WorldWideScience

Sample records for cherenkov imaging applications

  1. Development of a gaseous photon detector for Cherenkov imaging applications

    CERN Document Server

    Rocco, Elena; Dalla Torre, Silvia

    2010-01-01

    This thesis is dedicated to the R&D activity aiming at a novel micro pattern gaseous photon detector based on the THick Gas Electron Multiplier (THGEM). The goal application of the novel photon detector is the detection of single photon in Ring Imaging CHerenkov (RICH) counters. The THGEM principle is derived from the Gas Electron Multiplier (GEM) one, even if the material, the production technology and the size scale are different: a THGEM is a Circuit Printed Board (PCB) coated with thin copper layers on both faces, with holes obtained by drilling. Part of the THGEM features are similar to those of the GEMs, but a number of characteristics aspects result substantially different: in fact, if the geometrical parameters can be scaled from the GEM ones, the parameters related to the electrons multiplication, which is a microscopic physical phenomenon, do not. This is why, before starting the photon detector development, we have performed a systematic study of the THGEM multiplier. A photon detector is forme...

  2. Large size SiPM matrix for Imaging Atmospheric Cherenkov Telescopes applications

    Science.gov (United States)

    Ambrosi, G.; Corti, D.; Ionica, M.; Manea, C.; Mariotti, M.; Rando, R.; Reichardt, I.; Schultz, C.

    2016-07-01

    SiPM photo detectors are nowadays commonly used in many applications. For large size telescopes like MAGIC or the future Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) project, a pixel size of some square centimeters is needed. An analog amplifier and sum stage was built and characterized. A large and compact SiPM matrix prototype, with the associated focusing optics, was assembled into a monolithic light detector with an active area of 3 cm2. The performance of the electronics is tailored for Imaging Atmospheric Cherenkov Telescopes (IACT) applications, with fast signal and adequate signal-to-noise (S/N) ratio.

  3. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications

    Science.gov (United States)

    Glaser, Adam K.; Zhang, Rongxiao; Andreozzi, Jacqueline; Gladstone, David; Pogue, Brian

    2016-03-01

    Cherenkov radiation has emerged as a novel source of light with a number of applications in the biomedical sciences. It's unique properties, including its broadband emission spectrum, spectral weighting in the ultraviolet and blue wavebands, and local generation of light within a given tissue have made it an attractive source of light for techniques ranging from widefield imaging to oximetry and phototherapy. To help guide the future development of this field in the context of molecular imaging, quantitative estimates of the light fluence rates of Cherenkov radiation from a number of radionuclide and external radiotherapy beams in tissue was explored for the first time. Using Monte Carlo simulations, these values were found to be on the order of 0.1 - 1 nW/cm2 per MBq/g for radionuclides and 1 - 10 μW/cm2 per Gy/sec for external radiotherapy beams, dependent on the given waveband and optical properties. For phototherapy applications, the total light fluence was found to be on the order of nJ/cm2 for radionuclides, and mJ/cm2 for radiotherapy beams. To validate these findings, experimental validation was completed with an MV x-ray photon beam incident onto a tissue phantom, confirming the magnitudes of the simulation values. The results indicate that diagnostic potential is reasonable for Cherenkov excitation of molecular probes, but phototherapy may remain elusive at these relatively low fluence values.

  4. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications.

    Science.gov (United States)

    Glaser, Adam K; Zhang, Rongxiao; Andreozzi, Jacqueline M; Gladstone, David J; Pogue, Brian W

    2015-09-01

    Cherenkov radiation has recently emerged as an interesting phenomenon for a number of applications in the biomedical sciences. Its unique properties, including broadband emission spectrum, spectral weight in the ultraviolet and blue wavebands, and local generation of light within a given tissue, have made it an attractive new source of light within tissue for molecular imaging and phototherapy applications. While several studies have investigated the total Cherenkov light yield from radionuclides in units of [photons/decay], further consideration of the light propagation in tissue is necessary to fully consider the utility of this signal in vivo. Therefore, to help further guide the development of this novel field, quantitative estimates of the light fluence rate of Cherenkov radiation from both radionuclides and radiotherapy beams in a biological tissue are presented for the first time. Using Monte Carlo simulations, these values were found to be on the order of 0.01-1 nW cm(-2) per MBq g(-1) for radionuclides, and 1-100 μW cm(-2) per Gy s(-1) for external radiotherapy beams, dependent on the given waveband, optical properties, and radiation source. For phototherapy applications, the total light fluence was found to be on the order of nJ cm(-2) for radionuclides, and mJ cm(-2) for radiotherapy beams. The results indicate that diagnostic potential is reasonable for Cherenkov excitation of molecular probes, but phototherapy may remain elusive at such exceedingly low fluence values. The results of this study are publicly available for distribution online at www.dartmouth.edu/optmed/. PMID:26270125

  5. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications

    International Nuclear Information System (INIS)

    Cherenkov radiation has recently emerged as an interesting phenomenon for a number of applications in the biomedical sciences. Its unique properties, including broadband emission spectrum, spectral weight in the ultraviolet and blue wavebands, and local generation of light within a given tissue, have made it an attractive new source of light within tissue for molecular imaging and phototherapy applications. While several studies have investigated the total Cherenkov light yield from radionuclides in units of [photons/decay], further consideration of the light propagation in tissue is necessary to fully consider the utility of this signal in vivo. Therefore, to help further guide the development of this novel field, quantitative estimates of the light fluence rate of Cherenkov radiation from both radionuclides and radiotherapy beams in a biological tissue are presented for the first time. Using Monte Carlo simulations, these values were found to be on the order of 0.01–1 nW cm−2 per MBq g−1 for radionuclides, and 1–100 μW cm−2 per Gy s−1 for external radiotherapy beams, dependent on the given waveband, optical properties, and radiation source. For phototherapy applications, the total light fluence was found to be on the order of nJ cm−2 for radionuclides, and mJ cm−2 for radiotherapy beams. The results indicate that diagnostic potential is reasonable for Cherenkov excitation of molecular probes, but phototherapy may remain elusive at such exceedingly low fluence values. The results of this study are publicly available for distribution online at www.dartmouth.edu/optmed/. (paper)

  6. Tests and applications of Cherenkov imaging in TeV astronomy

    International Nuclear Information System (INIS)

    This dissertation is on the use of Cherenkov imaging for background reduction in TeV Astronomy. The technique of measuring the angular distribution of Cherenkov light from air showers as a means of identifying the primary particle type has been predicted to lead to a significant increase in the sensitivity for ground-based x-ray telescopes. The hardware test of imaging successfully finds the Cherenkov light patterns from local cosmic ray particles using the Whipple Observatory collaboration's air Cherenkov telescope. This shows that a Whipple type imaging detector is sensitive to subtle images and therefore suitable for such a technique. A Monte Carlo simulation test confirms the current knowledge of the angular distribution of Cherenkov light expected from, γ-ray induced air showers. The search for TeV photons from two massive X-ray binaries, 4U0115+63 and V0332+53, using both uncut and image selected data sets shows little evidence for emission from either source

  7. DELPHI's Ring Imaging Cherenkov Chamber

    CERN Multimedia

    1989-01-01

    The hundreds of mirrors around this Ring Imaging Cherenkov Chamber reflect cones of light created by fast moving particles to a detector. The velocity of a particle can be measured by the size of the ring produced on the detector. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  8. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.B., E-mail: prose6@gatech.edu; Erickson, A.S., E-mail: anna.erickson@me.gatech.edu

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in {sup 11}B(d,n-γ){sup 12}C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example {sup 232}Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  9. Trends in the development of large area photon detectors for Cherenkov light imaging applications

    CERN Document Server

    Nappi, E

    2003-01-01

    Since the successful operations of hi-tech devices at OMEGA, DELPHI and SLD, the technique of Cherenkov light imaging has gone through an impressive and fruitful evolution driven by the conception of novel large area photon detectors. The well-assessed potentialities of thin CsI films, employed as reflective photoconverters in gas counters operated at atmospheric pressure, will be compared with the promising features of hybrid and multianode vacuum photomultipliers. Recently proposed single-photon gaseous detectors based on GEMs will also be reviewed.

  10. Use of aerogel for imaging Cherenkov counters

    International Nuclear Information System (INIS)

    In the past, detectors using silica aerogel as a Cherenkov radiator treated this material as a diffuse source of Cherenkov photons. In this paper we report on measurements made to explore the feasibility of using aerogel for imaging Cherenkov purposes. The results of the measurements are reproduced by a detailed Monte Carlo. This allows us to identify parameters critical for the use of aerogel as a radiator in imaging detectors. We conclude that commercially available aerogel can be used for these purposes. ((orig.))

  11. NICHE: The Non-Imaging CHErenkov Array

    CERN Document Server

    Bergman, Douglas

    2012-01-01

    The accurate measurement of the Cosmic Ray (CR) nuclear composition around and above the Knee (~ 10^15.5 eV) has been difficult due to uncertainties inherent to the measurement techniques and/or dependence on hadronic Monte Carlo simulation models required to interpret the data. Measurement of the Cherenkov air shower signal, calibrated with air fluorescence measurements, offers a methodology to provide an accurate measurement of the nuclear composition evolution over a large energy range. NICHE will use an array of widely-spaced, non-imaging Cherenkov counters to measure the amplitude and time-spread of the air shower Cherenkov signal to extract CR nuclear composition measurements and to cross-calibrate the Cherenkov energy and composition measurements with TA/TALE fluorescence and surface detector measurements.

  12. Volcanoes muon imaging using Cherenkov telescopes

    CERN Document Server

    Catalano, Osvaldo; Mineo, Teresa; Cusumano, Giancarlo; Maccarone, Maria Concetta; Pareschi, Giovanni

    2015-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energ...

  13. The PHENIX ring imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, Y.; Begay, R.; Burwood-Hoy, J.; Chappell, R.B.; Crook, D.W.; Ebisu, K.; Emery, M.S.; Ferrierra, J.; Frawley, A.D.; Hamagaki, H.; Hara, H.; Hayano, R.S.; Hemmick, T.K.; Hibino, M.; Hutter, R.; Kennedy, M.; Kikuchi, J.; Matsumoto, T.; Moscone, G.G.; Nagasaka, Y.; Nishimura, S.; Oyama, K.; Sakaguchi, T.; Salomone, S.; Shigaki, K.; Tanaka, Y.; Walker, J.W.; Wintenberg, A.L.; Young, G.R

    2000-10-11

    The PHENIX experiment at RHIC is primarily a lepton and photon detector. Electron detection takes place in the two central arms of PHENIX, with the primary electron identifier in each arm being a ring imaging Cherenkov detector. This paper contains a description of the two identical RICH detectors and of their expected performance.

  14. Volcanoes muon imaging using Cherenkov telescopes

    Science.gov (United States)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  15. Wavelet Imaging Cleaning Method for Atmospheric Cherenkov Telescopes

    OpenAIRE

    Lessard, R. W.; Cayón, L.; Sembroski, G.H.; Gaidos, J. A.

    2001-01-01

    We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more ac...

  16. The Ring Imaging Cherenkov Detectors for LHCb

    CERN Document Server

    Papanestis, Antonis

    2005-01-01

    The success of the LHCb experiment depends heavily on particle identification over the momentum 2-100 GeV/c. To meet this challenge, LHCb uses a Ring Imaging Cherenkov (RICH) system composed of two detectors with three radiators. RICH1 has both aerogel and gas (C$_4$F$_{10}$) radiators, while RICH2 has only a gas (CF$_4$) radiator. The design of RICH1 is almost complete, whereas RICH2 has been constructed and installed (Nov 2005). Novel Hybrid Photon Detectors (HPDs) have been developed in collaboration with industry to detect the Cherenkov photons. A silicon pixel detector bump-bonded to a readout chip is encapsulated in a vacuum tube. A bi-alkali photocathode is deposited on the inside of the quartz entrance window to convert photons in the range 200-600 nm. The pixel chip is manufactured in 0.25 $\\mu$m deep-submicron radiation-tolerant technology and consists of 1024 logical pixels, each pixel having an area of 0.5 mm x 05. Mm. Photo-electrons are accelerated by a 20kV potential, resulting in a signal of ...

  17. The endcap Cherenkov ring imaging detector at SLD

    International Nuclear Information System (INIS)

    The authors present the Cherenkov Ring Imaging Detector in the endcap regions of the SLD detector and report initial performance. The endcap CRID was completed and commissioned in 1993 and is fully operational for the 1994 run. First Cherenkov rings have been observed. The endcap CRID detectors and fluid systems are described and initial operational experience is discussed

  18. Test of a ring imaging Cherenkov counter

    International Nuclear Information System (INIS)

    We have tested a ring imaging Cherenkov counter with readout of the projection chamber type. A specific detector response of N0=80 cm-1 was measured which corresponds to 8 photoelectrons per event in a 1.60 m long nitrogen radiator. The resolution of the ring radius was measured to be Δr/r=3.6%. The crosstalk between neighboring wires due to photons generated in the avalanche process was estimated to contribute up to 50% per hit. It was reduced considerably by inserting shielding walls between the wires and by adding C2H6 or iC4H10 to the CH4-TMAE gas mixture. (orig.)

  19. New optics for resolution improving of Ring Imaging Cherenkov detectors

    OpenAIRE

    Steiger L.; Finger M.; Polak J.; Šulc M.; Kramer D.; Slunecka M.

    2013-01-01

    The Ring Imaging Cherenkov detector (RICH) of the COMPASS experiment at CERN is key tool for particle identification. Two reflecting spherical mirror surfaces, covering a total area of about 21 m2 hosted in the radiator vessel, provide Cherenkov radiation focusing to photon detectors. These ones are based on the use of multi-anode photo-multiplier tubes. They are coupled to individual lens telescopes, made from special fused silica aspherical lenses. Design, construction, and Hartmann te...

  20. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    Science.gov (United States)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  1. GAW (Gamma Air Watch): a novel imaging Cherenkov telescope

    OpenAIRE

    Cusumano, G.; Agnetta, G.; B. Biondo; Catalano, O.; Giarrusso, S.; Gugliotta, G.; La Fata, L.; Maccarone, M. C.; Mangano, A.; Mineo, T.; Russo, F; Sacco, B.

    2001-01-01

    GAW (Gamma Air Watch) is a new imaging Cherenkov telescope designed for observation of very high-energy gamma-ray sources. GAW will be equipped with a 3 meter diameter Fresnel lens as light collector and with an array of 300 multi-anode photomultipliers at the focal plane. The pixel size will be 4 arcmin wide for a total field of view of 10.5 degrees. Whith respect to the planned imaging Cherenkov telescopes (CANGAROO III, HESS, MAGIC, VERITAS) GAW follows a different approach for what concer...

  2. Analytical application of Cherenkov radiation Pt. 4

    International Nuclear Information System (INIS)

    Cherenkov photometry can be used for measuring coloured solutions. The use of Cherenkov photometry is very advantageous, because Beer's law is true in a very wide concentration interval. It was studied how the various isotopes and the external standard can be used for Cherenkov Photometry with Cr2O72- and CrO42- in the 2-200 μg/cm3 interval. The upper measuring limits were found to be the lowest with low β energy isotopes. From among the isotopes studied the one with the highest energy can be used in the widest concentration interval. (author)

  3. GAW (Gamma Air Watch) a novel imaging Cherenkov telescope

    CERN Document Server

    Cusumano, G; Biondo, B; Catalano, O; Giarrusso, S; Gugliotta, G; La Fata, L; Maccarone, M C; Mangano, A; Mineo, T; Russo, F; Sacco, B

    2001-01-01

    GAW (Gamma Air Watch) is a new imaging Cherenkov telescope designed for observation of very high-energy gamma-ray sources. GAW will be equipped with a 3 meter diameter Fresnel lens as light collector and with an array of 300 multi-anode photomultipliers at the focal plane. The pixel size will be 4 arcmin wide for a total field of view of 10.5 degrees. Whith respect to the planned imaging Cherenkov telescopes (CANGAROO III, HESS, MAGIC, VERITAS) GAW follows a different approach for what concerns both the optical system and the detection working mode: the Cherenkov light collector is a single acrylic flat Fresnel lens (instead of mirrors) that allows to achieve wide field of view; the photomultipliers operate in single photoelectron counting mode (instead of charge integration). The single photoelectron counting mode allows to reach a low energy threshold of ~200 GeV, in spite of the relatively small dimension of the GAW optic system.

  4. MO-A-BRD-06: In Vivo Cherenkov Video Imaging to Verify Whole Breast Irradiation Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Glaser, A [Dartmouth College, Hanover, NH - New Hampshire (United States); Jarvis, L [Dartmouth-Hitchcock Medical Center, City Of Lebanon, New Hampshire (United States); Gladstone, D [Dartmouth-Hitchcock Medical Center, Hanover, City of Lebanon (Lebanon); Andreozzi, J; Hitchcock, W; Pogue, B [Dartmouth College, Hanover, NH (United States)

    2014-06-15

    Purpose: To show in vivo video imaging of Cherenkov emission (Cherenkoscopy) can be acquired in the clinical treatment room without affecting the normal process of external beam radiation therapy (EBRT). Applications of Cherenkoscopy, such as patient positioning, movement tracking, treatment monitoring and superficial dose estimation, were examined. Methods: In a phase 1 clinical trial, including 12 patients undergoing post-lumpectomy whole breast irradiation, Cherenkov emission was imaged with a time-gated ICCD camera synchronized to the radiation pulses, during 10 fractions of the treatment. Images from different treatment days were compared by calculating the 2-D correlations corresponding to the averaged image. An edge detection algorithm was utilized to highlight biological features, such as the blood vessels. Superficial dose deposited at the sampling depth were derived from the Eclipse treatment planning system (TPS) and compared with the Cherenkov images. Skin reactions were graded weekly according to the Common Toxicity Criteria and digital photographs were obtained for comparison. Results: Real time (fps = 4.8) imaging of Cherenkov emission was feasible and feasibility tests indicated that it could be improved to video rate (fps = 30) with system improvements. Dynamic field changes due to fast MLC motion were imaged in real time. The average 2-D correlation was about 0.99, suggesting the stability of this imaging technique and repeatability of patient positioning was outstanding. Edge enhanced images of blood vessels were observed, and could serve as unique biological markers for patient positioning and movement tracking (breathing). Small discrepancies exists between the Cherenkov images and the superficial dose predicted from the TPS but the former agreed better with actual skin reactions than did the latter. Conclusion: Real time Cherenkoscopy imaging during EBRT is a novel imaging tool that could be utilized for patient positioning, movement tracking

  5. MO-A-BRD-06: In Vivo Cherenkov Video Imaging to Verify Whole Breast Irradiation Treatment

    International Nuclear Information System (INIS)

    Purpose: To show in vivo video imaging of Cherenkov emission (Cherenkoscopy) can be acquired in the clinical treatment room without affecting the normal process of external beam radiation therapy (EBRT). Applications of Cherenkoscopy, such as patient positioning, movement tracking, treatment monitoring and superficial dose estimation, were examined. Methods: In a phase 1 clinical trial, including 12 patients undergoing post-lumpectomy whole breast irradiation, Cherenkov emission was imaged with a time-gated ICCD camera synchronized to the radiation pulses, during 10 fractions of the treatment. Images from different treatment days were compared by calculating the 2-D correlations corresponding to the averaged image. An edge detection algorithm was utilized to highlight biological features, such as the blood vessels. Superficial dose deposited at the sampling depth were derived from the Eclipse treatment planning system (TPS) and compared with the Cherenkov images. Skin reactions were graded weekly according to the Common Toxicity Criteria and digital photographs were obtained for comparison. Results: Real time (fps = 4.8) imaging of Cherenkov emission was feasible and feasibility tests indicated that it could be improved to video rate (fps = 30) with system improvements. Dynamic field changes due to fast MLC motion were imaged in real time. The average 2-D correlation was about 0.99, suggesting the stability of this imaging technique and repeatability of patient positioning was outstanding. Edge enhanced images of blood vessels were observed, and could serve as unique biological markers for patient positioning and movement tracking (breathing). Small discrepancies exists between the Cherenkov images and the superficial dose predicted from the TPS but the former agreed better with actual skin reactions than did the latter. Conclusion: Real time Cherenkoscopy imaging during EBRT is a novel imaging tool that could be utilized for patient positioning, movement tracking

  6. CHERCAM: A Cherenkov imager for the CREAM experiment

    International Nuclear Information System (INIS)

    The CREAM experiment (Cosmic Ray Energetics and Mass) is dedicated to the measurement of the energy spectrum of nuclear elements in cosmic rays, over the range 1012-1015eV. The individual elements separation, which is a key feature of CREAM, requires instruments with strong identification capabilities. A proximity focused type of Cherenkov imager, CHERCAM (CHERenkov CAMera), providing both a good signature of downgoing Z=1 particles and good single element separation through the whole range of nuclear charges [Buenerd, et al., 28th ICRC, Tsukuba, OG 1.5, 2003, p. 2157. [1

  7. Calibration of an atmospheric Cherenkov telescope using muon ring images

    International Nuclear Information System (INIS)

    Theoretical and experimental studies have been made of the Chernkov light images from single muons recorded by the atmospheric Cherenkov imaging telescopes which are commonly used in TeV gamma-ray astronomy. In particular, the Cherenkov ring images from single muons have been used to calibrate the Whipple Observatory 10 meter imaging telescope. This approach tests the total throughput of the telescope and uses an atmospheric Chernkov light signal that matches the shower signal. We discusss the geometrical and physical factors Chernkov rings and match the measured images with predicted rings. The preliminary estimate of the absolute calibration of the Whipple telescope is in agreement with that obtained by other methods but the uncertainty is reduced

  8. The fluid systems for the SLD Cherenkov ring imaging detector

    International Nuclear Information System (INIS)

    We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C2H6 + TMAE), radiator gas (C5F12 + N2) and radiator liquid (C6F14). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported

  9. Status of the development of large area photon detectors based on THGEMs and hybrid MPGD architectures for Cherenkov imaging applications

    Science.gov (United States)

    Alexeev, M.; Birsa, R.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Torre, S. Dalla; Dasgupta, S.; Denisov, O.; Duic, V.; Finger, M.; Finger, M.; Fischer, H.; Giorgi, M.; Gobbo, B.; Gregori, M.; Herrmann, F.; Königsmann, K.; Levorato, S.; Maggiora, A.; Martin, A.; Menon, G.; Steiger, K.; Novy, J.; Panzieri, D.; Pereira, F. A.; Santos, C. A.; Sbrizzai, G.; Schiavon, P.; Schopferer, S.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Takekawa, S.; Tessarotto, F.; Veloso, J. F. C. A.; Makke, N.

    2016-07-01

    We report about the development status of large area gaseous single photon detectors based on a novel hybrid concept for RICH applications. The hybrid concept combines Thick Gaseous Electron Multipliers (THGEMs) coupled to CsI, working as a photon sensitive pre-amplification stage, and Micromegas, as a multiplication stage. The most recent achievements within the research and development programme consist in the assembly and study of 300 × 300mm2 hybrid photon detectors, the optimization of front-end electronics, and engineering towards large area detectors. Hybrid detectors with an active area of 300 × 300mm2 have been successfully operated in laboratory conditions and at a CERN PS T10 test beam, achieving effective gains in the order of 105 and good time resolution (σ = 7 ns); APV25 front-end chips have been coupled to the detector resulting in noise levels lower than 1000 electrons; the production and characterization of 300 × 600mm2 THGEMs is ongoing. A set of hybrid detectors with 600 × 600mm2 active area is envisaged to upgrade COMPASS RICH-1 at CERN in 2016.

  10. The Ring Imaging CHerenkov Detectors of the LHCb Experiment

    CERN Document Server

    Perego, Davide Luigi

    2012-01-01

    Particle identification is a fundamental requirement of the LHCb experiment to fulfill its physics programme. Positive hadron identification is performed by two Ring Imaging CHerenkov (RICH) detectors. This system covers the full angular acceptance of the experiment and is equipped with three Cherenkov radiators to identify particles in a wide momentum range from1 GeV/ c up to 100 GeV/ c . The Hybrid Photon Detectors (HPDs) located outside the detector acceptance provide the photon detection with 500,000 channels. Specific read–out electronics has been developed to readout and process data from the HPDs including data transmission and power distribution. The operation and performanceoftheRICHsystemare ensuredbythe constant controland monitoringoflowandhighvoltage systems,of thegas qualityandenvironmental parameters,ofthe mirror alignment,and finallyofthe detector safety. The description of the LHCb RICH is given. The experience in operating the detector at the Large Hadron Collider is presented and discusse...

  11. Detection of tau neutrinos by Imaging Air Cherenkov Telescopes

    CERN Document Server

    Gora, Dariusz

    2016-01-01

    This paper investigates the potential to detect tau neutrinos in the energy range of 1-1000 PeV searching for very inclined showers with imaging Cherenkov telescopes. A neutrino induced tau lepton escaping from the Earth may decay and initiate an air shower which can be detected by a fluorescence or Cherenkov telescope. We present here a study of the detection potential of Earth-skimming neutrinos taking into account neutrino interactions in the Earth crust, local matter distributions at various detector sites, the development of tau-induced showers in air and the detection of Cherenkov photons with IACTs. We analyzed simulated shower images on the camera focal plane and implemented generic reconstruction chains based on Hillas parameters. We find that present IACTs can distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range. We present the neutrino trigger efficiency obtained for a few configurations being considered for the next-generation Cherenk...

  12. Detection of tau neutrinos by Imaging Air Cherenkov Telescopes

    CERN Document Server

    Gora, Dariusz

    2015-01-01

    This paper investigates the potential to detect tau neutrinos in the energy range of 1-1000 PeV searching for very inclined showers with imaging Cherenkov telescopes. A neutrino induced tau lepton escaping from the Earth may decay and initiate an air shower which can be detected by a fluorescence or Cherenkov telescope. We present here a study of the detection potential of Earth-skimming neutrinos taking into account neutrino interactions in the Earth crust, local matter distributions at various detector sites, the development of tau-induced showers in air and the detection of Cherenkov photons with IACTs. We analysed simulated shower images on the camera focal plane and implemented generic reconstruction chains based on Hillas parameters. We find that present IACTs can distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range. We present the neutrino trigger efficiency obtained for a few configurations being considered for the next-generation Cherenk...

  13. A nuclear fuel verification system using digital imaging of Cherenkov light

    Science.gov (United States)

    Michael Attas, E.; Burton, Gordon R.; Dennis Chen, J.; Young, Gary J.; Hildingsson, Lars; Trepte, Oliver

    1997-02-01

    An UV-sensitive scientific CCD camera has been tested at a power reactor facility to image the faint Cherenkov light from irradiated nuclear fuel. The instrument mates custom optical components (lens, UV-pass filter) to a commercial scientific camera (Astrocam 4100) with a coated frame-transfer CCD chip (EEV 37-10) to produce 12-bit images of 512 × 512 pixels at several frames per second. A 250-mm {f}/{2.6} catadioptric lens has been designed with transmissive optics optimized for this application, incorporating colour correction for viewing through 10 m of water. The filter has an average transmission of 80% from 280 to 320 nm, with visible-light transmission of less than 0.03% from 365 to 780 nm to block artificial lighting in the fuel bay. Measurements were made with this instrument at the Ringhals Nuclear Power Plant, and the CLAB fuel storage facility in Sweden. Both fuel and non-fuel assemblies of boiling-water reactor (BWR) type were studied. Performance is superior to that of the earlier Cherenkov viewing devices (CVDs) based on image intensifier tubes. Increased sensitivity extends the range of the Cherenkov verification technique to fuel with older discharge dates. Increased resolution allows fine details of the fuel to be examined for higher-confidence safeguards verification. Sample digital images are presented, and the advantages to irradiated-fuel verification of image quantitation, storage, transmission, and processing are discussed.

  14. Cherenkov Ring Imaging Detector front-end electronics

    International Nuclear Information System (INIS)

    The SLD Cherenkov Ring Imaging Detector use a proportional wire detector for which a single channel hybrid has been developed. It consists of a preamplifier, gain selectable amplifier, load driver amplifier, power switching, and precision calibrator. For this hybrid, a bipolar, semicustom integrated circuit has been designed which includes video operational amplifiers for two of the gain stages. This approach allows maximization of the detector volume, allows DC coupling, and enables gain selection. System tests show good noise performance, calibration precision, system linearity, and signal shape uniformity over the full dynamic range. 10 refs., 8 figs

  15. The forward ring imaging Cherenkov detector of DELPHI

    International Nuclear Information System (INIS)

    The Forward Ring Imaging Cherenkov detector of the DELPHI experiment at LEP provides hadron identification at polar angles 15 6F14 and a volume of gaseous C4F10, in combination provide coverage of momenta up to 40 GeV/c. A single array of photosensitive Time Projection Chambers registers the impact points of ultraviolet photons from both radiators. The design of the detector and of its readout system is described. First results obtained with a partly installed detector are reported. (orig.)

  16. The TACTIC atmospheric Cherenkov Imaging telescope

    CERN Document Server

    Koul, R; Kaul, S K; Kaul, S R; Kumar, N; Yadav, K K; Bhatt, N; Venugopal, K; Goyal, H C; Kothari, M; Chandra, P; Rannot, R C; Dhar, V K; Koul, M K; Kaul, R K; Kotwal, S; Chanchalani, K; Thoudam, S; Chouhan, N; Sharma, M; Bhattacharya, S; Sahayanathan, S

    2007-01-01

    The TACTIC $\\gamma$-ray telescope, equipped with a light collector of area $\\sim$9.5m$^2$ and a medium resolution imaging camera of 349-pixels, has been in operation at Mt.Abu, India since 2001. This paper describes the main features of its various subsystems and its overall performance with regard to (a) tracking accuracy of its 2-axes drive system, (b) spot size of the light collector, (c) back-end signal processing electronics and topological trigger generation scheme, (d) data acquisition and control system and (e) relative and absolute gain calibration methodology. Using a trigger field of view of 11$\\times$11 pixels ($\\sim$ 3.4$^\\circ nsiderable scope for the TACTIC telescope to monitor similar TeV $\\gamma$-ray emission activity from other active galactic nuclei on a long term basis.

  17. A fast ring-imaging Cherenkov counter for a fixed-target heavy-quark experiment

    International Nuclear Information System (INIS)

    We present a design for a fast ring-imaging Cherenkov counter operating in the visible. The Cherenkov photons are imaged on an array of small Winston cones and read out with optical fibers and VLPCs. the design is optimized for π/K/p separation in the range 10 < p < 100 GeV/c

  18. Calibration of the Sensitivity of Imaging Atmospheric Cherenkov Telescopes using a Reference Light Source

    OpenAIRE

    Frass, A.; Koehler, C.; Hermann, G.; Hess, M.; Hofmann, W.

    1997-01-01

    The sensitivity of an Imaging Atmospheric Cherenkov telescope is calibrated by shining, from a distant pulsed monochromatic light source, a defined photon flux onto the mirror. The light pulse is captured and reconstructed by the telescope in an identical fashion as real Cherenkov light. The intensity of the calibration light pulse is monitored via a calibrated sensor at the telescope; in order to account for the lower sensitivity of this sensor compared to the Cherenkov telescope, an attenua...

  19. Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging

    Science.gov (United States)

    Yamamoto, Seiichi; Ogata, Yoshimune; Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu

    2015-03-01

    After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since 137Cs and 134Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from 137Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm 137Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq 137Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a 137Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.

  20. Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Ogata, Yoshimune [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu [Radiotracer Imaging Group, Japan Atomic Energy Agency (Japan)

    2015-03-21

    After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since {sup 137}Cs and {sup 134}Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from {sup 137}Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm {sup 137}Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq {sup 137}Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a {sup 137}Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.

  1. Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging

    International Nuclear Information System (INIS)

    After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since 137Cs and 134Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from 137Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm 137Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq 137Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a 137Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject

  2. The HERA-B ring imaging Cherenkov counter

    Science.gov (United States)

    Ariño, I.; Bastos, J.; Broemmelsiek, D.; Carvalho, J.; Chmeissani, M.; Conde, P.; Davila, J.; Dujmić, D.; Eckmann, R.; Garrido, L.; Gascon, D.; Hamacher, T.; Gorišek, A.; Ivaniouchenkov, I.; Ispirian, M.; Karabekian, S.; Kim, M.; Korpar, S.; Križan, P.; Kupper, S.; Lau, K.; Maas, P.; McGill, J.; Miquel, R.; Murthy, N.; Peralta, D.; Pestotnik, R.; Pyrlik, J.; Ramachandran, S.; Reeves, K.; Rosen, J.; Schmidt-Parzefall, W.; Schwarz, A.; Schwitters, R. F.; Siero, X.; Starič, M.; Stanovnik, A.; Škrk, D.; Živko, T.

    2004-01-01

    The HERA-B RICH uses a radiation path length of 2.8 m in C 4F 10 gas and a large 24 m2 spherical mirror for imaging Cherenkov rings. The photon detector consists of 2240 Hamamatsu multi-anode photomultipliers with about 27 000 channels. A 2:1 reducing two-lens telescope in front of each photomultiplier tube increases the sensitive area at the expense of increased pixel size, resulting in a contribution to the resolution which roughly matches that of dispersion. The counter was completed in January of 1999, and its performance has been steady and reliable over the years it has been in operation. The design performance of the Ring Imaging Cherenkov counter was fully reached: the average number of detected photons in the RICH for a β=1 particle was found to be 33 with a single-hit resolution of 0.7 and 1 mrad in the fine and coarse granularity regions, respectively.

  3. CHERCAM: The Cherenkov imager of the CREAM experiment

    International Nuclear Information System (INIS)

    A Cherenkov imager, CHERCAM (CHERenkov CAMera), has been designed and built for the CREAM (Cosmic-Ray Energetic and Mass) balloon-borne experiment. The instrument will perform charge measurements of nuclear cosmic-ray over a range extending from proton to iron. It will achieve individual charge separation of the elements over this range [M. Buenerd, et al., in: 28th ICRC, Tsukuba, Japan, OG 1.5, 2003, p. 2157. ] (0.25 charge unit rms), allowing measurements of the energy spectra of individual elements by the CREAM instrument in the energy range from 1010 to 1015eV. CHERCAM is a proximity focused imager, based on a dedicated mechanical structure, equipped with an n=1.05 silica aerogel radiator plane, separated by a 12 cm ring expansion gap from a photon detector plane consisting of a 1600 photomultiplier array, backed with dedicated front-end readout electronics. A prototype of the detector has been recently tested with 100 and 300 GeV/cZ=1 particle beams at CERN. The contribution reports on both the beam test results of the prototype, and of the counter performance in ground operation

  4. Workshop on Non-Imaging Cherenkov at High Energy

    CERN Document Server

    2013-01-01

    The non-Imaging Cherenkov air shower measurement technique holds great promise in furthering our understanding the Knee-to-Ankle region of the cosmic ray spectrum. In particular, this technique offers a unique way to determine the evolution of the cosmic ray nuclear composition, and an example is given by the recent spectrum results of the Tunka Collaboration. With this in mind, we are organizing a workshop, to be held at the University of Utah, to bring together the various practitioners of this cosmic ray measurement technique to share simulations, analyses, detector designs, and past experimental results amongst the community. The workshop will also be in support of our effort, NICHE, to extend the reach of the TA/TALE detector systems down to the Knee. We anticipate that the workshop will result in a white paper on the scientific importance of these high-energy cosmic ray measurements and on using the Cherenkov technique to accomplish them. Our goal is to have contributions from members of the previous ge...

  5. Development of Ring Imaging Cherenkov counter with silica aerogel radiator

    International Nuclear Information System (INIS)

    In order to answer a simple and basic question on how spin 1/2 of proton can be understood from spin quark, one of its constructing elements, some deep inelastic scattering experiments using high energy polarized electron beam and polarized target have been carried out. At this time, if amounts of informations can also be increased by carrying out particle discrimination of hadron particle formed with the scattering, it can be practiced to investigate some contributions to proton spin at every flavor of the quark and of gluon present in proton. It is a Ring Imaging Cherenkov (RICH) counter capable of detecting a light (Cherenkov radiation) conically radiated when charged ;article moves at higher speed than that of light in a medium, to measure speed of the particle. Now, a RICH counter using two kinds of materials such as silica aerogel with middle refractive indices between solid/liquid and vapor (n = 1.03) and C4F10 gas (n = 1.0014) for a radiator was developed to make possible on discrimination of pion/kaon meson, proton and anti-proton at a momentum region of 2 to 20 GeV/c. Here were described on some characteristics of the RICH developed at HERMES experiment, and then on structure of the RICH and features of particle discrimination. (G.K.)

  6. The HERMES dual-radiator ring imaging Cherenkov detector

    CERN Document Server

    Akopov, N; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van De Kerckhove, K; Van De Vyver, R; Yoneyama, S; Zhang, L F; Zohrabyan, H G

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  7. The HERMES dual-radiator ring imaging Cherenkov detector

    International Nuclear Information System (INIS)

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet

  8. The HERA-B Ring Imaging Cherenkov Counter

    CERN Document Server

    Arino, I

    2004-01-01

    The HERA-B RICH uses a radiation path length of 2.8 m in C_4F_10 gas and a large 24 square meters spherical mirror for imaging Cherenkov rings. The photon detector consists of 2240 Hamamatsu multi-anode photomultipliers with about 27000 channels. A 2:1 reducing two-lens telescope in front of each PMT increases the sensitive area at the expense of increased pixel size, resulting in a contribution to the resolution which roughly matches that of dispersion. The counter was completed in January of 1999, and its performance has been steady and reliable over the years it has been in operation. The design performance of the RICH was fully reached: the average number of detected photons in the RICH for a beta=1 particle was found to be 33 with a single hit resolution of 0.7 mrad and 1 mrad in the fine and coarse granularity regions, respectively.

  9. Characterization study of silica aerogel for Cherenkov imaging

    International Nuclear Information System (INIS)

    Different methods to measure the characteristics of silica aerogel tiles used as Cherenkov radiator in the CREAM and AMS experiments have been investigated to optimize the detector performances. The measurement accuracy dictated by the physics objectives on the velocity and charge resolutions set stringent requirements on the aerogel refractive index determination, namely Δn∼1.5x10-4 and Δn∼5x10-4 for the AMS and CREAM imagers, respectively. The matching of such accuracies for this material turned out to be a metrological challenge, and finally led to a full R and D program, to develop an appropriate characterization procedure. Preliminary studies performed with a standard refractive index measurement technique (laser beam deviation by a prism) have revealed a significant systematic index nonuniformity for the AMS tiles at a level (10-3), not acceptable considering the aimed accuracy. These large variations were confirmed in a beam test. A second method, mapping the transverse index gradient by deflection of a laser beam entering normally to the tile has then been developed. It is shown that this procedure is suitable to reach the required accuracy, at the price of using both methods combined. The several hundreds of tiles of the radiator plane of the CREAM and AMS Cherenkov imagers were characterized using a simplified procedure, however, appropriate for each case, compromising between the amount of work and the time available. The experimental procedures and set-ups used are described in the text, and the obtained results are reported.

  10. Characterization study of silica aerogel for Cherenkov imaging

    Science.gov (United States)

    Sallaz-Damaz, Y.; Derome, L.; Mangin-Brinet, M.; Loth, M.; Protasov, K.; Putze, A.; Vargas-Trevino, M.; Véziant, O.; Buénerd, M.; Menchaca-Rocha, A.; Belmont, E.; Vargas-Magaña, M.; Léon-Vargas, H.; Ortiz-Velàsquez, A.; Malinine, A.; Baraõ, F.; Pereira, R.; Bellunato, T.; Matteuzzi, C.; Perego, D. L.

    2010-03-01

    Different methods to measure the characteristics of silica aerogel tiles used as Cherenkov radiator in the CREAM and AMS experiments have been investigated to optimize the detector performances. The measurement accuracy dictated by the physics objectives on the velocity and charge resolutions set stringent requirements on the aerogel refractive index determination, namely Δn˜1.5×10-4 and Δn˜5×10-4 for the AMS and CREAM imagers, respectively. The matching of such accuracies for this material turned out to be a metrological challenge, and finally led to a full R&D program, to develop an appropriate characterization procedure. Preliminary studies performed with a standard refractive index measurement technique (laser beam deviation by a prism) have revealed a significant systematic index nonuniformity for the AMS tiles at a level (10-3), not acceptable considering the aimed accuracy. These large variations were confirmed in a beam test. A second method, mapping the transverse index gradient by deflection of a laser beam entering normally to the tile has then been developed. It is shown that this procedure is suitable to reach the required accuracy, at the price of using both methods combined. The several hundreds of tiles of the radiator plane of the CREAM and AMS Cherenkov imagers were characterized using a simplified procedure, however, appropriate for each case, compromising between the amount of work and the time available. The experimental procedures and set-ups used are described in the text, and the obtained results are reported.

  11. New optics for resolution improving of Ring Imaging Cherenkov detectors

    Czech Academy of Sciences Publication Activity Database

    Šulc, Miroslav; Kramer, Daniel; Polák, Jaroslav; Steiger, Lukáš; Finger, M.; Slunecka, M.

    Cedex: EDP Sciences, 2013 - (Šulc, M.; Kopecký, V.; Lédl, V.; Melich, R.; Skeren, M.), 00024-00024. (Book Series: EPJ Web of Conferences. 48). ISSN 2100-014X. [OaM 2012 International Conference on Optics and Measurement. Liberec (CZ), 16.10.2012-18.10.2012] R&D Projects: GA MŠk(CZ) ED2.1.00/03.0079; GA MŠk LA08015 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Cherenkov radiation * Optical device * Hartmann test Subject RIV: JD - Computer Applications, Robotics; BH - Optics, Masers, Lasers (FZU-D) http://www.epj-conferences.org/ articles /epjconf/pdf/2013/09/epjconf_OAM2012_00024.pdf

  12. Study of TeV range cosmic ray detection with Cherenkov imaging techniques

    International Nuclear Information System (INIS)

    The Monte Carlo study of cosmic ray detection in the TeV energy range has been triggered by the authors' interest in the ARTEMIS (Antimatter Research Through the Earth Moon Ion Spectrometer) proposal. The properties of cosmic ray showers detected by Cherenkov imaging in the visible domain are studied. The detection sensitivity and the accuracy of the reconstruction of the parent particle direction using Cherenkov imaging are discussed. The backbone of the study is the atmospheric shower Monte Carlo generator developed by A.M. Hillas. A comparison between nucleon and photon induced showers of Cherenkov detection is also included. (R.P.) 14 refs., 48 figs., 3 tabs

  13. Prototype study of the Cherenkov imager of the AMS experiment

    International Nuclear Information System (INIS)

    The AMS experiment includes a Cherenkov imager for mass and charge identification of charged cosmic rays. A second generation prototype has been constructed and its performances evaluated both with cosmic ray particles and with beam ions. In-beam tests have been performed using secondary nuclei from the fragmentation of 20GeV/c per nucleon Pb ions and 158GeV/c per nucleon In from the CERN SPS in 2002 and 2003. Partial results are reported. The performances of the prototype for the velocity and the charge measurements have been studied over the range of ion charge Z-bar 30. A sample of candidate silica aerogel radiators for the flight model of the detector has been tested. The measured velocity resolution of the detector was found to scale with Z-1 as expected, with a value σ(β)/β∼0.7-110-3 for singly charged particles and an asymptotic limit in Z of 0.4-0.6x10-4. The measured charge resolution obtained for the n=1.05 aerogel radiator material selected for the flight model of the detector is σ(Z)=0.18 (statistical) -bar 0.015 (systematic), ensuring a good charge separation up to the iron element, for the prototype in the reported experimental conditions

  14. Development of Ring Imaging Cherenkov Detectors for LHCb

    CERN Document Server

    Bellunato, T; Matteuzzi, C

    2003-01-01

    The work described in this thesis has been carried out in the framework of the development program of the Ring Imaging Cherenkov (RICH) detectors of the LHCb experiment. LHCb will operate at the Large Hadron Collider at CERN, and it will perform a wide range of measurements in the b-hadrons realm. The extensive study of CP violation and rare decays in the b-hadron system are the main goals of the experiment. An introduction to CP violation in hadronic interactions is given in chapter 1. The high b-b bar production cross section at the LHC energy will provide an unprecedented amount of data which will give LHCb a unique opportunity for precision tests on a large set of physics channels as well as a promising discovery potential for sources of CP violation arising from physics beyond the Standard Model. The experiment is designed in such a way to optimally match the kinematic structure of events where a pair of b quarks is produced in the collision between to 7 GeV protons. Chapter 2 is devoted to an overview o...

  15. Application of Geiger-mode photosensors in Cherenkov detectors

    International Nuclear Information System (INIS)

    Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. We are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8x8 cells to increase the active photon detection area of an 8x8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.

  16. Application of Geiger-mode photosensors in Cherenkov detectors

    Science.gov (United States)

    Gamal, Ahmed; Paul, Bühler; Michael, Cargnelli; Roland, Hohler; Johann, Marton; Herbert, Orth; Ken, Suzuki

    2011-05-01

    Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. We are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8×8 cells to increase the active photon detection area of an 8×8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.

  17. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    International Nuclear Information System (INIS)

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs

  18. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.T., E-mail: chenytao@ynu.edu.cn [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Yunnan University, 650091 Kunming (China); La Taille, C. de [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Suomijärvi, T. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Cao, Z. [Institute of High Energy Physics, 100049 Beijing (China); Deligny, O. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Dulucq, F. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Ge, M.M. [Yunnan University, 650091 Kunming (China); Lhenry-Yvon, I. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Martin-Chassard, G. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Nguyen Trung, T.; Wanlin, E. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Xiao, G.; Yin, L.Q. [Institute of High Energy Physics, 100049 Beijing (China); Yun Ky, B. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Zhang, L. [Yunnan University, 650091 Kunming (China); Zhang, H.Y. [Tsinghua University, 100084 Beijing (China); Zhang, S.S.; Zhu, Z. [Institute of High Energy Physics, 100049 Beijing (China)

    2015-09-21

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs.

  19. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    Science.gov (United States)

    Chen, Y. T.; de La Taille, C.; Suomijärvi, T.; Cao, Z.; Deligny, O.; Dulucq, F.; Ge, M. M.; Lhenry-Yvon, I.; Martin-Chassard, G.; Nguyen Trung, T.; Wanlin, E.; Xiao, G.; Yin, L. Q.; Yun Ky, B.; Zhang, L.; Zhang, H. Y.; Zhang, S. S.; Zhu, Z.

    2015-09-01

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs.

  20. Multi-anode photon-multiplier readout electronics for the LHCb ring imaging Cherenkov detectors

    CERN Document Server

    Smale, N J

    2004-01-01

    A readout system for the Ring Imaging CHerenkov (RICH) detectors of the LHCb experiment has been developed. Two detector technologies for the measurement of Cherenkov photons are considered, the Multi-Anode Photo-Multiplier Tube (MAPMT) and the Hybrid Photon Detector (HPD), both of which meet the RICH requirements. The properties of the MAPMT are evaluated using a controlled single-photon source; a pixel-to-pixel gain variation of ~3 and a typical signal to noise of ~20 is measured. The relative tube efficiency is found to be reduced by ~26 % due to the detailed focusing structure of the MAPMT device. A radiation hard application-specific integrated circuit (ASIC) chip, the Beetle1.2MA0, has been developed to capture and store signals from a pair of MAPMTs. The Beetle1.2MA0 is built on the architecture of the Beetle family that was designed for silicon strip detectors, the difference being a modified front-end amplifier. The 128 input-channels of the Beetle1.2MA0 have a charge-sensitive pre-amplifier followed...

  1. Vavilov-Cherenkov and Synchrotron Radiation Foundations and Applications

    CERN Document Server

    Afanasiev, G. N

    2005-01-01

    The theory of the Vavilov-Cherenkov radiation observed by Cherenkov in 1934 was created by Tamm, Frank and Ginsburg who associated the observed blue light with the uniform charge motion of a charge at a velocity greater than the velocity of light in the medium. On the other hand, Vavilov, Cherenkov's teacher, attributed the observed blue light to the deceleration of electrons. This has given rise to the appearance of papers in which the radiation of a charge uniformly moving in a finite space interval was related to the Bremsstrahlung arising at the end points of the motion interval. This monograph is intended for students of the third year and higher, for postgraduates, for professional scientists (both experimentalists and theoreticians) dealing with Vavilov-Cherenkov and synchrotron radiation. An acquaintance with the three volumes of the Landau and Lifshitz course (Quantum Mechanics, Classical Field Theory and Macroscopic Electrodynamics) is sufficient for understanding the text.

  2. Lunar Imaging and Ionospheric Calibration for the Lunar Cherenkov Technique

    OpenAIRE

    McFadden, Rebecca; Scholten, Olaf; Mevius, Maaijke

    2013-01-01

    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the ionosphere is an important experimental concern as it reduces the pulse amplitude and subsequent chances of detection. We are continuing to investigate a new method to calibrate the dispersive effect o...

  3. Monitor and control systems for the SLD Cherenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    To help ensure the stable long-term operation of a Cherenkov Ring Detector at high efficiency, a comprehensive monitor and control system is being developed. This system will continuously monitor and maintain the correct operating temperatures, and will provide an on-line monitor and maintain the correct operating temperatures, and will provide an on-line monitor of the pressures, flows, mixing, and purity of the various fluids. In addition the velocities and trajectories of Cherenkov photoelectrons drifting within the imaging chambers will be measured using a pulsed uv lamp and a fiberoptic light injection system. 9 refs., 6 figs

  4. A Cherenkov imager for the charge measurement of the elements of nuclear cosmic radiation

    International Nuclear Information System (INIS)

    A Cherenkov imager, CHERCAM (Cherenkov Camera) has been designed and built for the CREAM (Cosmic Ray Energetics and Mass) balloon-borne experiment. The instrument will perform charge measurements of nuclear cosmic-ray over a range extending from proton to iron in the energy domain from 1010 to 1015 eV. This work has focused on the development of CHERCAM by creating a simulation of the detector and on the aerogel plan characterization for the radiator. But it has also expanded on the technical aspects of the construction of the detector and its various tests, as well as the development of calibration software and data analysis. (author)

  5. Electrostatic design of the barrel CRID [Cherenkov Ring Imaging Detector] and associated measurements

    International Nuclear Information System (INIS)

    We report on the electrostatic design and related measurements of the barrel Cherenkov Ring Imaging Detector for the Stanford Large Detector experiment at the Stanford Linear Accelerator Center Linear Collider. We include test results of photon feedback in TMAE-laden gas, distortion measurements in the drift boxes and corona measurements. 13 refs., 21 figs

  6. An analog neural network hardware solution to a Cherenkov ring imaging particle identifier

    International Nuclear Information System (INIS)

    This paper describes the implementation of an analog neural network chip (Intel 80170NX) to the pad readout of a Cherenkov ring imaging detector system. A similar system has previously been tested in software in order to separate proton and pion events. The architecture, training and testing in analog hardware is described. (orig.)

  7. Digital FDIRC: A focused differential internal reflection Cherenkov imaged by SiPM arrays

    Science.gov (United States)

    Marrocchesi, P. S.; Bagliesi, M. G.; Basti, A.; Bigongiari, G.; Bonechi, S.; Brogi, P.; Checchia, C.; Collazuol, G.; Maestro, P.; Morsani, F.; Piemonte, C.; Stolzi, F.; Suh, J. E.; Sulaj, A.

    2016-07-01

    A prototype of an Internal Reflection Cherenkov, equipped with a SiO2 (fused silica) radiator bar optically connected to a cylindrical mirror, was tested at CERN SPS in March 2015 with a beam of relativistic ions obtained from fragmentation of primary argon nuclei at energies 13, 19 and 30 GeV/n. The detector, designed to identify cosmic nuclei, features an imaging focal plane of dimensions ~ 4 cm × 3 cm equipped with 16 arrays of NUV-SiPM (near-ultraviolet sensitive silicon photon avalanche detector) for a total of 1024 sensitive elements. The outstanding performance of the photodetectors (with negligible background in between adjacent photopeaks) allowed us to apply the technique of photon counting to the Cherenkov light collected on the focal plane. Thanks to the fine granularity of the array elements, the Cherenkov pattern was recorded together with the total number of detected photoelectrons increasing as Z2 as a function of the atomic number Z. In this paper, we report the performance of the SiPM arrays and the excellent resolution achieved by the digital Cherenkov prototype in the charge identification of the elements present in the beam.

  8. Measurement of aerogel performance for ring image Cherenkov detector of HERMES

    International Nuclear Information System (INIS)

    The first experiment of ring image Cherenkov detector (RICH) used aerogel in the world was reported in this paper. We built RICH using aerogel as illuminant for HERMES. The refractive index and size of all aerogel tiles were measured in order to select them for construction of RICH. The select conditions of tile were 113.1 -4, the dispersion of refractive index of aerogel tile, which condition was fitted to the accuracy of Cherenkov light emission angle of RICH. The mean thickness, transmission and reflection of tile, the thickness of corner of tile (thickness of surface), the refractive index dependence on position and temperature were measured. The effect of thickness of tile on the shift of Cherenkov emission angle was 6.1% the maximum value per one tile and 0.18% mean value of center. The effect of position dependence of refractive index on the Cherenkov light emission angle was agreed with the effect of dispersion of thickness of tile. The transmission and reflection of tile were almost same as the theoretical value. (S.Y.)

  9. Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time

    International Nuclear Information System (INIS)

    Purpose: To determine whether Cherenkov light imaging can visualize radiation therapy in real time during breast radiation therapy. Methods and Materials: An intensified charge-coupled device (CCD) camera was synchronized to the 3.25-μs radiation pulses of the clinical linear accelerator with the intensifier set × 100. Cherenkov images were acquired continuously (2.8 frames/s) during fractionated whole breast irradiation with each frame an accumulation of 100 radiation pulses (approximately 5 monitor units). Results: The first patient images ever created are used to illustrate that Cherenkov emission can be visualized as a video during conditions typical for breast radiation therapy, even with complex treatment plans, mixed energies, and modulated treatment fields. Images were generated correlating to the superficial dose received by the patient and potentially the location of the resulting skin reactions. Major blood vessels are visible in the image, providing the potential to use these as biological landmarks for improved geometric accuracy. The potential for this system to detect radiation therapy misadministrations, which can result from hardware malfunction or patient positioning setup errors during individual fractions, is shown. Conclusions: Cherenkoscopy is a unique method for visualizing surface dose resulting in real-time quality control. We propose that this system could detect radiation therapy errors in everyday clinical practice at a time when these errors can be corrected to result in improved safety and quality of radiation therapy

  10. Application of Geiger-mode photo sensors in Cherenkov detectors

    OpenAIRE

    Ahmed, Gamal; Buehler, Paul; Cargnelli, Michael; Hohler, Roland; Marton, Johann; Orth, Herbert; Suzuki, Ken

    2010-01-01

    Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. In our institute we are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum opera...

  11. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, Jacqueline M., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu; Glaser, Adam K. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Jarvis, Lesley A.; Gladstone, David J. [Department of Medicine, Geisel School of Medicine and Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States); Pogue, Brian W., E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2015-02-15

    Purpose: To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Methods: Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Results: Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary

  12. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging

    International Nuclear Information System (INIS)

    Purpose: To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Methods: Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Results: Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary

  13. In-beam tests of a ring imaging Cherenkov detector with a multianode photomultiplier readout

    International Nuclear Information System (INIS)

    A ring-imaging Cherenkov counter read out by a 100-channel PMT of active area 10x10 cm2 was operated successfully in a test beam at the BNL AGS with several radiator gases, including the heavy fluorocarbon C4F10. Ring radii were measured for electrons, muons, pions and kaons over the particle momentum range from 2 to 12 GeV/c, and a best resolution of σr/r=2.3% was obtained. (orig.)

  14. Simulation of Imaging Atmospheric Cherenkov Telescopes with CORSIKA and sim_telarray

    OpenAIRE

    Bernlohr, Konrad

    2008-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) have resulted in a breakthrough in very-high energy (VHE) gamma-ray astrophysics. While early IACT installations faced the problem of detecting any sources at all, current instruments are able to see many sources, often over more than two orders of magnitude in energy. As instruments and analysis methods have matured, the requirements for calibration and modelling of physical and instrumental effects have increased. In this article, a set of Mo...

  15. Cherenkov radiation imaging of beta emitters: in vitro and in vivo results

    International Nuclear Information System (INIS)

    The main purpose of this work was to investigate both in vitro and in vivo Cherenkov radiation (CR) emission coming from 18F and 32P. The main difference between 18F and 32P is mainly the number of the emitted light photons, more precisely the same activity of 32P emits more CR photons with respect to 18F. In vitro results obtained by comparing beta counter measurements with photons average radiance showed that Cherenkov luminescence imaging (CLI) allows quantitative tracer activity measurements. In order to investigate in vivo the CLI approach, we studied an experimental xenograft tumor model of mammary carcinoma (BB1 tumor cells). Cherenkov in vivo dynamic whole body images of tumor bearing mice were acquired and the tumor tissue time activity curves reflected the well-known physiological accumulation of 18F-FDG in malignant tissues with respect to normal tissues. The results presented here show that it is possible to use conventional optical imaging devices for in vitro or in vivo study of beta emitters.

  16. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    CERN Document Server

    Giomi, Matteo; Maier, Gernot

    2016-01-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the...

  17. Studies of Multi-Anode PMTs for a Ring Imaging Cherenkov for CLAS12

    Science.gov (United States)

    Lendacky, Andrew; Benmokhtar, Fatiha; Kubarovsky, Valery; Kim, Andrey

    2015-10-01

    At Thomas Jefferson National Accelerator Facility (TJNAF), the CLAS12 detector in Hall B is undergoing an upgrade. A Ring Imaging Cherenkov (R.I.C.H) detector is being built to improve particle identification in the 3-8 GeV/c momentum range. Approximately four hundred Hamamatsu H121700 Multi-Anode Photomultiplier Tubes (MA-PMTs) are being used in this detector to measure photons emitted through Cherenkov Radiation. These MA-PMTs' characteristics are being tested and measured, and I will be presenting my work about the crosstalk study. Crosstalk is the occurrence of incident light striking one area of the photocathode, but is additionally measured in nearby areas. By using a Class 3b laser in the 470 nm wavelength, and an optical density resembling the single photon emission spectrum, the crosstalk for the H121700 MA-PMTs are measured and categorized into a database for future reference.

  18. Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays

    CERN Document Server

    Bourrion, O; Bondoux, D; Bouly, J L; Bouvier, J; Boyer, B; Brinet, M; Buenerd, M; Damieux, G; Derome, L; Eraud, L; Foglio, R; Fombaron, D; Grondin, D; Lee, M H; Lutz, L; Marton, M; Menchaca-Rocha, A; Pelissier, A; Périé, J N; Putze, A; Roudier, S; Sallaz-Damaz, Y; Seo, E S; Scordilis, J P; Yoon, Y S

    2011-01-01

    A proximity focusing Cherenkov imager called CHERCAM, has been built for the charge measurement of nuclear cosmic rays with the CREAM instrument. It consists of a silica aerogel radiator plane across from a detector plane equipped with 1,600 1" diameter photomultipliers. The two planes are separated by a ring expansion gap. The Cherenkov light yield is proportional to the charge squared of the incident particle. The expected relative light collection accuracy is in the few percents range. It leads to an expected single element separation over the range of nuclear charge Z of main interest 1 < Z < 26. CHERCAM is designed to fly with the CREAM balloon experiment. The design of the instrument and the implemented technical solutions allowing its safe operation in high altitude conditions (radiations, low pressure, cold) are presented.

  19. Evaluation of Multi-Anode Photomultipliers for the CLAS12 Ring-Imaging Cherenkov Detector

    Science.gov (United States)

    Samuel, Jenna

    2015-04-01

    Thomas Jefferson National Accelerator Facility has recently upgraded its Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS12) to provide a comprehensive study of the complex internal structure and dynamics of the nucleon. The upgrade includes new detectors such as the Ring Imaging Cherenkov detector (RICH). The RICH will use multi-anode photomultipliers (MAPMTs) for the detection of Cherenkov photons. Our study compared two models of Hamamatsu MAPMTs (H8500 and H12700) under consideration for the CLAS12 RICH in terms of their single photoelectron (SPE) peak, dark current, and crosstalk. The MAPMTs were tested inside a light-tight box, using a low intensity laser to simulate single photoelectron events similar to Cherenkov radiation. The H12700's SPE peaks were on average 78% the width of the H8500's peaks. For both models, the probability of dark current was on the order of 10-4. The probability of crosstalk for H8500s was 1.6 to 2.7 times that for H12700s. The H12700s were deemed better because they had negligible crosstalk and dark current while providing a narrower peak for single photoelectron events. Thomas Jefferson National Accelerator Facility, Science Undergraduate Laboratory Internship.

  20. Detection of Shielded Special Nuclear Material With a Cherenkov-Based Transmission Imaging System

    Science.gov (United States)

    Rose, Paul; Erickson, Anna; Mayer, Michael; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material, SSNM, while in transit, offers a unique challenge. Typical cargo imaging systems are Bremsstrahlung-based and cause an abundance of unnecessary signal in the detectors and doses to the cargo contents and surroundings. Active interrogation with dual monoenergetic photons can unveil the illicit material when coupled with a high-contrast imaging system while imparting significantly less dose to the contents. Cherenkov detectors offer speed, resilience, inherent energy threshold rejection, directionality and scalability beyond the capability of most scintillators. High energy resolution is not a priority when using two well separated gamma rays, 4.4 and 15.1 MeV, generated from low energy nuclear reactions such as 11B(d,n- γ)12C. These gamma rays offer a measure of the effective atomic number, Z, of the cargo by taking advantage of the large difference in photon interaction cross sections, Compton scattering and pair production. This imaging system will be coupled to neutron detectors to provide unique signature of SNM by monitoring delayed neutrons. Our experiments confirm that the Cherenkov imaging system can be used with the monoenergetic source to relate transmission and atomic number of the scanned material.

  1. The possibilities of Cherenkov telescopes to perform cosmic-ray muon imaging of volcanoes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Vercellone, Stefano; Zuccarello, Luciano

    2016-04-01

    Volcanic activity is regulated by the interaction of gas-liquid flow with conduit geometry. Hence, the quantitative understanding of the inner shallow structure of a volcano is mandatory to forecast the occurrence of dangerous stages of activity and mitigate volcanic hazards. Among the techniques used to investigate the underground structure of a volcano, muon imaging offers some advantages, as it provides a fine spatial resolution, and does not require neither spatially dense measurements in active zones, nor the implementation of cost demanding energizing systems, as when electric or active seismic sources are utilized. The principle of muon radiography is essentially the same as X-ray radiography: muons are more attenuated by higher density parts inside the target and thus information about its inner structure are obtained from the differential muon absorption. Up-to-date, muon imaging of volcanic structures has been mainly accomplished with detectors that employ planes of scintillator strips. These telescopes are exposed to different types of background noise (accidental coincidence of vertical shower particles, horizontal high-energy electrons, flux of upward going particles), whose amplitude is high relative to the tiny flux of interest. An alternative technique is based on the detection of the Cherenkov light produced by muons. The latter can be imaged as an annular pattern that contains the information needed to reconstruct both direction and energy of the particle. Cherenkov telescopes have never been utilized to perform muon imaging of volcanoes. Nonetheless, thanks to intrinsic features, they offer the possibility to detect the through-target muon flux with negligible levels of background noise. Under some circumstances, they would also provide a better spatial resolution and acceptance than scintillator-based telescopes. Furthermore, contrarily to the latter systems, Cherenkov detectors allow in-situ measurements of the open-sky energy spectrum of

  2. Large zenith-angle observations with the CAT Cherenkov imaging telescope

    OpenAIRE

    collaboration, G. Mohanty for the CAT

    1999-01-01

    We present here results from large zenith-angle observations with the CAT atmospheric Cherenkov imaging telescope, based on data taken on the Crab Nebula and on the blazar Mk501 from 1996 onwards. From Monte Carlo simulations, the threshold energy of the telescope is expected to vary from about 250 GeV at zenith to about 2 TeV at a zenith angle of 60 degrees. The lower source-fluxes due to the increased threshold energy are partly compensated for by an increase in the effective collection are...

  3. GAW, Gamma Air Watch - A Large Field of View Imaging Atmospheric Cherenkov

    CERN Document Server

    Maccarone, M C; Assis, P; Biondo, B; Brogueira, P; Catalano, O; Celi, F; Costa, J; Cusumano, G; Delgado, C; Cocco, G D; Espirito-Santo, M C; Galeotti, P; Giarrusso, S; La Barbera, A; La Rosa, G; Mangano, A; Mineo, T; Moles, M; Pimenta, M; Prada, F; Russo, F; Sacco, B; Sanchez, M A; Segreto, A; Tome', B; De Postigo, A U; Vallania, P; Vigorito, C

    2005-01-01

    GAW, acronym for Gamma Air Watch, is a path-finder experiment to test the feasibility of a new generation of imaging atmospheric Cherenkov telescopes that join high flux sensitivity with large field of view capability. GAW is conceived as an array of three identical imaging telescopes disposed at the vertexes of an equilateral triangle, about 80 m side. Two main features characterize GAW with respect to all the existing and presently planned ground-based Cherenkov telescopes. The first difference concerns the optics system: GAW uses a Fresnel refractive lens (2.13 m diameter) as light collector instead of classical reflective mirror. The second main difference is the detection working mode used: the detector at the focal surface operates in single photoelectron counting mode instead of the usual charge integration one. The GAW array is planned to be located at the Calar Alto Observatory site, Spain, 2150 m a.s.l. During its first phase, only 6x6 degrees of the focal plane detector will be implemented; moving ...

  4. The Topo-trigger: a new concept of stereo trigger system for imaging atmospheric Cherenkov telescopes

    CERN Document Server

    López-Coto, Rubén; Paoletti, Riccardo; Bigas, Oscar Blanch; Cortina, Juan

    2016-01-01

    Imaging atmospheric Cherenkov telescopes (IACTs) such as the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes endeavor to reach the lowest possible energy threshold. In doing so the trigger system is a key element. Reducing the trigger threshold is hampered by the rapid increase of accidental triggers generated by ambient light, the so-called Night Sky Background (NSB). In this paper we present a topological trigger, dubbed Topo-trigger, which rejects events on the basis of their relative orientation in the telescope cameras. We have simulated and tested the trigger selection algorithm in the MAGIC telescopes. The algorithm was tested using MonteCarlo simulations and shows a rejection of 85% of the accidental stereo triggers while preserving 99 % of the gamma rays. A full implementation of this trigger system would achieve an increase in collection area between 10 and 20% at the energy threshold. The analysis energy threshold of the instrument is expected to decrease by ?8 %. The selection alg...

  5. Supernova remnants and pulsar wind nebulae with Imaging Atmospheric Cherenkov Telescopes (IACTs)

    Science.gov (United States)

    Eger, Peter

    2015-08-01

    The observation of very-high-energy (VHE, E > 100 GeV) gamma rays is an excellent tool to study the most energetic and violent environments in the Galaxy. This energy range is only accessible with ground-based instruments such as Imaging Atmospheric Cherenkov Telescopes (IACTs) that reconstruct the energy and direction of the primary gamma ray by observing the Cherenkov light from the induced extended air showers in Earths atmosphere. The main goals of Galactic VHE gamma-ray science are the identification of individual sources of cosmic rays (CRs), such as supernova remnants (SNRs), and the study of other extreme astrophysical objects at the highest energies, such as gamma-ray binaries and pulsar wind nebulae (PWNe). One of the main challenges is the discrimination between leptonic and hadronic gamma-ray production channels. To that end, the gamma-ray signal from each individual source needs to be brought into context with the multi-wavelength environment of the astrophysical object in question, particularly with observations tracing the density of the surrounding interstellar medium, or synchrotron radiation from relativistic electrons. In this review presented at the European Cosmic Ray Symposium 2014 (ECRS2014), the most recent developments in the field of Galactic VHE gamma-ray science are highlighted, with particular emphasis on SNRs and PWNe.

  6. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  7. GAW - An Imaging Atmospheric Cherenkov Telescope with Large Field of View

    CERN Document Server

    Cusumano, G; Alberdi, A; Alvarez, M; Assis, P; Biondo, B; Bocchino, F; Brogueira, P; Caballero, J A; Carvajal, M; Castro-Tirado, A J; Catalano, O; Celi, F; Delgado, C; Di Cocco, G; Dominguez, A; Navas, J M Espino; Santo, M C Espirito; Gallardo, M I; García, J E; Giarrusso, S; Gómez, M; Gómez, J L; Gonçalves, P; Guerriero, M; La Barbera, A; La Rosa, G; Lozano, M; Maccarone, M C; Mangano, A; Martel, I; Massaro, E; Mineo, T; Moles, M; Pérez-Bernal, F; Peres-Torres, M A; Pimenta, M; Pina, A; Prada, F; Quesada, J M; Quintana, J M; Quintero, J R; Rodríguez, J; Russo, F; Sacco, B; Sanchez-Conde, M A; Segreto, A; Tome', B; Postigo, A de Ugarte; Vallania, P

    2007-01-01

    GAW, acronym for Gamma Air Watch, is a Research and Development experiment in the TeV range, whose main goal is to explore the feasibility of large field of view Imaging Atmospheric Cherenkov Telescopes. GAW is an array of three relatively small telescopes (2.13 m diameter) which differs from the existing and presently planned projects in two main features: the adoption of a refractive optics system as light collector and the use of single photoelectron counting as detector working mode. The optics system allows to achieve a large field of view (24x24 squared degrees) suitable for surveys of large sky regions. The single photoelectron counting mode in comparison with the charge integration mode improves the sensitivity by permitting also the reconstruction of events with a small number of collected Cherenkov photons. GAW, which is a collaboration effort of Research Institutes in Italy, Portugal and Spain, will be erected in the Calar Alto Observatory (Sierra de Los Filabres - Andalucia, Spain), at 2150 m a.s....

  8. The modeling of the nuclear composition measurement performance of the Non-Imaging CHErenkov Array (NICHE)

    CERN Document Server

    Krizmanic, John; Sokolsky, Pierre

    2013-01-01

    In its initial deployment, the Non-Imaging CHErenkov Array (NICHE)will measure the flux and nuclear composition of cosmic rays from below 10^16 eV to 10^18 eV by using measurements of the amplitude and time-spread of the air-shower Cherenkov signal to achieve a robust event-by-event measurement of Xmax and energy. NICHE will have sufficient area and angular acceptance to have significant overlap with TA/TALE, within which NICHE is located, to allow for energy cross-calibration. In order to quantify NICHE's ability to measure the cosmic ray nuclear composition, 4-component composition models were constructed based upon a poly-gonato model of J. Hoerandel using simulated Xmax distributions of the composite composition as a function of energy. These composition distributions were then unfolded into individual components via an analysis technique that included NICHE's simulated Xmax and energy resolution performance as a function of energy as well as the effects of finite event statistics. Details of the construc...

  9. TH-C-17A-01: Imaging Sensor Comparison for Real-Time Cherenkov Signal Detection From Tissue for Treatment Verification

    International Nuclear Information System (INIS)

    Purpose: To identify the optimum imaging sensor for a clinical system that would provide real-time imaging of the surface beam profile on patients as novel visual information to radiation therapy technologists, and more rapidly collect clinical data for large-scale studies of Cherenkov applications in radiotherapy. Methods: Four camera types, CMOS, CCD, ICCD and EMICCD, were tested to determine proficiency in the detection of Cherenkov signal in the clinical radiotherapy setting, and subsequent maximum supportable frame rate. Where possible, time-gating between the trigger signal from the LINAC and the intensifiers was implemented to detect signal with room lighting conditions comparable to patient treatment scenarios. A solid water phantom was imaged by the EM-ICCD and ICCD to evaluate the minimum number of accumulations-on-chip required for adequate Cherenkov detection, defined as >200% electron counts per pixel over background signal. Additionally, an ICCD and EM-ICCD were used clinically to image patients undergoing whole-breast radiation therapy, to understand the impact of the resolution limitation of the EM-ICCD. Results: The intensifier-coupled cameras performed best at imaging Cherenkov signal, even with room lights on, which is essential for patient comfort. The tested EM-ICCD was able to support single-shot imaging and frame rates of 30 fps, however, the current maximum resolution of 512 × 512 pixels was restricting. The ICCD used in current clinical trials was limited to 4.7 fps at a 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths (30% QE vs current 7%) promises 16 fps at the same resolution at lower cost than the EM-ICCD. Conclusion: The ICCD with the better red wavelength QE intensifier was determined to be the best suited commercial-off-the-shelf camera to detect real-time Cherenkov signal and provide the best potential for real-time display of radiation dose on the skin

  10. TH-C-17A-01: Imaging Sensor Comparison for Real-Time Cherenkov Signal Detection From Tissue for Treatment Verification

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, J; Zhang, R; Glaser, A; Pogue, B [Dartmouth College, Hanover, NH (United States); Jarvis, L; Gladstone, D [Dartmouth-Hitchcock Medical Center, City Of Lebanon, NH (Lebanon)

    2014-06-15

    Purpose: To identify the optimum imaging sensor for a clinical system that would provide real-time imaging of the surface beam profile on patients as novel visual information to radiation therapy technologists, and more rapidly collect clinical data for large-scale studies of Cherenkov applications in radiotherapy. Methods: Four camera types, CMOS, CCD, ICCD and EMICCD, were tested to determine proficiency in the detection of Cherenkov signal in the clinical radiotherapy setting, and subsequent maximum supportable frame rate. Where possible, time-gating between the trigger signal from the LINAC and the intensifiers was implemented to detect signal with room lighting conditions comparable to patient treatment scenarios. A solid water phantom was imaged by the EM-ICCD and ICCD to evaluate the minimum number of accumulations-on-chip required for adequate Cherenkov detection, defined as >200% electron counts per pixel over background signal. Additionally, an ICCD and EM-ICCD were used clinically to image patients undergoing whole-breast radiation therapy, to understand the impact of the resolution limitation of the EM-ICCD. Results: The intensifier-coupled cameras performed best at imaging Cherenkov signal, even with room lights on, which is essential for patient comfort. The tested EM-ICCD was able to support single-shot imaging and frame rates of 30 fps, however, the current maximum resolution of 512 × 512 pixels was restricting. The ICCD used in current clinical trials was limited to 4.7 fps at a 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths (30% QE vs current 7%) promises 16 fps at the same resolution at lower cost than the EM-ICCD. Conclusion: The ICCD with the better red wavelength QE intensifier was determined to be the best suited commercial-off-the-shelf camera to detect real-time Cherenkov signal and provide the best potential for real-time display of radiation dose on the skin

  11. Cherenkov imaging during volumetric modulated arc therapy for real-time radiation beam tracking and treatment response monitoring

    Science.gov (United States)

    Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-03-01

    External beam radiotherapy utilizes high energy radiation to target cancer with dynamic, patient-specific treatment plans. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high energy beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to track the radiation beam on the surface of the patient in real-time, even for complex cases such as volumetric modulated arc therapy (VMAT). Two patients undergoing VMAT of the head and neck were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  12. Precision optical systems for the new generation of Ring Imaging Cherenkov detectors in high energy physics experiments

    International Nuclear Information System (INIS)

    High precision optical systems are required for the new generation of Ring Imaging Cherenkov detectors in high energy physics experiments. In the framework of the LHCb and COMPASS experiments, we have started an R and D programme to assess and to eventually overcome the limits of present technologies. Here, we present the available mirror technologies and discuss the optical and mechanical parameters

  13. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    Energy Technology Data Exchange (ETDEWEB)

    Aaij, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Adeva, B. [Universidad de Santiago de Compostela (Spain); Adinolfi, M. [Bristol Univ. (United Kingdom). H.H. Wills Physics Lab.; and others

    2015-12-15

    A search is performed for heavy long-lived charged particles using 3.0 fb{sup -1} of proton-proton collisions collected at √(s) = 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell-Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, 1.8 < η < 4.9. The mass-dependent cross-section upper limits are in the range 2-4 fb (at 95 % CL) for masses between 14 and 309 GeV/c{sup 2}. (orig.)

  14. Development of Ring Imaging Cherenkov counter for Belle II experiment at super KEKB

    Science.gov (United States)

    Iwata, S.; Adachi, I.; Dolenec, R.; Hara, K.; Iijima, T.; Imamura, M.; Kawai, H.; Korpar, S.; Krizan, P.; Kubo, M.; Kumita, T.; Mori, W.; Nishida, S.; Ogawa, S.; Pestotnik, R.; Seljak, A.; Sumiyoshi, T.; Tabata, M.; Takagaki, H.; Tagai, S.; Verheyden, R.

    For the Belle II experiment at the superKEKB, we have been developing a proximity focusing ring imaging Cherenkov detector using a silica aerogel as a radiator. A 144-channel Hybrid Avalanche Photo-Detector which is developed with Hamamatsu Photonics K.K. was adopted as the photon detector for the Aerogel RICH counter. We have conducted beam tests in order to evaluate the particle identification performance for the A-RICH system. One of our current concern for the system is a radiation hardness of the HAPD. In order to realize the neutron hardness for 10-year Belle II operation, we have tried to make APDs with a thinner P-layer which is expected to help in reducing the leakage current. As a result, we actually confirmed effects of the improved APD. In this paper, we would alike to report the status of the A-RICH development, especially about the improvement of the HAPD.

  15. Strangeonium spectroscopy at 11 GeV/c and Cherenkov Ring Imaging at the SLD

    International Nuclear Information System (INIS)

    This thesis is divided into two sections, which describe portions of the data acquisition system and online software for the Cherenkov Ring Imaging Detector (CRID) for the SLD, and analyses of several low cross section strangeonium channels in data from the LASS spectrometer. The CRID section includes a description of the data acquisition system, determination of the preamplifier gain, and development of an online pulse finding algorithm based on deconvolution. Deconvolution uses knowledge of the preamplifier impulse response to aid in pulse finding. The algorithm is fast and shows good single pulse resolution and excellent double pulse resolution in preliminary tests. The strangeonium analyses are based on data from a 4.1 event/nanobarn exposure of the LASS spectrometer in K-p interactions at 11 GeV/c, and include studies of Ληπ+π-, ΛΚ*Κ*, and Λφφ

  16. Multianode Photo Multiplier Tubes as Photo Detectors for Ring Imaging Cherenkov Detectors

    CERN Document Server

    Muheim, F

    2003-01-01

    The 64-channel Multianode Photo Multiplier (MaPMT) has been evaluated as a candidate for the LHCb Ring Imaging Cherenkov (RICH) photo detectors. We present result from data taken with a 3x3 array of closely packed MaPMTs mounted onto the RICH 1 prototype vessel, exposed to charged particle beams at CERN, and read out at LHC speed. Using a LED light source, we have performed spatial light scans to study the light collection efficiency of the MaPMTs We have also measured the performance of the MaPMTs as a function of the applied high voltage. Different dynode resistor chains have been used to study the tubes at low gains. In addition, we have studied the behaviour of the MaPMT in magnetic fields.

  17. Multianode photo multiplier tubes as photo detectors for Ring Imaging Cherenkov detectors

    International Nuclear Information System (INIS)

    The 64-channel Multianode Photo Multiplier (MaPMT) has been evaluated as a candidate for the LHCb Ring Imaging Cherenkov (RICH) photo detectors. We present result from data taken with a 3x3 array of closely packed MaPMTs mounted onto the RICH 1 prototype vessel, exposed to charged particle beams at CERN, and read out at LHC speed. Using a LED light source, we have performed spatial light scans to study the light collection efficiency of the MaPMTs We have also measured the performance of the MaPMTs as a function of the applied high voltage. Different dynode resistor chains have been used to study the tubes at low gains. In addition, we have studied the behaviour of the MaPMT in magnetic fields

  18. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    Energy Technology Data Exchange (ETDEWEB)

    Aaij, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Adeva, B. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Adinolfi, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol (United Kingdom); Affolder, A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool (United Kingdom); Ajaltouni, Z. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand (France); and others

    2015-12-15

    A search is performed for heavy long-lived charged particles using 3.0 fb{sup -1} of proton–proton collisions collected at √s= 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell–Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, 1.8<η<4.9. The mass-dependent cross-section upper limits are in the range 2–4 fb (at 95 % CL) for masses between 14 and 309 GeV /c{sup 2}.

  19. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    International Nuclear Information System (INIS)

    A search is performed for heavy long-lived charged particles using 3.0 fb-1 of proton–proton collisions collected at √s= 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell–Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, 1.8<η<4.9. The mass-dependent cross-section upper limits are in the range 2–4 fb (at 95 % CL) for masses between 14 and 309 GeV /c2

  20. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    International Nuclear Information System (INIS)

    A search is performed for heavy long-lived charged particles using 3.0 fb-1 of proton-proton collisions collected at √(s) = 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell-Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, 1.8 < η < 4.9. The mass-dependent cross-section upper limits are in the range 2-4 fb (at 95 % CL) for masses between 14 and 309 GeV/c2. (orig.)

  1. The Cherenkov Telescope Array

    OpenAIRE

    Bigongiari, Ciro

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next generation ground based observatory for very high energy (VHE) gamma-ray astronomy. Gamma-rays provide a powerful insight into the non-thermal universe and hopefully a unique probe for new physics. Imaging Cherenkov telescopes have already discovered more than 170 VHE gamma-ray emitters providing plentiful of valuable data and clearly demonstrating the power of this technique. In spite of the impressive results there are indication...

  2. The HERA-B ring imaging Cherenkov system - design and performance

    International Nuclear Information System (INIS)

    The Ring Imaging Cherenkov detector of the HERA-B experiment at DESY has been completed in January of 1999. Data in its final configuration were taken recently. The HERA-B RICH uses C4F10 as radiator gas and a large 24 m2 spherical mirror for imaging. The photon detector employs 2240 Hamamatsu multi-anode photomultipliers with a total of 27 000 channels. To match anode dimension (4.5 mm) and dispersion error and to solve the PMT packing problem we used a 2 : 1 reducing two-lens telescope in front of each PMT. The design performance of the RICH was fully reached: the average number of photons for a β=1 particle detected in the RICH was found to be 35.4; a single-photon resolution of 0.65 mrad was reached. We used stand-alone ring finding algorithms to measure the angle and β of tracks. With the position information of the target and that of clusters in the electromagnetic calorimeter we were able to identify electrons, pions, kaons and protons

  3. Ground-based VHE γ ray astronomy with air Cherenkov imaging telescopes

    International Nuclear Information System (INIS)

    The history of astronomy has been one of the scientific discovery following immediately the introduction of new technology. In this report, we will review shortly the basic development of the atmospheric air Cherenkov light detection technique, particularly the imaging telescope technique, which in the last years led to the firm establishment of a new branch in experimental astronomy, namely ground-based very high-energy (VHE) γ ray astronomy. Milestones in the technology and in the analysis of imaging technique will be discussed. The design of the 17 m diameter MAGIC Telescope, being currently under construction, is based on the development of new technologies for all its major parts and sets new standards in the performance of the ground-based γ detectors. MAGIC is one of the next major steps in the development of the technique being the first instrument that will allow one to carry out measurements also in the not yet investigated energy gap i.e. between 10 and 300 GeV

  4. All-fiber femtosecond Cherenkov source

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe Visbech;

    2013-01-01

    An all-fiber femtosecond Cherenkov radiation source is demonstrated for the first time, to the best of our knowledge. Using a stable monolithic femtosecond Ybdoped fiber laser as the pump source, and the combination of photonic crystal fibers as the wave-conversion medium, we have generated tunable...... Cherenkov radiation at visible wavelengths 580 - 630 nm, with pulse duration of sub-160 fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such femtosecond source can find applications in practical biophotonics such as bio-imaging and microscopy....

  5. All-fiber femtosecond Cherenkov source

    Directory of Open Access Journals (Sweden)

    Tu H.

    2013-03-01

    Full Text Available An all-fiber femtosecond Cherenkov radiation source is demonstrated for the first time, to the best of our knowledge. Using a stable monolithic femtosecond Ybdoped fiber laser as the pump source, and the combination of photonic crystal fibers as the wave-conversion medium, we have generated tunable Cherenkov radiation at visible wavelengths 580 – 630 nm, with pulse duration of sub-160 fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such femtosecond source can find applications in practical biophotonics such as bio-imaging and microscopy.

  6. The Ring Imaging Cherenkov detector of the AMS experiment: test beam results with a prototype

    CERN Document Server

    Arruda, Luísa; Goncalves, Patrícia; Pereira, Rui

    2008-01-01

    The Alpha Magnetic Spectrometer (AMS) to be installed on the International Space Station (ISS) will be equipped with a proximity Ring Imaging Cherenkov (RICH) detector for measuring the velocity and electric charge of the charged cosmic particles. This detector will contribute to the high level of redundancy required for AMS as well as to the rejection of albedo particles. Charge separation up to iron and a velocity resolution of the order of 0.1% for singly charged particles are expected. A RICH protoptype consisting of a detection matrix with 96 photomultiplier units, a segment of a conical mirror and samples of the radiator materials was built and its performance was evaluated. Results from the last test beam performed with ion fragments resulting from the collision of a 158 GeV/c/nucleon primary beam of indium ions (CERN SPS) on a lead target are reported. The large amount of collected data allowed to test and characterize different aerogel samples and the sodium fluoride radiator. In addition, the reflec...

  7. Pixel hybrid photon detectors for the ring imaging Cherenkov detectors of LHCb

    CERN Document Server

    Somerville, L

    2005-01-01

    A Pixel Hybrid Photon Detector (pixel HPD) has been developed for the LHCb Ring Imaging Cherenkov (RICH) detectors. The pixel HPD is a vacuum tube with a multi-alkali photocathode, high-voltage cross- focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a CMOS readout chip; the readout chip is thus fully encapsulated in the device. The pixel HPD fulfils the stringent requirements for the RICH detectors of LHCb, combining single photon sensitivity, high signal-to-noise ratio and fast readout with an ~8cm diameter active area and an effective pixel size of 2.5mm 2.5mm at the photocathode. The performance and characteristics of two prototype pixel HPDs have been studied in laboratory measurements and in recent beam tests. The results of all measurements agree with expectations and fulfil the LHCb RICH requirements. In readiness for production of the ~500pixel HPDs for the RICH detectors, a test programme was designed and implemented to ensure component quality control at eac...

  8. A ring imaging Cherenkov counter for the AMS experiment: simulation, prototype and perspective

    International Nuclear Information System (INIS)

    The AMS spectrometer is scheduled to be installed on the International Space Station ISS in 2003. The detector will be equipped with a Ring Imaging Cherenkov Counter (RICH). The report starts with a presentation of the physics goals of AMS and continues with a description of the spectrometer. The RICH detector response and event reconstruction is then described and detailed. The presentation proceeds with a simulation study of cosmic ray nuclei expected with the AMS RICH counter in space. Next, the thesis reports on the research and development of a RICH prototype built and tested in the period 1997-1999 in the Grenoble Institute of Nuclear Science (ISN). The response of the prototype and its calibration are described. Tests have been performed with cosmic rays at ground and ion beam at GSI-Darmstadt. The data analysis of the test campaigns is then presented and compared with simulation results. Finally, a dedicated test of Albedo particle Rejection Power of the RICH detector is reported. (author)

  9. Construction of prototype two-mirror Schwartzchild-Couder Imaging Air Cherenkov Telescope (IACT) for VHE gamma-ray astronomy

    Science.gov (United States)

    Kieda, David; CTA-US Collaboration Collaboration

    2016-03-01

    Next generation ground-based VHE gamma-ray observatories such as the Cherenkov Telescope Array (CTA) will employ an array of different sized IACTs distributed across square kilometer areas. During 2015-2016, the CTA-US collaboration is constructing a prototype 9.6 m primary diameter Schwartzchild-Couder IACT (SCT) at the FL Whipple Observatory, Amado, AZ USA. The two-mirror SCT design provides 8 degree field of view with 0.067 degree pixel size. The SCT uses a high resolution (11,328 pixel) Silicon PhotoMultiplier (SiPM) camera to record atmospheric Cherenkov light images generated by gamma-ray and cosmic ray primaries. Incorporation of SCT telescopes into a CTA-type observatory can provide superior angular resolution (30 % improvement) and point source sensitivity (30-50 %). In this talk, I will describe the capabilities of the SCT telescope, and the construction and commissioning of the prototype SCT telescope during 2016.

  10. The structure of an Imaging Atmospheric Cherenkov Telescope with novel photon detectors for ground-based gamma-ray astronomy

    International Nuclear Information System (INIS)

    Very high energy gamma-ray astronomy is a rapidly expanding field of research. Observations are nearly all carried out with so-called Imaging Atmospheric Cherenkov Telescopes all using Photomultipliers as light sensors up to now. A test telescope using Geiger-mode avalanche photodiodes (G-APD) for the first time is under construction. The former HEGRA CT3 telescope mount on the Canary island La Palma is being refurbished for the First G-APD Cherenkov Telescope (FACT). Here, we describe the mirror system, its detailed construction, focal length distribution, spectral reflectivity and point spread function for all hexagonal aluminum facets. In October 2010, the mirrors were pre-aligned on site using a laser alignment setup, and first tracking tests of the new drive system were conducted.

  11. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper;

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  12. Measurement of charged hadron spectra at the Z0 with Cherenkov ring imaging

    International Nuclear Information System (INIS)

    This dissertation attempts to probe hadronization, the process by which the fundamental quarks described by quantum chromodynamics produce the jets of hadrons that the author observed in experiments. The measurements are made using e+e- collisions at the SLAC Linear Collider (SLC), operating at the Z0 resonance with the SLC Large Detector (SLD), and the unique capabilities of the SLC/SLD facility are exploited. First, the spectra of charged hadrons (π±, K±, and p/anti p) are measured. This is accomplished with the SLD Cherenkov Ring Imaging Detector (CRID), one of a first generation of devices that have been developed for efficient particle identification over a wide momentum range. The use of the CRID is central to this dissertation, and its design and performance are described in detail here. The measured spectra agree with other measurements at the Z0 and extend the momentum coverage. Next, the excellent spatial resolution of the SLD tracking systems, along with the small and stable beam spots of the SLC, is employed to identify jets produced from heavy b or c quarks and to separate them from the remaining light-quark (uds) jets. This removes the effects of heavy quark fragmentation and decays of heavy-quark hadrons from the study of hadronization. The first measurements of particle spectra in light-quark jets are then presented. Finally, the highly-polarized incident electron beam of the SLC, together with the electroweak asymmetries of the quarks, is exploited to separate quark and antiquark jets. Significant differences in quark-antiquark production of protons and of kaons are observed at high momenta. This signal suggests a leading particle effect, where the particles containing the primary quark of a jet are more likely to populate the high-momentum phase space than are other hadrons

  13. Criterion of applicable models for planar type Cherenkov laser based on quantum mechanical treatments

    International Nuclear Information System (INIS)

    A generalized theoretical analysis for amplification mechanism in the planar-type Cherenkov laser is given. An electron is represented to be a material wave having temporal and spatial varying phases with finite spreading length. Interaction between the electrons and the electromagnetic (EM) wave is analyzed by counting the quantum statistical properties. The interaction mechanism is classified into the Velocity and Density Modulation (VDM) model and the Energy Level Transition (ELT) model basing on the relation between the wavelength of the EM wave and the electron spreading length. The VDM model is applicable when the wavelength of the EM wave is longer than the electron spreading length as in the microwave region. The dynamic equation of the electron, which is popularly used in the classical Newtonian mechanics, has been derived from the quantum mechanical Schrödinger equation. The amplification of the EM wave can be explained basing on the bunching effect of the electron density in the electron beam. The amplification gain and whose dispersion relation with respect to the electron velocity is given in this paper. On the other hand, the ELT model is applicable for the case that the wavelength of the EM wave is shorter than the electron spreading length as in the optical region. The dynamics of the electron is explained to be caused by the electron transition between different energy levels. The amplification gain and whose dispersion relation with respect to the electron acceleration voltage was derived on the basis of the quantum mechanical density matrix

  14. TH-C-17A-05: Cherenkov Excited Phosphorescence Oxygen (CEPhOx) Imaging During Multi-Beam Radiation Therapy

    International Nuclear Information System (INIS)

    Purpose: Cherenkov radiation is created during external beam radiation therapy that can excite phosphorescence in tissue from oxygen-sensitive, bio-compatible probes. Utilizing the known spatial information of the treatment plan with directed multiple beam angles, Cherenkov Excited Phosphorescence Oxygen (CEPhOx) imaging was realized from the reconstructions of Cherenkov excited phosphorescence lifetime. Methods: Platinum(II)-G4 (PtG4) was used as the oxygen-sensitive phosphorescent probe and added to a oxygenated cylindrical liquid phantom with a oxygenated/deoxygenated cylindrical anomaly. Cherenkov excited phosphorescence was imaged using a time-gated ICCD camera temporallysynchronized to the LINAC pulse output. Lifetime reconstruction was carried out in NIRFAST software. Multiple angles of the incident radiation beam was combined with the location of the prescribed treatment volume (PTV) to improve the tomographic recovery as a function of location. The tissue partial pressure of oxygen (pO2) in the background and PTV was calculated based on the recovered lifetime distribution and Stern-Volmer equation. Additionally a simulation study was performed to examine the accuracy of this technique in the setting of a human brain tumor. Results: Region-based pO2 values in the oxygenated background and oxygenated/deoxygenated PTV were correctly recovered, with the deoxygenated anomaly (15.4 mmHg) easily distinguished from the oxygenated background (143 mmHg). The data acquisition time could be achieved within the normal irradiation time for a human fractionated plan. The simulations indicated that CEPhOx would be a sufficient to sample tumor pO2 sensing from tumors which are larger than 2cm in diameter or within 23mm depth from the surface. Conclusion: CEPhOx could be a novel imaging tool for pO2 assessment during external radiation beam therapy. It is minimally invasive and should work within the established treatment plan of radiation therapy with multiple beams in

  15. TH-C-17A-05: Cherenkov Excited Phosphorescence Oxygen (CEPhOx) Imaging During Multi-Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Pogue, B [Dartmouth College, Hanover, NH (United States); Holt, R [Dartmouth College, Hanover, NH - New Hampshire (United States); Esipova, T; Vinogradov, S [University of Pennsylvania, Philadelphia, PA (United States); Gladstone, D [Dartmouth-Hitchcock Medical Center, Hanover, City of Lebanon (Lebanon)

    2014-06-15

    Purpose: Cherenkov radiation is created during external beam radiation therapy that can excite phosphorescence in tissue from oxygen-sensitive, bio-compatible probes. Utilizing the known spatial information of the treatment plan with directed multiple beam angles, Cherenkov Excited Phosphorescence Oxygen (CEPhOx) imaging was realized from the reconstructions of Cherenkov excited phosphorescence lifetime. Methods: Platinum(II)-G4 (PtG4) was used as the oxygen-sensitive phosphorescent probe and added to a oxygenated cylindrical liquid phantom with a oxygenated/deoxygenated cylindrical anomaly. Cherenkov excited phosphorescence was imaged using a time-gated ICCD camera temporallysynchronized to the LINAC pulse output. Lifetime reconstruction was carried out in NIRFAST software. Multiple angles of the incident radiation beam was combined with the location of the prescribed treatment volume (PTV) to improve the tomographic recovery as a function of location. The tissue partial pressure of oxygen (pO2) in the background and PTV was calculated based on the recovered lifetime distribution and Stern-Volmer equation. Additionally a simulation study was performed to examine the accuracy of this technique in the setting of a human brain tumor. Results: Region-based pO2 values in the oxygenated background and oxygenated/deoxygenated PTV were correctly recovered, with the deoxygenated anomaly (15.4 mmHg) easily distinguished from the oxygenated background (143 mmHg). The data acquisition time could be achieved within the normal irradiation time for a human fractionated plan. The simulations indicated that CEPhOx would be a sufficient to sample tumor pO2 sensing from tumors which are larger than 2cm in diameter or within 23mm depth from the surface. Conclusion: CEPhOx could be a novel imaging tool for pO2 assessment during external radiation beam therapy. It is minimally invasive and should work within the established treatment plan of radiation therapy with multiple beams in

  16. How to focus a Cherenkov telescope

    OpenAIRE

    Hofmann, Werner

    2001-01-01

    Cherenkov telescopes image the Cherenkov emission from air showers. A priori, it is not obvious if the `best' images are achieved by measuring Cherenkov photon angles, i.e. focusing the telescope at infinity, or by considering the air shower as an object to be imaged, in which case one might focus the telescope on the central region of the shower. The issue is addressed using shower simulations.

  17. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, Marco [INFN, Ferrara, Italy

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to –25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  18. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    Science.gov (United States)

    Contalbrigo, M.

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to -25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  19. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to −25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  20. A new analysis strategy for detection of faint gamma-ray sources with Imaging Atmospheric Cherenkov Telescopes

    CERN Document Server

    Becherini, Yvonne; Marandon, Vincent; Punch, Michael; Pita, Santiago; 10.1016/j.astropartphys.2011.03.005

    2011-01-01

    A new background rejection strategy for gamma-ray astrophysics with stereoscopic Imaging Atmospheric Cherenkov Telescopes (IACT), based on Monte Carlo (MC) simulations and real background data from the H.E.S.S. [High Energy Stereoscopic System, see [1].] experiment, is described. The analysis is based on a multivariate combination of both previously-known and newly-derived discriminant variables using the physical shower properties, as well as its multiple images, for a total of eight variables. Two of these new variables are defined thanks to a new energy evaluation procedure, which is also presented here. The method allows an enhanced sensitivity with the current generation of ground-based Cherenkov telescopes to be achieved, and at the same time its main features of rapidity and flexibility allow an easy generalization to any type of IACT. The robustness against Night Sky Background (NSB) variations of this approach is tested with MC simulated events. The overall consistency of the analysis chain has been ...

  1. TH-C-17A-03: Dynamic Visualization and Dosimetry of IMRT and VMAT Treatment Plans by Video-Rate Imaging of Cherenkov Radiation in Pure Water

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, A; Andreozzi, J; Davis, S [Thayer School of Engineering, Dartmouth College, NH (United States); Zhang, R [Department of Physics and Astronomy, Dartmouth College, Hanover, NH (United States); Fox, C; Gladstone, D [Dartmouth Hitchcock Medical Center, Lebanon, NH (Lebanon); Pogue, B [Thayer School of Engineering, Dartmouth College, NH (United States); Department of Physics and Astronomy, Dartmouth College, Hanover, NH (United States)

    2014-06-15

    Purpose: A novel optical dosimetry technique for the QA and verification of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) radiotherapy plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: An intensified CCD camera (ICCD) was used to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank. The ICCD acquisition was gated to the Linac, operated for single pulse imaging, and binned to a resolution of 512×512 pixels. The resulting videos were analyzed temporally for regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR) and summed to obtain an overall light distribution, which was compared to the expected dose distribution from the TPS using a gammaindex analysis. Results: The chosen camera settings resulted in data at 23.5 frames per second. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.2% and 95.6% agreement between the light distribution and expected TPS dose distribution based upon a 3% / 3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans respectively. Conclusion: The results from this initial study demonstrate the first documented use of Cherenkov radiation for optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications. NIH R01CA109558 and R21EB017559.

  2. TH-C-17A-03: Dynamic Visualization and Dosimetry of IMRT and VMAT Treatment Plans by Video-Rate Imaging of Cherenkov Radiation in Pure Water

    International Nuclear Information System (INIS)

    Purpose: A novel optical dosimetry technique for the QA and verification of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) radiotherapy plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: An intensified CCD camera (ICCD) was used to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank. The ICCD acquisition was gated to the Linac, operated for single pulse imaging, and binned to a resolution of 512×512 pixels. The resulting videos were analyzed temporally for regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR) and summed to obtain an overall light distribution, which was compared to the expected dose distribution from the TPS using a gammaindex analysis. Results: The chosen camera settings resulted in data at 23.5 frames per second. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.2% and 95.6% agreement between the light distribution and expected TPS dose distribution based upon a 3% / 3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans respectively. Conclusion: The results from this initial study demonstrate the first documented use of Cherenkov radiation for optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications. NIH R01CA109558 and R21EB017559

  3. A conceptual design of an advanced 23-m diameter Imaging Air Cherenkov Telescope of 50 tons for ground-based gamma-ray astronomy

    International Nuclear Information System (INIS)

    The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) Telescope has opened the field of ground-base sub-100 GeV gamma-ray astronomy. Observations with higher sensitivity in this energy region will have important consequences for the understanding of both galactic and extragalactic sources of non-thermal gamma radiation. We present a conceptual design of an advanced Imaging Air Cherenkov Telescope with a 23 m diameter reflector and a weight of 50 tons. A system photon detection efficiency of 15-17%, averaged over 300-600 nm, is aimed at to lower the energy threshold to 10-20 GeV. Prospects for a second generation camera with Geiger-mode avalanche photodiodes are also discussed. The 23-m design can serve as large-size telescope for the future Cherenkov Telescope Array project.

  4. Cherenkov radiation dosimetry in water tanks – video rate imaging, tomography and IMRT and VMAT plan verification

    International Nuclear Information System (INIS)

    This paper presents a survey of three types of imaging of radiation beams in water tanks for comparison to dose maps. The first was simple depth and lateral profile verification, showing excellent agreement between Cherenkov and planned dose, as predicted by the treatment planning system for a square 5cm beam. The second approach was 3D tomography of such beams, using a rotating water tank with camera attached, and using filtered backprojection for the recovery of the 3D volume. The final presentation was real time 2D imaging of IMRT or VMAT treatments in a water tank. In all cases the match to the treatment planning system was within what would be considered acceptable for clinical medical physics acceptance

  5. GETFOCOS for imaging atmospheric Cherenkov telescopes - A GEant4 tool for optimization and characterization of an optical system

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, L., E-mail: luisa@lip.pt [LIP - Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisbon (Portugal); Assis, P.; Barao, F.; Pereira, R.; Pimenta, M.; Tome, B. [LIP - Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisbon (Portugal)

    2011-12-11

    The aim of this article is to introduce a dedicated simulation package, named GETFOCOS, that combines Geant4 and ray-tracing algorithms that can be used on the characterization of the optics of a generic Imaging Atmospheric Cherenkov telescope as well as on the optimization of its focal plane geometry. The image spot size is evaluated for both cases in a large field-of-view observation scenario. This tool allows to perform fast but precise tests for different optical options. The specific case of a Fresnel lens, inspired by the concept developed for the GAW experiment, is analysed. However, this intends to be an universal and relevant tool for any kind of optical system. A complete characterization of the optics is presented together with a study for the optimization of the focal plane shape.

  6. Strange meson spectroscopy in K[omega] and K[phi] at 11 GeV/c and Cherenkov ring imaging at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Youngjoon.

    1993-01-01

    This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (CRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part 1: The CRID system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e[sup +]e[sup [minus

  7. Design and construction of the front-end electronics data acquisition for the SLD CRID [Cherenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    We describe the front-end electronics for the Cherenkov Ring Imaging Detector (CRID) of the SLD at the Stanford Linear Accelerator Center. The design philosophy and implementation are discussed with emphasis on the low-noise hybrid amplifiers, signal processing and data acquisition electronics. The system receives signals from a highly efficient single-photo electron detector. These signals are shaped and amplified before being stored in an analog memory and processed by a digitizing system. The data from several ADCs are multiplexed and transmitted via fiber optics to the SLD FASTBUS system. We highlight the technologies used, as well as the space, power dissipation, and environmental constraints imposed on the system. 16 refs., 10 figs

  8. An astroclimatological study of candidate sites to host an imaging atmospheric Cherenkov telescope in Romania

    CERN Document Server

    Radu, A A; Curtef, V; Felea, D; Hasegan, D; Lucaschi, B; Manea, A; Popa, V; Ralita, I

    2011-01-01

    We come out in this paper with an astroclimatological study of meteorological data on relative humidity, dew point temperature, air temperature, wind speed, barometric air pressure, and sky cloudiness recorded at four Romanian locations (Baisoara, Rosia Montana, Semenic, Ceahlau) and Nordic Optical Telescope (NOT) located at Observatorio del Roque de Los Muchachos, in the Canary Islands. Long term trends of microclimates have been compared in order to identify the site-to-site variations. We have performed this analysis as part of a site testing campaign aimed at finding the best location for the establishment of a small Cherenkov telescope in Romania. The conditions at the Romanian sites have been compared to those of the Canary Islands considered as a reference. A statistical approach has been used for data analysis. Monthly and annual samples have been extracted from series of raw data for nighttime, daytime and entire day intervals. Percentage distributions of meteorological parameters, whose values excee...

  9. Study of timing performance of silicon photomultiplier and application for a Cherenkov detector

    International Nuclear Information System (INIS)

    Silicon photomultipliers are very versatile photo-detectors due to their high photon detection efficiency, fast response, single photon counting capability, high amplification, and their insensitivity to magnetic fields. At our institute we are studying the performance of these photo-detectors at various operating conditions. On the basis of the experience in the laboratory we built a prototype of a timing Cherenkov detector consisting of a quartz radiator with two 3x3 mm2 MPPCs S10362-33-100C from Hamamatsu Photonics as photo-detectors. The MPPC sensors were operated with Peltier cooling to minimize thermal noise and to avoid gain drifts. The test measurements at the DA Φ NE Beam-Test Facility (BTF) at the Laboratori Nazionali di Frascati (LNF) with pulsed 490 MeV electrons and the results on timing performance with Cherenkov photons are presented.

  10. Study of timing performance of Silicon Photomultiplier and application for a Cherenkov detector

    CERN Document Server

    Ahmed, G S M; Marton, J; Suzuki, K

    2010-01-01

    Silicon photomultipliers are very versatile photo detectors due to their high photon detection efficiency, fast response, single photon counting capability, high amplification, and their insensitivity to magnetic fields. At our institute we are studying the performance of these photo detectors at various operating conditions. On the basis of the experience in the laboratory we built a prototype of a timing Cherenkov detector consisting of a quartz radiator with two $3\\times 3$ mm$^2$ MPPCs S10362-33-100C from Hamamatsu Photonics as photodetectors. The MPPC sensors were operated with Peltier cooling to minimize thermal noise and to avoid gain drifts. The test measurements at the DA$\\Phi$NE Beam-Test Facility (BTF) at the Laboratori Nazionali di Frascati (LNF) with pulsed 490 MeV electrons and the results on timing performance with Cherenkov photons are presented.

  11. Study of timing performance of silicon photomultiplier and application for a Cherenkov detector

    Science.gov (United States)

    Ahmed, G. S. M.; Bühler, P.; Marton, J.; Suzuki, K.

    2011-02-01

    Silicon photomultipliers are very versatile photo-detectors due to their high photon detection efficiency, fast response, single photon counting capability, high amplification, and their insensitivity to magnetic fields. At our institute we are studying the performance of these photo-detectors at various operating conditions. On the basis of the experience in the laboratory we built a prototype of a timing Cherenkov detector consisting of a quartz radiator with two 3×3 mm 2 MPPCs S10362-33-100C from Hamamatsu Photonics as photo-detectors. The MPPC sensors were operated with Peltier cooling to minimize thermal noise and to avoid gain drifts. The test measurements at the DA Φ NE Beam-Test Facility (BTF) at the Laboratori Nazionali di Frascati (LNF) with pulsed 490 MeV electrons and the results on timing performance with Cherenkov photons are presented.

  12. Study of timing performance of Silicon Photomultiplier and application for a Cherenkov detector

    OpenAIRE

    Ahmed, G. S. M.; Bühler, P.; Marton, J.; Suzuki, K.

    2010-01-01

    Silicon photomultipliers are very versatile photo detectors due to their high photon detection efficiency, fast response, single photon counting capability, high amplification, and their insensitivity to magnetic fields. At our institute we are studying the performance of these photo detectors at various operating conditions. On the basis of the experience in the laboratory we built a prototype of a timing Cherenkov detector consisting of a quartz radiator with two $3\\times 3$ mm$^2$ MPPCs S1...

  13. Strange meson spectroscopy in Kω and Kφ at 11 GeV/c and Cherenkov ring imaging at SLD

    International Nuclear Information System (INIS)

    This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (CRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part 1: The CRID system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e+e- collisions at √s = mZ0. By measuring the angles of emission of the Cherenkov photons inside liquid and gaseous radiators, π/K/p separation will be achieved up to ∼30 GeV/c. The signals from CRID are read in three coordinates, one of which is measured by charge-division technique. To obtain a ∼1% spatial resolution in the charge-division, low-noise CRID preamplifier prototypes were developed and tested resulting in 5 gain. To help ensure the long-term stability of CRID operation at high efficiency, a comprehensive monitoring and control system was developed. Part 2: Results from the partial wave analysis of strange meson final states in the reactions K-p → K-ωp and K-p → bar K0φn are presented. The analyses are based on data from a 4.1 event/nb exposure of the LASS spectrometer in K-p interactions at 11 GeV/c. The data sample of K-ωp final state contains ∼105 events. From the partial wave analysis, resonance structures of JP = 2-, 3- and 2+ amplitudes are observed in the Kω system. The analysis of 2- amplitudes provides an evidence for two strange meson states in the mass region around 1.75 GeV/c2. The appropriate branching fractions are calculated and compared with the SU(3) predictions. The partial wave analysis of bar K0φ system favors JP = 1- and 2+ states in the 1.9--2.0 GeV/c2 region

  14. Particle Identification in Cherenkov Detectors using Convolutional Neural Networks

    CERN Document Server

    Theodore, Tomalty

    2016-01-01

    Cherenkov detectors are used for charged particle identification. When a charged particle moves through a medium faster than light can propagate in that medium, Cherenkov radiation is released in the shape of a cone in the direction of movement. The interior of the Cherenkov detector is instrumented with PMTs to detect this Cherenkov light. Particles, then, can be identified by the shapes of the images on the detector walls.

  15. MACHETE: A transit Imaging Atmospheric Cherenkov Telescope to survey half of the Very High Energy $\\gamma$-ray sky

    CERN Document Server

    Cortina, J; Moralejo, A

    2015-01-01

    Current Imaging Atmospheric Cherenkov Telescopes for Very High Energy $\\gamma$-ray astrophysics are pointing instruments with a Field of View up to a few tens of sq deg. We propose to build an array of two non-steerable (drift) telescopes. Each of the telescopes would have a camera with a FOV of 5$\\times$60 sq deg oriented along the meridian. About half of the sky drifts through this FOV in a year. We have performed a Montecarlo simulation to estimate the performance of this instrument. We expect it to survey this half of the sky with an integral flux sensitivity of $\\sim$0.77\\% of the steady flux of the Crab Nebula in 5 years, an analysis energy threshold of $\\sim$150 GeV and an angular resolution of $\\sim$0.1$^{\\circ}$. For astronomical objects that transit over the telescope for a specific night, we can achieve an integral sensitivity of 12\\% of the Crab Nebula flux in a night, making it a very powerful tool to trigger further observations of variable sources using steerable IACTs or instruments at other w...

  16. MACHETE: A transit imaging atmospheric Cherenkov telescope to survey half of the very high energy γ-ray sky

    Science.gov (United States)

    Cortina, J.; López-Coto, R.; Moralejo, A.

    2016-01-01

    Current imaging atmospheric Cherenkov telescopes for very high energy γ-ray astrophysics are pointing instruments with a field of view up to a few tens of sq deg. We propose to build an array of two non-steerable (drift) telescopes. Each of the telescopes would have a camera with a FOV of 5 × 60 sq deg oriented along the meridian. About half of the sky drifts through this FOV in a year. We have performed a Monte Carlo simulation to estimate the performance of this instrument. We expect it to survey this half of the sky with an integral flux sensitivity of ˜0.77% of the steady flux of the Crab Nebula in 5 years, an analysis energy threshold of ˜150 GeV and an angular resolution of ˜0.1°. For astronomical objects that transit over the telescope for a specific night, we can achieve an integral sensitivity of 12% of the Crab Nebula flux in a night, making it a very powerful tool to trigger further observations of variable sources using steerable IACTs or instruments at other wavelengths.

  17. The cross-talk problem in SiPMs and their use as light sensors for imaging atmospheric Cherenkov telescopes

    International Nuclear Information System (INIS)

    One of the major drawbacks of a SiPM is due to the so-called cross-talk effect. Often, one single photon in a chain reaction can generate more photons and thus can fire more than one micro-cell of a SiPM. This can be considered as a noise in the signal multiplication process and this degrades the signal/noise ratio. In self-trigger schemes this noise can be so high that it can make operating them difficult at low threshold settings. For the past few years, we have dwelt on this effect aiming to suppress it at the design stage. One can use (a) trenches around the micro-cells for suppressing the direct photon 'communication' channel and (b) the so-called double p-n junction for suppressing photon-induced charge 'communication' in neighbor pixels. The low cross-talk is mandatory, for example, for producing SiPM-based light sensor modules for the Imaging Atmospheric Cherenkov Technique projects for ground-based gamma-ray astrophysics. We produced and tested a few modules consisting of 4 SiPMs, each with a size of 5 mmx5 mm of custom production type. We report here on the main parameters of these units.

  18. The Non-Imaging CHErenkov Array (NICHE): A TA/TALE Extension to Measure the Flux and Composition of Very-High Energy Cosmic Rays

    CERN Document Server

    Krizmanic, John

    2013-01-01

    Co-sited with TA/TALE, the Non-Imaging CHErenkov Array (NICHE) will measure the flux and nuclear composition of cosmic rays from below 10^16 eV to 10^18 eV in its initial deployment. Furthermore, the low-energy threshold can be significantly decreased below the cosmic ray knee via counter redeployment or by including additional counters. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. NICHE will have sufficient area and angular acceptance to have significant overlap with the TA/TALE detectors to allow for energy cross-calibration. Simulated NICHE performance has shown that the array has the ability to distinguish between several different composition models as well as measure the end of Galactic cosmic ray spectrum.

  19. Stability Property of Numerical Cherenkov Radiation and its Application to Relativistic Shock Simulations

    CERN Document Server

    Ikeya, Naoki

    2014-01-01

    We studied the stability property of numerical Cherenkov radiation in relativistic plasma flows employing particle-in-cell simulations. Using the implicit finite-difference time-domain method to solve Maxwell equations, we found that nonphysical instability was greatly inhibited with a CFL number of 1.0. The present result contrasts with recently reported results (Vay et al., 2011; Godfrey & Vay,2013) in which magical CFL numbers in the range 0.5-0.7 were obtained with explicit field solvers. In addition, we found employing higher-order shape functions and an optimal implicitness factor further suppressed long-wavelength modes of the instability. The findings allowed the examination of the long-term evolution of a relativistic collisionless shock without the generation of nonphysical wave excitations in the upstream. This achievement will allow us to investigate particle accelerations in relativistic shocks associated with, for example, gamma-ray bursts.

  20. New large aperture, hybrid photo-detector and photo multiplier tube for a gigantic water Cherenkov ring imaging detector

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Seiko, E-mail: s_hirota@scphys.kyoto-u.ac.jp [Kyoto University, Department of Physics (Japan); Nishimura, Yasuhiro [University of Tokyo, ICRR (Japan); Suda, Yusuke [University of Tokyo, Department of Physics (Japan); Okajima, Yuji [Tokyo Institute of Technology, Department of Physics (Japan); Shiozawa, Masato; Nakayama, Shoei; Tanaka, Hidekazu; Hayato, Yoshinari; Ikeda, Motoyasu; Nakahata, Masayuki [University of Tokyo, ICRR (Japan); Yokoyama, Masashi; Aihara, Hiroaki [University of Tokyo, Department of Physics (Japan); Ichikawa, Atsuko; Minamino, Akihiro; Huang, Kunxian; Nakaya, Tsuyoshi [Kyoto University, Department of Physics (Japan); Kawai, Yoshihiko; Suzuki, Masatoshi; Ohmura, Takayuki [Hamamatsu Photonics K.K. (Japan)

    2014-12-01

    We are developing a 20-in. aperture high quantum efficiency photo-multiplier tube (PMT) and a hybrid photo-detector (HPD) for Hyper-Kamiokande which is a next generation underground large water Cherenkov detector. We have measured prototypes of 20-in. PMT with a high quantum efficiency photocathode, 30% at 400 nm, and 8-in. HPDs with a normal quantum efficiency photocathode, 22% at 400 nm, in a 200-ton water tank and checked their performance. The PMTs have a 2.7 ns (sigma) timing resolution and 43% (sigma) charge resolution for single photo-electron. Compared to PMTs, HPDs show a better performance with a 1.7 ns timing resolution and 32. - Highlights: • For Hyper-Kamiokande, a large aperture hybrid photo-detector (HPD) has been developed. • The application of high quantum efficiency photo-cathode has been also studied. • The 8-in. HPDs and 20-in. HQE PMTs have been tested in a 200-ton water tank from summer in 2013. • The HPDs show better charge and timing resolution, and lower dark rate than PMTs. • The HQE PMTs have not been stabilized yet and show higher dark rate than normal PMTs.

  1. New large aperture, hybrid photo-detector and photo multiplier tube for a gigantic water Cherenkov ring imaging detector

    International Nuclear Information System (INIS)

    We are developing a 20-in. aperture high quantum efficiency photo-multiplier tube (PMT) and a hybrid photo-detector (HPD) for Hyper-Kamiokande which is a next generation underground large water Cherenkov detector. We have measured prototypes of 20-in. PMT with a high quantum efficiency photocathode, 30% at 400 nm, and 8-in. HPDs with a normal quantum efficiency photocathode, 22% at 400 nm, in a 200-ton water tank and checked their performance. The PMTs have a 2.7 ns (sigma) timing resolution and 43% (sigma) charge resolution for single photo-electron. Compared to PMTs, HPDs show a better performance with a 1.7 ns timing resolution and 32. - Highlights: • For Hyper-Kamiokande, a large aperture hybrid photo-detector (HPD) has been developed. • The application of high quantum efficiency photo-cathode has been also studied. • The 8-in. HPDs and 20-in. HQE PMTs have been tested in a 200-ton water tank from summer in 2013. • The HPDs show better charge and timing resolution, and lower dark rate than PMTs. • The HQE PMTs have not been stabilized yet and show higher dark rate than normal PMTs

  2. Gamma/hadron segregation for a ground based imaging atmospheric Cherenkov telescope using machine learning methods: Random Forest leads

    International Nuclear Information System (INIS)

    A detailed case study of γ-hadron segregation for a ground based atmospheric Cherenkov telescope is presented. We have evaluated and compared various supervised machine learning methods such as the Random Forest method, Artificial Neural Network, Linear Discriminant method, Naive Bayes Classifiers, Support Vector Machines as well as the conventional dynamic supercut method by simulating triggering events with the Monte Carlo method and applied the results to a Cherenkov telescope. It is demonstrated that the Random Forest method is the most sensitive machine learning method for γ-hadron segregation. (research papers)

  3. Development of a 144-channel Hybrid Avalanche Photo-Detector for Belle II ring-imaging Cherenkov counter with an aerogel radiator

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, S., E-mail: shohei.nishida@kek.jp [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Adachi, I. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hamada, N. [Toho University, Funabashi (Japan); Hara, K. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Iijima, T. [Nagoya University, Nagoya (Japan); Iwata, S.; Kakuno, H. [Tokyo Metropolitan University, Hachioji (Japan); Kawai, H. [Chiba University, Chiba (Japan); Korpar, S.; Krizan, P. [Jozef Stefan Institute, Ljubljana (Slovenia); Ogawa, S. [Toho University, Funabashi (Japan); Pestotnik, R.; Ŝantelj, L.; Seljak, A. [Jozef Stefan Institute, Ljubljana (Slovenia); Sumiyoshi, T. [Tokyo Metropolitan University, Hachioji (Japan); Tabata, M. [Chiba University, Chiba (Japan); Tahirovic, E. [Jozef Stefan Institute, Ljubljana (Slovenia); Yoshida, K. [Tokyo Metropolitan University, Hachioji (Japan); Yusa, Y. [Niigata University, Niigata (Japan)

    2015-07-01

    The Belle II detector, a follow up of the very successful Belle experiment, is under construction at the SuperKEKB electron–positron collider at KEK in Japan. For the PID system in the forward region of the spectrometer, a proximity-focusing ring-imaging Cherenkov counter with an aerogel radiator is being developed. For the position sensitive photon sensor, a 144-channel Hybrid Avalanche Photo-Detector has been developed with Hamamatsu Photonics K.K. In this report, we describe the specification of the Hybrid Avalanche Photo-Detector and the status of the mass production.

  4. Development of a 144-channel Hybrid Avalanche Photo-Detector for Belle II ring-imaging Cherenkov counter with an aerogel radiator

    International Nuclear Information System (INIS)

    The Belle II detector, a follow up of the very successful Belle experiment, is under construction at the SuperKEKB electron–positron collider at KEK in Japan. For the PID system in the forward region of the spectrometer, a proximity-focusing ring-imaging Cherenkov counter with an aerogel radiator is being developed. For the position sensitive photon sensor, a 144-channel Hybrid Avalanche Photo-Detector has been developed with Hamamatsu Photonics K.K. In this report, we describe the specification of the Hybrid Avalanche Photo-Detector and the status of the mass production

  5. Development of a 144-channel Hybrid Avalanche Photo-Detector for Belle II ring-imaging Cherenkov counter with an aerogel radiator

    Science.gov (United States)

    Nishida, S.; Adachi, I.; Hamada, N.; Hara, K.; Iijima, T.; Iwata, S.; Kakuno, H.; Kawai, H.; Korpar, S.; Kriz^an, P.; Ogawa, S.; Pestotnik, R.; Ŝantelj, L.; Seljak, A.; Sumiyoshi, T.; Tabata, M.; Tahirovic, E.; Yoshida, K.; Yusa, Y.

    2015-07-01

    The Belle II detector, a follow up of the very successful Belle experiment, is under construction at the SuperKEKB electron-positron collider at KEK in Japan. For the PID system in the forward region of the spectrometer, a proximity-focusing ring-imaging Cherenkov counter with an aerogel radiator is being developed. For the position sensitive photon sensor, a 144-channel Hybrid Avalanche Photo-Detector has been developed with Hamamatsu Photonics K.K. In this report, we describe the specification of the Hybrid Avalanche Photo-Detector and the status of the mass production.

  6. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni

    2015-01-01

    A search is performed for heavy long-lived charged particles using 3.0 fb$^{-1}$ of pp collisions collected at $\\sqrt{s}$= 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkovdetectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell-Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, $1.8 < \\eta < 4.9$. The mass-dependent cross-section upper limits are in the range 2-4 fb (at 95\\% CL) for masses between 124 and 309 GeV/c$^2$.

  7. The Cherenkov Telescope Array

    CERN Document Server

    Bigongiari, Ciro

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next generation ground based observatory for very high energy (VHE) gamma-ray astronomy. Gamma-rays provide a powerful insight into the non-thermal universe and hopefully a unique probe for new physics. Imaging Cherenkov telescopes have already discovered more than 170 VHE gamma-ray emitters providing plentiful of valuable data and clearly demonstrating the power of this technique. In spite of the impressive results there are indications that the known sources represent only the tip of the iceberg. A major step in sensitivity is needed to increase the number of detected sources, observe short time-scale variability and improve morphological studies of extended sources. An extended energy coverage is advisable to observe far-away extragalactic objects and improve spectral analysis. CTA aims to increase the sensitivity by an order of magnitude compared to current facilities, to extend the accessible gamma-ray energies from a few tens of GeV to a hundred o...

  8. Development of large area hybrid photodiodes for the LHCb ring imaging Cherenkov detectors

    International Nuclear Information System (INIS)

    The authors report on the development of large area hybrid photo diodes (HPD) which are one of the proposed photodetectors for the RICH counters of the LHCb experiment. The HPD's consist of a cylindrical vacuum envelope of 127 mm diameter capped with a spherical vacuum envelope of 127 mm diameter capped with a spherical borosilicate UV-glass entrance window. Focusing electrodes demagnify the image on a silicon detector of 50 mm diameter comprising 2048 pads with a surface of 1 mm2 each. The analogue readout electronics is integrated in the vacuum tube. As an intermediate step a HPD with a UV sensitive CsI photocathode has been produced which allowed to verify the electron optics of the HPD. A large UHV evaporation plant for the production of HPD's with visible light transmissive bialkali photocathodes (K2CsSb) has been built and successfully operated. The evaporation process is optimized for maximum quantum efficiency and life time of the photocathodes. A cold Indium sealing technique developed for a minimum thermal load of the photocathode and the silicon sensor has proven to provide excellent vacuum tightness

  9. Development of large area hybrid photodiodes for the LHCb ring imaging Cherenkov detectors

    CERN Document Server

    Chesi, Enrico Guido; Go, A; Joram, C; Séguinot, Jacques; Ypsilantis, Thomas; Ypsilantis, Thomas

    1998-01-01

    98-037 We report on the development of large area hybrid photo diodes (HPD) which are one of the proposed photodetectors for the RICH counters of the LHCb experiment. The HPD's consist of a cylindrical vacuum envelope of 127 mm diameter capped with a spherical borosilicate UV-glass entrance window. Focusing electrodes demagnify the image on a silicon detector of 50~mm diameter comprising 2048 pads with a surface of 1~mm$^2$ each. The analogue readout electronics is integrated in the vacuum tube. As an intermediate step a HPD with a UV sensitive CsI photocathode has been produced which allowed to verify the electron optics of the HPD. A large UHV evaporation plant for the production of HPD's with visible light transmittive bialkali photocathodes (K$_2$CsSb) has been built and successfully operated. The evaporation process is optimized for maximum quantum efficiency and life time of the photocathodes. A cold Indium sealing technique developed for a minimum thermal load of the photocathode and the silicon sensor...

  10. Development of large area hybrid photodiodes for the LHCb ring imaging Cherenkov detectors

    CERN Document Server

    Braem, André; Dulinski, W; Filthaut, Frank; Go, A; Joram, C; Lion, G; Séguinot, Jacques; Weilhammer, Peter; Wicht, P; Ypsilantis, Thomas

    1999-01-01

    We report on the development of large area hybrid photodiodes (HPD) which are one of the proposed photodetectors for the RICH counters of the LHCb experiment. The HPD's consist of a cylindrical vacuum envelope of 127 mm diameter capped with a spherical borosilicate UV- glass entrance window. Focusing electrodes demagnify the image on a silicon detector of 50 mm diameter comprising 2048 pads with a surface of 1 mm/sup 2/ each. The analogue readout electronics is integrated in the vacuum tube. As an intermediate step a HPD with a UV sensitive CsI photocathode has been produced which allowed to verify the electron optics of the HPD. A large UHV evaporation plant for the production of HPD's with visible light transmissive bialkali photocathodes (K/sub 2/CsSb) has been built and successfully operated. The evaporation process is optimized for maximum quantum efficiency and life time of the photocathodes. A cold indium sealing technique developed for a minimum thermal load of the photocathode and the silicon sensor ...

  11. The TORCH PMT: a close packing, multi-anode, long life MCP-PMT for Cherenkov applications

    International Nuclear Information System (INIS)

    Photek (U.K.) and the TORCH collaboration are undertaking a three year development program to produce a novel square MCP-PMT for single photon detection. The TORCH detector aims to provide particle identification in the 2–10 GeV/c momentum range, using a Time-of-Flight method based on Cherenkov light. It is a stand-alone R and D project with possible application in LHCb, and has been proposed for the LHCb Upgrade. The Microchannel Plate (MCP) detector will provide a single photon timing accuracy of 40 ps, and its development will include the following properties: (i) Long lifetime up to at least 5 C/cm2; (ii) Multi-anode output with a spatial resolution of 6 mm and 0.4 mm respectively in the horizontal and vertical directions, incorporating a novel charge-sharing technique; (iii) Close packing on two opposing sides with an active area fill factor of 88% in the horizontal direction. Results from simulations modelling the MCP detector performance factoring in the pulse height variation from the detector, NINO threshold levels and potential charge sharing techniques that enhance the position resolution beyond the physical pitch of the pixel layout will be discussed. Also, a novel method of coupling the MCP-PMT output pads using Anisotropic Conductive Film (ACF) will be described. This minimises parasitic input capacitance by allowing very close proximity between the frontend electronics and the MCP detector

  12. All-fiber femtosecond Cherenkov radiation source.

    Science.gov (United States)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry

    2012-07-01

    An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave-conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580-630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics such as bioimaging and microscopy. PMID:22743523

  13. A Monte Carlo template-based analysis for very high definition imaging atmospheric Cherenkov telescopes as applied to the VERITAS telescope array

    CERN Document Server

    ,

    2015-01-01

    We present a sophisticated likelihood reconstruction algorithm for shower-image analysis of imaging Cherenkov telescopes. The reconstruction algorithm is based on the comparison of the camera pixel amplitudes with the predictions from a Monte Carlo based model. Shower parameters are determined by a maximisation of a likelihood function. Maximisation of the likelihood as a function of shower fit parameters is performed using a numerical non-linear optimisation technique. A related reconstruction technique has already been developed by the CAT and the H.E.S.S. experiments, and provides a more precise direction and energy reconstruction of the photon induced shower compared to the second moment of the camera image analysis. Examples are shown of the performance of the analysis on simulated gamma-ray data from the VERITAS array.

  14. Qualification and Testing of a Large Hot Slumped Secondary Mirror for Schwarzschild-Couder Imaging Air Cherenkov Telescopes

    Science.gov (United States)

    Rodeghiero, G.; Giro, E.; Canestrari, R.; Pernechele, C.; Sironi, G.; Pareschi, G.; Lessio, L.; Conconi, P.

    2016-05-01

    Dual-mirror Schwarzschild-Couder (SC) telescopes are based on highly aspherical optics, and they represent a novel design in the world of very high energy astrophysics. This work addresses the realization and the qualification of the secondary mirror for an SC telescope, named ASTRI, developed in the context of the Cherenkov Telescope Array Observatory. The discussion surveys the overall development from the early design concept to the final acceptance optical tests.

  15. Reflecting on Cherenkov reflections

    OpenAIRE

    Fargion, D.; Gaug, M.; Oliva, P.

    2007-01-01

    Magic Telescope may observe and reveal at horizons lights from air-shower Cherenkov reflections. The ground, the sea, the cloudy sky (below the mountain) may reflect PeVs-EeV UHECR Cherenkov lights observable by MAGIC telescopes. Even rarest UHE neutrino skimming the atmosphere or skimming the Earth may induce upward-horizontal airshowers: a new Neutrino Astronomy. These fluorescence signals or the Cherenkov reflections in upper cloudy sky may flash in correlated BL-Lac or GRB shining at oppo...

  16. Optical dosimetry of radiotherapy beams using Cherenkov radiation: the relationship between light emission and dose

    International Nuclear Information System (INIS)

    Recent studies have proposed that light emitted by the Cherenkov effect may be used for a number of radiation therapy dosimetry applications. There is a correlation between the captured light and expected dose under certain conditions, yet discrepancies have also been observed and a complete examination of the theoretical differences has not been done. In this study, a fundamental comparison between the Cherenkov emission and absorbed dose was explored for x-ray photons, electrons, and protons using both a theoretical and Monte Carlo-based analysis. Based on the findings of where dose correlates with Cherenkov emission, it was concluded that for x-ray photons the light emission would be optimally suited for narrow beam stereotactic radiation therapy and surgery validation studies, for verification of dynamic intensity-modulated and volumetric modulated arc therapy treatment plans in water tanks, near monoenergetic sources (e.g., Co-60 and brachy therapy sources) and also for entrance and exit surface imaging dosimetry of both narrow and broad beams. For electron use, Cherenkov emission was found to be only suitable for surface dosimetry applications. Finally, for proton dosimetry, there exists a fundamental lack of Cherenkov emission at the Bragg peak, making the technique of little use, although post-irradiation detection of light emission from radioisotopes could prove to be useful. (paper)

  17. All-fiber femtosecond Cherenkov radiation source

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe;

    2012-01-01

    An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave-conversion med......An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave......-conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580–630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics...

  18. Searches for dark matter self-annihilation signals from dwarf spheroidal galaxies and the Fornax galaxy cluster with imaging air Cherenkov telescopes

    International Nuclear Information System (INIS)

    Many astronomical observations indicate that dark matter pervades the universe and dominates the formation and dynamics of cosmic structures. Weakly interacting massive particles (WIMPs) with masses in the GeV to TeV range form a popular class of dark matter candidates. WIMP self-annihilation may lead to the production of γ-rays in the very high energy regime above 100 GeV, which is observable with imaging air Cherenkov telescopes (IACTs). For this thesis, observations of dwarf spheroidal galaxies (dSph) and the Fornax galaxy cluster with the Cherenkov telescope systems H.E.S.S., MAGIC and VERITAS were used to search for γ-ray signals of dark matter annihilations. The work consists of two parts: First, a likelihood-based statistical technique was introduced to combine published results of dSph observations with the different IACTs. The technique also accounts for uncertainties on the ''J factors'', which quantify the dark matter content of the dwarf galaxies. Secondly, H.E.S.S. observations of the Fornax cluster were analyzed. In this case, a collection of dark matter halo models was used for the J factor computation. In addition, possible signal enhancements from halo substructures were considered. None of the searches yielded a significant γ-ray signal. Therefore, the results were used to place upper limits on the thermally averaged dark matter self-annihilation cross-section left angle σν right angle. Different models for the final state of the annihilation process were considered. The cross-section limits range from left angle σν right angle UL∝10-19 cm3s-1 to left angle σν right angle UL∝10-25 cm3s-1 for dark matter particles masses between 100 GeV and 100 TeV. Some of the diverse model uncertainties causing this wide range of left angle σν right angle UL values were analyzed.

  19. Status of the First G-APD Cherenkov Telescope (FACT)

    International Nuclear Information System (INIS)

    Full text: In the past years, the second generation of imaging air-Cherenkov telescopes has proven its power detecting weak sources with high sensitivity and low energy threshold. The goal to further improve the sensitivity and lower the energy threshold requires a robust and highly efficient sensor technology. A promising detector technology are silicon based photon detectors, namely Geiger-mode avalanche photo-diodes (G-APDs). They promise robustness and easy manageability compared photo-multiplier tubes so far in use. To prove the applicability of this technology for Cherenkov telescopes, one of the former HEGRA telescopes was revived and will be equipped with a camera using G-APDs as photo sensors. Since G-APDs are comparably small, solid light guides are used to significantly increase the light collection area of each sensor. With this technologies, the First G-APD Cherenkov Telescopes (FACT) promises an increase in sensitivity and decrease in energy threshold, compared with a classical photo-multiplier based camera. As of today (March 2011), the components of the camera are produced or in production and the camera assembly has been started. Once extensive tests will have been conducted, the camera will be installed at the telescope site. The current status and measurement of the commissioning are presented. (author)

  20. Applications of optical imaging

    International Nuclear Information System (INIS)

    Optical imaging in the form of near infrared fluorescence and bioluminescence has proven useful for a wide range of applications in the field of molecular imaging. Both techniques provide a high sensitivity (in the nanomolar range), which is of particular importance for molecular imaging. Imaging with near infrared fluorescence is especially cost-effective and can be performed, in contrast to radioactivity-based methods, with fluorescence dyes that remain stable for months. The most important advantage of bioluminescence, in turn, is the lack of background signal. Although molecular imaging with these techniques is still in the experimental phase, an application of near infrared fluorescence is already foreseeable for the imaging of superficial structures. (orig.)

  1. Bokeh Mirror Alignment for Cherenkov Telescopes

    CERN Document Server

    Ahnen, M L; Balbo, M; Bergmann, M; Biland, A; Blank, M; Bretz, T; Bruegge, K A; Buss, J; Domke, M; Dorner, D; Einecke, S; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Mannheim, K; Mueller, S A; Neise, D; Neronov, A; Noethe, M; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Shukla, A; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2016-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alignment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflector's aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment ...

  2. Upgrading and testing the 3D reconstruction of gamma-ray air showers as observed with an array of Imaging Atmospheric Cherenkov telescopes

    CERN Document Server

    Naumann-Godó, M; Degrange, B

    2009-01-01

    Stereoscopic arrays of Imaging Atmospheric Cherenkov Telescopes allow to reconstruct gamma-ray-induced showers in 3 dimensions, which offers several advantages: direct access to the shower parameters in space and straightforward calorimetric measurement of the incident energy. In addition, correlations between the different images of the same shower are taken into account. An analysis method based on a simple 3D-model of electromagnetic showers was recently implemented in the framework of the H.E.S.S. experiment. In the present article, the method is completed by an additional quality criterion, which reduces the background contamination by a factor of about 2 in the case of extended sources, while keeping gamma-ray efficiency at a high level. On the other hand, the dramatic flares of the blazar PKS 2155-304 in July 2006, which provided H.E.S.S. data with an almost pure gamma-ray sample, offered the unique opportunity of a precision test of the 3D-reconstruction method as well as of the H.E.S.S. simulations u...

  3. Optical and radiographical characterization of silica aerogel for Cherenkov radiator

    CERN Document Server

    Tabata, Makoto; Hatakeyama, Yoshikiyo; Kawai, Hideyuki; Morita, Takeshi; Nishikawa, Keiko

    2012-01-01

    We present optical and X-ray radiographical characterization of silica aerogels with refractive index from 1.05 to 1.07 for a Cherenkov radiator. A novel pin-drying method enables us to produce highly transparent hydrophobic aerogels with high refractive index by shrinking wet-gels. In order to investigate the uniformity in the density (i.e., refractive index) of an individual aerogel monolith, we use the laser Fraunhofer method, an X-ray absorption technique, and Cherenkov imaging by a ring imaging Cherenkov detector in a beam test. We observed an increase in density at the edge of the aerogel tiles, produced by pin-drying.

  4. All-fiber femtosecond Cherenkov source

    OpenAIRE

    Tu H.; Møller U.; Lægsgaard J.; Liu X.; Boppart S. A.; Turchinovich D.

    2013-01-01

    An all-fiber femtosecond Cherenkov radiation source is demonstrated for the first time, to the best of our knowledge. Using a stable monolithic femtosecond Ybdoped fiber laser as the pump source, and the combination of photonic crystal fibers as the wave-conversion medium, we have generated tunable Cherenkov radiation at visible wavelengths 580 – 630 nm, with pulse duration of sub-160 fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such femtosecond source can find applications in pra...

  5. Novel Photo Multiplier Tubes for the Cherenkov Telescope Array Project

    OpenAIRE

    Toyama, Takeshi; Mirzoyan, Razmik; Dickinson, Hugh; Fruck, Christian; Hose, Jürgen; Kellermann, Hanna; Knötig, Max; Lorenz, Eckart; Menzel, Uta; Nakajima, Daisuke; Orito, Reiko; Paneque, David; Schweizer, Thomas; Teshima, Masahiro; Yamamoto, Tokonatsu

    2013-01-01

    Currently the standard light sensors for imaging atmospheric Cherenkov telescopes are the classical photo multiplier tubes that are using bialkali photo cathodes. About eight years ago we initiated an improvement program with the Photo Multiplier Tube (PMT) manufacturers Hamamatsu (Japan), Electron Tubes Enterprises (England) and Photonis (France) for the needs of imaging atmospheric Cherenkov telescopes. As a result, after about 40 years of stagnation of the peak Quantum Efficiency (QE) on t...

  6. Strange meson spectroscopy in K{omega} and K{phi} at 11 GeV/c and Cherenkov ring imaging at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Youngjoon

    1993-01-01

    This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (CRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part 1: The CRID system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e{sup +}e{sup {minus}} collisions at {radical}s = m{sub Z{sup 0}}. By measuring the angles of emission of the Cherenkov photons inside liquid and gaseous radiators, {pi}/K/p separation will be achieved up to {approximately}30 GeV/c. The signals from CRID are read in three coordinates, one of which is measured by charge-division technique. To obtain a {approximately}1% spatial resolution in the charge-division, low-noise CRID preamplifier prototypes were developed and tested resulting in <1000 electrons noise for an average photoelectron signal with 2 {times} 10{sup 5} gain. To help ensure the long-term stability of CRID operation at high efficiency, a comprehensive monitoring and control system was developed. Part 2: Results from the partial wave analysis of strange meson final states in the reactions K{sup {minus}}p {yields} K{sup {minus}}{omega}p and K{sup {minus}}p {yields} {bar K}{sup 0}{phi}n are presented. The analyses are based on data from a 4.1 event/nb exposure of the LASS spectrometer in K{sup {minus}}p interactions at 11 GeV/c. The data sample of K{sup {minus}}{omega}p final state contains {approximately}10{sup 5} events. From the partial wave analysis, resonance structures of J{sup P} = 2{sup {minus}}, 3{sup {minus}} and 2{sup +} amplitudes are observed in the K{omega} system. The analysis of 2{sup {minus}} amplitudes provides an evidence for two strange meson states in the mass region around 1.75 GeV/c{sup 2}. The appropriate branching fractions are calculated and compared with the SU(3) predictions. The partial wave analysis of {bar K}{sup 0}{phi} system favors J{sup P} = 1{sup {minus}} and 2{sup +} states in the 1.9--2.0 GeV/c{sup 2} region.

  7. The upgraded MAGIC Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Tescaro, D., E-mail: dtescaro@iac.es [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Universidad de La Laguna (ULL), Dept. Astrofísica, E-38206 La Laguna, Tenerife (Spain)

    2014-12-01

    The MAGIC Cherenkov telescopes underwent a major upgrade in 2011 and 2012. A new 1039-pixel camera and a larger area digital trigger system were installed in MAGIC-I, making it essentially identical to the newer MAGIC-II telescope. The readout systems of both telescopes were also upgraded, with fully programmable receiver boards and DRS4-chip-based digitization systems. The upgrade eased the operation and maintenance of the telescopes and also improved significantly their performance. The system has now an integral sensitivity as good as 0.6% of the Crab Nebula flux (for E>400GeV), with an effective analysis threshold at 70 GeV. This allows MAGIC to secure one of the leading roles among the current major ground-based Imaging Atmospheric Cherenkov telescopes for the next 5–10 years. - Highlights: • In 2011 and 2012 the MAGIC telescopes underwent a two-stage major upgrade. • The new camera of MAGIC-I allows us to exploit a 1.4 larger trigger area. • The novel DRS4-based readout systems allow a cost-effective ultra-fast digitization. • The upgrade greatly improved the maintainability of the system. • MAGIC has now an optimal integral sensitivity of 0.6% of the Crab Nebula flux.

  8. The upgraded MAGIC Cherenkov telescopes

    International Nuclear Information System (INIS)

    The MAGIC Cherenkov telescopes underwent a major upgrade in 2011 and 2012. A new 1039-pixel camera and a larger area digital trigger system were installed in MAGIC-I, making it essentially identical to the newer MAGIC-II telescope. The readout systems of both telescopes were also upgraded, with fully programmable receiver boards and DRS4-chip-based digitization systems. The upgrade eased the operation and maintenance of the telescopes and also improved significantly their performance. The system has now an integral sensitivity as good as 0.6% of the Crab Nebula flux (for E>400GeV), with an effective analysis threshold at 70 GeV. This allows MAGIC to secure one of the leading roles among the current major ground-based Imaging Atmospheric Cherenkov telescopes for the next 5–10 years. - Highlights: • In 2011 and 2012 the MAGIC telescopes underwent a two-stage major upgrade. • The new camera of MAGIC-I allows us to exploit a 1.4 larger trigger area. • The novel DRS4-based readout systems allow a cost-effective ultra-fast digitization. • The upgrade greatly improved the maintainability of the system. • MAGIC has now an optimal integral sensitivity of 0.6% of the Crab Nebula flux

  9. Quenching the scintillation in CF4 Cherenkov gas radiator

    International Nuclear Information System (INIS)

    CF4 is used as a Cherenkov gas radiator in one of the Ring Imaging Cherenkov detectors at the LHCb experiment at the CERN Large Hadron Collider. CF4 is well known to have a high scintillation photon yield in the near and far VUV, UV and in the visible wavelength range. A large flux of scintillation photons in our photon detection acceptance between 200 and 800 nm could compromise the particle identification efficiency. We will show that this scintillation photon emission system can be effectively quenched, consistent with radiationless transitions, with no significant impact on the photons resulting from Cherenkov radiation

  10. ROBAST: Development of a Non-Sequential Ray-Tracing Simulation Library and its Applications in the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    We have developed a non-sequential ray-tracing simulation library, ROot-BAsed Simulator for ray Tracing (ROBAST), which is aimed for wide use in optical simulations of cosmic-ray (CR) and gamma-ray telescopes. The library is written in C++ and fully utilizes the geometry library of the ROOT analysis framework. Despite the importance of optics simulations in CR experiments, no open-source software for ray-tracing simulations that can be widely used existed. To reduce the unnecessary effort demanded when different research groups develop multiple ray-tracing simulators, we have successfully used ROBAST for many years to perform optics simulations for the Cherenkov Telescope Array (CTA). Among the proposed telescope designs for CTA, ROBAST is currently being used for three telescopes: a Schwarzschild--Couder telescope, one of the Schwarzschild--Couder small-sized telescopes, and a large-sized telescope (LST). ROBAST is also used for the simulations and the development of hexagonal light concentrators that has be...

  11. First use of HPDs for the detection of Cherenkov rings

    CERN Document Server

    John, M J J

    1999-01-01

    Pixellated hybrid photon detectors (HPDs) have been used to image rings of Cherenkov light in a prototype of the LHCb RICH. This article outlines the detector and reports on the performance of the HPDs and their electronics. The detection of rings from aerogel, air and C/sub 4/F/sub 10/ radiators is described. The Cherenkov angle resolution of the prototype and the effect of ionising particles traversing the HPD is also reported. (8 refs).

  12. Statistical properties of Cherenkov and quasi-Cherenkov superradiance

    CERN Document Server

    Anishchenko, S V

    2016-01-01

    We consider the effects of shot noise and particle energy spread on statistical properties of Cherenkov and quasi-Cherenkov superradiance emitted by a relativistic electron beam. In the absence of energy spread, we have found the root-mean-square deviations of both peak radiated power and instability growth time as a function of the number of particles. It is shown that energy spread can lead to a sharp drop in the radiated power of Cherenkov and quasi-Cherenkov superradiance at high currents.

  13. Aerogel threshold Cherenkov counter

    International Nuclear Information System (INIS)

    The results of studying the SiO2 aerogel properties, used as radiator for the Cherenkov counters are presented. Brief data on the technology of preparing the aerogel samples and their optical characteristics are indicated. The formula binding the aerogel refractive index with its density with an account of light dispersion is analyzed. The results of the Cherenkov aerogel threshold counter testing on the charged particles beam within the pulse range of p = ∼ 0.4-2.5 eV/s are presented. The registration efficiency of pions with p ≥ 1 GeV/s constituted ∼ 97% and that of protons - ∼ 4% by the p ≤ 2.5 GeV/s

  14. R and D in photosensors and data acquisition systems for a new generation of Cosmic Ray Cherenkov and Fluorescence Imaging focal planes

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Pedro [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Brogueira, Pedro [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); IST, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Catalano, Osvaldo [IASF-Palermo, 1, Via Ugo La Malfa 153, 90146 Palermo (Italy); Ferreira, Miguel [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Lorenz, Eckart [MPI, Max-Planck-Institute for Physics, D-80805 Muenchen (Germany); Mendes, Luis [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Pimenta, Mario [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); IST, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Rodrigues, Pedro, E-mail: psilva@lip.pt [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Schweizer, Thomas [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); MPI, Max-Planck-Institute for Physics, D-80805 Muenchen (Germany)

    2012-12-11

    In this work we present the design, first prototypes and experimental R and D activities on the development of novel imaging cameras for Imaging Atmospheric Cherenkov and Fluorescence Telescopes. The baseline solution for the focal plane is based on a photosensor architecture instrumented with Silicon Photomultipliers (SiPMs). To decrease the trigger threshold and improve the signal-to-noise ratio for low-energy events, the Photon Counting technique is used. For very bright events the conventional Charge Integration approach is retained. The large number of channels requires a compact and modular design with minimal cabling and distance between the photosensors and the frontend. Other design requirements are an efficient light concentration system treated with an anti-reflective coating, a liquid cooling system able to keep the SiPMs at a temperature of -20 Degree-Sign C to -10 Degree-Sign C, a low-power frontend electronics down to 1 kW/m{sup 2} and an easy field maintenance, high reliability data acquisition and trigger system. In the baseline design, the data acquisition system is partitioned in on-board frontend and off-detector high-level trigger electronics. Extensive use of mixed-signal ASICs and low-power FPGAs for early data reduction (Level 1 trigger), compatible with a liquid cooling sub-system for temperature control is adopted. The off-detector data acquisition and higher trigger (Level 2 and Level 3) architecture is based on the VME64X standard. The boards are connected by multi-Gbps optical links to the focal plane camera. Trigger primitives are sent asynchronously to the trigger boards via data links running at their own clocks. Data and slow-control data streams are also sent over the same links with the parallel VME64X backplane kept for trigger board configuration, slow-control and final data readout. Each 8-slot 6U crate can process up to about 3.6 Multiplication-Sign 10{sup 4} SiPM channels.

  15. R and D in photosensors and data acquisition systems for a new generation of Cosmic Ray Cherenkov and Fluorescence Imaging focal planes

    International Nuclear Information System (INIS)

    In this work we present the design, first prototypes and experimental R and D activities on the development of novel imaging cameras for Imaging Atmospheric Cherenkov and Fluorescence Telescopes. The baseline solution for the focal plane is based on a photosensor architecture instrumented with Silicon Photomultipliers (SiPMs). To decrease the trigger threshold and improve the signal-to-noise ratio for low-energy events, the Photon Counting technique is used. For very bright events the conventional Charge Integration approach is retained. The large number of channels requires a compact and modular design with minimal cabling and distance between the photosensors and the frontend. Other design requirements are an efficient light concentration system treated with an anti-reflective coating, a liquid cooling system able to keep the SiPMs at a temperature of −20°C to −10°C, a low-power frontend electronics down to 1 kW/m2 and an easy field maintenance, high reliability data acquisition and trigger system. In the baseline design, the data acquisition system is partitioned in on-board frontend and off-detector high-level trigger electronics. Extensive use of mixed-signal ASICs and low-power FPGAs for early data reduction (Level 1 trigger), compatible with a liquid cooling sub-system for temperature control is adopted. The off-detector data acquisition and higher trigger (Level 2 and Level 3) architecture is based on the VME64X standard. The boards are connected by multi-Gbps optical links to the focal plane camera. Trigger primitives are sent asynchronously to the trigger boards via data links running at their own clocks. Data and slow-control data streams are also sent over the same links with the parallel VME64X backplane kept for trigger board configuration, slow-control and final data readout. Each 8-slot 6U crate can process up to about 3.6×104 SiPM channels.

  16. ROBAST: Development of a ROOT-based ray-tracing library for cosmic-ray telescopes and its applications in the Cherenkov Telescope Array

    Science.gov (United States)

    Okumura, Akira; Noda, Koji; Rulten, Cameron

    2016-03-01

    We have developed a non-sequential ray-tracing simulation library, ROOT-basedsimulatorforraytracing (ROBAST), which is aimed to be widely used in optical simulations of cosmic-ray (CR) and gamma-ray telescopes. The library is written in C++, and fully utilizes the geometry library of the ROOT framework. Despite the importance of optics simulations in CR experiments, no open-source software for ray-tracing simulations that can be widely used in the community has existed. To reduce the dispensable effort needed to develop multiple ray-tracing simulators by different research groups, we have successfully used ROBAST for many years to perform optics simulations for the Cherenkov Telescope Array (CTA). Among the six proposed telescope designs for CTA, ROBAST is currently used for three telescopes: a Schwarzschild-Couder (SC) medium-sized telescope, one of SC small-sized telescopes, and a large-sized telescope (LST). ROBAST is also used for the simulation and development of hexagonal light concentrators proposed for the LST focal plane. Making full use of the ROOT geometry library with additional ROBAST classes, we are able to build the complex optics geometries typically used in CR experiments and ground-based gamma-ray telescopes. We introduce ROBAST and its features developed for CR experiments, and show several successful applications for CTA.

  17. Photonic chip based optical frequency comb using soliton induced Cherenkov radiation

    CERN Document Server

    Brasch, Victor; Geiselmann, Michael; Lihachev, Grigoriy; Pfeiffer, Martin H P; Gorodetsky, Michael L; Kippenberg, Tobias J

    2014-01-01

    By continuous wave pumping of a dispersion engineered, planar silicon nitride microresonator, continuously circulating, sub-30fs short temporal dissipative solitons are generated, that correspond to pulses of 6 optical cycles and constitute a coherent optical frequency comb in the spectral domain. Emission of soliton induced Cherenkov radiation caused by higher order dispersion broadens the spectral bandwidth to 2/3 of an octave, sufficient for self referencing, in excellent agreement with recent theoretical predictions and the broadest coherent microresonator frequency comb generated to date. The ability to preserve coherence over a broad spectral bandwidth using soliton induced Cherenkov radiation marks a critical milestone in the development of planar optical frequency combs, enabling on one hand application in e.g. coherent communications, broadband dual comb spectroscopy and Raman spectral imaging, while on the other hand significantly relaxing dispersion requirements for broadband microresonator frequen...

  18. Performance of the STACEE Atmospheric Cherenkov Telescope

    CERN Document Server

    Williams, D A; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gingrich, D M; Gregorich, D T; Hanna, D S; Mohanty, G B; Mukherjee, R; Ong, R A; Oser, S M; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Vincent, F; Zweerink, J A

    2000-01-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is located at the National Solar Thermal Test Facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The field of solar tracking mirrors (heliostats) around a central receiver tower is used to direct Cherenkov light from atmospheric showers onto secondary mirrors on the tower, which in turn image the light onto cameras of photomultiplier tubes. The STACEE Collaboration has previously reported a detection of the Crab Nebula with approximately 7 standard deviation significance, using 32 heliostats (STACEE-32). This result demonstrates both the viability of the technique and the suitability of the site. We are in the process of completing an upgrade to 48 heliostats (STACEE-48) en route to an eventual configuration using 64 heliostats (STACEE-64) in early 2001. In this paper, we summarize the results obtained on the sensitivity of STACEE-32 and our expectations for STACEE-48 and STACEE-64.

  19. ctools: Cherenkov Telescope Science Analysis Software

    Science.gov (United States)

    Knödlseder, Jürgen; Mayer, Michael; Deil, Christoph; Buehler, Rolf; Bregeon, Johan; Martin, Pierrick

    2016-01-01

    ctools provides tools for the scientific analysis of Cherenkov Telescope Array (CTA) data. Analysis of data from existing Imaging Air Cherenkov Telescopes (such as H.E.S.S., MAGIC or VERITAS) is also supported, provided that the data and response functions are available in the format defined for CTA. ctools comprises a set of ftools-like binary executables with a command-line interface allowing for interactive step-wise data analysis. A Python module allows control of all executables, and the creation of shell or Python scripts and pipelines is supported. ctools provides cscripts, which are Python scripts complementing the binary executables. Extensions of the ctools package by user defined binary executables or Python scripts is supported. ctools are based on GammaLib (ascl:1110.007).

  20. ALTAI: computational code for the simulations of TeV air showers as observed with the ground-based imaging atmospheric Cherenkov telescopes

    International Nuclear Information System (INIS)

    Ground-based atmospheric Cherenkov telescopes are proven to be effective instruments for observations of very high-energy (VHE) γ-radiation from celestial objects. For effective use of such technique one needs detailed Monte Carlo simulations of γ-ray- and proton/nuclei-induced air showers in the Earth atmosphere. Here we discuss in detail the algorithms used in the numerical code ALTAI developed particularly for the simulations of Cherenkov light emission from air showers of energy below 50 TeV. The specific scheme of sampling the charged particle transport in the atmosphere allows the performance of very fast and accurate simulations used for interpretation of the VHE γ-ray observations

  1. Reverse surface-polariton cherenkov radiation

    Science.gov (United States)

    Tao, Jin; Wang, Qi Jie; Zhang, Jingjing; Luo, Yu

    2016-08-01

    The existence of reverse Cherenkov radiation for surface plasmons is demonstrated analytically. It is shown that in a metal-insulator-metal (MIM) waveguide, surface plasmon polaritons (SPPs) excited by an electron moving at a speed higher than the phase velocity of SPPs can generate Cherenkov radiation, which can be switched from forward to reverse direction by tuning the core thickness of the waveguide. Calculations are performed in both frequency and time domains, demonstrating that a radiation pattern with a backward-pointing radiation cone can be achieved at small waveguide core widths, with energy flow opposite to the wave vector of SPPs. Our study suggests the feasibility of generating and steering electron radiation in simple plasmonic systems, opening the gate for various applications such as velocity-selective particle detections.

  2. Entwicklung eines VUV-Transparenz-Monitors für Gas-Cherenkov-Radiatoren

    OpenAIRE

    Lehnert, Jörg

    1995-01-01

    Das Dileptonenspektrometer HADES dient der Untersuchung von Schwerionenreaktionen anhand der produzierten Dileptonen. Wesentliche Komponente zur Identifizierung der Dileptonen in einem starken hadronischen Untergrund ist ein hadronenblinder ringabbildender Cherenkovdetektor (RICH: Ring Imaging CHerenkov detector) mit einem Gasradiator. Elektronen werden rekonstruiert anhand der Ringbilder ihrer Cherenkov-Photonen auf einem ortsempfindlichen Photonendetektor. Die Rekonstruktionseffi...

  3. Molecular imaging. Fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Jie (ed.) [Chinese Academy of Sciences, Beijing (China). Intelligent Medical Research Center

    2013-07-01

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  4. Molecular imaging. Fundamentals and applications

    International Nuclear Information System (INIS)

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  5. Measurements of Cherenkov Photons with Silicon Photomultipliers

    OpenAIRE

    Korpar, S.; Adachi, I.; Chagani, H.; Dolenec, R.; Hara, K.; Iijima, T.; Krizan, P; Nishida, S; Pestotnik, R.; Stanovnik, A.

    2008-01-01

    A novel photon detector, the Silicon Photomultiplier (SiPM), has been tested in proximity focusing Ring Imaging Cherenkov (RICH) counters that were exposed to cosmic-ray particles in Ljubljana, and a 2 GeV electron beam at the KEK research facility. This type of RICH detector is a candidate for the particle identification detector upgrade of the BELLE detector at the KEK B-factory, for which the use of SiPMs, microchannel plate photomultiplier tubes or hybrid avalanche photodetectors, rather ...

  6. A Medium Sized Schwarzschild-Couder Cherenkov Telescope Mechanical Design Proposed for the Cherenkov Telescope Array

    CERN Document Server

    Byrum, K; Benbow, W; Cameron, R; Criswell, S; Errando, M; Guarino, V; Kaaret, P; Kieda, D; Mukherjee, R; Naumann, D; Nieto, D; Northrop, R; Okumura, A; Roache, E; Rousselle, J; Schlenstedt, S; Sternberger, R; Vassiliev, V; Wakely, S; Zhao, H

    2015-01-01

    The Cherenkov Telescope Array (CTA) is an international next-generation ground-based gamma-ray observatory. CTA will be implemented as southern and northern hemisphere arrays of tens of small, medium and large-sized imaging Cherenkov telescopes with the goal of improving the sensitivity over the current-generation experiments by an order of magnitude. CTA will provide energy coverage from ~20 GeV to more than 300 TeV. The Schwarzschild-Couder (SC) medium size (9.5m) telescopes will feature a novel aplanatic two-mirror optical design capable of accommodating a wide field-of-view with significantly improved angular resolution as compared to the traditional Davies-Cotton optical design. A full-scale prototype SC medium size telescope structure has been designed and will be constructed at the Fred Lawrence Whipple Observatory in southern Arizona during the fall of 2015. concentrate on the novel features of the design.

  7. Silica aerogel Cherenkov counter

    International Nuclear Information System (INIS)

    A practical method for making silica aerogel Cherenkov counters has been developed at KEK, and some tests were performed to evaluate the performance of the counters. The method for making silica aerogel with refractive index between 1.01 and 1.06 is explained in detail. Chemical reaction with methanol, pressure and temperature conditions, and the structure of the autoclave are described together with the whole process. About 20 l aerogel is now produced per week at KEK. The dimensions of the aerogel module is 200 x 100 x 300 mm3. The aerogel with refractive index larger than 1.06 is produced from the aerogel with refractive index 1.06 by heating it up to about 900 deg C. The refractive index can be controlled by the temperature and duration of heating. Refractive index in relation to these conditions is listed in a table. However, the dispersion of the index is about ten times as large as that for the aerogel with lower index (<1.06). The wave length dependence of the transmission length of light for the aerogel was measured and compared with other data obtained at various laboratories. The performance of the counter was evaluated through the experiment with π beam. Average number of photoelectrons gathered is plotted in relation to momentum. It is deduced from the experiment that the saturation thickness of the aerogel is about 10 cm. Two examples of the practical use of the aerogel counter at KEK are also shortly described. (Aoki, K.)

  8. Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    OpenAIRE

    Meagher, Kevin J.

    2014-01-01

    The Cherenkov Telescope Array (CTA) is the next major ground-based observatory for gamma-ray astronomy. With CTA gamma-ray sources will be studied in the very-high energy gamma-ray range of a few tens of GeV to 100 TeV with up to ten times better sensitivity than available with current generation instruments. We discuss the proposed US contribution to CTA that comprises imaging atmospheric Cherenkov telescope with Schwarzschild-Couder (SC) optics. Key features of the SC telescope are a wide f...

  9. The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array

    CERN Document Server

    Daniel, M K

    2015-01-01

    The Imaging Atmospheric Cherenkov Technique (IACT) is unusual in astronomy as the atmosphere actually forms an intrinsic part of the detector system, with telescopes indirectly detecting very high energy particles by the generation and transport of Cherenkov photons deep within the atmosphere. This means that accurate measurement, characterisation and monitoring of the atmosphere is at the very heart of successfully operating an IACT system. The Cherenkov Telescope Array (CTA) will be the next generation IACT observatory with an ambitious aim to improve the sensitivity of an order of magnitude over current facilities, along with corresponding improvements in angular and energy resolution and extended energy coverage, through an array of Large (23m), Medium (12m) and Small (4m) sized telescopes spread over an area of order ~km$^2$. Whole sky coverage will be achieved by operating at two sites: one in the northern hemisphere and one in the southern hemisphere. This proceedings will cover the characterisation of...

  10. The GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    Brown, Anthony M; Allan, D; Amans, J P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Franco, A; De Frondat, F; Dournaux, J -L; Dumas, D; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Sato, Y; Sayede, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Tibaldo, L; Trichard, C; Vink, J; Watson, J J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Gamma-ray Cherenkov Telescope (GCT) is proposed for the Small-Sized Telescope component of the Cherenkov Telescope Array (CTA). GCT's dual-mirror Schwarzschild-Couder (SC) optical system allows the use of a compact camera with small form-factor photosensors. The GCT camera is ~0.4 m in diameter and has 2048 pixels; each pixel has a ~0.2 degree angular size, resulting in a wide field-of-view. The design of the GCT camera is high performance at low cost, with the camera housing 32 front-end electronics modules providing full waveform information for all of the camera's 2048 pixels. The first GCT camera prototype, CHEC-M, was commissioned during 2015, culminating in the first Cherenkov images recorded by a SC telescope and the first light of a CTA prototype. In this contribution we give a detailed description of the GCT camera and present preliminary results from CHEC-M's commissioning.

  11. On the reconstruction of Cherenkov rings from aerogel radiators

    CERN Document Server

    Cunha, J P D; Lopes, M I

    2000-01-01

    An event reconstruction algorithm to analyze Cherenkov rings in a Ring Imaging Cherenkov (RICH) detector is considered and the results of a Monte Carlo simulation are discussed. It is demonstrated that aerogel radiators can be used in RICH detectors despite the Rayleigh scattering of light if filtered by a pattern recognition program. The velocity of the particle radiating Cherenkov light, beta, is determined by a fit to the photon hit pattern, assuming prior momentum measurement by a tracking system. The charge of the particle, z, is obtained from the collected light. The results show that, for the geometries considered, velocity resolutions sigma subbeta/beta approx =1x10 sup - sup 3 and charge resolutions sigma sub Z /Z approx =10% can be achieved for 5 GeV/c protons and a 2 cm thick aerogel radiator.

  12. Normalized and Asynchronous Mirror Alignment for Cherenkov Telescopes

    CERN Document Server

    Ahnen, M L; Balbo, M; Bergmann, M; Biland, A; Blank, M; Bretz, T; Bruegge, K A; Buss, J; Domke, M; Dorner, D; Einecke, S; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Mannheim, K; Mueller, S A; Neise, D; Neronov, A; Noethe, M; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Shukla, A; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2016-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and as they are composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment is a challenge. Here we present a computer vision based star tracking alignment method, which also works for limited or changing star light visibility. Our method normalizes the mirror facet reflection intensities to become independent of the reference star's intensity or the cloud coverage. Using two CCD cameras, our method records the mirror facet orientations asynchronously of the telescope drive system, and thus makes the method easy to integrate into existing telescopes. It can be combined with remote facet actuation, but does not require one to work. Furthermore, it ca...

  13. Cherenkov counter for particle identification test beam

    International Nuclear Information System (INIS)

    The Cherenkov counter used for selecting electrons of the test beam has been studied in this article. The design, manufacture, assembly and testing of the Cherenkov counter are described. And the performance of this counter is measured. The CO2 gas is used as Cherenkov radiator, the XP2020Q photomultiplier is applied for recording signals of the Cherenkov light. The (99.0±0.5)% efficiency of the electron selection has been reached

  14. BIOLUMINESCENCE IMAGING: PROGRESS AND APPLICATIONS

    OpenAIRE

    Badr, Christian E.; Tannous, Bakhos A

    2011-01-01

    Application of bioluminescence imaging has grown tremendously in the past decade and has significantly contributed to the core conceptual advances in biomedical research. This technology provides valuable means for monitoring of different biological processes for immunology, oncology, virology and neuroscience. In this review, we will discuss current trends in bioluminescence and its application in different fields with emphasis on cancer research.

  15. Construction of a Medium-Sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array: Implementation of the Cherenkov-Camera Data Acquisition System

    OpenAIRE

    Santander, M.; Buckley, J.; Humensky, B.; Mukherjee, R.; Consortium, for the CTA

    2015-01-01

    A medium-sized Schwarzchild-Couder Telescope (SCT) is being developed as a possible extension for the Cherenkov Telescope Array (CTA). The Cherenkov camera of the telescope is designed to have 11328 silicon photomultiplier pixels capable of capturing high-resolution images of air showers in the atmosphere. The combination of the large number of pixels and the high trigger rate (> 5 kHz) expected for this telescope results in a multi-Gbps data throughput. This sets challenging requirements on ...

  16. The Photodetector Plane of the 4m Davies Cotton Small Size Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Boccone, V; Basili, A; Christov, A; della Volpe, M; Montaruli, T

    2013-01-01

    Photomultipliers (PMTs) are currently adopted for the photodetector plane of Imaging Atmospheric Cherenkov Telescopes (IACTs). Even though PMT quantum efficiency has improved impressively in the recent years, one of the main limitation for their application in the gamma-astronomy field - the impossibility to operate with moon light - still remains. As a matter of fact, the light excess would lead to significant and faster camera ageing. Solid state detectors, in particular Geiger-mode avalanche photo-diodes (G-APDs) represent a valuable alternative solution to overcome this limitation as demonstrated in the field by the FACT experiment (The First G- APD Cherenkov Telescope). They can be regarded as a more promising long term approach, which can be easily adopted for the new generation of cameras and for the Cherenkov Telescope Array (CTA). We describe here the Photo-Detector Plane (PDP) of the camera for the 4 m Davies Cotton CTA Small Size Telescopes, for which large area G-APD coupled to non-imaging light c...

  17. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner

    2012-01-01

    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  18. Medical imaging technology and applications

    CERN Document Server

    Iniewski, Krzysztof

    2014-01-01

    The book has two intentions. First, it assembles the latest research in the field of medical imaging technology in one place. Detailed descriptions of current state-of-the-art medical imaging systems (comprised of x-ray CT, MRI, ultrasound, and nuclear medicine) and data processing techniques are discussed. Information is provided that will give interested engineers and scientists a solid foundation from which to build with additional resources. Secondly, it exposes the reader to myriad applications that medical imaging technology has enabled.

  19. Physics for Medical Imaging Applications

    CERN Document Server

    Caner, Alesssandra; Rahal, Ghita

    2007-01-01

    The book introduces the fundamental aspects of digital imaging and covers four main themes: Ultrasound techniques and imaging applications; Magnetic resonance and MPJ in hospital; Digital imaging with X-rays; and Emission tomography (PET and SPECT). Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advancements in the field. Some issues specific to the individual techniques are also treated, e.g. choice of radioisotopes or contrast agents, optimisation of data acquisition and st

  20. Industrial Applications of Image Processing

    Science.gov (United States)

    Ciora, Radu Adrian; Simion, Carmen Mihaela

    2014-11-01

    The recent advances in sensors quality and processing power provide us with excellent tools for designing more complex image processing and pattern recognition tasks. In this paper we review the existing applications of image processing and pattern recognition in industrial engineering. First we define the role of vision in an industrial. Then a dissemination of some image processing techniques, feature extraction, object recognition and industrial robotic guidance is presented. Moreover, examples of implementations of such techniques in industry are presented. Such implementations include automated visual inspection, process control, part identification, robots control. Finally, we present some conclusions regarding the investigated topics and directions for future investigation

  1. Industrial Applications of Terahertz Imaging

    Science.gov (United States)

    Zeitler, J. Axel; Shen, Yao-Chun

    This chapter gives a concise overview of potential industrial applications for terahertz imaging that have been reported over the past decade with a discussion of the major advantages and limitations of each approach. In the second half of the chapter we discuss in more detail how terahertz imaging can be used to investigate the microstructure of pharmaceutical dosage forms. A particular focus in this context is the nondestructive measurement of the coating thickness of polymer coated tablets, both by means of high resolution offline imaging in research and development as well as for in-line quality control during production.

  2. Silicon detectors in imaging applications

    International Nuclear Information System (INIS)

    In this paper it is described some to those characteristics of silicon detectors which make them very useful in the fields of Medical Physics. The main application of these devices are in detecting low energy X-ray radiation (from 10 to 100 KeV). This range of energy is enough in many applications on crystallographic and on medical imaging. This paper also briefly refers to the readout system for acquiring the radiation events for imaging purposes. Finally, it is discussed the different kinds of silicon detectors which are silicon strip, pixel and drift

  3. Quenching the scintillation in CF{sub 4} Cherenkov gas radiator

    Energy Technology Data Exchange (ETDEWEB)

    Blake, T. [Department of Physics, University of Warwick, Coventry (United Kingdom); D' Ambrosio, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Easo, S. [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Eisenhardt, S. [School of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Fitzpatrick, C. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Forty, R.; Frei, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Gibson, V. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Gys, T. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Harnew, N.; Hunt, P. [Department of Physics, University of Oxford, Oxford (United Kingdom); Jones, C.R. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Lambert, R.W. [Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam (Netherlands); Matteuzzi, C. [Sezione INFN di Milano Bicocca, Milano (Italy); Muheim, F. [School of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Papanestis, A., E-mail: antonis.papanestis@stfc.ac.uk [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Perego, D.L. [Sezione INFN di Milano Bicocca, Milano (Italy); Università di Milano Bicocca, Milano (Italy); Piedigrossi, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Plackett, R. [Imperial College London, London (United Kingdom); Powell, A. [Department of Physics, University of Oxford, Oxford (United Kingdom); and others

    2015-08-11

    CF{sub 4} is used as a Cherenkov gas radiator in one of the Ring Imaging Cherenkov detectors at the LHCb experiment at the CERN Large Hadron Collider. CF{sub 4} is well known to have a high scintillation photon yield in the near and far VUV, UV and in the visible wavelength range. A large flux of scintillation photons in our photon detection acceptance between 200 and 800 nm could compromise the particle identification efficiency. We will show that this scintillation photon emission system can be effectively quenched, consistent with radiationless transitions, with no significant impact on the photons resulting from Cherenkov radiation.

  4. Cherenkov rings from aerogel detected by four large-area hybrid photodiodes

    CERN Document Server

    Bellunato, T F; Buzykaev, A R; Calvi, M; Chesi, Enrico Guido; Danilyuk, A F; Easo, S; Jolly, S; Joram, C; Kravchenko, E A; Liko, D; Matteuzzi, C; Musy, M; Negri, P; Neufeld, N; Onuchin, A P; Séguinot, Jacques; Wotton, S

    2003-01-01

    We report on the results obtained using thick samples of silica aerogel as radiators for a Ring Imaging Cherenkov counter. Four large-diameter hybrid photodiodes with 2048 channels have been used as photon detectors. Pions and protons with momenta ranging from 6 to 10 GeV/c were separated and identified. The number of photoelectrons and the radius of the Cherenkov rings together with the Cherenkov angle resolution were measured. A comparison with a simulation program based on GEANT4 is discussed.

  5. Peculiarities of Cherenkov radiation in dispersive media

    International Nuclear Information System (INIS)

    Previously obtained space-time distributions of the radiation generated by a charge uniformly moving in medium with dispersion are applied to concrete substances with quite different physical properties (iodine and ZnSe) for which the parametrizations of dielectric permittivity are known from physical literature. For iodine, the resonance frequency lies in a far ultraviolet region, while for ZnSe it is in a far infrared. Both analytical and numerical spectral distributions corresponding to this radiation are obtained. It turns out that for iodine there is only one critical velocity below and above of which the moving charge radiates in a quite different way. There are two critical velocities for ZnSe. We discuss possible complications arising when the radiation of the point-like charge is measured below the Cherenkov threshold. Probably, these considerations are applicable to the recent experiment in which the radiation of electric dipoles below the Cherenkov threshold was observed. The alternative reasons for the appearance of this under-threshold radiation are pointed out

  6. Raman Imaging Techniques and Applications

    CERN Document Server

    2012-01-01

    Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

  7. The development of simulation and atmospheric shower reconstruction tools for the study of future Cherenkov Imaging telescopes; Developpement d'outils de simulation et de reconstruction de gerbes de particules pour l'astronomie gamma avec les futurs imageurs Tcherenkov

    Energy Technology Data Exchange (ETDEWEB)

    Sajjad, S.

    2007-09-15

    The future of ground based gamma-ray astronomy lies in large arrays of Imaging Atmospheric Cherenkov Telescopes with better capabilities: lower energy threshold, higher sensitivity, better resolution and background rejection. The design of IACT systems and the optimisation of their parameters requires an understanding of the atmospheric showers as well as dedicated tools for the simulation of telescope systems and the evaluation of their performance. The first part of this dissertation deals with atmospheric showers, the various properties of the Cherenkov light they emit and their simulation. The second part presents the tools we have developed for the simulation of imaging atmospheric Cherenkov telescopes and the characteristics of the shower images obtained by them. The third part of this thesis contains a presentation of the tools developed for the reconstruction of the source position in the sky, core position on the ground and energy of the gamma-rays as well as ideas for gamma-hadron separation. In the end, we use these tools to study two large arrays of telescopes at two altitudes and evaluate their performance for gamma-ray detection. (author)

  8. Photosensor Characterization for the Cherenkov Telescope Array: Silicon Photomultiplier versus Multi-Anode Photomultiplier Tube

    OpenAIRE

    Bouvier, Aurelien; Gebremedhin, Lloyd; Johnson, Caitlin; Kuznetsov, Andrey; Williams, David; Otte, Nepomuk; Strausbaugh, Robert; Hidaka, Naoya; Tajima, Hiroyasu; Hinton, Jim; White, Richard; Errando, Manel; Mukherjee, Reshmi

    2013-01-01

    Photomultiplier tube technology has been the photodetector of choice for the technique of imaging atmospheric Cherenkov telescopes since its birth more than 50 years ago. Recently, new types of photosensors are being contemplated for the next generation Cherenkov Telescope Array. It is envisioned that the array will be partly composed of telescopes using a Schwarzschild-Couder two mirror design never built before which has significantly improved optics. The camera of this novel optical design...

  9. Prototyping the graphical user interface for the operator of the Cherenkov Telescope Array

    OpenAIRE

    Sadeh, Iftach; Oya, Igor; Schwarz, Joseph; Pietriga, Emmanuel

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a planned gamma-ray observatory. CTA will incorporate about 100 imaging atmospheric Cherenkov telescopes (IACTs) at a Southern site, and about 20 in the North. Previous IACT experiments have used up to five telescopes. Subsequently, the design of a graphical user interface (GUI) for the operator of CTA involves new challenges. We present a GUI prototype, the concept for which is being developed in collaboration with experts from the field of Human-Comput...

  10. Bioluminescence imaging characteristics and application

    International Nuclear Information System (INIS)

    Bioluminescence imaging (BLI) by luciferase gene marked cells or DNA, in the presence of ATP and oxygen, catalytic oxidation reaction of fluorescein luminescence. So that it can directly monitor in vivo cell activity and gene behavior. In this paper, by comparing the BLI and MRI, PET, radiography of the similarities and differences, as well as about their cancer, stem cells and immune cells transportation, apoptosis and other aspects of the application, in order to better provide the basis for promoting the application of BLI. (authors)

  11. Cherenkov particle identification in FOCUS

    CERN Document Server

    Link, J M; Alimonti, G; Anjos, J C; Arena, V; Bediaga, I; Bianco, S; Boca, G; Bonomi, G; Boschini, M; Butler, J N; Carrillo, S; Casimiro, E; Cawlfield, C; Cheung, H W K; Cho, K; Chung, Y S; Cinquini, L; Cuautle, E; Cumalat, J P; D'Angelo, P; Di Corato, M; Dini, P; Engh, D; Fabbri, Franco Luigi; Gaines, I; Garbincius, P H; Gardner, R; Garren, L A; Giammarchi, M; Gianini, G; Gottschalk, E; Göbel, C; Handler, T; Hernández, H; Hosack, M; Inzani, P; Johns, W E; Kang, J S; Kasper, P H; Kim, D Y; Ko, B R; Kreymer, A E; Kryemadhi, A; Kutschke, R; Kwak, J W; Lee, K B; Leveraro, F; Liguori, G; Magnin, J; Malvezzi, S; Massafferri, A; Menasce, D; Merlo, M M; Mezzadri, M; Milazzo, L; Miranda, J M D; Mitchell, R; Montiel, E; Moroni, L; Méndez, H; Méndez, L; Nehring, M S; O'Reilly, B; Olaya, D; Pantea, D; Paris, A; Park, H; Park, K S; Pedrini, D; Pepe, I M; Pontoglio, C; Prelz, F; Quinones, J; Rahimi, A; Ramírez, J E; Ratti, S P; Reis, A C D; Reyes, M; Riccardi, C; Rivera, C; Rovere, M; Sala, S; Sarwar, S; Segoni, I; Sheaff, M; Sheldon, P D; Stenson, K; Sánchez-Hernández, A; Uribe, C; Vaandering, E W; Vitulo, P; Vázquez, F; Webster, M; Wilson, J R; Wiss, J; Xiong, W; Yager, P M; Zallo, A; Zhang, Y

    2002-01-01

    We describe the algorithm used to identify charged tracks in the fixed-target charm-photoproduction experiment FOCUS. We begin by describing the new algorithm and contrast this approach with that used in our preceding experiment - E687. We next illustrate the algorithm's performance using physics signals. Finally, we briefly describe some of the methods used to monitor the quantum efficiency and noise of the Cherenkov cells.

  12. Analogue sum ASIC for L1 trigger decision in Cherenkov Telescope cameras

    International Nuclear Information System (INIS)

    The Cherenkov Telescope Array (CTA) project [1] aims to build the largest ground-based gamma-ray observatory based on an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The CTA will implement a multi-level trigger system to distinguish between gamma ray-like induced showers and background images induced by night sky background (NSB) light [2]. The trigger system is based on coincident detections among pixels (level 0 trigger), clusters of pixels (level 1) or telescopes. In this article, the first version of the application specific integrated circuit (ASIC) for Level 1 trigger system is presented, capable of working with different Level 0 strategies and different trigger region sizes. In addition, it complies with all the requirements specified by the CTA project, specially the most critical ones as regards noise, bandwidth, dynamic range and power consumption. All these features make the presented system very suitable for use in the CTA cameras and improve the features of discrete components prototypes of the L1 trigger circuit in terms of compactness, noise, performance and power consumption

  13. A ring imaging Cherenkov counter for the AMS experiment: simulation, prototype and perspective; Un imageur d'anneaux tcherenkov pour l'experience AMS: simulation, prototypie et perspectives physiques

    Energy Technology Data Exchange (ETDEWEB)

    Thuillier, T

    2000-05-01

    The AMS spectrometer is scheduled to be installed on the International Space Station ISS in 2003. The detector will be equipped with a Ring Imaging Cherenkov Counter (RICH). The report starts with a presentation of the physics goals of AMS and continues with a description of the spectrometer. The RICH detector response and event reconstruction is then described and detailed. The presentation proceeds with a simulation study of cosmic ray nuclei expected with the AMS RICH counter in space. Next, the thesis reports on the research and development of a RICH prototype built and tested in the period 1997-1999 in the Grenoble Institute of Nuclear Science (ISN). The response of the prototype and its calibration are described. Tests have been performed with cosmic rays at ground and ion beam at GSI-Darmstadt. The data analysis of the test campaigns is then presented and compared with simulation results. Finally, a dedicated test of Albedo particle Rejection Power of the RICH detector is reported. (author)

  14. Cherenkov radiation threshold in random inhomogeneous media

    CERN Document Server

    Grichine, V M

    2009-01-01

    Cherenkov radiation in media with random inhomogeneities like aerogel or Earth atmosphere is discussed. The spectral-angular distribution of Cherenkov photons emitted by relativistic charged particle and averaged over the dielectric permittivity fluctuations shows angular broadening similarly to the case of media with the photon absorption. The broadening results in the smoothing of Cherenkov threshold, and therefore media with strong photon scattering have more extended dependence of Cherenkov light output on the particle speed. It can be potentially used for the particle identification

  15. Progress in Cherenkov femtosecond fiber lasers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper;

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser...... Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuumbased...

  16. Monte Carlo studies of the VERITAS array of Cherenkov telescopes

    CERN Document Server

    Maier, G

    2007-01-01

    VERITAS is a system of four imaging Cherenkov telescopes located at the Fred Lawrence Whipple Observatory in southern Arizona. We present here results of detailed Monte Carlo simulations of the array response to extensive air showers. Cherenkov image and shower parameter distributions are calculated and show good agreement with distributions obtained from observations of background cosmic rays and high-energy gamma-rays. Cosmic-ray and gamma-ray rates are accurately predicted by the simulations. The energy threshold of the 3-telescope system is about 150 GeV after gamma-hadron separation cuts; the detection rate after gamma-selection cuts for the Crab Nebula is 7.5 gamma's/min. The three-telescope system is able to detect a source with a flux equivalent to 10% of the Crab Nebula flux in 1.2 h of observations (5 sigma detection).

  17. Stellar intensity interferometry: Optimizing air Cherenkov telescope array layouts

    CERN Document Server

    Jensen, Hannes; LeBohec, Stephan; Nuñez, Paul D; 10.1117/12.856412

    2010-01-01

    Kilometric-scale optical imagers seem feasible to realize by intensity interferometry, using telescopes primarily erected for measuring Cherenkov light induced by gamma rays. Planned arrays envision 50--100 telescopes, distributed over some 1--4 km$^2$. Although array layouts and telescope sizes will primarily be chosen for gamma-ray observations, also their interferometric performance may be optimized. Observations of stellar objects were numerically simulated for different array geometries, yielding signal-to-noise ratios for different Fourier components of the source images in the interferometric $(u,v)$-plane. Simulations were made for layouts actually proposed for future Cherenkov telescope arrays, and for subsets with only a fraction of the telescopes. All large arrays provide dense sampling of the $(u,v)$-plane due to the sheer number of telescopes, irrespective of their geographic orientation or stellar coordinates. However, for improved coverage of the $(u,v)$-plane and a wider variety of baselines (...

  18. Biomedical image understanding methods and applications

    CERN Document Server

    Lim, Joo-Hwee; Xiong, Wei

    2015-01-01

    A comprehensive guide to understanding and interpreting digital images in medical and functional applications Biomedical Image Understanding focuses on image understanding and semantic interpretation, with clear introductions to related concepts, in-depth theoretical analysis, and detailed descriptions of important biomedical applications. It covers image processing, image filtering, enhancement, de-noising, restoration, and reconstruction; image segmentation and feature extraction; registration; clustering, pattern classification, and data fusion. With contributions from ex

  19. SU-E-I-87: Calibrating Cherenkov Emission to Match Superficial Dose in Tissue

    International Nuclear Information System (INIS)

    Purpose: Through Monte Carlo simulations and phantom studies, the dominant factors affecting the calibration of superficial Cherenkov intensity to absolute surface dose was investigated, including tissue optical properties, curvatures, beam properties and imaging angle. Methods: The phasespace files for the TrueBeam system from Varian were used in GAMOS (a GEANT4 based Monte Carlo simulation toolkit) to simulate surface emission Cherenkov signals and the correlated deposited dose. The parameters examined were: i) different tissue optical properties (skin color from light to dark), ii) beam types (X-ray and electron beam), iii) beam energies, iv) thickness of tissues (2.5 cm to 20 cm), v) SSD (80 cm to 120 cm), vi) field sizes (0.5×0.5 cm2 to 20×20 cm2), vii) entrance/exit sides, viii) curvatures (cylinders with diameters from 2.5 cm to 20cm) and ix) imaging angles (0 to 90 degrees). In a specific case, for any Cherenkov photon emitted from the surface, the original position and direction, final position and direction and energy were recorded. Similar experimental measurements were taken in a range of the most pertinent parameters using tissue phantoms. Results: Combining the dose distribution and sampling sensitivity of Cherenkov emission, quantitatively accurate calibration factors (the amount of radiation dose represented by a single Cherenkov photon) were calculated. The data showed relatively large dependence upon different optical properties, curvature, entrance/exit and beam types. For a diffusive surface, the calibration factor was insensitive to imaging angles smaller than 60 degrees. Normalization with the reflectance image was experimentally validated as a simple and accurate method for calibrations of different optical properties. Conclusion: This study sheds light on how and to what extent different conditions affect the calibration from Cherenkov intensity to absolute superficial dose and provides practical solutions to allow quantitative Cherenkov

  20. The Formation of Condensation on Cherenkov Telescope Mirrors

    CERN Document Server

    Chadwick, P M; Dyrda, M; Förster, A; Michalowski, J; Niemiec, J; Schultz, C; Stodulski, M

    2013-01-01

    The mirrors of imaging atmospheric Cherenkov telescopes are different from those of conventional astronomical telescopes in several ways, not least in that they are exposed to the elements. One of the issues which may arise is condensation forming on the mirrors during observing under certain atmospheric conditions, which has important consequences for the operation of the telescopes. This contribution discusses why telescope mirrors suffer condensation and describes the atmospheric conditions and mirror designs which are likely to be problematic.

  1. Imaging technologies in oilfield applications

    Institute of Scientific and Technical Information of China (English)

    XIE C.G.; NORTH R.; WILT M.; ZHANG P.; DENACLARA H.; LEVESQUE C.

    2005-01-01

    In this paper, we describe some recent imaging technologies developed by Schlumberger for oilfield downhole multiphase flow production logging (PL) and cross-well electromagnetic (EM) survey applications. FloScan Imager (FSITM) has been introduced as a 3-phase oil/gas/water flow PL tool for deviated and horizontal wells. FSI sensors can map fluid velocity and holdup profiles along a vertical diameter of the wellbore at every survey depth, enabling a robust estimate of the individual phase flow rates in complex flow regimes. The cross-well EM survey is based on cross-borehole induction logging technique and provides resistivity distribution at a reservoir scale. It is a useful tool for reservoir management and is most effective in dynamic fields where fluid saturations are variable in time and space. The tool can be used to identify (water or steam) flooded and bypassed regions. By monitoring changes in the resistivity spatial distribution with time, cross-well EM survey is very effective at mapping inter-well temperature and structure. Some field examples are shown for both FloScan Imager PL tool and cross-well resistivity imaging survey.

  2. Color imaging fundamentals and applications

    CERN Document Server

    Reinhard, Erik; Oguz Akyuz, Ahmet; Johnson, Garrett

    2008-01-01

    This book provides the reader with an understanding of what color is, where color comes from, and how color can be used correctly in many different applications. The authors first treat the physics of light and its interaction with matter at the atomic level, so that the origins of color can be appreciated. The intimate relationship between energy levels, orbital states, and electromagnetic waves helps to explain why diamonds shimmer, rubies are red, and the feathers of the Blue Jay are blue. Then, color theory is explained from its origin to the current state of the art, including image captu

  3. Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation

    OpenAIRE

    Glaser, Adam K.; Andreozzi, Jacqueline M.; Davis, Scott C.; Zhang, Rongxiao; Pogue, Brian W.; Fox, Colleen J.; Gladstone, David J.

    2014-01-01

    Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water.

  4. ROBAST: Development of a ROOT-Based Ray-Tracing Library for Cosmic-Ray Telescopes and its Applications in the Cherenkov Telescope Array

    CERN Document Server

    Okumura, Akira; Rulten, Cameron

    2016-01-01

    We have developed a non-sequential ray-tracing simulation library, ROOT-based simulator for ray tracing (ROBAST), which is aimed to be widely used in optical simulations of cosmic-ray (CR) and gamma-ray telescopes. The library is written in C++, and fully utilizes the geometry library of the ROOT framework. Despite the importance of optics simulations in CR experiments, no open-source software for ray-tracing simulations that can be widely used in the community has existed. To reduce the dispensable effort needed to develop multiple ray-tracing simulators by different research groups, we have successfully used ROBAST for many years to perform optics simulations for the Cherenkov Telescope Array (CTA). Among the six proposed telescope designs for CTA, ROBAST is currently used for three telescopes: a Schwarzschild-Couder (SC) medium-sized telescope, one of SC small-sized telescopes, and a large-sized telescope (LST). ROBAST is also used for the simulation and development of hexagonal light concentrators propose...

  5. The Efficient Discrimination Of Electron And Pi-zero Events In A Water Cherenkov Detector And The Application To Neutrino Oscillation Experiments

    CERN Document Server

    Barszczak, T

    2005-01-01

    Super-Kamiokande, a large water Cherenkov detector, observed atmospheric neutrinos produced by interactions of cosmic rays in the atmosphere. By observing zenith angle and energy of the particles produced by the neutrinos in single ring events in Super-Kamiokande, it became apparent that the muon neutrino (νμ) undergoes oscillations. During the oscillations, ν μ changes into another kind of neutrino, which can be either the tau neutrino (ντ) or a sterile neutrino (ν s). In addition, a small component of νe is possible but not considered here. With the standard single ring analysis, using two-flavor oscillations without matter effects, it was hard to discriminate between these two possibilities because, while νs doesn't interact at all and ν τ does, interactions of ντ don't produce a significant single ring signal. Due to the large mass of the taon (τ), charged current interactions of ντ are sup...

  6. TORCH—a Cherenkov based time-of-flight detector

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, M.W.U. van, E-mail: m.vandijk@bristol.ac.uk [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Brook, N.H. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Castillo García, L. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Laboratory for High Energy Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Cowie, E.N.; Cussans, D. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); D' Ambrosio, C. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Fopma, J. [Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Forty, R.; Frei, C. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Gao, R. [Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Gys, T. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Harnew, N.; Keri, T. [Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Piedigrossi, D. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland)

    2014-12-01

    TORCH is an innovative high-precision time-of-flight system to provide particle identification in the difficult intermediate momentum region up to 10 GeV/c. It is also suitable for large-area applications. The detector provides a time-of-flight measurement from the imaging of Cherenkov photons emitted in a 1 cm thick quartz radiator. The photons propagate by total internal reflection to the edge of the quartz plate and are then focused onto an array of photon detectors at the periphery. A time-of-flight resolution of about 10–15 ps per incident charged particle needs to be achieved to allow a three sigma kaon-pion separation up to 10 GeV/c momentum for the TORCH located 9.5 m from the interaction point. Given ∼30 detected photons per incident charged particle, this requires measuring the time-of-arrival of individual photons to about 70 ps. This paper will describe the design of a TORCH prototype involving a number of ground-breaking and challenging techniques.

  7. TORCH—a Cherenkov based time-of-flight detector

    International Nuclear Information System (INIS)

    TORCH is an innovative high-precision time-of-flight system to provide particle identification in the difficult intermediate momentum region up to 10 GeV/c. It is also suitable for large-area applications. The detector provides a time-of-flight measurement from the imaging of Cherenkov photons emitted in a 1 cm thick quartz radiator. The photons propagate by total internal reflection to the edge of the quartz plate and are then focused onto an array of photon detectors at the periphery. A time-of-flight resolution of about 10–15 ps per incident charged particle needs to be achieved to allow a three sigma kaon-pion separation up to 10 GeV/c momentum for the TORCH located 9.5 m from the interaction point. Given ∼30 detected photons per incident charged particle, this requires measuring the time-of-arrival of individual photons to about 70 ps. This paper will describe the design of a TORCH prototype involving a number of ground-breaking and challenging techniques

  8. Low-Noise Operation of All-Fiber Femtosecond Cherenkov Laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Villanueva Ibáñez, Guillermo Eduardo; Lægsgaard, Jesper;

    2013-01-01

    We investigate the noise properties of a femtosecond all-fiber Cherenkov radiation source with emission wavelength around 600 nm, based on an Yb-fiber laser and a highly-nonlinear photonic crystal fiber. A relative intensity noise as low as - 103 dBc/Hz, corresponding to 2.48 % pulse......-to-pulse fluctuation in energy, was observed at the Cherenkov radiation output power of 4.3 mW, or 150 pJ pulse energy. This pulse-to-pulse fluctuation is at least 10.6 dB lower compared to spectrally-sliced supercontinuum sources traditionally used for ultrafast fiberbased generation at visible wavelengths. Low noise...... makes allfiber Cherenkov sources promising for biophotonics applications such as multi-photon microscopy, where minimum pulse-to-pulse energy fluctuation is required. We present the dependency of the noise figure on both the Cherenkov radiation output power and its spectrum....

  9. Study of a Cherenkov TOF-PET module

    Science.gov (United States)

    Korpar, S.; Dolenec, R.; Križan, P.; Pestotnik, R.; Stanovnik, A.

    2013-12-01

    An apparatus, consisting of two PbF2 crystals, each coupled to a multichannel plate photomultiplier (MCP-PMT), has been constructed in order to measure the time-of-flight (TOF) of the two 511 keV annihilation photons produced in positron emission tomography (PET). Excellent timing is achieved by detecting the prompt Cherenkov photons produced by the absorption of the 511 keV gamma photons. The present work describes the measurement and image reconstruction of two 22Na point sources. In addition, the influence of the radiator thickness and the Cherenkov light absorption cut-off of the crystal on the efficiency and the timing resolution have been studied by Monte Carlo simulation.

  10. FACT light collection - solid light concentrators in Cherenkov Astronomy

    International Nuclear Information System (INIS)

    Pixelized cameras of Imaging Atmospheric Cherenkov Telescopes use hollow light guides with reflective surfaces based on the Winston cone design. These cones minimize insensitive spaces between the photo sensors and shield the camera from stray background light by limiting the angular acceptance to the primary reflector area. FACT (First G-APD Cherenkov Telescope) will be the first IACT with Geiger-mode avalanche photodiodes as light sensors. Solid light concentrators complementing these sensors will be used instead of hollow Winston cones. We will present simulations and measurements of our light collector design, which was optimized for the requirements of the FACT telescope and detector, and discuss the specific differences to more traditional solutions.

  11. Photo multiplier tubes candidates for the Cherenkov telescope array project

    International Nuclear Information System (INIS)

    Photo Multiplier Tubes (PMTs) are the most wide spread detectors for fast low-level light signals. They are commonly used as standard light sensors for camera systems in imaging atmospheric Cherenkov telescopes. Years ago, an improvement program for the PMT candidates for the Cherenkov Telescope Array (CTA) project was initialized with the companies Hamamatsu Photonics K.K. (Japan) and Electron Tubes Enterprises Ltd. (England). CTA is the next generation of imaging atmospheric Cherenkov telescopes for high energy gamma ray astrophysics. Therefore, we need PMTs with outstanding good parameters concerning quantum efficiency, pulse width, after-pulsing and transit time spread. The currently available ''super-bialkali'' PMTs show a peak Quantum Efficiency of 40% and have an enhanced collection efficiency of up to 95-98% for wavelengths≥400 nm. The pulse width averages around 3ns at a gain of 40000. Also, the after-pulsing for a set threshold level of ≥4 photo electrons is reduced down to 0,02%. We report on the measurement results of PMT R-12292-100 from Hamamatsu as the final version and the intermediate version PMT D569/3SA from Electron Tubes Enterprises as candidate PMTs for the CTA project.

  12. Novel Photo Multiplier Tubes for the Cherenkov Telescope Array Project

    CERN Document Server

    Toyama, Takeshi; Dickinson, Hugh; Fruck, Christian; Hose, Jürgen; Kellermann, Hanna; Knötig, Max; Lorenz, Eckart; Menzel, Uta; Nakajima, Daisuke; Orito, Reiko; Paneque, David; Schweizer, Thomas; Teshima, Masahiro; Yamamoto, Tokonatsu

    2013-01-01

    Currently the standard light sensors for imaging atmospheric Cherenkov telescopes are the classical photo multiplier tubes that are using bialkali photo cathodes. About eight years ago we initiated an improvement program with the Photo Multiplier Tube (PMT) manufacturers Hamamatsu (Japan), Electron Tubes Enterprises (England) and Photonis (France) for the needs of imaging atmospheric Cherenkov telescopes. As a result, after about 40 years of stagnation of the peak Quantum Efficiency (QE) on the level of 25-27%, new PMTs appeared with a peak QE of 35%. These have got the name super-bialkali. The second significant upgrade has happened very recently, as a result of a dedicated improvement program for the candidate PMT for Cherenkov Telescope Array. The latter is going to be the next generation major instrument in the field of very high energy gamma astrophysics and will consist of over 100 telescopes of three different sizes of 23m, 12m and 4-7m, located both in southern and northern hemispheres. Now PMTs with ...

  13. Superresolution: A Novel Application to Image Restoration

    OpenAIRE

    Sanket B.Kasturiwala,; Dr. S.A.Ladhake

    2010-01-01

    The subject of extracting particular high-resolution data from low-resolution images is one of the most important digital image processing applications in recent years, attracting much research. This paper shows how to improve the resolution of real images when given image is in the degraded form. In the superresolution restoration problem, an improved resolution image is restored from several geometrically warped, blurred, and noisy and downsampled measured images. To obtain this result the ...

  14. NICHE: Using Cherenkov radiation to extend Telescope Array to sub-PeV energies

    Science.gov (United States)

    Bergman, Douglas; Krizmanic, John; Tsunesada, Yoshiki; Abu-Zayyad, Tareq; Belz, John; Thomson, Gordon

    2016-03-01

    The Non-Imaging CHErenkov (NICHE) Array will measure the flux and nuclear composition evolution of cosmic rays (CRs) from below 1 PeV to 1 EeV. NICHE will be co-sited with the Telescope Array (TA) Low Energy (TALE) extension, and will observe events simultaneously with the TALE telescopes acting in imaging-Cherenkov mode. This will be the first hybrid-Cherenkov (simultaneous imaging and non-imaging Cherenkov) measurements of CRs in the Knee region of the CR energy spectrum. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. First generation detectors are under construction and will form an initial prototype array (j-NICHE) that will be deployed in Summer 2016. In this talk, the NICHE design, array performance, prototype development, and status will be discussed as well as NICHE's ability to measure the cosmic ray nuclear composition as a function of energy.

  15. Neutron imaging and applications a reference for the imaging community

    CERN Document Server

    McGreevy, Robert L; Bilheux, Hassina Z

    2009-01-01

    Offers an introduction to the basics of neutron beam production in addition to the wide scope of techniques that enhance imaging application capabilities. This title features a section that describes imaging single grains in polycrystalline materials, neutron imaging of geological materials and other materials science and engineering areas.

  16. Development of an underwater high sensitivity Cherenkov detector: Sea Urchin

    International Nuclear Information System (INIS)

    The need for a high gain, high sensitivity Cherenkov light sensor to be used in a deep underwater muon and neutrino detector (DUMAND) array has led to the design of the Sea Urchin detector. In this design a spherical photocathode PMTis optically coupled through a glass hemisphere to a large number of glass spines, each of which is filled with a wavelength-shifting (WLS) solution of a high quantum efficiency phosphor. The Cherenkov radiation is absorbed in the spine, isotropically re-radiated at a longer wavelength, and a fraction of the fluorescent light is internally reflected in the spine, and guided to the photomultiplier concentrically located in the glass hemisphere. Experiments measuring the optical characteristics of the spines and computer programs simulating light transformation and detection cross sections are described. Overall optical gains in the range 5-10 are achieved. The WLS solution is inexpensive, and may have other applications. (orig.)

  17. Tachyonic Cherenkov emission from Jupiter's radio electrons

    International Nuclear Information System (INIS)

    Tachyonic Cherenkov radiation from inertial relativistic electrons in the Jovian radiation belts is studied. The tachyonic modes are coupled to a frequency-dependent permeability tensor and admit a negative mass-square, rendering them superluminal and dispersive. The superluminal radiation field can be cast into Maxwellian form, using 3D field strengths and inductions, and the spectral densities of tachyonic Cherenkov radiation are derived. The negative mass-square gives rise to a longitudinal flux component. A spectral fit to Jupiter's radio spectrum, inferred from ground-based observations and the Cassini 2001 fly-by, is performed with tachyonic Cherenkov flux densities averaged over a thermal electron population.

  18. Searching for tau neutrinos with Cherenkov telescopes

    OpenAIRE

    Gora, D.; Bernardini, E.; Kappes, A.

    2015-01-01

    Cherenkov telescopes have the capability of detecting high energy tau neutrinos in the energy range of 1--1000 PeV by searching for very inclined showers. If a tau lepton, produced by a tau neutrino, escapes from the Earth or a mountain, it will decay and initiate a shower in the air which can be detected by an air shower fluorescence or Cherenkov telescope. In this paper, we present detailed Monte Carlo simulations of corresponding event rates for the VERITAS and two proposed Cherenkov Teles...

  19. PET: functional imaging applications in oncology

    International Nuclear Information System (INIS)

    PET imaging plays an important role in the diagnosis, staging and management of tumors. At present, its principal application is in lung cancer, but interest in other applications is growing rapidly. (orig.)

  20. Superresolution: A Novel Application to Image Restoration

    Directory of Open Access Journals (Sweden)

    Sanket B.Kasturiwala,

    2010-08-01

    Full Text Available The subject of extracting particular high-resolution data from low-resolution images is one of the most important digital image processing applications in recent years, attracting much research. This paper shows how to improve the resolution of real images when given image is in the degraded form. In the superresolution restoration problem, an improved resolution image is restored from several geometrically warped, blurred, and noisy and downsampled measured images. To obtain this result the use an iterative nonlinearrestoration blind deconvolution maximum likely-hood algorithm imposing the low frequencies complete data of the original low-resolution image and the high-resolution data present only in a fraction of the image which suppresses the noise amplification and avoid the ringing in deblurred image. Our results show that a high resolution real image derived from superresolution methods enhance spatial resolution and provides substantially more image details.

  1. Cooperative quasi-Cherenkov radiation

    CERN Document Server

    Anishchenko, S V

    2014-01-01

    We study the features of cooperative parametric (quasi-Cherenkov) radiation arising when initially unmodulated electron (positron) bunches pass through a crystal (natural or artificial) under the conditions of dynamical diffraction of electromagnetic waves in the presence of shot noise. A detailed numerical analysis is given for cooperative THz radiation in artificial crystals. The radiation intensity above 200~MW$/$cm$^2$ is obtained in simulations. In two- and three-wave diffraction cases, the peak intensity of cooperative radiation emitted at small and large angles to particle velocity is investigated as a function of the particle number in an electron bunch. The peak radiation intensity appeared to increase monotonically until saturation is achieved. At saturation, the shot noise causes strong fluctuations in the intensity of cooperative parametric radiation. It is shown that the duration of radiation pulses can be much longer than the particle flight time through the crystal. This enables a thorough expe...

  2. Cherenkov Telescope Array Data Management

    CERN Document Server

    Lamanna, G; Contreras, J L; Knödlseder, J; Kosack, K; Neyroud, N; Aboudan, A; Arrabito, L; Barbier, C; Bastieri, D; Boisson, C; Brau-Nogué, S; Bregeon, J; Bulgarelli, A; Carosi, A; Costa, A; De Cesare, G; Reyes, R de los; Fioretti, V; Gallozzi, S; Jacquemier, J; Khelifi, B; Kocot, J; Lombardi, S; Lucarelli, F; Lyard, E; Maier, G; Massimino, P; Osborne, J P; Perri, M; Rico, J; Sanchez, D A; Satalecka, K; Siejkowski, H; Stolarczyk, T; Szepieniec, T; Testa, V; Walter, R; Ward, J E; Zoli, A

    2015-01-01

    Very High Energy gamma-ray astronomy with the Cherenkov Telescope Array (CTA) is evolving towards the model of a public observatory. Handling, processing and archiving the large amount of data generated by the CTA instruments and delivering scientific products are some of the challenges in designing the CTA Data Management. The participation of scientists from within CTA Consortium and from the greater worldwide scientific community necessitates a sophisticated scientific analysis system capable of providing unified and efficient user access to data, software and computing resources. Data Management is designed to respond to three main issues: (i) the treatment and flow of data from remote telescopes; (ii) "big-data" archiving and processing; (iii) and open data access. In this communication the overall technical design of the CTA Data Management, current major developments and prototypes are presented.

  3. Image Sensors in Security and Medical Applications

    OpenAIRE

    Artyomov, Evgeny; Fish, Alexander; Yadid-Pecht, Orly

    2007-01-01

    This paper briefly reviews CMOS image sensor technology and its utilization in security and medical applications. The role and future trends of image sensors in each of the applications are discussed. To provide the reader deeper understanding of the technology aspects the paper concentrates on the selected applications such as surveillance, biometrics, capsule endoscopy and artificial retina. The reasons for concentrating on these applications are due to their importance in our d...

  4. Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Otte, A N; Dickinson, H; Funk, S; Jogler, T; Johnson, C A; Karn, P; Meagher, K; Naoya, H; Nguyen, T; Okumura, A; Santander, M; Sapozhnikov, L; Stier, A; Tajima, H; Tibaldo, L; Vandenbroucke, J; Wakely, S; Weinstein, A; Williams, D A

    2015-01-01

    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give ...

  5. Interpretation of spin effects in Cherenkov radiation

    International Nuclear Information System (INIS)

    The Cherenkov radiation effect depends on correlation between electron polarization and photon spirality. This correlation in the given case is interpreted as interference of the charge radiation amplitudes and electron magnetic moment

  6. Applications Of Image Processing In Criminalistics

    Science.gov (United States)

    Krile, Thomas F.; Walkup, John F.; Barsallo, Adonis; Olimb, Hal; Tarng, Jaw-Horng

    1987-01-01

    A review of some basic image processing techniques for enhancement and restoration of images is given. Both digital and optical approaches are discussed. Fingerprint images are used as examples to illustrate the various processing techniques and their potential applications in criminalistics.

  7. A facility to evaluate the focusing performance of mirrors for Cherenkov Telescopes

    CERN Document Server

    Canestrari, Rodolfo; Bonnoli, Giacomo; Farisato, Giancarlo; Lessio, Luigi; Rodeghiero, Gabriele; Spiga, Rossella; Toso, Giorgio; Pareschi, Giovanni

    2015-01-01

    With the advent of the imaging atmospheric Cherenkov technique in late 1980's, ground-based observations of Very High-Energy gamma rays came into reality. Since the first source detected at TeV energies in 1989 by Whipple, the number of high energy gamma-ray sources has rapidly grown up to more than 150 thanks to the second generation experiments like MAGIC, H.E.S.S. and VERITAS. The Cherenkov Telescope Array observatory is the next generation of Imaging Atmospheric Cherenkov Telescopes, with at least 10 times higher sensitivity than current instruments. Cherenkov Telescopes have to be equipped with optical dishes of large diameter -- in general based on segmented mirrors -- with typical angular resolution of a few arc-minutes. To evaluate the mirror's quality specific metrological systems are required that possibly take into account the environmental conditions in which typically Cherenkov telescopes operate (in open air without dome protection). For this purpose a new facility for the characterization of mi...

  8. Fuzzy image processing and applications with Matlab

    CERN Document Server

    Chaira, Tamalika

    2009-01-01

    In contrast to classical image analysis methods that employ ""crisp"" mathematics, fuzzy set techniques provide an elegant foundation and a set of rich methodologies for diverse image-processing tasks. However, a solid understanding of fuzzy processing requires a firm grasp of essential principles and background knowledge.Fuzzy Image Processing and Applications with MATLAB® presents the integral science and essential mathematics behind this exciting and dynamic branch of image processing, which is becoming increasingly important to applications in areas such as remote sensing, medical imaging,

  9. A quartz Cherenkov detector for polarimetry at the ILC

    International Nuclear Information System (INIS)

    At the proposed International Linear Collider (ILC), the use of polarised electron and positron beams is a key ingredient of the physics program. A measurement of the polarisation with a yet unprecedented precision of δP/P=0.25% is required. To achieve this, Compton polarimeter measurements in front of and behind the collision point are foreseen. In this thesis, a novel concept for a detector for ILC polarimetry is introduced to eliminate one of the dominating systematics limiting the previous best measurement of beam polarisation: a detector using quartz as Cherenkov medium could increase the tolerance against non-linear photodetector responses. The high refractive index of quartz results in a higher Cherenkov light yield compared to conventional Cherenkov gases. This could allow single-peak resolution in the Cherenkov photon spectra produced by the Compton electrons at the polarimeters. The detailed simulation studies presented in this work imply that such single-peak resolution is possible. Considerations for the choice of a suitable detector geometry are discussed. A four-channel prototype has been constructed and successfully operated in a first testbeam campaign at the DESY testbeam, confirming simulation predictions. Although further studies have to be considered to quantify all aspects of the detector response, the findings of the analysis of the data from the first testbeam are promising with regards to reaching the desired light yield. In the final part of this thesis, the application of a detector concept allowing single-peak resolution to the polarisation measurement at the ILC is examined. Two of the main sources of systematic uncertainties on the polarimeter measurements are detector non-linearities and misalignments. The performance of the suggested quartz detector concept in Monte Carlo studies promises a control of these systematics which meets the precision requirements for ILC polarimetry.

  10. Spontaneous emission in Cherenkov FEL devices

    International Nuclear Information System (INIS)

    The main features of the spectral characteristics of the spontaneously emitted Cherenkov light in circular and rectangular wave-guides filled with dielectric are discussed. The characteristics of the radiation emitted by an electron beam moving near and parallel to the surface of a dielectric slab are also analysed. Finally, the relevance of these results to a possible FEL-Cherenkov operation is briefly discussed

  11. Use of silica aerogel in Cherenkov counters

    International Nuclear Information System (INIS)

    Silica aerogel has been widely used as a radiator for Cherenkov detectors. The review is devoted to the consideration of various aspects concerning aerogel: its production methods, optical and physical properties, including transparency, absorption, and scattering lengths, the number of photoelectrons and also factors affecting the accuracy of particle identification. The use of silica aerogel in various threshold Cherenkov counters as BELLE (KEK), TASSO (DESY), KEDR (VEPP-4M) is described

  12. Tests of a silica aerogel Cherenkov counter

    International Nuclear Information System (INIS)

    A Cherenkov counter with silica aerogel of refractive index 1.06 as radiator has been constructed and tested. The Cherenkov light produced in 9 cm thick silica aerogel was detected with four 5''-photomultipliers through a 162 cm long air light guide. The photoelectron yield for a 1 GeV/c pion beam was found to be 6 and uniform over a sensitive area of 40 x 30 cm2. (orig.)

  13. Experimental study of the atmospheric neutrino backgrounds for proton decay to positron and neutral pion searches in water Cherenkov detectors

    OpenAIRE

    Blondel, Alain; Borghi, Silvia; Cervera Villanueva, Anselmo; Schroeter, Raphaël; K2K Collaboration

    2007-01-01

    The atmospheric neutrino background for proton decay to positron and neutral pion in ring imaging water Cherenkov detectors is studied with an artificial accelerator neutrino beam for the first time. In total, about 314,000 neutrino events corresponding to about 10 megaton-years of atmospheric neutrino interactions were collected by a 1,000 ton water Cherenkov detector (KT). The KT charged-current single neutral pion production data are well reproduced by simulation programs of neutrino and s...

  14. Medical imaging technology reviews and computational applications

    CERN Document Server

    Dewi, Dyah

    2015-01-01

    This book presents the latest research findings and reviews in the field of medical imaging technology, covering ultrasound diagnostics approaches for detecting osteoarthritis, breast carcinoma and cardiovascular conditions, image guided biopsy and segmentation techniques for detecting lung cancer, image fusion, and simulating fluid flows for cardiovascular applications. It offers a useful guide for students, lecturers and professional researchers in the fields of biomedical engineering and image processing.

  15. Image processing technologies algorithms, sensors, and applications

    CERN Document Server

    Aizawa, Kiyoharu; Suenaga, Yasuhito

    2004-01-01

    Showcasing the most influential developments, experiments, and architectures impacting the digital, surveillance, automotive, industrial, and medical sciences, Image Processing Technologies tracks the evolution and advancement of computer vision and image processing (CVIP) technologies, examining methods and algorithms for image analysis, optimization, segmentation, and restoration. It focuses on recent approaches and techniques in CVIP applications development and explores various coding methods for individual types of 3-D images. This text/reference brings researchers and specialists up-to-

  16. Measurements of Cherenkov Photons with Silicon Photomultipliers

    CERN Document Server

    Korpar, S; Chagani, H; Dolenec, R; Hara, K; Iijima, T; Krizan, P; Nishida, S; Pestotnik, R; Stanovnik, A

    2008-01-01

    A novel photon detector, the Silicon Photomultiplier (SiPM), has been tested in proximity focusing Ring Imaging Cherenkov (RICH) counters that were exposed to cosmic-ray particles in Ljubljana, and a 2 GeV electron beam at the KEK research facility. This type of RICH detector is a candidate for the particle identification detector upgrade of the BELLE detector at the KEK B-factory, for which the use of SiPMs, microchannel plate photomultiplier tubes or hybrid avalanche photodetectors, rather than traditional Photomultiplier Tubes (PMTs) is essential due to the presence of high magnetic fields. In both experiments, SiPMs are found to compare favourably with PMTs, with higher photon detection rates per unit area. Through the use of hemispherical and truncated pyramid light guides to concentrate photons onto the active surface area, the light yield increases significantly. An estimate of the contribution to dark noise from false coincidences between SiPMs in an array is also presented.

  17. Acceleration of atmospheric Cherenkov telescope signal processing to real-time speed with the Auto-Pipe design system

    International Nuclear Information System (INIS)

    The imaging atmospheric Cherenkov technique for high-energy gamma-ray astronomy is emerging as an important new technique for studying the high energy universe. Current experiments have data rates of ∼20TB/year and duty cycles of about 10%. In the future, more sensitive experiments may produce up to 1000 TB/year. The data analysis task for these experiments requires keeping up with this data rate in close to real-time. Such data analysis is a classic example of a streaming application with very high performance requirements. This class of application often benefits greatly from the use of non-traditional approaches for computation including using special purpose hardware (FPGAs and ASICs), or sophisticated parallel processing techniques. However, designing, debugging, and deploying to these architectures is difficult and thus they are not widely used by the astrophysics community. This paper presents the Auto-Pipe design toolset that has been developed to address many of the difficulties in taking advantage of complex streaming computer architectures for such applications. Auto-Pipe incorporates a high-level coordination language, functional and performance simulation tools, and the ability to deploy applications to sophisticated architectures. Using the Auto-Pipe toolset, we have implemented the front-end portion of an imaging Cherenkov data analysis application, suitable for real-time or offline analysis. The application operates on data from the VERITAS experiment, and shows how Auto-Pipe can greatly ease performance optimization and application deployment of a wide variety of platforms. We demonstrate a performance improvement over a traditional software approach of 32x using an FPGA solution and 3.6x using a multiprocessor based solution

  18. Sparse microwave imaging: Principles and applications

    Institute of Scientific and Technical Information of China (English)

    ZHANG BingChen; HONG Wen; WU YiRong

    2012-01-01

    This paper provides principles and applications of the sparse microwave imaging theory and technology.Synthetic aperture radar (SAR) is an important method of modern remote sensing.During decades microwave imaging technology has achieved remarkable progress in the system performance of microwave imaging technology,and at the same time encountered increasing complexity in system implementation.The sparse microwave imaging introduces the sparse signal processing theory to radar imaging to obtain new theory,new system and new methodology of microwave imaging.Based on classical SAR imaging model and fundamental theories of sparse signal processing,we can derive the model of sparse microwave imaging,which is a sparse measurement and recovery problem and can be solved with various algorithms.There exist several fundamental points that must be considered in the efforts of applying sparse signal processing to radar imaging,including sparse representation,measurement matrix construction,unambiguity reconstruction and performance evaluation.Based on these considerations,the sparse signal processing could be successfully applied to radar imaging,and achieve benefits in several aspects,including improvement of image quality,reduction of data amount for sparse scene and enhancement of system performance.The sparse signal processing has also been applied in several specific radar imaging applications.

  19. Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Davis, Scott C. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Department of Physics and Astronomy and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Fox, Colleen J.; Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

    2014-06-15

    Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank doped with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real

  20. Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation

    International Nuclear Information System (INIS)

    Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank doped with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real

  1. Miscellaneous applications of radionuclide imaging

    International Nuclear Information System (INIS)

    The procedures discussed in this chapter are either developmental, in limited clinical use, or frankly moribund. A number of radionuclide imaging techniques have proved disappointing when approached from a purely anatomic point of view. This is particularly evident to our colleagues with the explosive growth of the noninvasive imaging procedures, magnetic resonance imaging (NMR), CT, and ultrasound, and the introduction of the less invasive digital radiographic approach to vascular opacification, all of which are capable of providing exquisite anatomic or tissue detail beyond the reach of current or reasonably priced nuclear medicine imaging systems. Yet, most nuclear medicine procedures possess the unique advantage of portraying a physiologic function without interfering with that function. Moreover, the procedures can be employed under conditions of stress, which are likely to bring out pathophysiologic abnormalities that remain masked when unchallenged. Information concerning form without functional data has less meaning than both together. The physiologic information inherent in nuclear medicine imaging may often provide not only key diagnostic information but also illuminate a therapeutic trail. Yet, it is often slighted in favor of the anatomic quest. While mastery of the nuances of imaging details remains critical, radionuclide image interpretation must rest upon a firm physiologic foundation. For this reason, this chapter emphasizes the physiologic approach

  2. Measurement of Cherenkov photons by SiPMs with light guides

    Energy Technology Data Exchange (ETDEWEB)

    Korpar, S. [Faculty of Chemistry and Chemical Engineering, University of Maribor (Slovenia); J. Stefan Institute, Ljubljana (Slovenia)], E-mail: samo.korpar@ijs.si; Chagani, H.; Dolenec, R. [J. Stefan Institute, Ljubljana (Slovenia); Hara, K.; Iijima, T. [Nagoya University, Nagoya (Japan); Krizan, P. [J. Stefan Institute, Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana (Slovenia); Mazuka, Y. [Nagoya University, Nagoya (Japan); Pestotnik, R. [J. Stefan Institute, Ljubljana (Slovenia); Stanovnik, A. [J. Stefan Institute, Ljubljana (Slovenia); Faculty of Electrical Engineering, University of Ljubljana (Slovenia); Yamaoka, M. [Nagoya University, Nagoya (Japan)

    2009-10-21

    Silicon Photomultipliers (SiPMs) are attractive photon detectors for Ring Imaging Cherenkov (RICH) counters inside large magnetic spectrometers due to their insensitivity to magnetic fields. We have investigated the possibilities offered by these new photon detectors in a cosmic ray test set-up. Cherenkov photons emitted by cosmic ray particles in an aerogel radiator have been detected with silicon photomultipliers for the first time. Estimates and tests show how light concentrators may improve the detection efficiency, thus showing promise for a SiPM based RICH detector. The optimum shape for these light guides is investigated.

  3. Layout design studies for medium-sized telescopes within the Cherenkov Telescope Array

    CERN Document Server

    Hassan, T; Nieto, D; Wood, M

    2015-01-01

    The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma-ray observatory. CTA, conceived as an array of tens of imaging atmospheric Cherenkov telescopes, comprising small, medium and large-size telescopes, is aiming to improve on the sensitivity of current-generation experiments by an order of magnitude and provide energy coverage from 20 GeV to more than 300 TeV. In this study we explore how the medium-sized telescopes layout design and composition impacts the overall CTA performance by analyzing Monte Carlo simulations including Davies-Cotton and Schwarzschild-Couder medium-sized telescopes.

  4. Silicon Photomultiplier Research and Development Studies for the Large Size Telescope of the Cherenkov Telescope Array

    OpenAIRE

    Rando, Riccardo; Corti, Daniele; Dazzi, Francesco; de Angelis, Alessandro; Dettlaff, Antonios; Dorner, Daniela; Fink, David; Fouque, Nadia; Grundner, Felix; Haberer, Werner; Hahn, Alexander; Hermel, Richard; Korpar, Samo; Mezek, Gašper Kukec; Maier, Ronald

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the the next generation facility of imaging atmospheric Cherenkov telescopes; two sites will cover both hemispheres. CTA will reach unprecedented sensitivity, energy and angular resolution in very-high-energy gamma-ray astronomy. Each CTA array will include four Large Size Telescopes (LSTs), designed to cover the low-energy range of the CTA sensitivity ($\\sim$20 GeV to 200 GeV). In the baseline LST design, the focal-plane camera will be instrumented with...

  5. Prototyping the graphical user interface for the operator of the Cherenkov Telescope Array

    CERN Document Server

    Sadeh, Iftach; Schwarz, Joseph; Pietriga, Emmanuel

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a planned gamma-ray observatory. CTA will incorporate about 100 imaging atmospheric Cherenkov telescopes (IACTs) at a Southern site, and about 20 in the North. Previous IACT experiments have used up to five telescopes. Subsequently, the design of a graphical user interface (GUI) for the operator of CTA involves new challenges. We present a GUI prototype, the concept for which is being developed in collaboration with experts from the field of Human-Computer Interaction. The prototype is based on Web technology; it incorporates a Python web server, Web Sockets and graphics generated with the d3.js Javascript library.

  6. Novel Photon Detectors for RICH Applications

    International Nuclear Information System (INIS)

    The paper describes recent developments in Photon Detectors useful for the Cherenkov Ring Imaging Applications (RICH). We discuss the Multi-anode PMTs, HPDs with PIN and APD diode readout, APDs working in a Geiger mode, and the gaseous multi-pattern detectors. The paper emphasizes their timing properties. We give equal chance to fragile, not yet entirely proven ideas

  7. Image Mining Techniques and Applications.

    OpenAIRE

    Deepika Kishor Nagthane

    2013-01-01

    Digitization in every sector leads to the growth of digital data in a tremendous amount. Digital data are not only available in the form of text but it is also available in the form of images, audio and video. Decision making people in every field like business, public sector, hospital, etc. are trying to get useful and implicit information from the already existing digital data bases. Image mining is the concept used to extract implicit and useful data from images stored in the large data ba...

  8. Influence of aerosols from biomass burning on the spectral analysis of Cherenkov telescopes

    CERN Document Server

    Reyes, R de los; Bernloehr, K; Krueger, P; Deil, C; Gast, H; Kosack, K; Marandon, V

    2013-01-01

    During the last decade, imaging atmospheric Cherenkov telescopes (IACTs) have proven themselves as astronomical detectors in the very-high-energy (VHE; E>0.1 TeV) regime. The IACT technique observes the VHE photons indirectly, using the Earth's atmosphere as a calorimeter. Much of the calibration of Cherenkov telescope experiments is done using Monte Carlo simulations of the air shower development, Cherenkov radiation and detector, assuming certain models for the atmospheric conditions. Any deviation of the real conditions during observations from the assumed atmospheric model will result in a wrong reconstruction of the primary gamma-ray energy and the resulting source spectra. During eight years of observations, the High Energy Stereoscopic System (H.E.S.S.) has experienced periodic natural as well as anthropogenic variations of the atmospheric transparency due to aerosols created by biomass burning. In order to identify data that have been taken under such long-term reductions in atmospheric transparency, ...

  9. Quantum calculation of the Vavilov-Cherenkov radiation by twisted electrons

    Science.gov (United States)

    Ivanov, I. P.; Serbo, V. G.; Zaytsev, V. A.

    2016-05-01

    We present a detailed quantum electrodynamical description of Vavilov-Cherenkov radiation emitted by a relativistic twisted electron in the transparent medium. Simple expressions for the spectral and spectral-angular distributions as well as for the polarization properties of the emitted radiation are obtained. Unlike the plane-wave case, the twisted electron produces radiation within the annular angular region, with enhancement towards its boundaries. Additionally, the emitted photons can have linear polarization not only in the scattering plane but also in the orthogonal direction. We find that the Vavilov-Cherenkov radiation emitted by an electron in a superposition of two vortex states exhibits a strong azimuthal asymmetry. Thus, the Vavilov-Cherenkov radiation offers itself as a convenient diagnostic tool of such electrons and complements the traditional microscopic imaging.

  10. Quantum calculation of the Vavilov-Cherenkov radiation by twisted electrons

    CERN Document Server

    Ivanov, I P; Zaytsev, V A

    2016-01-01

    We present the detailed quantum electrodynamical description of Vavilov-Cherenkov radiation emitted by a relativistic twisted electron in the transparent medium. Simple expressions for the spectral and spectral-angular distributions as well as for the polarization properties of the emitted radiation are obtained. Unlike the plane-wave case, the twisted electron produces radiation within the annular angular region, with enhancement towards its boundaries. Additionally, the emitted photons can have linear polarization not only in the scattering plane but also in the orthogonal direction. We find that the Vavilov-Cherenkov radiation emitted by an electron in a superposition of two vortex states exhibits a strong azimuthal asymmetry. Thus, the Vavilov-Cherenkov radiation offers itself as a convenient diagnostic tool of such electrons and complements the traditional microscopic imaging.

  11. Microwave imaging for security applications

    OpenAIRE

    Almazroui, Sultan

    2015-01-01

    Microwave imaging technologies have been widely researched in the biomedical field where they rely on the imaging of dielectric properties of tissues. Healthy and malignant tissue have different dielectric properties in the microwave frequency region, therefore, the dielectric properties of a human body’s tissues are generally different from other contraband materials. Consequently, dielectric data analysis techniques using microwave signals can be used to distinguish between different types ...

  12. Applications of optical imaging; Optische Bildgebung: Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Schellenberger, E. [Inst. fuer Radiologie, Charite-Universitaetsmedizin, Berlin (Germany)

    2005-07-01

    Optical imaging in the form of near infrared fluorescence and bioluminescence has proven useful for a wide range of applications in the field of molecular imaging. Both techniques provide a high sensitivity (in the nanomolar range), which is of particular importance for molecular imaging. Imaging with near infrared fluorescence is especially cost-effective and can be performed, in contrast to radioactivity-based methods, with fluorescence dyes that remain stable for months. The most important advantage of bioluminescence, in turn, is the lack of background signal. Although molecular imaging with these techniques is still in the experimental phase, an application of near infrared fluorescence is already foreseeable for the imaging of superficial structures. (orig.)

  13. Computer vision for biomedical image applications. Proceedings

    International Nuclear Information System (INIS)

    This book constitutes the refereed proceedings of the First International Workshop on Computer Vision for Biomedical Image Applications: Current Techniques and Future Trends, CVBIA 2005, held in Beijing, China, in October 2005 within the scope of ICCV 20. (orig.)

  14. Image processing applications in NDE

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R.A.

    1980-01-01

    Nondestructive examination (NDE) can be defined as a technique or collection of techniques that permits one to determine some property of a material or object without damaging the object. There are a large number of such techniques and most of them use visual imaging in one form or another. They vary from holographic interferometry where displacements under stress are measured to the visual inspection of an objects surface to detect cracks after penetrant has been applied. The use of image processing techniques on the images produced by NDE is relatively new and can be divided into three general categories: classical image enhancement; mensuration techniques; and quantitative sensitometry. An example is discussed of how image processing techniques are used to nondestructively and destructively test the product throughout its life cycle. The product that will be followed is the microballoon target used in the laser fusion program. The laser target is a small (50 to 100 ..mu..m - dia) glass sphere with typical wall thickness of 0.5 to 6 ..mu..m. The sphere may be used as is or may be given a number of coatings of any number of materials. The beads are mass produced by the millions and the first nondestructive test is to separate the obviously bad beads (broken or incomplete) from the good ones. After this has been done, the good beads must be inspected for spherocity and wall thickness uniformity. The microradiography of the glass, uncoated bead is performed on a specially designed low-energy x-ray machine. The beads are mounted in a special jig and placed on a Kodak high resolution plate in a vacuum chamber that contains the x-ray source. The x-ray image is made with an energy less that 2 keV and the resulting images are then inspected at a magnification of 500 to 1000X. Some typical results are presented.

  15. Industrial applications of process imaging and image processing

    Science.gov (United States)

    Scott, David M.; Sunshine, Gregg; Rosen, Lou; Jochen, Ed

    2001-02-01

    Process imaging is the art of visualizing events inside closed industrial processes. Image processing is the art of mathematically manipulating digitized images to extract quantitative information about such processes. Ongoing advances in camera and computer technology have made it feasible to apply these abilities to measurement needs in the chemical industry. To illustrate the point, this paper describes several applications developed at DuPont, where a variety of measurements are based on in-line, at-line, and off-line imaging. Application areas include compounding, melt extrusion, crystallization, granulation, media milling, and particle characterization. Polymer compounded with glass fiber is evaluated by a patented radioscopic (real-time X-ray imaging) technique to measure concentration and dispersion uniformity of the glass. Contamination detection in molten polymer (important for extruder operations) is provided by both proprietary and commercial on-line systems. Crystallization in production reactors is monitored using in-line probes and flow cells. Granulation is controlled by at-line measurements of granule size obtained from image processing. Tomographic imaging provides feedback for improved operation of media mills. Finally, particle characterization is provided by a robotic system that measures individual size and shape for thousands of particles without human supervision. Most of these measurements could not be accomplished with other (non-imaging) techniques.

  16. Prior image constrained image reconstruction in emerging computed tomography applications

    Science.gov (United States)

    Brunner, Stephen T.

    Advances have been made in computed tomography (CT), especially in the past five years, by incorporating prior images into the image reconstruction process. In this dissertation, we investigate prior image constrained image reconstruction in three emerging CT applications: dual-energy CT, multi-energy photon-counting CT, and cone-beam CT in image-guided radiation therapy. First, we investigate the application of Prior Image Constrained Compressed Sensing (PICCS) in dual-energy CT, which has been called "one of the hottest research areas in CT." Phantom and animal studies are conducted using a state-of-the-art 64-slice GE Discovery 750 HD CT scanner to investigate the extent to which PICCS can enable radiation dose reduction in material density and virtual monochromatic imaging. Second, we extend the application of PICCS from dual-energy CT to multi-energy photon-counting CT, which has been called "one of the 12 topics in CT to be critical in the next decade." Numerical simulations are conducted to generate multiple energy bin images for a photon-counting CT acquisition and to investigate the extent to which PICCS can enable radiation dose efficiency improvement. Third, we investigate the performance of a newly proposed prior image constrained scatter correction technique to correct scatter-induced shading artifacts in cone-beam CT, which, when used in image-guided radiation therapy procedures, can assist in patient localization, and potentially, dose verification and adaptive radiation therapy. Phantom studies are conducted using a Varian 2100 EX system with an on-board imager to investigate the extent to which the prior image constrained scatter correction technique can mitigate scatter-induced shading artifacts in cone-beam CT. Results show that these prior image constrained image reconstruction techniques can reduce radiation dose in dual-energy CT by 50% in phantom and animal studies in material density and virtual monochromatic imaging, can lead to radiation

  17. CMOS Image Sensors for High Speed Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2009-01-01

    Full Text Available Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4~5 μm due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps.

  18. Cherenkov TOF PET with silicon photomultipliers

    Science.gov (United States)

    Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.

    2015-12-01

    As previously demonstrated, an excellent timing resolution below 100 ps FWHM is possible in time-of-flight positron emission tomography (TOF PET) if the detection method is based on the principle of detecting photons of Cherenkov light, produced in a suitable material and detected by microchannel plate photomultipliers (MCP PMTs). In this work, the silicon photomultipliers (SiPMs) were tested for the first time as the photodetectors in Cherenkov TOF PET. The high photon detection efficiency (PDE) of SiPMs led to a large improvement in detection efficiency. On the other hand, the time response of currently available SiPMs is not as good as that of MCP PMTs. The SiPM dark counts introduce a new source of random coincidences in Cherenkov method, which would be overwhelming with present SiPM technology at room temperature. When the apparatus was cooled, its performance significantly improved.

  19. FEU-49 photomultiplier sensitivity to Cherenkov radiation

    International Nuclear Information System (INIS)

    With the aim of verifying the possibility of applying the FEU-19 photomultiplier in large installations for recording the Cherenkov radiation in water, the quantum sensitivity of four specimens of FEU-49 has been measured. The measurements are carried out at a maximum thickness of a distilled water layer equal to 4 cm. The Cherenkov radiation has been produced in water by cosmic muons. Presented are flowsheets used for measuring quantum efficiency of the FEU-49 photocathode and dispersion of its amplification coefficient. By comparing the results of measurements performed with the calculated estimates, a conclusion has been drawn on their good agreements and on suitability of FEU-49 for recording the Cherenkov radiation in water

  20. A Cherenkov Detector for Monitoring ATLAS Luminosity

    CERN Document Server

    Sbrizzi, A; The ATLAS collaboration

    2010-01-01

    LUCID (LUminosity Cherenkov Integrating Detector) is the monitor of the luminosity delivered by the LHC accelerator to the ATLAS experiment. The detector is made of two symmetric arms deployed at about 17 m from the ATLAS interaction point. Each arm consists of an aluminum vessel containing 20 tubes, 15 mm diameter and 1500 mm length, and a Cherenkov gaseous radiator (C4F10) at about 1.1 bar absolute. The light generated by charged particles above the Cherenkov threshold is collected by photomultiplier tubes (PMT) directly placed at the tubes end. Thanks to an intrinsically fast response and to its custom readout electronics, LUCID estimates the number of interactions per LHC bunch crossing and provides an interaction trigger to the ATLAS experiment. The relevant details of the detector design and the expexted performance based on Monte Carlo simulations are presented, together with the first results obtained with pp collisions produced by LHC.

  1. Infrared thermal imaging fundamentals, research and applications

    CERN Document Server

    Vollmer, Michael

    2011-01-01

    This richly illustrated hands-on guide is designed for researchers, teachers and practitioners. The huge selection of examples taken from science, basic teaching of physics, practical applications in industry and a variety of other disciplines spanning the range from medicine to volcano research allows readers to pick those that come closest to their own individual task at hand. Following a look at the fundamentals of IR thermal imaging, properties of the imaging systems, as well as basic and advanced methods, the book goes on to discuss IR imaging applications in teaching, research and indust

  2. The Cherenkov Radiation for Non-Trivial Systems; La Radiacion Cherenkov en Sistemas No Triviales

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.

    2002-07-01

    The charge pathways and the dielectric properties of the medium are two essential aspects to be considered in the study of the emission of Cherenkov radiation. We described the evolution of the Cherenkov wavefront when the charges follow circular or helical pathways. Also we derive expressions for the refractive Index in different transparent media (solid, liquid or gas), focusing our attention on optically active plasmas. The optical analogies between the plasma and the birefringent crystals is studied in detail. Finally, we list some examples of plasmas, which can be considered emitters of Cherenkov radiation. (Author) 52 refs.

  3. A quartz Cherenkov detector for Compton-polarimetry at future e+e− colliders

    International Nuclear Information System (INIS)

    Precision polarimetry is essential for future e+e− colliders and requires Compton polarimeters designed for negligible statistical uncertainties. In this paper, we discuss the design and construction of a quartz Cherenkov detector for such Compton polarimeters. The detector concept has been developed with regard to the main systematic uncertainties of the polarisation measurements, namely the linearity of the detector response and detector alignment. Simulation studies presented here imply that the light yield reachable by using quartz as Cherenkov medium allows to resolve in the Cherenkov photon spectra individual peaks corresponding to different numbers of Compton electrons. The benefits of the application of a detector with such single-peak resolution to the polarisation measurement are shown for the example of the upstream polarimeters foreseen at the International Linear Collider. Results of a first testbeam campaign with a four-channel prototype confirming simulation predictions for single electrons are presented

  4. Clinical applications of choroidal imaging technologies

    Directory of Open Access Journals (Sweden)

    Jay Chhablani

    2015-01-01

    Full Text Available Choroid supplies the major blood supply to the eye, especially the outer retinal structures. Its understanding has significantly improved with the advent of advanced imaging modalities such as enhanced depth imaging technique and the newer swept source optical coherence tomography. Recent literature reports the findings of choroidal changes, quantitative as well as qualitative, in various chorioretinal disorders. This review article describes applications of choroidal imaging in the management of common diseases such as age-related macular degeneration, high myopia, central serous chorioretinopathy, chorioretinal inflammatory diseases, and tumors. This article briefly discusses future directions in choroidal imaging including angiography.

  5. Magnetic imaging and its applications to materials

    CERN Document Server

    De Graef, Marc

    2000-01-01

    Volume 36 provides an extensive introduction to magnetic imaging,including theory and practice, utilizing a wide range of magnetic sensitive imaging methods. It also illustrates the applications of these modern experimental techniques together with imaging calculations to today's advanced magnetic materials. This book is geared towards the upper-level undergraduate students and entry-level graduate students majoring in physics or materials science who are interested in magnetic structure and magnetic imaging. Researchers involved in studying magnetic materials should alsofind the book usef

  6. Image Processing Application on Graphics processors

    Directory of Open Access Journals (Sweden)

    Chouchene Marwa

    2014-04-01

    Full Text Available In this work, we introduce real time image processing techniques using modern programmable Graphic Processing Units GPU. GPU are SIMD (Single Instruction, Multiple Data device that is inherently data-parallel. By utilizing NVIDIA new GPU programming framework, “Compute Unified Device Architecture” CUDA as a computational resource, we realize significant acceleration in image processing algorithm computations. We show that a range of computer vision algorithms map readily to CUDA with significant performance gains. Specifically, we demonstrate the efficiency of our approach by a parallelization and optimization of image processing, Morphology applications and image integral.

  7. Combined complex Doppler and Cherenkov effect in left-handed metamaterials

    CERN Document Server

    Ziemkiewicz, David

    2015-01-01

    We derive the formula of the complex Doppler shift in a two-dimensional, dispersive metamaterial and we show that a moving, monochromatic radiation source generates multiple frequency modes. The role of the group velocity is stressed and the Doppler shifted radiation field exhibits features of the Cherenkov effect. The presented theory is also applicable to the case of a moving, nonoscillating charge and explains many peculiar characteristics of the Cherenkov radiation in lefthanded metamaterials such as the backward direction of power emission, the constant radiation angle and the lack of velocity threshold.

  8. Spectral dependence of angular distribution halfwidths of Vavilov-Cherenkov radiation

    International Nuclear Information System (INIS)

    Angular distributions of Vavilov-Cherenkov radiation have been measured. This radiaiton is excited during 210 keV electron propagation in a mica 2.5 mm thick target in a spectral range from 2500 up to 5000 A. A formula for diffraction halfwidth of angular distribution has been derived, its applicability limits are pointed out. Experimental halfwidth agrees with the calculated ones. The deviation of angular distribution maximum from Vavilov-Cherenkov radiation angle is analyzed. This deviation is due to radiator boundaries and multiple scattering of electrons

  9. Flipping photons backward: reversed Cherenkov radiation

    Directory of Open Access Journals (Sweden)

    Hongsheng Chen

    2011-01-01

    Full Text Available Charged particles moving faster than light in a medium produce Cherenkov radiation. In traditional, positive index-of-refraction materials this radiation travels forward. Metamaterials, with negative indices of refraction, flip the radiation backward. This readily separates it from the particles, providing higher flexibility in photon manipulation and is useful for particle identification and counting. Here we review recent advances in reversed Cherenkov radiation research, including the first demonstration of backward emission. We also discuss the potential for developing new types of devices, such as ones that pierce invisibility cloaks.

  10. All-fiber femtosecond Cherenkov radiation source

    OpenAIRE

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2012-01-01

    An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave-conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580–630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. ...

  11. The Cherenkov Telescope Array For Very High-Energy Astrophysics

    Science.gov (United States)

    Kaaret, Philip

    2015-08-01

    The field of very high energy (VHE) astrophysics had been revolutionized by the results from ground-based gamma-ray telescopes, including the current imaging atmospheric Cherenkov telescope (IACT) arrays: HESS, MAGIC and VERITAS. A worldwide consortium of scientists from 29 countries has formed to propose the Cherenkov Telescope Array (CTA) that will capitalize on the power of this technique to greatly expand the scientific reach of ground-based gamma-ray telescopes. CTA science will include key topics such as the origin of cosmic rays and cosmic particle acceleration, understanding extreme environments in regions close to neutron stars and black holes, and exploring physics frontiers through, e.g., the search for WIMP dark matter, axion-like particles and Lorentz invariance violation. CTA is envisioned to consist of two large arrays of Cherenkov telescopes, one in the southern hemisphere and one in the north. Each array will contain telescopes of different sizes to provide a balance between cost and array performance over an energy range from below 100 GeV to above 100 TeV. Compared to the existing IACT arrays, CTA will have substantially better angular resolution and energy resolution, will cover a much wider energy range, and will have up to an order of magnitude better sensitivity. CTA will also be operated as an open observatory and high-level CTA data will be placed into the public domain; these aspects will enable broad participation in CTA science from the worldwide scientific community to fully capitalize on CTA's potential. This talk will: 1) review the scientific motivation and capabilities of CTA, 2) provide an overview of the technical design and the status of prototype development, and 3) summarize the current status of the project in terms of its proposed organization and timeline. The plans for access to CTA data and opportunities to propose for CTA observing time will be highlighed.Presented on behalf of the CTA Consortium.

  12. Development of a custom on-line ultrasonic vapour analyzer and flow meter for the ATLAS inner detector, with application to Cherenkov and gaseous charged particle detectors

    OpenAIRE

    Alhrooba, M.; Batesb, R.; Degeorged, C.; Deterree, C.; DiGirolamoc, B.; Doubekf, M.; Favrec, G.; Godlewskib, J.; Hallewellg, G.; Hasiba, A.; Katuninh, S.; Langeving, N.; Battistinc, M.; Lombardc, D.; Mathieug, M.

    2015-01-01

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom microcontroller-based electronics, currently used in the ATLAS Detector Control System, with numerous potential applications. Three instruments monitor C3F8 and CO2 coolant leak rates into the nitrogen envelopes of the ATLAS silicon microstrip and Pixel detectors. Two further instruments will aid operation of the new thermosiphon coolant recirculator: o...

  13. Fundamentals and applications of neutron imaging (applications part 10). Applications of neutron imaging to medical field

    International Nuclear Information System (INIS)

    Described is the application of neutron (Nt) imaging in 3 objects, small animals and excised organs, odontology, and BNCT (boron Nt capture therapy). Nt radiography (NR) uses the fast and thermal Nt. For the former Nt, NR is done by transferring the permeation image on In-leaf to X-ray film or by direct imaging on nitro-cellulose film; and for the latter, by imaging on X-ray film through Gd-converter, by transfer of the image on In- or Dy-leaf to the film or by use of (BaFBr-Gd2O3) Nt imaging plate. NR in animals can image air-containing organs like the lung. For human excised organs, NR can give images of wet tissues in hard organs like malignant tumors in the bone due to a large and small Nt cross sections of H and Ca, respectively. Excised gallstones (cholesterol- and Ca-derived) have been subjected to NR. NR of the pancreatic cancer has been reported with fast Nt. Many studies of NR have been reported in odontology, involving animals', human normal, treated and prosthetic teeth. NR can give information different in nature from X-ray radiography and further development of NR in odontology is expected as one of nondestructive tests. In BNCT-related field, NCAR (NC autoradiography) has been applied for seeing the distribution of 10B in the tumor-bearing mouse given a B compound. Thermal and cold Nts are irradiated on the mouse whole body section and yielded (4He+7Li) radioactivity is detected by CR-39 plastic track detector undergone with various etching treatments. The distribution in the body and tumor can be observed by NCAR and by the recently-developed, versatile high speed image acquisition microscope, respectively. Micro-dosimetry on the CR-39 is thought possible by the latter microscope. (R.T.)

  14. On-site mirror facet condensation measurements for the Cherenkov Telescope Array

    Science.gov (United States)

    Dipold, J.; Medina, M. C.; García, B.; Rasztocky, E.; Mancilla, A.; Maya, J.; Larrarte, J. J.; de Souza, V.

    2016-09-01

    The Imaging Atmospheric Cherenkov Technique (IACT) has provided very important discoveries in Very High Energy (VHE) γ-ray astronomy for the last two decades, being exploited mainly by experiments such as H.E.S.S., MAGIC and VERITAS. The same technique will be used by the next generation of γ-ray telescopes, Cherenkov Telescope Array - CTA, which is conceived to be an Observatory composed by two arrays strategically placed in both hemispheres, one in the Northern and one in the Southern. Each site will consist of several tens of Cherenkov telescopes of different sizes and will be equipped with about 10000 m2 of reflective surface. Because of its large size, the reflector of a Cherenkov telescope is composed of many individual mirror facets. Cherenkov telescopes operate without any protective system from weather conditions therefore it is important to understand how the reflective surfaces behave under different environmental conditions. This paper describes a study of the behavior of the mirrors in the presence of water vapor condensation. The operational time of a telescope is reduced by the presence of condensation on the mirror surface, therefore, to control and to monitor the formation of condensation is an important issue for IACT observatories. We developed a method based on pictures of the mirrors to identify the areas with water vapor condensation. The method is presented here and we use it to estimate the time and area two mirrors had condensation when exposed to the environmental conditions in the Argentinean site. The study presented here shows important guidelines in the selection procedure of mirror technologies and shows an innovative monitoring tool to be used in future Cherenkov telescopes.

  15. Development of a custom on-line ultrasonic vapour analyzer and flow meter for the ATLAS inner detector, with application to Cherenkov and gaseous charged particle detectors

    International Nuclear Information System (INIS)

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom microcontroller-based electronics, currently used in the ATLAS Detector Control System, with numerous potential applications. Three instruments monitor C3F8 and CO2 coolant leak rates into the nitrogen envelopes of the ATLAS silicon microstrip and Pixel detectors. Two further instruments will aid operation of the new thermosiphon coolant recirculator: one of these will monitor air leaks into the low pressure condenser while the other will measure return vapour flow along with C3F8/C2F6 blend composition, should blend operation be necessary to protect the ATLAS silicon tracker under increasing LHC luminosity. We describe these instruments and their electronics

  16. Development of a custom on-line ultrasonic vapour analyzer/flowmeter for the ATLAS inner detector, with application to gaseous tracking and Cherenkov detectors

    Science.gov (United States)

    Bates, R.; Battistin, M.; Berry, S.; Berthoud, J.; Bitadze, A.; Bonneau, P.; Botelho-Direito, J.; Bousson, N.; Boyd, G.; Bozza, G.; Da Riva, E.; Degeorge, C.; DiGirolamo, B.; Doubek, M.; Godlewski, J.; Hallewell, G.; Katunin, S.; Lombard, D.; Mathieu, M.; McMahon, S.; Nagai, K.; Perez-Rodriguez, E.; Rossi, C.; Rozanov, A.; Vacek, V.; Vitek, M.; Zwalinski, L.

    2013-01-01

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom electronics, currently in use in the ATLAS inner detector, with numerous potential applications. The instrument has demonstrated ~ 0.3% mixture precision for C3F8/C2F6 mixtures and < 10-4 resolution for N2/C3F8 mixtures. Moderate and high flow versions of the instrument have demonstrated flow resolutions of ± 2% of full scale for flows up to 250 l min-1, and ± 1.9% of full scale for linear flow velocities up to 15 m s-1 the latter flow approaching that expected in the vapour return of the thermosiphon fluorocarbon coolant recirculator being built for the ATLAS silicon tracker.

  17. Development of a custom on-line ultrasonic vapour analyzer/flowmeter for the ATLAS inner detector, with application to gaseous tracking and Cherenkov detectors

    CERN Document Server

    Bates, R; Berry, S; Berthoud, J; Bitadze, A; Bonneau, P; Botelho-Direito, J; Bousson, N; Boyd, G; Bozza, G; Da Riva, E; Degeorge, C; DiGirolamo, B; Doubek, M; Godlewski, J; Hallewell, G; Katunin, S; Lombard, D; Mathieu, M; McMahon, S; Nagai, K; Perez-Rodriguez, E; Rossi, C; Rozanov, A; Vacek, V; Vitek, M; Zwalinski, L

    2013-01-01

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom electronics, currently in use in the ATLAS inner detector, with numerous potential applications. The instrument has demonstrated ~0.3% mixture precision for C3F8/C2F6 mixtures and < 10-4 resolution for N2/C3F8 mixtures. Moderate and high flow versions of the instrument have demonstrated flow resolutions of +/- 2% F.S. for flows up to 250 l.min-1, and +/- 1.9% F.S. for linear flow velocities up to 15 ms-1; the latter flow approaching that expected in the vapour return of the thermosiphon fluorocarbon coolant recirculator being built for the ATLAS silicon tracker.

  18. Development of a custom on-line ultrasonic vapour analyzer and flow meter for the ATLAS inner detector, with application to Cherenkov and gaseous charged particle detectors

    Science.gov (United States)

    Alhroob, M.; Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Bozza, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; DiGirolamo, B.; Doubek, M.; Favre, G.; Godlewski, J.; Hallewell, G.; Hasib, A.; Katunin, S.; Langevin, N.; Lombard, D.; Mathieu, M.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Strauss, M.; Vacek, V.; Zwalinski, L.

    2015-03-01

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom microcontroller-based electronics, currently used in the ATLAS Detector Control System, with numerous potential applications. Three instruments monitor C3F8 and CO2 coolant leak rates into the nitrogen envelopes of the ATLAS silicon microstrip and Pixel detectors. Two further instruments will aid operation of the new thermosiphon coolant recirculator: one of these will monitor air leaks into the low pressure condenser while the other will measure return vapour flow along with C3F8/C2F6 blend composition, should blend operation be necessary to protect the ATLAS silicon tracker under increasing LHC luminosity. We describe these instruments and their electronics.

  19. Applications of nuclear medicine in genitourinary imaging

    Energy Technology Data Exchange (ETDEWEB)

    Blaufox, M.D.; Kalika, V.; Scharf, S.; Milstein, D.

    1982-01-01

    Major advances in nuclear medicine instrumentation and radiopharmaceuticals for renal studies have occurred during the last decade. Current nuclear medicine methodology can be applied for accurate evaluation of renal function and for renal imaging in a wide variety of clinical situations. Total renal function can be estimated from the plasma clearance of agents excreted by glomerular filtration or tubular secretion, and individual function can be estimated by imaging combined with renography. A major area of radionuclide application is in the evaluation of obstructive uropathy. The introduction of diuretic renography and the use of computer-generated regions of interest offer the clinician added useful data which may aid in diagnosis and management. Imaging is of proven value also in trauma, renovascular hypertension, and acute and chronic renal failure. Methods for the evaluation of residual urine, vesicoureteral reflux, and testicular torsion have achieved increasing clinical use. These many procedures assure a meaningful and useful role for the application of nuclear medicine in genitourinary imaging.

  20. Progress on Cherenkov Reconstruction in MICE

    CERN Document Server

    Kaplan, Daniel M; Rajaram, Durga; Winter, Miles; Cremaldi, Lucien; Sanders, David; Summers, Don

    2016-01-01

    Two beamline Cherenkov detectors (Ckov-a,-b) support particle identification in the MICE beamline. Electrons and high-momentum muons and pions can be identified with good efficiency. We report on the Ckov-a,-b performance in detecting pions and muons with MICE Step I data and derive an upper limit on the pion contamination in the standard MICE muon beam.

  1. Searching for tau neutrinos with Cherenkov telescopes

    CERN Document Server

    Gora, D; Kappes, A

    2014-01-01

    Cherenkov telescopes have the capability of detecting high energy tau neutrinos in the energy range of 1--1000 PeV by searching for very inclined showers. If a tau lepton, produced by a tau neutrino, escapes from the Earth or a mountain, it will decay and initiate a shower in the air which can be detected by an air shower fluorescence or Cherenkov telescope. In this paper, we present detailed Monte Carlo simulations of corresponding event rates for the VERITAS and two proposed Cherenkov Telescope Array sites: Meteor Crater and Yavapai Ranch, which use representative AGN neutrino flux models and take into account topographic conditions of the detector sites. The calculated neutrino sensitivities depend on the observation time and the shape of the energy spectrum, but in some cases are comparable or even better than corresponding neutrino sensitivities of the IceCube detector. For VERITAS and the considered Cherenkov Telescope Array sites the expected neutrino sensitivities are up to factor 3 higher than for th...

  2. Tachyonic Cherenkov radiation in the absorptive aether

    International Nuclear Information System (INIS)

    Dissipative tachyonic Cherenkov densities are derived and tested by performing a spectral fit to the γ-ray flux of supernova remnant (SNR) RX J1713.7 − 3946, measured over five frequency decades up to 100 TeV. The manifestly covariant formalism of tachyonic Maxwell–Proca radiation fields is developed in the spacetime aether, starting with the complex Lagrangian coupled to dispersive and dissipative permeability tensors. The spectral energy and flux densities of the radiation field are extracted by time averaging, the energy conservation law is derived, and the energy dissipation caused by the complex frequency-dependent permeabilities of the aether is quantified. The tachyonic mass-square in the field equations gives rise to transversally/longitudinally propagating flux components, with differing attenuation lengths determined by the imaginary part of the transversal/longitudinal dispersion relation. The spectral fit is performed with the classical tachyonic Cherenkov flux radiated by the shell-shocked electron plasma of SNR RX J1713.7 − 3946, exhibiting subexponential spectral decay. - Highlights: • Tachyonic Maxwell–Proca radiation fields in a dispersive and dissipative spacetime. • Transversal/longitudinal Poynting flux vector and associated spectral energy density. • Energy dissipation quantified by absorption term in the energy conservation law. • Dissipative Cherenkov densities (classical) and tachyonic attenuation lengths. • Cherenkov energy flux from the shocked electron plasma of SNR RX J1713.7 − 3946

  3. Fundamental and exotic physics with Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, A., E-mail: alessandro.de.angelis@cern.c [Dipartimento di Fisica dell' Universita di Udine and INFN, Udine (Italy); De Lotto, B. [Dipartimento di Fisica dell' Universita di Udine and INFN, Udine (Italy); Roncadelli, M. [INFN Pavia (Italy)

    2011-02-21

    The detection of high-energy {gamma} rays from astrophysical sources, using the Fermi/LAT detector and in the very-high-energy limit the Cherenkov telescopes MAGIC, H.E.S.S. and VERITAS, can provide tests of fundamental physics with unprecedented sensitivity, and possibly allows to probe new and exotic scenarios.

  4. Mass spectrometry imaging for biomedical applications

    OpenAIRE

    Liu, Jiangjiang; Ouyang, Zheng

    2013-01-01

    The development of mass spectrometry imaging technologies is of significant current research interest. Mass spectrometry potentially is capable of providing highly specific information about the distribution of chemical compounds on tissues at highly sensitive levels. The required in-situ analysis for the tissue imaging forced MS analysis being performed off the traditional conditions optimized in pharmaceutical applications with intense sample preparation. This critical review seeks to prese...

  5. Atmospheric multiple scattering of fluorescence and Cherenkov light emitted by extensive air showers

    OpenAIRE

    Pekala, J.; Homola, P.; Wilczynska, B.; Wilczynski, H.

    2009-01-01

    Atmospheric scattering of light emitted by an air shower not only attenuates direct fluorescence light from the shower, but also contributes to the observed shower light. So far only direct and singly-scattered Cherenkov photons have been taken into account in routine analyses of the observed optical image of air showers. In this paper a Monte Carlo method of evaluating the contribution of multiply scattered light to the optical air shower image is presented, as well as results of simulations...

  6. Quality measures in applications of image restoration.

    Science.gov (United States)

    Kriete, A; Naim, M; Schafer, L

    2001-01-01

    We describe a new method for the estimation of image quality in image restoration applications. We demonstrate this technique on a simulated data set of fluorescent beads, in comparison with restoration by three different deconvolution methods. Both the number of iterations and a regularisation factor are varied to enforce changes in the resulting image quality. First, the data sets are directly compared by an accuracy measure. These values serve to validate the image quality descriptor, which is developed on the basis of optical information theory. This most general measure takes into account the spectral energies and the noise, weighted in a logarithmic fashion. It is demonstrated that this method is particularly helpful as a user-oriented method to control the output of iterative image restorations and to eliminate the guesswork in choosing a suitable number of iterations. PMID:11587324

  7. INFN Camera demonstrator for the Cherenkov Telescope Array

    CERN Document Server

    Ambrosi, G; Aramo, C.; Bertucci, B.; Bissaldi, E.; Bitossi, M.; Brasolin, S.; Busetto, G.; Carosi, R.; Catalanotti, S.; Ciocci, M.A.; Consoletti, R.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Palma, F.; Desiante, R.; Di Girolamo, T.; Di Giulio, C.; Doro, M.; D'Urso, D.; Ferraro, G.; Ferrarotto, F.; Gargano, F.; Giglietto, N.; Giordano, F.; Giraudo, G.; Iacovacci, M.; Ionica, M.; Iori, M.; Longo, F.; Mariotti, M.; Mastroianni, S.; Minuti, M.; Morselli, A.; Paoletti, R.; Pauletta, G.; Rando, R.; Fernandez, G. Rodriguez; Rugliancich, A.; Simone, D.; Stella, C.; Tonachini, A.; Vallania, P.; Valore, L.; Vagelli, V.; Verzi, V.; Vigorito, C.

    2015-01-01

    The Cherenkov Telescope Array is a world-wide project for a new generation of ground-based Cherenkov telescopes of the Imaging class with the aim of exploring the highest energy region of the electromagnetic spectrum. With two planned arrays, one for each hemisphere, it will guarantee a good sky coverage in the energy range from a few tens of GeV to hundreds of TeV, with improved angular resolution and a sensitivity in the TeV energy region better by one order of magnitude than the currently operating arrays. In order to cover this wide energy range, three different telescope types are envisaged, with different mirror sizes and focal plane features. In particular, for the highest energies a possible design is a dual-mirror Schwarzschild-Couder optical scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based camera is being proposed as a solution to match the dimensions of the pixel (angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made by 9 Photo Sensor Modules (PSMs...

  8. NECTAr: New electronics for the Cherenkov Telescope Array

    International Nuclear Information System (INIS)

    The European astroparticle physics community aims to design and build the next generation array of Imaging Atmospheric Cherenkov Telescopes (IACTs), that will benefit from the experience of the existing H.E.S.S. and MAGIC detectors, and further expand the very-high energy astronomy domain. In order to gain an order of magnitude in sensitivity in the 10 GeV to >100TeV range, the Cherenkov Telescope Array (CTA) will employ 50-100 mirrors of various sizes equipped with 1000-4000 channels per camera, to be compared with the 6000 channels of the final H.E.S.S. array. A 3-year program, started in 2009, aims to build and test a demonstrator module of a generic CTA camera. We present here the NECTAr design of front-end electronics for the CTA, adapted to the trigger and data acquisition of a large IACTs array, with simple production and maintenance. Cost and camera performances are optimized by maximizing integration of the front-end electronics (amplifiers, fast analog samplers, ADCs) in an ASIC, achieving several GS/s and a few μs readout dead-time. We present preliminary results and extrapolated performances from Monte Carlo simulations.

  9. Open-structure composite mirrors for the Cherenkov Telescope Array

    CERN Document Server

    Dyrda, Michal; Niemiec, Jacek; Stodulski, Marek

    2013-01-01

    The Cherenkov Telescope Array (CTA) Observatory for high-energy gamma-ray astronomy will comprise several tens of imaging atmospheric Cherenkov telescopes (IACTs) of different size with a total reflective area of about 10,000 m$^2$. Here we present a new technology for the production of IACT mirrors that has been developed in the Institute of Nuclear Physics PAS in Krakow, Poland. An open-structure composite mirror consists of a rigid flat sandwich support structure and cast-in-mould spherical epoxy resin layer. To this layer a thin glass sheet complete with optical coating is cold-slumped to provide the spherical reflective layer of the mirror. The main components of the sandwich support structure are two flat float glass panels inter spaced with V-shape aluminum spacers of equal length. The sandwich support structure is open, thus enabling good cooling and ventilation of the mirror. A special arrangement of the aluminum spacers also prohibits water being trapped inside. The open-structure technology thus re...

  10. A Compact High Energy Camera for the Cherenkov Telescope Array

    CERN Document Server

    Daniel, M K; Berge, D; Buckley, J; Chadwick, P M; Cotter, G; Funk, S; Greenshaw, T; Hidaka, N; Hinton, J; Lapington, J; Markoff, S; Moore, P; Nolan, S; Ohm, S; Okumura, A; Ross, D; Sapozhnikov, L; Schmoll, J; Sutcliffe, P; Sykes, J; Tajima, H; Varner, G S; Vandenbroucke, J; Vink, J; Williams, D

    2013-01-01

    The Compact High Energy Camera (CHEC) is a camera-development project involving UK, US, Japanese and Dutch institutes for the dual-mirror Small-Sized Telescopes (SST-2M) of the Cherenkov Telescope Array (CTA). Two CHEC prototypes, based on different photosensors are funded and will be assembled and tested in the UK over the next ~18 months. CHEC is designed to record flashes of Cherenkov light lasting from a few to a hundred nanoseconds, with typical RMS image width and length of ~0.2 x 1.0 degrees, and has a 9 degree field of view. The physical camera geometry is dictated by the telescope optics: a curved focal surface with radius of curvature 1m and diameter ~35cm is required. CHEC is designed to work with both the ASTRI and GATE SST-2M telescope structures and will include an internal LED flasher system for calibration. The first CHEC prototype will be based on multi-anode photomultipliers (MAPMs) and the second on silicon photomultipliers (SiPMs or MPPCs). The first prototype will soon be installed on the...

  11. Color Image Watermarking Application for ERTU Cloud

    Directory of Open Access Journals (Sweden)

    Salah A. Khamis

    2013-11-01

    Full Text Available Color image is one of the the Egyptian Radio and Television Union (ERTU’s content should be saved from any abuse from outside or inside the organization alike. The application of saving color image deploys the watermarking techniques based on Discrete Wavelet Transform (DWT. This application is implemented by software that suits the ERTU’s cloud besides many tests to insure the originality of the photo and if there is any changes applied on. All that provides the essential objectives of the cloud to overcome the limitation of distance as well as provide reliable and trusted services to Authorized group.

  12. Superresolution imaging - from equations to mobile applications

    Czech Academy of Sciences Publication Activity Database

    Šroubek, Filip

    Granada : NIPS Foundation, 2011. s. 1-1. [NIPS 2011 Workshops. 16.12.2011-17.12.2011, Sierra Nevada] R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : superresolution * blind deconvolution Subject RIV: JD - Computer Applications, Robotics http://library.utia.cas.cz/separaty/2012/ZOI/sroubek-superresolution imaging - from equations to mobile applications.pdf

  13. Superresolution imaging - from equations to mobile applications

    Czech Academy of Sciences Publication Activity Database

    Šroubek, Filip

    Granada: NIPS Foundation, 2011. s. 1-1. [NIPS 2011 Workshops. 16.12.2011-17.12.2011, Sierra Nevada] R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : superresolution * blind deconvolution Subject RIV: JD - Computer Application s, Robotics http://library.utia.cas.cz/separaty/2012/ZOI/sroubek-superresolution imaging - from equations to mobile application s.pdf

  14. Image Processing and its Military Applications

    Directory of Open Access Journals (Sweden)

    V. V.D. Shah

    1987-10-01

    Full Text Available One of the important breakthroughs, image processing is the stand alone, non-human image understanding system (IUS. The task of understanding images becomes monumental as one tries to define what understanding really is. Both pattern recognition and artificial intelligence are used in addition to traditional signal processing. Scene analysis procedures using edge and texture segmentation can be considered as the early stages of image understanding process. Symbolic representation and relationship grammers come at subsequent stages. Thus it is not reasonable to put a man into a loop of signal processing at certain sensors such as remotely piloted vehicles, satellites and spacecrafts. Consequently smart sensors and semi-automatic processes are being developed. Land remote sensing has been another important application of the image processing. With the introduction of programmes like Star Wars this particular application has gained a special importance from the Military's point of view. This paper provides an overview of digital image processing and explores the scope of the technology of remote sensing and IUSs from the Military's point of view. An example of the autonomous vehicle project now under progress in the US is described in detail to elucidate the impact of IUSs.

  15. Fundus autofluorescence applications in retinal imaging

    OpenAIRE

    Andrea Gabai; Daniele Veritti; Paolo Lanzetta

    2015-01-01

    Fundus autofluorescence (FAF) is a relatively new imaging technique that can be used to study retinal diseases. It provides information on retinal metabolism and health. Several different pathologies can be detected. Peculiar AF alterations can help the clinician to monitor disease progression and to better understand its pathogenesis. In the present article, we review FAF principles and clinical applications.

  16. Fundus autofluorescence applications in retinal imaging

    Directory of Open Access Journals (Sweden)

    Andrea Gabai

    2015-01-01

    Full Text Available Fundus autofluorescence (FAF is a relatively new imaging technique that can be used to study retinal diseases. It provides information on retinal metabolism and health. Several different pathologies can be detected. Peculiar AF alterations can help the clinician to monitor disease progression and to better understand its pathogenesis. In the present article, we review FAF principles and clinical applications.

  17. Fundus autofluorescence applications in retinal imaging.

    Science.gov (United States)

    Gabai, Andrea; Veritti, Daniele; Lanzetta, Paolo

    2015-05-01

    Fundus autofluorescence (FAF) is a relatively new imaging technique that can be used to study retinal diseases. It provides information on retinal metabolism and health. Several different pathologies can be detected. Peculiar AF alterations can help the clinician to monitor disease progression and to better understand its pathogenesis. In the present article, we review FAF principles and clinical applications. PMID:26139802

  18. Multimodal interaction in image and video applications

    CERN Document Server

    Sappa, Angel D

    2013-01-01

    Traditional Pattern Recognition (PR) and Computer Vision (CV) technologies have mainly focused on full automation, even though full automation often proves elusive or unnatural in many applications, where the technology is expected to assist rather than replace the human agents. However, not all the problems can be automatically solved being the human interaction the only way to tackle those applications. Recently, multimodal human interaction has become an important field of increasing interest in the research community. Advanced man-machine interfaces with high cognitive capabilities are a hot research topic that aims at solving challenging problems in image and video applications. Actually, the idea of computer interactive systems was already proposed on the early stages of computer science. Nowadays, the ubiquity of image sensors together with the ever-increasing computing performance has open new and challenging opportunities for research in multimodal human interaction. This book aims to show how existi...

  19. Imaging spectrometer for process industry applications

    Science.gov (United States)

    Herrala, Esko; Okkonen, Jukka T.; Hyvarinen, Timo S.; Aikio, Mauri; Lammasniemi, Jorma

    1994-11-01

    This paper presents an imaging spectrometer principle based on a novel prism-grating-prism (PGP) element as the dispersive component and advanced camera solutions for on-line applications. The PGP element uses a volume type holographic plane transmission grating made of dichromated gelatin (DCG). Currently, spectrographs have been realized for the 400 - 1050 nm region but the applicable spectral region of the PGP is 380 - 1800 nm. Spectral resolution is typically between 1.5 and 5 nm. The on-axis optical configuration and simple rugged tubular optomechanical construction of the spectrograph provide a good image quality and resistance to harsh environmental conditions. Spectrograph optics are designed to be interfaced to any standard CCD camera. Special camera structures and operating modes can be used for applications requiring on-line data interpretation and process control.

  20. Construction of a Medium-Sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array: Implementation of the Cherenkov-Camera Data Acquisition System

    CERN Document Server

    Santander, M; Humensky, B; Mukherjee, R

    2015-01-01

    A medium-sized Schwarzchild-Couder Telescope (SCT) is being developed as a possible extension for the Cherenkov Telescope Array (CTA). The Cherenkov camera of the telescope is designed to have 11328 silicon photomultiplier pixels capable of capturing high-resolution images of air showers in the atmosphere. The combination of the large number of pixels and the high trigger rate (> 5 kHz) expected for this telescope results in a multi-Gbps data throughput. This sets challenging requirements on the design and performance of a data acquisition system for processing and storing this data. A prototype SCT (pSCT) with a partial camera containing 1600 pixels, covering a field of view of 2.5 x 2.5 square degrees, is being assembled at the F.L. Whipple Observatory. We present the design and current status of the SCT data acquisition system.

  1. Uncooled LWIR imaging: applications and market analysis

    Science.gov (United States)

    Takasawa, Satomi

    2015-05-01

    The evolution of infrared (IR) imaging sensor technology for defense market has played an important role in developing commercial market, as dual use of the technology has expanded. In particular, technologies of both reduction in pixel pitch and vacuum package have drastically evolved in the area of uncooled Long-Wave IR (LWIR; 8-14 μm wavelength region) imaging sensor, increasing opportunity to create new applications. From the macroscopic point of view, the uncooled LWIR imaging market is divided into two areas. One is a high-end market where uncooled LWIR imaging sensor with sensitivity as close to that of cooled one as possible is required, while the other is a low-end market which is promoted by miniaturization and reduction in price. Especially, in the latter case, approaches towards consumer market have recently appeared, such as applications of uncooled LWIR imaging sensors to night visions for automobiles and smart phones. The appearance of such a kind of commodity surely changes existing business models. Further technological innovation is necessary for creating consumer market, and there will be a room for other companies treating components and materials such as lens materials and getter materials and so on to enter into the consumer market.

  2. Wavelength Shifters for Water Cherenkov Detectors

    CERN Document Server

    Dai, Xiongxin; Bellerive, Alain; Hargrove, Cliff; Sinclair, David; Mifflin, Cathy; Zhang Feng

    2008-01-01

    The light yield of a water-based Cherenkov detector can be significantly improved by adding a wavelength shifter. Wavelength shifter (WLS) molecules absorb ultraviolet photons and re-emit them at longer wavelengths where typical photomultiplier tubes are more sensitive. In this study, several wavelength shifter compounds are tested for possible deployment in the Sudbury Neutrino Observatory (SNO). Test results on optical properties and chemical compatibility for a few WLS candidates are reported; together with timing and gain measurements. A Monte Carlo simulation of the SNO detector response is used to estimate the total light gain with WLS. Finally, a cosmic ray Cherenkov detector was built to investigate the optical properties of WLS.

  3. Mirror Development for the Cherenkov Telescope Array

    CERN Document Server

    Förster, A; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; De Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; MANDAT, D; Mariotti, M; Medina, C; Michałowski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pareschi, G; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; Van Eldik, C; Vassiliev, V; Wiśniewski, Ł; Wörnlein, A; Yoshida, T

    2013-01-01

    The Cherenkov Telescope Array (CTA) is a planned observatory for very-high energy gamma-ray astronomy. It will consist of several tens of telescopes of different sizes, with a total mirror area of up to 10,000 square meters. Most mirrors of current installations are either polished glass mirrors or diamond-turned aluminium mirrors, both labour intensive technologies. For CTA, several new technologies for a fast and cost-efficient production of light-weight and reliable mirror substrates have been developed and industrial pre-production has started for most of them. In addition, new or improved aluminium-based and dielectric surface coatings have been developed to increase the reflectance over the lifetime of the mirrors compared to those of current Cherenkov telescope instruments.

  4. Characterization of coherent Cherenkov radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.V.

    2015-01-21

    Engineering formulae for calculation of peak, and spectral brightness of resonant long-range wakefield extractor are given. It is shown that the brightness is dominated by beam density in the slow wave structure and antenna gain of the outcoupling. Far field radiation patterns and brightness of circular and high aspect ratio planar radiators are compared. A possibility to approach diffraction limited brightness is demonstrated. The role of group velocity in designing of the Cherenkov source is analyzed. The approach can be applied for design and characterization of various structure-dominated sources (e.g., wakefield extractors with gratings or dielectrics, or FEL-Cherenkov combined sources) radiating into a free space using an antenna (in microwave to sub-mm wave regions). The high group velocity structures can be also effective as energy dechirpers and for diagnostics of microbunched relativistic electron beams.

  5. HAWC - The High Altitude Water Cherenkov Detector

    Science.gov (United States)

    Tepe, Andreas; HAWC Collaboration

    2012-07-01

    The high altitude water Cherenkov observatory (HAWC) is an instrument for the detection of high energy cosmic gamma-rays. Its predecessor Milagro has successfully proven that the water Cherenkov technology for gamma-ray astronomy is a useful technique. HAWC is currently under construction at Sierra Negra in Mexico at an altitude of 4100 m and will include several improvements compared to Milagro. Two complementary DAQ systems of the HAWC detector allow for the observation of a large fraction of the sky with a very high duty cycle and independent of environmental conditions. HAWC will observe the gamma-ray sky from about 100 GeV up to 100 TeV. Also the cosmic ray flux anisotropy on different angular length scales is object of HAWC science. Because of HAWC's large effective area and field of view, we describe its prospects to observe gamma-ray bursts (GRBs) as an example for transient sources.

  6. Acquisition and applications of 3D images

    Science.gov (United States)

    Sterian, Paul; Mocanu, Elena

    2007-08-01

    The moiré fringes method and their analysis up to medical and entertainment applications are discussed in this paper. We describe the procedure of capturing 3D images with an Inspeck Camera that is a real-time 3D shape acquisition system based on structured light techniques. The method is a high-resolution one. After processing the images, using computer, we can use the data for creating laser fashionable objects by engraving them with a Q-switched Nd:YAG. In medical field we mention the plastic surgery and the replacement of X-Ray especially in pediatric use.

  7. Study of TOF PET using Cherenkov light

    Science.gov (United States)

    Korpar, S.; Dolenec, R.; Križan, P.; Pestotnik, R.; Stanovnik, A.

    We report on measurements of coincident 511 keV annihilation photons via detection of Cherenkov radiation in PbF2 crystals attached to a microchannel plate photomultiplier. Back to back timing resolution has been studied with segmented crystals. The detection efficiency has also been measured and compared to the simulation results. We have also searched for the optimum radiator parameters by simulating timing resolution and effciency as a function of crystal thickness and transmission cut-off.

  8. Wavelength Shifters for Water Cherenkov Detectors

    OpenAIRE

    Dai, Xiongxin; Rollin, Etienne; Bellerive, Alain; Hargrove, Cliff; Sinclair, David; Mifflin, Cathy; Zhang, Feng

    2008-01-01

    The light yield of a water-based Cherenkov detector can be significantly improved by adding a wavelength shifter. Wavelength shifter (WLS) molecules absorb ultraviolet photons and re-emit them at longer wavelengths where typical photomultiplier tubes are more sensitive. In this study, several wavelength shifter compounds are tested for possible deployment in the Sudbury Neutrino Observatory (SNO). Test results on optical properties and chemical compatibility for a few WLS candidates are repor...

  9. Recent progress in silica aerogel Cherenkov radiator

    CERN Document Server

    Tabata, Makoto; Kawai, Hideyuki; Kubo, Masato; Sato, Takeshi

    2012-01-01

    In this paper, we present recent progress in the development of hydrophobic silica aerogel as a Cherenkov radiator. In addition to the conventional method, the recently developed pin-drying method for producing high-refractive-index aerogels with high transparency was studied in detail. Optical qualities and large tile handling for crack-free aerogels were investigated. Sufficient photons were detected from high-performance aerogels in a beam test.

  10. Constraint on ghost-free bigravity from gravitational Cherenkov radiation

    OpenAIRE

    Kimura, Rampei; Tanaka, Takahiro; Yamamoto, Kazuhiro; Yamashita, Yasuho

    2016-01-01

    We investigate gravitational Cherenkov radiation in a healthy branch of background solutions in the ghost-free bigravity model. In this model, because of the modification of dispersion relations, each polarization mode can possess subluminal phase velocities, and the gravitational Cherenkov radiation could be potentially emitted from a relativistic particle. In the present paper, we derive conditions for the process of the gravitational Cherenkov radiation to occur and estimate the energy emi...

  11. Measuring module of the Cherenkov water detector NEVOD

    Science.gov (United States)

    Kindin, V. V.; Amelchakov, M. B.; Barbashina, N. S.; Bogdanov, A. G.; Burtsev, V. D.; Chernov, D. V.; Khokhlov, S. S.; Khomyakov, V. A.; Kokoulin, R. P.; Kompaniets, K. G.; Kovylyaeva, E. A.; Kruglikova, V. S.; Ovchinnikov, V. V.; Petrukhin, A. A.; Shulzhenko, I. A.; Shutenko, V. V.; Yashin, I. I.; Zadeba, E. A.

    2015-08-01

    Quasispherical Module (QSM) of Cherenkov water detector NEVOD represents six low-noise FEU-200 photomultipliers with flat photocathodes (15 cm in diameter), oriented along the axes of orthogonal coordinate system. Such configuration allows to register Cherenkov radiation arriving from any direction with almost equal efficiency. The results of measurements of QSM characteristics in the sensitive volume of the NEVOD detector during the registration of Cherenkov radiation of single muons at different distances and angles are discussed.

  12. Roughness tolerances for Cherenkov telescope mirrors

    Science.gov (United States)

    Tayabaly, K.; Spiga, D.; Canestrari, R.; Bonnoli, G.; Lavagna, M.; Pareschi, G.

    2015-09-01

    The Cherenkov Telescope Array (CTA) is a forthcoming international ground-based observatory for very high-energy gamma rays. Its goal is to reach sensitivity five to ten times better than existing Cherenkov telescopes such as VERITAS, H.E.S.S. or MAGIC and extend the range of observation to energies down to few tens of GeV and beyond 100 TeV. To achieve this goal, an array of about 100 telescopes is required, meaning a total reflective surface of several thousands of square meters. Thence, the optimal technology used for CTA mirrors' manufacture should be both low-cost (~1000 euros/m2) and allow high optical performances over the 300-550 nm wavelength range. More exactly, a reflectivity higher than 85% and a PSF (Point Spread Function) diameter smaller than 1 mrad. Surface roughness can significantly contribute to PSF broadening and limit telescope performances. Fortunately, manufacturing techniques for mirrors are now available to keep the optical scattering well below the geometrically-predictable effect of figure errors. This paper determines first order surface finish tolerances based on a surface microroughness characterization campaign, using Phase Shift Interferometry. That allows us to compute the roughness contribution to Cherenkov telescope PSF. This study is performed for diverse mirror candidates (MAGIC-I and II, ASTRI, MST) varying in manufacture technologies, selected coating materials and taking into account the degradation over time due to environmental hazards.

  13. A Cherenkov radiation source for photomultiplier calibration

    International Nuclear Information System (INIS)

    The Sudbury Neutrino Observatory (SNO) will detect the Cherenkov radiation from relativistic electrons produced from neutrino interactions in a heavy water (D2O) target. A Cherenkov radiation source is required that will enable the efficiency of the photomultipliers to detect this radiation to be calibrated in situ. We discuss such a source based upon the encapsulation of a 90Sr solution in a glass bulb, and describe its construction. The Cherenkov light output of this source is computed using the theory of Frank and Tamm and an EGS4 Monte Carlo code is used to propagate the beta decay electrons. As an example of the use of this source, the single photoelectron counting efficiency of an EMI 9350 photomultiplier was measured as a function of the applied voltages, given that the quantum efficiency of its photocathode was known. The single photoelectron counting efficiencies obtained were in the range 73-87% and these are consistent with the measurements of other authors using photomultipliers of a broadly similar design. ((orig.))

  14. Schwarzschild-Couder telescope for the Cherenkov Telescope Array: Development of the Optical System

    CERN Document Server

    Rousselle, Julien; Errando, Manel; Humensky, Brian; Mukherjee, Reshmi; Nieto, Daniel; Okumura, Akira; Vassiliev, Vladimir

    2013-01-01

    The CTA (Cherenkov Telescope Array) is the next generation ground-based experiment for very high-energy (VHE) gamma-ray observations. It will integrate several tens of imaging atmospheric Cherenkov telescopes (IACTs) with different apertures into a single astronomical instrument. The US part of the CTA collaboration has proposed and is developing a novel IACT design with a Schwarzschild-Couder (SC) aplanatic two mirror optical system. In comparison with the traditional single mirror Davies-Cotton IACT the SC telescope, by design, can accommodate a wide field-of-view, with significantly improved imaging resolution. In addition, the reduced plate scale of an SC telescope makes it compatible with highly integrated cameras assembled from silicon photo multipliers. In this submission we report on the status of the development of the SC optical system, which is part of the effort to construct a full-scale prototype telescope of this type at the Fred Lawrence Whipple Observatory in southern Arizona.

  15. Photosensor Characterization for the Cherenkov Telescope Array: Silicon Photomultiplier versus Multi-Anode Photomultiplier Tube

    CERN Document Server

    Bouvier, Aurelien; Johnson, Caitlin; Kuznetsov, Andrey; Williams, David; Otte, Nepomuk; Strausbaugh, Robert; Hidaka, Naoya; Tajima, Hiroyasu; Hinton, Jim; White, Richard; Errando, Manel; Mukherjee, Reshmi

    2013-01-01

    Photomultiplier tube technology has been the photodetector of choice for the technique of imaging atmospheric Cherenkov telescopes since its birth more than 50 years ago. Recently, new types of photosensors are being contemplated for the next generation Cherenkov Telescope Array. It is envisioned that the array will be partly composed of telescopes using a Schwarzschild-Couder two mirror design never built before which has significantly improved optics. The camera of this novel optical design has a small plate scale which enables the use of compact photosensors. We present an extensive and detailed study of the two most promising devices being considered for this telescope design: the silicon photomultiplier and the multi-anode photomultiplier tube. We evaluated their most critical performance characteristics for imaging gamma-ray showers, and we present our results in a cohesive manner to clearly evaluate the advantages and disadvantages that both types of device have to offer in the context of GeV-TeV gamma...

  16. Monte Carlo Studies of medium-size telescope designs for the Cherenkov Telescope Array

    CERN Document Server

    Wood, M; Dumm, J; Funk, S

    2015-01-01

    We present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parameters including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters repre...

  17. Active gated imaging for automotive safety applications

    Science.gov (United States)

    Grauer, Yoav; Sonn, Ezri

    2015-03-01

    The paper presents the Active Gated Imaging System (AGIS), in relation to the automotive field. AGIS is based on a fast gated-camera equipped with a unique Gated-CMOS sensor, and a pulsed Illuminator, synchronized in the time domain to record images of a certain range of interest which are then processed by computer vision real-time algorithms. In recent years we have learned the system parameters which are most beneficial to night-time driving in terms of; field of view, illumination profile, resolution and processing power. AGIS provides also day-time imaging with additional capabilities, which enhances computer vision safety applications. AGIS provides an excellent candidate for camera-based Advanced Driver Assistance Systems (ADAS) and the path for autonomous driving, in the future, based on its outstanding low/high light-level, harsh weather conditions capabilities and 3D potential growth capabilities.

  18. Terahertz integrated antenna arrays for imaging applications

    OpenAIRE

    Alonso del Pino, María

    2013-01-01

    Terahertz is the portion of the spectrum that covers a frequency range between 300 GHz - 3 THz. This frequency band has proven its potential for imaging applications thanks to the good compromise between spatial resolution and penetration; however, this push towards high frequencies contains many technological difficulties in all the subsystems involved in the signal generation, transmission and detection. The power budget restrictions and high losses that sources and receivers currently suff...

  19. Curve Matching with Applications in Medical Imaging

    OpenAIRE

    Bauer, Martin; Bruveris, Martins; Harms, Philipp; Møller-Andersen, Jakob

    2015-01-01

    In the recent years, Riemannian shape analysis of curves and surfaces has found several applications in medical image analysis. In this paper we present a numerical discretization of second order Sobolev metrics on the space of regular curves in Euclidean space. This class of metrics has several desirable mathematical properties. We propose numerical solutions for the initial and boundary value problems of finding geodesics. These two methods are combined in a Riemannian gradient-based optimi...

  20. Algorithms for reconstructing images for industrial applications

    International Nuclear Information System (INIS)

    Several algorithms for reconstructing objects from their projections are being studied in our Laboratory, for industrial applications. Such algorithms are useful locating the position and shape of different composition of materials in the object. A Comparative study of two algorithms is made. The two investigated algorithsm are: The MART (Multiplicative - Algebraic Reconstruction Technique) and the Convolution Method. The comparison are carried out from the point view of the quality of the image reconstructed, number of views and cost. (Author)

  1. Stellar intensity interferometry over kilometer baselines: Laboratory simulation of observations with the Cherenkov Telescope Array

    OpenAIRE

    Dravins, Dainis; Lagadec, Tiphaine

    2014-01-01

    A long-held astronomical vision is to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, show their evolution over time, and reveal interactions of stellar winds and gas flows in binary star systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electr...

  2. Applications of superconducting bolometers in security imaging

    Science.gov (United States)

    Luukanen, A.; Leivo, M. M.; Rautiainen, A.; Grönholm, M.; Toivanen, H.; Grönberg, L.; Helistö, P.; Mäyrä, A.; Aikio, M.; Grossman, E. N.

    2012-12-01

    Millimeter-wave (MMW) imaging systems are currently undergoing deployment World-wide for airport security screening applications. Security screening through MMW imaging is facilitated by the relatively good transmission of these wavelengths through common clothing materials. Given the long wavelength of operation (frequencies between 20 GHz to ~ 100 GHz, corresponding to wavelengths between 1.5 cm and 3 mm), existing systems are suited for close-range imaging only due to substantial diffraction effects associated with practical aperture diameters. The present and arising security challenges call for systems that are capable of imaging concealed threat items at stand-off ranges beyond 5 meters at near video frame rates, requiring substantial increase in operating frequency in order to achieve useful spatial resolution. The construction of such imaging systems operating at several hundred GHz has been hindered by the lack of submm-wave low-noise amplifiers. In this paper we summarize our efforts in developing a submm-wave video camera which utilizes cryogenic antenna-coupled microbolometers as detectors. Whilst superconducting detectors impose the use of a cryogenic system, we argue that the resulting back-end complexity increase is a favorable trade-off compared to complex and expensive room temperature submm-wave LNAs both in performance and system cost.

  3. Applications of superconducting bolometers in security imaging

    International Nuclear Information System (INIS)

    Millimeter-wave (MMW) imaging systems are currently undergoing deployment World-wide for airport security screening applications. Security screening through MMW imaging is facilitated by the relatively good transmission of these wavelengths through common clothing materials. Given the long wavelength of operation (frequencies between 20 GHz to ∼ 100 GHz, corresponding to wavelengths between 1.5 cm and 3 mm), existing systems are suited for close-range imaging only due to substantial diffraction effects associated with practical aperture diameters. The present and arising security challenges call for systems that are capable of imaging concealed threat items at stand-off ranges beyond 5 meters at near video frame rates, requiring substantial increase in operating frequency in order to achieve useful spatial resolution. The construction of such imaging systems operating at several hundred GHz has been hindered by the lack of submm-wave low-noise amplifiers. In this paper we summarize our efforts in developing a submm-wave video camera which utilizes cryogenic antenna-coupled microbolometers as detectors. Whilst superconducting detectors impose the use of a cryogenic system, we argue that the resulting back-end complexity increase is a favorable trade-off compared to complex and expensive room temperature submm-wave LNAs both in performance and system cost.

  4. Medical diagnostic imaging systems: technology and applications

    International Nuclear Information System (INIS)

    This book attempts to assess the current status and future developments of the medical imaging industry. The first chapter contains brief descriptions, of the basic principles of various imaging modalities (radiologic, CT, nuclear, ultrasound, and thermography), and a chapter describing areas of clinical applications for each modality follows. Chapter 3 provides a profile of the industry, listing the various manufacturers of medical imaging products and their share of the market, based on 1976 to 1978 statistics. Chapter 4 describes briefly the current sources of research support (industry versus government agencies) but does not provide data either in absolute dollars or relative amounts. Chapters 5 to 14 cover a broad spectrum of advanced imaging systems by categories, including x-ray (5 and 6), CT (7 and 8), nuclear (9 and 10), ultrasound (11), thermography (12), NMR (13), and miscellaneous (14), and they may be considered the meat of the book because they provide the basis for predictions of future developments in the medical imaging industry

  5. On the fine structure of the Vavilov-Cherenkov radiation

    International Nuclear Information System (INIS)

    The aim of this paper is to study the fine structure of the Cherenkov rings. We analyze Zrelov's experiments in which the Cherenkov radiation was detected without using the special focusing devices. The broad Cherenkov ring was observed in the plane perpendicular to the motion axis. Using the exact and approximate formulae, we investigate how a charge uniformly moving in a medium radiates in a finite space interval. The formulae obtained describe the radiation intensity in the whole space interval, inside and outside the Cherenkov ring. In the plane perpendicular to the motion axis, the radiation fills mainly the finite ring. Its width, proportional to the motion interval, and the energy released in this ring do not depend on the position of the observation plane. Outside the Cherenkov ring, the radiation intensity suddenly drops. Inside it, the radiation intensity exhibits small oscillations which are due to the interference of the Vavilov-Cherenkov radiation and bremsstrahlung. The increase in the radiation intensity at the ends of the Cherenkov ring is associated with the shock waves arising at the beginning and the end of the charge motion and at the moments when the charge velocity coincides with the light velocity in a medium. For the chosen motion interval, the well-known Tamm formula does not describe the radiation intensity inside the Cherenkov ring for any position of the observation plane. Outside the Cherenkov ring, the Tamm formula is valid only at very large observation distances. Theoretical calculations are in satisfactory agreement with experimental data. Thus, the combined experimental and theoretical study of the unfocused Cherenkov rings allows one to obtain information on the physical processes accompanying the Cherenkov radiation (bremsstrahlung, transition of the light velocity barrier, etc.)

  6. Cherenkov-transition radiation in gamma frequency region

    International Nuclear Information System (INIS)

    The spectral and angular distributions as well as the total number of photons of gamma-ray Cherenkov-transition radiation (GCTR) produced by charged particles in the photon energy region (0.8-2) MeV are calculated using the results of the recent discovery that in the above mentioned region the refraction index of some materials is greater than 1, n(ω) > 1, due to Delbruck scattering on Coulomb field of nuclei. Using the results of the carried out numerical calculations, it is proposed an experimental arrangement for observation and experimental study of GCTR produced by electrons with energy slightly higher than the threshold energy of GCTR. Some applications of GCTR, in particular, the search of new materials with n(ω) > 1 in gamma region with the help of this method are discussed

  7. Cherenkov ring fitting techniques for the CERES RICH detectors

    International Nuclear Information System (INIS)

    The CERES experiment studies the production of low-mass electron pairs in proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN-SPS. Particle identification and momentum measurement are solely based on two azimuthally symmetric RICH detectors. The off-line reconstruction of electron rings has to be preformed without prior knowledge of the cherenkov ring centers, a demand which is unique as compared to other RICH applications using the rings for particle identification or rejection only. During the last years the CERES collaboration has developed several algorithms to cope with the problems of ring recognition in a background-contaminated environment. Here we report on encouraging experiences with the robust ring fitting technique based on a reweighted least-squares method and compare its performance with previously used algorithms based on the minimization of summed Gaussian weights. (orig.)

  8. An Innovative Workspace for The Cherenkov Telescope Array

    CERN Document Server

    Costa, Alessandro; Becchini, Ugo; Massimino, Piero; Riggi, Simone; Sanchez, David; Vitello, Fabio

    2016-01-01

    The Cherenkov Telescope Array (CTA) is an initiative to build the next generation, ground-based gamma-ray observatories. We present a prototype workspace developed at INAF that aims at providing innovative solutions for the CTA community. The workspace leverages open source technologies providing web access to a set of tools widely used by the CTA community. Two different user interaction models, connected to an authentication and authorization infrastructure, have been implemented in this workspace. The first one is a workflow management system accessed via a science gateway (based on the Liferay platform) and the second one is an interactive virtual desktop environment. The integrated workflow system allows to run applications used in astronomy and physics researches into distributed computing infrastructures (ranging from clusters to grids and clouds). The interactive desktop environment allows to use many software packages without any installation on local desktops exploiting their native graphical user i...

  9. Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2013-01-01

    Due to limited resources available for power and space for payloads, miniaturizing and integrating instrumentation is a high priority for addressing the challenges of manned and unmanned deep space missions to high Earth orbit (HEO), near Earth objects (NEOs), Lunar and Martian orbits and surfaces, and outer planetary systems, as well as improvements to high-altitude aircraft safety. New, robust, and compact detectors allow future instrumentation packages more options in satisfying specific mission goals. A solid-state ultraviolet (UV) detector was developed with a theoretical fast response time and large detection area intended for application to Cherenkov detectors. The detector is based on the wide-bandgap semiconductor zinc oxide (ZnO), which in a bridge circuit can detect small, fast pulses of UV light like those required for Cherenkov detectors. The goal is to replace the role of photomultiplier tubes in Cherenkov detectors with these solid-state devices, saving on size, weight, and required power. For improving detection geometry, a spherical detector to measure high atomic number and energy (HZE) ions from any direction has been patented as part of a larger space radiation detector system. The detector will require the development of solid-state UV photodetectors fast enough (2 ns response time or better) to detect the shockwave of Cherenkov light emitted as the ions pass through a quartz, sapphire, or acrylic ball. The detector must be small enough to fit in the detector system structure, but have an active area large enough to capture enough Cherenkov light from the sphere. The detector is fabricated on bulk single-crystal undoped ZnO. Inter - digitated finger electrodes and contact pads are patterned via photolithography, and formed by sputtered metal of silver, platinum, or other high-conductivity metal.

  10. Poster — Thur Eve — 18: Cherenkov Emission By High-Energy Radiation Therapy Beams: A Characterization Study

    Energy Technology Data Exchange (ETDEWEB)

    Zlateva, Y.; El Naqa, I. [Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC (Canada); Quitoriano, N. [Department of Mining and Materials Engineering McGill University, Montreal, QC (Canada)

    2014-08-15

    We investigate Cherenkov emission (CE) by radiotherapy beams via radiation dose-versus-CE correlation analyses, CE detection optimization by means of a spectral shift towards the near-infrared (NIR) window of biological tissue, and comparison of CE to on-board MV imaging. Dose-CE correlation was investigated via simulation and experiment. A Monte Carlo (MC) CE simulator was designed using Geant4. Experimental phantoms include: water; tissue-simulating phantom composed of water, Intralipid®, and beef blood; plastic phantom with solid water insert. The detector system comprises an optical fiber and diffraction-grating spectrometer incorporating a front/back-illuminated CCD. The NIR shift was carried out with CdSe/ZnS quantum dots (QDs), emitting at (650±10) nm. CE and MV images were acquired with a CMOS camera and electronic portal imaging device. MC and experimental studies indicate a strong linear dose-CE correlation (Pearson coefficient > 0.99). CE by an 18-MeV beam was effectively NIR-shifted in water and a tissue-simulating phantom, exhibiting a significant increase at 650 nm for QD depths up to 10 mm. CE images exhibited relative contrast superior to MV images by a factor of 30. Our work supports the potential for application of CE in radiotherapy online imaging for patient setup and treatment verification, since CE is intrinsic to the beam and non-ionizing and QDs can be used to improve CE detectability, potentially yielding image quality superior to MV imaging for the case of low-density-variability, low-optical-attenuation materials (ex: breast/oropharynx). Ongoing work involves microenvironment functionalization of QDs and application of multi-channel spectrometry for simultaneous acquisition of dosimetric and tumor oxygenation signals.

  11. Applications of scientific imaging in environmental toxicology

    Science.gov (United States)

    El-Demerdash, Aref M.

    The national goals of clean air, clean water, and healthy ecosystems are a few of the primary forces that drive the need for better environmental monitoring. As we approach the end of the 1990s, the environmental questions at regional to global scales are being redefined and refined in the light of developments in environmental understanding and technological capability. Research in the use of scientific imaging data for the study of the environment is urgently needed in order to explore the possibilities of utilizing emerging new technologies. The objective of this research proposal is to demonstrate the usability of a wealth of new technology made available in the last decade to providing a better understanding of environmental problems. Research is focused in two imaging techniques macro and micro imaging. Several examples of applications of scientific imaging in research in the field of environmental toxicology were presented. This was achieved on two scales, micro and macro imaging. On the micro level four specific examples were covered. First, the effect of utilizing scanning electron microscopy as an imaging tool in enhancing taxa identification when studying diatoms was presented. Second, scanning electron microscopy combined with energy dispersive x-ray analyzer were demonstrated as a valuable and effective tool for identifying and analyzing household dust samples. Third, electronic autoradiography combined with FT-IR microscopy were used to study the distribution pattern of [14C]-Malathion in rats as a result of dermal exposure. The results of the autoradiography made on skin sections of the application site revealed the presence of [ 14C]-activity in the first region of the skin. These results were evidenced by FT-IR microscopy. The obtained results suggest that the penetration of Malathion into the skin and other tissues is vehicle and dose dependent. The results also suggest the use of FT-IR microscopy imaging for monitoring the disposition of

  12. Recent results on aerogel development for use in Cherenkov counters

    CERN Document Server

    Danilyuk, A F; Savelieva, M D; Bobrovnikov, V S; Buzykaev, A R; Kravchenko, E A; Lavrov, A V; Onuchin, A P

    2002-01-01

    Synthesis of silica aerogel for Cherenkov counters is being studied for more than 10 years at the Boreskov Institute of Catalysis in collaboration with the Budker Institute of Nuclear Physics. Index of refraction, light scattering length and light absorption length are optical characteristics which determine the quality of aerogel Cherenkov counter. These parameters were measured for the aerogel produced. The results are presented.

  13. TARGET: toward a solution for the readout electronics of the Cherenkov Telescope Array

    CERN Document Server

    Tibaldo, L; Albert, A M; Funk, S; Kawashima, T; Kraus, M; Okumura, A; Sapozhnikov, L; Tajima, H; Varner, G S; Wu, T; Zink, A

    2015-01-01

    TARGET is an application specific integrated circuit (ASIC) designed to read out signals recorded by the photosensors in cameras of very-high-energy gamma-ray telescopes exploiting the imaging of Cherenkov radiation from atmospheric showers. TARGET capabilities include sampling at a high rate (typically 1 GSample/s), digitization, and triggering on the sum of four adjacent pixels. The small size, large number of channels read out per ASIC (16), low cost per channel, and deep buffer for trigger latency (~16 $\\mu$s at 1 GSample/s) make TARGET ideally suited for the readout in systems with a large number of telescopes instrumented with compact photosensors like multi-anode or silicon photomultipliers combined with dual-mirror optics. The possible advantages of such systems are better sensitivity, a larger field of view, and improved angular resolution. The two latest generations of TARGET ASICs, TARGET 5 and TARGET 7, are soon to be used for the first time in two prototypes of small-sized and medium-sized dual-m...

  14. Performance of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon Pixel readout for Cherenkov ring detection

    CERN Document Server

    Alemi, M; Bibby, J H; Campbell, M; Duane, A; Easo, S; Gys, Thierry; Halley, A W; Piedigrossi, D; Puertolas, D; Rosso, E; Simmons, B; Snoeys, W; Websdale, David M; Wotton, S A; Wyllie, Ken H

    1999-01-01

    We report on the first test beam performance of a hybrid photon detector prototype, using binary readout electronics, intended for use in the ring imaging Cherenkov detectors of the LHCb experiment at the CERN Large Hadron Collider. The photon detector is based on a cross-focussed image intensifier tube geometry. The anode consists of a silicon pixel array bump-bonded to a binary readout chip with matching pixel electronics. The detector has been installed in a quarter-scale prototype vessel of the LHCb ring imaging Cherenkov system. Focussed ring images produced by 120 GeV/c negative pions traversing an air radiator have been recorded. The observed light yield and Cherenkov angle resolution are discussed.

  15. The GERDA Muon Veto Cherenkov Detector

    International Nuclear Information System (INIS)

    The GERDA experiment is designed to examine 0νββ of 76Ge with a lifetime of 1026 years. To reach the goal of 10-3 background events/(keV*kg*year), several background reduction techniques will be used. Cosmic muons can produce background in form of particles and radioactivity. To reject them a muon veto system, using the water tank surrounding the GERDA cryostat as an active Cherenkov veto, is built up. The design, simulations and the construction of this veto are described in the poster. (author)

  16. Modelling and study of the Cherenkov effect

    Energy Technology Data Exchange (ETDEWEB)

    Mishev, A. E-mail: libor.makovicka@pu-pm.univ-fcomte.fr; Duverger, E.; Makovicka, L.; Stamenov, J

    2001-06-01

    Studies at the Institute for Nuclear Research and Nuclear Energy particularly in regard to cosmic ray detection and construction of the Muonic Cherenkov telescope at the University of Blagoevgrad indicate a need for the development of a theoretical model based on observed phenomena and a refinement of this for detection system optimisation. This was introduced in the EGS4 code system. The first simulations consecrate on a number of different geometries of the water tank in total reflection. The model was compared with experimental data involving a {sup 60}Co gamma source and the telescope. (author)

  17. Cherenkov detector for beam quality measurement

    Science.gov (United States)

    Orfanelli, S.

    2016-07-01

    A new detector to measure the machine induced background at larger radii has been developed and installed in the CMS experiment at the LHC. It consists of forty modules, each comprising a quartz bar read out by a photomultiplier tube. Since Cherenkov radiation is emitted in a forward cone around the charged particle trajectory, these detectors can distinguish between the arrival directions of the machine induced background and the collision products. The back-end electronics consists of a uTCA readout with excellent time resolution. The installation in the CMS is described and first commissioning measurements with the LHC beams in Run II are presented.

  18. Cherenkov radiation as a serendipitous phenomenon

    Science.gov (United States)

    Kadmensky, S. G.

    2015-05-01

    A brief account is given of P A Cherenkov's Voronezh years, a period during which the future Nobel laureate in physics attended school (in the village of Novaya Chigla near Voronezh) and studied at Voronezh State University. The history of the serendipitous discovery of the radiation which was to be named after him is described and its importance for modern science is discussed. Possible modern approaches are considered to explain — without using the concept of 'cold nuclear synthesis' — some other unexpected experimental results on the nonthermonuclear fusion of light nuclei stimulated by electron beams and by laser and gamma radiations.

  19. Gadolinium study for a water Cherenkov detector

    CERN Document Server

    Kibayashi, Atsuko

    2009-01-01

    Modification of large water Cherenkov detectors by addition of gadolinium has been proposed. The large cross section for neutron capture on Gd will greatly improve the sensitivity to antielectron neutrinos from supernovae and reactors. A five-year project to build and develop a prototype detector based on Super-Kamiokande (SK) has started. We are performing various studies, including a material soak test in Gd solution, light attenuation length measurements, purification system development, and neutron tagging efficiency measurements using SK data and a Geant4-based simulation. We present an overview of the project and the recent R&D results.

  20. Status of the technologies for the production of the Cherenkov Telescope Array (CTA) mirrors

    CERN Document Server

    Pareschi, G; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; de Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Förster, A; Garczarczyk, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; Mandat, D; Mariotti, M; Medina, C; Michałowski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; van Eldik, C; Vassiliev, V; Wiśniewski, Ł; Wörnlein, A; Yoshida, T

    2013-01-01

    The Cherenkov Telescope Array (CTA) is the next generation very high-energy gamma-ray observatory, with at least 10 times higher sensitivity than current instruments. CTA will comprise several tens of Imaging Atmospheric Cherenkov Telescopes (IACTs) operated in array-mode and divided into three size classes: large, medium and small telescopes. The total reflective surface could be up to 10,000 m2 requiring unprecedented technological efforts. The properties of the reflector directly influence the telescope performance and thus constitute a fundamental ingredient to improve and maintain the sensitivity. The R&D status of lightweight, reliable and cost-effective mirror facets for the CTA telescope reflectors for the different classes of telescopes is reviewed in this paper.

  1. First ground based measurement of atmospheric Cherenkov light from cosmic rays

    CERN Document Server

    Aharonian, F A; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Brion, E; Brown, A M; Buhler, R; Büsching, I; Carrigan, S; Chadwick, P M; Chounet, L M; Coignet, G; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Atai, A; O'Connor-Drury, L; Dubus, G; Egberts, K; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Ferrero, E; Fiasson, A; Fontaine, G; Funk, Seb; Funk, S; Fussling, M; Gallant, Y A; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; De Jager, O C; Kendziorra, E; Kerschhaggl, M; Khelifi, B; Komin, Nu; Konopelko, A; Kosack, K; Lamanna, G; Latham, I J; Le Gallou, R; Lemiere, A; Lemoine-Goumard, M; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, G; McComb, T J L; Moulin, E; De Naurois, Mathieu; Nedbal, D; Nolan, S J; Noutsos, A; Olive, J P; Orford, K J; Osborne, J L; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Ranchon, S; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, A; Ripken, J; Rob, L; Rolland, L; Rosier-Lees, S; Rowell, G; Sahakian, V V; Santangelo, A; Sauge, L; Schlenker, S; Schlickeiser, R; Schroder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sol, H; Spangler, D; Spanier, F; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J P; Terrier, R; Tluczykont, M; Van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Völk, H J; Wagner, S J; Ward, M

    2007-01-01

    A recently proposed novel technique for the detection of cosmic rays with arrays of Imaging Atmospheric Cherenkov Telescopes is applied to data from the High Energy Stereoscopic System (H.E.S.S.). The method relies on the ground based detection of Cherenkov light emitted from the primary particle prior to its first interaction in the atmosphere. The charge of the primary particle (Z) can be estimated from the intensity of this light, since it is proportional to Z$^2$. Using H.E.S.S. data, an energy spectrum for cosmic-ray iron nuclei in the energy range 13--200 TeV is derived. The reconstructed spectrum is consistent with previous direct measurements and is one of the most precise so far in this energy range.

  2. Design and Operation of FACT -- The First G-APD Cherenkov Telescope

    CERN Document Server

    Anderhub, H; Biland, A; Boccone, V; Braun, I; Bretz, T; Buß, J; Cadoux, F; Commichau, V; Djambazov, L; Dorner, D; Einecke, S; Eisenacher, D; Gendotti, A; Grimm, O; von Gunten, H; Haller, C; Hildebrand, D; Horisberger, U; Huber, B; Kim, K -S; Knoetig, M L; K"ohne, J H; Kr"ahenb"uhl, T; Krumm, B; Lee, M; Lorenz, E; Lustermann, W; Lyard, E; Mannheim, K; Meharga, M; Meier, K; Montaruli, T; Neise, D; Nessi-Tedaldi, F; Overkemping, A -K; Paravac, A; Pauss, F; Renker, D; Rhode, W; Ribordy, M; R"oser, U; Stucki, J -P; Schneider, J; Steinbring, T; Temme, F; Thaele, J; Tobler, S; Viertel, G; Vogler, P; Walter, R; Warda, K; Weitzel, Q; Z"anglein, M

    2013-01-01

    The First G-APD Cherenkov Telescope (FACT) is designed to detect cosmic gamma-rays with energies from several hundred GeV up to about 10 TeV using the Imaging Atmospheric Cherenkov Technique. In contrast to former or existing telescopes, the camera of the FACT telescope is comprised of solid-state Geiger-mode Avalanche Photodiodes (G-APD) instead of photomultiplier tubes for photo detection. It is the first full-scale device of its kind employing this new technology. The telescope is operated at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain) since fall 2011. This paper describes in detail the design, construction and operation of the system, including hardware and software aspects. Technical experiences gained after one year of operation are discussed and conclusions with regard to future projects are drawn.

  3. Monte Carlo Performance Studies of Candidate Sites for the Cherenkov Telescope Array

    CERN Document Server

    Maier, G; Bernlöhr, K; Bregeon, J; Di Pierro, F; Hassan, T; Jogler, T; Hinton, J; Moralejo, A; Wood, M

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray observatory with sensitivity in the energy range from 20 GeV to beyond 300 TeV. CTA is proposed to consist of two arrays of 40-100 imaging atmospheric Cherenkov telescopes, with one site located in each of the Northern and Southern Hemispheres. The evaluation process for the candidate sites for CTA is supported by detailed Monte Carlo simulations, which take different attributes like site altitude and geomagnetic field configuration into account. In this contribution we present the comparison of the sensitivity and performance of the different CTA site candidates for the measurement of very-high energy gamma rays.

  4. On the Use of Cherenkov Telescopes for Outer Solar System Body Occultations

    CERN Document Server

    Lacki, Brian C

    2014-01-01

    Imaging Atmosphere Cherenkov Telescopes (IACT) are arrays of very large optical telescopes that are well-suited for rapid photometry of bright sources. I investigate their potential in observing stellar occultations by small objects in the outer Solar System, Transjovian Objects (TJOs). These occultations cast diffraction patterns on the Earth. Current IACT arrays are capable of detecting objects smaller than 100 meters in radius in the Kuiper Belt and 1 km radius out to 5000 AU. The future Cherenkov Telescope Array (CTA) will have even greater capabilities. Because the arrays include several telescopes, they can potentially measure the speeds of TJOs without degeneracies, and the sizes of the TJOs and background stars. I estimate the achievable precision using a Fisher matrix analysis. With CTA, the precisions of these parameter estimations will be as good as a few percent. I consider how often IACTs can observe occultations by members of different TJO populations, including Centaurs, Kuiper Belt Objects (KB...

  5. Prospects for Measuring the Positron Excess with the Cherenkov Telescope Array

    CERN Document Server

    Vandenbroucke, Justin; Wood, Matthew; Colin, Pierre

    2015-01-01

    The excess of positrons in cosmic rays above $\\sim$10 GeV has been a puzzle since it was discovered. Possible interpretations of the excess have been suggested, including acceleration in a local supernova remnant or annihilation of dark matter particles. To discriminate between these scenarios, the positron fraction must be measured at higher energies. One technique to perform this measurement is using the Earth-Moon spectrometer: observing the deflection of positron and electron moon shadows by the Earth's magnetic field. The measurement has been attempted by previous imaging atmospheric Cherenkov telescopes without success. The Cherenkov Telescope Array (CTA) will have unprecedented sensitivity and background rejection that could make this measurement successful for the first time. In addition, the possibility of using silicon photomultipliers in some of the CTA telescopes could greatly increase the feasibility of making observations near the moon. Estimates of the capabilities of CTA to measure the positro...

  6. Sensitivity of the space-based CHerenkov from Astrophysical Neutrinos Telescope (CHANT)

    CERN Document Server

    Neronov, A; Anchordoqui, L A; Adams, J; Olinto, A V

    2016-01-01

    Neutrinos with energies in the PeV to EeV range produce upgoing extensive air showers when they interact underground close enough to the surface of the Earth. We study the possibility for detection of such showers with a system of very wide field-of-view imaging atmospheric Cherenkov telescopes, named CHANT for CHerenkov from Astrophysical Neutrinos Telescope, pointing down to a strip below the Earth's horizon from space. We find that CHANT provides sufficient sensitivity for the study of the astrophysical neutrino flux in a wide energy range, from 10~PeV to 10~EeV. A space-based CHANT system can discover and study in detail the cosmogenic neutrino flux originating from interactions of ultra-high-energy cosmic rays in the intergalactic medium.

  7. Discriminating between electron and gamma air showers using direct Cherenkov light

    International Nuclear Information System (INIS)

    Imaging Atmospheric Cherenkov Telescopes (IACTs) detect VHE gamma rays from galactic and extragalactic sources in order to probe the acceleration mechanisms involved in the most energetic and exotic sources. The reconstruction techniques currently used can distinguish most of the background of hadrons entering the atmosphere as they produce very different air showers. Showers initiated by electrons on the other hand are much harder to separate, as they also produce electromagnetic cascades. A new technique making use of direct Cherenkov (DC) light could provide a way to finally distinguish between the two. Cherenkov light emitted directly from the primary particle before it interacts results in a signal at the start of the extensive air shower image in the IACT camera. Probing the characteristics of DC light could allow direct identification of electrons and other charged primaries. This would lead to the increased sensitivity of H.E.S.S. and CTA, confirmation of the electron background contamination level and could also provide a measurement of the diffuse extragalactic background light.

  8. A versatile digital camera trigger for telescopes in the Cherenkov Telescope Array

    CERN Document Server

    Schwanke, U; Sulanke, K -H; Vorobiov, S; Wischnewski, R

    2015-01-01

    This paper describes the concept of an FPGA-based digital camera trigger for imaging atmospheric Cherenkov telescopes, developed for the future Cherenkov Telescope Array (CTA). The proposed camera trigger is designed to select images initiated by the Cherenkov emission of extended air showers from very-high energy (VHE, E>20 GeV) photons and charged particles while suppressing signatures from background light. The trigger comprises three stages. A first stage employs programmable discriminators to digitize the signals arriving from the camera channels (pixels). At the second stage, a grid of low-cost FPGAs is used to process the digitized signals for camera regions with 37 pixels. At the third stage, trigger conditions found independently in any of the overlapping 37-pixel regions are combined into a global camera trigger by few central FPGAs. Trigger prototype boards based on Xilinx FPGAs have been designed, built and tested and were shown to function properly. Using these components a full camera trigger wi...

  9. Application of Java technology in radiation image processing

    International Nuclear Information System (INIS)

    The acquisition and processing of radiation image plays an important role in modern application of civil nuclear technology. The author analyzes the rationale of Java image processing technology which includes Java AWT, Java 2D and JAI. In order to demonstrate applicability of Java technology in field of image processing, examples of application of JAI technology in processing of radiation images of large container have been given

  10. Multianode photomultiplier tube studies for imaging applications

    International Nuclear Information System (INIS)

    Highly efficient and position sensitive photon detection is essential in a variety of applications from particle identification in fundamental nuclear and particle physics research, to radionuclide imaging in healthcare. Due to their position sensitivity and high packing fraction, the Hamamatsu H8500 and H9500 multianode photomultiplier tubes (MAPMTs) are promising candidates for such applications and have thus been studied through precision laser scans at several light intensities. This has revealed signal and crosstalk dependencies upon constructional features of the MAPMTs. Both MAPMTs feature a common last dynode output signal, which can be used for self-triggering. The strength and timing of this signal have been investigated for the H8500 MAPMT, yielding similar dependencies upon MAPMT construction and standard deviation time resolutions of 67.5 ps and 154.4 ps for 20 and single photoelectron signals respectively.

  11. Large Size Telescope camera support structures for the Cherenkov Telescope Array

    OpenAIRE

    Deleglise, G.; Geffroy, N.; Lamanna, G.; Consortium, for The Cherenkov Telescope Array

    2013-01-01

    The design of the camera support structures for the Cherenkov Telescope Array (CTA) Large Size Telescopes (LSTs) is based on an elliptical arch geometry reinforced along its orthogonal projection by two symmetric sets of stabilizing ropes. The main requirements in terms of minimal camera displacement, minimal weight, minimal shadowing on the telescope mirror, maximal strength of the structures and fast dynamical stabilization have led to the application of Carbon Fibre Plastic Reinforced (CFP...

  12. The high-altitude water Cherenkov Observatory

    International Nuclear Information System (INIS)

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ -ray experiment under construction at 4,100ma.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ -ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ -ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array. (author)

  13. The High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    Mostafa, Miguel; HAWC Collaboration

    2016-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a continuously operated, wide field of view experiment comprised of an array of 300 water Cherenkov detectors (WCDs) to study transient and steady emission of TeV gamma and cosmic rays. Each 200000 l WCD is instrumented with 4 PMTs providing charge and timing information. The array covers ~22000 m2 at an altitude of 4100 m a.s.l. inside the Pico de Orizaba national park in Mexico. The high altitude, large active area, and optical isolation of the PMTs allows us to reliably estimate the energy and determine the arrival direction of gamma and cosmic rays with significant sensitivity over energies from several hundred GeV to a hundred TeV. Continuously observing 2 / 3 of the sky every 24 h, HAWC plays a significant role as a survey instrument for multi-wavelength studies. The performance of HAWC makes possible the detection of both transient and steady emissions, the study of diffuse emission and the measurement of the spectra of gamma-ray sources at TeV energies. HAWC is also sensitive to the emission from GRBs above 100 GeV. I will highlight the results from the first year of operation of the full HAWC array, and describe the ongoing site work to expand the array by a factor of 4 to explore the high energy range.

  14. The high-altitude water Cherenkov Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Miguel A., E-mail: miguel@psu.edu [Department of Physics, Colorado State University, Ft Collins, CO (United States)

    2014-07-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ -ray experiment under construction at 4,100ma.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ -ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ -ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array. (author)

  15. Development of aerogel Cherenkov counters at Novosibirsk

    International Nuclear Information System (INIS)

    The work on aerogel Cherenkov counters was started in Novosibirsk in 1986. Production of aerogels with refractive indices of 1.006-1.13 and thicknesses of blocks up to 50mm was developed. The light absorption length at 400nm is 5-7m, the scattering length is 4-5cm. By these parameters, the Novosibirsk aerogel is one of the best in the world. The ASHIPH Cherenkov counters with light collection on wavelength shifters have been developed. The ASHIPH system of the KEDR detector contains 1000l of aerogel. The π/K separation is 4.5σ. A project of ASHIPH counters for the SND detector has been developed. Aerogel RICH for LHCb gives a possibility to identify hadrons in the momentum range of 2-10GeV/c. The Novosibirsk group is developing an aerogel RICH for the endcap for the SuperBaBar project. Calculations performed by a group of physicists from Novosibirsk and DESY-Zeuthen have shown that aerogel radiators enable to achieve time resolution up to 20fs

  16. The High Altitude Water Cherenkov Observatory

    CERN Document Server

    ,

    2013-01-01

    The High Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV gamma-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV gamma-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from gamma-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first thirty WCDs (forming an array approximately the size of Milagro) were deployed in Summer...

  17. Creation of DICOM—Aware Applications Using ImageJ

    OpenAIRE

    Barboriak, Daniel P.; Padua, Anthony O.; York, Gerald E.; MacFall, James R.

    2005-01-01

    The demand for image-processing software for radiology applications has been increasing, fueled by advancements in both image-acquisition and image-analysis techniques. The utility of existing image-processing software is often limited by cost, lack of flexibility, and/or specific hardware requirements. In particular, many existing packages cannot directly utilize images formatted using the specifications in part 10 of the DICOM standard (“DICOM images”). We show how image analyses can be per...

  18. Influence of clouds on the parameters of images measured by IACT at very high energies

    International Nuclear Information System (INIS)

    Observations with the Cherenkov telescopes are in principle limited to clear sky conditions due to significant absorption of Cherenkov light by clouds. If the cloud level is high enough or the atmospheric transmission of the cloud is high, then high energy showers (with TeV energies) can still produce enough Cherenkov photons allowing detection by telescopes with large sizes and cameras with large field of view (FOV). In this paper, we study the possibility of observations of showers, induced by high-energy particles in the atmosphere, in the presence of clouds that are completely or partially opaque for Cherenkov radiation. We show how the image parameters of the Cherenkov light distribution on the telescope camera are influenced for different opacity and altitude of the cloud. By applying the Monte Carlo simulations, we calculate the scaled LENGTH and WIDTH parameters with the purpose to separate γ-ray and proton initiated showers in real data. We show, that the high level of the night sky background effects the selection efficiency of the γ-ray initiated showers. However, application of the higher image-cleaning level significantly improves expected quality factors. The estimated γ-ray selection efficiency for the detector with the camera field of view (FOV) limited to 8∘ is slightly better than for the camera with an unlimited FOV, although the number of identified γ-ray events is lower. We conclude that large Cherenkov telescopes with large FOV cameras can be used for observations of very high energy γ-rays in the presence of clouds. Consequently, the amount of useful data can be significantly enlarged. (paper)

  19. A special designed library for medical imaging applications

    International Nuclear Information System (INIS)

    The present paper deals with a sophisticated and flexible library of medical purpose image processing routines. It contains modules for simple as well as advanced gray or colour image processing. This library offers powerful features for medical image processing and analysis applications, thus providing the physician with a means of analyzing and estimating medical images in order to accomplish their diagnostic procedures

  20. Calibration and magnetic field shielding of an aerogel Cherenkov counter at the SAPHIR detector

    International Nuclear Information System (INIS)

    It was shown under which conditions the application of an aerogel Cherenkov counters at the SAPHIR detector is possible. To this end it is necessary to shield the photomultipliers against the magnetic field for the selection of the signals. This can be achieved by mounting an iron plate of 2 cm thickness between detector coil and the photomultiplier and by additionally wrapping the first photomultiplier with a correcting coil. Furthermore an online program was tested which controls the voltage supply and the amplification of the photomultipliers. This program worked reliably in the test and was expected to reliably carry out the necessary calibration processes also during measurement. Simulations with GEANT showed that the aerogel Cherenkov counter was to have a positive detection probability for pions of at least 90%. This is made up of about 2% of misinterpreted kaons and an actual particle detection probability of 90-95%. (orig./HP)

  1. Spin-Cherenkov effect in a magnetic nanostrip with interfacial Dzyaloshinskii-Moriya interaction.

    Science.gov (United States)

    Xia, Jing; Zhang, Xichao; Yan, Ming; Zhao, Weisheng; Zhou, Yan

    2016-01-01

    Spin-Cherenkov effect enables strong excitations of spin waves (SWs) with nonlinear wave dispersions. The Dzyaloshinskii-Moriya interaction (DMI) results in anisotropy and nonreciprocity of SWs propagation. In this work, we study the effect of the interfacial DMI on SW Cherenkov excitations in permalloy thin-film strips within the framework of micromagnetism. By performing micromagnetic simulations, it is shown that coherent SWs are excited when the velocity of a moving magnetic source exceeds the propagation velocity of the SWs. Moreover, the threshold velocity of the moving magnetic source with finite DMI can be reduced compared to the case of zero DMI. It thereby provides a promising route towards efficient spin wave generation and propagation, with potential applications in spintronic and magnonic devices. PMID:27143311

  2. Fast determination of 90Sr/90Y activity in milk by Cherenkov counting

    International Nuclear Information System (INIS)

    Cherenkov counting of the 90Sr/90Y pure beta emitters is an attractive method for 90Sr activity determination, but the color quenching effect may be significant, especially for strongly colored or semi-opaque media. A quench correction method based on the external source of some liquid scintillation systems (named ESAR – external source area ratio) was proposed and checked for aqueous solutions and was proved to be effective also for urine samples. In the present work, the application of the ESAR method for fast determination of 90Sr/90Y activity in milk samples is described. - Highlights: • A new color quenching correction method (ESAR) for Cherenkov counting was tested. • It uses the spectrum of the 152Eu outer source of a Quantulus 1220TM system. • The method was applied for fast 90Sr/90Y determination in milk. • The method works for a great variety of milk products from different animals, with different fat contents

  3. Determination of 90Sr–90Y activity in urine samples by using Cherenkov counting

    International Nuclear Information System (INIS)

    Cherenkov counting of the 90Sr–90Y pure beta emitters in aqueous samples is an attractive method; but color quenching correction is needed, this being especially significant for urine which is characterized by a strong coloration. A quench correction method based on the external source of some liquid scintillation systems (named ESAR—External Source Area Ratio) was proposed for aqueous solutions. In the present work, the application of the ESAR method for determination of 90Sr–90Y in human urine samples is described. - Highlights: ► A new color quenching correction method (ESAR) was tested for Cherenkov counting. ► It uses the spectrum of the 152Eu outer source of a Quantulus 1220™ system. ► The method was applied for 90Sr–90Y determination in urine samples. ► Results within the range of 11.5% from target values were obtained in blind tests of urine samples

  4. The Physics and Nuclear Nonproliferation Goals of WATCHMAN: A WAter CHerenkov Monitor for ANtineutrinos

    CERN Document Server

    Askins, M; Bernstein, A; Dazeley, S; Dye, S T; Handler, T; Hatzikoutelis, A; Hellfeld, D; Jaffke, P; Kamyshkov, Y; Land, B J; Learned, J G; Marleau, P; Mauger, C; Gann, G D Orebi; Roecker, C; Rountree, S D; Shokair, T M; Smy, M B; Svoboda, R; Sweany, M; Vagins, M R; van Bibber, K A; Vogelaar, R B; Wetstein, M J; Yeh, M

    2015-01-01

    This article describes the physics and nonproliferation goals of WATCHMAN, the WAter Cherenkov Monitor for ANtineutrinos. The baseline WATCHMAN design is a kiloton scale gadolinium-doped (Gd) light water Cherenkov detector, placed 13 kilometers from a civil nuclear reactor in the United States. In its first deployment phase, WATCHMAN will be used to remotely detect a change in the operational status of the reactor, providing a first- ever demonstration of the potential of large Gd-doped water detectors for remote reactor monitoring for future international nuclear nonproliferation applications. During its first phase, the detector will provide a critical large-scale test of the ability to tag neutrons and thus distinguish low energy electron neutrinos and antineutrinos. This would make WATCHMAN the only detector capable of providing both direction and flavor identification of supernova neutrinos. It would also be the third largest supernova detector, and the largest underground in the western hemisphere. In a...

  5. Electron beam excitation of a CSRR loaded waveguide for Cherenkov radiation

    Science.gov (United States)

    Sharples, Emmy; Letizia, Rosa

    2015-09-01

    A novel metamaterial structure is presented for applications as a backward propagating Cherenkov source or Cherenkov detector. The structure comprises of a complementary split ring resonator (CSRR) metasurface loaded waveguide, which exhibits left handed behaviour between 5-6 GHz. When the left handed, TM-like mode couples with an incident electron beam, backward propagating Cherenkov radiation is observed. The structure is suitable for beam-based applications, exhibiting strong beam coupling parameters and significant excitation of longitudinal wakefields. Three dimensional particle in cell simulations are performed to identify a suitable beam for operation. High and low energy beams, with different bunch dimensions from the literature, are considered and compared to investigate the nature of the beam-wave interaction this structure can support, and to identify any required modification before beam tests can be performed. This structure can lead to new solutions for non-destructive beam diagnostics, wakefield acceleration and backward wave oscillators which can potentially be scaled to higher frequency ranges.

  6. Atmospheric multiple scattering of fluorescence and Cherenkov light emitted by extensive air showers

    CERN Document Server

    Pekala, J; Wilczynska, B; Wilczynski, H; 10.1016/j.nima.2009.03.244

    2009-01-01

    Atmospheric scattering of light emitted by an air shower not only attenuates direct fluorescence light from the shower, but also contributes to the observed shower light. So far only direct and singly-scattered Cherenkov photons have been taken into account in routine analyses of the observed optical image of air showers. In this paper a Monte Carlo method of evaluating the contribution of multiply scattered light to the optical air shower image is presented, as well as results of simulations and a parameterization of scattered light contribution to measured shower signal.

  7. Two satellite image sets for the training and validation of image processing systems for defense applications

    Science.gov (United States)

    Peterson, Michael R.; Aldridge, Shawn; Herzog, Britny; Moore, Frank

    2010-04-01

    Many image processing algorithms utilize the discrete wavelet transform (DWT) to provide efficient compression and near-perfect reconstruction of image data. Defense applications often require the transmission of data at high levels of compression over noisy channels. In recent years, evolutionary algorithms (EAs) have been utilized to optimize image transform filters that outperform standard wavelets for bandwidth-constrained compression of satellite images. The optimization of these filters requires the use of training images appropriately chosen for the image processing system's intended applications. This paper presents two robust sets of fifty images each intended for the training and validation of satellite and unmanned aerial vehicle (UAV) reconnaissance image processing algorithms. Each set consists of a diverse range of subjects consisting of cities, airports, military bases, and landmarks representative of the types of images that may be captured during reconnaissance missions. Optimized algorithms may be "overtrained" for a specific problem instance and thus exhibit poor performance over a general set of data. To reduce the risk of overtraining an image filter, we evaluate the suitability of each image as a training image. After evolving filters using each image, we assess the average compression performance of each filter across the entire set of images. We thus identify a small subset of images from each set that provide strong performance as training images for the image transform optimization problem. These images will also provide a suitable platform for the development of other algorithms for defense applications. The images are available upon request from the contact author.

  8. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    International Nuclear Information System (INIS)

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas

  9. The Cherenkov Radiation for Non-Trivial Systems

    International Nuclear Information System (INIS)

    The charge pathways and the dielectric properties of the medium are two essential aspects to be considered in the study of the emission of Cherenkov radiation. We described the evolution of the Cherenkov wavefront when the charges follow circular or helical pathways. Also we derive expressions for the refractive Index in different transparent media (solid, liquid or gas), focusing our attention on optically active plasmas. The optical analogies between the plasma and the birefringent crystals is studied in detail. Finally, we list some examples of plasmas, which can be considered emitters of Cherenkov radiation. (Author) 52 refs

  10. Tachyonic Cherenkov emission from Jupiter's radio electrons

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman, E-mail: tom@geminga.org

    2013-12-17

    Tachyonic Cherenkov radiation from inertial relativistic electrons in the Jovian radiation belts is studied. The tachyonic modes are coupled to a frequency-dependent permeability tensor and admit a negative mass-square, rendering them superluminal and dispersive. The superluminal radiation field can be cast into Maxwellian form, using 3D field strengths and inductions, and the spectral densities of tachyonic Cherenkov radiation are derived. The negative mass-square gives rise to a longitudinal flux component. A spectral fit to Jupiter's radio spectrum, inferred from ground-based observations and the Cassini 2001 fly-by, is performed with tachyonic Cherenkov flux densities averaged over a thermal electron population.

  11. Comparison of Different Trigger and Readout Approaches for Cameras in the Cherenkov Telescope Array Project

    CERN Document Server

    Shayduk, M; Schwanke, U

    2013-01-01

    The Cherenkov Telescope Array (CTA) is a next-generation ground-based observatory for g -rays with energies between some ten GeV and a few hundred TeV. CTA is currently in the advanced design phase and will consist of arrays with different size of prime-focus Cherenkov telescopes, to ensure a proper energy coverage from the threshold up to the highest energies. The extension of the CTA array with double-mirror Schwarzschild- Couder telescopes is planned to improve the array angular resolution over wider field of view.We present an end-to-end Monte-Carlo comparison of trigger concepts for the different imaging cameras that will be used on the Cherenkov telescopes. The comparison comprises three alternative trigger schemes (analog, majority, flexible pattern analysis) for each camera design. The study also addresses the influence of the properties of the readout system (analog bandwidth of the electronics, length of the readout window in time) and uses an offline shower reconstruction to investigate the impact ...

  12. First observation of Cherenkov rings with a large area CsI-TGEM-based RICH prototype

    International Nuclear Information System (INIS)

    We have built a RICH detector prototype consisting of a liquid C6F14 radiator and six triple Thick Gaseous Electron Multipliers (TGEMs), each of them having an active area of 10×10 cm2. One triple TGEM has been placed behind the liquid radiator in order to detect the beam particles, whereas the other five have been positioned around the central one at a distance to collect the Cherenkov photons. The upstream electrode of each of the TGEM stacks has been coated with a 0.4 μm thick CsI layer. In this paper, we will present the results from a series of laboratory tests performed with this prototype carried out using UV light, 6 keV photons from 55Fe and electrons from 90Sr as well as recent results of tests with a beam of charged pions where for the first time Cherenkov Ring images have been successfully recorded with TGEM photodetectors. The achieved results prove the feasibility of building Cherenkov detector based on CsI coated TGEMs.

  13. Novel Metal Clusters for Imaging Applications

    KAUST Repository

    Alsaiari, Shahad K.

    2014-05-01

    During the past few years, gold nanoparticles (AuNPs) have received considerable attention in many fields due to their optical properties, photothermal effect and biocompatibility. AuNPs, particularly AuNCs and AuNRs, exhibit great potential in diagnostics and imaging. In the present study, AuNCs were used to selectively image and quantify intracellular antioxidants. It was reported by Chen et al. that the strong fluorescence of AuNCs is quenched by highly reactive oxygen species (hROS). Most of applications depend on fluorescence quenching, however, for our project we designed turn-on fluorescent sensors using AuNCs that sense antioxidants. In the presence of antioxidants, AuNCs fluorescence switch on, while in the absence of antioxidants their fluorescence immediately turn off due to hROS effect. AuNRs were also used for cellular imaging in which AuNRs were conjugated to Cy3-labelled molecular beacon (MB) DNA. Next, the previous complex was loaded in two different strains of magnetotactic bacteria (MTB). MTB were used as a targeted delivery vehicle in which magnetosomes direct the movement of bacteria. The DNA sequence was specific to a certain sequence in mitochondria. The exposure of MTB to an alternating magnetic field (AMF) leads to the increase of temperature inside the bacteria, which destruct the cell wall, and hence, bacterial payload is released. When MD-DNA hybrid with the target sequence, AuNR and Cy3 separate from each other, the fluorescence of the Cy3 is restored.

  14. Electrical Resistivity Imaging for environmental applications

    International Nuclear Information System (INIS)

    For a few years, the evolution of measuring equipment and of interpretation software have permitted to develop a new electrical resistivity technique called resistivity imaging where the equipment, which includes a large number of electrodes located along a line at the same time, carries out an automatic switching of these electrodes for acquiring profiling data. The apparent resistivity pseudo sections measured with such a technique are processed by an inversion software which gives interpreted resistivity and depth values for the anomalies detected along the profile. The multi-electrode resistivity technique consists in using a multi-core cable with as many conductors (24, 48, 72, 96) as electrodes plugged into the ground at a fixed spacing, every 5m for instance. In the resistivitymeter itself are located the relays which ensure the switching of those electrodes according to a sequence of readings predefined and stored in the internal memory of the equipment. The various combinations of transmitting (A,B) and receiving (M,N) pairs of electrodes construct the mixed sounding / profiling section, with a maximum investigation depth which mainly depends on the total length of the cable. The 2D resistivity images obtained with such a multi-electrode technique are used for studying the shallow stuctures of the underground located a few tens of metres down to about one hundred metres depth; these images supply an information which complements the one obtained with the more traditionnal Vertical Electrical Sounding (VES) technique, which mainly aims at determining the depths of horizontal 1D structures from the surface down to several hundreds metres depths. Several examples are presented for various types of applications: groundwater (intrusion of salt water in fresh water), geotechnics (detection of a fault in a granitic area), environment (delineation of a waste disposal area) and archaeology (discovery of an ancient tomb)

  15. Inverse synthetic aperture radar imaging principles, algorithms and applications

    CERN Document Server

    Chen , Victor C

    2014-01-01

    Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications is based on the latest research on ISAR imaging of moving targets and non-cooperative target recognition (NCTR). With a focus on the advances and applications, this book will provide readers with a working knowledge on various algorithms of ISAR imaging of targets and implementation with MATLAB. These MATLAB algorithms will prove useful in order to visualize and manipulate some simulated ISAR images.

  16. Low complexity image recognition algorithm for handheld applications

    OpenAIRE

    Ayyalasomayajula, Pradyumna; Grassi Pauletti, Sara; Farine, Pierre-André

    2011-01-01

    We propose a low complexity image recognition algorithm based on Content Based Image Retrieval (CBIR) suitable for handheld applications. The target application is an Alternative and Augmentative Communication (AAC) device used in speech rehabilitation and education. The device recognizes images (pictograms and pictures) and plays a sound message associated with the recognized image. Experimental validation of the proposed algorithm using MATLAB and its DSP implementation is presented.

  17. Second Harmonic Generation Imaging Microscopy: Applications to Diseases Diagnostics

    OpenAIRE

    Campagnola, Paul

    2011-01-01

    Second Harmonic Generation microscopy has emerged as a powerful new optical imaging modality. This Feature describes its chemical and physical principles and highlights current applications in disease diagnostics.

  18. A multiplicity trigger for a Cherenkov detector

    International Nuclear Information System (INIS)

    The Multiplicity Trigger (MT) is a device for deciding if, in a given time window, the number of wires that are hit in a multi wire proportional chamber (MWPC) is within given limits. The MT is designed for a Cherenkov detector, using a MWPC with 155 sense wires. It has ten inputs with sixteen channels on each, for 160 ECL input signals from the MWPC. With the MT, it is possible to decide if the number of hits is greater than n out of 160, where n is called the multiplicity. Here, 2 < n < 30, with an accuracy of +- 1. The time window can be adjusted from 0.7 to 4 μs. The MT has four separate NIM outputs, to make it possible to have four different values of n at the same time. The propagation delay from input to output is at the most 100 ns. (author)

  19. Observer Access to the Cherenkov Telescope Array

    CERN Document Server

    Knödlseder, Jürgen; Boisson, Catherine; Brau-Nogué, Sylvie; Deil, Christoph; Khélifi, Bruno; Mayer, Michael; Walter, Roland

    2015-01-01

    The Cherenkov Telescope Array (CTA), a ground-based facility for very-high-energy (VHE) gamma-ray astronomy, will operate as an open observatory, serving a wide scientific community to explore and to study the non-thermal universe. Open community access is a novelty in this domain, putting a challenge on the implementation of services that make VHE gamma-ray astronomy as accessible as any other waveband. We present here the design of the CTA Observer Access system that comprises support of scientific users, dissemination of data and software, tools for scientific analysis, and the system to submit observing proposals. We outline the scientific user workflows and provide the status of the current developments.

  20. Calibration of the Cherenkov Telescope Array

    CERN Document Server

    Gaug, Markus; Berge, David; Reyes, Raquel de los; Doro, Michele; Foerster, Andreas; Maccarone, Maria Concetta; Parsons, Dan; van Eldik, Christopher

    2015-01-01

    The construction of the Cherenkov Telescope Array is expected to start soon. We will present the baseline methods and their extensions currently foreseen to calibrate the observatory. These are bound to achieve the strong requirements on allowed systematic uncertainties for the reconstructed gamma-ray energy and flux scales, as well as on the pointing resolution, and on the overall duty cycle of the observatory. Onsite calibration activities are designed to include a robust and efficient calibration of the telescope cameras, and various methods and instruments to achieve calibration of the overall optical throughput of each telescope, leading to both inter-telescope calibration and an absolute calibration of the entire observatory. One important aspect of the onsite calibration is a correct understanding of the atmosphere above the telescopes, which constitutes the calorimeter of this detection technique. It is planned to be constantly monitored with state-of-the-art instruments to obtain a full molecular and...

  1. Constraint on ghost-free bigravity from gravitational Cherenkov radiation

    CERN Document Server

    Kimura, Rampei; Yamamoto, Kazuhiro; Yamashita, Yasuho

    2016-01-01

    We investigate gravitational Cherenkov radiation in a healthy branch of background solutions in the ghost-free bigravity model. In this model, because of the modification of dispersion relations, each polarization mode can possess subluminal phase velocities, and the gravitational Cherenkov radiation could be potentially emitted from a relativistic particle. In the present paper, we derive conditions for the process of the gravitational Cherenkov radiation to occur and estimate the energy emission rate for each polarization mode. We found that the gravitational Cherenkov radiation emitted even from an ultrahigh energy cosmic ray is sufficiently suppressed for the graviton's effective mass less than $100\\,{\\rm eV}$, and the bigravity model with dark matter coupled to the hidden metric is therefore consistent with observations of high energy cosmic rays.

  2. X-ray diffraction radiation in conditions of Cherenkov effect

    NARCIS (Netherlands)

    Tishchenko, A. A.; Potylitsyn, A. P.; Strikhanov, M. N.

    2006-01-01

    X-ray diffraction radiation from ultra-relativistic electrons moving near an absorbing target is considered. The emission yield is found to increase significantly in conditions of Cherenkov effect. (c) 2006 Elsevier B.V. All rights reserved.

  3. A backscattered x-ray imager for medical applications

    Science.gov (United States)

    Morris, Eric Jude L.; Dibianca, Frank A.; Shukla, Hemant; Gulabani, Daya

    2005-04-01

    Conventional X-ray radiographic systems rely on transmitted photons for the production of images. Backscatter imaging makes use of the more abundant scattered photons for image formation. Specifically, incoherently (Compton) scattered X-ray photons are detected and used for image formation in this modality of medical imaging. However, additional information is obtained when the transmitted X-ray photons are also detected and used. Transmission radiography produces a two-dimensional image of a three dimensional system, therefore image information from a shallower object is often contaminated by image information from underlying objects. Backscattered x-ray imaging largely overcomes this deficiency by imaging depth selectively, which reduces corruption of shallow imaging information by information from deeper objects lying under it. Backscattered x-ray imaging may be particularly useful for examining anatomical structures at shallow depths beneath the skin. Some typical applications for such imaging might be breast imaging, middle ear imaging, imaging of skin melanomas, etc. Previous investigations, by way of theoretical calculations and computational simulations into the feasibility of this kind of imaging have uncovered high-contrast and SNR parameters. Simulations indicate that this method can be used for imaging relatively high-density objects at depths of up to approximately five centimeters below the surface. This paper presents both theoretical and experimental SNR results on this new medical imaging modality.

  4. Signal acquisition in Cherenkov-type diagnostics of electron beams within tokamak facilities

    Science.gov (United States)

    Rabiński, Marek; Jakubowski, Lech; Sadowski, Marek J.; Żebrowski, Jarosław; Jakubowski, Marcin J.; Malinowski, Karol; Mirowski, Robert

    2015-09-01

    The paper presents feasibility and design studies of Cherenkov-type probes, a development of the measuring head construction designed for different tokamak devices, and in particular the acquisition of optical signals to a data storage system. In order to lower the energy threshold of the electron detection the authors applied radiators with the highest values of the refractive index. Different radiator materials, such as aluminium nitride and CVD diamond were applied. Several versions of measuring heads and different manipulators, e.g., a movable vacuum-tight shaft or a fast-moving reciprocating probe, were manufactured and used. The practical application of the Cherenkov probes required also a consideration of spectral characteristics of optical fibres and photomultipliers. The Cherenkov radiation, as generated inside the radiators, is lead out through separate fibres (optical cables) to the atmospheric pressure side. The emitted radiation in the blue (near ultraviolet) spectrum range should be collected and delivered through appropriate optical cables to a control room, amplified within photomultipliers and recorded in a digital form. In order to investigate an electron energy distribution the multi-channel probes have also been designed and applied.

  5. Proposal of coherent Cherenkov radiation matched to circular plane wave for intense terahertz light source

    Energy Technology Data Exchange (ETDEWEB)

    Sei, Norihiro, E-mail: sei.n@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Sakai, Takeshi; Hayakawa, Ken; Tanaka, Toshinari; Hayakawa, Yasushi; Nakao, Keisuke; Nogami, Kyoko; Inagaki, Manabu [Laboratory for Electron Beam Research and Application, Nihon University, 7-24-1 Narashinodai, Funabashi 274-8501 (Japan)

    2015-10-09

    Highlights: • We proposed a new intense terahertz-wave source based on coherent Cherenkov radiation (CCR). • A hollow conical dielectric is used to generate the CCR beam. • The wave front of the CCR beam can be matched to the basal plane. • The peak-power of the CCR beam is above 1 MW per micropulse with a short interval of 350 ps. - Abstract: We propose a high-peak-power terahertz-wave source based on an electron accelerator. By passing an electron beam through a hollow conical dielectric with apex facing the incident electron beam, the wave front of coherent Cherenkov radiation generated on the inner surface of the hollow conical dielectric matches the basal plane. Using the electron beam generated at the Laboratory for Electron Beam Research and Application at Nihon University, the calculated power of coherent Cherenkov radiation that matched the circular plane (CCR-MCP) was above 1 MW per micropulse with a short interval of 350 ps, for wavelengths ranging from 0.5 to 5 mm. The electron beam is not lost for generating the CCR-MCP beam by using the hollow conical dielectric. It is possible to combine the CCR-MCP beams with other light sources based on an accelerator.

  6. Theoretical study of Cherenkov radiation emission in anisotropic uniaxial crystals

    International Nuclear Information System (INIS)

    A theoretical review of the Cherenkov radiation emission in uniaxial crystals is presented. The formalism of C. Muzicar in terms of energetic properties of the emitted waves are corrected. This formalism is used to simulate the Cherenkov radiation emission in a strongly birefringent sodium nitrate crystal (NaNO3) and to investigate the consequences of the slight anisotropy of sapphire (Al2O3) on the design of the Optical Trigger. (author)

  7. Fast timing and trigger Cherenkov detector for collider experiments

    OpenAIRE

    Grigoryev, V. A.; Kaplin, V. A.; Karavicheva, T.L.; Konevskikh, A. S.; Kurepin, A. B.; Loginov, V. A.; Melikyan, A.; Morozov, I. V.; Reshetin, A. I.; Serebryakov, D. V.; Shabanov, A. I.; Slupecki, Maciej; Trzaska, Wladyslaw; Tykmanov, E. M.

    2016-01-01

    Analysis of fast timing and trigger Cherenkov detector’s design for its use in collider experiments is presented. Several specific requirements are taken into account – necessity of the radiator’s placement as close to the beam pipe as possible along with the requirement of gapless (solid) radiator’s design. Characteristics of the Cherenkov detector’s laboratory prototype obtained using a pion beam at the CERN Proton Synchrotron are also presented, showing the possibility of ob...

  8. Threshold gas 32-channel Cherenkov counter of the spectrometer EXCHARM

    International Nuclear Information System (INIS)

    The Cherenkov 32-channel threshold gas counter with 420-cm air radiator at the atmospheric pressure is described. Spherical mirrors with the curvature radius of 214 cm and photomultipliers FEU-125, FEU-49B were used in the counter for collection and registration of the Cherenkov radiation. The photomultipliers inlet windows are covered with films of spectra mixers. The efficiency of charged particles registration on the plateau of threshold characteristics (β ≥ 0.99984) exceeds 97%. 6 refs., 6 figs., 1 tab

  9. Development of a compact silica aerogel Cherenkov counter

    International Nuclear Information System (INIS)

    A compact silica aerogel Cherenkov counter with fine-mesh type photo-multiplier tubes has been developed to reject e+e- pair created events at a trigger level. The silica aerogel is covered with a highly reflective material to lead emitted Cherenkov photons into the photo-cathodes. The efficiency of e+e- event identification is obtained to be more than 97%. (author)

  10. The next generation Cherenkov Telescope Array observatory: CTA

    International Nuclear Information System (INIS)

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the very high-energy gamma-ray astrophysics in the energy range 30 GeV–100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23 m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100 m. A larger number (about 25 units) of 12 m Medium Size Telescopes (MSTs, separated by about 150 m), will cover a larger area. The southern site will also include up to 24 Schwarzschild–Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5 m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To achieve the required sensitivity at high energies, a huge area on the ground needs to be covered by Small Size Telescopes (SSTs) with a field of view of about 10° and an angular resolution of about 0.2°, making the dual-mirror configuration very effective. The SST sub-array will be composed of 50–70 telescopes with a mirror area of about 5–10 m2 and about 300 m spacing, distributed across an area of about 10 km2. In this presentation we will focus on the innovative solution for the optical design of the medium and small size telescopes based on a dual-mirror configuration. This layout will allow us to reduce the dimension and the weight of the camera at the focal plane of the telescope, to adopt Silicon-based photo-multipliers as light detectors thanks to the reduced plate-scale, and to have an optimal imaging resolution on a wide field of view

  11. Biomedical Imaging Registration Trends and Applications

    OpenAIRE

    Tavares, João Manuel R. S.

    2012-01-01

    Data registration, i.e., the process of transforming a dataset so that the entities represented are properly adjusted to the homologous entities represented in a second dataset, has been a topic of huge research in various scientific fields. In Computational Vision, such transformation is commonly used on static images, but also on image sequences, and is usually known as image registration. For example, in medicine, computational methods of image registration have been assuming an essential ...

  12. Terahertz sources for spectroscopy and imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yun Sik; Kim, K. J.; Jung, Sun Shin; Shon, Chae Wha; Kim, Jee Hyun [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2004-07-01

    The generation of TeraHertz (THz) radiation via photoconductive excitation of semiconducting materials and optical rectification was described. As an excitation source of optical pulse, a mode-locked Ti:Sapphire femtosecond laser was used. Using modern integrated circuit techniques, micron-sized dipole antenna has been fabricated on a low-temperature grown GaAs (LT-GaAs) wafer for photoconductive antenna. As for optical rectification method, 1 mm thick ZnTe (110) crystal was used. The features of above two method of THz pulse generation are compared. In case of the PhotoConductive Antenna (PCA) method, ultra-wide band THz radiation with frequencies between 0.1 THz and 2.5 THz was obtained. Compared with the PCA method, THz field intensity of the optical rectification was smaller. But the full width at half maximum of frequency spectrum of optical rectification was much larger than the PCA method. The terahertz pulses obtained by both the methods can be used to THz time-domain spectroscopy (THz-TDS) and spectroscopic pulse imaging applications.

  13. Terahertz sources for spectroscopy and imaging applications

    International Nuclear Information System (INIS)

    The generation of TeraHertz (THz) radiation via photoconductive excitation of semiconducting materials and optical rectification was described. As an excitation source of optical pulse, a mode-locked Ti:Sapphire femtosecond laser was used. Using modern integrated circuit techniques, micron-sized dipole antenna has been fabricated on a low-temperature grown GaAs (LT-GaAs) wafer for photoconductive antenna. As for optical rectification method, 1 mm thick ZnTe (110) crystal was used. The features of above two method of THz pulse generation are compared. In case of the PhotoConductive Antenna (PCA) method, ultra-wide band THz radiation with frequencies between 0.1 THz and 2.5 THz was obtained. Compared with the PCA method, THz field intensity of the optical rectification was smaller. But the full width at half maximum of frequency spectrum of optical rectification was much larger than the PCA method. The terahertz pulses obtained by both the methods can be used to THz time-domain spectroscopy (THz-TDS) and spectroscopic pulse imaging applications

  14. Applications of Digital Image Analysis in Experimental Mechanics

    OpenAIRE

    Lyngbye, J. : Ph.D.

    1992-01-01

    The present thesis "Application of Digital Image Analysis in Experimental Mechanics" has been prepared as a part of Janus Lyngbyes Ph.D. study during the period December 1988 to June 1992 at the Department of Building technology and Structural Engineering, University of Aalborg, Denmark. In this thesis attention will be focused on optimal use and analysis of the information of digital images. This is realized during investigation and application of parametric methods in digital image analysis...

  15. A new image watermarking using texture component: application color image

    OpenAIRE

    Saloua Senhaji; Aarab Abdellah

    2012-01-01

    This paper presents a new robust watermarking scheme for color image based on Partial Differential Equations (PDE). Specifically, the mark is inserted in to texture component obtained after decomposition of the image by PDE. The watermark used is a binary matrix for the texture component. Experimentation has ensured the mark invisibility, the facility of detection of the mark and the robustness against different kinds of attacks.

  16. Application of cone beam computed tomography in facial imaging science

    Institute of Scientific and Technical Information of China (English)

    Zacharias Fourie; Janalt Damstra; Yijin Ren

    2012-01-01

    The use of three-dimensional (3D) methods for facial imaging has increased significantly over the past years.Traditional 2D imaging has gradually being replaced by 3D images in different disciplines,particularly in the fields of orthodontics,maxillofacial surgery,plastic and reconstructive surgery,neurosurgery and forensic sciences.In most cases,3D facial imaging overcomes the limitations of traditional 2D methods and provides the clinician with more accurate information regarding the soft-tissues and the underlying skeleton.The aim of this study was to review the types of imaging methods used for facial imaging.It is important to realize the difference between the types of 3D imaging methods as application and indications thereof may differ.Since 3D cone beam computed tomography (CBCT) imaging will play an increasingly importanl role in orthodontics and orthognathic surgery,special emphasis should be placed on discussing CBCT applications in facial evaluations.

  17. Reconfigurable machine for applications in image and video compression

    Science.gov (United States)

    Hartenstein, Reiner W.; Becker, Juergen; Kress, Rainier; Reinig, Helmut; Schmidt, Karin

    1995-02-01

    This paper presents a reconfigurable machine for applications in image or video compression. The machine can be used stand alone or as a universal accelerator co-processor for desktop computers for image processing. It is well suited for image compression algorithms such as JPEG for still pictures or for encoding MPEG movies. It provides a much cheaper and more flexible hardware platform than special image compression ASICs and it can substantially accelerate desktop computing.

  18. Application of electrical capacitance tomography for imaging industrial processes

    Institute of Scientific and Technical Information of China (English)

    DYAKOWSKI Tom

    2005-01-01

    Electrical tomography is, in certain cases, the most attractive method for real imaging of industrial processes, because of its inherent simplicity, rugged cons truction of the tomographer and high-speed capability. This paper presents examples illustrating applications of electrical tomography for imaging fluidized beds, bubble columns and pneumatic conveyors. Electrical tomography opens up new ways for processing, imaging and modelling multi-phase flows as shown by 2D and 3D images illustrating the various types of flow morphology.

  19. Review of diffusion tensor imaging and its application in children

    Energy Technology Data Exchange (ETDEWEB)

    Vorona, Gregory A. [Children' s Hospital of Richmond at Virginia Commonwealth University, Department of Radiology, Richmond, VA (United States); Berman, Jeffrey I. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2015-09-15

    Diffusion MRI is an imaging technique that uses the random motion of water to probe tissue microstructure. Diffusion tensor imaging (DTI) can quantitatively depict the organization and connectivity of white matter. Given the non-invasiveness of the technique, DTI has become a widely used tool for researchers and clinicians to examine the white matter of children. This review covers the basics of diffusion-weighted imaging and diffusion tensor imaging and discusses examples of their clinical application in children. (orig.)

  20. Review of diffusion tensor imaging and its application in children

    International Nuclear Information System (INIS)

    Diffusion MRI is an imaging technique that uses the random motion of water to probe tissue microstructure. Diffusion tensor imaging (DTI) can quantitatively depict the organization and connectivity of white matter. Given the non-invasiveness of the technique, DTI has become a widely used tool for researchers and clinicians to examine the white matter of children. This review covers the basics of diffusion-weighted imaging and diffusion tensor imaging and discusses examples of their clinical application in children. (orig.)

  1. TH-C-17A-04: Shining Light On the Implementation of Cherenkov Emission in Radiation Therapy

    International Nuclear Information System (INIS)

    Purpose: We hypothesize that Cherenkov emission (CE) by radiotherapy beams is correlated with radiation dose, CE detection can be maximized by a spectral shift towards the near-infrared (NIR) window of biological tissue, and in certain tissue types (ex. breast/oropharynx), it could prove superior to mega-voltage (MV) imaging. Therefore, we compare CE imaging to onboard MV imaging. Methods: Dose-CE correlation was investigated via simulation and experiment. A Monte Carlo (MC) CE simulator was designed using Geant4. Experimental phantoms include: water; tissuesimulating phantom composed of water, fat emulsion, and beef blood; plastic phantom with solid water insert. The optical spectrometry system consisted of a multi-mode optical fiber and diffraction-grating spectrometer incorporating a front/back-illuminated charge-coupled device (CCD). CdSe/ZnS quantum dots (QDs), emitting at (650±10) nm, were used to achieve NIR shift of the CE signal. CE and MV images were acquired with a complementary metal-oxide-semiconductor (CMOS) camera and an electronic portal imaging device (EPID), respectively. Results: MC and experimental studies indicate a strong linear correlation between radiation dose and CE (Pearson coefficient > 0.99). CE by an 18 MeV beam was effectively shifted towards the NIR in water and in a tissue-simulating phantom, exhibiting a 50% increase at 650 nm for QD depths of ∼3 mm. CE images exhibited relative contrast superior to EPID images by a factor of 30. Conclusion: Our work supports the potential for application of CE in radiotherapy online imaging for patient setup and treatment verification, since CE is intrinsic to the beam and non-ionizing, and QDs can be used to improve CE detectability, yielding image quality superior to MV imaging for the case of low density variability, low optical attenuation materials, such as breast or oropharyngeal cavities. Ongoing work involves microenvironment functionalization of QDs and application of multichannel

  2. Image Deblurring Using Derivative Compressed Sensing for Optical Imaging Application

    CERN Document Server

    Rostami, Mohammad; Wang, Zhou

    2011-01-01

    Reconstruction of multidimensional signals from the samples of their partial derivatives is known to be a standard problem in inverse theory. Such and similar problems routinely arise in numerous areas of applied sciences, including optical imaging, laser interferometry, computer vision, remote sensing and control. Though being ill-posed in nature, the above problem can be solved in a unique and stable manner, provided proper regularization and relevant boundary conditions. In this paper, however, a more challenging setup is addressed, in which one has to recover an image of interest from its noisy and blurry version, while the only information available about the imaging system at hand is the amplitude of the generalized pupil function (GPF) along with partial observations of the gradient of GPF's phase. In this case, the phase-related information is collected using a simplified version of the Shack-Hartmann interferometer, followed by recovering the entire phase by means of derivative compressed sensing. Su...

  3. Perceptual digital imaging methods and applications

    CERN Document Server

    Lukac, Rastislav

    2012-01-01

    Visual perception is a complex process requiring interaction between the receptors in the eye that sense the stimulus and the neural system and the brain that are responsible for communicating and interpreting the sensed visual information. This process involves several physical, neural, and cognitive phenomena whose understanding is essential to design effective and computationally efficient imaging solutions. Building on advances in computer vision, image and video processing, neuroscience, and information engineering, perceptual digital imaging greatly enhances the capabilities of tradition

  4. Signal and image processing in medical applications

    CERN Document Server

    Kumar, Amit; Rahim, B Abdul; Kumar, D Sravan

    2016-01-01

    This book highlights recent findings on and analyses conducted on signals and images in the area of medicine. The experimental investigations involve a variety of signals and images and their methodologies range from very basic to sophisticated methods. The book explains how signal and image processing methods can be used to detect and forecast abnormalities in an easy-to-follow manner, offering a valuable resource for researchers, engineers, physicians and bioinformatics researchers alike.

  5. Kalman filter tracking in a Cherenkov neutrino telescope

    International Nuclear Information System (INIS)

    The reconstruction of tracks in underwater Cherenkov neutrino telescopes is strongly complicated due to large background counting rate originates from 40K beta decay and to the electromagnetic showers accompanying high energy muons together with the effects of light propagation in the water, in particular the photon scattering. These two effects lead to a non-linear problem with a non-Gaussian measurement noise. A method for track reconstruction based on Kalman filter approach in this situation is presented. We use Gaussian Sum Filter algorithm to take into account non-Gaussian process noise. While usual Kalman filter estimators based on linear least-square method are optimal in case all observations are Gaussian distributed, the Gaussian Sum Filter offers a better treatment of non-Gaussian process noise and/or measurement errors when these are modeled by Gaussian mixtures. As an example of the application, the results of muon track reconstruction in NEMO underwater neutrino telescope are presented as well as the comparison of its capability with other standard track reconstruction methods.

  6. Optimization of the digital Silicon Photomultiplier for Cherenkov light detection

    International Nuclear Information System (INIS)

    The Silicon Photomultiplier is a promising alternative to fast vacuum photodetectors. We developed a fully digital implementation of the Silicon Photomultiplier. The sensor is based on a single photon avalanche photodiode (SPAD) integrated in a standard CMOS process. Photons are detected directly by sensing the voltage at the SPAD anode using a dedicated cell electronics block next to each diode. This block also contains active quenching and recharge circuits as well as a one bit memory for the selective inhibit of detector cells. A balanced trigger network is used to propagate the trigger signal from all cells to the integrated time-to-digital converter. Photons are detected and counted as digital signals, thus making the sensor less susceptible to temperature variations and electronic noise. The integration with CMOS logic has the added benefit of low power consumption and possible integration of data post-processing in the sensor. In this paper, we discuss the sensor architecture together with its characteristics, and its possible optimizations for applications requiring the detection of Cherenkov light.

  7. Cherenkov radiation with massive, C P T -violating photons

    Science.gov (United States)

    Colladay, Don; McDonald, Patrick; Potting, Robertus

    2016-06-01

    The source of C P T violation in the photon sector of the Standard Model Extension arises from a Chern-Simons-like contribution that involves a coupling to a fixed background vector field kAF μ . These Lorentz- and C P T -violating photons have well-known theoretical issues that arise from missing states at low momenta when kAF μ is timelike. In order to make the theory consistent, a tiny mass for the photon can be introduced, well below current experimental bounds. The implementation of canonical quantization can then be implemented as in the C P T -preserving case by using the Stückelberg mechanism. We explicitly construct a covariant basis of properly normalized polarization vectors at fixed three-momentum satisfying the momentum space field equations, in terms of which the vector field can be expanded. As an application of the theory, we calculate the Cherenkov radiation rate for the case of purely timelike kAF μ and find a radiation rate at high energies that has a contribution that does not depend on the mass used to regulate the photons.

  8. Cherenkov Radiation with Massive, CPT-violating Photons

    CERN Document Server

    Colladay, Don; Potting, Robertus

    2016-01-01

    The source of CPT-violation in the photon sector of the Standard Model Extension arises from a Chern-Simons-like contribution that involves a coupling to a fixed background vector field $k_{AF}^\\mu$. These Lorentz- and CPT-violating photons have well-known theoretical issues that arise from missing states at low momenta when $k_{AF}^\\mu$ is timelike. In order to make the theory consistent, a tiny mass for the photon can be introduced, well below current experimental bounds. The implementation of canonical quantization can then be implemented as in the CPT-preserving case by using the St\\"uckelberg mechanism. We explicitly construct a covariant basis of properly-normalized polarization vectors at fixed three-momentum satisfying the momentum space field equations, in terms of which the vector field can be expanded. As an application of the theory, we calculate the Cherenkov radiation rate for the case of purely timelike $k_{AF}^\\mu$, and find a radiation rate at high energies that has a contribution that does n...

  9. Practical Applications of Synthetic Aperture Imaging

    OpenAIRE

    Nikolov, Svetoslav Ivanov; Kortbek, Jacob; Jensen, Jørgen Arendt

    2010-01-01

    Synthetic aperture imaging has been a focus of research for almost 3 decades. The research carried out at the Center for Fast Ultrasound Imaging has demonstrated that synthetic aperture focusing not only can be used in-vivo, but that it also yields superior B-mode and blood flow images. In the last years synthetic aperture focusing has moved from the lab to commercial products. The implementations vary in their scope and purpose. Some scanners use synthetic aperture imaging to improve the det...

  10. Applicability of compton imaging in nuclear decommissioning activities

    International Nuclear Information System (INIS)

    During the decommissioning of nuclear facilities significant part of the activities is related to the radiological characterization, waste classification and management. For these purposes a relatively new imaging technique, based on information from the gamma radiation that undergoes Compton scattering, is applicable. Compton imaging systems have a number of advantages for nuclear waste characterization, such as identifying hot spots in mixed waste in order to reduce the volume of high-level waste requiring extensive treatment or long-term storage, imaging large contaminated areas and objects etc. Compton imaging also has potential applications for monitoring of production, transport and storage of nuclear materials and components. This paper discusses some system design requirements and performance specifications for these applications. The advantages of Compton imaging are compared to competing imaging techniques. (author)

  11. Image segmentation by iterative parallel region growing with application to data compression and image analysis

    Science.gov (United States)

    Tilton, James C.

    1988-01-01

    Image segmentation can be a key step in data compression and image analysis. However, the segmentation results produced by most previous approaches to region growing are suspect because they depend on the order in which portions of the image are processed. An iterative parallel segmentation algorithm avoids this problem by performing globally best merges first. Such a segmentation approach, and two implementations of the approach on NASA's Massively Parallel Processor (MPP) are described. Application of the segmentation approach to data compression and image analysis is then described, and results of such application are given for a LANDSAT Thematic Mapper image.

  12. Application of MATLAB in pretreatment technology of the underwater images

    International Nuclear Information System (INIS)

    The technology of underwater laser imaging has very important practical value at ocean exploitation such as underwater reconnaissance, target recognition, but its imagery is usually affected by speckle noise. A large number of background noise are brought to underwater laser image for the reasons of absorption and scattering of water, which is also the cause of noises and low contrast of the underwater images. In order to improve the effect of the images, digital image processing techniques are introduced. The result of underwater image processing acts as the input of feature extraction and recognition of the underwater objects. Histogram equalization, contrast enhancement, smoothing filtering are applied to process the blurry underwater laser images. The results of the experiment show these application of Matlab are effective and applicable. (authors)

  13. BOOK REVIEW: Infrared Thermal Imaging: Fundamentals, Research and Applications Infrared Thermal Imaging: Fundamentals, Research and Applications

    Science.gov (United States)

    Planinsic, Gorazd

    2011-09-01

    Ten years ago, a book with a title like this would be interesting only to a narrow circle of specialists. Thanks to rapid advances in technology, the price of thermal imaging devices has dropped sharply, so they have, almost overnight, become accessible to a wide range of users. As the authors point out in the preface, the growth of this area has led to a paradoxical situation: now there are probably more infrared (IR) cameras sold worldwide than there are people who understand the basic physics behind them and know how to correctly interpret the colourful images that are obtained with these devices. My experience confirms this. When I started using the IR camera during lectures on the didactics of physics, I soon realized that I needed more knowledge, which I later found in this book. A wide range of potential readers and topical areas provides a good motive for writing a book such as this one, but it also represents a major challenge for authors, as compromises in the style of writing and choice of topics are required. The authors of this book have successfully achieved this, and indeed done an excellent job. This book addresses a wide range of readers, from engineers, technicians, and physics and science teachers in schools and universities, to researchers and specialists who are professionally active in the field. As technology in this area has made great progress in recent times, this book is also a valuable guide for those who opt to purchase an infrared camera. Chapters in this book could be divided into three areas: the fundamentals of IR thermal imaging and related physics (two chapters); IR imaging systems and methods (two chapters) and applications, including six chapters on pedagogical applications; IR imaging of buildings and infrastructure, industrial applications, microsystems, selected topics in research and industry, and selected applications from other fields. All chapters contain numerous colour pictures and diagrams, and a rich list of relevant

  14. Field application of feature-enhanced imaging

    International Nuclear Information System (INIS)

    One of the more challenging ultrasonic inspection problems is bimetallic weld inspection or, in general, dissimilar metal welds. These types of welds involve complicated geometries and various mixtures of materials. Attempts to address this problem with imaging alone have fallen short of desired goals. The probable reason for this is the lack of information supplied by imaging systems, which are limited to amplitude and time displays. Having RF information available for analysis greatly enhances the information obtainable from dissimilar metal welds and, coupled with the spatial map generated by an imaging system, can significantly improve the reliability of dissimilar metal weld inspections. Ultra Image and TestPro are, respectively, an imaging system and a feature-based signal analysis system. The purpose of this project is to integrate these two systems to produce a feature-enhanced imaging system. This means that a software link is established between Ultra Image and the PC-based TestPro system so that the user of the combined system can perform all the usual imaging functions and also have available a wide variety of RF signal analysis functions. The analysis functions include waveform feature-based pattern recognition as well as artificial intelligence/expert system techniques

  15. Photoacoustic tomography: applications for atherosclerosis imaging

    Science.gov (United States)

    Sangha, Gurneet S.; Goergen, Craig J.

    2016-08-01

    Atherosclerosis is a debilitating condition that increases a patient’s risk for intermittent claudication, limb amputation, myocardial infarction, and stroke, thereby causing approximately 50% of deaths in the western world. Current diagnostic imaging techniques, such as ultrasound, digital subtraction angiography, computed tomography angiography, magnetic resonance angiography, and optical imaging remain suboptimal for detecting development of early stage plaques. This is largely due to the lack of compositional information, penetration depth, and/or clinical efficiency of these traditional imaging techniques. Photoacoustic imaging has emerged as a promising modality that could address some of these limitations to improve the diagnosis and characterization of atherosclerosis-related diseases. Photoacoustic imaging uses near-infrared light to induce acoustic waves, which can be used to recreate compositional images of tissue. Recent developments in photoacoustic techniques show its potential in noninvasively characterizing atherosclerotic plaques deeper than traditional optical imaging approaches. In this review, we discuss the significance and development of atherosclerosis, current and novel clinical diagnostic methods, and recent works that highlight the potential of photoacoustic imaging for both experimental and clinical studies of atherosclerosis.

  16. Imaging-Genetics Applications in Child Psychiatry

    Science.gov (United States)

    Pine, Daniel S.; Ernst, Monique; Leibenluft, Ellen

    2010-01-01

    Objective: To place imaging-genetics research in the context of child psychiatry. Method: A conceptual overview is provided, followed by discussion of specific research examples. Results: Imaging-genetics research is described linking brain function to two specific genes, for the serotonin-reuptake-transporter protein and a monoamine oxidase…

  17. Using Raster Scans of Bright Stars to Measure the Relative Total Throughputs of Cherenkov Telescopes

    CERN Document Server

    Griffin, Sean

    2013-01-01

    Gamma-ray astronomy at energies in excess of 100 GeV is carried out using arrays of imaging Cherenkov telescopes. Each telescope comprises a large reflector, of order 10 m diameter, made of many mirror facets, and a camera consisting of a matrix of photomultiplier pixels. Differences in the total throughput between nominally identical telescopes, due to aging of the mirrors and PMTs and other effects, should be monitored to reduce possible systematic errors. One way to directly measure the throughput of such telescopes is to track bright stars and measure the photocurrents produced by their light falling on camera pixels. We have developed such a procedure using the four telescopes in the VERITAS array. We note the technique is general, however, and could be applied to other imaging Cherenkov experiments. For this measurement, a raster scan is performed on a single star such that its image is swept across the central pixels in the camera, thus providing a statistically robust set of measurements in a short pe...

  18. A Prototype Data Format for the Cherenkov Telescope Array: Regions Of Interest (ROI)

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA) is a ground-based $\\gamma$-ray observatory that will observe the full sky in the energy range from 20 GeV to 100 TeV from facilities in both hemispheres. It is proposed to consist of more than 100 telescopes and the large amount of data produced will exceed the volume of current VHE Imaging Atmospheric Cherenkov Telescopes by $\\sim$two orders of magnitude. This volume of data represents a new challenge to the community, which is looking for new data formats to transfer and store the CTA data. One of the prototypes currently under study is the ROI (Regions Of Interest) file format for camera images. It can store only those pixels of a camera image that are close to the shower, thus removing the major part of the night sky background (NSB) while keeping all pixels that might belong to the shower. Simple on-the-fly compression is used to reduce the file size even further. Here, we explain the ROI prototype in detail and present preliminary results when applied to simulations.

  19. Design of a Cherenkov telescope for the measurement of PCR composition above 1 PeV

    Directory of Open Access Journals (Sweden)

    Galkin V I

    2013-06-01

    Full Text Available The problem of PCR Composition at super high energies is far from being solved.EAS Cherenkov light spatial-angular distribution (CL SAD can yield important information on the primary mass. In order to use EAS CL SAD for the study of PCR composition one needs a set of imaging telescopes with the appropriate parameters supported by a dense net of fast optical detectors capable of measuring EAS Cherenkov light pulses. On the basis of full Monte-Carlo simulations the pixel size of imaging telescopes is optimized for a specific observation level ∼4km which is typical for the Eastern Pamir mountains. Another goal to be pursued by the new detector array is the search for ultra high energy gamma ray sources and this is where the imaging technique can help a lot. A simple criterion is introduced to recognize gamma-quanta against the proton background and its performance, once again analyzed using simulated events, sets certain limits to the pixel size.

  20. Moment functions in image analysis theory and applications

    CERN Document Server

    Mukundan, R

    1998-01-01

    This book is a comprehensive treatise on the theory and applications of moment functions in image analysis. Moment functions are widely used in various realms of computer vision and image processing. Numerous algorithms and techniques have been developed using image moments, in the areas of pattern recognition, object identification, three-dimensional object pose estimation, robot sensing, image coding and reconstruction. This book provides a compilation of the theoretical aspects related to different types of moment functions, and their applications in the above areas.The book is organized in

  1. Practical Applications of Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav Ivanov; Kortbek, Jacob; Jensen, Jørgen Arendt

    2010-01-01

    Synthetic aperture imaging has been a focus of research for almost 3 decades. The research carried out at the Center for Fast Ultrasound Imaging has demonstrated that synthetic aperture focusing not only can be used in-vivo, but that it also yields superior B-mode and blood flow images. In the last...... years synthetic aperture focusing has moved from the lab to commercial products. The implementations vary in their scope and purpose. Some scanners use synthetic aperture imaging to improve the detail and contrast resolution of the system. Others to increase the image uniformity. Yet others use...... synthetic aperture acquisition to achieve high frame rates and superior flow estimations. On the other end of the scale are the systems that utilize synthetic aperture techniques to reduce the data rate and take advantage of modern computer hardware. Retrospecitve transmit beamformation, zone sonography...

  2. Characteristics of Cherenkov radiation in naturally occurring ice

    Science.gov (United States)

    Mikkelsen, R. E.; Poulsen, T.; Uggerhøj, U. I.; Klein, S. R.

    2016-03-01

    We revisit the theory of Cherenkov radiation in uniaxial crystals. Historically, a number of flawed attempts have been made at explaining this radiation phenomenon, and a consistent error-free description is nowhere available. We apply our calculation to a large modern day telescope—IceCube. Located in Antarctica, this detector makes use of the naturally occurring ice as a medium to generate Cherenkov radiation. However, due to the high pressure at the depth of the detector site, large volumes of hexagonal ice crystals are formed. We calculate how this affects the Cherenkov radiation yield and angular dependence. We conclude that the effect is small, at most about a percent, and would only be relevant in future high-precision instruments like e.g. Precision IceCube Next Generation Upgrade (PINGU). For radio-Cherenkov experiments which use the presence of a clear Cherenkov cone to determine the arrival direction, any variation in emission angle will directly and linearly translate into a change in apparent neutrino direction. In closing, we also describe a simple experiment to test this formalism and calculate the impact of anisotropy on light yields from lead tungstate crystals as used, for example, in the CMS calorimeter at the CERN LHC.

  3. Characteristics of Cherenkov Radiation in Naturally Occuring Ice

    CERN Document Server

    Mikkelsen, R E; Uggerhøj, U I; Klein, S R

    2016-01-01

    We revisit the theory of Cherenkov radiation in uniaxial crystals. Historically, a number of flawed attempts have been made at explaining this radiation phenomenon and a consistent error-free description is nowhere available. We apply our calculation to a large modern day telescope - IceCube. Being located at the Antarctica, this detector makes use of the naturally occuring ice as a medium to generate Cherenkov radiation. However, due to the high pressure at the depth of the detector site, large volumes of hexagonal ice crystals are formed. We calculate how this affects the Cherenkov radiation yield and angular dependence. We conclude that the effect is small, at most about a percent, and would only be relevant in future high precision instruments like e.g. Precision IceCube Next Generation Upgrade (PINGU). For radio-Cherenkov experiments which use the presence of a clear Cherenkov cone to determine the arrival direction, any variation in emission angle will directly and linearly translate into a change in ap...

  4. Multi-sensor image fusion and its applications

    CERN Document Server

    Blum, Rick S

    2005-01-01

    Taking another lesson from nature, the latest advances in image processing technology seek to combine image data from several diverse types of sensors in order to obtain a more accurate view of the scene: very much the same as we rely on our five senses. Multi-Sensor Image Fusion and Its Applications is the first text dedicated to the theory and practice of the registration and fusion of image data, covering such approaches as statistical methods, color-related techniques, model-based methods, and visual information display strategies.After a review of state-of-the-art image fusion techniques,

  5. Application of optical coherence tomography based microangiography for cerebral imaging

    Science.gov (United States)

    Baran, Utku; Wang, Ruikang K.

    2016-03-01

    Requirements of in vivo rodent brain imaging are hard to satisfy using traditional technologies such as magnetic resonance imaging and two-photon microscopy. Optical coherence tomography (OCT) is an emerging tool that can easily reach at high speeds and provide high resolution volumetric images with a relatively large field of view for rodent brain imaging. Here, we provide the overview of recent developments of functional OCT based imaging techniques for neuroscience applications on rodents. Moreover, a summary of OCT-based microangiography (OMAG) studies for stroke and traumatic brain injury cases on rodents are provided.

  6. In vivo Coherent Raman Imaging for Neuroscience Applications

    Science.gov (United States)

    Cote, Daniel

    2010-08-01

    The use of coherent Raman imaging is described for applications in neuroscience. Myelin imaging of the spinal cord can be performed with Raman imaging through the use of the vibration in carbon-hydrogen bonds, dominant in lipids. First, we demonstrate in vivo histomorphometry in live animal for characterization of myelin-related nervous system pathologies. This is used to characterize spinal cord health during multiple sclerosis. Second, Raman spectroscopy of tissue is discussed. We discuss the challenges that live animal imaging brings, together with important aspects of coherent Raman imaging in tissue.

  7. Applications of thermal imaging in avian science

    OpenAIRE

    McCafferty, D. J.

    2013-01-01

    Thermal imaging, or infrared thermography, has been used in avian science since the 1960s. More than 30 species of birds, ranging in size from passerines to ratites, have been studied using this technology. The main strength of this technique is that it is a non-invasive and non-contact method of measuring surface temperature. Its limitations and measurement errors are well understood and suitable protocols have been developed for a variety of experimental settings. Thermal imaging has been u...

  8. Gynecologic imaging: Current and emerging applications

    Directory of Open Access Journals (Sweden)

    Iyer V

    2010-01-01

    Full Text Available Common diagnostic challenges in gynecology and the role of imaging in their evaluation are reviewed. Etiologies of abnormal uterine bleeding identified on pelvic sonography and sonohysterography are presented. An algorithmic approach for characterizing an incidentally detected adnexal mass and use of magnetic resonance imaging for definitive diagnosis are discussed. Finally, the role of F18-fluorodeoxyglucose positron emission tomography in the management of gynecological malignancies, and pitfalls associated with their use are examined.

  9. Application of infrared imaging in ferrocyanide tanks

    International Nuclear Information System (INIS)

    This report analyzes the feasibility of using infrared imaging techniques and scanning equipment to detect potential hot spots within ferrocyanide waste tanks at the Hanford Site. A hot spot is defined as a volumetric region within a waste tank with an excessively warm temperature that is generated by radioactive isotopes. The thermal image of a hot spot was modeled by computer. this model determined the image an IR system must detect. Laboratory and field tests of the imaging system are described, and conclusions based on laboratory and field data are presented. The report shows that infrared imaging is capable of detecting hot spots in ferrocyanide waste tanks with depths of up to 3.94 m (155 in.). The infrared imaging system is a useful technology for initial evaluation and assessment of hot spots in the majority of ferrocyanide waste tanks at the Hanford Site. The system will not allow an exact hot spot and temperature determination, but it will provide the necessary information to determine the worst-case hot spot detected in temperature patterns. Ferrocyanide tanks are one type of storage tank on the Watch List. These tanks are identified as priority 1 Hanford Site Tank farm Safety Issues

  10. High-energy proton imaging for biomedical applications

    Science.gov (United States)

    Prall, M.; Durante, M.; Berger, T.; Przybyla, B.; Graeff, C.; Lang, P. M.; Latessa, C.; Shestov, L.; Simoniello, P.; Danly, C.; Mariam, F.; Merrill, F.; Nedrow, P.; Wilde, C.; Varentsov, D.

    2016-06-01

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. Tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics.

  11. High-energy proton imaging for biomedical applications

    Science.gov (United States)

    Prall, M.; Durante, M.; Berger, T.; Przybyla, B.; Graeff, C.; Lang, P. M.; LaTessa, C.; Shestov, L.; Simoniello, P.; Danly, C.; Mariam, F.; Merrill, F.; Nedrow, P.; Wilde, C.; Varentsov, D.

    2016-01-01

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. Tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics. PMID:27282667

  12. Fuzzy algorithms with applications to image processing and pattern recognition

    CERN Document Server

    Hong, Yan

    1996-01-01

    This text deals with the subject of fuzzy algorithms and their applications to image processing and pattern recognition. Subjects covered include membership functions; fuzzy clustering; fuzzy rulers and defuzzification; fuzzy classifiers; and combined classifiers.

  13. Study and application of imaging agents for infection and inflammation

    International Nuclear Information System (INIS)

    Situation of current study and clinic application of main imaging agents for infection and inflammation is summarized. These agents include radiolabelled small molecular compounds, leucocytes, large molecular proteins, liposomes, antibiotics, biotins and etc

  14. Fluorescence and Cerenkov luminescence imaging. Applications in small animal research.

    Science.gov (United States)

    Schwenck, J; Fuchs, K; Eilenberger, S H L; Rolle, A-M; Castaneda Vega, S; Thaiss, W M; Maier, F C

    2016-04-12

    This review addresses small animal optical imaging (OI) applications in diverse fields of basic research. In the past, OI has proven to be cost- and time-effective, allows real-time imaging as well as high-throughput analysis and does not imply the usage of ionizing radiation (with the exception of Cerenkov imaging applications). Therefore, this technique is widely spread - not only geographically, but also among very different fields of basic research - and is represented by a large body of publications. Originally used in oncology research, OI is nowadays emerging in further areas like inflammation and infectious disease as well as neurology. Besides fluorescent probe-based contrast, the feasibility of Cerenkov luminescence imaging (CLI) has been recently shown in small animals and thus represents a new route for future applications. Thus, this review will focus on examples for OI applications in inflammation, infectious disease, cell tracking as well as neurology, and provides an overview over CLI. PMID:27067794

  15. TARGET 5: a new multi-channel digitizer with triggering capabilities for gamma-ray atmospheric Cherenkov telescopes

    CERN Document Server

    Albert, A; Kawashima, T; Murphy, M; Okumura, A; Quagliani, R; Sapozhnikov, L; Tajima, H; Tibaldo, L; Vandenbroucke, J; Wu, T

    2016-01-01

    TARGET~5 is a new application-specific integrated circuit (ASIC) of the TARGET family, designed for the readout of signals from photosensors in the cameras of imaging atmospheric Cherenkov telescopes (IACTs) for ground-based gamma-ray astronomy. TARGET~5 combines sampling and digitization on 16 signal channels with the formation of trigger signals based on the analog sum of groups of four channels. {\\rev We describe the ASIC architecture and performance.} TARGET~5 improves over the performance of the first-generation TARGET ASIC, achieving: tunable sampling frequency from {\\rev $1$~GSa/s}}; a dynamic range on the data path of 1.2 V with {\\mod effective dynamic range of 11}~bits and DC noise of ${\\sim}0.6$~mV; 3-dB bandwidth of 500 MHz; {\\rev crosstalk between adjacent channels $100$~p.e.} (assuming 4 mV per p.e.); and minimum stable trigger threshold of 20 mV (5 p.e.) with trigger noise of 5 mV (1.2 p.e.), {\\rev which is} mostly limited by {\\mod interference between trigger and sampling operations}. {\\mod TAR...

  16. The GERDA muon veto Cherenkov detector

    International Nuclear Information System (INIS)

    The GERmanium Detector Array, GERDA, is a new experiment designed to examine the neutrinoless double beta decay 0νββ of 76Ge which has a lifetime of at least 1026 years and a single energy deposition of 2039 keV. To reach the goal of 10-3 background events/(keVkgy), several background reduction techniques like anti-coincidence and pulse shape analysis will be used. Cosmic muons can produce background in form of particles and radioactivity. To reject them, two independent detector systems will be integrated in GERDA. One of these is a Cherenkov muon veto detector, that uses the water tank around the cryostat in which the crystals will be operated. It is equipped with 66 photomultipliers (PMTs) with 8 in. diameter. The PMT distribution was found via extensive Monte Carlo studies to reach the highest efficiencies for dangerous muons (these are muons that cause an energy deposition of around 2 MeV in the germanium detectors), even though the PMTs cover less than 0.1% of the water tank surface. High efficiencies depend strongly on the amount of detected photons. For this, as many surfaces as possible will be covered with 'VM2000', a highly reflective foil from 3 M. This foil has a high reflectivity in a wide range of wavelength and it also shifts photons from the UV into the optical range. It, more or less, doubles the amount of detectable photons, because the photomultipliers used, have an detection maximum between 370 and 400 nm. Thus, a detection efficiency of 98% should be easily achieved.

  17. Quasi-Cherenkov parametric radiation from relativistic particles passing through a photonic crystal

    International Nuclear Information System (INIS)

    The expressions for spectral-angular distribution of quasi-Cherenkov radiation emitted by a relativistic particle traversing a photonic crystal are derived. The intensity of quasi-Cherenkov radiation in terahertz and optical ranges is shown to be high enough to allow the experimental study of quasi-Cherenkov radiation in these frequency ranges

  18. Research and Development for a Gadolinium Doped Water Cherenkov Detector

    CERN Document Server

    Renshaw, Andrew

    2012-01-01

    The proposed introduction of a soluble gadolinium (Gd) compound into water Cherenkov detectors can result in a high efficiency for the detection of free neutrons capturing on the Gd. The delayed 8 MeV gamma cascades produced by these captures, in coincidence with a prompt positron signal, serve to uniquely identify electron antineutrinos interacting via inverse beta decay. Such coincidence detection can reduce backgrounds, allowing a large Gd-enhanced water Cherenkov detector to make the first observation of supernova relic neutrinos and high precision measurements of Japan's reactor antineutrino flux, while still allowing for all current physics studies to be continued. Now, a dedicated Gd test facility is operating in the Kamioka Mine. This new facility houses everything needed to successfully operate a Gd doped water Cherenkov detector. Successful running of this facility will demonstrate that adding Gd salt to SK is both safe for the detector and is capable of delivering the expected physics benefits.

  19. Constraints on Lorentz violation from gravitational Cherenkov radiation

    CERN Document Server

    Kostelecky, Alan

    2015-01-01

    Limits on gravitational Cherenkov radiation by cosmic rays are obtained and used to constrain coefficients for Lorentz violation in the gravity sector associated with operators of even mass dimensions, including orientation-dependent effects. We use existing data from cosmic-ray telescopes to obtain conservative two-sided constraints on 80 distinct Lorentz-violating operators of dimensions four, six, and eight, along with conservative one-sided constraints on three others. Existing limits on the nine minimal operators at dimension four are improved by factors of up to a billion, while 74 of our explicit limits represent stringent first constraints on nonminimal operators. Prospects are discussed for future analyses incorporating effects of Lorentz violation in the matter sector, the role of gravitational Cherenkov radiation by high-energy photons, data from gravitational-wave observatories, the tired-light effect, and electromagnetic Cherenkov radiation by gravitons.

  20. The first GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    De Franco, A.; Allan, D.; Armstrong, T.; Ashton, T.; Balzer, A.; Berge, D.; Bose, R.; Brown, A.M.; Buckley, J.; Chadwick, P.M.; Cooke, P.; Cotter, G.; Daniel, M.K.; Funk, S.; Greenshaw, T.; Hinton, J.; Kraus, M.; Lapington, J.; Molyneux, P.; Moore, P.; Nolan, S.; Okumura, A.; Ross, D.; Rulten, C.; Schmoll, J.; Schoorlemmer, H.; Stephan, M.; Sutcliffe, P.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Varner, G.; Watson, J.; Zink, A.

    2015-01-01

    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\\deg} angular size, resulting in a field of view of ~9{\\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.

  1. Separation of Scintillation and Cherenkov Lights in Linear Alkyl Benzene

    CERN Document Server

    Li, Mohan; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2015-01-01

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay researches. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator being developed. In this paper we observed a good separation of scintillation and Cherenkov lights in an LAB sample. The rising and decay times of the scintillation light of the LAB were measured to be $(7.7\\pm3.0)\\ \\rm{ns}$ and $(36.6\\pm2.4)\\ \\rm{ns}$, respectively, while the full width [-3$\\sigma$, 3$\\sigma$] of the Cherenkov light was 12 ns dominated by the time resolution of our photomultiplier tubes. The light yield of the scintillation was measured to be $(1.01\\pm0.12)\\times10^3\\ \\rm{photons}/\\rm{MeV}$.

  2. Plugin procedure in segmentation and application to hyperspectral image segmentation

    OpenAIRE

    Girard, R

    2010-01-01

    In this article we give our contribution to the problem of segmentation with plug-in procedures. We give general sufficient conditions under which plug in procedure are efficient. We also give an algorithm that satisfy these conditions. We give an application of the used algorithm to hyperspectral images segmentation. Hyperspectral images are images that have both spatial and spectral coherence with thousands of spectral bands on each pixel. In the proposed procedure we combine a reduction di...

  3. On digital image processing technology and application in geometric measure

    Science.gov (United States)

    Yuan, Jiugen; Xing, Ruonan; Liao, Na

    2014-04-01

    Digital image processing technique is an emerging science that emerging with the development of semiconductor integrated circuit technology and computer science technology since the 1960s.The article introduces the digital image processing technique and principle during measuring compared with the traditional optical measurement method. It takes geometric measure as an example and introduced the development tendency of digital image processing technology from the perspective of technology application.

  4. Optimizing signal and image processing applications using Intel libraries

    Science.gov (United States)

    Landré, Jérôme; Truchetet, Frédéric

    2007-01-01

    This paper presents optimized signal and image processing libraries from Intel Corporation. Intel Performance Primitives (IPP) is a low-level signal and image processing library developed by Intel Corporation to optimize code on Intel processors. Open Computer Vision library (OpenCV) is a high-level library dedicated to computer vision tasks. This article describes the use of both libraries to build flexible and efficient signal and image processing applications.

  5. Multimodal imaging of bone metastases: From preclinical to clinical applications

    Directory of Open Access Journals (Sweden)

    Stephan Ellmann

    2015-10-01

    Full Text Available Metastases to the skeletal system are commonly observed in cancer patients, highly affecting the patients' quality of life. Imaging plays a major role in detection, follow-up, and molecular characterisation of metastatic disease. Thus, imaging techniques have been optimised and combined in a multimodal and multiparametric manner for assessment of complementary aspects in osseous metastases. This review summarises both application of the most relevant imaging techniques for bone metastasis in preclinical models and the clinical setting.

  6. Efficient Image Blur in Web-Based Applications

    DEFF Research Database (Denmark)

    Kraus, Martin

    2010-01-01

    Scripting languages require the use of high-level library functions to implement efficient image processing; thus, real-time image blur in web-based applications is a challenging task unless specific library functions are available for this purpose. We present a pyramid blur algorithm, which can ...

  7. Real-time hyperspectral imaging for food safety applications

    Science.gov (United States)

    Multispectral imaging systems with selected bands can commonly be used for real-time applications of food processing. Recent research has demonstrated several image processing methods including binning, noise removal filter, and appropriate morphological analysis in real-time mode can remove most fa...

  8. Clinical Applications of Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Sona Saksena

    2008-01-01

    Full Text Available During the last decade, advances in the field of magnetic resonance imaging (MRI have led to the design of numerous innovative imaging techniques. These techniques have not only facilitated structural visualization of anatomy, but also have provided a wealth of functional information regarding biological processes. Diffusion tensor imaging (DTI is one such MRI technique that has generated tremendous amount of interest both in the clinical and laboratory fields. DTI attempts to analyze the magnitude and orientation of random microscopic motion of water molecules in brain tissue. It is based upon the phenomenon of water diffusion known as Brownian motion. This technique pro- vides details on tissue microstructure and organization well beyond the usual image resolution. With diffusion tensor MR imaging, diffusion anisotropy can be quantified and subtle white matter changes not normally seen on conventional MRI can be detected. These features have encouraged scientists to evaluate the integrity and direction of the fiber tracts in various pathological conditions using DTI. Tissue maladies studied by DTI in this review include cerebral ischemia and wallerian degeneration, epilepsy, multiple sclerosis, Alzheimer’s disease, schizophrenia, metabolic disorders, infections and brain tumors. We have only included the common clinical conditions to keep this review precise.

  9. Liver imaging. Clinical applications and future perspectives

    International Nuclear Information System (INIS)

    Primary hepatocellular carcinoma and liver metastases affect several millon people each year. The main imaging modalities to detect and assist diagnosis of primary and secondary liver tumours include MR imaging, CT, and US. The value of these techniques is further increased by the use of contrast agents which increase the sensitivity, and sometimes also the specificity, of the investigations. The relative advantages and drawbacks of the different contrast agents and imaging modalities in the detection and characterisation of liver tumours are discussed. Currently there is no consensus amongst investigators as to which is superior, due to the technical complexities and number of combinations possible within each of the different modalities. There continues to be advances in the hardware and software of imaging equipment, as well as a trend to develop new contrast agents with more organ-specificity. These include those targeting the hepatocytes, such as mangafodipir trisodium (MnDPDP, Teslascan), and those with reticuloendothelial cell specificity, such as the superparamagnetic iron oxides. These developments have the potential for making significant contributions to the diagnostic value of imaging procedures and, by reducing the number of investigations necessary to reach a final diagnosis, having a significant and beneficial impact on the pharmaco-economics of patient health care. (orig.)

  10. A template method for measuring the iron spectrum in cosmic rays with Cherenkov telescopes

    CERN Document Server

    Fleischhack, Henrike

    2015-01-01

    The energy-dependent abundance of elements in cosmic rays plays an important role in understanding their acceleration and propagation. Most current results are obtained either from direct measurements by balloon- or satellite-borne detectors, or from indirect measurements by air shower detector arrays on the Earth's surface. Imaging Atmospheric Cherenkov Telescopes (IACTs), used primarily for $\\gamma$-ray astronomy, can also be used for cosmic-ray physics. They are able to measure Cherenkov light emitted both by heavy nuclei and by secondary particles produced in air showers, and are thus sensitive to the charge and energy of cosmic ray particles with energies of tens to hundreds of TeV. A template-based method, which can be used to reconstruct the charge and energy of primary particles simultaneously from images taken by IACTs, will be introduced. Heavy nuclei, such as iron, can be separated from lighter cosmic rays with this method, and thus the abundance and spectrum of these nuclei can be measured in the ...

  11. From MAGIC to CTA: the INAF participation to Cherenkov Telescopes experiments for very high energy astrophysics .

    Science.gov (United States)

    Antonelli, L. A.; INAF MAGIC Collaboration

    The next decade can be considered the "golden age" of the Gamma Ray Astronomy with the two satellites for Gamma Ray Astronomy (AGILE and GLAST) in orbit. Therefore, thanks to many other X-ray experiments already in orbit (e.g. Swift, Chandra, NewtonXMM, etc.) it will be possible to image the Universe for the first time all over the electromagnetic spectrum almost contemporarily. The new generations of ground-based very high gamma-ray instruments are ready to extend the observed band also to the very high frequencies. Scientists from the Italian National Institute for Astrophysics (INAF) are involved in many, both space- and ground- based gamma ray experiments, and recently such an involvement has been largely improved in the field of the Imaging Atmospheric Cherenkov Telescopes (IACT). INAF is now member of the MAGIC collaboration and is participating to the realization of the second MAGIC telescope. MAGIC, as well other IACT experiments, is not operated as an observatory so a proper guest observer program does not exist. A consortium of European scientists (including INAF scientists) is thus now thinking to the design of a new research infrastructure: the Cherenkov Telescope Array (CTA). CTA is conceived to provide 10 times the sensitivity of current instruments, combined with increased flexibility and increased coverage from some 10 GeV to some 100 TeV. CTA will be operated as an observatory to serve a wider community of astronomer and astroparticle physicists.

  12. Expected performance of the GAW Cherenkov Telescopes Array. Simulation and Analysis

    CERN Document Server

    Maccarone, M C; Catalano, O; Cusumano, G; Santo, M C Espirito; Gonçalves, P; Moles, M; Pimenta, M; Pina, A; Sacco, B; Tome', B

    2007-01-01

    GAW is a "path-finder" experiment to test the feasibility of a new generation of Imaging Atmospheric Cherenkov telescopes that join high flux sensitivity with large field of view capability using Fresnel lens, stereoscopic observational approach, and single photon counting mode. GAW is an array of three telescopes that will be erected at the Calar Alto Observatory site (Spain, 2150 m a.s.l.). To evaluate the performance of GAW, a consistent data--set has been simulated, including a Crab-like source observation, and a proper image analysis code has been developed, as described in this contribution. The expected performance of GAW are also reported, mainly for what concerns effective area, angular resolution, Cherenkov flux as function of the core distance, ability in the gamma/proton separation, and sensitivity. The first telescope realization, foreseen within the end of this year, will allow to verify if the parameters used in the analysis are in agreement with the "real" performance of the GAW apparatus.

  13. FACT-The first Cherenkov telescope using a G-APD camera for TeV gamma-ray astronomy

    International Nuclear Information System (INIS)

    Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and are constructing a new, fine-pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details.

  14. Terahertz Imaging for Biomedical Applications Pattern Recognition and Tomographic Reconstruction

    CERN Document Server

    Yin, Xiaoxia; Abbott, Derek

    2012-01-01

    Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction presents the necessary algorithms needed to assist screening, diagnosis, and treatment, and these algorithms will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized with an increasing number of trials performed in a biomedical setting. Terahertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries,and would be useful to both in vivo and ex vivo environments. This book also: Introduces terahertz radiation techniques and provides a number of topical examples of signal and image processing, as well as machine learning Presents the most recent developments in an emerging field, terahertz radiation Utilizes new methods...

  15. High speed decision electronics combined to a beam Cherenkov counter

    International Nuclear Information System (INIS)

    The Hypolit detector for identification of particles in high energy physics using the Cherenkov radiation, is based on an intensifier tube coupled to photomultipliers via a fiber-optic matrix. Cherenkov photons are focused into a ring; particle identification consists in calculating the ring radius. A fast and high level electronic system is associated to Hypolit. Besides deriving the radius, it allows a background rejection and achieves a momentum correction. This on line tagging contributes to build the WA89 trigger. Tuning is controlled with a micro-computer which makes the access to the heart of the system friendly-user

  16. Light-weight spherical mirrors for Cherenkov detectors

    CERN Document Server

    Cisbani, E; Colilli, S; Crateri, R; Cusanno, F; De Leo, R; Fratoni, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Iodice, M; Iommi, R; Lagamba, L; Lucentini, M; Mostarda, A; Nappi, E; Pierangeli, L; Santavenere, F; Urciuoli, G M; Vernin, P

    2003-01-01

    Light-weight spherical mirrors have been appositely designed and built for the gas threshold Cherenkov detectors of the two Hall A spectrometers. The mirrors are made of a 1 mm thick aluminized plexiglass sheet, reinforced by a rigid backing consisting of a phenolic honeycomb sandwiched between two carbon fiber mats epoxy glued. The produced mirrors have a thickness equivalent to 0.55% of radiation length, and an optical slope error of about 5.5 mrad. These characteristics make these mirrors suitable for the implementation in Cherenkov threshold detectors. Ways to improve the mirror features are also discussed in view of their possible employment in RICH detectors.

  17. Threshold gas 32-channel Cherenkov counter of the EXCHARM spectrometer

    International Nuclear Information System (INIS)

    A 32-channel threshold gas Cherenkov counter with 420 cm air radiator at atmospheric pressure is described. Spherical mirrors with curvature radius of 214 cm and FEU-125, FEU-49B photomultipliers are used in the counter for collection and detection of the Cherenkov radiation. The input windows of the photomultipliers are coated with a shifter of the light spectrum. The detection efficiency of charged particles at a plateau of the threshold characteristic (β ≥ 0,99984) exceeds 97%. The counter is a part of the identification system of the EXCHARM spectrometer. 6 refs., 6 figs., 1 tab

  18. Scientific Verification of the High Altitude Water Cherenkov observatory

    OpenAIRE

    Marinelli, Antonio; Sparks, Kathryne; Alfaro, Ruben; González, María Magdalena; Patricelli, Barbara; Fraija, Nissim; Collaboration, for the HAWC

    2014-01-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC observatory is an extensive air-shower array comprised of 300 optically-isolated water Cherenkov detectors (WCDs). Each WCD contains $\\sim$200,000 liters of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area...

  19. Use of silica aerogel for Cherenkov radiation counter

    CERN Document Server

    Bourdinaud, M; Thévenin, J C

    1976-01-01

    The Cherenkov light collection from silica aerogel has been studied in two types of counters. In the first counter a mirror was used to collect the light and in the latter a diffusing box surrounded the aerogel sample. The optical characteristics of the aerogel (refractive index 1.06) and the diffusion coefficients of different diffusing materials have been measured. It is thus possible to build Cherenkov counters with silica aerogel for a high energy physics experiment at the CERN Intersecting Storage Rings. (4 refs).

  20. Use of silica aerogel for Cherenkov radiation counter

    International Nuclear Information System (INIS)

    The Cherenkov light collection from silica aerogel has been studied in two types of counters. In the first counter a mirror was used to collect the light and in the latter a diffusing box surrounded the aerogel sample. The optical characteristics of the aerogel (refractive index 1.06) and the diffusion coefficients of different diffusing materials have been measured. It is thus possible to build Cherenkov counters with silica aerogel for a high energy physics experiment at the CERN Intersecting Storage Rings. (Auth.)

  1. A Cherenkov Radiation Detector with High Density Aerogels

    CERN Document Server

    Cremaldi, Lucien; Sonnek, Peter; Summers, Donald J; Reidy, Jim

    2009-01-01

    We have designed a threshold Cherenkov detector at the Rutherford-Appleton Laboratory to identify muons with momenta between 230 and 350 MeV/c. We investigated the properties of three aerogels for the design. The nominal indexes of refraction were n = 1.03, 1.07, 1.12, respectively. Two of the samples are of high density aerogel not commonly used for Cherenkov light detection. We present results of an examination of some optical properties of the aerogel samples and present basic test beam results.

  2. Locomotion of microspheres for imaging and light focusing applications

    CERN Document Server

    Krivitsky, Leonid A; Wang, Zengbo; Lukiyanchuk, Boris

    2013-01-01

    Super-resolution imaging using sub-diffraction field localization by micron sized transparent beads (microspheres) was recently demonstrated [1]. Practical applications in microscopy require control over the positioning of the microspheres. We present a simple method of positioning and controllable movement of a microsphere by using a glass micropipette. This allows sub-diffraction imaging at arbitrary points in three dimensions, as well as the ability to track moving objects. The results are relevant to a broad scope of applications, including sample inspection, and bio-imaging.

  3. Image processing and mathematical morphology fundamentals and applications

    CERN Document Server

    Shih, Frank Y

    2009-01-01

    In the development of digital multimedia, the importance and impact of image processing and mathematical morphology are well documented in areas ranging from automated vision detection and inspection to object recognition, image analysis and pattern recognition. Those working in these ever-evolving fields require a solid grasp of basic fundamentals, theory, and related applications and few books can provide the unique tools for learning contained in this text. Image Processing and Mathematical Morphology: Fundamentals and Applications is a comprehensive, wide-ranging overview of morphological

  4. Image feature detectors and descriptors foundations and applications

    CERN Document Server

    Hassaballah, Mahmoud

    2016-01-01

    This book provides readers with a selection of high-quality chapters that cover both theoretical concepts and practical applications of image feature detectors and descriptors. It serves as reference for researchers and practitioners by featuring survey chapters and research contributions on image feature detectors and descriptors. Additionally, it emphasizes several keywords in both theoretical and practical aspects of image feature extraction. The keywords include acceleration of feature detection and extraction, hardware implantations, image segmentation, evolutionary algorithm, ordinal measures, as well as visual speech recognition. .

  5. Applications of magnetic resonance image segmentation in neurology

    Science.gov (United States)

    Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu

    1999-05-01

    After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.

  6. Fast sensors for time-of-flight imaging applications.

    Science.gov (United States)

    Vallance, Claire; Brouard, Mark; Lauer, Alexandra; Slater, Craig S; Halford, Edward; Winter, Benjamin; King, Simon J; Lee, Jason W L; Pooley, Daniel E; Sedgwick, Iain; Turchetta, Renato; Nomerotski, Andrei; John, Jaya John; Hill, Laura

    2014-01-14

    The development of sensors capable of detecting particles and radiation with both high time and high positional resolution is key to improving our understanding in many areas of science. Example applications of such sensors range from fundamental scattering studies of chemical reaction mechanisms through to imaging mass spectrometry of surfaces, neutron scattering studies aimed at probing the structure of materials, and time-resolved fluorescence measurements to elucidate the structure and function of biomolecules. In addition to improved throughput resulting from parallelisation of data collection - imaging of multiple different fragments in velocity-map imaging studies, for example - fast image sensors also offer a number of fundamentally new capabilities in areas such as coincidence detection. In this Perspective, we review recent developments in fast image sensor technology, provide examples of their implementation in a range of different experimental contexts, and discuss potential future developments and applications. PMID:24002354

  7. Longwave Imaging for Astronomical Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact portable longwave camera for astronomical applications. In Phase 1, we successfully developed the eye of the camera, i.e. the focal...

  8. Longwave Imaging for Astronomical Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact portable longwave camera for astronomical applications. In Phase 1, we will develop and deliver the focal plane array (FPA) - a...

  9. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    International Nuclear Information System (INIS)

    Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary

  10. New air Cherenkov light detectors to study mass composition of cosmic rays with energies above knee region

    Energy Technology Data Exchange (ETDEWEB)

    Tsunesada, Yoshiki, E-mail: tsunesada@cr.phys.titech.ac.jp [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550 Japan (Japan); Katsuya, Ryoichi, E-mail: katsuya@cr.phys.titech.ac.jp [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550 Japan (Japan); Mitsumori, Yu; Nakayama, Keisuke; Kakimoto, Fumio; Tokuno, Hisao [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550 Japan (Japan); Tajima, Norio [RIKEN, Wako, Saitama 351-0198 (Japan); Miranda, Pedro; Salinas, Juan; Tavera, Wilfredo [Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz (Bolivia, Plurinational State of)

    2014-11-01

    We have installed a hybrid detection system for air showers generated by cosmic rays with energies greater than 3×10{sup 15}eV at Mount Chacaltaya (5200 m above the sea level), in order to study the mass composition of cosmic rays above the knee region. This detection system comprises an air shower array with 49 scintillation counters in an area of 500 m×650 m, and seven new Cherenkov light detectors installed in a radial direction from the center of the air shower array with a separation of 50 m. It is known that the longitudinal development of a particle cascade in the atmosphere strongly depends on the type of the primary nucleus, and an air shower initiated by a heavier nucleus develops faster than that by a lighter primary of the same energy, because of the differences in the interaction cross-section and the energy per nucleon. This can be measured by detecting the Cherenkov radiation emitted from charged particles in air showers at higher altitudes. In this paper we describe the design and performance of our new non-imaging Cherenkov light detectors at Mount Chacaltaya that are operated in conjunction with the air shower array. The arrival directions and energies of air showers are determined by the shower array, and information about the primary masses is obtained from the Cherenkov light data including the time profiles and lateral distributions. The detector consists of photomultiplier tube (PMT), high-speed ADCs, other control modules, and data storage device. The Cherenkov light signals from an air shower are typically 10–100 ns long, and the waveforms are digitized with a sampling frequency of 1 GHz and recorded in situ without long-distance analog signal transfers. All the Cherenkov light detectors record their time-series data by receiving a triggering signal transmitted from the trigger module of the air shower array, which is fired by a coincidence of shower signals in four neighboring scintillation counters. The optical characteristics of the

  11. Bayesian image reconstruction: Application to emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, J.; Llacer, J.

    1989-02-01

    In this paper we propose a Maximum a Posteriori (MAP) method of image reconstruction in the Bayesian framework for the Poisson noise case. We use entropy to define the prior probability and likelihood to define the conditional probability. The method uses sharpness parameters which can be theoretically computed or adjusted, allowing us to obtain MAP reconstructions without the problem of the grey'' reconstructions associated with the pre Bayesian reconstructions. We have developed several ways to solve the reconstruction problem and propose a new iterative algorithm which is stable, maintains positivity and converges to feasible images faster than the Maximum Likelihood Estimate method. We have successfully applied the new method to the case of Emission Tomography, both with simulated and real data. 41 refs., 4 figs., 1 tab.

  12. Liposomes - experiment of magnetic resonance imaging application

    International Nuclear Information System (INIS)

    Most pharmaceutical research effort with liposomes has been involved with the investigation of their use as drug carriers to particular target organs. Recently there has been a growing interest in liposomes not only as carrier of drugs but as a tool for the introduction of various substances into the human body. In this study, liposome delivery of nitroxyl radicals as NMR contrast agent for improved tissue imaging is experimented in rats

  13. Cardiac imaging: Current and emerging applications

    OpenAIRE

    Jankharia B; Raut A

    2010-01-01

    Cardiac magnetic resonance imaging (MRI) and computed tomography (CT) scan have made big inroads as modalities used for evaluation of various pathologies of the heart. Cardiac MRI is typically used for perfusion and viability studies as well as to study various cardiomyopathies, valvular diseases and the pericardium. It has been used in the evaluation of congenital heart diseases over the last two decades. Cardiac CT is used mainly for the evaluation of the coronary arteries, typically in the...

  14. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  15. Clinical application of several tumor imaging agents

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Neoplasms is one of the main diseases for harming health.It is difficult to prevent the neoplasms because the factors of bringing out them are complex.To raise survival rate the early diagnosis of tumors is very important.Radionuclide imaging is useful to detect recurrent or residual diseaseand to identificate benign or malignant tumor.Several tumorimaging agents as following have clinical significance indiagnosing tumors.

  16. Application of XR imaging in dentistry

    International Nuclear Information System (INIS)

    Full text: For accurate and sure diagnosis in dentistry except anamnestic information (history taking) and clinical examination as an obligatory clinical examination must attend imaging investigation. For diagnosis of diseases of the teeth are used a number of imaging methods. The most widespread of them are segmental roentgenography, ortopamtomography Bitewing, as well as increasingly coming in use dental cone-beam computed tomography (3D CBCT). The aim is to introduce the types of radiographs and their benefits for prompt and proper treatment. Documentary method - a review and analysis of literature and Internet sources are made. Results and comments: Segmented radiography gives us information about the state of the tooth as a whole. Using this method gives an opportunity to visualize the crown, the neck and the root of the tooth. Ortopantomography gives a general view of the state of the maxilla and mandibula, the teeth, part of the maxillary sinuses and temporomandibular joints. Some or extra teeth, are discovered as well as dental disease conditions, bone abnormalities, cysts and others. Bitewing is used when caries is strongly suspected, though not visually, in cases of bone loss and others. The advantage of early and accurate diagnosis is to reduce future complications. Conclusion: good prevention and early detection of dental anomalies and pathologies is performed with the help of X-ray. The selection of the correct method for imaging, the proper use of X-ray machines and placing the required security means reducing the amount of radiation exposure to the patient

  17. X-ray imaging for security applications

    Science.gov (United States)

    Evans, J. Paul

    2004-01-01

    The X-ray screening of luggage by aviation security personnel may be badly hindered by the lack of visual cues to depth in an image that has been produced by transmitted radiation. Two-dimensional "shadowgraphs" with "organic" and "metallic" objects encoded using two different colors (usually orange and blue) are still in common use. In the context of luggage screening there are no reliable cues to depth present in individual shadowgraph X-ray images. Therefore, the screener is required to convert the 'zero depth resolution' shadowgraph into a three-dimensional mental picture to be able to interpret the relative spatial relationship of the objects under inspection. Consequently, additional cognitive processing is required e.g. integration, inference and memory. However, these processes can lead to serious misinterpretations of the actual physical structure being examined. This paper describes the development of a stereoscopic imaging technique enabling the screener to utilise binocular stereopsis and kinetic depth to enhance their interpretation of the actual nature of the objects under examination. Further work has led to the development of a technique to combine parallax data (to calculate the thickness of a target material) with the results of a basis material subtraction technique to approximate the target's effective atomic number and density. This has been achieved in preliminary experiments with a novel spatially interleaved dual-energy sensor which reduces the number of scintillation elements required by 50% in comparison to conventional sensor configurations.

  18. MATLAB-based Applications for Image Processing and Image Quality Assessment – Part II: Experimental Results

    Directory of Open Access Journals (Sweden)

    L. Krasula

    2012-04-01

    Full Text Available The paper provides an overview of some possible usage of the software described in the Part I. It contains the real examples of image quality improvement, distortion simulations, objective and subjective quality assessment and other ways of image processing that can be obtained by the individual applications.

  19. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation

    Science.gov (United States)

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R.; Esipova, Tatiana V.; Vinogradov, Sergei; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-05-01

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600–900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5

  20. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation.

    Science.gov (United States)

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R; Esipova, Tatiana V; Vinogradov, Sergei; Gladstone, David J; Jarvis, Lesley A; Pogue, Brian W

    2016-05-21

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5