    This paper reports that one of the most interesting developments in mathematical physics was the investigation of the so-called topological field theories i.e. such theories which do not need a metric on the manifold for their definition a d hence the observable of which are topologically invariant. The Chern-Simons (CS) functionals considered as actions give us examples the theories of such a type. The CS theory on a 3d manifold was firstly considered in the Abelian case by A.S. Schwartz and then after papers of E. Witten there has been an explosive process of publications on this subject. This paper discusses topological invariants of the manifolds (like the Ray-Singer torsion) computed by the quantum field theory methods; conformal blocks of 2d conformal field theories as vectors in the CS theory Hilbert space; correlators of Wilson loop and the invariants of 1d links in 3d manifolds; braid groups; unusual relations between spin and statistics; here we would like to consider the generalization of a part of the outlined ideas to the CS theories on higher dimensional manifolds. Some of our results intersect with

  12. Linearized fermion-gravitation system in a (2+1)-dimensional space-time with Chern-Simons data

    International Nuclear Information System (INIS)

    Mello, E.R.B. de.

    1990-01-01

    The fermion-graviton system at linearized level in a (2+1)-dimensional space-time with the gravitational Chern-Simons term is studied. In this approximation it is shown that this system presents anomalous rotational properties and spin, in analogy with the gauge field-matter system. (A.C.A.S.) [pt

  13. Gauge theories of Yang-Mills vector fields coupled to antisymmetric tensor fields

    International Nuclear Information System (INIS)

    Anco, Stephen C.

    2003-01-01

    A non-Abelian class of massless/massive nonlinear gauge theories of Yang-Mills vector potentials coupled to Freedman-Townsend antisymmetric tensor potentials is constructed in four space-time dimensions. These theories involve an extended Freedman-Townsend-type coupling between the vector and tensor fields, and a Chern-Simons mass term with the addition of a Higgs-type coupling of the tensor fields to the vector fields in the massive case. Geometrical, field theoretic, and algebraic aspects of the theories are discussed in detail. In particular, the geometrical structure mixes and unifies features of Yang-Mills theory and Freedman-Townsend theory formulated in terms of Lie algebra valued curvatures and connections associated to the fields and nonlinear field strengths. The theories arise from a general determination of all possible geometrical nonlinear deformations of linear Abelian gauge theory for one-form fields and two-form fields with an Abelian Chern-Simons mass term in four dimensions. For this type of deformation (with typical assumptions on the allowed form considered for terms in the gauge symmetries and field equations), an explicit classification of deformation terms at first-order is obtained, and uniqueness of deformation terms at all higher orders is proven. This leads to a uniqueness result for the non-Abelian class of theories constructed here

  14. Inducing the μ and the Bμ term by the radion and the 5d Chern-Simons term

    International Nuclear Information System (INIS)

    Hebecker, A.; March-Russell, J.; Ziegler, R.

    2009-01-01

    In 5-dimensional models with gauge-Higgs unification, the F-term vacuum expectation value of the radion provides, in close analogy to the Giudice-Masiero mechanism, a natural source for the μ and Bμ term. Both the leading order gauge theory lagrangian and the supersymmetric Chern-Simons term contain couplings to the radion superfield which can be used for this purpose. We analyse the basic features of this mechanism for μ term generation and provide an explicit example, based on a variation of the SU(6) gauge-Higgs unification model of Burdman and Nomura. This construction contains all the relevant features used in our generic analysis. More generally, we expect our mechanism to be relevant to many of the recently discussed orbifold GUT models derived from heterotic string theory. This provides an interesting way of testing high-scale physics via Higgs mass patterns accessible at the LHC.

  15. Large N non-perturbative effects in N=4 superconformal Chern-Simons theories

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Honda, Masazumi; Okuyama, Kazumi

    2015-07-01

    We investigate the large N instanton effects of partition functions in a class of N = 4 circular quiver Chern-Simons theories on a three-sphere. Our analysis is based on the supersymmetry localization and the Fermi-gas formalism. The resulting matrix model can be regarded as a two-parameter deformation of the ABJM matrix model, and has richer non-perturbative structures. Based on a systematic semi-classical analysis, we find analytic expressions of membrane instanton corrections. We also exactly compute the partition function for various cases and find some exact forms of worldsheet instanton corrections, which appear as quantum mechanical non-perturbative corrections in the Fermi-gas system.

  16. On the quantization of the coefficient of the abelian Chern-Simons term

    International Nuclear Information System (INIS)

    Polychronakos, A.P.

    1990-01-01

    We point out that the coefficient of the abelian Chern-Simons term need not be quantized, even in the case of compact U(1) group. Instead, the quantum theory is qualitatively different for integer or rotational values of that coefficient. (orig.)

  17. Faddeev-Senjanovic quantization of SU(n) N=2 supersymmetric gauge field system with a non-Abelian Chern-Simons topological term and its fractional spin

    International Nuclear Information System (INIS)

    Huang Yongchang; Huo Qiuhong

    2008-01-01

    Using Faddeev-Senjanovic path integral quantization for constrained Hamilton system, we quantize SU(n) N=2 supersymmetric gauge field system with non-Abelian Chern-Simons topological term in 2+1 dimensions. We use consistency of Coulomb gauge condition to naturally deduce a new gauge condition. Furthermore, we obtain the generating functional of Green function in phase space, deduce the angular momentum based on the global canonical Noether theorem at quantum level, obtain the fractional spin of this supersymmetric system, and show that the total angular momentum is the sum of the orbital angular momentum and spin angular momentum of the non-Abelian gauge field. Finally, we obtain the anomalous fractional spin and discover that the fractional spin has the contributions of both the group superscript components and A 0 s (x) charge

  18. N=1,2 supergravities in 2+1 dimensions as Chern-Simons theories

    International Nuclear Information System (INIS)

    Li Miao.

    1988-12-01

    In this letter we report the results on the explanation of the Lagrangians of 2+1 supergravities as graded Chern-Simons terms, which are derived from inspiration of Witten's recent work on exact solvability of 2+1 Einstein gravity. Further implications will be considered elsewhere. (author). 8 refs

  19. Boundary effects in 2 + 1 dimensional Maxwell-Chern-Simons theory

    International Nuclear Information System (INIS)

    Ferrer, E.J.; Incera, V. de la.

    1996-09-01

    The boundary effects in the screening of an applied magnetic field in a finite temperature 2 + 1 dimensional model of charged fermions minimally coupled to Maxwell and Chern-Simons fields are investigated. It is found that in a sample with only one boundary -a half-plane- a total Meissner effect takes place, while in a sample with two boundaries -an infinite strip- the external magnetic field partially penetrates the material. (author). 17 refs

  20. Finite-size effect of the dyonic giant magnons in N=6 super Chern-Simons theory

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bozhilov, P.

    2009-01-01

    We consider finite-size effects for the dyonic giant magnon of the type IIA string theory on AdS 4 xCP 3 by applying the Luescher μ-term formula which is derived from a recently proposed S matrix for the N=6 super Chern-Simons theory. We compute explicitly the effect for the case of a symmetric configuration where the two external bound states, each of A and B particles, have the same momentum p and spin J 2 . We compare this with the classical string theory result which we computed by reducing it to the Neumann-Rosochatius system. The two results match perfectly.

  1. Nontopological bare solutions in the relativistic self-dual Maxwell-Chern-Simons-Higgs model

    International Nuclear Information System (INIS)

    Han, Jongmin; Jang, Jaeduk

    2005-01-01

    In this paper we prove the existence of the radially symmetric nontopological bare solutions in the relativistic self-dual Maxwell-Chern-Simons-Higgs model. We also verify the Chern-Simons limit for those solutions

  2. Fractional exclusion and braid statistics in one dimension: a study via dimensional reduction of Chern-Simons theory

    Science.gov (United States)

    Ye, Fei; Marchetti, P. A.; Su, Z. B.; Yu, L.

    2017-09-01

    The relation between braid and exclusion statistics is examined in one-dimensional systems, within the framework of Chern-Simons statistical transmutation in gauge invariant form with an appropriate dimensional reduction. If the matter action is anomalous, as for chiral fermions, a relation between braid and exclusion statistics can be established explicitly for both mutual and nonmutual cases. However, if it is not anomalous, the exclusion statistics of emergent low energy excitations is not necessarily connected to the braid statistics of the physical charged fields of the system. Finally, we also discuss the bosonization of one-dimensional anyonic systems through T-duality. Dedicated to the memory of Mario Tonin.

  3. Chern-Simons, Wess-Zumino and other cocycles from Kashiwara-Vergne and associators

    Science.gov (United States)

    Alekseev, Anton; Naef, Florian; Xu, Xiaomeng; Zhu, Chenchang

    2018-03-01

    Descent equations play an important role in the theory of characteristic classes and find applications in theoretical physics, e.g., in the Chern-Simons field theory and in the theory of anomalies. The second Chern class (the first Pontrjagin class) is defined as p= where F is the curvature 2-form and is an invariant scalar product on the corresponding Lie algebra g. The descent for p gives rise to an element ω =ω _3+ω _2+ω _1+ω _0 of mixed degree. The 3-form part ω _3 is the Chern-Simons form. The 2-form part ω _2 is known as the Wess-Zumino action in physics. The 1-form component ω _1 is related to the canonical central extension of the loop group LG. In this paper, we give a new interpretation of the low degree components ω _1 and ω _0. Our main tool is the universal differential calculus on free Lie algebras due to Kontsevich. We establish a correspondence between solutions of the first Kashiwara-Vergne equation in Lie theory and universal solutions of the descent equation for the second Chern class p. In more detail, we define a 1-cocycle C which maps automorphisms of the free Lie algebra to one forms. A solution of the Kashiwara-Vergne equation F is mapped to ω _1=C(F). Furthermore, the component ω _0 is related to the associator Φ corresponding to F. It is surprising that while F and Φ satisfy the highly nonlinear twist and pentagon equations, the elements ω _1 and ω _0 solve the linear descent equation.

  4. Poisson structure and symmetry in the Chern-Simons formulation of (2 + 1)-dimensional gravity

    International Nuclear Information System (INIS)

    Meusburger, C; Schroers, B J

    2003-01-01

    In the formulation of (2 + 1)-dimensional gravity as a Chern-Simons gauge theory, the phase space is the moduli space of flat Poincare group connections. Using the combinatorial approach developed by Fock and Rosly, we give an explicit description of the phase space and its Poisson structure for the general case of a genus g oriented surface with punctures representing particles and a boundary playing the role of spatial infinity. We give a physical interpretation and explain how the degrees of freedom associated with each handle and each particle can be decoupled. The symmetry group of the theory combines an action of the mapping class group with asymptotic Poincare transformations in a nontrivial fashion. We derive the conserved quantities associated with the latter and show that the mapping class group of the surface acts on the phase space via Poisson isomorphisms

  5. Induced Chern-Simons term in lattice QCD at finite temperature

    International Nuclear Information System (INIS)

    Borisenko, O.A.; Petrov, V.K.; Zinovjev, G.M.

    1995-01-01

    The general conditions for the Chern-Simons action to be induced as a non-universal contribution of fermionic determinant are formulated in finite-temperature lattice QCD. The dependence of the corresponding coefficient in the action on non-universal parameters (chemical potentials, vacuum features, etc.) is explored. Special attention is paid to the role of A 0 -condensate if it is available in this theory. ((orig.))

  6. N=2-Maxwell-Chern-Simons model with anomalous magnetic moment coupling via dimensional reduction

    International Nuclear Information System (INIS)

    Christiansen, H.R.; Cunha, M.S.; Helayel Neto, Jose A.; Manssur, L.R.U; Nogueira, A.L.M.A.

    1998-02-01

    An N=1-supersymmetric version of the Cremmer-Scherk-Kalb-Ramond model with non-minimal coupling to matter is built up both in terms of superfields and in a component field formalism. By adopting a dimensional reduction procedure, the N=2-D=3 counterpart of the model comes out, with two main features: a genuine (diagonal) Chern-Simons term and an anomalous magnetic moment coupling between matter and the gauge potential. (author)

  7. From Lorentz-Chern-Simons to Massive Gravity in 2+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Simón del [Instituto de Física, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso,Av. Universidad 330, Curauma, Valparaíso (Chile); Giribet, Gaston [Physique Théorique et Mathématique, Université Libre de Bruxelles andInternational Solvay Institutes,Campus Plaine C.P. 231, Bruxelles, B-1050 (Belgium); Departamento de Física, Universidad de Buenos Aires and IFIBA-CONICET,Ciudad Universitaria, Pabellón I, Buenos Aires, 1428 (Argentina); Instituto de Física, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso,Av. Universidad 330, Curauma, Valparaíso (Chile); Toloza, Adolfo [Instituto de Física, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso,Av. Universidad 330, Curauma, Valparaíso (Chile); Centro de Estudios Científicos CECs,Arturo Prat 514, Valdivia (Chile); Zanelli, Jorge [Centro de Estudios Científicos CECs,Arturo Prat 514, Valdivia (Chile)

    2015-06-17

    We propose a generalization of Chiral Gravity, which follows from considering a Chern-Simons action for the spin connection with anti-symmetric contorsion. The theory corresponds to Topologically Massive Gravity at the chiral point non-minimally coupled to an additional scalar mode that gathers the torsion degree of freedom. In this setup, the effective cosmological constant (the inverse of the curvature radius of maximally symmetric solutions) is either negative or zero, and it enters as an integration constant associated to the value of the contorsion at infinity. We explain how this is not in conflict with the Zamolodchikov’s c-theorem holding in the dual boundary theory. In fact, we conjecture that the theory formulated about three-dimensional Anti-de Sitter space is dual to a two-dimensional conformal field theory whose right- and left-moving central charges are given by c{sub R}=24k and c{sub L}=0, respectively, being k the level of the Chern-Simons action. We study the classical theory both at the linear and non-linear level. In particular, we show how Chiral Gravity is included as a special sector. In addition, the theory has other sectors, which we explore; we exhibit analytic exact solutions that are not solutions of Topologically Massive Gravity (and, consequently, neither of General Relativity) and still satisfy Brown-Henneaux asymptotically AdS{sub 3} boundary conditions.

  8. Gauge theories and integrable lattice models

    International Nuclear Information System (INIS)

    Witten, E.

    1989-01-01

    Investigations of new knot polynomials discovered in the last few years have shown them to be intimately connected with soluble models of two dimensional lattice statistical mechanics. In this paper, these results, which in time may illuminate the whole question of why integrable lattice models exist, are reconsidered from the point of view of three dimensional gauge theory. Expectation values of Wilson lines in three dimensional Chern-Simons gauge theories can be computed by evaluating the partition functions of certain lattice models on finite graphs obtained by projecting the Wilson lines to the plane. The models in question - previously considered in both the knot theory and statistical mechanics literature - are IRF models in which the local Boltzmann weights are the matrix elements of braiding matrices in rational conformal field theories. These matrix elements, in turn, can be represented in three dimensional gauge theory in terms of the expectation value of a certain tetrahedral configuration of Wilson lines. This representation makes manifest a surprising symmetry of the braiding matrix elements in conformal field theory. (orig.)

  9. Relativistic particles coupled to Chern-Simons term-revisited

    International Nuclear Information System (INIS)

    Chakraborty, B.

    1995-01-01

    The author considers the model of N relativistic spinless particles coupled to an abelian Chern-Simons term. Rewriting the action in a time reparamaterized form by introducing an arbitary parameter, parameterizing the world line of the particles, the author makes a classical constraint Hamiltonian analysis of the model. Subsequent to gauge fixing by equating the arbitrary parameter with the time the author identifies the Hamiltonian of the system, which agrees with the Hamiltonian obtained by using Banerjee's method of fixing the arbitrary Langrange multiplier by using equations of motion. The author exhibits the Poincare invariance of the model, at the classical level, by constructing spacetime generators using either the canonical or symmetric definition of the energy-momentum tensor. A detailed comparison of the expressions of angular momentum obtained by both methods show that both agree up to a boundary term. In presence of rotationally symmetric vortex configuration this term can be interpreted as an anomalous angular momentum term. The author also heuristically discusses the effect of gauge fixing on the transformation properties. 13 refs

  10. A simple remark on three dimensional gauge theories

    International Nuclear Information System (INIS)

    Lemes, V.E.R.; Linhares de Jesus, C.; Sasaki, C.A.G.; Sorella, S.P.; Vilar, L.C.Q.; Ventura, O.S.

    1997-08-01

    Classical three dimensional Yang-Mills is seen to be related to the topological Chern-Simons term through a nonlinear but fully local and covariant gauge field redefinition. A classical recursive cohomological argument is proved. (author)

  11. Chern-Simons field theory of two-dimensional electrons in the lowest Landau level

    International Nuclear Information System (INIS)

    Zhang, L.

    1996-01-01

    We propose a fermion Chern-Simons field theory describing two-dimensional electrons in the lowest Landau level. This theory is constructed with a complete set of states, and the lowest-Landau-level constraint is enforced through a δ functional described by an auxiliary field λ. Unlike the field theory constructed directly with the states in the lowest Landau level, this theory allows one, utilizing the physical picture of open-quote open-quote composite fermion,close-quote close-quote to study the fractional quantum Hall states by mapping them onto certain integer quantum Hall states; but, unlike its application in the unconstrained theory, such a mapping is sensible only when interactions between electrons are present. An open-quote open-quote effective mass,close-quote close-quote which characterizes the scale of low energy excitations in the fractional quantum Hall systems, emerges naturally from our theory. We study a Gaussian effective theory and interpret physically the dressed stationary point equation for λ as an equation for the open-quote open-quote mass renormalization close-quote close-quote of composite fermions. copyright 1996 The American Physical Society

  12. η-INVARIANT AND CHERN-SIMONS CURRENT

    Institute of Scientific and Technical Information of China (English)

    ZHANG WEIPING

    2005-01-01

    The author presents an alternate proof of the Bismut-Zhang localization formula of ηinvariants, when the target manifold is a sphere, by using ideas of mod k index theory instead of the difficult analytic localization techniques of Bismut-Lebeau. As a consequence, it is shown that the R/Z part of the aualytically defined η invariant of Atiyah-Patodi-Singer for a Dirac operator on an odd dimensional closed spin manifold can be expressed purely geometrically through a stable Chern-Simons current on a higher dimensional sphere. As a preliminary application, the author discusses the relation with the Atiyah-Patodi-Singer R/Z index theorem for unitary flat vector bundles,and proves an R refinement in the case where the Dirac operator is replaced by the Signature operator.

  13. Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity

    International Nuclear Information System (INIS)

    Amarilla, Leonardo; Eiroa, Ernesto F.; Giribet, Gaston

    2010-01-01

    The Chern-Simons modification to general relativity in four dimensions consists of adding to the Einstein-Hilbert term a scalar field that couples to the first-class Pontryagin density. In this theory, which has attracted considerable attention recently, the Schwarzschild metric persists as an exact solution, and this is why this model resists several observational constraints. In contrast, the spinning black hole solution of the theory is not given by the Kerr metric but by a modification of it, so far only known for slow rotation and small coupling constant. In the present paper, we show that, in this approximation, the null geodesic equation can be integrated, and this allows us to investigate the shadow cast by a black hole. We discuss how, in addition to the angular momentum of the solution, the coupling to the Chern-Simons term deforms the shape of the shadow.

  14. Banados-Teitelboim-Zanelli black hole with gravitational Chern-Simons term: Thermodynamics and statistical entropy

    International Nuclear Information System (INIS)

    Park, Mu-In

    2008-01-01

    Recently, the Banados-Teitelboim-Zanelli (BTZ) black hole in the presence of the gravitational Chern-Simons term has been studied, and it is found that the usual thermodynamic quantities, like the black hole mass, angular momentum, and entropy, are modified. But, for large values of the gravitational Chern-Simons coupling where the modification terms dominate the original terms some exotic behaviors occur, like the roles of the mass and angular momentum are interchanged and the entropy depends more on the inner horizon area than the outer one. A basic physical problem of this system is that the form of entropy does not guarantee the second law of thermodynamics, in contrast to the Bekenstein-Hawking entropy. Moreover, this entropy does not agree with the statistical entropy, in contrast to a good agreement for small values of the gravitational Chern-Simons coupling. Here I find that there is another entropy formula where the usual Bekenstein-Hawking form dominates the inner-horizon term again, as in the small gravitational Chern-Simons coupling case, such that the second law of thermodynamics can be guaranteed. I also find that the new entropy formula agrees with the statistical entropy based on the holographic anomalies for the whole range of the gravitational Chern-Simons coupling. This reproduces, in the limit of a vanishing Einstein-Hilbert term, the recent result about the exotic BTZ black holes, where their masses and angular momenta are completely interchanged and the entropies depend only on the area of the inner horizon. I compare the result of the holographic approach with the classical-symmetry-algebra-based approach, and I find exact agreements even with the higher-derivative corrections of the gravitational Chern-Simons term. This provides a nontrivial check of the AdS/CFT correspondence, in the presence of higher-derivative terms in the gravity action

  15. Gauge and integrable theories in loop spaces

    International Nuclear Information System (INIS)

    Ferreira, L.A.; Luchini, G.

    2012-01-01

    We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1+1) dimensions, Chern-Simons theories in (2+1) dimensions, and non-abelian gauge theories in (2+1) and (3+1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3+1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations.

  16. Gauge-invariant factorization and canonical quantization of topologically massive gauge theories in any dimension

    International Nuclear Information System (INIS)

    Bertrand, Bruno; Govaerts, Jan

    2007-01-01

    Abelian topologically massive gauge theories (TMGT) provide a topological mechanism to generate mass for a bosonic p-tensor field in any spacetime dimension. These theories include the (2+1)-dimensional Maxwell-Chern-Simons and (3+1)-dimensional Cremmer-Scherk actions as particular cases. Within the Hamiltonian formulation, the embedded topological field theory (TFT) sector related to the topological mass term is not manifest in the original phase space. However, through an appropriate canonical transformation, a gauge-invariant factorization of phase space into two orthogonal sectors is feasible. The first of these sectors includes canonically conjugate gauge-invariant variables with free massive excitations. The second sector, which decouples from the total Hamiltonian, is equivalent to the phase-space description of the associated non-dynamical pure TFT. Within canonical quantization, a likewise factorization of quantum states thus arises for the full spectrum of TMGT in any dimension. This new factorization scheme also enables a definition of the usual projection from TMGT onto topological quantum field theories in a most natural and transparent way. None of these results rely on any gauge-fixing procedure whatsoever

  17. Gravitational waves from quasicircular black-hole binaries in dynamical Chern-Simons gravity.

    Science.gov (United States)

    Yagi, Kent; Yunes, Nicolás; Tanaka, Takahiro

    2012-12-21

    Dynamical Chern-Simons gravity cannot be strongly constrained with current experiments because it reduces to general relativity in the weak-field limit. This theory, however, introduces modifications in the nonlinear, dynamical regime, and thus it could be greatly constrained with gravitational waves from the late inspiral of black-hole binaries. We complete the first self-consistent calculation of such gravitational waves in this theory. For favorable spin orientations, advanced ground-based detectors may improve existing solar system constraints by 6 orders of magnitude.

  18. Dirac matrices for Chern-Simons gravity

    Energy Technology Data Exchange (ETDEWEB)

    Izaurieta, Fernando; Ramirez, Ricardo; Rodriguez, Eduardo [Departamento de Matematica y Fisica Aplicadas, Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, 4090541 Concepcion (Chile)

    2012-10-06

    A genuine gauge theory for the Poincare, de Sitter or anti-de Sitter algebras can be constructed in (2n- 1)-dimensional spacetime by means of the Chern-Simons form, yielding a gravitational theory that differs from General Relativity but shares many of its properties, such as second order field equations for the metric. The particular form of the Lagrangian is determined by a rank n, symmetric tensor invariant under the relevant algebra. In practice, the calculation of this invariant tensor can be reduced to the computation of the trace of the symmetrized product of n Dirac Gamma matrices {Gamma}{sub ab} in 2n-dimensional spacetime. While straightforward in principle, this calculation can become extremely cumbersome in practice. For large enough n, existing computer algebra packages take an inordinate long time to produce the answer or plainly fail having used up all available memory. In this talk we show that the general formula for the trace of the symmetrized product of 2n Gamma matrices {Gamma}{sub ab} can be written as a certain sum over the integer partitions s of n, with every term being multiplied by a numerical cofficient {alpha}{sub s}. We then give a general algorithm that computes the {alpha}-coefficients as the solution of a linear system of equations generated by evaluating the general formula for different sets of tensors B{sup ab} with random numerical entries. A recurrence relation between different coefficients is shown to hold and is used in a second, 'minimal' algorithm to greatly speed up the computations. Runtime of the minimal algorithm stays below 1 min on a typical desktop computer for up to n = 25, which easily covers all foreseeable applications of the trace formula.

  19. Large data well-posedness in the energy space of the Chern-Simons-Schrödinger system

    Science.gov (United States)

    Lim, Zhuo Min

    2018-02-01

    We consider the initial-value problem for the Chern-Simons-Schrödinger system, which is a gauge-covariant Schrödinger system in Rt × Rx2 with a long-range electromagnetic field. We show that, in the Coulomb gauge, it is locally well-posed in Hs for s ⩾ 1, and the solution map satisfies a local-in-time weak Lipschitz bound. By energy conservation, we also obtain a global regularity result. The key is to retain the non-perturbative part of the derivative nonlinearity in the principal operator, and exploit the dispersive properties of the resulting paradifferential-type principal operator using adapted Up and Vp spaces.

  20. First law of black ring thermodynamics in higher dimensional Chern-Simons gravity

    International Nuclear Information System (INIS)

    Rogatko, Marek

    2007-01-01

    The physical process version and the equilibrium state version of the first law of black ring thermodynamics in n-dimensional Einstein gravity with Chern-Simons term were derived. This theory constitutes the simplest generalization of the five-dimensional one admitting a stationary black ring solution. The equilibrium state version of the first law of black ring mechanics was achieved by choosing any cross section of the event horizon to the future of the bifurcation surface

  1. Chern-Simons action for inhomogeneous Virasoro group as extension of three dimensional flat gravity

    Energy Technology Data Exchange (ETDEWEB)

    Barnich, Glenn [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Giribet, Gastón [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina); Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Leston, Mauricio [Instituto de Astronomía y Física del Espacio IAFE-CONICET, Ciudad Universitaria, Pabellón IAFE, C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina)

    2015-07-15

    We initiate the study of a Chern-Simons action associated to the semi-direct sum of the Virasoro algebra with its coadjoint representation. This model extends the standard Chern-Simons formulation of three dimensional flat gravity and is similar to the higher-spin extension of three dimensional anti-de Sitter or flat gravity. The extension can also be constructed for the exotic but not for the cosmological constant deformation of flat gravity.

  2. Dynamical generation of non-abelian gauge group via the improved perturbation theory

    International Nuclear Information System (INIS)

    Kuroki, Tsunehide

    2008-01-01

    It was suggested that the massive Yang-Mills-Chern-Simons matrix model has three phases and that in one of them a non-Abelian gauge symmetry is dynamically generated. The analysis was at the one-loop level around a classical solution of fuzzy sphere type. We obtain evidences that three phases are indeed realized as nonperturbative vacua by using the improved perturbation theory. It gives a good example that even if we start from a trivial vacuum, the improved perturbation theory around it enables us to observe nontrivial vacua. (author)

  3. Hermitian (ϵ,δ)-Freudenthal-Kantor Triple Systems and Certain Applications of *-Generalized Jordan Triple Systems to Field Theory

    International Nuclear Information System (INIS)

    Kamiya, Noriaki; Sato, Matsuo

    2014-01-01

    We define Hermitian (ϵ,δ)-Freudenthal-Kantor triple systems and prove a structure theorem. We also give some examples of triple systems that are generalizations of the u(N)⊕u(M) and sp(2N)⊕u(1) Hermitian 3-algebras. We apply a *-generalized Jordan triple system to a field theory and obtain a Chern-Simons gauge theory. We find that the novel Higgs mechanism works, where the Chern-Simons gauge theory reduces to a Yang-Mills theory in a certain limit

  4. Vortex dynamics in self-dual Chern-Simons-Higgs systems

    International Nuclear Information System (INIS)

    Kim, Y.; Lee, K.

    1994-01-01

    We consider vortex dynamics in self-dual Chern-Simons-Higgs systems. We show that the naive Aharonov-Bohm phase is the inverse of the statistical phase expected from the vortex spin, and that the self-dual configurations of vortices are degenerate in energy but not in angular momentum. We also use the path integral formalism to derive the dual formulation of Chern-Simons-Higgs systems in which vortices appear as charged particles. We argue that in addition to the electromagnetic interaction, there is an additional interaction between vortices, the so-called Magnus force, and that these forces can be put together into a single ''dual electromagnetic'' interaction. This dual electromagnetic interaction leads to the right statistical phase. We also derive and study the effective action for slowly moving vortices, which contains terms both linear and quadratic in the vortex velocity. We show that vortices can be bounded to each other by the Magnus force

  5. Bootstrapping non-commutative gauge theories from L∞ algebras

    Science.gov (United States)

    Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter

    2018-05-01

    Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.

  6. Holography in three-dimensional Kerr-de Sitter space with a gravitational Chern-Simons term

    International Nuclear Information System (INIS)

    Park, Mu-In

    2008-01-01

    The holographic description of the three-dimensional Kerr-de Sitter space with a gravitational Chern-Simons term is studied, in the context of dS/CFT correspondence. The space has only one (cosmological) event horizon and its mass and angular momentum are identified from the holographic energy-momentum tensor at the asymptotic infinity. The thermodynamic entropy of the cosmological horizon is computed directly from the first law of thermodynamics, with the conventional Hawking temperature, and it is found that the usual Gibbons-Hawking entropy is modified. It is remarked that, due to the gravitational Chern-Simons term, (a) the results go beyond the analytic continuation from AdS, (b) the maximum-mass/N-bound conjecture may be violated and (c) the three-dimensional cosmology is chiral. A statistical mechanical computation of the entropy, from a Cardy-like formula for a dual CFT at the asymptotic boundary, is discussed. Some remarks on the technical differences in the Chern-Simons energy-momentum tensor, from the literature, are also made

  7. Surface theorem for the Chern-Simons axion coupling

    DEFF Research Database (Denmark)

    Olsen, Thomas; Taherinejad, Maryam; Vanderbilt, David

    2017-01-01

    The Chern-Simons axion coupling of a bulk insulator is only defined modulo a quantum of e2/h. The quantized part of the coupling is uniquely defined for a bounded insulating sample, but it depends on the specific surface termination.Working in a slab geometry and representing the valence bands...... in terms of hybridWannier functions, we show how to determine that quantized part from the excess Chern number of the hybridWannier sheets located near the surface of the slab. The procedure is illustrated for a tight-binding model consisting of coupled quantum anomalous Hall layers. By slowly modulating...... the model parameters it is possible to transfer one unit of Chern number from the bottom to the top surface over the course of a cyclic evolution of the bulk Hamiltonian, changing the surface anomalous Hall conductivity by a quantum of conductance e2/h. When the evolution of the surface Hamiltonian is also...

  8. Taming the conformal zoo

    International Nuclear Information System (INIS)

    Moore, G.; Seiberg, N.

    1989-01-01

    All known rational conformal field theories may be obtained from (2+1)-dimensional Chern-Simons gauge theories by appropriate choice of gauge group. We conjecture that all rational field theories are classified by groups via (2+1)-dimensional Chern-Simons gauge theories. (orig.)

  9. Low-dimensional gravities as gauge theories with non-compact groups

    International Nuclear Information System (INIS)

    Cangeni, D.

    1993-01-01

    In another note presented in these Proceedings it is shown that the two main lineal gravities can be given a gauge formulation. If it is already known that one of them the Sitter model - is a dimensional reduction of a Chern-Simons model in (2+1) dimensions, it was not clear whether the other one - the extended Poincare model follows from a similar reduction. The purpose of this note is to show that this is indeed the case provide we start in 2+1 dimensions with an extension ISO(2,1) of the Poincare groups as gauge group of a Chern-Simons model. We first show that this model gives a new proposal for gravity in 2*1 dimensions, since we get classically the Einstein's equations. Performing then a dimensional reduction, we recover not only the extended Poincare model but also the de Sitter one; hence, both lineal gravities get unified in the reduced model. (Author) 6 refs

  10. Chern-Simons forms and four-dimensional N=1 superspace geometry

    International Nuclear Information System (INIS)

    Girardi, G.; Grimm, R.

    1986-12-01

    The complete superspace geometry for Yang-Mills, chiral U(1) and Lorentz Chern-Simons forms is constructed. The analysis is completely off-shell and covers the cases of minimal, new minimal and 16-16 supergravity. Supersymmetry is guaranteed by construction. Invariant superfield actions are proposed

  11. Hydrodynamic electron flow in a Weyl semimetal slab: Role of Chern-Simons terms

    Science.gov (United States)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2018-05-01

    The hydrodynamic flow of the chiral electron fluid in a Weyl semimetal slab of finite thickness is studied by using the consistent hydrodynamic theory. The latter includes viscous, anomalous, and vortical effects, as well as accounts for dynamical electromagnetism. The energy and momentum separations between the Weyl nodes are taken into account via the topological Chern-Simons contributions in the electric current and charge densities in Maxwell's equations. When an external electric field is applied parallel to the slab, it is found that the electron fluid velocity has a nonuniform profile determined by the viscosity and the no-slip boundary conditions. Most remarkably, the fluid velocity field develops a nonzero component across the slab that gradually dissipates when approaching the surfaces. This abnormal component of the flow arises due to the anomalous Hall voltage induced by the topological Chern-Simons current. Another signature feature of the hydrodynamics in Weyl semimetals is a strong modification of the anomalous Hall current along the slab in the direction perpendicular to the applied electric field. Additionally, it is found that the topological current induces an electric potential difference between the surfaces of the slab that is strongly affected by the hydrodynamic flow.

  12. Geometric symmetries and topological terms in F-theory and field theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapfer, Andreas

    2016-08-25

    In this thesis we investigate topological aspects and arithmetic structures in quantum field theory and string theory. Particular focus is put on consistent truncations of supergravity and compactifications of F-theory. The first part treats settings of supersymmetry breaking in five dimensions. We focus on an N=4 to N=2 breaking in gauged supergravity. For certain classes of embedding tensors we can analyze the theory around the vacuum to a great extent. Importantly, one-loop corrections to Chern-Simons terms are generically induced which are independent of the supersymmetry-breaking scale. We investigate concrete examples of consistent truncations of supergravity and M-theory which show this N=4 to N=2 breaking pattern in five dimensions. In particular, we analyze necessary conditions for these consistent truncations to be used as effective theories for phenomenology by demanding consistency of the scale-independent corrections to Chern-Simons couplings. The second part is devoted to the study of anomalies and large gauge transformations in circle-reduced gauge theories and F-theory. We consider four- and six-dimensional matter-coupled gauge theories on the circle and classify all large gauge transformations that preserve the boundary conditions of the matter fields. Enforcing that they act consistently on one-loop Chern-Simons couplings in three and five dimensions explicitly yields all higher-dimensional gauge anomaly cancelation conditions. In the context of F-theory compactifications we identify the classified large gauge transformations along the circle with arithmetic structures on elliptically fibered Calabi-Yau manifolds via the dual M-theory setting. Integer Abelian large gauge transformations correspond to free basis shifts in the Mordell-Weil lattice of rational sections while special fractional non-Abelian large gauge transformations are matched to torsional shifts in the Mordell-Weil group. For integer non-Abelian large gauge transformations we

  13. Vortex-like and string-like solutions for the 2+1 dimensional SU(2) Yang-Mills theory with the Chern-Simons term

    International Nuclear Information System (INIS)

    Teh, R.

    1989-07-01

    Vortex-like and string-like solutions of 2+1 Dim. SU(2) YM theory with the Chern-Simons term are discussed. Two ansatze are constructed which yield respectively analytic Bessel function solutions and elliptic function solutions. The Bessel function solutions are vortex-like and tend to the same vacuum state as the Ginzburg-Landau vortex solution at large ρ. The Jacobi elliptic function solutions are string-like, have finite energy and magnetic flux concentrated along a line in the x 1 - x 2 plane. (author). 18 refs

  14. Dynamics of magnetic fields in Maxwell, Yang-Mills and Chern-Simons theories on the torus

    International Nuclear Information System (INIS)

    Burgess, M.; McLachlan, A.; Toms, D.J.

    1992-01-01

    The problem of uniform magnetic fields passing perpendicularly through a 2-torus, Abelian and Non-Abelian, is considered. Focus is on dynamical effects of non-integrable phases on the torus at non zero B and from magnetic fields themselves in the vacuum. The spectrum is computed and is shown to be always independent of the non-integrable phases on the torus. It is concluded that a Chern-Simons term will always be induced by radiative corrections to fermions on the torus when B ≠ 0. The special case of an electromagnetically uncharged anyon gas in noted and shown to be a system whose spectrum can depend on the non-integrable phases in the two torus directions, subject to a consistency requirement. In three and four dimensions, dynamical symmetry breaking of non-Abelian fields and associated condensate formation is possible by radiative corrections. The classification on non-Abelian magnetic fields in terms of ''flux integers'' is discussed, and a method for obtaining such integers for an arbitrary gauge algebra is presented. This provides a rigorous generalisation of Hooft's su (2) classification. 72 refs., 5 figs

  15. Initial value formulation of dynamical Chern-Simons gravity

    Science.gov (United States)

    Delsate, Térence; Hilditch, David; Witek, Helvi

    2015-01-01

    We derive an initial value formulation for dynamical Chern-Simons gravity, a modification of general relativity involving parity-violating higher derivative terms. We investigate the structure of the resulting system of partial differential equations thinking about linearization around arbitrary backgrounds. This type of consideration is necessary if we are to establish well-posedness of the Cauchy problem. Treating the field equations as an effective field theory we find that weak necessary conditions for hyperbolicity are satisfied. For the full field equations we find that there are states from which subsequent evolution is not determined. Generically the evolution system closes, but is not hyperbolic in any sense that requires a first order pseudodifferential reduction. In a cursory mode analysis we find that the equations of motion contain terms that may cause ill-posedness of the initial value problem.

  16. Dense Chern-Simons matter with fermions at large N

    Energy Technology Data Exchange (ETDEWEB)

    Geracie, Michael; Goykhman, Mikhail; Son, Dam T. [Kadanoff Center for Theoretical Physics, Enrico Fermi Institute and Department of Physics,The University of Chicago, 5620 S. Ellis Av., Chicago, IL, 60637 (United States)

    2016-04-18

    In this paper we investigate properties of Chern-Simons theory coupled to massive fermions in the large N limit. We demonstrate that at low temperatures the system is in a Fermi liquid state whose features can be systematically compared to the standard phenomenological theory of Landau Fermi liquids. This includes matching microscopically derived Landau parameters with thermodynamic predictions of Landau Fermi liquid theory. We also calculate the exact conductivity and viscosity tensors at zero temperature and finite chemical potential. In particular we point out that the Hall conductivity of an interacting system is not entirely accounted for by the Berry flux through the Fermi sphere. Furthermore, investigation of the thermodynamics in the non-relativistic limit reveals novel phenomena at strong coupling. As the ’t Hooft coupling λ approaches 1, the system exhibits an extended intermediate temperature regime in which the thermodynamics is described by neither the quantum Fermi liquid theory nor the classical ideal gas law. Instead, it can be interpreted as a weakly coupled quantum Bose gas.

  17. Dense Chern-Simons matter with fermions at large N

    International Nuclear Information System (INIS)

    Geracie, Michael; Goykhman, Mikhail; Son, Dam T.

    2016-01-01

    In this paper we investigate properties of Chern-Simons theory coupled to massive fermions in the large N limit. We demonstrate that at low temperatures the system is in a Fermi liquid state whose features can be systematically compared to the standard phenomenological theory of Landau Fermi liquids. This includes matching microscopically derived Landau parameters with thermodynamic predictions of Landau Fermi liquid theory. We also calculate the exact conductivity and viscosity tensors at zero temperature and finite chemical potential. In particular we point out that the Hall conductivity of an interacting system is not entirely accounted for by the Berry flux through the Fermi sphere. Furthermore, investigation of the thermodynamics in the non-relativistic limit reveals novel phenomena at strong coupling. As the ’t Hooft coupling λ approaches 1, the system exhibits an extended intermediate temperature regime in which the thermodynamics is described by neither the quantum Fermi liquid theory nor the classical ideal gas law. Instead, it can be interpreted as a weakly coupled quantum Bose gas.

  18. Dense Chern-Simons matter with fermions at large N

    Science.gov (United States)

    Geracie, Michael; Goykhman, Mikhail; Son, Dam T.

    2016-04-01

    In this paper we investigate properties of Chern-Simons theory coupled to massive fermions in the large N limit. We demonstrate that at low temperatures the system is in a Fermi liquid state whose features can be systematically compared to the standard phenomenological theory of Landau Fermi liquids. This includes matching microscopically derived Landau parameters with thermodynamic predictions of Landau Fermi liquid theory. We also calculate the exact conductivity and viscosity tensors at zero temperature and finite chemical potential. In particular we point out that the Hall conductivity of an interacting system is not entirely accounted for by the Berry flux through the Fermi sphere. Furthermore, investigation of the thermodynamics in the non-relativistic limit reveals novel phenomena at strong coupling. As the 't Hooft coupling λ approaches 1, the system exhibits an extended intermediate temperature regime in which the thermodynamics is described by neither the quantum Fermi liquid theory nor the classical ideal gas law. Instead, it can be interpreted as a weakly coupled quantum Bose gas.

  19. Bound states in the (2+1)D scalar electrodynamics with Chern-Simons term

    International Nuclear Information System (INIS)

    Gomes, M.O.C.; Malacarne, L.C.

    1994-01-01

    This work studies the existence of bound states for the 3-dimensions scalar electrodynamics, with the Chern-Simons. Quantum field theory is used for calculation of the M fi scattering matrices, in the non-relativistic approximation. The field propagators responsible for the interaction in the scattering processes have been calculated, and scattering matrices have been constructed. After obtaining the scattering matrix, the cross section in the quantum field theory has been compared with the quantum mechanic cross section in the Born approximation, allowing to obtain the form of the potential responsible for the interactions in the scattering processes. The possibility of bound states are analyzed by using the Schroedinger equation

  20. Does the Higgs mechanism favour electron-electron bound states in Maxwell-Chern-Simons QED3?

    International Nuclear Information System (INIS)

    Belich, Humberto; Helayeel-Neto, Jose Abdalla; Ferreira Junior, Manoel Messias

    2000-01-01

    Full text follows: We show that low-energy electron-electron bound states appear in the Maxwell-Chern-Simons (MCS) planar QED. In spite of the repulsive interaction mediated by the MCS gauge field, a net attractive interaction stems due to the Higgs mechanism through an Yukawa-type interaction. The spontaneous breaking of a local U(1)-symmetry is realized by a γ 6 -type potential. We conclude, by using the Schroedinger equation associated to the net attractive scattering potential, that electron-electron bound states arise in the model. Therefore, the Higgs mechanism overcomes the difficulties found out by Girotti et al. (Phys. Rev. Lett. 69 (1992) 2623) in searching for bound states in the MCS planar QED. (author)

  1. BPS-kink and more global solutions of the Chern-Simons (super)gravity term

    International Nuclear Information System (INIS)

    Grumiller, D.

    2004-01-01

    We study the supersymmetry of the Kaluza-Klein reduced gravitational Chern-Simons term in two dimensions and propose supergravity transformations that allow for some supersymmetry of the kink solution. (author)

  2. Electric Chern-Simons term, enlarged exotic Galilei symmetry and noncommutative plane

    International Nuclear Information System (INIS)

    Olmo, Mariano A. del; Plyushchay, Mikhail S.

    2006-01-01

    The extended exotic planar model for a charged particle is constructed. It includes a Chern-Simons-like term for a dynamical electric field, but produces usual equations of motion for the particle in background constant uniform electric and magnetic fields. The electric Chern-Simons term is responsible for the noncommutativity of the boost generators in the 10-dimensional enlarged exotic Galilei symmetry algebra of the extended system. The model admits two reduction schemes by the integrals of motion, one of which reproduces the usual formulation for the charged particle in external constant electric and magnetic fields with associated field-deformed Galilei symmetry, whose commuting boost generators are identified with the nonlocal in time Noether charges reduced on-shell. Another reduction scheme, in which electric field transmutes into the commuting space translation generators, extracts from the model a free particle on the noncommutative plane described by the twofold centrally extended Galilei group of the nonrelativistic anyons

  3. High energy instanton induced processes in electroweak theory

    International Nuclear Information System (INIS)

    McLerran, L.

    1992-01-01

    It is well known that in electroweak theory, baryon plus lepton number is conserved by the classical equations of motion. This is of course consistent with the lack of experimental observation of such processes. It is a little less well known that when quantum corrections are included in electroweak theory, baryon plus lepton number is not conserved. This was first discovered as a consequence of the Adler-Bardeen-Bell-Jackiw triangle anomaly. It is perhaps most easily understood as a consequence of vacuum degeneracy, fermion energy level crossing and filling of the negative energy Dirac sea upon second quantization. To understand how baryon plus lepton number is not conserved upon second quantization, consider the situation shown in the energy of the system is shown as a function of a parameter which characterizes the gauge fields, the Chern-Simons charge. The Chern-Simons charge is a function only of the gauge fields, and the B + L change is equal to the change in Chern-Simons charge, ΔQ B+L = ΔQ CS

  4. Zero-modes of non-Abelian solitons in three-dimensional gauge theories

    International Nuclear Information System (INIS)

    Eto, Minoru; Gudnason, Sven Bjarke

    2011-01-01

    We study non-Abelian solitons of the Bogomol'nyi type in N=2 (d = 2 + 1) supersymmetric Chern-Simons (CS) and Yang-Mills (YM) theory with a generic gauge group. In CS theory, we find topological, non-topological and semi-local (non-)topological vortices of non-Abelian kinds in unbroken, broken and partially broken vacua. We calculate the number of zero-modes using an index theorem and then we apply the moduli matrix formalism to realize the moduli parameters. For the topological solitons we exhaust all the moduli while we study several examples of the non-topological and semi-local solitons. We find that the zero-modes of the topological solitons are governed by the moduli matrix H 0 only and those of the non-topological solitons are governed by both H 0 and the gauge invariant field Ω. We prove local uniqueness of the master equation in the YM case and finally compare all results between the CS and YM theories.

  5. Asymptotic conformal invariance in a non-Abelian Chern-Simons-matter model

    Energy Technology Data Exchange (ETDEWEB)

    Acebal, J.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Campos e Particulas]. E-mail: acebal@cbpf.br

    2002-08-01

    One shows here the existence of solutions to the Callan-Symanzik equation for the non-Abelian SU(2) Chern-Simons-matter model which exhibits asymptotic conformal invariance to every order in perturbative theory. The conformal symmetry in the classical domain is shown to hold by means of a local criteria based on the trace of the energy-momentum tensor. By using recently exhibited regimes for the dependence between the several couplings in which the set of {beta}-functions vanish, the asymptotic conformal invariance of the model appears to be valid in the quantum domain. By considering the SU (n) case the possible non validity of the proof for a particular {eta} would be merely accidental. (author)

  6. Higher derivative extensions of 3d Chern-Simons models: conservation laws and stability

    International Nuclear Information System (INIS)

    Kaparulin, D.S.; Karataeva, I.Yu.; Lyakhovich, S.L.

    2015-01-01

    We consider the class of higher derivative 3d vector field models with the field equation operator being a polynomial of the Chern-Simons operator. For the nth-order theory of this type, we provide a general recipe for constructing n-parameter family of conserved second rank tensors. The family includes the canonical energy-momentum tensor, which is unbounded, while there are bounded conserved tensors that provide classical stability of the system for certain combinations of the parameters in the Lagrangian. We also demonstrate the examples of consistent interactions which are compatible with the requirement of stability. (orig.)

  7. Chern–Simons theory in SIM(1) superspace

    International Nuclear Information System (INIS)

    Vohánka, Jiří; Faizal, Mir

    2015-01-01

    In this paper, we will analyze a three-dimensional supersymmetric Chern–Simons theory in SIM(1) superspace formalism. The breaking of the Lorentz symmetry down to the SIM(1) symmetry breaks half the supersymmetry of the Lorentz invariant theory. So, the supersymmetry of the Lorentz invariant Chern–Simons theory with N=1 supersymmetry will break down to N=1/2 supersymmetry, when the Lorentz symmetry is broken down to the SIM(1) symmetry. First, we will write the Chern–Simons action using SIM(1) projections of N=1 superfields. However, as the SIM(1) transformations of these projections are very complicated, we will define SIM(1) superfields which transform simply under SIM(1) transformations. We will then express the Chern–Simons action using these SIM(1) superfields. Furthermore, we will analyze the gauge symmetry of this Chern–Simons theory. This is the first time that a Chern–Simons theory with N=1/2 supersymmetry will be constructed on a manifold without a boundary

  8. Holographic entanglement for Chern-Simons terms

    International Nuclear Information System (INIS)

    Azeyanagi, Tatsuo; Loganayagam, R.; Ng, Gim Seng

    2017-01-01

    We derive the holographic entanglement entropy contribution from pure and mixed gravitational Chern-Simons(CS) terms in AdS 2k+1 . This is done through two different methods: first, by a direct evaluation of CS action in a holographic replica geometry and second by a descent of Dong’s derivation applied to the corresponding anomaly polynomial. In lower dimensions (k=1,2), the formula coincides with the Tachikawa formula for black hole entropy from gravitational CS terms. New extrinsic curvature corrections appear for k≥3: we give explicit and concise expressions for the two pure gravitational CS terms in AdS 7 and present various consistency checks, including agreements with the black hole entropy formula when evaluated at the bifurcation surface.

  9. Holographic entanglement for Chern-Simons terms

    Energy Technology Data Exchange (ETDEWEB)

    Azeyanagi, Tatsuo [Département de Physique, Ecole Normale Supérieure, CNRS,24 rue Lhomond, 75005 Paris (France); Loganayagam, R. [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Ng, Gim Seng [Department of Physics, McGill University,Montréal, QC H3A 2T8 (Canada)

    2017-02-01

    We derive the holographic entanglement entropy contribution from pure and mixed gravitational Chern-Simons(CS) terms in AdS{sub 2k+1}. This is done through two different methods: first, by a direct evaluation of CS action in a holographic replica geometry and second by a descent of Dong’s derivation applied to the corresponding anomaly polynomial. In lower dimensions (k=1,2), the formula coincides with the Tachikawa formula for black hole entropy from gravitational CS terms. New extrinsic curvature corrections appear for k≥3: we give explicit and concise expressions for the two pure gravitational CS terms in AdS{sub 7} and present various consistency checks, including agreements with the black hole entropy formula when evaluated at the bifurcation surface.

  10. Holographic entanglement for Chern-Simons terms

    Science.gov (United States)

    Azeyanagi, Tatsuo; Loganayagam, R.; Ng, Gim Seng

    2017-02-01

    We derive the holographic entanglement entropy contribution from pure and mixed gravitational Chern-Simons(CS) terms in AdS2 k+1. This is done through two different methods: first, by a direct evaluation of CS action in a holographic replica geometry and second by a descent of Dong's derivation applied to the corresponding anomaly polynomial. In lower dimensions ( k = 1 , 2), the formula coincides with the Tachikawa formula for black hole entropy from gravitational CS terms. New extrinsic curvature corrections appear for k ≥ 3: we give explicit and concise expressions for the two pure gravitational CS terms in AdS7 and present various consistency checks, including agreements with the black hole entropy formula when evaluated at the bifurcation surface.

  11. Field redefinitions and Chern-Simons terms in the heterotic string

    International Nuclear Information System (INIS)

    Bern, Z.; Shimada, T.

    1987-07-01

    Field redefinitions in the low energy effective action of the heterotic string are discussed. A field redefinition is constructed which generates the local counterterm that transforms the Lorentz into the gravitational form of the anomaly. We also discuss the field redefinition which torsionizes the Lorentz Chern-Simons term and its relation to an amplitude matching study of the compatibility of torsion with the Gauss-Bonnet combination. (orig.)

  12. Multi-cut solutions in Chern-Simons matrix models

    Science.gov (United States)

    Morita, Takeshi; Sugiyama, Kento

    2018-04-01

    We elaborate the Chern-Simons (CS) matrix models at large N. The saddle point equations of these matrix models have a curious structure which cannot be seen in the ordinary one matrix models. Thanks to this structure, an infinite number of multi-cut solutions exist in the CS matrix models. Particularly we exactly derive the two-cut solutions at finite 't Hooft coupling in the pure CS matrix model. In the ABJM matrix model, we argue that some of multi-cut solutions might be interpreted as a condensation of the D2-brane instantons.

  13. Self-duality in Maxwell-Chern-Simons theories with non minimal coupling with matter field

    CERN Document Server

    Chandelier, F; Masson, T; Wallet, J C

    2000-01-01

    We consider a general class of non-local MCS models whose usual minimal coupling to a conserved current is supplemented with a (non-minimal) magnetic Pauli-type coupling. We find that the considered models exhibit a self-duality whenever the magnetic coupling constant reaches a special value: the partition function is invariant under a set of transformations among the parameter space (the duality transformations) while the original action and its dual counterpart have the same form. The duality transformations have a structure similar to the one underlying self-duality of the (2+1)-dimensional Z sub n - Abelian Higgs model with Chern-Simons and bare mass term.

  14. Equivalent D = 3 supergravity amplitudes from double copies of three-algebra and two-algebra gauge theories.

    Science.gov (United States)

    Huang, Yu-tin; Johansson, Henrik

    2013-04-26

    We show that three-dimensional supergravity amplitudes can be obtained as double copies of either three-algebra super-Chern-Simons matter theory or two-algebra super-Yang-Mills theory when either theory is organized to display the color-kinematics duality. We prove that only helicity-conserving four-dimensional gravity amplitudes have nonvanishing descendants when reduced to three dimensions, implying the vanishing of odd-multiplicity S-matrix elements, in agreement with Chern-Simons matter theory. We explicitly verify the double-copy correspondence at four and six points for N = 12,10,8 supergravity theories and discuss its validity for all multiplicity.

  15. Exact solution of Chern-Simons-matter matrix models with characteristic/orthogonal polynomials

    International Nuclear Information System (INIS)

    Tierz, Miguel

    2016-01-01

    We solve for finite N the matrix model of supersymmetric U(N) Chern-Simons theory coupled to N f fundamental and N f anti-fundamental chiral multiplets of R-charge 1/2 and of mass m, by identifying it with an average of inverse characteristic polynomials in a Stieltjes-Wigert ensemble. This requires the computation of the Cauchy transform of the Stieltjes-Wigert polynomials, which we carry out, finding a relationship with Mordell integrals, and hence with previous analytical results on the matrix model. The semiclassical limit of the model is expressed, for arbitrary N f , in terms of a single Hermite polynomial. This result also holds for more general matter content, involving matrix models with double-sine functions.

  16. Non abelian Chern-Simons topological coupling from self-interaction

    International Nuclear Information System (INIS)

    Aragone, C.; Stephany, R.J.E.

    1986-01-01

    It is shown that the self-interaction mechanism drives in one step the topologically coupled-Maxwell-second rank antisymmetric tensor system into the Chern-Simons coupled -non abelian- (second rank) antisymmetric tensor action. Only one step is required to saturate the process because the action for the initial Maxwell-antisymmetric tensor system is given in its first-order form. The self-interaction mechanism works both for the original Chapline-Manton form of the action and for the dual form. (Author) [pt

  17. Field-theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology, and beyond.

    Science.gov (United States)

    Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang

    2015-01-23

    The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.

  18. Topics in string theory

    Science.gov (United States)

    Jejjala, Vishnumohan

    2002-01-01

    makes falsifiable predictions about TeV scale physics. Susskind has proposed that the fractional quantum Hall system can be realized through an Abelian Chern-Simons theory with a Moyal product. Susskind's Chern-Simons field is a hydrodynamical quantity. Lopez and Fradkin have an alternate Chern-Simons description couched in terms of a statistical gauge field. We show that this statistical Chern-Simons theory also possesses a non-commutative structure and develop the dictionary between the two Chern-Simons pictures.

  19. Flat connections in three-manifolds and classical Chern–Simons invariant

    Directory of Open Access Journals (Sweden)

    Enore Guadagnini

    2017-12-01

    Full Text Available A general method for the construction of smooth flat connections on 3-manifolds is introduced. The procedure is strictly connected with the deduction of the fundamental group of a manifold M by means of a Heegaard splitting presentation of M. For any given matrix representation of the fundamental group of M, a corresponding flat connection A on M is specified. It is shown that the associated classical Chern–Simons invariant assumes then a canonical form which is given by the sum of two contributions: the first term is determined by the intersections of the curves in the Heegaard diagram, and the second term is the volume of a region in the representation group which is determined by the representation of π1(M and by the Heegaard gluing homeomorphism. Examples of flat connections in topologically nontrivial manifolds are presented and the computations of the associated classical Chern–Simons invariants are illustrated.

  20. A novel supersymmetry in 2-dimensional Yang-Mills theory on Riemann surfaces

    International Nuclear Information System (INIS)

    Soda, Jiro

    1991-02-01

    We find a novel supersymmetry in 2-dimensional Maxwell and Yang-Mills theories. Using this supersymmetry, it is shown that the 2-dimensional Euclidean pure gauge theory on a closed Riemann surface Σ can be reduced to a topological field theory which is the 3-dimensional Chern-Simons gauge theory in the special space-time topology Σ x R. Related problems are also discussed. (author)

  1. Gauge symmetries, topology, and quantisation

    International Nuclear Information System (INIS)

    Balachandran, A.P.

    1994-01-01

    The following two loosely connected sets of topics are reviewed in these lecture notes: (1) Gauge invariance, its treatment in field theories and its implications for internal symmetries and edge states such as those in the quantum Hall effect. (2) Quantisation on multiply connected spaces and a topological proof the spin-statistics theorem which avoids quantum field theory and relativity. Under (1), after explaining the meaning of gauge invariance and the theory of constraints, we discuss boundary conditions on gauge transformations and the definition of internal symmetries in gauge field theories. We then show how the edge states in the quantum Hall effect can be derived from the Chern-Simons action using the preceding ideas. Under (2), after explaining the significance of fibre bundles for quantum physics, we review quantisation on multiply connected spaces in detail, explaining also mathematical ideas such as those of the universal covering space and the fundamental group. These ideas are then used to prove the aforementioned topological spin-statistics theorem

  2. The geometry and physics of Abelian gauge groups in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Keitel, Jan

    2015-07-14

    In this thesis we study the geometry and the low-energy effective physics associated with Abelian gauge groups in F-theory compactifications. To construct suitable torus-fibered Calabi-Yau manifolds, we employ the framework of toric geometry. By identifying appropriate building blocks of Calabi-Yau manifolds that can be studied independently, we devise a method to engineer large numbers of manifolds that give rise to a specified gauge group and achieve a partial classification of toric gauge groups. Extending our analysis from gauge groups to matter spectra, we prove that the matter content of the most commonly studied F-theory set-ups is rather constrained. To circumvent such limitations, we introduce an algorithm to analyze torus-fibrations defined as complete intersections and present several novel kinds of F-theory compactifications. Finally, we show how torus-fibrations without section are linked to fibrations with multiple sections through a network of successive geometric transitions. In order to investigate the low-energy effective physics resulting from our compactifications, we apply M- to F-theory duality. After determining the effective action of F-theory with Abelian gauge groups in six dimensions, we compare the loop-corrected Chern-Simons terms to topological quantities of the compactification manifold to read off the massless matter content. Under certain assumptions, we show that all gravitational and mixed anomalies are automatically canceled in F-theory. Furthermore, we compute the low-energy effective action of F-theory compactifications without section and suggest that the absence of a section signals the presence of an additional massive Abelian gauge field. Adjusting our analysis to four dimensions, we show that remnants of this massive gauge field survive as discrete symmetries that impose selection rules on the Yukawa couplings of the effective theory.

  3. The geometry and physics of Abelian gauge groups in F-theory

    International Nuclear Information System (INIS)

    Keitel, Jan

    2015-01-01

    In this thesis we study the geometry and the low-energy effective physics associated with Abelian gauge groups in F-theory compactifications. To construct suitable torus-fibered Calabi-Yau manifolds, we employ the framework of toric geometry. By identifying appropriate building blocks of Calabi-Yau manifolds that can be studied independently, we devise a method to engineer large numbers of manifolds that give rise to a specified gauge group and achieve a partial classification of toric gauge groups. Extending our analysis from gauge groups to matter spectra, we prove that the matter content of the most commonly studied F-theory set-ups is rather constrained. To circumvent such limitations, we introduce an algorithm to analyze torus-fibrations defined as complete intersections and present several novel kinds of F-theory compactifications. Finally, we show how torus-fibrations without section are linked to fibrations with multiple sections through a network of successive geometric transitions. In order to investigate the low-energy effective physics resulting from our compactifications, we apply M- to F-theory duality. After determining the effective action of F-theory with Abelian gauge groups in six dimensions, we compare the loop-corrected Chern-Simons terms to topological quantities of the compactification manifold to read off the massless matter content. Under certain assumptions, we show that all gravitational and mixed anomalies are automatically canceled in F-theory. Furthermore, we compute the low-energy effective action of F-theory compactifications without section and suggest that the absence of a section signals the presence of an additional massive Abelian gauge field. Adjusting our analysis to four dimensions, we show that remnants of this massive gauge field survive as discrete symmetries that impose selection rules on the Yukawa couplings of the effective theory.

  4. Beyond Lovelock gravity: Higher derivative metric theories

    Science.gov (United States)

    Crisostomi, M.; Noui, K.; Charmousis, C.; Langlois, D.

    2018-02-01

    We consider theories describing the dynamics of a four-dimensional metric, whose Lagrangian is diffeomorphism invariant and depends at most on second derivatives of the metric. Imposing degeneracy conditions we find a set of Lagrangians that, apart form the Einstein-Hilbert one, are either trivial or contain more than 2 degrees of freedom. Among the partially degenerate theories, we recover Chern-Simons gravity, endowed with constraints whose structure suggests the presence of instabilities. Then, we enlarge the class of parity violating theories of gravity by introducing new "chiral scalar-tensor theories." Although they all raise the same concern as Chern-Simons gravity, they can nevertheless make sense as low energy effective field theories or, by restricting them to the unitary gauge (where the scalar field is uniform), as Lorentz breaking theories with a parity violating sector.

  5. Ricci dark energy in Chern-Simons modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.G.; Santos, A.F. [Universidade Federal de Mato Grosso (UFMT), Campo Grande, MT (Brazil)

    2013-07-01

    Full text: Currently the accelerated expansion of the universe has been strongly confirmed by some independent experiments such as the Cosmic Microwave Background Radiation (CMBR) and Sloan Digital Sky Survey (SDSS). In an attempt to explain this phenomenon there are two possible paths; first option - propose corrections to general relativity, second option - assuming that there is a dominant component of the universe, a kind of antigravity called dark energy. Any way that we intend to follow, there are numerous models that attempt to explain this effect. One of the models of modified gravity that has stood out in recent years is the Chern-Simons modified gravity. This modification consists in the addition of the Pontryagin density, which displays violation of parity symmetry in Einstein-Hilbert action. From among the various models proposed for dark energy there are some that are based on the holographic principle, known as holographic dark energy. Such models are based on the idea that the energy density of a given system is proportional to the inverse square of some characteristic length of the system. From these studies, here we consider the model proposed by Gao et. al., a model of dark energy where the characteristic length is given by the average radius of the Ricci scalar. Thus, the dark energy density is proportional to the Ricci scalar, i.e., ρ{sub x} ∝ R. It is a phenomenologically viable model and displays results similar to that presented by the cosmological model ACDM. In this work, we have considered the Ricci dark energy model in the dynamic Chern-Simons modified gravity. We show that in this context the evolution of the scale factor is similar to that displayed by the modified Chaplygin gas. (author)

  6. Ricci dark energy in Chern-Simons modified gravity

    International Nuclear Information System (INIS)

    Silva, J.G.; Santos, A.F.

    2013-01-01

    Full text: Currently the accelerated expansion of the universe has been strongly confirmed by some independent experiments such as the Cosmic Microwave Background Radiation (CMBR) and Sloan Digital Sky Survey (SDSS). In an attempt to explain this phenomenon there are two possible paths; first option - propose corrections to general relativity, second option - assuming that there is a dominant component of the universe, a kind of antigravity called dark energy. Any way that we intend to follow, there are numerous models that attempt to explain this effect. One of the models of modified gravity that has stood out in recent years is the Chern-Simons modified gravity. This modification consists in the addition of the Pontryagin density, which displays violation of parity symmetry in Einstein-Hilbert action. From among the various models proposed for dark energy there are some that are based on the holographic principle, known as holographic dark energy. Such models are based on the idea that the energy density of a given system is proportional to the inverse square of some characteristic length of the system. From these studies, here we consider the model proposed by Gao et. al., a model of dark energy where the characteristic length is given by the average radius of the Ricci scalar. Thus, the dark energy density is proportional to the Ricci scalar, i.e., ρ x ∝ R. It is a phenomenologically viable model and displays results similar to that presented by the cosmological model ACDM. In this work, we have considered the Ricci dark energy model in the dynamic Chern-Simons modified gravity. We show that in this context the evolution of the scale factor is similar to that displayed by the modified Chaplygin gas. (author)

  7. An introduction to topological Yang-Mills theory

    International Nuclear Information System (INIS)

    Baal, P. van; Rijksuniversiteit Utrecht

    1990-01-01

    In these lecture notes I give a ''historical'' introduction to topological gauge theories. My main aim is to clearly explain the origin of the Hamiltonian which forms the basis of Witten's construction of topological gauge theory. I show how this Hamiltonian arises from Witten's formulation of Morse theory as applied by Floer to the infinite dimensional space of gauge connections, with the Chern-Simons functional as the appriopriate Morse function(al). I therefore discuss the De Rham cohomology, Hodge theory, Morse theory, Floer homology, Witten's construction of the Lagrangian for topological gauge theory, the subsequent BRST formulation of topological quantum field theory and finally Witten's construction of the Donaldson polynomials. (author)

  8. Lattice implementation of Abelian gauge theories with Chern–Simons number and an axion field

    Directory of Open Access Journals (Sweden)

    Daniel G. Figueroa

    2018-01-01

    Full Text Available Real time evolution of classical gauge fields is relevant for a number of applications in particle physics and cosmology, ranging from the early Universe to dynamics of quark–gluon plasma. We present an explicit non-compact lattice formulation of the interaction between a shift-symmetric field and some U(1 gauge sector, a(xFμνF˜μν, reproducing the continuum limit to order O(dxμ2 and obeying the following properties: (i the system is gauge invariant and (ii shift symmetry is exact on the lattice. For this end we construct a definition of the topological number density K=FμνF˜μν that admits a lattice total derivative representation K=Δμ+Kμ, reproducing to order O(dxμ2 the continuum expression K=∂μKμ∝E→⋅B→. If we consider a homogeneous field a(x=a(t, the system can be mapped into an Abelian gauge theory with Hamiltonian containing a Chern–Simons term for the gauge fields. This allow us to study in an accompanying paper the real time dynamics of fermion number non-conservation (or chirality breaking in Abelian gauge theories at finite temperature. When a(x=a(x→,t is inhomogeneous, the set of lattice equations of motion do not admit however a simple explicit local solution (while preserving an O(dxμ2 accuracy. We discuss an iterative scheme allowing to overcome this difficulty.

  9. Quantum field theory and link invariants

    International Nuclear Information System (INIS)

    Cotta-Ramusino, P.; Guadagnini, E.; Mintchev, M.; Martellini, M.

    1990-01-01

    A skein relation for the expectation values of Wilson line operators in three-dimensional SU(N) Chern-Simons gauge theory is derived at first order in the coupling constant. We use a variational method based on the properties of the three-dimensional field theory. The relationship between the above expectation values and the known link invariants is established. (orig.)

  10. The Maxwell-Chern-Simons gravity, and its cosmological implications

    Energy Technology Data Exchange (ETDEWEB)

    Haghani, Zahra; Shahidi, Shahab [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom)

    2017-08-15

    We consider the cosmological implications of a gravitational theory containing two vector fields coupled via a generalized Chern-Simons term. One of the vector fields is the usual Maxwell field, while the other is a constrained vector field with constant norm included in the action via a Lagrange multiplier. The theory admits a de Sitter type solution, with healthy cosmological perturbations. We also show that there are seven degrees of freedom that propagate on top of de Sitter space-time, consisting of two tensor polarizations, four degrees of freedom related to the two vector fields, and a scalar degree of freedom that makes one of the vector fields massive. We investigate the cosmological evolution of Bianchi type I space-time, by assuming that the matter content of the Universe can be described by the stiff and dust. The cosmological evolution of the Bianchi type I Universe strongly depends on the initial conditions of the physical quantities, as well as on the model parameters. The mean anisotropy parameter, and the deceleration parameter, are also studied, and we show that independently of the matter equation of state the cosmological evolution of the Bianchi type I Universe always ends in an isotropic de Sitter type phase. (orig.)

  11. Relative entropy, mixed gauge-gravitational anomaly and causality

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Arpan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Centre For High Energy Phsyics, Indian Institute of Science,560012 Bangalore (India); Cheng, Long [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Hung, Ling-Yan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University,220 Handan Road, 200433 Shanghai (China)

    2016-07-25

    In this note we explored the holographic relative entropy in the presence of the 5d Chern-Simons term, which introduces a mixed gauge-gravity anomaly to the dual CFT. The theory trivially satisfies an entanglement first law. However, to quadratic order in perturbations of the stress tensor T and current density J, there is a mixed contribution to the relative entropy bi-linear in T and J, signalling a potential violation of the positivity of the relative entropy. Miraculously, the term vanishes up to linear order in a derivative expansion. This prompted a closer inspection on a different consistency check, that involves time-delay of a graviton propagating in a charged background, scattered via a coupling supplied by the Chern-Simons term. The analysis suggests that the time-delay can take either sign, potentially violating causality for any finite value of the CS coupling.

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ... 10; Issue 4. Of Connections and Fields – I-Chern's Mathematical Ideas in Physics ... Connection; curvature; magnetic monopoles; fibre bundles; gauge group; geometric phose; Chern-Weil theory; Chern-Simons theory. ... Current Issue : Vol.

  13. Static solutions in Einstein-Chern-Simons gravity

    Energy Technology Data Exchange (ETDEWEB)

    Crisóstomo, J.; Gomez, F.; Mella, P.; Quinzacara, C.; Salgado, P., E-mail: jcrisostomo@udec.cl, E-mail: fernagomez@udec.cl, E-mail: patriciomella@udec.cl, E-mail: cristian.cortesq@uss.cl, E-mail: pasalgad@udec.cl [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile)

    2016-06-01

    In this paper we study static solutions with more general symmetries than the spherical symmetry of the five-dimensional Einstein-Chern-Simons gravity. In this context, we study the coupling of the extra bosonic field h{sup a} with ordinary matter which is quantified by the introduction of an energy-momentum tensor field associated with h{sup a}. It is found that exist (i) a negative tangential pressure zone around low-mass distributions (μ < μ{sub 1}) when the coupling constant α is greater than zero; (ii) a maximum in the tangential pressure, which can be observed in the outer region of a field distribution that satisfies μ < μ{sub 2}; (iii) solutions that behave like those obtained from models with negative cosmological constant. In such a situation, the field h{sup a} plays the role of a cosmological constant.

  14. Topics in low-dimensional field theory

    International Nuclear Information System (INIS)

    Crescimanno, M.J.

    1991-01-01

    Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density

  15. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    1989-01-01

    The Syracuse High Energy Theory group has continued to make significant contributions to many areas. Many novel aspects of Chern-Simons terms and effective Lagrangians were investigated. Various interesting aspects of quantum gravity and string theory were explored. Gauge models of elementary particles were studied in depth. The investigations of QCD at finite temperatures and multiply connected configuration spaces continued. 24 refs

  16. Quaternion based generalization of Chern–Simons theories in arbitrary dimensions

    Directory of Open Access Journals (Sweden)

    Alessandro D'Adda

    2017-08-01

    Full Text Available A generalization of Chern–Simons gauge theory is formulated in any dimension and arbitrary gauge group where gauge fields and gauge parameters are differential forms of any degree. The quaternion algebra structure of this formulation is shown to be equivalent to a three Z2-gradings structure, thus clarifying the quaternion role in the previous formulation.

  17. Effective Chern-Simons actions of particles coupled to 3D gravity

    Science.gov (United States)

    Trześniewski, Tomasz

    2018-03-01

    Point particles in 3D gravity are known to behave as topological defects, while gravitational field can be expressed as the Chern-Simons theory of the appropriate local isometry group of spacetime. In the case of the Poincaré group, integrating out the gravitational degrees of freedom it is possible to obtain the effective action for particle dynamics. We review the known results, both for single and multiple particles, and attempt to extend this approach to the (anti-)de Sitter group, using the factorizations of isometry groups into the double product of the Lorentz group and AN (2) group. On the other hand, for the de Sitter group one can also perform a contraction to the semidirect product of AN (2) and the translation group. The corresponding effective action curiously describes a Carrollian particle with the AN (2) momentum space. We derive this contraction in a more rigorous manner and further explore its properties, including a generalization to the multiparticle case.

  18. Polynomial invariants for torus knots and topological strings

    International Nuclear Information System (INIS)

    Labastida, J.M.F.

    2001-01-01

    We make a precision test of a recently proposed conjecture relating Chern-Simons gauge theory to topological string theory on the resolution of the conifold. First, we develop a systematic procedure to extract string amplitudes from vacuum expectation values (vevs) of Wilson loops in Chern-Simons gauge theory, and then we evaluate these vevs in arbitrary irreducible representations of SU(N) for torus knots. We find complete agreement with the predictions derived from the target space interpretation of the string amplitudes. We also show that the structure of the free energy of topological open string theory gives further constraints on the Chern-Simons vevs. Our work provides strong evidence towards an interpretation of knot polynomial invariants as generating functions associated to enumerative problems. (orig.)

  19. A Kallosh theorem for BF-type topological field theory

    International Nuclear Information System (INIS)

    Birmingham, D.; Gibbs, R.; Mokhtari, S.

    1991-01-01

    A Kallosh theorem is established for the case of BF-type theories in three dimensions, including a coupling to Chern-Simons theory. The phase contribution to the one-loop off-shell effective action is computed for a two-parameter family of local covariant gauges. It is shown that the phase is independent of these parameters, and thus equals the 'no Vilkovisky-DeWitt' gauge result. The field space metric dependence of a corresponding calculation for generalized BF theory is briefly discussed. (orig.)

  20. Finite action for Chern-Simons Ads gravity

    Energy Technology Data Exchange (ETDEWEB)

    Mora, P.; Olea, R.; Troncoso, R.; Zanelli, J. E-mail: jz@cecs.cl

    2004-06-01

    A finite principle for Chern-Simons AdS gravity is presented. The construction is carried out in detail first in five dimensions, where the bulk action is given by a particular combination of the Einstein-Hilbert action with negative cosmological constant and a Gauss-Bonnet term; and is then generalized for arbitrary odd dimensions. The boundary term needed to render the action finite is singled out demanding the action to attain an extremum for an appropriate set of boundary conditions. The boundary term is a local function of the fields at the boundary and is sufficient to render the action finite for asymptotically AdS solutions, without requiring background fields. It is shown that the Euclidean continuation of the action correctly describes black hole thermodynamics in the canonical ensemble. Additionally, background independent conserved charges associated with the asymptotic symmetries can be written as surface integrals by direct application of Noether's theorem. (author)

  1. A Kallosh theorem for BF-type topological field theory

    Energy Technology Data Exchange (ETDEWEB)

    Birmingham, D. (Theory Div., CERN, Geneva (Switzerland)); Gibbs, R.; Mokhtari, S. (Physics Dept., Louisiana Tech. Univ., Ruston, LA (United States))

    1991-12-12

    A Kallosh theorem is established for the case of BF-type theories in three dimensions, including a coupling to Chern-Simons theory. The phase contribution to the one-loop off-shell effective action is computed for a two-parameter family of local covariant gauges. It is shown that the phase is independent of these parameters, and thus equals the 'no Vilkovisky-DeWitt' gauge result. The field space metric dependence of a corresponding calculation for generalized BF theory is briefly discussed. (orig.).

  2. Euler–Chern–Simons gravity from Lovelock–Born–Infeld gravity

    OpenAIRE

    Izaurieta, F.; Rodriguez, E.; Salgado, P.

    2004-01-01

    In the context of a gauge theoretical formulation, higher dimensional gravity invariant under the AdS group is dimensionally reduced to Euler-Chern-Simons gravity. The dimensional reduction procedure of Grignani-Nardelli [Phys. Lett. B 300, 38 (1993)] is generalized so as to permit reducing D-dimensional Lanczos Lovelock gravity to d=D-1 dimensions.

  3. Research in particle theory

    International Nuclear Information System (INIS)

    Mansouri, F.; Suranyi, P.; Wijewardhana, L.C.R.

    1992-10-01

    Dynamics of 2+1 dimensional gravity is analyzed by coupling matter to Chern Simons Witten action in two ways and obtaining the exact gravity Hamiltonian for each case. 't Hoot's Hamiltonian is obtained as an approximation. The notion of space-time emerges in the very end as a broken phase of the gauge theory. We have studied the patterns of discrete and continuous symmetry breaking in 2+1 dimensional field theories. We formulate our analysis in terms of effective composite scalar field theories. Point-like sources in the Chern-Simons theory of gravity in 2+1 dimensions are described by their Poincare' charges. We have obtained exact solutions of the constraints of Chern-Simons theory with an arbitrary number of isolated point sources in relative motion. We then showed how the space-time metric is constructed. A reorganized perturbation expansion with a propagator of soft infrared behavior has been used to study the critical behavior of the mass gap. The condition of relativistic covariance fixes the form of the soft propagator. Approximants to the correlation critical exponent were obtained in two loop order for the two and three dimensional theories. We proposed a new model of QED exhibiting two phases and a Majorana mass spectrum of single particle states. The model has a new source of coupling constant renormalization which opposes screening and suggests the model may confine. Assuming that the bound states of e + e - essentially obey a Majorana spectrum, we obtained a consistent fit of the GSI peaks as well as predicting new peaks and their spin assignments

  4. Possible daily and seasonal variations in quantum interference induced by Chern-Simons gravity.

    Science.gov (United States)

    Okawara, Hiroki; Yamada, Kei; Asada, Hideki

    2012-12-07

    Possible effects of Chern-Simons (CS) gravity on a quantum interferometer turn out to be dependent on the latitude and direction of the interferometer on Earth in orbital motion around the Sun. Daily and seasonal variations in phase shifts are predicted with an estimate of the size of the effects, wherefore neutron interferometry with ~5 m arm length and ~10(-4) phase measurement accuracy would place a bound on a CS parameter comparable to the Gravity Probe B satellite.

  5. Euclidean D-branes and higher-dimensional gauge theory

    International Nuclear Information System (INIS)

    Acharya, B.S.; Figueroa-O'Farrill, J.M.; Spence, B.; O'Loughlin, M.

    1997-07-01

    We consider euclidean D-branes wrapping around manifolds of exceptional holonomy in dimensions seven and eight. The resulting theory on the D-brane-that is, the dimensional reduction of 10-dimensional supersymmetric Yang-Mills theory-is a cohomological field theory which describes the topology of the moduli space of instantons. The 7-dimensional theory is an N T =2 (or balanced) cohomological theory given by an action potential of Chern-Simons type. As a by-product of this method, we construct a related cohomological field theory which describes the monopole moduli space on a 7-manifold of G 2 holonomy. (author). 22 refs, 3 tabs

  6. Superconformal quantum field theories in string. Gauge theory dualities

    Energy Technology Data Exchange (ETDEWEB)

    Wiegandt, Konstantin

    2012-08-14

    In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investigated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop/amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N=4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.

  7. Superconformal quantum field theories in string. Gauge theory dualities

    International Nuclear Information System (INIS)

    Wiegandt, Konstantin

    2012-01-01

    In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investigated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop/amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N=4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.

  8. A general solution of the BV-master equation and BRST field theories

    International Nuclear Information System (INIS)

    Dayi, O.F.

    1993-05-01

    For a class of first order gauge theories it was shown that the proper solution of the BV-master equation can be obtained straightforwardly. Here we present the general condition which the gauge generators should satisfy to conclude that this construction is relevant. The general procedure is illustrated by its application to the Chern-Simons theory in any odd-dimension. Moreover, it is shown that this formalism is also applicable to BRST field theories, when one replaces the role of the exterior derivative with the BRST charge of first quantization. (author). 17 refs

  9. SO(N) reformulated link invariants from topological strings

    International Nuclear Information System (INIS)

    Borhade, Pravina; Ramadevi, P.

    2005-01-01

    Large N duality conjecture between U(N) Chern-Simons gauge theory on S 3 and A-model topological string theory on the resolved conifold was verified at the level of partition function and Wilson loop observables. As a consequence, the conjectured form for the expectation value of the topological operators in A-model string theory led to a reformulation of link invariants in U(N) Chern-Simons theory giving new polynomial invariants whose integer coefficients could be given a topological meaning. We show that the A-model topological operator involving SO(N) holonomy leads to a reformulation of link invariants in SO(N) Chern-Simons theory. Surprisingly, the SO(N) reformulated invariants also has a similar form with integer coefficients. The topological meaning of the integer coefficients needs to be explored from the duality conjecture relating SO(N) Chern-Simons theory to A-model closed string theory on orientifold of the resolved conifold background

  10. A 3d-3d appetizer

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Du; Ye, Ke [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125 (United States)

    2016-11-02

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T[L(p,1)] and the partition function of complex Chern-Simons theory on L(p,1). In particular, for p=1, we show how the familiar S{sup 3} partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p,1)] becomes a constant independent of p. In addition, we study T[L(p,1)] on the squashed three-sphere S{sub b}{sup 3}. This enables us to see clearly, at the level of partition function, to what extent G{sub ℂ} complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  11. Dimensional reduction of U(1) x SU(2) Chern-Simons bosonization: Application to the t - J model

    International Nuclear Information System (INIS)

    Marchetti, P.A.

    1996-09-01

    We perform a dimensional reduction of the U(1) x SU(2) Chern-Simons bosonization and apply it to the t - J model, relevant for high T c superconductors. This procedure yields a decomposition of the electron field into a product of two ''semionic'' fields, i.e. fields obeying Abelian braid statistics with statistics parameter θ = 1/4, one carrying the charge and the other the spin degrees of freedom. A mean field theory is then shown to reproduce correctly the large distance behaviour of the correlation functions of the 1D t - J model at >> J. This result shows that to capture the essential physical properties of the model one needs a specific ''semionic'' form of spin-charge separation. (author). 31 refs

  12. On the role of the Chern-Simons action for the description of the QHE

    International Nuclear Information System (INIS)

    Cabo, A.; Oliva, D.

    1990-05-01

    The role of the Chern-Simons action in the description of the quantum Hall effects is stressed. The 2D-electromagnetic picture of Widom and Srivastava is shown to be valid in a superlattice of 2D-electron gases. A Meissner-like effect appears in such systems. In them, the difference between the external and the integer filling factor fields is exponentially screened by the surface (edge) currents. Also, effective Maxwell equations for one sheet or a superlattice are obtained. (author). 21 refs

  13. Ponzano-Regge model revisited: I. Gauge fixing, observables and interacting spinning particles

    International Nuclear Information System (INIS)

    Freidel, Laurent; Louapre, David

    2004-01-01

    We show how to properly gauge fix all the symmetries of the Ponzano-Regge model for 3D quantum gravity. This amounts to doing explicit finite computations for transition amplitudes. We give the construction of the transition amplitudes in the presence of interacting quantum spinning particles. We introduce a notion of operators whose expectation value gives rise to either gauge fixing, introduction of time, or insertion of particles, according to the choice. We give the link between the spin foam quantization and the Hamiltonian quantization. We finally show the link between the Ponzano-Regge model and the quantization of Chern-Simons theory based on the double quantum group of SU(2)

  14. Criticality and novel quantum liquid phases in Ginzburg-Landau theories with compact and non-compact gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Smiseth, Jo

    2005-07-01

    The critical properties of three-dimensional U(1)-symmetric lattice gauge theories have been studied. The models apply to various physical systems such as insulating phases of strongly correlated electron systems as well as superconducting and superfluid states of liquid metallic hydrogen under extreme pressures. The thesis contains an introductory part and a collection of research papers of which seven are published works and one is submitted for publication. The outline of this thesis is as follows. In Chapter 2 the theory of phase transitions is discussed with emphasis on continuous phase transitions, critical phenomena and phase transitions in gauge theories. In the next chapter the phases of the abelian Higgs model are presented, and the critical phenomena are discussed. Furthermore, the multicomponent Ginzburg-Landau theory and the applications to liquid metallic hydrogen are presented. Chapter 4 contains an overview of the Monte Carlo integration scheme, including the Metropolis algorithm, error estimates, and re weighting techniques. This chapter is followed by the papers I-VIII. Paper I: Criticality in the (2+1)-Dimensional Compact Higgs Model and Fractionalized Insulators. Paper II: Phase structure of (2+1)-dimensional compact lattice gauge theories and the transition from Mott insulator to fractionalized insulator. Paper III: Compact U(1) gauge theories in 2+1 dimensions and the physics of low dimensional insulating materials. Paper IV: Phase structure of Abelian Chern-Simons gauge theories. Paper V: Critical Properties of the N-Color London Model. Paper VI: Field- and temperature induced topological phase transitions in the three-dimensional N-component London superconductor. Paper VII: Vortex Sublattice Melting in a Two-Component Superconductor. Paper VIII: Observation of a metallic superfluid in a numerical experiment (ml)

  15. Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance

    International Nuclear Information System (INIS)

    Sourrouille, Lucas; Casana, Rodolfo

    2016-01-01

    We have studied the existence of self-dual solitonic solutions in a generalization of the Abelian Chern-Simons-Higgs model. Such a generalization introduces two different nonnegative functions, ω_1(|ϕ|) and ω(|ϕ|), which split the kinetic term of the Higgs field, |D_μϕ|"2→ω_1(|ϕ|)|D_0ϕ|"2-ω(|ϕ|)|D_kϕ|"2, breaking explicitly the Lorentz covariance. We have shown that a clean implementation of the Bogomolnyi procedure only can be implemented whether ω(|ϕ|)∝β|ϕ|"2"β"-"2 with β≥1. The self-dual or Bogomolnyi equations produce an infinity number of soliton solutions by choosing conveniently the generalizing function ω_1(|ϕ|) which must be able to provide a finite magnetic field. Also, we have shown that by properly choosing the generalizing functions it is possible to reproduce the Bogomolnyi equations of the Abelian Maxwell-Higgs and Chern-Simons-Higgs models. Finally, some new self-dual |ϕ|"6-vortex solutions have been analyzed from both theoretical and numerical point of view.

  16. Equivariant Verlinde Formula from Fivebranes and Vortices

    Science.gov (United States)

    Gukov, Sergei; Pei, Du

    2017-10-01

    We study complex Chern-Simons theory on a Seifert manifold M 3 by embedding it into string theory. We show that complex Chern-Simons theory on M 3 is equivalent to a topologically twisted supersymmetric theory and its partition function can be naturally regularized by turning on a mass parameter. We find that the dimensional reduction of this theory to 2d gives the low energy dynamics of vortices in four-dimensional gauge theory, the fact apparently overlooked in the vortex literature. We also generalize the relations between (1) the Verlinde algebra, (2) quantum cohomology of the Grassmannian, (3) Chern-Simons theory on {Σ× S^1} and (4) index of a spin c Dirac operator on the moduli space of flat connections to a new set of relations between (1) the "equivariant Verlinde algebra" for a complex group, (2) the equivariant quantum K-theory of the vortex moduli space, (3) complex Chern-Simons theory on {Σ × S^1} and (4) the equivariant index of a spin c Dirac operator on the moduli space of Higgs bundles.

  17. N = 1 super-Chern-Simons coupled to parity-preserving matter from Atiyah-Ward space-time

    International Nuclear Information System (INIS)

    Andrade, M.A. de; Cima, O.M. Del; Colatto, L.P.

    1995-06-01

    In this letter, we present the Parkes-Siegel formulation for the massive Abelian N=1 super-QED 2+2 coupled to a self-dual supermultiplet, by introducing a chiral multiplier superfield. We show that after carrying out a suitable dimensional reduction from (2+2) to (1+2) dimensions, and performing some necessary truncations, the simple supersymmetric extension of the π3 QED 1+2 coupled to a Chern-Simons term naturally comes out. (author). 15 refs

  18. Anomaly cancelation in field theory and F-theory on a circle

    International Nuclear Information System (INIS)

    Grimm, Thomas W.; Kapfer, Andreas

    2016-01-01

    We study the manifestation of local gauge anomalies of four- and six-dimensional field theories in the lower-dimensional Kaluza-Klein theory obtained after circle compactification. We identify a convenient set of transformations acting on the whole tower of massless and massive states and investigate their action on the low-energy effective theories in the Coulomb branch. The maps employ higher-dimensional large gauge transformations and precisely yield the anomaly cancelation conditions when acting on the one-loop induced Chern-Simons terms in the three- and five-dimensional effective theory. The arising symmetries are argued to play a key role in the study of the M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact that all fully resolved F-theory geometries inducing multiple Abelian gauge groups or non-Abelian groups admit a certain set of symmetries, we are able to generally show the cancelation of pure Abelian or pure non-Abelian anomalies in these models.

  19. Universal character and large N factorization in topological gauge/string theory

    International Nuclear Information System (INIS)

    Kanno, Hiroaki

    2006-01-01

    We establish a formula of the large N factorization of the modular S-matrix for the coupled representations in U(N) Chern-Simons theory. The formula was proposed by Aganagic, Neitzke and Vafa, based on computations involving the conifold transition. We present a more rigorous proof that relies on the universal character for rational representations and an expression of the modular S-matrix in terms of the specialization of characters

  20. Maxwell-Chern-Simons vortices in a CPT-odd Lorentz-violating Higgs electrodynamics

    International Nuclear Information System (INIS)

    Casana, R.; Ferreira, M.M.; Hora, E. da; Neves, A.B.F.

    2014-01-01

    We study BPS vortices in a CPT-odd and Lorentz-violating Maxwell-Chern-Simons-Higgs (MCSH) electrodynamics attained from the dimensional reduction of the Carroll-Field-Jackiw-Higgs model. The Lorentz-violating parameter induces a pronounced behavior at origin (for the magnetic/electric fields and energy density) which is absent in the MCSH vortices. For some combination of the Lorentz-violating coefficients there always exists a sufficiently large winding number n 0 such that for all vertical stroke n vertical stroke ≥ vertical stroke n 0 vertical stroke the magnetic field flips sign, yielding two well-defined regions with opposite magnetic flux. However, the total magnetic flux remains quantized and proportional to the winding number. (orig.)

  1. Study of Yang–Mills–Chern–Simons theory in presence of the Gribov horizon

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio, E-mail: canfora@cecs.cl [Centro de Estudios Cientificos (CECs), Valdivia (Chile); Universidad Andres Bello, Av. Republica 440, Santiago (Chile); Gomez, Arturo, E-mail: arturo.gomez@proyectos.uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar. (Chile); Sorella, Silvio Paolo, E-mail: sorella@uerj.br [UERJ, Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Física Teórica, Rua São Francisco Xavier 524, 20550-013, Maracaná, Rio de Janeiro (Brazil); Vercauteren, David, E-mail: vercauteren.uerj@gmail.com [UERJ, Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Física Teórica, Rua São Francisco Xavier 524, 20550-013, Maracaná, Rio de Janeiro (Brazil)

    2014-06-15

    The two-point gauge correlation function in Yang–Mills–Chern–Simons theory in three dimensional Euclidean space is analysed by taking into account the non-perturbative effects of the Gribov horizon. In this way, we are able to describe the confinement and de-confinement regimes, which naturally depend on the topological mass and on the gauge coupling constant of the theory. -- Highlights: •We implement the Gribov quantization to the Topologically massive Yang–Mills theory. •We find a modified propagator at strong coupling by the Gribov horizon. •The gauge propagator depends on the topological mass and the coupling constant. •By studying the gauge propagator we describe the confined–deconfined regimes.

  2. Study of Yang–Mills–Chern–Simons theory in presence of the Gribov horizon

    International Nuclear Information System (INIS)

    Canfora, Fabrizio; Gomez, Arturo; Sorella, Silvio Paolo; Vercauteren, David

    2014-01-01

    The two-point gauge correlation function in Yang–Mills–Chern–Simons theory in three dimensional Euclidean space is analysed by taking into account the non-perturbative effects of the Gribov horizon. In this way, we are able to describe the confinement and de-confinement regimes, which naturally depend on the topological mass and on the gauge coupling constant of the theory. -- Highlights: •We implement the Gribov quantization to the Topologically massive Yang–Mills theory. •We find a modified propagator at strong coupling by the Gribov horizon. •The gauge propagator depends on the topological mass and the coupling constant. •By studying the gauge propagator we describe the confined–deconfined regimes

  3. Stochastic quantization of topological field theory: generalized Langevin equation with memory kernel

    International Nuclear Information System (INIS)

    Menezes, G.; Svaiter, N.F.

    2006-04-01

    We use the method of stochastic quantization in a topological field theory defined in an Euclidean space, assuming a Langevin equation with a memory kernel. We show that our procedure for the Abelian Chern-Simons theory converges regardless of the nature of the Chern-Simons coefficient. (author)

  4. On the duality in CPT-even Lorentz-breaking theories

    Energy Technology Data Exchange (ETDEWEB)

    Scarpelli, A.P.B. [Departamento de Policia Federal, Sao Paulo (Brazil); Ribeiro, R.F.; Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica (Brazil)

    2015-07-15

    We generalize the duality between self-dual and Maxwell-Chern-Simons theories for the case of a CPT-even Lorentz-breaking extension of these theories. The duality is shown using the gauge embedding procedure, both in free and coupled cases, and with the master action approach. The physical spectra of both Lorentz-breaking theories are studied. The massive poles are shown to coincide and to respect the requirements for unitarity and causality at tree level. The extra massless poles which are present in the dualized model are shown to be nondynamical. (orig.)

  5. On the duality in CPT-even Lorentz-breaking theories

    International Nuclear Information System (INIS)

    Scarpelli, A.P.B.; Ribeiro, R.F.; Nascimento, J.R.; Petrov, A.Yu.

    2015-01-01

    We generalize the duality between self-dual and Maxwell-Chern-Simons theories for the case of a CPT-even Lorentz-breaking extension of these theories. The duality is shown using the gauge embedding procedure, both in free and coupled cases, and with the master action approach. The physical spectra of both Lorentz-breaking theories are studied. The massive poles are shown to coincide and to respect the requirements for unitarity and causality at tree level. The extra massless poles which are present in the dualized model are shown to be nondynamical. (orig.)

  6. On the gauge orbit space stratification: a review

    International Nuclear Information System (INIS)

    Rudolph, G.; Schmidt, M.; Volobuev, I.P.

    2002-01-01

    First, we review the basic mathematical structures and results concerning the gauge orbit space stratification. This includes general properties of the gauge group action, fibre bundle structures induced by this action, basic properties of the stratification and the natural Riemannian structures of the strata. In the second part, we study the stratification for theories with gauge group SU(n) in spacetime dimension 4. We develop a general method for determining the orbit types and their partial ordering, based on the 1-1 correspondence between orbit types and holonomy-induced Howe subbundles of the underlying principal SU(n)-bundle. We show that the orbit types are classified by certain cohomology elements of spacetime satisfying two relations and that the partial ordering is characterized by a system of algebraic equations. Moreover, operations for generating direct successors and direct predecessors are formulated, which allow one to construct the set of orbit types, starting from the principal type. Finally, we discuss an application to nodal configurations in Yang-Mills-Chern-Simons theory. (author)

  7. Gauge invariance and anomalous theories at finite fermionic density

    International Nuclear Information System (INIS)

    Roberge, A.

    1990-01-01

    We investigate the issue of stability of anomalous matter at finite fermionic density using a two-dimensional toy model. In particular, we pay careful attention to the issue of gauge invariance. We find that, contrary to some recent claims, the effective free energy (obtained by integrating out the fermions) cannot be obtained by the simple inclusion of a Chern-Simons term multiplying the fermionic chemical potential. We obtain some conditions for stability of anomalous charges when some finite density of conserved charge is present as well as for the neutral case. We also show that, under reasonable conditions, no sphaleron-type solution can exist in the toy model unless the anomalous charge density vanishes. We argue that this could be the case for more realistic models as well

  8. Aspects Topologiques de la Theorie des Champs et leurs Applications

    Science.gov (United States)

    Caenepeel, Didier

    This thesis is dedicated to the study of various topological aspects of field theory, and is divided in three parts. In two space dimensions the possibility of fractional statistics can be implemented by adding an appropriate "fictitious" electric charge and magnetic flux to each particle (after which they are known as anyons). Since the statistical interaction is rather difficult to handle, a mean-field approximation is used in order to describe a gas of anyons. We derive a criterion for the validity of this approximation using the inherent feature of parity violation in the scattering of anyons. We use this new method in various examples of anyons and show both analytically and numerically that the approximation is justified if the statistical interaction is weak, and that it must be more weak for boson-based than for fermion-based anyons. Chern-Simons theories give an elegant implementation of anyonic properties in field theories, which permits the emergence of new mechanisms for anyon superconductivity. Since it is reasonable to think that superconductivity is a low energy phenomenon, we have been interested in non-relativistic C-S systems. We present the scalar field effective potential for non-relativistic matter coupled to both Abelian and non-Abelian C-S gauge fields. We perform the calculations using functional methods in background fields. Finally, we compute the scalar effective potential in various gauges and treat divergences with various regularization schemes. In three space dimensions, a generalization of Chern-Simons theory may be achieved by introducing an antisymmetric tensor gauge field. We use these theories, called B wedge F theories, to present an alternative to the Higgs mechanism to generate masses for non-Abelian gauge fields. The initial Lagrangian is composed of a fermion with current-current and dipole-dipole type self -interactions minimally coupled to non-Abelian gauge fields. The mass generation occurs upon the fermionic functional

  9. Light-front quantization of field theory

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Prem P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-07-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs.

  10. Light-front quantization of field theory

    International Nuclear Information System (INIS)

    Srivastava, Prem P.

    1996-07-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs

  11. On the gauge invariant and topological nature of the localization determining the Quantum Hall Effect plateaus

    CERN Document Server

    Cabo-Montes de Oca, Alejandro

    2002-01-01

    It is shown how the electromagnetic response of 2DEG under Quantum Hall Effect regime, characterized by the Chern-Simons topological action, transforms the sample impurities and defects in charge-reservoirs that stabilize the Hall conductivity plateaus. The results determine the basic dynamical origin of the singular properties of localization under the occurrence of the Quantum Hall Effect obtained in the pioneering works of Laughlin and of Joynt and Prange, by means of a gauge invariance argument and a purely electronic analysis, respectively. The common intuitive picture of electrons moving along the equipotential lines gets an analytical realization through the Chern-Simons current and charge densities.

  12. A Relation Between Topological Quantum Field Theory and the Kodama State

    OpenAIRE

    Oda, Ichiro

    2003-01-01

    We study a relation between topological quantum field theory and the Kodama (Chern-Simons) state. It is shown that the Kodama (Chern-Simons) state describes a topological state with unbroken diffeomorphism invariance in Yang-Mills theory and Einstein's general relativity in four dimensions. We give a clear explanation of "why" such a topological state exists.

  13. Onset of dynamical chaos in topologically massive gauge theories

    International Nuclear Information System (INIS)

    Giansanti, A.; Simic, P.D.

    1988-01-01

    The onset of dynamical chaos is studied numerically in (2+1)-dimensional non-Abelian field theory with the Chern-Simons topological term. In the limit of strong fields, slowly varying in space (spatially homogeneous fields), this theory is an analog to a system of three charged particles moving in a plane in an orthogonal magnetic field and under the influence of a quartic potential. The ''phase transition'' (order chaos) is observed within a narrow energy range. The threshold of the transition depends on the sign of the angular momentum of the field reflecting parity violation in the underlying field theory. The transition region is investigated in some detail and the hyperfine structure of order-chaos-order-... transitions is observed suggesting the necessity of probabilistic description

  14. Quest for Casimir repulsion between Chern-Simons surfaces

    Science.gov (United States)

    Fialkovsky, Ignat; Khusnutdinov, Nail; Vassilevich, Dmitri

    2018-04-01

    In this paper we critically reconsider the Casimir repulsion between surfaces that carry the Chern-Simons interaction (corresponding to the Hall-type conductivity). We present a derivation of the Lifshitz formula valid for arbitrary planar geometries and discuss its properties. This analysis allows us to resolve some contradictions in the previous literature. We compute the Casimir energy for two surfaces that have constant longitudinal and Hall conductivities. The repulsion is possible only if both surfaces have Hall conductivities of the same sign. However, there is a critical value of the longitudinal conductivity above which the repulsion disappears. We also consider a model where both parity odd and parity even terms in the conductivity are produced by the polarization tensor of surface modes. In contrast to the previous publications [L. Chen and S.-L. Wan, Phys. Rev. B 84, 075149 (2011), 10.1103/PhysRevB.84.075149; Phys. Rev. B 85, 115102 (2012), 10.1103/PhysRevB.85.115102], we include the parity anomaly term. This term ensures that the conductivities vanish for infinitely massive surface modes. We find that at least for a single mode, regardless of the sign and value of its mass, there is no Casimir repulsion.

  15. 3D gauged supergravity from SU(2) reduction of $N=1$ 6D supergravity

    CERN Document Server

    Gava, Edi; Narain, K S

    2010-01-01

    We obtain Yang-Mills $SU(2)\\times G$ gauged supergravity in three dimensions from $SU(2)$ group manifold reduction of (1,0) six dimensional supergravity coupled to an anti-symmetric tensor multiplet and gauge vector multiplets in the adjoint of $G$. The reduced theory is consistently truncated to $N=4$ 3D supergravity coupled to $4(1+\\textrm{dim}\\, G)$ bosonic and $4(1+\\textrm{dim}\\, G)$ fermionic propagating degrees of freedom. This is in contrast to the reduction in which there are also massive vector fields. The scalar manifold is $\\mathbf{R}\\times \\frac{SO(3,\\, \\textrm{dim}\\, G)}{SO(3)\\times SO(\\textrm{dim}\\, G)}$, and there is a $SU(2)\\times G$ gauge group. We then construct $N=4$ Chern-Simons $(SO(3)\\ltimes \\mathbf{R}^3)\\times (G\\ltimes \\mathbf{R}^{\\textrm{dim}G})$ three dimensional gauged supergravity with scalar manifold $\\frac{SO(4,\\,1+\\textrm{dim}G)}{SO(4)\\times SO(1+\\textrm{dim}G)}$ and explicitly show that this theory is on-shell equivalent to the Yang-Mills $SO(3)\\times G$ gauged supergravity the...

  16. Topological anomalies for Seifert 3-manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Imbimbo, Camillo [Dipartimento di Fisica, Università di Genova,Via Dodecaneso 33, 16146 Genova (Italy); INFN - Sezione di Genova,Via Dodecaneso 33, 16146, Genova (Italy); Rosa, Dario [School of Physics and Astronomy andCenter for Theoretical Physics Seoul National University,Seoul 151-747 (Korea, Republic of); Dipartimento di Fisica, Università di Milano-Bicocca,I-20126 Milano (Italy); INFN - Sezione di Milano-Bicocca,I-20126 Milano (Italy)

    2015-07-14

    We study globally supersymmetric 3d gauge theories on curved manifolds by describing the coupling of 3d topological gauge theories, with both Yang-Mills and Chern-Simons terms in the action, to background topological gravity. In our approach, the Seifert condition for manifolds supporting global supersymmetry is elegantly deduced from the BRST transformations of topological gravity. A cohomological characterization of the geometrical moduli which affect the partition function is obtained. In the Seifert context the Chern-Simons topological (framing) anomaly is BRST trivial. We compute explicitly the corresponding local Wess-Zumino functional. As an application, we obtain the dependence on the Seifert moduli of the partition function of 3d supersymmetric gauge theory on the squashed sphere by solving the anomalous topological Ward identities, in a regularization independent way and without the need of evaluating any functional determinant.

  17. Renormalization of topological field theory

    International Nuclear Information System (INIS)

    Birmingham, D.; Rakowski, M.; Thompson, G.

    1988-11-01

    One loop corrections to topological field theory in three and four dimensions are presented. By regularizing determinants, we compute the effective action and β-function in four dimensional topological Yang-Mills theory and find that the BRST symmetry is preserved. Moreover, the minima of the effective action still correspond to instanton configurations. In three dimensions, an analysis of the Chern-Simons theory shows that the topological nature of the theory is also preserved to this order. In addition, we find that this theory possesses an extra supersymmetry when quantized in the Landau gauge. Using dimensional regularization, we then study the Ward identities of the extended BRST symmetry in the three dimensional topological Yang-Mills-Higgs model. (author). 22 refs

  18. On the infinite-dimensional spin-2 symmetries in Kaluza-Klein theories

    International Nuclear Information System (INIS)

    Hohm, O.; Hamburg Univ.

    2005-11-01

    We consider the couplings of an infinite number of spin-2 fields to gravity appearing in Kaluza-Klein theories. They are constructed as the broken phase of a massless theory possessing an infinite-dimensional spin-2 symmetry. Focusing on a circle compactification of four-dimensional gravity we show that the resulting gravity/spin-2 system in D=3 has in its unbroken phase an interpretation as a Chern-Simons theory of the Kac-Moody algebra iso(1,2) associated to the Poincare group and also fits into the geometrical framework of algebra-valued differential geometry developed by Wald. Assigning all degrees of freedom to scalar fields, the matter couplings in the unbroken phase are determined, and it is shown that their global symmetry algebra contains the Virasoro algebra together with an enhancement of the Ehlers group SL(2,R) to its affine extension. The broken phase is then constructed by gauging a subgroup of the global symmetries. It is shown that metric, spin-2 fields and Kaluza-Klein vectors combine into a Chern-Simons theory for an extended algebra, in which the affine Poincare subalgebra acquires a central extension. (orig.)

  19. F-theory and 2d (0,2) theories

    Energy Technology Data Exchange (ETDEWEB)

    Schäfer-Nameki, Sakura [Department of Mathematics, King’s College London, The Strand, London WC2R 2LS (United Kingdom); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany)

    2016-05-11

    F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N=(0,2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0,2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0,2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0,2) GLSM is realized via different T-branes or gluing data in F-theory.

  20. Matrix effective theories of the fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Cappelli, Andrea; Rodriguez, Ivan D

    2009-01-01

    The present understanding of nonperturbative ground states in the fractional quantum Hall effect is based on effective theories of the Jain 'composite fermion' excitations. We review the approach based on matrix variables, i.e. D0 branes, originally introduced by Susskind and Polychronakos. We show that the Maxwell-Chern-Simons matrix gauge theory provides a matrix generalization of the quantum Hall effect, where the composite-fermion construction naturally follows from gauge invariance. The matrix ground states obtained by suitable projections of higher Landau levels are found to be in one-to-one correspondence with the Laughlin and Jain hierarchical states. The matrix theory possesses a physical limit for commuting matrices that could be reachable while staying in the same phase.

  1. Thin accretion disk signatures in dynamical Chern-Simons-modified gravity

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S N

    2010-01-01

    A promising extension of general relativity is Chern-Simons (CS)-modified gravity, in which the Einstein-Hilbert action is modified by adding a parity-violating CS term, which couples to gravity via a scalar field. In this work, we consider the interesting, yet relatively unexplored, dynamical formulation of CS-modified gravity, where the CS coupling field is treated as a dynamical field, endowed with its own stress-energy tensor and evolution equation. We consider the possibility of observationally testing dynamical CS-modified gravity by using the accretion disk properties around slowly rotating black holes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard general relativistic Kerr solution. It is shown that the Kerr black hole provides a more efficient engine for the transformation of the energy of the accreting mass into radiation than their slowly rotating counterparts in CS-modified gravity. Specific signatures appear in the electromagnetic spectrum, thus leading to the possibility of directly testing CS-modified gravity by using astrophysical observations of the emission spectra from accretion disks.

  2. Path-integral invariants in abelian Chern–Simons theory

    International Nuclear Information System (INIS)

    Guadagnini, E.; Thuillier, F.

    2014-01-01

    We consider the U(1) Chern–Simons gauge theory defined in a general closed oriented 3-manifold M; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The non-perturbative path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent U(1) principal bundles over M; the different sectors of configuration space are labelled by the elements of the first homology group of M and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the non-perturbative contributions to the mean values. The functional integration is carried out in any 3-manifold M, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin–Turaev surgery invariants

  3. Multiple Membranes in M-theory

    CERN Document Server

    Bagger, Jonathan; Mukhi, Sunil; Papageorgakis, Constantinos

    2013-01-01

    We review developments in the theory of multiple, parallel membranes in M-theory. After discussing the inherent difficulties pertaining to a maximally supersymmetric lagrangian formulation with the appropriate field content and symmetries, we discuss how introducing the concept of 3-algebras allows for such a description. Different choices of 3-algebras lead to distinct classes of 2+1 dimensional theories with varying degrees of supersymmetry. We then describe how these are equivalent to a type of conventional superconformal Chern-Simons gauge theories at level k, coupled to bifundamental matter. Analysing the physical properties of these theories leads to the identification of a certain subclass of models with configurations of M2-branes in Z_k orbifolds of M-theory. In addition these models give rise to a whole new sector of the gauge/gravity duality in the form of an AdS_4/CFT_3 correspondence. We also discuss mass deformations, higher derivative corrections as well as the possibility of extracting informa...

  4. Analytical solution to DGLAP integro-differential equation in a simple toy-model with a fixed gauge coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Gustavo [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Concepcion Univ. (Chile). Dept. de Fisica; Cvetic, Gorazd [Univ. Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor [Univ. del Bio-Bio, Chillan (Chile). Grupo de Matematica Aplicada; Univ. del Bio-Bio, Chillan (Chile). Grupo de Fisica de Altas Energias; Parra-Ferrada, Ivan [Talca Univ. (Chile). Inst. de Matematica y Fisica

    2016-11-15

    We consider a simple model for QCD dynamics in which DGLAP integro-differential equation may be solved analytically. This is a gauge model which possesses dominant evolution of gauge boson (gluon) distribution and in which the gauge coupling does not run. This may be N=4 supersymmetric gauge theory with softly broken supersymmetry, other finite supersymmetric gauge theory with lower level of supersymmetry, or topological Chern-Simons field theories. We maintain only one term in the splitting function of unintegrated gluon distribution and solve DGLAP analytically for this simplified splitting function. The solution is found by use of the Cauchy integral formula. The solution restricts form of the unintegrated gluon distribution as function of transfer momentum and of Bjorken x. Then we consider an almost realistic splitting function of unintegrated gluon distribution as an input to DGLAP equation and solve it by the same method which we have developed to solve DGLAP equation for the toy-model. We study a result obtained for the realistic gluon distribution and find a singular Bessel-like behaviour in the vicinity of the point x=0 and a smooth behaviour in the vicinity of the point x=1.

  5. Parity breaking signatures from a Chern-Simons coupling during inflation: the case of non-Gaussian gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Bartolo, Nicola; Orlando, Giorgio, E-mail: nicola.bartolo@pd.infn.it, E-mail: giorgio.orlando@phd.unipd.it [Dipartimento di Fisica e Astronomia ' ' G. Galilei' , Università degli Studi di Padova, via Marzolo 8, 35131, Padova (Italy)

    2017-07-01

    Considering high-energy modifications of Einstein gravity during inflation is an interesting issue. We can constrain the strength of the new gravitational terms through observations of inflationary imprints in the actual universe. In this paper we analyze the effects on slow-roll models due to a Chern-Simons term coupled to the inflaton field through a generic coupling function f (φ). A well known result is the polarization of primordial gravitational waves (PGW) into left and right eigenstates, as a consequence of parity breaking. In such a scenario the modifications to the power spectrum of PGW are suppressed under the conditions that allow to avoid the production of ghost gravitons at a certain energy scale, the so-called Chern-Simons mass M {sub CS}. In general it has been recently pointed out that there is very little hope to efficiently constrain chirality of PGW on the basis solely of two-point statistics from future CMB data, even in the most optimistic cases. Thus we search if significant parity breaking signatures can arise at least in the bispectrum statistics. We find that the tensor-tensor-scalar bispectra ( γ γ ζ ) for each polarization state are the only ones that are not suppressed. Their amplitude, setting the level of parity breaking during inflation, is proportional to the second derivative of the coupling function f (φ) and they turn out to be maximum in the squeezed limit. We comment on the squeezed-limit consistency relation arising in the case of chiral gravitational waves, and on possible observables to constrain these signatures.

  6. On the Pulsating Strings in AdS4×ℂℙ3

    Directory of Open Access Journals (Sweden)

    H. Dimov

    2009-01-01

    we quasiclassically quantize the theory and obtain the first corrections to the energy. The latter, due to AdS/CFT correspondence, is supposed to give the anomalous dimensions of operators of the gauge theory dual 𝒩=6 Chern-Simons theory.

  7. Research in particle theory

    International Nuclear Information System (INIS)

    Mansouri, F.; Suranyi, P.; Wijewardhana, L.C.R.; Witten, L.

    1990-10-01

    A 2+1 dimensional deSitter Chern-Simons theory has been constructed and shown to be consistent. Wilson loop variables have been computed and shown to close under Poisson bracket operation for N = 2 Poincare supergravity. It has also been shown that there are two equivalent pictures of describing two particle scattering in 2+1 dimensional gravity theory, which are related by multivalued gauge transformations. We have generalized the Jackiw-Johnson sumrule, relating Goldstone boson decay constants to the dynamical masses of fermions, to an arbitrary symmetry group. We have analyzed dynamical parity breaking in 2+1 dimensional 4-fermi theories. Finally, we have found the partition function for a system of free parabosons and parafermions of order two. 53 refs

  8. Spin Singlet Quantum Hall Effect and nonabelian Landau-Ginzburg theory

    International Nuclear Information System (INIS)

    Balatsky, A.

    1991-01-01

    In this paper we present a theory of Singlet Quantum Hall Effect (SQHE). We show that the Halperin-Haldane SQHE wave function can be written in the form of a product of a wave function for charged semions in a magnetic field and a wave function for the Chiral Spin Liquid of neutral spin-1/2 semions. We introduce field-theoretic model in which the electron operators are factorized in terms of charged spinless semions (holons) and neutral spin-1/2 semions (spinons). Broken time reversal symmetry and short ranged spin correlations lead to Su(2) κ=1 Chern-Simons term in Landau-Ginzburg action for SQHE phase. We construct appropriate coherent states for SQHE phase and show the existence of SU(2) valued gauge potential. This potential appears as a result of ''spin rigidity'' of the ground state against any displacements of nodes of wave function from positions of the particles and reflects the nontrivial monodromy in the presence of these displacenmants. We argue that topological structure of Su(2) κ=1 Chern-Simons theory unambiguously dictates semion statistics of spinons. 19 refs

  9. Fusion potentials for Gk and handle squashing

    International Nuclear Information System (INIS)

    Crescimanno, M.

    1993-01-01

    Using Chern-Simons gauge theory, we show that the fusion ring of the conformal field theory G k (G any Lie algebra) is isomorphic to P[u]/(∇V) where (∇V) is the ideal generated by conditions ∇V=0. We explicitly construct V for all G k . We also derive a residue-like formula for the correlation functions in the Chern-Simons theory thus providing an RCFT version of the residue formula for the topological Landau-Ginzburg model. An operator that acts like a measure in this residue formula has the interpretation of a handle-squashing operator and explicit formulae for this operator are given. (orig.)

  10. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1991-01-01

    This report discusses theoretical research in high energy physics at Columbia University. Some of the research topics discussed are: quantum chromodynamics with dynamical fermions; lattice gauge theory; scattering of neutrinos by photons; atomic physics constraints on the properties of ultralight-ultraweak gauge bosons; black holes; Chern- Simons physics; S-channel theory of superconductivity; charged boson system; gluon-gluon interactions; high energy scattering in the presence of instantons; anyon physics; causality constraints on primordial magnetic manopoles; charged black holes with scalar hair; properties of Chern-Aimona-Higgs solitons; and extended inflationary universe

  11. A general action for topological quantum field theories

    International Nuclear Information System (INIS)

    Dayi, O.F.

    1989-03-01

    Topological field theories can be formulated by beginning from a higher dimensional action. The additional dimension is an unphysical time parameter and the action is the derivative of a functional W with respect to this variable. In the d = 4 case, it produces actions which are shown to give topological quantum field theory after gauge fixing. In d = 3 this action leads to the Hamiltonian, which yields the Floer groups if the additional parameter is treated as physical when W is the pure Chern-Simons action. This W can be used to define a topological quantum field theory in d = 3 by treating the additional parameter as unphysical. The BFV-BRST operator quantization of this theory yields to an enlarged system which has only first class constraints. This is not identical to the previously introduced d = 3 topological quantum field theory, even if it is shown that the latter theory also gives the theory which we began with, after a partial gauge fixing. (author). 18 refs

  12. Theory of orbital magnetoelectric response

    International Nuclear Information System (INIS)

    Malashevich, Andrei; Souza, Ivo; Coh, Sinisa; Vanderbilt, David

    2010-01-01

    We extend the recently developed theory of bulk orbital magnetization to finite electric fields, and use it to calculate the orbital magnetoelectric (ME) response of periodic insulators. Working in the independent-particle framework, we find that the finite-field orbital magnetization can be written as a sum of three gauge-invariant contributions, one of which has no counterpart at zero field. The extra contribution is collinear with and explicitly dependent on the electric field. The expression for the orbital magnetization is suitable for first-principles implementations, allowing one to calculate the ME response coefficients by numerical differentiation. Alternatively, perturbation-theory techniques may be used, and for that purpose we derive an expression directly for the linear ME tensor by taking the first field-derivative analytically. Two types of terms are obtained. One, the 'Chern-Simons' term, depends only on the unperturbed occupied orbitals and is purely isotropic. The other, 'Kubo' terms, involve the first-order change in the orbitals and give isotropic as well as anisotropic contributions to the response. In ordinary ME insulators all terms are generally present, while in strong Z 2 topological insulators only the Chern-Simons term is allowed, and is quantized. In order to validate the theory, we have calculated under periodic boundary conditions the linear ME susceptibility for a 3D tight-binding model of an ordinary ME insulator, using both the finite-field and perturbation-theory expressions. The results are in excellent agreement with calculations on bounded samples.

  13. Anomalous Lorentz and CPT violation from a local Chern–Simons-like term in the effective gauge-field action

    Directory of Open Access Journals (Sweden)

    K.J.B. Ghosh

    2018-01-01

    Full Text Available We consider four-dimensional chiral gauge theories defined over a spacetime manifold with topology R3×S1 and periodic boundary conditions over the compact dimension. The effective gauge-field action is calculated for Abelian U(1 gauge fields Aμ(x which depend on all four spacetime coordinates (including the coordinate x4∈S1 of the compact dimension and have vanishing components A4(x (implying trivial holonomies in the 4-direction. Our calculation shows that the effective gauge-field action contains a local Chern–Simons-like term which violates Lorentz and CPT invariance. This result is established perturbatively with a generalized Pauli–Villars regularization and nonperturbatively with a lattice regularization based on Ginsparg–Wilson fermions.

  14. Non-commutative differential calculus and the axial anomaly in Abelian lattice gauge theories

    International Nuclear Information System (INIS)

    Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke

    2000-01-01

    The axial anomaly in lattice gauge theories has a topological nature when the Dirac operator satisfies the Ginsparg-Wilson relation. We study the axial anomaly in Abelian gauge theories on an infinite hypercubic lattice by utilizing cohomological arguments. The crucial tool in our approach is the non-commutative differential calculus (NCDC) which makes the Leibniz rule of exterior derivatives valid on the lattice. The topological nature of the 'Chern character' on the lattice becomes manifest in the context of NCDC. Our result provides an algebraic proof of Luescher's theorem for a four-dimensional lattice and its generalization to arbitrary dimensions

  15. I-Love-Q relations for neutron stars in dynamical Chern Simons gravity

    Science.gov (United States)

    Gupta, Toral; Majumder, Barun; Yagi, Kent; Yunes, Nicolás

    2018-01-01

    Neutron stars are ideal to probe, not only nuclear physics, but also strong-field gravity. Approximate universal relations insensitive to the star’s internal structure exist among certain observables and are useful in testing general relativity, as they project out the uncertainties in the equation of state. One such set of universal relations between the moment of inertia (I), the tidal Love number and the quadrupole moment (Q) has been studied both in general relativity and in modified theories. In this paper, we study the relations in dynamical Chern–Simons gravity, a well-motivated, parity-violating effective field theory, extending previous work in various ways. First, we study how projected constraints on the theory using the I-Love relation depend on the measurement accuracy of I with radio observations and that of the Love number with gravitational-wave observations. Provided these quantities can be measured with future observations, we find that the latter could place bounds on dynamical Chern–Simons gravity that are six orders of magnitude stronger than current bounds. Second, we study the I–Q and Q-Love relations in this theory by constructing slowly-rotating neutron star solutions to quadratic order in spin. We find that the approximate universality continues to hold in dynamical Chern–Simons gravity, and in fact, it becomes stronger than in general relativity, although its existence depends on the normalization of the dimensional coupling constant of the theory. Finally, we study the variation of the eccentricity of isodensity contours inside a star and its relation to the degree of universality. We find that, in most cases, the eccentricity variation is smaller in dynamical Chern–Simons gravity than in general relativity, providing further support to the idea that the approximate self-similarity of isodensity contours is responsible for universality.

  16. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1990-05-01

    This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model

  17. Gravitational catalysis of merons in Einstein-Yang-Mills theory

    Science.gov (United States)

    Canfora, Fabrizio; Oh, Seung Hun; Salgado-Rebolledo, Patricio

    2017-10-01

    We construct regular configurations of the Einstein-Yang-Mills theory in various dimensions. The gauge field is of meron-type: it is proportional to a pure gauge (with a suitable parameter λ determined by the field equations). The corresponding smooth gauge transformation cannot be deformed continuously to the identity. In the three-dimensional case we consider the inclusion of a Chern-Simons term into the analysis, allowing λ to be different from its usual value of 1 /2 . In four dimensions, the gravitating meron is a smooth Euclidean wormhole interpolating between different vacua of the theory. In five and higher dimensions smooth meron-like configurations can also be constructed by considering warped products of the three-sphere and lower-dimensional Einstein manifolds. In all cases merons (which on flat spaces would be singular) become regular due to the coupling with general relativity. This effect is named "gravitational catalysis of merons".

  18. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1992-01-01

    This progress report discusses research by Columbia University staff in high energy physics. Some of the topics discussed are as follows: lattice gauge theory; quantum chromodynamics; parity doublets; solitons; baryon number violation; black holes; magnetic monopoles; gluon plasma; Chern-Simons theory; and the inflationary universe

  19. The volume conjecture, perturbative knot invariants, and recursion relations for topological strings

    NARCIS (Netherlands)

    Dijkgraaf, R.; Fuji, H.; Manabe, M.

    2011-01-01

    We study the relation between perturbative knot invariants and the free energies defined by topological string theory on the character variety of the knot. Such a correspondence between SL(2;C) Chern-Simons gauge theory and the topological open string theory was proposed earlier on the basis of the

  20. Quantization conditions and functional equations in ABJ(M) theories

    International Nuclear Information System (INIS)

    Grassi, Alba; Marino, Marcos; Hatsuda, Yasuyuki

    2014-12-01

    The partition function of ABJ(M) theories on the three-sphere can be regarded as the canonical partition function of an ideal Fermi gas with a non-trivial Hamiltonian. We propose an exact expression for the spectral determinant of this Hamiltonian, which generalizes recent results obtained in the maximally supersymmetric case. As a consequence, we find an exact WKB quantization condition determining the spectrum which is in agreement with numerical results. In addition, we investigate the factorization properties and functional equations for our conjectured spectral determinants. These functional equations relate the spectral determinants of ABJ theories with consecutive ranks of gauge groups but the same Chern-Simons coupling.

  1. Framing anomaly in the effective theory of the fractional quantum Hall effect.

    Science.gov (United States)

    Gromov, Andrey; Cho, Gil Young; You, Yizhi; Abanov, Alexander G; Fradkin, Eduardo

    2015-01-09

    We consider the geometric part of the effective action for the fractional quantum Hall effect (FQHE). It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions. In the lowest order in gradients, the linear response generating functional includes Chern-Simons, Wen-Zee, and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states.

  2. Moduli space of Chern-Simons gravity

    International Nuclear Information System (INIS)

    Soda, Jiro; Yamanaka, Yuki

    1990-09-01

    Conformally invariant (2+1)-dimensional gravity, Chern-Shimons gravity, is studied. Its solution space, moduli space, is investigated using the linearization method. The dimension of moduli space is determined as 18g - 18 for g > 1,6 for g = 1 and 0 for g = 0. We discuss the geometrical meaning of our investigation. (author)

  3. Black string first order flow in N=2, d=5 abelian gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, Dietmar; Petri, Nicolò; Rabbiosi, Marco [Dipartimento di Fisica, Università di Milano andINFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy)

    2017-01-25

    We derive both BPS and non-BPS first-order flow equations for magnetically charged black strings in five-dimensional N=2 abelian gauged supergravity, using the Hamilton-Jacobi formalism. This is first done for the coupling to vector multiplets only and U(1) Fayet-Iliopoulos (FI) gauging, and then generalized to the case where also hypermultiplets are present, and abelian symmetries of the quaternionic hyperscalar target space are gauged. We then use these results to derive the attractor equations for near-horizon geometries of extremal black strings, and solve them explicitely for the case where the constants appearing in the Chern-Simons term of the supergravity action satisfy an adjoint identity. This allows to compute in generality the central charge of the two-dimensional conformal field theory that describes the black strings in the infrared, in terms of the magnetic charges, the CY intersection numbers and the FI constants. Finally, we extend the r-map to gauged supergravity and use it to relate our flow equations to those in four dimensions.

  4. Holographic currents in first order Gravity and finite Fefferman-Graham expansions

    International Nuclear Information System (INIS)

    Banados, Maximo; Miskovic, Olivera; Theisen, Stefan

    2006-01-01

    We study the holographic currents associated to Chern-Simons theories. We start with an example in three dimensions and find the holographic representations of vector and chiral currents reproducing the correct expression for the chiral anomaly. In five dimensions, Chern-Simons theory for AdS group describes first order gravity and we show that there exists a gauge fixing leading to a finite Fefferman-Graham expansion. We derive the corresponding holographic currents, namely, the stress tensor and spin current which couple to the metric and torsional degrees of freedom at the boundary, respectively. We obtain the correct Ward identities for these currents by looking at the bulk constraint equations

  5. Multiple normalized solutions for a planar gauged nonlinear Schrödinger equation

    Science.gov (United States)

    Luo, Xiao

    2018-06-01

    We study the existence, multiplicity, quantitative property and asymptotic behavior of normalized solutions for a gauged nonlinear Schrödinger equation arising from the Chern-Simons theory Δ u + ω u +|x|^2u+ λ ( {{h^2}(| x | )}/{{{| x | ^2}}} + \\int \\limits _{| x | }^{ + ∞} {{h(s)}/s} {u^2}(s)ds) u = {| u | ^{p - 2}}u,\\quad x\\in R^2, where ω \\in R, λ >0, p>4 and h(s) = 1/2\\int \\limits _0^s {r{u^2}(r)dr} . Combining constraint minimization method and minimax principle, we prove that the problem possesses at least two normalized solutions: One is a ground state and the other is an excited state. Furthermore, the asymptotic behavior and quantitative property of the ground state are analyzed.

  6. Topological field theory and surgery on three-manifolds

    International Nuclear Information System (INIS)

    Guadagnini, E.; Panicucci, S.

    1992-01-01

    The solution of the SU(2) quantum Chern-Simons field theory defined on a closed, connected and orientable three-manifold is presented. The vacuum expectation values of Wilson line operators, associated with framed links in a generic manifold, are computed in terms of the expectation values of the three-sphere. The method consists of using an operator realization of Dehn surgery. The rules, corresponding to the surgery instructions in the three-sphere, are derived and the three-manifold invariant defined by the Chern-Simons theory is constructed. Several examples are considered and explicit results are reported. (orig.)

  7. Temperature dependent anomalous statistics

    International Nuclear Information System (INIS)

    Das, A.; Panda, S.

    1991-07-01

    We show that the anomalous statistics which arises in 2 + 1 dimensional Chern-Simons gauge theories can become temperature dependent in the most natural way. We analyze and show that a statistic's changing phase transition can happen in these theories only as T → ∞. (author). 14 refs

  8. ADHM and the 4d quantum Hall effect

    Science.gov (United States)

    Barns-Graham, Alec; Dorey, Nick; Lohitsiri, Nakarin; Tong, David; Turner, Carl

    2018-04-01

    Yang-Mills instantons are solitonic particles in d = 4 + 1 dimensional gauge theories. We construct and analyse the quantum Hall states that arise when these particles are restricted to the lowest Landau level. We describe the ground state wavefunctions for both Abelian and non-Abelian quantum Hall states. Although our model is purely bosonic, we show that the excitations of this 4d quantum Hall state are governed by the Nekrasov partition function of a certain five dimensional supersymmetric gauge theory with Chern-Simons term. The partition function can also be interpreted as a variant of the Hilbert series of the instanton moduli space, counting holomorphic sections rather than holomorphic functions. It is known that the Hilbert series of the instanton moduli space can be rewritten using mirror symmetry of 3d gauge theories in terms of Coulomb branch variables. We generalise this approach to include the effect of a five dimensional Chern-Simons term. We demonstrate that the resulting Coulomb branch formula coincides with the corresponding Higgs branch Molien integral which, in turn, reproduces the standard formula for the Nekrasov partition function.

  9. Edge modes in the fractional quantum Hall effect without extra edge fermions

    Science.gov (United States)

    Lima, G. L. S.; Dias, S. A.

    2011-05-01

    We show that the Chern-Simons-Landau-Ginsburg theory that describes the quantum Hall effect on a bounded sample is anomaly free and thus does not require the addition of extra chiral fermions on the boundary to restore local gauge invariance.

  10. Solving topological field theories on mapping tori

    International Nuclear Information System (INIS)

    Blau, M.; Jermyn, I.; Thompson, G.

    1996-05-01

    Using gauge theory and functional integral methods, we derive concrete expressions for the partition functions of BF theory and the U(1 modul 1) model of Rozansky and Saleur on Σ x S 1 , both directly and using equivalent two-dimensional theories. We also derive the partition function on a certain non-abelian generalization of the U(1 modul 1) model on mapping tori and hence obtain explicit expressions for the Ray-Singer torsion on these manifolds. Extensions of these results to BF and Chern-Simons theories on mapping tori are also discussed. The topological field theory actions of the equivalent two- dimensional theories we find have the interesting property of depending explicitly on the diffeomorphism defining the mapping torus while the quantum field theory is sensitive only to its isomorphism class defining the mapping torus as a smooth manifold. (author). 20 refs

  11. Toward a proof of Montonen-Olive duality via multiple M2-branes

    International Nuclear Information System (INIS)

    Hashimoto, Koji; Tai, Ta-Sheng; Terashima, Seiji

    2009-01-01

    We derive 4-dimensional N = 4 U(N) supersymmetric Yang-Mills theory from a 3-dimensional Chern-Simons-matter theory with product gauge group (U(N)) 2n . The latter describes M2-branes probing an orbifold where a torus emerges in a scaling limit. It is expected that the SL(2,Z) duality of the 4-dimensional Yang-Mills theory will be shown in M-theory point of view since it is trivially realized as modular transformations of the torus. Indeed, starting from one single Chern-Simons-matter theory, we find infinitely many equivalent 4-dimensional theories differing up to T-transformation of the SL(2,Z) redefinition of the gauge coupling τ = θ/2π + 4πi/g 2 and a parity transformation in 4 dimensions. Although S-transformation can not be shown in our work, it is important that a part of the SL(2,Z) transformation is realized via the M2-brane action. Thus we think our work can be a step toward a proof of Montonen-Olive duality via M2-branes.

  12. Toward a proof of Montonen-Olive duality via multiple M2-branes

    Science.gov (United States)

    Hashimoto, Koji; Tai, Ta-Sheng; Terashima, Seiji

    2009-04-01

    We derive 4-dimensional Script N = 4 U(N) supersymmetric Yang-Mills theory from a 3-dimensional Chern-Simons-matter theory with product gauge group (U(N))2n. The latter describes M2-branes probing an orbifold where a torus emerges in a scaling limit. It is expected that the SL(2,Z) duality of the 4-dimensional Yang-Mills theory will be shown in M-theory point of view since it is trivially realized as modular transformations of the torus. Indeed, starting from one single Chern-Simons-matter theory, we find infinitely many equivalent 4-dimensional theories differing up to T-transformation of the SL(2,Z) redefinition of the gauge coupling τ = θ/2π + 4πi/g2 and a parity transformation in 4 dimensions. Although S-transformation can not be shown in our work, it is important that a part of the SL(2,Z) transformation is realized via the M2-brane action. Thus we think our work can be a step toward a proof of Montonen-Olive duality via M2-branes.

  13. (2 + 1)-dimensional interacting model of two massless spin-2 fields as a bi-gravity model

    Science.gov (United States)

    Hoseinzadeh, S.; Rezaei-Aghdam, A.

    2018-06-01

    We propose a new group-theoretical (Chern-Simons) formulation for the bi-metric theory of gravity in (2 + 1)-dimensional spacetime which describe two interacting massless spin-2 fields. Our model has been formulated in terms of two dreibeins rather than two metrics. We obtain our Chern-Simons gravity model by gauging mixed AdS-AdS Lie algebra and show that it has a two dimensional conformal field theory (CFT) at the boundary of the anti de Sitter (AdS) solution. We show that the central charge of the dual CFT is proportional to the mass of the AdS solution. We also study cosmological implications of our massless bi-gravity model.

  14. Linear supermultiplets and non-holomorphic gauge coupling functions

    International Nuclear Information System (INIS)

    Binetruy, P.; Grimm, R.; Girardi, G.

    1991-04-01

    The general couplings of linear multiplets, including Chern-Simons forms, to chiral matter as well as to the standard supergravity-matter system are constructed. Insisting on a canonically normalised Einstein term in particular the appearance of non-holomorphic gauge couplings are discussed and duality transformations in full generality are performed. The implications of these structures for the effective description of sigma model anomalies are presented with and without coupling to supergravity, following recent proposals of Derendinger, Ferrara, Kounnas and Zwirner and of Cardoso and Ovrut. (author) 14 refs

  15. Topological BF field theory description of topological insulators

    International Nuclear Information System (INIS)

    Cho, Gil Young; Moore, Joel E.

    2011-01-01

    Research highlights: → We show that a BF theory is the effective theory of 2D and 3D topological insulators. → The non-gauge-invariance of the bulk theory yields surface terms for a bosonized Dirac fermion. → The 'axion' term in electromagnetism is correctly obtained from gapped surfaces. → Generalizations to possible fractional phases are discussed in closing. - Abstract: Topological phases of matter are described universally by topological field theories in the same way that symmetry-breaking phases of matter are described by Landau-Ginzburg field theories. We propose that topological insulators in two and three dimensions are described by a version of abelian BF theory. For the two-dimensional topological insulator or quantum spin Hall state, this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the realization of this phase as paired integer quantum Hall effect states. The BF description can be motivated from the local excitations produced when a π flux is threaded through this state. For the three-dimensional topological insulator, the BF description is less obvious but quite versatile: it contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields 'axion electrodynamics', i.e., an electromagnetic E . B term, when time-reversal symmetry is broken and the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory allows one to obtain fractional quantum Hall states starting from integer states, BF theory could also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics of point-like and line-like objects.

  16. Refined 3d-3d correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; Loon, Mark van [Mathematical Institute, University of Oxford, Andrew Wiles Building,Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom)

    2017-04-28

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N=2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N=2 theories constructed from boundary conditions and interfaces in a 4d N=2{sup ∗} theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-’t Hooft loops in the 4d N=2{sup ∗} theory. In the presence of a mass parameter for the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  17. Soldering formalism in noncommutative field theory: a brief note

    International Nuclear Information System (INIS)

    Ghosh, Subir

    2004-01-01

    In this Letter, I develop the soldering formalism in a new domain--the noncommutative planar field theories. The soldering mechanism fuses two distinct theories showing opposite or complimentary properties of some symmetry, taking into account the interference effects. The above mentioned symmetry is hidden in the composite (or soldered) theory. In the present work it is shown that a pair of noncommutative Maxwell-Chern-Simons theories, having opposite signs in their respective topological terms, can be consistently soldered to yield the Proca model (Maxwell theory with a mass term) with corrections that are at least quadratic in the noncommutativity parameter. We further argue that this model can be thought of as the noncommutative generalization of the Proca theory of ordinary spacetime. It is well known that abelian noncommutative gauge theory bears a close structural similarity with non-abelian gauge theory. This fact is manifested in a non-trivial way if the present Letter is compared with existing literature, where soldering of non-abelian models are discussed. Thus the present work further establishes the robustness of the soldering programme. The subtle role played by gauge invariance (or the lack of it), in the above soldering process, is revealed in an interesting way

  18. Gauge theories

    International Nuclear Information System (INIS)

    Lee, B.W.

    1976-01-01

    Some introductory remarks to Yang-Mills fields are given and the problem of the Coulomb gauge is considered. The perturbation expansion for quantized gauge theories is discussed and a survey of renormalization schemes is made. The role of Ward-Takahashi identities in gauge theories is discussed. The author then discusses the renormalization of pure gauge theories and theories with spontaneously broken symmetry. (B.R.H.)

  19. Cosmological Analysis of Dynamical Chern-Simons Modified Gravity via Dark Energy Scenario

    Directory of Open Access Journals (Sweden)

    Abdul Jawad

    2015-01-01

    Full Text Available The purpose of this paper is to study the cosmological evolution of the universe in the framework of dynamical Chern-Simons modified gravity. We take pilgrim dark energy model with Hubble and event horizons in interacting scenario with cold dark matter. For this scenario, we discuss cosmological parameters such as Hubble and equation of state and cosmological plane like ωϑ-ωϑ′ and squared speed of sound. It is found that Hubble parameter approaches the ranges 75-0.5+0.5 (for u=2 and (74, 74.30 (for u=1,-1,-2 for Hubble horizon pilgrim dark energy. It implies the ranges 74.80-0.005+0.005 (for u=2 and (73.4, 74 (for u=-2 for event horizon pilgrim dark energy. The equation of state parameter provides consistent ranges with different observational schemes. Also, ωϑ-ωϑ′ planes lie in the range (ωϑ=-1.13-0.25+0.24,ωϑ′<1.32. The squared speed of sound shows stability for all present models in the present scenario. We would like to mention here that our results of various cosmological parameters show consistency with different observational data like Planck, WP, BAO, H0, SNLS, and WMAP.

  20. The Chern-Simons current in time series of knots and links in proteins

    Science.gov (United States)

    Capozziello, Salvatore; Pincak, Richard

    2018-06-01

    A superspace model of knots and links for DNA time series data is proposed to take into account the feedback loop from docking to undocking state of protein-protein interactions. In particular, the direction of interactions between the 8 hidden states of DNA is considered. It is a E8 ×E8 unified spin model where the genotype, from active and inactive side of DNA time data series, can be considered for any living organism. The mathematical model is borrowed from loop-quantum gravity and adapted to biology. It is used to derive equations for gene expression describing transitions from ground to excited states, and for the 8 coupling states between geneon and anti-geneon transposon and retrotransposon in trash DNA. Specifically, we adopt a modified Grothendieck cohomology and a modified Khovanov cohomology for biology. The result is a Chern-Simons current in (8 + 3) extradimensions of a given unoriented supermanifold with ghost fields of protein structures. The 8 dimensions come from the 8 hidden states of spinor field of genetic code. The extradimensions come from the 3 types of principle fiber bundle in the secondary protein.

  1. Entanglement entropy and the colored Jones polynomial

    Science.gov (United States)

    Balasubramanian, Vijay; DeCross, Matthew; Fliss, Jackson; Kar, Arjun; Leigh, Robert G.; Parrikar, Onkar

    2018-05-01

    We study the multi-party entanglement structure of states in Chern-Simons theory created by performing the path integral on 3-manifolds with linked torus boundaries, called link complements. For gauge group SU(2), the wavefunctions of these states (in a particular basis) are the colored Jones polynomials of the corresponding links. We first review the case of U(1) Chern-Simons theory where these are stabilizer states, a fact we use to re-derive an explicit formula for the entanglement entropy across a general link bipartition. We then present the following results for SU(2) Chern-Simons theory: (i) The entanglement entropy for a bipartition of a link gives a lower bound on the genus of surfaces in the ambient S 3 separating the two sublinks. (ii) All torus links (namely, links which can be drawn on the surface of a torus) have a GHZ-like entanglement structure — i.e., partial traces leave a separable state. By contrast, through explicit computation, we test in many examples that hyperbolic links (namely, links whose complements admit hyperbolic structures) have W-like entanglement — i.e., partial traces leave a non-separable state. (iii) Finally, we consider hyperbolic links in the complexified SL(2,C) Chern-Simons theory, which is closely related to 3d Einstein gravity with a negative cosmological constant. In the limit of small Newton constant, we discuss how the entanglement structure is controlled by the Neumann-Zagier potential on the moduli space of hyperbolic structures on the link complement.

  2. Symmetric Space Cartan Connections and Gravity in Three and Four Dimensions

    Directory of Open Access Journals (Sweden)

    Derek K. Wise

    2009-08-01

    Full Text Available Einstein gravity in both 3 and 4 dimensions, as well as some interesting generalizations, can be written as gauge theories in which the connection is a Cartan connection for geometry modeled on a symmetric space. The relevant models in 3 dimensions include Einstein gravity in Chern-Simons form, as well as a new formulation of topologically massive gravity, with arbitrary cosmological constant, as a single constrained Chern-Simons action. In 4 dimensions the main model of interest is MacDowell-Mansouri gravity, generalized to include the Immirzi parameter in a natural way. I formulate these theories in Cartan geometric language, emphasizing also the role played by the symmetric space structure of the model. I also explain how, from the perspective of these Cartan-geometric formulations, both the topological mass in 3d and the Immirzi parameter in 4d are the result of non-simplicity of the Lorentz Lie algebra so(3,1 and its relatives. Finally, I suggest how the language of Cartan geometry provides a guiding principle for elegantly reformulating any 'gauge theory of geometry'.

  3. The Topological Structure of the SU(2) Chern–Simons Topological Current in the Four-Dimensional Quantum Hall Effect

    International Nuclear Information System (INIS)

    Xiu-Ming, Zhang; Yi-Shi, Duan

    2010-01-01

    In the light of the decomposition of the SU(2) gauge potential for I = 1/2, we obtain the SU(2) Chern-Simons current over S 4 , i.e. the vortex current in the effective field for the four-dimensional quantum Hall effect. Similar to the vortex excitations in the two-dimensional quantum Hall effect (2D FQH) which are generated from the zero points of the complex scalar field, in the 4D FQH, we show that the SU(2) Chern–Simons vortices are generated from the zero points of the two-component wave functions Ψ, and their topological charges are quantized in terms of the Hopf indices and Brouwer degrees of φ-mapping under the condition that the zero points of field Ψ are regular points. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  4. Mathematical aspects of quantum field theories

    CERN Document Server

    Strobl, Thomas

    2015-01-01

    Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...

  5. Line operators in theories of class S, quantized moduli space of flat connections, and Toda field theory

    International Nuclear Information System (INIS)

    Coman, Ioana; Teschner, Joerg

    2015-05-01

    Non-perturbative aspects of N=2 supersymmetric gauge theories of class S are deeply encoded in the algebra of functions on the moduli space M flat of at SL(N)-connections on Riemann surfaces. Expectation values of Wilson and 't Hooft line operators are related to holonomies of flat connections, and expectation values of line operators in the low-energy effective theory are related to Fock-Goncharov coordinates on M flat . Via the decomposition of UV line operators into IR line operators, we determine their noncommutative algebra from the quantization of Fock-Goncharov Laurent polynomials, and find that it coincides with the skein algebra studied in the context of Chern-Simons theory. Another realization of the skein algebra is generated by Verlinde network operators in Toda field theory. Comparing the spectra of these two realizations provides non-trivial support for their equivalence. Our results can be viewed as evidence for the generalization of the AGT correspondence to higher-rank class S theories.

  6. Gauge-preheating and the end of axion inflation

    Energy Technology Data Exchange (ETDEWEB)

    Adshead, Peter; Sfakianakis, Evangelos I. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States); Giblin, John T. Jr.; Scully, Timothy R., E-mail: adshead@illinois.edu, E-mail: giblinj@kenyon.edu, E-mail: tscully2@illinois.edu, E-mail: esfaki@illinois.edu [Department of Physics, Kenyon College, 201 North College Rd, Gambier, Ohio 43022 (United States)

    2015-12-01

    We study the onset of the reheating epoch at the end of axion-driven inflation where the axion is coupled to an Abelian, U(1), gauge field via a Chern-Simons interaction term. We focus primarily on m{sup 2φ2} inflation and explore the possibility that preheating can occur for a range of coupling values consistent with recent observations and bounds on the overproduction of primordial black holes. We find that for a wide range of parameters preheating is efficient. In certain cases the inflaton transfers all of its energy to the gauge fields within a few oscillations. In most cases, we find that the gauge fields on sub-horizon scales end preheating in an unpolarized state due to the existence of strong rescattering between the inflaton and gauge-field modes. We also present a preliminary study of an axion monodromy model coupled to U(1) gauge fields, seeing a similarly efficient preheating behavior as well as indications that the coupling strength has an effect on the creation of oscillons.

  7. Gauge-preheating and the end of axion inflation

    International Nuclear Information System (INIS)

    Adshead, Peter; Sfakianakis, Evangelos I.; Giblin, John T. Jr.; Scully, Timothy R.

    2015-01-01

    We study the onset of the reheating epoch at the end of axion-driven inflation where the axion is coupled to an Abelian, U(1), gauge field via a Chern-Simons interaction term. We focus primarily on m 2φ2 inflation and explore the possibility that preheating can occur for a range of coupling values consistent with recent observations and bounds on the overproduction of primordial black holes. We find that for a wide range of parameters preheating is efficient. In certain cases the inflaton transfers all of its energy to the gauge fields within a few oscillations. In most cases, we find that the gauge fields on sub-horizon scales end preheating in an unpolarized state due to the existence of strong rescattering between the inflaton and gauge-field modes. We also present a preliminary study of an axion monodromy model coupled to U(1) gauge fields, seeing a similarly efficient preheating behavior as well as indications that the coupling strength has an effect on the creation of oscillons

  8. On the conformal higher spin unfolded equation for a three-dimensional self-interacting scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Bengt E.W. [Fundamental Physics, Chalmers University of Technology,SE-412 96 Göteborg (Sweden)

    2016-08-24

    We propose field equations for the conformal higher spin system in three dimensions coupled to a conformal scalar field with a sixth order potential. Both the higher spin equation and the unfolded equation for the scalar field have source terms and are based on a conformal higher spin algebra which we treat as an expansion in multi-commutators. Explicit expressions for the source terms are suggested and subjected to some simple tests. We also discuss a cascading relation between the Chern-Simons action for the higher spin gauge theory and an action containing a term for each spin that generalizes the spin 2 Chern-Simons action in terms of the spin connection expressed in terms of the frame field. This cascading property is demonstrated in the free theory for spin 3 but should work also in the complete higher spin theory.

  9. Research in particle theory

    International Nuclear Information System (INIS)

    Mansouri, F.; Suranyi, P; Wijewardhana, L.C.R.

    1991-10-01

    In the test particle approximation, the scattering amplitude for two-particle scattering in (2+1)-dimensional Chern-Simons-Witten gravity and supergravity was computed and compared to the corresponding metric solutions. The formalism was then extended to the exact gauge theoretic treatment of the two-particle scattering problem and compared to 't Hooft's results from the metric approach. We have studied dynamical symmetry breaking in 2+1 dimensional field theories. We have analyzed strong Extended Technicolor (ETC) models where the ETC coupling is close to a critical value. There are effective scalar fields in each of the theories. We have worked our how such scalar particles can be produced and how they decay. The φ 4 field theory was investigated in the Schrodinger representation. The critical behavior was extracted in an arbitrary number of dimensions in second order of a systematic truncation approximation. The correlation exponent agrees with known values within a few percent

  10. Exact results for N=2 supersymmetric gauge theories on compact toric manifolds and equivariant Donaldson invariants

    International Nuclear Information System (INIS)

    Bershtein, Mikhail; Bonelli, Giulio; Ronzani, Massimiliano; Tanzini, Alessandro

    2016-01-01

    We provide a contour integral formula for the exact partition function of N=2 supersymmetric U(N) gauge theories on compact toric four-manifolds by means of supersymmetric localisation. We perform the explicit evaluation of the contour integral for U(2) N=2"∗ theory on ℙ"2 for all instanton numbers. In the zero mass case, corresponding to the N=4 supersymmetric gauge theory, we obtain the generating function of the Euler characteristics of instanton moduli spaces in terms of mock-modular forms. In the decoupling limit of infinite mass we find that the generating function of local and surface observables computes equivariant Donaldson invariants, thus proving in this case a long-standing conjecture by N. Nekrasov. In the case of vanishing first Chern class the resulting equivariant Donaldson polynomials are new.

  11. Low dimensional field theories and condensed matter physics

    International Nuclear Information System (INIS)

    Nagaoka, Yosuke

    1992-01-01

    This issue is devoted to the Proceedings of the Fourth Yukawa International Seminar (YKIS '91) on Low Dimensional Field Theories and Condensed Matter Physics, which was held on July 28 to August 3 in Kyoto. In recent years there have been great experimental discoveries in the field of condensed matter physics: the quantum Hall effect and the high temperature superconductivity. Theoretical effort to clarify mechanisms of these phenomena revealed that they are deeply related to the basic problem of many-body systems with strong correlation. On the other hand, there have been important developments in field theory in low dimensions: the conformal field theory, the Chern-Simons gauge theory, etc. It was found that these theories work as a powerful method of approach to the problems in condensed matter physics. YKIS '91 was devoted to the study of common problems in low dimensional field theories and condensed matter physics. The 17 of the presented papers are collected in this issue. (J.P.N.)

  12. Asymptotic symmetries, holography and topological hair

    Science.gov (United States)

    Mishra, Rashmish K.; Sundrum, Raman

    2018-01-01

    Asymptotic symmetries of AdS4 quantum gravity and gauge theory are derived by coupling the holographically dual CFT3 to Chern-Simons gauge theory and 3D gravity in a "probe" (large-level) limit. Despite the fact that the three-dimensional AdS4 boundary as a whole is consistent with only finite-dimensional asymptotic symmetries, given by AdS isometries, infinite-dimensional symmetries are shown to arise in circumstances where one is restricted to boundary subspaces with effectively two-dimensional geometry. A canonical example of such a restriction occurs within the 4D subregion described by a Wheeler-DeWitt wavefunctional of AdS4 quantum gravity. An AdS4 analog of Minkowski "super-rotation" asymptotic symmetry is probed by 3D Einstein gravity, yielding CFT2 structure (in a large central charge limit), via AdS3 foliation of AdS4 and the AdS3/CFT2 correspondence. The maximal asymptotic symmetry is however probed by 3D conformal gravity. Both 3D gravities have Chern-Simons formulation, manifesting their topological character. Chern-Simons structure is also shown to be emergent in the Poincare patch of AdS4, as soft/boundary limits of 4D gauge theory, rather than "put in by hand" as an external probe. This results in a finite effective Chern-Simons level. Several of the considerations of asymptotic symmetry structure are found to be simpler for AdS4 than for Mink4, such as non-zero 4D particle masses, 4D non-perturbative "hard" effects, and consistency with unitarity. The last of these in particular is greatly simplified because in some set-ups the time dimension is explicitly shared by each level of description: Lorentzian AdS4, CFT3 and CFT2. Relatedly, the CFT2 structure clarifies the sense in which the infinite asymptotic charges constitute a useful form of "hair" for black holes and other complex 4D states. An AdS4 analog of Minkowski "memory" effects is derived, but with late-time memory of earlier events being replaced by (holographic) "shadow" effects. Lessons

  13. Explicitly broken supersymmetry with exactly massless moduli

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xi [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Freedman, Daniel Z. [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Center for Theoretical Physics and Department of Mathematics,Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Zhao, Yue [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-06-16

    The AdS/CFT correspondence is applied to an analogue of the little hierarchy problem in three-dimensional supersymmetric theories. The bulk is governed by a supergravity theory in which a U(1) × U(1) R-symmetry is gauged by Chern-Simons fields. The bulk theory is deformed by a boundary term quadratic in the gauge fields. It breaks SUSY completely and sources an exactly marginal operator in the dual CFT. SUSY breaking is communicated by gauge interactions to bulk scalar fields and their spinor superpartners. The bulk-to-boundary propagator of the Chern-Simons fields is a total derivative with respect to the bulk coordinates. Integration by parts and the Ward identity permit evaluation of SUSY breaking effects to all orders in the strength of the deformation. The R-charges of scalars and spinors differ so large SUSY breaking mass shifts are generated. Masses of R-neutral particles such as scalar moduli are not shifted to any order in the deformation strength, despite the fact that they may couple to R-charged fields running in loops. We also obtain a universal deformation formula for correlation functions under an exactly marginal deformation by a product of holomorphic and anti-holomorphic U(1) currents.

  14. Gauge theories

    International Nuclear Information System (INIS)

    Kenyon, I.R.

    1986-01-01

    Modern theories of the interactions between fundamental particles are all gauge theories. In the case of gravitation, application of this principle to space-time leads to Einstein's theory of general relativity. All the other interactions involve the application of the gauge principle to internal spaces. Electromagnetism serves to introduce the idea of a gauge field, in this case the electromagnetic field. The next example, the strong force, shows unique features at long and short range which have their origin in the self-coupling of the gauge fields. Finally the unification of the description of the superficially dissimilar electromagnetic and weak nuclear forces completes the picture of successes of the gauge principle. (author)

  15. 2+1 topological term, anyons and their possible application in high Tc superconductivity

    International Nuclear Information System (INIS)

    Zhu Chuanjie.

    1990-01-01

    I review pedagogically some aspects about the SO(3) non-linear σ-model and the topological Hopf term (or the abelian Chern-Simons term). I argue that the presence of the topological Chern-Simons term is irrelevant (for regular gauge field configurations). I also give a brief introduction to the ideal anyon gas approach to high T c superconductivity. (author). 18 refs

  16. Higher spin resolution of a toy big bang

    Science.gov (United States)

    Krishnan, Chethan; Roy, Shubho

    2013-08-01

    Diffeomorphisms preserve spacetime singularities, whereas higher spin symmetries need not. Since three-dimensional de Sitter space has quotients that have big-bang/big-crunch singularities and since dS3-gravity can be written as an SL(2,C) Chern-Simons theory, we investigate SL(3,C) Chern-Simons theory as a higher-spin context in which these singularities might get resolved. As in the case of higher spin black holes in AdS3, the solutions are invariantly characterized by their holonomies. We show that the dS3 quotient singularity can be desingularized by an SL(3,C) gauge transformation that preserves the holonomy: this is a higher spin resolution the cosmological singularity. Our work deals exclusively with the bulk theory, and is independent of the subtleties involved in defining a CFT2 dual to dS3 in the sense of dS/CFT.

  17. A topologically twisted index for three-dimensional supersymmetric theories

    International Nuclear Information System (INIS)

    Benini, Francesco; Zaffaroni, Alberto

    2015-01-01

    We provide a general formula for the partition function of three-dimensional N=2 gauge theories placed on S 2 ×S 1 with a topological twist along S 2 , which can be interpreted as an index for chiral states of the theories immersed in background magnetic fields. The result is expressed as a sum over magnetic fluxes of the residues of a meromorphic form which is a function of the scalar zero-modes. The partition function depends on a collection of background magnetic fluxes and fugacities for the global symmetries. We illustrate our formula in many examples of 3d Yang-Mills-Chern-Simons theories with matter, including Aharony and Giveon-Kutasov dualities. Finally, our formula generalizes to Ω-backgrounds, as well as two-dimensional theories on S 2 and four-dimensional theories on S 2 ×T 2 . In particular this provides an alternative way to compute genus-zero A-model topological amplitudes and Gromov-Witten invariants.

  18. Lattice gauge theory

    International Nuclear Information System (INIS)

    Mack, G.

    1982-01-01

    After a description of a pure Yang-Mills theory on a lattice, the author considers a three-dimensional pure U(1) lattice gauge theory. Thereafter he discusses the exact relation between lattice gauge theories with the gauge groups SU(2) and SO(3). Finally he presents Monte Carlo data on phase transitions in SU(2) and SO(3) lattice gauge models. (HSI)

  19. Ghost free dual vector theories in 2+1 dimensions

    International Nuclear Information System (INIS)

    Dalmazi, Denis

    2006-01-01

    We explore here the issue of duality versus spectrum equivalence in dual theories generated through the master action approach. Specifically we examine a generalized self-dual (GSD) model where a Maxwell term is added to the self-dual model. A gauge embedding procedure applied to the GSD model leads to a Maxwell-Chern-Simons (MCS) theory with higher derivatives. We show here that the latter contains a ghost mode contrary to the original GSD model. By figuring out the origin of the ghost we are able to suggest a new master action which interpolates between the local GSD model and a nonlocal MCS model. Those models share the same spectrum and are ghost free. Furthermore, there is a dual map between both theories at classical level which survives quantum correlation functions up to contact terms. The remarks made here may be relevant for other applications of the master action approach

  20. The role of the anomaly cancellation mechanism in the evaluation of the radiatively induced Chern-Simons term in extended QED

    International Nuclear Information System (INIS)

    Battistel, O.A.; Dallabona, G.

    2004-01-01

    We consider the possible role played by the anomaly cancellation mechanism in the evaluation of the radiatively induced Chern-Simons (CS) term, arising from the Lorentz and CPT non-invariant fermionic sector, of an extended version of QED. We explicit evaluate the most general mathematical structure associated to the AVV triangle amplitude, closely related to the one involved in the CS term evaluation, using for this purposes an alternative calculational strategy to handle divergences in QFT's. We show that the requirement of consistency with the choices made in the construction of the Standard Model's renormalizability, in the evaluation of the AVV Green function, leave no room for a nonvanishing radiatively induced CS term, independently of the regularization prescription or equivalent philosophy adopted, in accordance with what was previously conjectured by other authors. (orig.)

  1. Nonlocal gauge theories

    International Nuclear Information System (INIS)

    Krasnikov, N.V.

    1987-01-01

    Nonlocal gauge theories including gravity are considered. It is shown that the introduction of the additional nonlocal interaction makes γ 5 -anomalous theories meaningful. The introduction of such interaction leads to macrocausal unitary theory, which describes the interaction of massive vector fields with fermion fields. It is shown that nonlocal gauge theories with nonlocal scale Λ nl ≤(1-10) TeV can solve the gauge hierarchy problem. An example of nonlinear grand unified gauge model in which topologically nontrivial finite energy monopole solutions are absent is found

  2. Comments on Dirac-like monopole, Maxwell and Maxwell-Chern-Simons electrodynamics in D=(2+1)

    Energy Technology Data Exchange (ETDEWEB)

    Moura-Melo, Winder A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: winder@cbpf.br; Helayel Neto, J.A. [Universidade Catolica de Petropolis, RJ (Brazil). Grupo de Fisica Teorica. E-mail: helayel@cbpf.br

    2000-05-01

    Classical Maxwell and Maxwell-Chern-Simons Electrodynamics in (2+1) D are studied in some details. General expressions for the potential and fields are obtained for both models, and some particular cases are explicitly solved. Conceptual and technical difficulties arise, however, for accelerated charges. The propagation of electromagnetic signals is also studied and their reverberation is worked out and discussed. Furthermore, we show that a Dirac-like monopole yields a (static) tangential electric field. We also discuss some classical and quantum consequences of the field created by such a monopole when acting upon an usual electric charge. In particular, we show that at large distances, the dynamics of one single charged particle under the action of such a potential and a constant (external) magnetic field as well, reduces to that of one central harmonic oscillator, presenting, however, an interesting angular sector which admits energy-eigenvalues. For example, the quantisation of these eigenvalues yields a Dirac-like condition on the product of the charges. Moreover, such eigenvalues are shown to feel (and respond) to discrete shift of the angle variable. We also raise the question on the possibility of the formation pf bound states in this system. (author)

  3. Topological insulators and superconductors from string theory

    International Nuclear Information System (INIS)

    Ryu, Shinsei; Takayanagi, Tadashi

    2010-01-01

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  4. Group quantization on configuration space: Gauge symmetries and linear fields

    International Nuclear Information System (INIS)

    Navarro, M.; Aldaya, V.; Calixto, M.

    1997-01-01

    A new, configuration-space picture of a formalism of group quantization, the GAQ formalism, is presented in the context of a previous algebraic generalization. This presentation serves to make a comprehensive discussion in which other extensions of the formalism, principally to incorporate gauge symmetries, are developed as well. Both images are combined in order to analyze, in a systematic manner and with complete generality, the case of linear fields (Abelian current groups). To illustrate these developments we particularize them for several fields and, in particular, we carry out the quantization of the Abelian Chern endash Simons models over an arbitrary closed surface in detail. copyright 1997 American Institute of Physics

  5. Gravity/Fluid Correspondence and Its Application on Bulk Gravity with U(1) Gauge Field

    International Nuclear Information System (INIS)

    Hu, Ya-Peng; Zhang, Jian-Hui

    2014-01-01

    As the long wavelength limit of the AdS/CFT correspondence, the gravity/fluid correspondence has been shown to be a useful tool for extracting properties of the fluid on the boundary dual to the gravity in the bulk. In this paper, after briefly reviewing the algorithm of gravity/fluid correspondence, we discuss the results of its application on bulk gravity with a U(1) gauge field. In the presence of a U(1) gauge field, the dual fluid possesses more interesting properties such as its charge current. Furthermore, an external field A_μ"e"x"t could affect the charge current, and the U(1) Chern-Simons term also induces extra structures to the dual current giving anomalous transport coefficients.

  6. A new gauge for supersymmetric abelian gauge theories

    International Nuclear Information System (INIS)

    Smith, A.W.; Barcelos Neto, J.

    1984-01-01

    A new gauge for supersymmetric abelian gauge theories is presented. It is shown that this new gauge allows us to obtain terms which usually come as radiative corrections to the supersymmetric abelian gauge theories when one uses the Wess-Zumino gauge. (Author) [pt

  7. Nonlocal gauge theories

    International Nuclear Information System (INIS)

    Partovi, M.H.

    1982-01-01

    From a generalization of the covariant derivative, nonlocal gauge theories are developed. These theories enjoy local gauge invariance and associated Ward identities, a corresponding locally conserved current, and a locally conserved energy-momentum tensor, with the Ward identities implying the masslessness of the gauge field as in local theories. Their ultraviolet behavior allows the presence as well as the absence of the Adler-Bell-Jackiw anomaly, the latter in analogy with lattice theories

  8. Topics in field theory-higher spins, CFT, and gravity

    International Nuclear Information System (INIS)

    Yang, Z.

    1990-01-01

    Several topics in field theory are investigated. (1) Massive higher spin actions are obtained as gauge theories from the dimensional reduction of the corresponding massless ones. (2) The author considers a model of spin4 and spin2 interaction through the Bel-Robinson tensor of spin2 field, which in conserved at free level. The coupling is inconsistent, yet there are indications that adding still higher spin couplings would be a promising direction to achieve consistency. (3) Energy and Stability of Einstein-Gauss-Bonnet models of gravity are studied. It is shown that flat space is stable while AdS is not. (4) Gauged Wess-Zumino-Witten models are studied in detail. The equivalence to GKO construction of conformal field theory is considered. BRST quantization of the models is given. (5) Nonrenormalizability of quantum gravity is, in the binomial first order metric formulation, traced to a mismatch between the symmetries of its quadratic and cubic term. (6) The possibility that the gravitational model defined in D = 3 by an action which is the sum of Einstein and Chern-Simons terms is a viable quantum theory is investigated. It is shown that it is compatible with power-counting renormalizability. Gauge invariant regularizations, however, have not been found to exist. Detailed BRS analysis shows that there are possible anomalies

  9. 4D scattering amplitudes and asymptotic symmetries from 2D CFT

    Science.gov (United States)

    Cheung, Clifford; de la Fuente, Anton; Sundrum, Raman

    2017-01-01

    We reformulate the scattering amplitudes of 4D flat space gauge theory and gravity in the language of a 2D CFT on the celestial sphere. The resulting CFT structure exhibits an OPE constructed from 4D collinear singularities, as well as infinite-dimensional Kac-Moody and Virasoro algebras encoding the asymptotic symmetries of 4D flat space. We derive these results by recasting 4D dynamics in terms of a convenient foliation of flat space into 3D Euclidean AdS and Lorentzian dS geometries. Tree-level scattering amplitudes take the form of Witten diagrams for a continuum of (A)dS modes, which are in turn equivalent to CFT correlators via the (A)dS/CFT dictionary. The Ward identities for the 2D conserved currents are dual to 4D soft theorems, while the bulk-boundary propagators of massless (A)dS modes are superpositions of the leading and subleading Weinberg soft factors of gauge theory and gravity. In general, the massless (A)dS modes are 3D Chern-Simons gauge fields describing the soft, single helicity sectors of 4D gauge theory and gravity. Consistent with the topological nature of Chern-Simons theory, Aharonov-Bohm effects record the "tracks" of hard particles in the soft radiation, leading to a simple characterization of gauge and gravitational memories. Soft particle exchanges between hard processes define the Kac-Moody level and Virasoro central charge, which are thereby related to the 4D gauge coupling and gravitational strength in units of an infrared cutoff. Finally, we discuss a toy model for black hole horizons via a restriction to the Rindler region.

  10. Mixed symmetry tensors in the worldline formalism

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Olindo [Dipartimento di Scienze Fisiche, Informatiche e Matematiche,Università degli Studi di Modena e Reggio Emilia, via Campi 213/A, I-41125 Modena (Italy); INFN - Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Edwards, James P. [Department of Mathematical Sciences, University of Bath,Claverton Down, Bath BA2 7AY (United Kingdom)

    2016-05-10

    We consider the first quantised approach to quantum field theory coupled to a non-Abelian gauge field. Representing the colour degrees of freedom with a single family of auxiliary variables the matter field transforms in a reducible representation of the gauge group which — by adding a suitable Chern-Simons term to the particle action — can be projected onto a chosen fully (anti-)symmetric representation. By considering F families of auxiliary variables, we describe how to extend the model to arbitrary tensor products of F reducible representations, which realises a U(F) “flavour” symmetry on the worldline particle model. Gauging this symmetry allows the introduction of constraints on the Hilbert space of the colour fields which can be used to project onto an arbitrary irreducible representation, specified by a certain Young tableau. In particular the occupation numbers of the wavefunction — i.e. the lengths of the columns (rows) of the Young tableau — are fixed through the introduction of Chern-Simons terms. We verify this projection by calculating the number of colour degrees of freedom associated to the matter field. We suggest that, using the worldline approach to quantum field theory, this mechanism will allow the calculation of one-loop scattering amplitudes with the virtual particle in an arbitrary representation of the gauge group.

  11. Book Review:

    Science.gov (United States)

    Walcher, J.

    2006-10-01

    This book is a find. Mariño meets the challenge of filling in less than 200 pages the need for an accessible review of topological gauge / gravity duality. He is one of the pioneers of the subject and a clear expositor. It is no surprise that reading this book is a great pleasure. The existence of dualities between gauge theories and theories of gravity remains one of the most surprising recent discoveries in mathematical physics. While it is probably fair to say that we do not yet understand the full reach of such a relation, the impressive amount of evidence that has accumulated over the past years can be regarded as a substitute for a proof, and will certainly help to delineate the question of what is the most fundamental quantum mechanical theory. As has been the case in the past, it is in the context of Witten's 'topological' quantum theories that the mathematical framework is well enough established to firmly ground, and fully benefit from, the development of the physical theories. This book makes an important contribution to this new chapter in the math / physics interaction. There are two main instances of topological gauge/gravity duality. In the A-model, Chern Simons gauge theory on the 3-sphere is related to the closed topological string theory on the local Calabi Yau 3-fold {\\mathcal O}_{{\\mathbb P}^1}(-1) \\oplus{\\mathcal O}_{{\\mathbb P}^1} (-1), also known as the resolved conifold (Gopakumar-Vafa duality). In the B-model, certain types of matrix models are related on the gravity side to topological strings on certain cousins of the deformed conifold (Dijkgraaf-Vafa duality). In both cases, and similarly to the more physical AdS/CFT correspondence, the duality can be discovered by realizing the gauge theory as the target space theory of open strings ending on particular D-branes in a geometry closely related to the closed string background of the gravity theory. The A-branes supporting Chern Simons theory are wrapped on the Lagrangian three

  12. Equivalence of two-dimensional gravities

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-01-01

    The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given

  13. Entanglement entropy and higher spin holography in AdS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Jan de; Jottar, Juan I. [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, Postbus 94485, 1090 GL Amsterdam (Netherlands)

    2014-04-14

    A holographic correspondence has been recently developed between higher spin theories in three-dimensional anti-de Sitter space (AdS{sub 3}) and two-dimensional Conformal Field Theories (CFTs) with extended symmetries. A class of such dualities involves SL(N,R)×SL(N,R) Chern-Simons gauge theories in the (2+1)-dimensional bulk spacetime, and CFTs with W{sub N} symmetry algebras on the (1+1)-dimensional boundary. The topological character of the bulk theory forces one to reconsider standard geometric notions such as black hole horizons and entropy, as well as the usual holographic dictionary. Motivated by this challenge, in this note we present a proposal to compute entanglement entropy in the W{sub N} CFTs via holographic methods. In particular, we introduce a functional constructed from Wilson lines in the bulk Chern-Simons theory that captures the entanglement entropy in the CFTs dual to standard AdS{sub 3} gravity, corresponding to SL(2,R)×SL(2,R) gauge group, and admits an immediate generalization to the higher spin case. We explicitly evaluate this functional for several known solutions of the bulk theory, including charged black holes dual to thermal CFT states carrying higher spin charge, and show that it reproduces expected features of entanglement entropy, study whether it obeys strong subadditivity, and moreover show that it reduces to the thermal entropy in the appropriate limit.

  14. Topological Field Theory of Time-Reversal Invariant Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  15. Nambu–Poisson gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Jurčo, Branislav, E-mail: jurco@karlin.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Mathematical Institute, Prague 186 75 (Czech Republic); Schupp, Peter, E-mail: p.schupp@jacobs-university.de [Jacobs University Bremen, 28759 Bremen (Germany); Vysoký, Jan, E-mail: vysokjan@fjfi.cvut.cz [Jacobs University Bremen, 28759 Bremen (Germany); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague 115 19 (Czech Republic)

    2014-06-02

    We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.

  16. Nambu–Poisson gauge theory

    International Nuclear Information System (INIS)

    Jurčo, Branislav; Schupp, Peter; Vysoký, Jan

    2014-01-01

    We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.

  17. Chemical potentials in gauge theories

    International Nuclear Information System (INIS)

    Actor, A.; Pennsylvania State Univ., Fogelsville

    1985-01-01

    One-loop calculations of the thermodynamic potential Ω are presented for temperature gauge and non-gauge theories. Prototypical formulae are derived which give Ω as a function of both (i) boson and/or fermion chemical potential, and in the case of gauge theories (ii) the thermal vacuum parameter Asub(O)=const (Asub(μ) is the euclidean gauge potential). From these basic abelian gauge theory formulae, the one-loop contribution to Ω can readily be constructed for Yang-Mills theories, and also for non-gauge theories. (orig.)

  18. On superwistor geometry and integrability in super gauge theory

    International Nuclear Information System (INIS)

    Wolf, M.

    2006-01-01

    In this thesis, we report on different aspects of intgrability in supersymmetric gauge theories. Our main tool of investigation is supertwistor geometry. In the first chapter, we briefly review the basics of twistor geometry. Afterwards, we discuss self-dual super Yang-Mills (SYM) theory and some of its relatives. In particular, a detailed twistor description of self-dual SYM theory is presented. Furthermore, we introduce certain self-dual models which are, in fact, obtainable from self-dual SYM theory by a suitable reduction. Some of them can be interpreted within the context of topological field theories. To provide a twistor description of these models, we propose weighted projective superspaces as twistor space. These spaces turn out to be Calabi-Yau supermanifolds. Therefore, it is possible to write down approriate action princuples, as well. In chapter three, we then deal with the twistor formulation of a certain supersymmetric Bogomolnyi model in three space-time dimensions. The nonsupersymmetric version of this model describes static Yang-Mills-Higgs monopoles in the Prasad-Sommerfield limit. In particular, we consider a supersymmetric extension of mini-twistor space. This space is in turn a part of a certain doubble fibration. It is then possible to formulate a Chern-Simons type theory on the correspondence space of this fibration. As we explain, this theory describes partially holomorphic vector bundles. It should be noticed that the correspondence space can be equipped with a Cauchy-Riemann structure. Moreover, we formulate holomorphic BF theory on mini-supertwistor space. e then prove that the moduli spaces of all three theories are bijective. In addition, complex structure deformations on mini-supertwistor space are investigated eventually resulting in a twistor correspondence involving a supersymmetric Bogomolnyi model with massive fields. In chapter four, we review the twistor formulation of non-self-dual SYM theories. The remaining chapter is

  19. Introduction to gauge theories

    International Nuclear Information System (INIS)

    Wit, B. de

    1983-01-01

    In these lectures we present the key ingredients of theories with local gauge invariance. We introduce gauge invariance as a starting point for the construction of a certain class of field theories, both for abelian and nonabelian gauge groups. General implications of gauge invariance are discussed, and we outline in detail how gauge fields can acquire masses in a spontaneous fashion. (orig./HSI)

  20. On a Canonical Quantization of 3D Anti de Sitter Pure Gravity

    CERN Document Server

    Kim, Jihun

    2015-10-14

    We perform a canonical quantization of pure gravity on AdS3 using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,R)xSL(2,R). We first quantize the theory canonically on an asymptotically AdS space --which is topologically the real line times a Riemann surface with one connected boundary. Using the "constrain first" approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kaehler quantization of Teichmuller space. After explicitly computing the Kaehler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,R) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous sp...

  1. Exact Path Integral for 3D Quantum Gravity.

    Science.gov (United States)

    Iizuka, Norihiro; Tanaka, Akinori; Terashima, Seiji

    2015-10-16

    Three-dimensional Euclidean pure gravity with a negative cosmological constant can be formulated in terms of the Chern-Simons theory, classically. This theory can be written in a supersymmetric way by introducing auxiliary gauginos and scalars. We calculate the exact partition function of this Chern-Simons theory by using the localization technique. Thus, we obtain the quantum gravity partition function, assuming that it can be obtained nonperturbatively by summing over partition functions of the Chern-Simons theory on topologically different manifolds. The resultant partition function is modular invariant, and, in the case in which the central charge is expected to be 24, it is the J function, predicted by Witten.

  2. Perfect Fluid Theory and its Extensions

    OpenAIRE

    Jackiw, R.; Nair, V. P.; Pi, S. -Y.; Polychronakos, A. P.

    2004-01-01

    We review the canonical theory for perfect fluids, in Eulerian and Lagrangian formulations. The theory is related to a description of extended structures in higher dimensions. Internal symmetry and supersymmetry degrees of freedom are incorporated. Additional miscellaneous subjects that are covered include physical topics concerning quantization, as well as mathematical issues of volume preserving diffeomorphisms and representations of Chern-Simons terms (= vortex or magnetic helicity).

  3. Topological terms induced by finite temperature and density fluctuations

    International Nuclear Information System (INIS)

    Niemi, A.J.; Department of Physics, The Ohio State University, Columbus, Ohio 43210)

    1986-01-01

    In (3+1)-dimensional finite-temperature and -density SU(2) gauge theories with left-handed fermions, the three-dimensional Chern-Simons term (topological mass) can be induced by radiative corrections. This result is derived by use of a family's index theorem which also implies that in many other quantum field theories various additional lower-dimensional topological terms can be induced. In the high-temperature limit these terms dominate the partition function, which suggests applications to early-Universe cosmology

  4. Differential geometry construction of anomalies and topological invariants in various dimensions

    CERN Document Server

    Antoniadis, Ignatios

    2012-01-01

    The Lagrangian of non-Abelian tensor gauge fields describes interaction of the Yang-Mills field and massless tensor gauge bosons of increasing helicities. The model allows the existence of metric-independent densities: the exact (2n+3)-forms and their secondary characteristics, the (2n+2)-forms. We also found exact 6n-forms and the corresponding secondary (6n-1)-forms. These forms are the analogs of the Pontryagin densities: the exact 2n-forms and Chern-Simons secondary characteristics, the (2n-1)-forms. The (2n+3)- and 6n-forms are gauge invariant densities, while the (2n+2)- and (6n-1)-forms transform non-trivially under gauge transformations, that we compare with the corresponding transformations of the Chern-Simons secondary characteristics. This construction allows to identify new potential anomalies in various dimensions.

  5. Gauge/gravity duality applied to condensed matter systems

    International Nuclear Information System (INIS)

    Ammon, Martin Matthias

    2010-01-01

    developed. Finally a second model for the field theory at the quantum-critical point, a Chern-Simons matter theory in (2+1) dimensions is studied more precisely. On the gravitational side thereby higher-dimensional membranes and other non-perturbative objects, so-called KK-monopoles are embedded in M-theory respectively its type IIA limit.

  6. Gauge/gravity duality applied to condensed matter systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Martin Matthias

    2010-07-07

    developed. Finally a second model for the field theory at the quantum-critical point, a Chern-Simons matter theory in (2+1) dimensions is studied more precisely. On the gravitational side thereby higher-dimensional membranes and other non-perturbative objects, so-called KK-monopoles are embedded in M-theory respectively its type IIA limit.

  7. Gauge theory loop operators and Liouville theory

    International Nuclear Information System (INIS)

    Drukker, Nadav; Teschner, Joerg

    2009-10-01

    We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S 4 - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)

  8. Gauge theories as string theories: the first results

    International Nuclear Information System (INIS)

    Gorsky, Aleksandr S

    2005-01-01

    The gauge/string theory duality in curved space is discussed mainly using a non-Abelian conformal N = 4 supersymmetric gauge theory and the theory of a closed superstring in the AdS 5 x S 5 metric as an example. It is shown that in the supergravity approximation, string duality yields the characteristics of a strong-coupling gauge theory. For a special shape of the contour, a Wilson loop expression is derived in the classical superstring approximation. The role of the hidden integrability in lower-loop calculations in gauge theory and in different approximations of string theory is discussed. It is demonstrated that in the large quantum-number limit, gauge theory operators can be described in terms of the dual string picture. Examples of metrics providing the dual description of gauge theories with broken conformal symmetry are presented, and formulations of the vacuum structure of such theories in terms of gravity are discussed. (reviews of topical problems)

  9. Abelian tensor hierarchy in 4D, N=1 superspace

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; III, William D. Linch; Robbins, Daniel

    2016-01-01

    With the goal of constructing the supersymmetric action for all fields, massless and massive, obtained by Kaluza-Klein compactification from type II theory or M-theory in a closed form, we embed the (Abelian) tensor hierarchy of p-forms in four-dimensional, N=1 superspace and construct its Chern-Simons-like invariants. When specialized to the case in which the tensors arise from a higher-dimensional theory, the invariants may be interpreted as higher-dimensional Chern-Simons forms reduced to four dimensions. As an application of the formalism, we construct the eleven-dimensional Chern-Simons form in terms of four-dimensional, N=1 superfields.

  10. Abelian tensor hierarchy in 4D, N=1 superspace

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Katrin; Becker, Melanie; III, William D. Linch; Robbins, Daniel [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States)

    2016-03-09

    With the goal of constructing the supersymmetric action for all fields, massless and massive, obtained by Kaluza-Klein compactification from type II theory or M-theory in a closed form, we embed the (Abelian) tensor hierarchy of p-forms in four-dimensional, N=1 superspace and construct its Chern-Simons-like invariants. When specialized to the case in which the tensors arise from a higher-dimensional theory, the invariants may be interpreted as higher-dimensional Chern-Simons forms reduced to four dimensions. As an application of the formalism, we construct the eleven-dimensional Chern-Simons form in terms of four-dimensional, N=1 superfields.

  11. M-theory potential from the G{sub 2} Hitchin functional in superspace

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Katrin; Becker, Melanie; Guha, Sunny; III, William D. Linch [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843 (United States); Robbins, Daniel [Department of Physics, University at Albany.1400 Washington Ave., Albany, NY 12222 (United States)

    2016-12-16

    We embed the component fields of eleven-dimensional supergravity into a superspace of the form X×Y where X is the standard 4D, N=1 superspace and Y is a smooth 7-manifold. The eleven-dimensional 3-form gives rise to a tensor hierarchy of superfields gauged by the diffeomorphisms of Y. It contains a natural candidate for a G{sub 2} structure on Y, and being a complex of superforms, defines a superspace Chern-Simons invariant. Adding to this a natural generalization of the Riemannian volume on X×Y and freezing the (superspin-(3/2) and 1) supergravity fields on X, we obtain an approximation to the eleven-dimensional supergravity action that suffices to compute the scalar potential. In this approximation the action is the sum of the superspace Chern-Simons term and a superspace generalization of the Hitchin functional for Y as a G{sub 2}-structure manifold. Integrating out auxiliary fields, we obtain the conditions for unbroken supersymmetry and the scalar potential. The latter reproduces the Einstein-Hilbert term on Y in a form due to Bryant.

  12. Factorized tree-level scattering in AdS4 x CP3

    International Nuclear Information System (INIS)

    Kalousios, Chrysostomos; Vergu, C.; Volovich, Anastasia

    2009-01-01

    AdS 4 /CFT 3 duality relating IIA string theory on AdS 4 x CP 3 to N = 6 superconformal Chern-Simons theory provides an arena for studying aspects of integrability in a new potentially exactly solvable system. In this paper we explore the tree-level worldsheet scattering for strings on AdS 4 x CP 3 . We compute all bosonic four-, five- and six-point amplitudes in the gauge-fixed action and demonstrate the absence of particle production.

  13. Gauge theory loop operators and Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Nadav [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Gomis, Jaume; Okuda, Takuda [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Teschner, Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-10-15

    We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S{sup 4} - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)

  14. Proceedings of the 14. Claude Itzykson Meeting-2009 recent advances in string theory

    International Nuclear Information System (INIS)

    Aharoni, O.; Arkani-Hamed, N.; Becker, K.; Berkovits, N.; Bern, Z.; De Boer, J.; Emparan, R.; Green, M.; Hartnoll, S.; Heckman, J.; Kachru, S.; Lambert, N.; Louis, J.; Marino, M.; Mathur, S.; McAllister, L.; McGreevy, J.; Polchinski, J.; Sen, A.; Weigand, T.

    2009-01-01

    This document is made up of the slides of the presentations. The titles of the 20 presentations are the following: 1) On d=3 Yang-Mills Chern-Simons theories with 'fractional branes' and their gravity duals; 2) Holography and the S-Matrix; 3) Torsional heterotic geometries; 4) Spin chains from the topological AdS 5 xS 5 string; 5) Harmony of Scattering Amplitudes: from N=4 Super-Yang-Mills Theory to N=8 Supergravity; 6) Quantum aspects of black holes; 7) Black-folds; 8) Supersymmetric String and Field Theory Scattering Amplitudes; 9) Quantum bosons for holographic superconductors; 10) The Point of E8 in F-theory GUTs; 11) Gauge/gravity duality and particle physics; 12) Coupling M2-branes to Background Fields; 13) Compactifications and Generalized Geometries; 14) Nonperturbative aspects of the topological string; 15) Lessons from the information paradox: 16) Inflation in String Theory; 17) Holographic descriptions of quantum liquids; 18) Holography from CFT; 19) Black hole hair removal; and 20) Type IIB GUT vacua and their F-theory uplift

  15. Self-dual gauge theories

    International Nuclear Information System (INIS)

    Zet, G.

    2002-01-01

    The self-duality equations are important in gauge theories because they show the connection between gauge models with internal symmetry groups and gauge theory of gravity. They are differential equations of the first order and it is easier to investigate the solutions for different particular configurations of the gauge fields and of space-times.One of the most important property of the self-duality equations is that they imply the Yang-Mills field equations. In this paper we will prove this property for the general case of a gauge theory with compact Lie group of symmetry over a 4-dimensional space-time manifold. It is important to remark that there are 3m independent self-duality equations (of the first order) while the number of Yang-Mills equations is equal to 4m, where m is the dimension of the gauge group. Both of them have 4m unknown functions which are the gauge potentials A μ a (x), a = 1, 2, ....,m; μ = 0, 1, 2, 3. But, we have, in addition, m gauge conditions for A μ a (x), (for example Coulomb, Lorentz or axial gauge) which together with the selfduality equation constitute a system of 4m equations. The Bianchi identities for the self-dual stress tensor F μν a coincide with the Yang-Mills equations and do not imply therefore supplementary conditions. We use the axial gauge in order to obtain the self duality equations for a SU(2) gauge theory over a curved space-time. The compatibility between self-duality and Yang-Mills equations is studied and some classes of solutions are obtained. In fact, we will write the Einstein-Yang-Mills equations and we will analyse only the Yang-Mills sector. The Einstein equations can not be obtained of course from self-duality. They should be obtained if we would consider a gauge theory having P x SU(2) as symmetry group, where P is the Poincare group. More generally, a gauge theory of N-extended supersymmetry can be developed by imposing the self-duality condition. (author)

  16. Lattice gauge theories

    International Nuclear Information System (INIS)

    Creutz, M.

    1983-04-01

    In the last few years lattice gauge theory has become the primary tool for the study of nonperturbative phenomena in gauge theories. The lattice serves as an ultraviolet cutoff, rendering the theory well defined and amenable to numerical and analytical work. Of course, as with any cutoff, at the end of a calculation one must consider the limit of vanishing lattice spacing in order to draw conclusions on the physical continuum limit theory. The lattice has the advantage over other regulators that it is not tied to the Feynman expansion. This opens the possibility of other approximation schemes than conventional perturbation theory. Thus Wilson used a high temperature expansion to demonstrate confinement in the strong coupling limit. Monte Carlo simulations have dominated the research in lattice gauge theory for the last four years, giving first principle calculations of nonperturbative parameters characterizing the continuum limit. Some of the recent results with lattice calculations are reviewed

  17. Geometric Lagrangian approach to the physical degree of freedom count in field theory

    Science.gov (United States)

    Díaz, Bogar; Montesinos, Merced

    2018-05-01

    To circumvent some technical difficulties faced by the geometric Lagrangian approach to the physical degree of freedom count presented in the work of Díaz, Higuita, and Montesinos [J. Math. Phys. 55, 122901 (2014)] that prevent its direct implementation to field theory, in this paper, we slightly modify the geometric Lagrangian approach in such a way that its resulting version works perfectly for field theory (and for particle systems, of course). As in previous work, the current approach also allows us to directly get the Lagrangian constraints, a new Lagrangian formula for the counting of the number of physical degrees of freedom, the gauge transformations, and the number of first- and second-class constraints for any action principle based on a Lagrangian depending on the fields and their first derivatives without performing any Dirac's canonical analysis. An advantage of this approach over the previous work is that it also allows us to handle the reducibility of the constraints and to get the off-shell gauge transformations. The theoretical framework is illustrated in 3-dimensional generalized general relativity (Palatini and Witten's exotic actions), Chern-Simons theory, 4-dimensional BF theory, and 4-dimensional general relativity given by Palatini's action with a cosmological constant.

  18. Matrix models and stochastic growth in Donaldson-Thomas theory

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Richard J. [Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS, United Kingdom and Maxwell Institute for Mathematical Sciences, Edinburgh (United Kingdom); Tierz, Miguel [Grupo de Fisica Matematica, Complexo Interdisciplinar da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, PT-1649-003 Lisboa (Portugal); Departamento de Analisis Matematico, Facultad de Ciencias Matematicas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid (Spain)

    2012-10-15

    We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kaehler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.

  19. Matrix models and stochastic growth in Donaldson-Thomas theory

    International Nuclear Information System (INIS)

    Szabo, Richard J.; Tierz, Miguel

    2012-01-01

    We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kähler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.

  20. Gauge theory and gravitation

    International Nuclear Information System (INIS)

    Kikkawa, Keiji; Nakanishi, Noboru; Nariai, Hidekazu

    1983-01-01

    These proceedings contain the articles presented at the named symposium. They deal with geometrical aspects of gauge theory and gravitation, special problems in gauge theories, quantum field theory in curved space-time, quantum gravity, supersymmetry including supergravity, and grand unification. See hints under the relevant topics. (HSI)

  1. Massive Kaluza-Klein theories and their spontaneously broken symmetries

    International Nuclear Information System (INIS)

    Hohm, O.

    2006-07-01

    In this thesis we investigate the effective actions for massive Kaluza-Klein states, focusing on the massive modes of spin-3/2 and spin-2 fields. To this end we determine the spontaneously broken gauge symmetries associated to these 'higher-spin' states and construct the unbroken phase of the Kaluza-Klein theory. We show that for the particular background AdS 3 x S 3 x S 3 a consistent coupling of the first massive spin-3/2 multiplet requires an enhancement of local supersymmetry, which in turn will be partially broken in the Kaluza-Klein vacuum. The corresponding action is constructed as a gauged maximal supergravity in D=3. Subsequently, the symmetries underlying an infinite tower of massive spin-2 states are analyzed in case of a Kaluza-Klein compactification of four-dimensional gravity to D=3. It is shown that the resulting gravity-spin-2 theory is given by a Chern-Simons action of an affine algebra and also allows a geometrical interpretation in terms of 'algebra-valued' differential geometry. The global symmetry group is determined, which contains an affine extension of the Ehlers group. We show that the broken phase can in turn be constructed via gauging a certain subgroup of the global symmetry group. Finally, deformations of the Kaluza-Klein theory on AdS 3 x S 3 x S 3 and the corresponding symmetry breakings are analyzed as possible applications for the AdS/CFT correspondence. (Orig.)

  2. Abelian gauge theories with tensor gauge fields

    International Nuclear Information System (INIS)

    Kapuscik, E.

    1984-01-01

    Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)

  3. M2 to D2

    International Nuclear Information System (INIS)

    Mukhi, Sunil; Papageorgakis, Constantinos

    2008-01-01

    We examine the recently proposed ''3-algebra'' field theory for multiple M2-branes and show that when a scalar field valued in the 3-algebra develops a vacuum expectation value, the resulting Higgs mechanism has the novel effect of promoting topological (Chern-Simons) to dynamical (Yang-Mills) gauge fields. This leads to a precise derivation of the maximally supersymmetric Yang-Mills theory on multiple D2-branes and thereby provides a relationship between 3-algebras and Yang-Mills theories. We discuss the physical interpretation of this result.

  4. Towards a realization of the condensed-matter-gravity correspondence in string theory via consistent Abelian truncation of the Aharony-Bergman-Jafferis-Maldacena model.

    Science.gov (United States)

    Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu

    2012-11-02

    We present an embedding of the three-dimensional relativistic Landau-Ginzburg model for condensed matter systems in an N = 6, U(N) × U(N) Chern-Simons-matter theory [the Aharony-Bergman-Jafferis-Maldacena model] by consistently truncating the latter to an Abelian effective field theory encoding the collective dynamics of O(N) of the O(N(2)) modes. In fact, depending on the vacuum expectation value on one of the Aharony-Bergman-Jafferis-Maldacena scalars, a mass deformation parameter μ and the Chern-Simons level number k, our Abelianization prescription allows us to interpolate between the Abelian Higgs model with its usual multivortex solutions and a Ø(4) theory. We sketch a simple condensed matter model that reproduces all the salient features of the Abelianization. In this context, the Abelianization can be interpreted as giving a dimensional reduction from four dimensions.

  5. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Rosenzweig, C.; Schechter, J.; Wali, K.C.

    1992-01-01

    In this paper we give a brief account of the work of the group during the past year. The topics covered here include (1) Effective Lagrangians and Solitons; (2) Chern-Simons and Conformal Field Theories; (3) Spin and Statistics; (4) The Standard Model and Beyond; (5) Non-Abelian Monopoles; (6) The Inflationary Universe; (7) The Hubbard Model, and (8) Miscellaneous

  6. Gauge theories and monopoles

    International Nuclear Information System (INIS)

    Cabibbo, N.

    1983-01-01

    This chapter attempts to present some of the fundamental geometrical ideas at the basis of gauge theories. Describes Dirac Monopoles and discusses those ideas that are not usually found in more ''utilitarian'' presentations which concentrate on QCD or on the Glashow-Salam-Weinberg model. This topic was chosen because of the announcement of the possible detection of a Dirac monopole. The existence of monopoles depends on topological features of gauge theories (i.e., on global properties of field configurations which are unique to gauge theories). Discusses global symmetry-local symmetry; the connection; path dependence and the gauge fields; topology and monopoles; the case of SU(3) x U(1); and the 't Hooft-Polyakov monopole

  7. Some formal problems in gauge theories

    International Nuclear Information System (INIS)

    Magpantay, J.A.

    1980-01-01

    The concerns of this thesis are the problems due to the extra degrees of freedom in gauge-invariant theories. Since gauge-invariant Lagrangians are singular, Dirac's consistency formalism and Fadeev's extension are first reviewed. A clarification on the origin of primary constraints is given, and some of the open problems in singular Lagrangian theory are discussed. The criteria in choosing a gauge, i.e., attainability, maintainability and Poincare invariance are summarized and applied to various linear gauges. The effects of incomplete removal of all gauge freedom on the criteria for gauge conditions are described. A simple example in point mechanics that contains some of the features of gauge field theories is given. Finally, we describe a method of constructing gauge-invariant variables in various gauge field theories. For the Abelian theory, the gauge-invariant, transverse potential and Dirac's gauge-invariant fermion field was derived. For the non-Abelian case we introduce a local set of basis vectors and gauge transformations are interpreted as rotations of the basis vectors introduced. The analysis leads to the reformulation of local SU(2) field theory in terms of path-dependent U(1) x U(1) x U(1). However, the analysis fails to include the matter fields as of now

  8. Orbifold matrix models and fuzzy extra dimensions

    CERN Document Server

    Chatzistavrakidis, Athanasios; Zoupanos, George

    2011-01-01

    We revisit an orbifold matrix model obtained as a restriction of the type IIB matrix model on a Z_3-invariant sector. An investigation of its moduli space of vacua is performed and issues related to chiral gauge theory and gravity are discussed. Modifications of the orbifolded model triggered by Chern-Simons or mass deformations are also analyzed. Certain vacua of the modified models exhibit higher-dimensional behaviour with internal geometries related to fuzzy spheres.

  9. Canonical symmetry in a system with singular Lagrangian and ward identities

    International Nuclear Information System (INIS)

    Li Ziping

    1994-01-01

    An algorithm to construct the generator of gauge transformation for a constrained Hamiltonian system is given. The relationships among the coefficients connecting with first-class constraints in the generator is cleared. Based on the phase space generating function, the corresponding Ward identities in canonical formalism is deduced. The preliminary applications of above results to a model in field theory which is functionally equivalent to the mixed Chern-Simons Lagrangian is discussed in detail

  10. Super-Galilei invariant field theories in 2+1 dimensions

    International Nuclear Information System (INIS)

    Bergman, O.; Thorn, C.B.

    1995-01-01

    The authors extend the Galilei group of space-time transformations by gradation, construct interacting field-theoretic representations of this algebra, and show that non-relativistic Super-Chern-Simons theory is a special case. They also study the generalization to matrix valued fields, which are relevant to the formulation of superstring theory as a 1/N c expansion of a field theory. The authors find that in the matrix case, the field theory is much more restricted by the supersymmetry

  11. The off-shell closed strings as the topological open membranes. Dynamical transmutation of world sheet dimension

    International Nuclear Information System (INIS)

    Kogan, Y.I.

    1989-05-01

    Using the connection between (2+1) Chern-Simons gauge theory and 2d Conformal Field Theory the on-shell string condition is obtained as a condition of full independence of interior of (2+1) world. The new method for off-shell continuation is considered based on the introduction of the Maxwell term in (2+1) theory. This leads to dynamical transmutation of world-sheet dimensions - the off-shell string becomes topological membrane (topological means that (2+1) theory has topological mass term). The dependence of parameters of (2+1) theory under the external fields is discussed. (author). 17 refs

  12. Non-abelian bosonization in two-dimensional condensed matter physics

    International Nuclear Information System (INIS)

    Froehlich, J.; Kerler, T.; Marchetti, P.A.

    1992-01-01

    We derive mathematical identities proving that some systems of interacting, non-relativistic fermions of spin or 'isospin' S=1/2, 3/3, 5/2, ... confined to a plane (e.g. a heterojuncture) can be described in terms of a complex boson of spin or isospin S coupled to statistical U(1) and SU(2) gauge fields. In a Feynman path integral formulation, the U(1) gauge field has a Chern-Simons action with coupling constant k=2/(2l+1), l=0, 1, 2, ..., while the SU(2) gauge field has a Chern-Simons action with level 2S. Generalization to internal symmetry groups other than SU(2) are sketched, and applications of our formalism to an analysis of excitations with braid statistics in incompressible quantum fluids and of holons and spinons in the t-J model are discussed. (orig.)

  13. Gauge field theories

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1981-01-01

    The book is intended to explain, in an elementary way, the basic notions and principles of gauge theories. Attention is centred on the Salem-Weinberg model of electro-weak interactions, as well as neutrino-lepton scattering and the parton model. Classical field theory, electromagnetic, Yang-Mills and gravitational gauge fields, weak interactions, Higgs mechanism and the SU(5) model of grand unification are also discussed. (U.K.)

  14. Lattice gauge theory using parallel processors

    International Nuclear Information System (INIS)

    Lee, T.D.; Chou, K.C.; Zichichi, A.

    1987-01-01

    The book's contents include: Lattice Gauge Theory Lectures: Introduction and Current Fermion Simulations; Monte Carlo Algorithms for Lattice Gauge Theory; Specialized Computers for Lattice Gauge Theory; Lattice Gauge Theory at Finite Temperature: A Monte Carlo Study; Computational Method - An Elementary Introduction to the Langevin Equation, Present Status of Numerical Quantum Chromodynamics; Random Lattice Field Theory; The GF11 Processor and Compiler; and The APE Computer and First Physics Results; Columbia Supercomputer Project: Parallel Supercomputer for Lattice QCD; Statistical and Systematic Errors in Numerical Simulations; Monte Carlo Simulation for LGT and Programming Techniques on the Columbia Supercomputer; Food for Thought: Five Lectures on Lattice Gauge Theory

  15. Physics of F-theory compactifications without section

    International Nuclear Information System (INIS)

    Anderson, Lara B.; García-Etxebarria, Iñaki; Grimm, Thomas W.; Keitel, Jan

    2014-01-01

    We study the physics of F-theory compactifications on genus-one fibrations without section by using an M-theory dual description. The five-dimensional action obtained by considering M-theory on a Calabi-Yau threefold is compared with a six-dimensional F-theory effective action reduced on an additional circle. We propose that the six-dimensional effective action of these setups admits geometrically massive U(1) vectors with a charged hypermultiplet spectrum. The absence of a section induces NS-NS and R-R three-form fluxes in F-theory that are non-trivially supported along the circle and induce a shift-gauging of certain axions with respect to the Kaluza-Klein vector. In the five-dimensional effective theory the Kaluza-Klein vector and the massive U(1)s combine into a linear combination that is massless. This U(1) is identified with the massless U(1) corresponding to the multi-section of the Calabi-Yau threefold in M-theory. We confirm this interpretation by computing the one-loop Chern-Simons terms for the massless vectors of the five-dimensional setup by integrating out all massive states. A closed formula is found that accounts for the hypermultiplets charged under the massive U(1)s.

  16. The theory of anyonic superconductivity

    International Nuclear Information System (INIS)

    Lukken, J.D.; Sonnenschien, J.; Weiss, N.

    1991-01-01

    Particles in two spatial dimensions with fractional statistics known, generically, as anyons, have been of interest to particle physicists for nearly ten years. A major change in the direction of research occurred when it was discovered that anyons could play a role as quasiparticles in condensed-matter systems. This was originally discovered to be the case in systems exhibiting the Fractional Quantum Hall Effect. The application of anyons to condensed-matter systems received yet another boost when it was discovered by Laughlin that even an ideal gas of anyons was a superfluid and, as a result, a gas of charged anyons would be a superconductor. This led immediately to attempts to explain the superconductivity of high-T c materials which are layered ceramics in terms of anyons. The main challenge was to find a reasonable model for these materials which has quasiparticles obeying anyonic statistics. The goal of this article is to review the theory of anyonic superconductivity and its possible relation to high-T c materials. The emphasis in this review is on field-theoretical methods. In this paper the authors explain what an anyon is and how it can be modeled mathematically. The authors discuss the possible relationship between anyons and high-T c materials. The authors review several of the attempts to obtain anyonic quasiparticles from the Hubbard model which is commonly used to describe these materials. The authors describe the mathematical modeling of anyons in terms of their interaction with an Abelian gauge field with a Chern-Simons term. This description of anyons is used extensively in this article. The authors discuss the possible criteria for superconductivity in anyonic systems with particular emphasis on criteria which would be useful in the Chern-Simons description

  17. String field theory-inspired algebraic structures in gauge theories

    International Nuclear Information System (INIS)

    Zeitlin, Anton M.

    2009-01-01

    We consider gauge theories in a string field theory-inspired formalism. The constructed algebraic operations lead, in particular, to homotopy algebras of the related Batalin-Vilkovisky theories. We discuss an invariant description of the gauge fixing procedure and special algebraic features of gauge theories coupled to matter fields.

  18. Noncommutative gauge theory for Poisson manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, Branislav E-mail: jurco@mpim-bonn.mpg.de; Schupp, Peter E-mail: schupp@theorie.physik.uni-muenchen.de; Wess, Julius E-mail: wess@theorie.physik.uni-muenchen.de

    2000-09-25

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.

  19. Noncommutative gauge theory for Poisson manifolds

    International Nuclear Information System (INIS)

    Jurco, Branislav; Schupp, Peter; Wess, Julius

    2000-01-01

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem

  20. Global gauge fixing in lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Fachin, S.; Parrinello, C. (Physics Department, New York University, 4 Washington Place, New York, New York (USA))

    1991-10-15

    We propose a covariant, nonperturbative gauge-fixing procedure for lattice gauge theories that avoids the problem of Gribov copies. This is closely related to a recent proposal for a gauge fixing in the continuum that we review. The lattice gauge-fixed model allows both analytical and numerical investigations: on the analytical side, explicit nonperturbative calculations of gauge-dependent quantities can be easily performed in the framework of a generalized strong-coupling expansion, while on the numerical side a stochastic gauge-fixing algorithm is very naturally associated with the scheme. In both applications one can study the gauge dependence of the results, since the model actually provides a smooth'' family of gauge-fixing conditions.

  1. Duffin-Kemmer formulation of gauge theories

    International Nuclear Information System (INIS)

    Okubo, S.; Tosa, Y.

    1979-01-01

    Gauge theories, including the Yang-Mills theory as well as Einstein's general relativity, are reformulated in first-order differential forms. In this generalized Duffin-Kemmer formalism, gauge theories take very simple forms with only cubic interactions. Moreover, every local gauge transformation, e.g., that of Yang and Mills or Einstein, etc., has an essentially similar form. Other examples comprise a gauge theory akin to the Sugawara theory of currents and the nonlinear realization of chiral symmetry. The octonion algebra is found possibly relevant to the discussion of the Yang-Mills theory

  2. Gauge theories

    International Nuclear Information System (INIS)

    Jarlskog, C.

    An introduction to the unified gauge theories of weak and electromagnetic interactions is given. The ingredients of gauge theories and symmetries and conservation laws lead to discussion of local gauge invariance and QED, followed by weak interactions and quantum flavor dynamics. The construction of the standard SU(2)xU(1) model precedes discussion of the unification of weak and electromagnetic interactions and weak neutral current couplings in this model. Presentation of spontaneous symmetry breaking and spontaneous breaking of a local symmetry leads to a spontaneous breaking scheme for the standard SU(2)xU(1) model. Consideration of quarks, leptons, masses and the Cabibbo angles, of the four quark and six quark models and CP violation lead finally to grand unification, followed by discussion of mixing angles in the Georgi-Glashow model, the Higgses of the SU(5) model and proton/ neutron decay in SU(5). (JIW)

  3. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  4. Notes on gauge theory and gravitation

    International Nuclear Information System (INIS)

    Wallner, R.P.

    1981-01-01

    In order to investigate whether Einstein's general relativity theory (GRT) fits into the general scheme of a gauge theory, first the concept of a (classical) gauge theory is outlined in an introductionary spacetime approach. Having thus fixed the notation and the main properties of gauge fields, GRT is examined to find out what the gauge potentials and the corresponding gauge group might be. In this way the possibility of interpreting GRT as a gauge theory of the 4-dimensional translation group T(4) = (R 4 , +), and where the gauge potentials are incorporated in a T(4)-invariant way via orthonormal anholonomic basis 1-forms is considered. To include also the spin aspect a natural extension of GRT is given by gauging also the Lorentz group, whereby a Riemann-Cartan spacetime (U 4 -spacetime) comes into play. (Auth.)

  5. The renaissance of gauge theory

    International Nuclear Information System (INIS)

    Moriyasu, K.

    1982-01-01

    Gauge theory is a classic example of a good idea proposed before its time. A brief historical review of gauge theory is presented to see why it required over 50 years for gauge invariance to be rediscovered as the basic principle governing the fundamental forces of Nature. (author)

  6. Gauge theories in particle physics

    International Nuclear Information System (INIS)

    Aitchison, I.J.R.; Hey, A.J.G.

    1982-01-01

    The first theory, quantum electrodynamics (QED) is known to give a successful account of electromagnetic interactions. Weak and strong interactions are described by gauge theories which are generalisations of QED. The electro-weak gauge theory of Glashow Salam and Weinberg unites electromagnetic and weak interactions. Quantum chromodynamics (QCD) is the gauge theory of strong interactions. This approach to these theories, designed for the non-specialist, is based on a straightforward generalisation of non-relativistic quantum-mechanical perturbation theory to the relativistic case, leading to an intuitive introduction to Feynman graphs. Spontaneously broken-or 'hidden'-symmetries are given particular attention, with the physics of hidden gauge invariance and the role of the vacuum (essential to the unified theories) being illustrated by an extended but elementary discussion of the non-relativistic example of superconductivity. Throughout, emphasis is placed both on realistic calculations and on physical understanding. (author)

  7. Symmetry analysis for anisotropic field theories

    International Nuclear Information System (INIS)

    Parra, Lorena; Vergara, J. David

    2012-01-01

    The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.

  8. Effective potential for spontaneously broken gauge theories and gauge hierarchies

    International Nuclear Information System (INIS)

    Hagiwara, T.; Ovrut, B.

    1979-01-01

    The Appelquist-Carazzone effective-field-theory method, where one uses effective light-field coupling constants dependent on the heavy-field sector, is explicitly shown to be valid for the discussion of the gauge-hierarchy problem in grand unified gauge models. Using the method of functionals we derive an expression for the one-loop approximation to the scalar-field effective potential for spontaneously broken theories in an arbitrary R/sub xi/ gauge. We argue that this potential generates, through its derivatives, valid zero-momentum, one-particle-irreducible vertices for any value of xi (not just the xi→infinity Landau gauge). The equation that the one-loop vacuum correction must satisfy is presented, and we solve this equation for a number of spontaneously broken theories including gauge theories with gauge groups U(1) and SO(3). We find that a one-loop vacuum shift in a massless, non-Goldstone direction occurs via the Coleman-Weinberg mechanism with an effective coupling constant dependent on the heavy-field sector

  9. Zero energy gauge fields and the phases of a gauge theory

    International Nuclear Information System (INIS)

    Guendelman, E.I.

    1990-01-01

    A new approach to the definition of the phases of a Poincare invariant gauge theory is developed. It is based on the role of gauge transformations that change the asymptotic value of the gauge fields from zero to a constant. In the context of theories without Higgs fields, this symmetry can be spontaneously broken when the gauge fields are massless particles, explicitly broken when the gauge fields develop a mass. Finally, the vacuum can be invariant under this transformation, this last case can be achieved when the theory has a violent infrared behavior, which in some theories can be connected to a confinement mechanism

  10. Introduction to gauge field theory

    International Nuclear Information System (INIS)

    Bailin, David; Love, Alexander

    1986-01-01

    The book is intended as an introduction to gauge field theory for the postgraduate student of theoretical particle physics. The topics discussed in the book include: path integrals, classical and quantum field theory, scattering amplitudes, feynman rules, renormalisation, gauge field theories, spontaneous symmetry breaking, grand unified theory, and field theories at finite temperature. (UK)

  11. Anomalous gauge theories revisited

    International Nuclear Information System (INIS)

    Matsui, Kosuke; Suzuki, Hiroshi

    2005-01-01

    A possible formulation of chiral gauge theories with an anomalous fermion content is re-examined in light of the lattice framework based on the Ginsparg-Wilson relation. It is shown that the fermion sector of a wide class of anomalous non-abelian theories cannot consistently be formulated within this lattice framework. In particular, in 4 dimension, all anomalous non-abelian theories are included in this class. Anomalous abelian chiral gauge theories cannot be formulated with compact U(1) link variables, while a non-compact formulation is possible at least for the vacuum sector in the space of lattice gauge fields. Our conclusion is not applied to effective low-energy theories with an anomalous fermion content which are obtained from an underlying anomaly-free theory by sending the mass of some of fermions to infinity. For theories with an anomalous fermion content in which the anomaly is cancelled by the Green-Schwarz mechanism, a possibility of a consistent lattice formulation is not clear. (author)

  12. Supersymmetric gauge field theories

    International Nuclear Information System (INIS)

    Slavnov, A.A.

    1976-01-01

    The paper is dealing with the role of supersymmetric gauge theories in the quantum field theory. Methods of manipulating the theories as well as possibilities of their application in elementary particle physics are presented. In particular, the necessity is explained of a theory in which there is symmetry between Fermi and Bose fields, in other words, of the supersymmetric gauge theory for construction of a scheme for the Higgs particle connecting parameters of scalar mesons with those of the rest fields. The mechanism of supersymmetry breaking is discussed which makes it possible to remain the symmetric procedure of renormalization intact. The above mechanism of spontaneous symmetry breaking is applied to demonstrate possibilities of constructing models of weak and electromagnetic interactions which would be acceptable from the point of view of experiments. It is noted that the supersymmetric gauge theories represent a natural technique for description of vector-like models

  13. Gauged U(1) clockwork theory

    Science.gov (United States)

    Lee, Hyun Min

    2018-03-01

    We consider the gauged U (1) clockwork theory with a product of multiple gauge groups and discuss the continuum limit of the theory to a massless gauged U (1) with linear dilaton background in five dimensions. The localization of the lightest state of gauge fields on a site in the theory space naturally leads to exponentially small effective couplings of external matter fields localized away from the site. We discuss the implications of our general discussion with some examples, such as mediators of dark matter interactions, flavor-changing B-meson decays as well as D-term SUSY breaking.

  14. Gauge theories and their superspace quantization

    International Nuclear Information System (INIS)

    Falck, N.K.

    1984-01-01

    In this thesis the mathematical formalism for gauge theory is treated together with its extensions to supersymmetry. After a description of the differential calculus in superspace, gauge theories at the classical level are considered. Then the superspace quantization of gauge theories is described. (HSI)

  15. Continuum gauge theories

    International Nuclear Information System (INIS)

    Stora, R.

    1976-09-01

    The mathematics of gauge fields and some related concepts are discussed: some corrections on the principal fiber bundles emphasize the idea that the present formulation of continuum theories is incomplete. The main ingredients used through the construction of the renormalized perturbation series are then described: the Faddeev Popov argument, and the Faddeev Popov Lagrangian; the Slavnov symmetry and the nature of the Faddeev Popov ghost fields; the Slavnov identity, with an obstruction: the Adler Bardeen anomaly, and its generalization to the local cohomology of the gauge Lie algebra. Some smooth classical configurations of gauge fields which ought to play a prominent role in the evaluation of the functional integral describing the theory are also reviewed

  16. Elastic gauge fields and Hall viscosity of Dirac magnons

    Science.gov (United States)

    Ferreiros, Yago; Vozmediano, María A. H.

    2018-02-01

    We analyze the coupling of elastic lattice deformations to the magnon degrees of freedom of magnon Dirac materials. For a honeycomb ferromagnet we find that, as happens in the case of graphene, elastic gauge fields appear coupled to the magnon pseudospinors. For deformations that induce constant pseudomagnetic fields, the spectrum around the Dirac nodes splits into pseudo-Landau levels. We show that when a Dzyaloshinskii-Moriya interaction is considered, a topological gap opens in the system and a Chern-Simons effective action for the elastic degrees of freedom is generated. Such a term encodes a phonon Hall viscosity response, entirely generated by quantum fluctuations of magnons living in the vicinity of the Dirac points. The magnon Hall viscosity vanishes at zero temperature, and grows as temperature is raised and the states around the Dirac points are increasingly populated.

  17. Strong phase correlations of solitons of nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Litvak, A.G.; Mironov, V.A.; Protogenov, A.P.

    1994-06-01

    We discuss the possibility to suppress the collapse in the nonlinear 2+1 D Schroedinger equation by using the gauge theory of strong phase correlations. It is shown that invariance relative to q-deformed Hopf algebra with deformation parameter q being the fourth root of unity makes the values of the Chern-Simons term coefficient, k=2, and of the coupling constant, g=1/2, fixed; no collapsing solutions are present at those values. (author). 21 refs

  18. Computing black hole entropy in loop quantum gravity from a conformal field theory perspective

    International Nuclear Information System (INIS)

    Agulló, Iván; Borja, Enrique F.; Díaz-Polo, Jacobo

    2009-01-01

    Motivated by the analogy proposed by Witten between Chern-Simons and conformal field theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in loop quantum gravity. The consistency of the result opens a window for the interplay between conformal field theory and the description of black holes in loop quantum gravity

  19. Inoenue-Wigner contraction and D = 2 + 1 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Concha, P.K.; Rodriguez, E.K. [Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Vina del Mar (Chile); Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Fierro, O. [Universidad Catolica de la Santisima Concepcion, Departamento de Matematica y Fisica Aplicadas, Concepcion (Chile)

    2017-01-15

    We present a generalization of the standard Inoenue-Wigner contraction by rescaling not only the generators of a Lie superalgebra but also the arbitrary constants appearing in the components of the invariant tensor. The procedure presented here allows one to obtain explicitly the Chern-Simons supergravity action of a contracted superalgebra. In particular we show that the Poincare limit can be performed to a D = 2 + 1 (p,q) AdS Chern-Simons supergravity in presence of the exotic form. We also construct a new three-dimensional (2,0) Maxwell Chern-Simons supergravity theory as a particular limit of (2,0) AdS-Lorentz supergravity theory. The generalization for N = p + q gravitinos is also considered. (orig.)

  20. Gauge-invariant variational methods for Hamiltonian lattice gauge theories

    International Nuclear Information System (INIS)

    Horn, D.; Weinstein, M.

    1982-01-01

    This paper develops variational methods for calculating the ground-state and excited-state spectrum of Hamiltonian lattice gauge theories defined in the A 0 = 0 gauge. The scheme introduced in this paper has the advantage of allowing one to convert more familiar tools such as mean-field, Hartree-Fock, and real-space renormalization-group approximation, which are by their very nature gauge-noninvariant methods, into fully gauge-invariant techniques. We show that these methods apply in the same way to both Abelian and non-Abelian theories, and that they are at least powerful enough to describe correctly the physics of periodic quantum electrodynamics (PQED) in (2+1) and (3+1) space-time dimensions. This paper formulates the problem for both Abelian and non-Abelian theories and shows how to reduce the Rayleigh-Ritz problem to that of computing the partition function of a classical spin system. We discuss the evaluation of the effective spin problem which one derives the PQED and then discuss ways of carrying out the evaluation of the partition function for the system equivalent to a non-Abelian theory. The explicit form of the effective partition function for the non-Abelian theory is derived, but because the evaluation of this function is considerably more complicated than the one derived in the Abelian theory no explicit evaluation of this function is presented. However, by comparing the gauge-projected Hartree-Fock wave function for PQED with that of the pure SU(2) gauge theory, we are able to show that extremely interesting differences emerge between these theories even at this simple level. We close with a discussion of fermions and a discussion of how one can extend these ideas to allow the computation of the glueball and hadron spectrum

  1. Gauge fixing conditions for the SU(3) gauge theory

    International Nuclear Information System (INIS)

    Ragiadakos, Ch.; Viswanathan, K.S.

    1979-01-01

    SU(3) gauge theory is quantized in the temporal gauge A 0 =0. Gauge fixing conditions are imposed completely on the electric field components, conjugate to the vector potential Ssub(i) that belongs to the subalgebra SO(3) of SU(3). The generating functional in terms of the independent variables is derived. It is ghost-free and may be regarded as a theory of (non-relativistic) spin-0, 1, 2, and 3 fields. (Auth.)

  2. Physics from multidimensional gauge theories

    International Nuclear Information System (INIS)

    Forgacs, P.; Lust, D.; Zoupanos, G.

    1986-01-01

    The authors motivate high dimensional theories by recalling the original Kaluza-Klein proposal. They review the dimensional reduction of symmetric gauge theories and they present the results of the attempts to obtain realistic description of elementary particles interactions starting from symmetric gauge theories in high dimensions

  3. Critical properties of effective gauge theories for novel quantum fluids

    Energy Technology Data Exchange (ETDEWEB)

    Smoergrav, Eivind

    2005-07-01

    Critical properties of U(1) symmetric gauge theories are studied in 2+1 dimensions, analytically through duality transformations and numerically through Monte Carlo simulations. Physical applications range from quantum phase transitions in two dimensional insulating materials to superfluid and superconducting properties of light atoms such as hydrogen under extreme pressure. A novel finite size scaling method, utilizing the third moment M{sub 3} of the action, is developed. Finite size scaling analysis of M{sub 3} yields the ratio (1 + alpha)/ny and 1/ny separately, so that critical exponents alpha and ny can be obtained independently without invoking hyperscaling. This thesis contains eight research papers and an introductory part covering some basic concepts and techniques. Paper 1: The novel M{sub 3} method is introduced and employed together with Monte Carlo simulations to study the compact Abelian Higgs model in the adjoint representation with q = 2. Paper 2: We study phase transitions in the compact Abelian Higgs model for fundamental charge q = 2; 3; 4; 5. Various other models are studied to benchmark the M{sub 3} method. Paper 3: This is a proceeding paper based on a talk given by F. S. Nogueira at the Aachen EPS HEP 2003 conference. A review of the results from Paper 1 and Paper 2 on the compact Abelian Higgs model together with some results on q = 1 obtained by F. S. Nogueira, H. Kleinert, and A. Sudboe is given. Paper 4: The effect of a Chern-Simons (CS) term in the phase structure of two Abelian gauge theories is studied. Paper 5: We study the critical properties of the N-component Ginzburg-Landau theory. Paper 6: We consider the vortices in the 2-component Ginzburg-Landau model in a finite but low magnetic field. The ground state is a lattice of co centered vortices in both order parameters. We find two novel phase transitions. i) A 'vortex sub-lattice melting' transition where vortices in the field with lowest phase stiffness (&apos

  4. Gauge field theory

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Slavnov, A.A.

    1981-01-01

    This lecture is devoted to the discussion of gauge field theory permitting from the single point of view to describe all the interactions of elementary particles. The authors used electrodynamics and the Einstein theory of gravity to search for a renormgroup fixing a form of Lagrangian. It is shown that the gauge invariance added with the requirement of the minimum number of arbitraries in Lagrangian fixes unambigously the form of the electromagnetic interaction. The generalization of this construction for more complicate charge spaces results in the Yang-Mills theory. The interaction form in this theory is fixed with the relativity principle in the charge space. A quantum scheme of the Yang-Mills fields through the explicit separation of true dynamic variables is suggested. A comfortable relativistically invariant diagram technique for the calculation of a producing potential for the Green functions is described. The Ward generalized identities have been obtained and a procedure of the elimination of ultraviolet and infrared divergencies has been accomplished. Within the framework of QCD (quantum-chromodynamic) the phenomenon of the asymptotic freedom being the most successful prediction of the gauge theory of strong interactions was described. Working methods with QCD outside the framework of the perturbation theory have been described from a coupling constant. QCD is represented as a single theory possessing both the asymptotical freedom and the freedom retaining quarks [ru

  5. Massive Kaluza-Klein theories and their spontaneously broken symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Hohm, O.

    2006-07-15

    In this thesis we investigate the effective actions for massive Kaluza-Klein states, focusing on the massive modes of spin-3/2 and spin-2 fields. To this end we determine the spontaneously broken gauge symmetries associated to these 'higher-spin' states and construct the unbroken phase of the Kaluza-Klein theory. We show that for the particular background AdS{sub 3} x S{sup 3} x S{sup 3} a consistent coupling of the first massive spin-3/2 multiplet requires an enhancement of local supersymmetry, which in turn will be partially broken in the Kaluza-Klein vacuum. The corresponding action is constructed as a gauged maximal supergravity in D=3. Subsequently, the symmetries underlying an infinite tower of massive spin-2 states are analyzed in case of a Kaluza-Klein compactification of four-dimensional gravity to D=3. It is shown that the resulting gravity-spin-2 theory is given by a Chern-Simons action of an affine algebra and also allows a geometrical interpretation in terms of 'algebra-valued' differential geometry. The global symmetry group is determined, which contains an affine extension of the Ehlers group. We show that the broken phase can in turn be constructed via gauging a certain subgroup of the global symmetry group. Finally, deformations of the Kaluza-Klein theory on AdS{sub 3} x S{sup 3} x S{sup 3} and the corresponding symmetry breakings are analyzed as possible applications for the AdS/CFT correspondence. (Orig.)

  6. Renormalization of gauge theories

    International Nuclear Information System (INIS)

    Becchi, C.; Rouet, A.; Stora, R.

    1975-04-01

    Gauge theories are characterized by the Slavnov identities which express their invariance under a family of transformations of the supergauge type which involve the Faddeev Popov ghosts. These identities are proved to all orders of renormalized perturbation theory, within the BPHZ framework, when the underlying Lie algebra is semi-simple and the gauge function is chosen to be linear in the fields in such a way that all fields are massive. An example, the SU2 Higgs Kibble model is analyzed in detail: the asymptotic theory is formulated in the perturbative sense, and shown to be reasonable, namely, the physical S operator is unitary and independant from the parameters which define the gauge function [fr

  7. Differential and integral forms in supergauge theories and supergravity

    International Nuclear Information System (INIS)

    Zupnik, B.M.; Pak, D.G.

    1989-01-01

    D = 3, 4, N = 1 supergauge theories and D = 3, N = 1 supergravity are considered in the superfield formalism by using differential and integral forms. A special map of the space of differential forms into the space of integral forms is proposed. By means of this map we find the superfield Chern-Simons terms in D = 3, N = 1 Yang-Mills theory and supergravity. The integral forms corresponding to superfield invariants of D = 4, N = 1 supergauge theory have also been constructed. (Author)

  8. Higgs phase in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Kaymakcalan, O.S.

    1981-06-01

    A non-Abelian gauge theory involving scalar fields with non-tachyonic mass terms in the Lagrangian is considered, in order to construct a finite energy density trial vacuum for this theory. The usual scalar potential arguments suggest that the vacuum of such a theory would be in the perturbative phase. However, the obvious choices for a vacuum in this phase, the Axial gauge and the Coulomb gauge bare vacua, do not have finite energy densities even with an ultraviolet cutoff. Indeed, it is a non-trivial problem to construct finite energy density vacua for non-Abelian gauge theories and this is intimately connected with the gauge fixing degeneracies of these theories. Since the gauge fixing is achieved in the Unitary gauge, this suggests that the Unitary gauge bare vacuum might be a finite energy trial vacuum and, despite the form of the scalar potential, the vacuum of this theory might be in a Higgs phase rather than the perturbative phase

  9. Linking the Gauss-Bonnet-Chern theorem, essential HOPF maps and membrane solitons with exotic spin and statistics

    International Nuclear Information System (INIS)

    Tze, Chia-Hsiung

    1989-01-01

    By way of the Gauss-Bonnet-Chern theorem, we present a higher dimensional extension of Polyakov's regularization of Wilson loops of point solitons. Spacetime paths of extended objects become hyper-ribbons with self-linking, twisting and writhing numbers. specifically we discuss the exotic spin and statistical phase entanglements of geometric n-membrane solitons of D-dimensional KP 1 σ-models with an added Hopf-Chern-Simons term where (n, D, K) = (0, 3, C), (2, 7, H), (6, 15, Ω). They are uniquely linked to the complex and quaternion and octonion division algebras. 22 refs

  10. On the energy crisis in noncommutative CP(1) model

    International Nuclear Information System (INIS)

    Sourrouille, Lucas

    2010-01-01

    We study the CP(1) system in (2+1)-dimensional noncommutative space with and without Chern-Simons term. Using the Seiberg-Witten map we convert the noncommutative CP(1) system to an action written in terms of the commutative fields. We find that this system presents the same infinite size instanton solution as the commutative Chern-Simons-CP(1) model without a potential term. Based on this result we argue that the BPS equations are compatible with the full variational equations of motion, rejecting the hypothesis of an 'energy crisis'. In addition we examine the noncommutative CP(1) system with a Chern-Simons interaction. In this case we find that when the theory is transformed by the Seiberg-Witten map it also presents the same instanton solution as the commutative Chern-Simons-CP(1) model.

  11. Particle structure of gauge theories

    International Nuclear Information System (INIS)

    Fredenhagen, K.

    1985-11-01

    The implications of the principles of quantum field theory for the particle structure of gauge theories are discussed. The general structure which emerges is compared with that of the Z 2 Higgs model on a lattice. The discussion leads to several confinement criteria for gauge theories with matter fields. (orig.)

  12. Gauge Theories in the Twentieth Century

    CERN Document Server

    2001-01-01

    By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories , characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups

  13. Quantum field theory in 2+1 dimensions

    International Nuclear Information System (INIS)

    Marino, E.C.

    1998-01-01

    An introductory review is made of many outstanding features of Quantum Field Theory formulated in three-dimensional spacetime. These include topological properties, the Huygens Principle, the Coulomb potential, topological excitations like vortices and skyrmions, dynamical mass generation, fractional spin and statistics, duality nd bosonization. Theories including the Maxwell-Chern-Simons, Abelian Higgs and C P 1 -Nonlinear Sigma Model are used to illustrate the different features. Applications to High-T c Superconductivity and to the Quantum Hall Effect are also presented. (author)

  14. Noncommutative induced gauge theories on Moyal spaces

    International Nuclear Information System (INIS)

    Wallet, J-C

    2008-01-01

    Noncommutative field theories on Moyal spaces can be conveniently handled within a framework of noncommutative geometry. Several renormalisable matter field theories that are now identified are briefly reviewed. The construction of renormalisable gauge theories on these noncommutative Moyal spaces, which remains so far a challenging problem, is then closely examined. The computation in 4-D of the one-loop effective gauge theory generated from the integration over a scalar field appearing in a renormalisable theory minimally coupled to an external gauge potential is presented. The gauge invariant effective action is found to involve, beyond the expected noncommutative version of the pure Yang-Mills action, additional terms that may be interpreted as the gauge theory counterpart of the harmonic term, which for the noncommutative ψ 4 -theory on Moyal space ensures renormalisability. A class of possible candidates for renormalisable gauge theory actions defined on Moyal space is presented and discussed

  15. Dynamical contents of unconventional supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Guevara, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Pais, Pablo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Zanelli, Jorge [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2016-08-11

    The Dirac Hamiltonian formalism is applied to a system in (2+1)-dimensions consisting of a Dirac field ψ minimally coupled to Chern-Simons U(1) and SO(2,1) connections, A and ω, respectively. This theory is connected to a supersymmetric Chern-Simons form in which the gravitino has been projected out (unconventional supersymmetry) and, in the case of a flat background, corresponds to the low energy limit of graphene. The separation between first-class and second-class constraints is performed explicitly, and both the field equations and gauge symmetries of the Lagrangian formalism are fully recovered. The degrees of freedom of the theory in generic sectors shows that the propagating states correspond to fermionic modes in the background determined by the geometry of the graphene sheet and the nondynamical electromagnetic field. This is shown for the following canonical sectors: i) a conformally invariant generic description where the spinor field and the dreibein are locally rescaled; ii) a specific configuration for the Dirac fermion consistent with its spin, where Weyl symmetry is exchanged by time reparametrizations; iii) the vacuum sector ψ=0, which is of interest for perturbation theory. For the latter the analysis is adapted to the case of manifolds with boundary, and the corresponding Dirac brackets together with the centrally extended charge algebra are found. Finally, the SU(2) generalization of the gauge group is briefly treated, yielding analogous conclusions for the degrees of freedom.

  16. Viscous conformal gauge theories

    DEFF Research Database (Denmark)

    Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.

    2017-01-01

    We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....

  17. Stress tensor correlators of CCFT{sub 2} using flat-space holography

    Energy Technology Data Exchange (ETDEWEB)

    Asadi, Mohammad; Baghchesaraei, Omid; Fareghbal, Reza [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of)

    2017-11-15

    We use the correspondence between three-dimensional asymptotically flat spacetimes and two-dimensional contracted conformal field theories (CCFTs) to derive the stress tensor correlators of CCFT{sub 2}. On the gravity side we use the metric formulation instead of the Chern-Simons formulation of three-dimensional gravity. This method can also be used for the four-dimensional case, where there is no Chern-Simons formulation for the bulk theory. (orig.)

  18. On the spontaneous breakdown of massive gravities in 2 + 1 dimension

    International Nuclear Information System (INIS)

    Aragone, C.; Aria, P.J.; Andes Merida, Univ.; Khoudeir, A.

    1997-01-01

    This paper shows that locally Lorentz-invariant, third-order, topological massive gravity cannot be broken down either to the local diffeomorphism subgroup or to the rigid Poincare' group. On the other hand, the recently formulated, locally diffeomorphism-invariant, second order massive tradic (translational) Chern-Simons gravity breaks down on rigid Minkowski space to a double massive spin-two system. This flat double massive action is the uniform spin-two generalization of the Maxwell-Chern-Simons-Proca system which one is left with after U(1) Abelian gauge invariance breaks down in the presence of a sextic Higgs potential

  19. Fourier acceleration in lattice gauge theories. I. Landau gauge fixing

    International Nuclear Information System (INIS)

    Davies, C.T.H.; Batrouni, G.G.; Katz, G.R.; Kronfeld, A.S.; Lepage, G.P.; Wilson, K.G.; Rossi, P.; Svetitsky, B.

    1988-01-01

    Fourier acceleration is a useful technique which can be applied to many different numerical algorithms in order to alleviate the problem of critical slowing down. Here we describe its application to an optimization problem in the simulation of lattice gauge theories, that of gauge fixing a configuration of link fields to the Landau gauge (partial/sub μ/A/sup μ/ = 0). We find that a steepest-descents method of gauge fixing link fields at β = 5.8 on an 8 4 lattice can be made 5 times faster using Fourier acceleration. This factor will grow as the volume of the lattice is increased. We also discuss other gauges that are useful to lattice-gauge-theory simulations, among them one that is a combination of the axial and Landau gauges. This seems to be the optimal gauge to impose for the Fourier acceleration of two other important algorithms, the inversion of the fermion matrix and the updating of gauge field configurations

  20. Abelian gauge symmetries in F-theory and dual theories

    Science.gov (United States)

    Song, Peng

    In this dissertation, we focus on important physical and mathematical aspects, especially abelian gauge symmetries, of F-theory compactifications and its dual formulations within type IIB and heterotic string theory. F-theory is a non-perturbative formulation of type IIB string theory which enjoys important dualities with other string theories such as M-theory and E8 x E8 heterotic string theory. One of the main strengths of F-theory is its geometrization of many physical problems in the dual string theories. In particular, its study requires a lot of mathematical tools such as advanced techniques in algebraic geometry. Thus, it has also received a lot of interests among mathematicians, and is a vivid area of research within both the physics and the mathematics community. Although F-theory has been a long-standing theory, abelian gauge symmetry in Ftheory has been rarely studied, until recently. Within the mathematics community, in 2009, Grassi and Perduca first discovered the possibility of constructing elliptically fibered varieties with non-trivial toric Mordell-Weil group. In the physics community, in 2012, Morrison and Park first made a major advancement by constructing general F-theory compactifications with U(1) abelian gauge symmetry. They found that in such cases, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the blow-up of the weighted projective space P(1;1;2) at one point. Subsequent developments have been made by Cvetic, Klevers and Piragua extended the works of Morrison and Park and constructed general F-theory compactifications with U(1) x U(1) abelian gauge symmetry. They found that in the U(1) x U(1) abelian gauge symmetry case, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the del Pezzo surface dP2. In chapter 2 of this dissertation, I bring this a step further by

  1. Hidden QCD in Chiral Gauge Theories

    DEFF Research Database (Denmark)

    Ryttov, Thomas; Sannino, Francesco

    2005-01-01

    The 't Hooft and Corrigan-Ramond limits of massless one-flavor QCD consider the two Weyl fermions to be respectively in the fundamental representation or the two index antisymmetric representation of the gauge group. We introduce a limit in which one of the two Weyl fermions is in the fundamental...... representation and the other in the two index antisymmetric representation of a generic SU(N) gauge group. This theory is chiral and to avoid gauge anomalies a more complicated chiral theory is needed. This is the generalized Georgi-Glashow model with one vector like fermion. We show that there is an interesting...... phase in which the considered chiral gauge theory, for any N, Higgses via a bilinear condensate: The gauge interactions break spontaneously to ordinary massless one-flavor SU(3) QCD. The additional elementary fermionic matter is uncharged under this SU(3) gauge theory. It is also seen that when...

  2. Gyrocenter-gauge kinetic theory

    International Nuclear Information System (INIS)

    Qin, H.; Tang, W.M.; Lee, W.W.

    2000-01-01

    Gyrocenter-gauge kinetic theory is developed as an extension of the existing gyrokinetic theories. In essence, the formalism introduced here is a kinetic description of magnetized plasmas in the gyrocenter coordinates which is fully equivalent to the Vlasov-Maxwell system in the particle coordinates. In particular, provided the gyroradius is smaller than the scale-length of the magnetic field, it can treat high frequency range as well as the usual low frequency range normally associated with gyrokinetic approaches. A significant advantage of this formalism is that it enables the direct particle-in-cell simulations of compressional Alfven waves for MHD applications and of RF waves relevant to plasma heating in space and laboratory plasmas. The gyrocenter-gauge kinetic susceptibility for arbitrary wavelength and arbitrary frequency electromagnetic perturbations in a homogeneous magnetized plasma is shown to recover exactly the classical result obtained by integrating the Vlasov-Maxwell system in the particle coordinates. This demonstrates that all the waves supported by the Vlasov-Maxwell system can be studied using the gyrocenter-gauge kinetic model in the gyrocenter coordinates. This theoretical approach is so named to distinguish it from the existing gyrokinetic theory, which has been successfully developed and applied to many important low-frequency and long parallel wavelength problems, where the conventional meaning of gyrokinetic has been standardized. Besides the usual gyrokinetic distribution function, the gyrocenter-gauge kinetic theory emphasizes as well the gyrocenter-gauge distribution function, which sometimes contains all the physics of the problems being studied, and whose importance has not been realized previously. The gyrocenter-gauge distribution function enters Maxwell's equations through the pull-back transformation of the gyrocenter transformation, which depends on the perturbed fields. The efficacy of the gyrocenter-gauge kinetic approach is

  3. SU(2) gauge theory in the maximally Abelian gauge without monopoles

    International Nuclear Information System (INIS)

    Shmakov, S.Yu.; Zadorozhnyj, A.M.

    1995-01-01

    We present an algorithm for simulation of SU(2) lattice gauge theory under the maximally Abelian (MA) gauge and first numerical results for the theory without Abelian monopoles. The results support the idea that nonperturbative interaction arises between monopoles and residual Abelian field and the other interactions are perturbative. It is shown that the Gribov region for the theory with the MA gauge fixed is non-connected. 12 refs., 1 tab

  4. Gauge theory description of compactified pp-waves

    International Nuclear Information System (INIS)

    Bertolini, Matteo; Boer, Jan de; Harmark, Troels; Imeroni, Emiliano; Obers, Niels A.

    2003-01-01

    We find a new Penrose limit of AdS 5 xS 5 that gives the maximally symmetric pp-wave background of type-IIB string theory in a coordinate system that has a manifest space-like isometry. This induces a new pp-wave/gauge-theory duality which on the gauge theory side involves a novel scaling limit of N=4 SYM theory. The new Penrose limit, when applied to AdS 5 xS 5 /Z M , yields a pp-wave with a space-like circle. The dual gauge theory description involves a triple scaling limit of an N=2 quiver gauge theory. We present in detail the map between gauge theory operators and string theory states including winding states, and verify agreement between the energy eigenvalues obtained from string theory and those computed in gauge theory, at least to one-loop order in the planar limit. We furthermore consider other related new Penrose limits and explain how these limits can be understood as part of a more general framework. (author)

  5. Amorphous gauge glass theory

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Bennett, D.L.

    1987-08-01

    Assuming that a lattice gauge theory describes a fundamental attribute of Nature, it should be pointed out that such a theory in the form of a gauge glass is a weaker assumption than a regular lattice model in as much as it is not constrained by the imposition of translational invariance; translational invariance is, however, recovered approximately in the long wavelength or continuum limit. (orig./WL)

  6. Gravitation as Gauge theory of Poincare Group

    International Nuclear Information System (INIS)

    Stedile, E.

    1982-08-01

    The geometrical approach to gauge theories, based on fiber-bundles, is shown in detail. Several gauge formalisms for gravitation are examined. In particular, it is shown how to build gauge theories for non-semisimple groups. A gravitational theory for the Poincare group, with all the essential characteristics of a Yang-Mills theory is proposed. Inonu-Wigner contractions of gauge theories are introduced, which provide a Lagrangian formalism, equivalent to a Lagrangian de Sitter theory supplemented by weak constraints. Yang and Einstein theories for gravitation become particular cases of a Yang-Mills theory. The classical limit of the proposed formalism leads to the Poisson equation, for the static case. (Author) [pt

  7. Extended pure Yang-Mills gauge theories with scalar and tensor gauge fields

    International Nuclear Information System (INIS)

    Gabrielli, E.

    1991-01-01

    The usual abelian gauge theory is extended to an interacting Yang-Mills-like theory containing vector, scalar and tensor gauge fields. These gauge fields are seen as components along the Clifford algebra basis of a gauge vector-spinorial field. Scalar fields φ naturally coupled to vector and tensor fields have been found, leading to a natural φ 4 coupling in the lagrangian. The full expression of the lagrangian for the euclidean version of the theory is given. (orig.)

  8. Gauge theory of amorphous magnets

    International Nuclear Information System (INIS)

    Nesterov, A.I.; Ovchinnikov, S.G.

    1989-01-01

    A gauge theory of disordered magnets as a field theory in the principal fiber bundle with structure group SL(3, R) is constructed. The gauge field interacting with a vector field (the magnetization) is responsible for the disorder. A complete system of equations, valid for arbitrary disordered magnets, is obtained. In the limiting case of a free gauge field the proposed approach leads to the well-known Volovik-Dzyaloshinskii theory, which describes isotropic spin glasses. In the other limiting case when the curvature is zero the results of Ignatchenko and Iskhakov for weakly disordered ferromagnets are reproduced

  9. Digital lattice gauge theories

    Science.gov (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.

  10. Gauge theories as theories of spontaneous breakdown

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Ogievetsky, V.I.

    1976-01-01

    Any gauge theory is proved to arise from spontaneous breakdown of symmetry under certain infinite parameter group, the corresponding gauge field being the Goldstone field by which this breakdown is accompanied

  11. A lattice formulation of chiral gauge theories

    International Nuclear Information System (INIS)

    Bodwin, G.T.

    1995-12-01

    The authors present a method for formulating gauge theories of chiral fermions in lattice field theory. The method makes use of a Wilson mass to remove doublers. Gauge invariance is then restored by modifying the theory in two ways: the magnitude of the fermion determinant is replaced with the square root of the determinant for a fermion with vector-like couplings to the gauge field; a double limit is taken in which the lattice spacing associated with the fermion field is taken to zero before the lattice spacing associated with the gauge field. The method applies only to theories whose fermions are in an anomaly-free representation of the gauge group. They also present a related technique for computing matrix elements of operators involving fermion fields. Although the analyses of these methods are couched in weak-coupling perturbation theory, it is argued that computational prescriptions are gauge invariant in the presence of a nonperturbative gauge-field configuration

  12. Renormalization of gauge theories of weak interactions

    International Nuclear Information System (INIS)

    Lee, B.W.

    1973-01-01

    The renormalizability of spontaneously broken gauge theories is discussed. A brief outline of the motivation for such an investigation is given, and the manner in which the renormalizability of such theories is proven is described. The renormalizability question of the unbroken gauge theory is considered, and the formulation of a renormalizable perturbation theory of Higgs phenomena (spontaneously broken gauge theories) is considered. (U.S.)

  13. Residual gauge invariance of Hamiltonian lattice gauge theories

    International Nuclear Information System (INIS)

    Ryang, S.; Saito, T.; Shigemoto, K.

    1984-01-01

    The time-independent residual gauge invariance of Hamiltonian lattice gauge theories is considered. Eigenvalues and eigenfunctions of the unperturbed Hamiltonian are found in terms of Gegengauer's polynomials. Physical states which satisfy the subsidiary condition corresponding to Gauss' law are constructed systematically. (orig.)

  14. Supertwistor orbifolds: gauge theory amplitudes and topological strings

    International Nuclear Information System (INIS)

    Park, Jaemo; Rey, Soojong

    2004-01-01

    Witten established correspondence between multiparton amplitudes in four-dimensional maximally supersymmetric gauge theory and topological string theory on supertwistor space CP 3verticalbar4 . We extend Witten's correspondence to gauge theories with lower supersymmetries, product gauge groups, and fermions and scalars in complex representations. Such gauge theories arise in high-energy limit of the Standard Model of strong and electroweak interactions. We construct such theories by orbifolding prescription. Much like gauge and string theories, such prescription is applicable equally well to topological string theories on supertwistor space. We work out several examples of orbifolds of CP 3verticalbar4 that are dual to N=2,1,0 quiver gauge theories. We study gauged sigma model describing topological B-model on the superorbifolds, and explore mirror pairs with particular attention to the parity symmetry. We check the orbifold construction by studying multiparton amplitudes in these theories with particular attention to those involving fermions in bifundamental representations and interactions involving U(1) subgroups. (author)

  15. Local gauge coupling running in supersymmetric gauge theories on orbifolds

    International Nuclear Information System (INIS)

    Hillenbach, M.

    2007-01-01

    By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)

  16. Local gauge coupling running in supersymmetric gauge theories on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbach, M.

    2007-11-21

    By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)

  17. Stochastic quantization and gauge theories

    International Nuclear Information System (INIS)

    Kolck, U. van.

    1987-01-01

    Stochastic quantization is presented taking the Flutuation-Dissipation Theorem as a guide. It is shown that the original approach of Parisi and Wu to gauge theories fails to give the right results to gauge invariant quantities when dimensional regularization is used. Although there is a simple solution in an abelian theory, in the non-abelian case it is probably necessary to start from a BRST invariant action instead of a gauge invariant one. Stochastic regularizations are also discussed. (author) [pt

  18. Isolated Horizons and Black Hole Entropy in Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Jacobo Diaz-Polo

    2012-08-01

    Full Text Available We review the black hole entropy calculation in the framework of Loop Quantum Gravity based on the quasi-local definition of a black hole encoded in the isolated horizon formalism. We show, by means of the covariant phase space framework, the appearance in the conserved symplectic structure of a boundary term corresponding to a Chern-Simons theory on the horizon and present its quantization both in the U(1 gauge fixed version and in the fully SU(2 invariant one. We then describe the boundary degrees of freedom counting techniques developed for an infinite value of the Chern-Simons level case and, less rigorously, for the case of a finite value. This allows us to perform a comparison between the U(1 and SU(2 approaches and provide a state of the art analysis of their common features and different implications for the entropy calculations. In particular, we comment on different points of view regarding the nature of the horizon degrees of freedom and the role played by the Barbero-Immirzi parameter. We conclude by presenting some of the most recent results concerning possible observational tests for theory.

  19. Noncommutative gauge theories and Kontsevich's formality theorem

    International Nuclear Information System (INIS)

    Jurco, B.; Schupp, P.; Wess, J.

    2001-01-01

    The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map.) Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; as a byproduct we obtain a 'Mini Seiberg-Witten map' that explicitly relates ordinary abelian and nonabelian gauge fields. All constructions are also valid for non-constant B-field, and even more generally for any Poisson tensor

  20. Scalar eletrodynamics in three dimensions with topological mass terms

    International Nuclear Information System (INIS)

    Mello, E.R.B. de.

    1986-01-01

    The interaction between a charged scalar field and a gauge field in a three-dimensional space-time is studied. The topological mass term (the Chern-Simons term) is added to the system and it is investigated how this term, odd by P and Τ symmetry, modifies the corrections to the propagators and vertices of this theory. These corrections are obtained to order e 2 in perturbation theory. In the correction of the linear vertex a new type term arises. Although this term, which comes from the topological one, presents and abnormal parity, the Ward's identity is still valid. (Author) [pt

  1. Scalar electrodynamics in three dimensions with topological man terms

    International Nuclear Information System (INIS)

    Mello, E.R.B. de

    1987-01-01

    The interaction between a charged scalar field and a gauge field in a three-dimensional space-time is studied. The topological mass term (the Chern-Simons term) is added to the system and it is investigated how this term, odd by P and T symmetry, modified the corrections to the propagators and vertices of this theory. These corrections are obtained to order e 2 in pertubation theory. In the correction of the linear vertex a new type of term arises. Although this new term, which comes from the topological one, presents an abnormal parity, Ward's identity is still valid. (Author) [pt

  2. Aspects of defects in 3d-3d correspondence

    International Nuclear Information System (INIS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-01-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0) theory of type A_N_−_1 on a 3-manifold M. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,ℂ)) on M and a 3d N=2 theory T_N[M]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N>2. We also highlight the non-Abelian description of the 3d N=2T_N[M] theory with defect included, when such a description is available. This paper is a companion to our shorter paper http://dx.doi.org/10.1088/1751-8113/49/30/30LT02, which summarizes our main results.

  3. Nonperturbative quantization of nonabelian gauge theories

    International Nuclear Information System (INIS)

    Slavnov, A.

    2011-01-01

    Full text: (author)On the basis of the equivalence theorems proven earlier, a new formulation of nonabelian gauge theories is proposed. Contrary to the usual scheme this formulation allows the quantization of gauge theories beyond perturbation theory. The method is applicable both to the Yang-Mills theory and to nonabelian models with spontaneously broken symmetries

  4. Hard amplitudes in gauge theories

    International Nuclear Information System (INIS)

    Parke, S.J.

    1991-03-01

    In this lecture series 1 presents recent developments in perturbation theory methods for gauge theories for processes with many partons. These techniques and results are useful in the calculation of cross sections for processes with many final state partons which have applications in the study of multi-jet phenomena in high-energy colliders. The results illuminate many important and interesting properties of non-abelian gauge theories. 30 refs., 9 figs

  5. The light-cone gauge in Polyakov's theory of strings and its relation to the conformal gauge

    International Nuclear Information System (INIS)

    Tzani, R.

    1989-01-01

    The author studies the string theory as a gauge theory. The analysis includes the formulation of the interacting bosonic string by fixing the Gervais-Sakita light-cone gauge in Polyakov's path-integral formulation of the theory and the study of the problem of changing gauge in string theory in the context of the functional formulation of the theory. The main results are the following: Mandelstam's picture is obtained from the light-cone gauge fixed Polyakov's theory. Due to the off-diagonal nature of the gauge, the calculation of the determinants differs from the usual (conformal gauge) case. The regularization of the functional integrals associated with these determinants is done by using the conformal-invariance principle. He then shows that the conformal anomaly associated with this new gauge fixing is canceled at dimensions of space-time d = 26. Studying the problem of changing gauge in string theory, he shows the equivalence between the light-cone and conformal gauge in the path-integral formulation of the theory. In particular, by performing a proper change of variables in the commuting and ghost fields in the Polyakov path-integral, the string theory in the conformal gauge is obtained from the light-cone gauge fixed expression. Finally, the problem of changing gauge is generalized to the higher genus surfaces. It is shown that the string theory in the conformal gauge is equivalent to the light-cone gauge fixed theory for surface with arbitrary number of handles

  6. CP violation in gauge theories

    International Nuclear Information System (INIS)

    Escobar, C.O.

    Some aspects of CP violation in gauge theories are reviewed. The topics covered include a discussion of the Kobayashi-Maskawa six-quarks model, models of soft- CP violation (extended Higgs sector), the strong CP problem and finally some speculations relating CP violation and magnetic charges in non-abelian gauge theories. (Author) [pt

  7. Hot Conformal Gauge Theories

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Sannino, Francesco

    2010-01-01

    of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...

  8. Non-renormalization theorems andN=2 supersymmetric backgrounds

    International Nuclear Information System (INIS)

    Butter, Daniel; Wit, Bernard de; Lodato, Ivano

    2014-01-01

    The conditions for fully supersymmetric backgrounds of general N = 2 locally supersymmetric theories are derived based on the off-shell superconformal multiplet calculus. This enables the derivation of a non-renormalization theorem for a large class of supersymmetric invariants with higher-derivative couplings. The theorem implies that the invariant and its first order variation must vanish in a fully supersymmetric background. The conjectured relation of one particular higher-derivative invariant with a specific five-dimensional invariant containing the mixed gauge-gravitational Chern-Simons term is confirmed

  9. What's wrong with anomalous chiral gauge theory?

    International Nuclear Information System (INIS)

    Kieu, T.D.

    1994-05-01

    It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs

  10. Gauge Theories of Vector Particles

    Science.gov (United States)

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  11. Symmetry gauge theory for paraparticles

    International Nuclear Information System (INIS)

    Kursawe, U.

    1986-01-01

    In the present thesis it was shown that for identical particles the wave function of which has a more complicated symmetry than it is the case at the known kinds of particles, the bosons and fermions, a gauge theory can be formulated, the so-called 'symmetry gauge theory'. This theory has its origin alone in the symmetry of the particle wave functions and becomes first relevant when more than two particles are considered. It was shown that for particles with mixed-symmetrical wave functions, so-called 'paraparticles', the quantum mechanical state is no more described by one Hilbert-space element but by a many-dimensional subspace of this Hilbert space. The gauge freedom consists then just in the freedom of the choice of the basis in this subspace, the corresponding gauge group is the group of the unitary basis transformation in this subspace. (orig./HSI) [de

  12. Four-dimensional Ashkin-Teller gauge theory

    International Nuclear Information System (INIS)

    Alcaraz, F.C.; Jacobs, L.

    1983-01-01

    The authors construct and analyze a lattice field theory of two Z 2 gauge fields which interact in a minimal gauge-invariant fashion. Although the theory presented here, a generalization of the two-dimensional Ashkin-Teller spin system, has no formal continuum limit, it is found that it has an electrodynamicslike phase similar to that observed in general Z/sub N/ theories for N> or =4. This model is probably the simplest generalization of the conventional Z 2 pure gauge theory which has a massless phase separated from the strong- and weak-coupling regions by lines of second-order phase transitions

  13. Anomalous Lorentz and CPT violation

    Science.gov (United States)

    Klinkhamer, F. R.

    2018-01-01

    If there exists Lorentz and CPT violation in nature, then it is crucial to discover and understand the underlying mechanism. In this contribution, we discuss one such mechanism which relies on four-dimensional chiral gauge theories defined over a spacetime manifold with topology ℛ3 × S 1 and periodic spin structure for the compact dimension. It can be shown that the effective gauge-field action contains a local Chern-Simons-like term which violates Lorentz and CPT invariance. For arbitrary Abelian U(1) gauge fields with trivial holonomies in the compact direction, this anomalous Lorentz and CPT violation has recently been established perturbatively with a Pauli-Villars-type regularization and nonperturbatively with a lattice regularization based on Ginsparg-Wilson fermions.

  14. Gauge symmetry breaking in gauge theories -- in search of clarification

    NARCIS (Netherlands)

    Friederich, Simon

    2013-01-01

    The paper investigates the spontaneous breaking of gauge symmetries in gauge theories from a philosophical angle, taking into account the fact that the notion of a spontaneously broken local gauge symmetry, though widely employed in textbook expositions of the Higgs mechanism, is not supported by

  15. Abelian 2-form gauge theory: special features

    International Nuclear Information System (INIS)

    Malik, R P

    2003-01-01

    It is shown that the four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theory provides an example of (i) a class of field theoretical models for the Hodge theory, and (ii) a possible candidate for the quasi-topological field theory (q-TFT). Despite many striking similarities with some of the key topological features of the two (1 + 1)-dimensional (2D) free Abelian (and self-interacting non-Abelian) gauge theories, it turns out that the 4D free Abelian 2-form gauge theory is not an exact TFT. To corroborate this conclusion, some of the key issues are discussed. In particular, it is shown that the (anti-)BRST and (anti-)co-BRST invariant quantities of the 4D 2-form Abelian gauge theory obey recursion relations that are reminiscent of the exact TFTs but the Lagrangian density of this theory is not found to be able to be expressed as the sum of (anti-)BRST and (anti-)co-BRST exact quantities as is the case with the topological 2D free Abelian (and self-interacting non-Abelian) gauge theories

  16. Theorems for asymptotic safety of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Andrew D.; Litim, Daniel F. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-06-15

    We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated. (orig.)

  17. Generally covariant gauge theories

    International Nuclear Information System (INIS)

    Capovilla, R.

    1992-01-01

    A new class of generally covariant gauge theories in four space-time dimensions is investigated. The field variables are taken to be a Lie algebra valued connection 1-form and a scalar density. Modulo an important degeneracy, complex [euclidean] vacuum general relativity corresponds to a special case in this class. A canonical analysis of the generally covariant gauge theories with the same gauge group as general relativity shows that they describe two degrees of freedom per space point, qualifying therefore as a new set of neighbors of general relativity. The modification of the algebra of the constraints with respect to the general relativity case is computed; this is used in addressing the question of how general relativity stands out from its neighbors. (orig.)

  18. Gauge theory for finite-dimensional dynamical systems

    International Nuclear Information System (INIS)

    Gurfil, Pini

    2007-01-01

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory

  19. Decoupling, effective Lagrangian, and gauge hierarchy in spontaneously broken non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Kazama, Y.; Yao, Y.

    1982-01-01

    In spontaneously broken non-Abelian gauge theories which admit gauge hierarchy at the tree level, we show, to all orders in perturbation theory, that (i) the superheavy particles decouple from the light sector at low energies, (ii) an effective low-energy renormalizable theory emerges together with appropriate counterterms, and (iii) the gauge hierarchy can be consistently maintained in the presence of radiative corrections. These assertions are explicitly demonstrated for O(3) gauge theory with two triplets of Higgs particles in a manner easily applicable to more realistic grand unified theories. Furthermore, as a by-product of our analysis, we obtain a systematic method of computing the parameters of the effective low-energy theory via renormalization-group equations to any desired accuracy

  20. Nonabelian noncommutative gauge theory via noncommutative extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, Branislav E-mail: jurco@theorie.physik.uni-muenchen.de; Schupp, Peter E-mail: schupp@theorie.physik.uni-muenchen.de; Wess, Julius E-mail: wess@theorie.physik.uni-muenchen.de

    2001-06-18

    The concept of covariant coordinates on noncommutative spaces leads directly to gauge theories with generalized noncommutative gauge fields of the type that arises in string theory with background B-fields. The theory is naturally expressed in terms of cochains in an appropriate cohomology; we discuss how it fits into the framework of projective modules. The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map). As application we show the exact equality of the Dirac-Born-Infeld action with B-field in the commutative setting and its semi-noncommutative cousin in the intermediate picture. Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; an explicit map between abelian and nonabelian gauge fields is given. All constructions are also valid for non-constant B-field, Poisson structure and metric.