WorldWideScience

Sample records for cherenkov counters

  1. Cherenkov counter for particle identification test beam

    International Nuclear Information System (INIS)

    The Cherenkov counter used for selecting electrons of the test beam has been studied in this article. The design, manufacture, assembly and testing of the Cherenkov counter are described. And the performance of this counter is measured. The CO2 gas is used as Cherenkov radiator, the XP2020Q photomultiplier is applied for recording signals of the Cherenkov light. The (99.0±0.5)% efficiency of the electron selection has been reached

  2. Recent results on aerogel development for use in Cherenkov counters

    CERN Document Server

    Danilyuk, A F; Savelieva, M D; Bobrovnikov, V S; Buzykaev, A R; Kravchenko, E A; Lavrov, A V; Onuchin, A P

    2002-01-01

    Synthesis of silica aerogel for Cherenkov counters is being studied for more than 10 years at the Boreskov Institute of Catalysis in collaboration with the Budker Institute of Nuclear Physics. Index of refraction, light scattering length and light absorption length are optical characteristics which determine the quality of aerogel Cherenkov counter. These parameters were measured for the aerogel produced. The results are presented.

  3. Test of a ring imaging Cherenkov counter

    International Nuclear Information System (INIS)

    We have tested a ring imaging Cherenkov counter with readout of the projection chamber type. A specific detector response of N0=80 cm-1 was measured which corresponds to 8 photoelectrons per event in a 1.60 m long nitrogen radiator. The resolution of the ring radius was measured to be Δr/r=3.6%. The crosstalk between neighboring wires due to photons generated in the avalanche process was estimated to contribute up to 50% per hit. It was reduced considerably by inserting shielding walls between the wires and by adding C2H6 or iC4H10 to the CH4-TMAE gas mixture. (orig.)

  4. High speed decision electronics combined to a beam Cherenkov counter

    International Nuclear Information System (INIS)

    The Hypolit detector for identification of particles in high energy physics using the Cherenkov radiation, is based on an intensifier tube coupled to photomultipliers via a fiber-optic matrix. Cherenkov photons are focused into a ring; particle identification consists in calculating the ring radius. A fast and high level electronic system is associated to Hypolit. Besides deriving the radius, it allows a background rejection and achieves a momentum correction. This on line tagging contributes to build the WA89 trigger. Tuning is controlled with a micro-computer which makes the access to the heart of the system friendly-user

  5. Efficiency calibration of a liquid scintillation counter for 90Y Cherenkov counting

    International Nuclear Information System (INIS)

    In this paper a complete and self-consistent method for 90Sr determination in environmental samples is presented. It is based on the Cherenkov counting of 90Y with a conventional liquid scintillation counter. The effects of color quenching on the counting efficiency and background are carefully studied. A working curve is presented which allows to quantify the correction in the counting efficiency depending on the color quenching strength. (orig.)

  6. A ring imaging Cherenkov counter for the AMS experiment: simulation, prototype and perspective

    International Nuclear Information System (INIS)

    The AMS spectrometer is scheduled to be installed on the International Space Station ISS in 2003. The detector will be equipped with a Ring Imaging Cherenkov Counter (RICH). The report starts with a presentation of the physics goals of AMS and continues with a description of the spectrometer. The RICH detector response and event reconstruction is then described and detailed. The presentation proceeds with a simulation study of cosmic ray nuclei expected with the AMS RICH counter in space. Next, the thesis reports on the research and development of a RICH prototype built and tested in the period 1997-1999 in the Grenoble Institute of Nuclear Science (ISN). The response of the prototype and its calibration are described. Tests have been performed with cosmic rays at ground and ion beam at GSI-Darmstadt. The data analysis of the test campaigns is then presented and compared with simulation results. Finally, a dedicated test of Albedo particle Rejection Power of the RICH detector is reported. (author)

  7. Beam Tests of the Second Prototype of a Cherenkov Counter for the ALICE T0 Detector

    CERN Document Server

    Kaplin, V A; CERN. Geneva; Loginov, V A; Rakhmanov, A L; Kurepin, A B; Maevskaya, A I; Rasin, V I; Reshetin, A I; Akindinov, A V; Martemyanov, A N; Sheinkman, V A; Smirnitsky, A V; Grigoriev, V A

    2000-01-01

    Abstract The second prototype of a Cherenkov counter consisting of a quartz radiator (cylinder 26 mm in diameter, 30 mm long) and a PMT Hamamatsu R3432-01 has been tested in a 1.28 GeV/c pion beam. A constant fraction discriminator EG&G was used at the output of the PMT. Measurements in a beam with a limited cross-section 0.8 x 0.8 cm2 gave a 50 ps time resolution of the detector. In a "broad-beam" geometry the time resolution of the detector was measured to be 55 ps. In both cases an off-line correction was used due to inadequate characteristics of the CFD, confirmed by the measurements at laboratory conditions using a pulsed laser. Another type of a CFD (4000M) properly adjusted using a pulsed laser and optical filters provided a 55 ps resolution in a "broad-beam" geometry without any off-line correction. Monte-Carlo simulations of p-p collisions show, that an averaging procedure for the signals coming from the two arrays of the T0 detector significantly improves the time resolution for the T0 sig...

  8. Development of a 144-channel Hybrid Avalanche Photo-Detector for Belle II ring-imaging Cherenkov counter with an aerogel radiator

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, S., E-mail: shohei.nishida@kek.jp [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Adachi, I. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hamada, N. [Toho University, Funabashi (Japan); Hara, K. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Iijima, T. [Nagoya University, Nagoya (Japan); Iwata, S.; Kakuno, H. [Tokyo Metropolitan University, Hachioji (Japan); Kawai, H. [Chiba University, Chiba (Japan); Korpar, S.; Krizan, P. [Jozef Stefan Institute, Ljubljana (Slovenia); Ogawa, S. [Toho University, Funabashi (Japan); Pestotnik, R.; Ŝantelj, L.; Seljak, A. [Jozef Stefan Institute, Ljubljana (Slovenia); Sumiyoshi, T. [Tokyo Metropolitan University, Hachioji (Japan); Tabata, M. [Chiba University, Chiba (Japan); Tahirovic, E. [Jozef Stefan Institute, Ljubljana (Slovenia); Yoshida, K. [Tokyo Metropolitan University, Hachioji (Japan); Yusa, Y. [Niigata University, Niigata (Japan)

    2015-07-01

    The Belle II detector, a follow up of the very successful Belle experiment, is under construction at the SuperKEKB electron–positron collider at KEK in Japan. For the PID system in the forward region of the spectrometer, a proximity-focusing ring-imaging Cherenkov counter with an aerogel radiator is being developed. For the position sensitive photon sensor, a 144-channel Hybrid Avalanche Photo-Detector has been developed with Hamamatsu Photonics K.K. In this report, we describe the specification of the Hybrid Avalanche Photo-Detector and the status of the mass production.

  9. Development of a 144-channel Hybrid Avalanche Photo-Detector for Belle II ring-imaging Cherenkov counter with an aerogel radiator

    International Nuclear Information System (INIS)

    The Belle II detector, a follow up of the very successful Belle experiment, is under construction at the SuperKEKB electron–positron collider at KEK in Japan. For the PID system in the forward region of the spectrometer, a proximity-focusing ring-imaging Cherenkov counter with an aerogel radiator is being developed. For the position sensitive photon sensor, a 144-channel Hybrid Avalanche Photo-Detector has been developed with Hamamatsu Photonics K.K. In this report, we describe the specification of the Hybrid Avalanche Photo-Detector and the status of the mass production

  10. Study of the CP violation in the channel B0 → J/ψKS0 and development of an aerogel Cherenkov counter

    International Nuclear Information System (INIS)

    CP violation and the mass generation problem, will be the two fundamental points for Particle Physics at the dawn of the third millennium. The BABAR experiment, which is installed at PEP-II SLAC B-factory, aims to study CP violation in the B meson systems. It will be then possible to test the standard model explanation of CP violation and may be to highlight new sources. In order to study CP violation with the BABAR experiment it is mandatory to identify most of the produced particles. The first part of this thesis presents the study we carried out on a project of Cherenkov aerogel threshold counters for separating pions from kaons in the momentum region between 0.5 and 4.3 GeV/c. This study includes: preliminary search on materials (reflecting wrappings, wavelength shifters and aerogel), cells and light guides geometry and prototype simulation. Test beam results have shown the feasibility of such a detector. The second part of this thesis deals with the CP parameter measurement that could be achieved at the BABAR experiment for the B0 → J/ψKS0 channel, where the J/ψ decays in lepton mode. The reconstruction efficiency, background level, tagging efficiency as well as the resolution on the B vertex positions are studied. The measurement of the expected asymmetry is made with a probabilistic method or a fit and the resolution on the parameter sin 2β that could be achieved is estimated. It is then shown that an uncertainty of 0.075 on sin 2β could be reached in 1 year of data taking at the BABAR experiment, corresponding to an integrated luminosity of 30 fbarn-1. (author)

  11. Fabrication of silica aerogel with $n$ = 1.08 for $e^+/\\mu ^+$ separation in a threshold Cherenkov counter of the J-PARC TREK/E36 experiment

    CERN Document Server

    Tabata, Makoto; Kawai, Hideyuki; Igarashi, Youichi; Imazato, Jun; Shimizu, Suguru; Yamazaki, Hirohito

    2015-01-01

    This study presents the development of hydrophobic silica aerogel for use as a radiator in threshold-type Cherenkov counters. These counters are to be used for separating positrons and positive muons produced by kaon decay in the J-PARC TREK/E36 experiment. We chose to employ aerogel with a refractive index of 1.08 to identify charged particles with momenta of approximately 240 MeV/$c$, and the radiator block shape was designed with a trapezoidal cross-section to fit the barrel region surrounding the kaon stopping target in the center of the TREK/E36 detector system. Including spares, we obtained 30 crack-free aerogel blocks segmented into two layers, each layer having a thickness of 2 cm and a length of 18 cm, to fill 12 counter modules. Optical measurements showed that the produced aerogel tiles had the required refractive indices and transparency.

  12. A ring imaging Cherenkov counter for the AMS experiment: simulation, prototype and perspective; Un imageur d'anneaux tcherenkov pour l'experience AMS: simulation, prototypie et perspectives physiques

    Energy Technology Data Exchange (ETDEWEB)

    Thuillier, T

    2000-05-01

    The AMS spectrometer is scheduled to be installed on the International Space Station ISS in 2003. The detector will be equipped with a Ring Imaging Cherenkov Counter (RICH). The report starts with a presentation of the physics goals of AMS and continues with a description of the spectrometer. The RICH detector response and event reconstruction is then described and detailed. The presentation proceeds with a simulation study of cosmic ray nuclei expected with the AMS RICH counter in space. Next, the thesis reports on the research and development of a RICH prototype built and tested in the period 1997-1999 in the Grenoble Institute of Nuclear Science (ISN). The response of the prototype and its calibration are described. Tests have been performed with cosmic rays at ground and ion beam at GSI-Darmstadt. The data analysis of the test campaigns is then presented and compared with simulation results. Finally, a dedicated test of Albedo particle Rejection Power of the RICH detector is reported. (author)

  13. NICHE: The Non-Imaging CHErenkov Array

    CERN Document Server

    Bergman, Douglas

    2012-01-01

    The accurate measurement of the Cosmic Ray (CR) nuclear composition around and above the Knee (~ 10^15.5 eV) has been difficult due to uncertainties inherent to the measurement techniques and/or dependence on hadronic Monte Carlo simulation models required to interpret the data. Measurement of the Cherenkov air shower signal, calibrated with air fluorescence measurements, offers a methodology to provide an accurate measurement of the nuclear composition evolution over a large energy range. NICHE will use an array of widely-spaced, non-imaging Cherenkov counters to measure the amplitude and time-spread of the air shower Cherenkov signal to extract CR nuclear composition measurements and to cross-calibrate the Cherenkov energy and composition measurements with TA/TALE fluorescence and surface detector measurements.

  14. The Cherenkov Telescope Array

    OpenAIRE

    Bigongiari, Ciro

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next generation ground based observatory for very high energy (VHE) gamma-ray astronomy. Gamma-rays provide a powerful insight into the non-thermal universe and hopefully a unique probe for new physics. Imaging Cherenkov telescopes have already discovered more than 170 VHE gamma-ray emitters providing plentiful of valuable data and clearly demonstrating the power of this technique. In spite of the impressive results there are indication...

  15. Statistical properties of Cherenkov and quasi-Cherenkov superradiance

    CERN Document Server

    Anishchenko, S V

    2016-01-01

    We consider the effects of shot noise and particle energy spread on statistical properties of Cherenkov and quasi-Cherenkov superradiance emitted by a relativistic electron beam. In the absence of energy spread, we have found the root-mean-square deviations of both peak radiated power and instability growth time as a function of the number of particles. It is shown that energy spread can lead to a sharp drop in the radiated power of Cherenkov and quasi-Cherenkov superradiance at high currents.

  16. Silicon photomultiplier based photon detector module as a detector of Cherenkov photons

    Science.gov (United States)

    Korpar, Samo; Chagani, Hassan; Dolenec, Rok; Križan, Peter; Pestotnik, Rok; Stanovnik, Aleš

    2010-11-01

    We have constructed and tested a module, consisting of 64 (= 8×8) Hamamatsu MPPC S10362-11-100P silicon photomultipliers, for position sensitive detection of Cherenkov photons. Suitable light concentrators were produced to increase the efficiency and to improve the signal to noise ratio. The results of our measurements indicate that the performance of such a Cherenkov counter with aerogel radiator could meet the requirements of particle identification at the foreseen upgraded Belle detector.

  17. A module of silicon photo-multipliers for detection of Cherenkov radiation

    Science.gov (United States)

    Korpar, Samo; Chagani, Hassan; Dolenec, Rok; Križan, Peter; Pestotnik, Rok; Stanovnik, Aleš

    2010-02-01

    A module, consisting of 64 (=8×8) Hamamatsu MPPC S10362-11-100P silicon photomultipliers, has been constructed and tested as a position sensitive detector of Cherenkov photons. In order to increase the efficiency, i.e. the effective surface over which Cherenkov light is collected, we have manufactured and tested suitable light guides. In addition to the increase in efficiency, it is shown that such light guides considerably improve the signal-to-noise ratio. The results of our measurements indicate that the performance of such a Cherenkov counter with aerogel radiator could meet the requirements of particle identification at the foreseen upgraded Belle detector.

  18. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper;

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  19. Particle identification performance of the prototype Aerogel RICH counter for the Belle II experiment

    OpenAIRE

    Iwata, S; Adachi, I.; Hara, K.; Iijima, T.; Ikeda, H.; Kakuno, H.; Kawai, H.; Kawasaki, T.(Department of Physics, Niigata University, Niigata, 950-2181, Japan); Korpar, S.; Krizan, P.; T. Kumita; Nishida, S.; Ogawa, S; Pestotnik, R.; Šantelj, L.

    2016-01-01

    We have developed a new type of particle identification device, called an Aerogel Ring Imaging Cherenkov (ARICH) counter, for the Belle II experiment. It uses silica aerogel tiles as Cherenkov radiators. For detection of Cherenkov photons, Hybrid Avalanche Photo-Detectors (HAPDs) are used. The designed HAPD has a high sensitivity to single photons under a strong magnetic field. We have confirmed that the HAPD provides high efficiency for single-photon detection even after exposure to neutron ...

  20. The Cherenkov Telescope Array

    CERN Document Server

    Bigongiari, Ciro

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next generation ground based observatory for very high energy (VHE) gamma-ray astronomy. Gamma-rays provide a powerful insight into the non-thermal universe and hopefully a unique probe for new physics. Imaging Cherenkov telescopes have already discovered more than 170 VHE gamma-ray emitters providing plentiful of valuable data and clearly demonstrating the power of this technique. In spite of the impressive results there are indications that the known sources represent only the tip of the iceberg. A major step in sensitivity is needed to increase the number of detected sources, observe short time-scale variability and improve morphological studies of extended sources. An extended energy coverage is advisable to observe far-away extragalactic objects and improve spectral analysis. CTA aims to increase the sensitivity by an order of magnitude compared to current facilities, to extend the accessible gamma-ray energies from a few tens of GeV to a hundred o...

  1. Study of the CP violation in the channel B{sup 0} {yields} J/{psi}K{sub S}{sup 0} and development of an aerogel Cherenkov counter; Etude de la violation de CP dans le canal B{sup 0} {yields} J/{psi}K{sub S}{sup 0} et developpement d`un compteur Tcherenkov a aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Lafaye, Remi [Savoie Univ., 73 - Chambery (France)

    1998-05-11

    CP violation and the mass generation problem, will be the two fundamental points for Particle Physics at the dawn of the third millennium. The BABAR experiment, which is installed at PEP-II SLAC B-factory, aims to study CP violation in the B meson systems. It will be then possible to test the standard model explanation of CP violation and may be to highlight new sources. In order to study CP violation with the BABAR experiment it is mandatory to identify most of the produced particles. The first part of this thesis presents the study we carried out on a project of Cherenkov aerogel threshold counters for separating pions from kaons in the momentum region between 0.5 and 4.3 GeV/c. This study includes: preliminary search on materials (reflecting wrappings, wavelength shifters and aerogel), cells and light guides geometry and prototype simulation. Test beam results have shown the feasibility of such a detector. The second part of this thesis deals with the CP parameter measurement that could be achieved at the BABAR experiment for the B{sup 0} {yields} J/{psi}K{sub S}{sup 0} channel, where the J/{psi} decays in lepton mode. The reconstruction efficiency, background level, tagging efficiency as well as the resolution on the B vertex positions are studied. The measurement of the expected asymmetry is made with a probabilistic method or a fit and the resolution on the parameter sin 2{beta} that could be achieved is estimated. It is then shown that an uncertainty of 0.075 on sin 2{beta} could be reached in 1 year of data taking at the BABAR experiment, corresponding to an integrated luminosity of 30 fbarn{sup -1}. (author) 89 refs., 89 figs., 28 tabs.

  2. Nutrition Counter

    Science.gov (United States)

    ... Counter: A Reference For The Kidney Patient AAKP Nutrition Counter: A Reference For The Kidney Patient Buy ... Harum RD, CSR, LD Certified Specialist in Renal Nutrition, Miami, Florida Reviewed by: 2005 – Maria Karalis, MBA, ...

  3. Particle Identification with Cherenkov detectors in the 2011 CALICE Tungsten Analog Hadronic Calorimeter Test Beam at the CERN SPS

    CERN Document Server

    Dannheim, D; Klempt, W; Lucaci Timoce, A; van der Kraaij, E

    2013-01-01

    In 2011 the CALICE Tungsten Analog Hadronic Calorimeter prototype (W-AHCAL) was exposed to mixed beams of electrons, pions, kaons and protons with momenta from 10 to 300 GeV in the CERN SPS H8 beam line. The selection of pion, kaon and proton samples is based on the information obtained from two Cherenkov threshold counters. This note presents the strategy for the particle identification, as well as the calibration, operation and analysis of the Cherenkov counters. Efficiency and sample-purity estimates are given for the data selected for the W-AHCAL data analysis.

  4. Measurement of Cherenkov photons by SiPMs with light guides

    Energy Technology Data Exchange (ETDEWEB)

    Korpar, S. [Faculty of Chemistry and Chemical Engineering, University of Maribor (Slovenia); J. Stefan Institute, Ljubljana (Slovenia)], E-mail: samo.korpar@ijs.si; Chagani, H.; Dolenec, R. [J. Stefan Institute, Ljubljana (Slovenia); Hara, K.; Iijima, T. [Nagoya University, Nagoya (Japan); Krizan, P. [J. Stefan Institute, Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana (Slovenia); Mazuka, Y. [Nagoya University, Nagoya (Japan); Pestotnik, R. [J. Stefan Institute, Ljubljana (Slovenia); Stanovnik, A. [J. Stefan Institute, Ljubljana (Slovenia); Faculty of Electrical Engineering, University of Ljubljana (Slovenia); Yamaoka, M. [Nagoya University, Nagoya (Japan)

    2009-10-21

    Silicon Photomultipliers (SiPMs) are attractive photon detectors for Ring Imaging Cherenkov (RICH) counters inside large magnetic spectrometers due to their insensitivity to magnetic fields. We have investigated the possibilities offered by these new photon detectors in a cosmic ray test set-up. Cherenkov photons emitted by cosmic ray particles in an aerogel radiator have been detected with silicon photomultipliers for the first time. Estimates and tests show how light concentrators may improve the detection efficiency, thus showing promise for a SiPM based RICH detector. The optimum shape for these light guides is investigated.

  5. FACT -- Operation of the First G-APD Cherenkov Telescope

    CERN Document Server

    Bretz, T; Buß, J; Commichau, V; Djambazov, L; Dorner, D; Einecke, S; Eisenacher, D; Freiwald, J; Grimm, O; von Gunten, H; Haller, C; Hempfling, C; Hildebrand, D; Hughes, G; Horisberger, U; Knoetig, M L; Krähenbühl, T; Lustermann, W; Lyard, E; Mannheim, K; Meier, K; Mueller, S; Neise, D; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Röser, U; Stucki, J -P; Steinbring, T; Temme, F; Thaele, J; Vogler, P; Walter, R; Weitzel, Q

    2014-01-01

    Since more than two years, the First G-APD Cherenkov Telescope (FACT) is operating successfully at the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD aka. MPPC or SiPM) for photon detection. Since properties as the gain of G-APDs depend on temperature and the applied voltage, a real-time feedback system has been developed and implemented. To correct for the change introduced by temperature, several sensors have been placed close to the photon detectors. Their read out is used to calculate a corresponding voltage offset. In addition to temperature changes, changing current introduces a voltage drop in the supporting resistor network. To correct changes in the voltage drop introduced by varying photon flux from the night-sky background...

  6. DELPHI's Ring Imaging Cherenkov Chamber

    CERN Multimedia

    1989-01-01

    The hundreds of mirrors around this Ring Imaging Cherenkov Chamber reflect cones of light created by fast moving particles to a detector. The velocity of a particle can be measured by the size of the ring produced on the detector. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  7. Measurements of Cherenkov Photons with Silicon Photomultipliers

    CERN Document Server

    Korpar, S; Chagani, H; Dolenec, R; Hara, K; Iijima, T; Krizan, P; Nishida, S; Pestotnik, R; Stanovnik, A

    2008-01-01

    A novel photon detector, the Silicon Photomultiplier (SiPM), has been tested in proximity focusing Ring Imaging Cherenkov (RICH) counters that were exposed to cosmic-ray particles in Ljubljana, and a 2 GeV electron beam at the KEK research facility. This type of RICH detector is a candidate for the particle identification detector upgrade of the BELLE detector at the KEK B-factory, for which the use of SiPMs, microchannel plate photomultiplier tubes or hybrid avalanche photodetectors, rather than traditional Photomultiplier Tubes (PMTs) is essential due to the presence of high magnetic fields. In both experiments, SiPMs are found to compare favourably with PMTs, with higher photon detection rates per unit area. Through the use of hemispherical and truncated pyramid light guides to concentrate photons onto the active surface area, the light yield increases significantly. An estimate of the contribution to dark noise from false coincidences between SiPMs in an array is also presented.

  8. Cherenkov particle identification in FOCUS

    CERN Document Server

    Link, J M; Alimonti, G; Anjos, J C; Arena, V; Bediaga, I; Bianco, S; Boca, G; Bonomi, G; Boschini, M; Butler, J N; Carrillo, S; Casimiro, E; Cawlfield, C; Cheung, H W K; Cho, K; Chung, Y S; Cinquini, L; Cuautle, E; Cumalat, J P; D'Angelo, P; Di Corato, M; Dini, P; Engh, D; Fabbri, Franco Luigi; Gaines, I; Garbincius, P H; Gardner, R; Garren, L A; Giammarchi, M; Gianini, G; Gottschalk, E; Göbel, C; Handler, T; Hernández, H; Hosack, M; Inzani, P; Johns, W E; Kang, J S; Kasper, P H; Kim, D Y; Ko, B R; Kreymer, A E; Kryemadhi, A; Kutschke, R; Kwak, J W; Lee, K B; Leveraro, F; Liguori, G; Magnin, J; Malvezzi, S; Massafferri, A; Menasce, D; Merlo, M M; Mezzadri, M; Milazzo, L; Miranda, J M D; Mitchell, R; Montiel, E; Moroni, L; Méndez, H; Méndez, L; Nehring, M S; O'Reilly, B; Olaya, D; Pantea, D; Paris, A; Park, H; Park, K S; Pedrini, D; Pepe, I M; Pontoglio, C; Prelz, F; Quinones, J; Rahimi, A; Ramírez, J E; Ratti, S P; Reis, A C D; Reyes, M; Riccardi, C; Rivera, C; Rovere, M; Sala, S; Sarwar, S; Segoni, I; Sheaff, M; Sheldon, P D; Stenson, K; Sánchez-Hernández, A; Uribe, C; Vaandering, E W; Vitulo, P; Vázquez, F; Webster, M; Wilson, J R; Wiss, J; Xiong, W; Yager, P M; Zallo, A; Zhang, Y

    2002-01-01

    We describe the algorithm used to identify charged tracks in the fixed-target charm-photoproduction experiment FOCUS. We begin by describing the new algorithm and contrast this approach with that used in our preceding experiment - E687. We next illustrate the algorithm's performance using physics signals. Finally, we briefly describe some of the methods used to monitor the quantum efficiency and noise of the Cherenkov cells.

  9. Cherenkov particle identification in FOCUS

    Energy Technology Data Exchange (ETDEWEB)

    Link, J.M.; Reyes, M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Goebel, C.; Magnin, J.; Massafferri, A.; Miranda, J.M. de; Pepe, I.M.; Reis, A.C. dos; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Cinquini, L.; Cumalat, J.P.; O' Reilly, B.; Ramirez, J.E.; Vaandering, E.W.; Butler, J.N.; Cheung, H.W.K.; Gaines, I.; Garbincius, P.H.; Garren, L.A.; Gottschalk, E.; Kasper, P.H.; Kreymer, A.E.; Kutschke, R.; Bianco, S.; Fabbri, F.L.; Sarwar, S.; Zallo, A.; Cawlfield, C.; Kim, D.Y.; Park, K.S.; Rahimi, A.; Wiss, J. E-mail: jew@uiuc.edu; Gardner, R.; Kryemadhi, A.; Chung, Y.S.; Kang, J.S.; Ko, B.R.; Kwak, J.W.; Lee, K.B.; Park, H.; Alimonti, G.; Boschini, M.; D' Angelo, P.; DiCorato, M.; Dini, P.; Giammarchi, M.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Milazzo, L.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport III, T.F.; Agostino, L.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Merlo, M.M.; Pantea, D.; Ratti, S.P.; Riccardi, C.; Segoni, I.; Vitulo, P.; Hernandez, H.; Lopez, A.M.; Mendez, H.; Mendez, L.; Montiel, E.; Olaya, D.; Paris, A.; Quinones, J.; Rivera, C.; Xiong, W.; Zhang, Y.; Wilson, J.R.; Cho, K.; Handler, T.; Mitchell, R.; Engh, D.; Johns, W.E.; Hosack, M.; Nehring, M.S.; Sheldon, P.D.; Stenson, K.; Webster, M.S.; Sheaff, M

    2002-05-21

    We describe the algorithm used to identify charged tracks in the fixed-target charm-photoproduction experiment FOCUS. We begin by describing the new algorithm and contrast this approach with that used in our preceding experiment - E687. We next illustrate the algorithm's performance using physics signals. Finally, we briefly describe some of the methods used to monitor the quantum efficiency and noise of the Cherenkov cells.

  10. Cherenkov radiation threshold in random inhomogeneous media

    CERN Document Server

    Grichine, V M

    2009-01-01

    Cherenkov radiation in media with random inhomogeneities like aerogel or Earth atmosphere is discussed. The spectral-angular distribution of Cherenkov photons emitted by relativistic charged particle and averaged over the dielectric permittivity fluctuations shows angular broadening similarly to the case of media with the photon absorption. The broadening results in the smoothing of Cherenkov threshold, and therefore media with strong photon scattering have more extended dependence of Cherenkov light output on the particle speed. It can be potentially used for the particle identification

  11. Progress in Cherenkov femtosecond fiber lasers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper;

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser...... Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuumbased...

  12. All-fiber femtosecond Cherenkov radiation source

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe;

    2012-01-01

    -conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580–630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics...

  13. The upgraded MAGIC Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Tescaro, D., E-mail: dtescaro@iac.es [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Universidad de La Laguna (ULL), Dept. Astrofísica, E-38206 La Laguna, Tenerife (Spain)

    2014-12-01

    The MAGIC Cherenkov telescopes underwent a major upgrade in 2011 and 2012. A new 1039-pixel camera and a larger area digital trigger system were installed in MAGIC-I, making it essentially identical to the newer MAGIC-II telescope. The readout systems of both telescopes were also upgraded, with fully programmable receiver boards and DRS4-chip-based digitization systems. The upgrade eased the operation and maintenance of the telescopes and also improved significantly their performance. The system has now an integral sensitivity as good as 0.6% of the Crab Nebula flux (for E>400GeV), with an effective analysis threshold at 70 GeV. This allows MAGIC to secure one of the leading roles among the current major ground-based Imaging Atmospheric Cherenkov telescopes for the next 5–10 years. - Highlights: • In 2011 and 2012 the MAGIC telescopes underwent a two-stage major upgrade. • The new camera of MAGIC-I allows us to exploit a 1.4 larger trigger area. • The novel DRS4-based readout systems allow a cost-effective ultra-fast digitization. • The upgrade greatly improved the maintainability of the system. • MAGIC has now an optimal integral sensitivity of 0.6% of the Crab Nebula flux.

  14. FACT -- The G-APD revolution in Cherenkov astronomy

    CERN Document Server

    Bretz, T; Backes, M; Biland, A; Boccone, V; Braun, I; Buß, J; Cadoux, F; Commichau, V; Djambazov, L; Dorner, D; Einecke, S; Eisenacher, D; Gendotti, A; Grimm, O; von Gunten, H; Haller, C; Hempfling, C; Hildebrand, D; Horisberger, U; Huber, B; Kim, K S; Knoetig, M L; Köhne, J H; Krähenbühl, T; Krumm, B; Lee, M; Lorenz, E; Lustermann, W; Lyard, E; Mannheim, K; Meharga, M; Meier, K; Müuller, S; Montaruli, T; Neise, D; Nessi-Tedaldi, F; Overkemping, A K; Paravac, A; Pauss, F; Renker, D; Rhode, W; Ribordy, M; Röser, U; Stucki, J P; Schneider, J; Steinbring, T; Temme, F; Thaele, J; Tobler, S; Viertel, G; Vogler, P; Walter, R; Warda, K; Weitzel, Q; Zänglein, M

    2014-01-01

    Since two years, the FACT telescope is operating on the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD), equipped with solid light guides to increase the effective light collection area of each sensor. Since no sense-line is available, a special challenge is to keep the applied voltage stable although the current drawn by the G-APD depends on the flux of night-sky background photons significantly varying with ambient light conditions. Methods have been developed to keep the temperature and voltage dependent response of the G-APDs stable during operation. As a cross-check, dark count spectra with high statistics have been taken under different environmental conditions. In this presentation, the project, the developed methods and the e...

  15. Silicon photomultiplier as a detector of Cherenkov photons

    Science.gov (United States)

    Korpar, S.; Dolenec, R.; Hara, K.; Iijima, T.; Križan, P.; Mazuka, Y.; Pestotnik, R.; Stanovnik, A.; Yamaoka, M.

    2008-09-01

    A novel photon detector—i.e. the silicon photomultiplier—whose main advantage over conventional photomultiplier tubes is the operation in high magnetic fields, has been tested as a photon detector in a proximity focusing RICH with aerogel radiator. This type of RICH counter is proposed for the upgrade of the Belle detector at the KEK B-factory. Recently produced silicon photomultipliers show less noise and have larger size, which are important issues for a large area photon detector. We measured the single photon pulse height distribution, the timing resolution and the position sensitivity for different silicon photomultipliers (Hamamatsu MPPC HC025, HC050, and HC100). The silicon photomultipliers were then used to detect Cherenkov photons emitted by cosmic ray particles in a proximity focusing aerogel RICH. Various light guides were investigated in order to increase the detection efficiency.

  16. All-fiber femtosecond Cherenkov radiation source.

    Science.gov (United States)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry

    2012-07-01

    An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave-conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580-630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics such as bioimaging and microscopy. PMID:22743523

  17. Tachyonic Cherenkov emission from Jupiter's radio electrons

    International Nuclear Information System (INIS)

    Tachyonic Cherenkov radiation from inertial relativistic electrons in the Jovian radiation belts is studied. The tachyonic modes are coupled to a frequency-dependent permeability tensor and admit a negative mass-square, rendering them superluminal and dispersive. The superluminal radiation field can be cast into Maxwellian form, using 3D field strengths and inductions, and the spectral densities of tachyonic Cherenkov radiation are derived. The negative mass-square gives rise to a longitudinal flux component. A spectral fit to Jupiter's radio spectrum, inferred from ground-based observations and the Cassini 2001 fly-by, is performed with tachyonic Cherenkov flux densities averaged over a thermal electron population.

  18. Cooperative quasi-Cherenkov radiation

    CERN Document Server

    Anishchenko, S V

    2014-01-01

    We study the features of cooperative parametric (quasi-Cherenkov) radiation arising when initially unmodulated electron (positron) bunches pass through a crystal (natural or artificial) under the conditions of dynamical diffraction of electromagnetic waves in the presence of shot noise. A detailed numerical analysis is given for cooperative THz radiation in artificial crystals. The radiation intensity above 200~MW$/$cm$^2$ is obtained in simulations. In two- and three-wave diffraction cases, the peak intensity of cooperative radiation emitted at small and large angles to particle velocity is investigated as a function of the particle number in an electron bunch. The peak radiation intensity appeared to increase monotonically until saturation is achieved. At saturation, the shot noise causes strong fluctuations in the intensity of cooperative parametric radiation. It is shown that the duration of radiation pulses can be much longer than the particle flight time through the crystal. This enables a thorough expe...

  19. INTENSITY INTERFEROMETRY WITH CHERENKOV TELESCOPES

    Directory of Open Access Journals (Sweden)

    D. B. Kieda

    2010-01-01

    Full Text Available Se discuten las capacidades de arreglos de interferometría de intensidad estelar (SII que se pueden construir usando la siguiente generación de arreglos de telescopios de Cherenkov de imágenes de aire (IACTs. Estos arreglos de IACT tendrán un gran diámetro de - 100 m (> 8 m de re ectores ópticos, ofreciendo cerca de 5000 líneas de base interferométricas, extendiéndose a partir de 50 m a más que 1000 m. La implementación del SII en arreglos de IACT permitirán imágenes de alta resolución (< 0:1 mas en anchos de banda cortos (bandas B/V, que son óptimas para el estudio de estrellas calientes.

  20. Neutron Detection via the Cherenkov Effect

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Zane W [ORNL; Boatner, Lynn A [ORNL

    2010-01-01

    We have incorporated neutron-absorbing elements in transparent, nonscintillating glasses and used the Cherenkov effect to convert neutron-induced beta-gamma radiation directly into light. Use of the Cherenkov effect requires glasses with a high index of refraction (to lower the threshold and increase the number of Cherenkov photons) and neutron absorbers resulting in radioactive products emitting high-energy beta or gamma radiation. In this paper, we present a brief description of the requirements for developing efficient Cherenkov-based neutron detectors, show the results of measurements of the response of representative samples to thermal and fast neutron fluxes, and give the results of a calculation of the expected response of a detector to a moderated fission spectrum.

  1. Neutron Detection via the Cherenkov Effect

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Zane W [ORNL; Boatner, Lynn A [ORNL

    2008-01-01

    We have incorporated neutron-absorbing elements in transparent, non-scintillating glasses and used the Cherenkov effect to convert neutron-induced beta-gamma radiation directly into light. Use of the Cherenkov effect requires glasses with a high index of refraction (to lower the threshold and increase the number of Cherenkov photons), and neutron absorbers resulting in radioactive products emitting high-energy beta or gamma radiation. In this paper, we present a brief description of the requirements for developing efficient Cherenkov-based neutron detectors, show the results of measurements of the response of representative samples to a thermal neutron flux, and give the results of a calculation of the expected response of a detector to a moderated fission spectrum.

  2. Digital Electronics for the Pierre Auger Observatory AMIGA Muon Counters

    OpenAIRE

    Wainberg, O.; A. Almela; Platino, M.; Sanchez, F.; Suarez, F.; Lucero, A.; Videla, M.; B. Wundheiler; Melo, D.; Hampel, M.; Etchegoyen, A.

    2013-01-01

    The "Auger Muons and Infill for the Ground Array" (AMIGA) project provides direct muon counting capacity to the Pierre Auger Observatory and extends its energy detection range down to 0.3 EeV. It currently consists of 61 detector pairs (a Cherenkov surface detector and a buried muon counter) distributed over a 23.5 km2 area on a 750 m triangular grid. Each counter relies on segmented scintillator modules storing a logical train of '0's and '1's on each scintillator segment at a given time slo...

  3. 110th anniversary of the birth of P A Cherenkov (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 17 December 2014)

    Science.gov (United States)

    2015-05-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held on 17 December 2014 at the conference hall of the Lebedev Physical Institute, RAS, devoted to the 110th anniversary of the birth of Academician P A Cherenkov. The agenda posted on the website of the Physical Sciences Division RAS http://www.gpad.ac.ru comprised the following reports: (1) Bashmakov Yu A (Lebedev Physical Institute, RAS, Moscow) "Prehistory of discovery"; (2) Kadmensky S G (Voronezh State University, Voronezh) "Cherenkov radiation as a serendipity phenomenon"; (3) Denisov S P (Russian Federation State Scientific Center 'Institute for High Energy Physics' of National Research Center 'Kurchatov Institute', Protvino, Moscow region) "Use of Cherenkov counters in accelerator experiments"; (4) Petrukhin A A (National Research Nuclear University 'MEPhI', Moscow) "Cherenkov NEVOD water detector"; (5) Dremin I M (Lebedev Physical Institute, RAS, Moscow) "Cherenkov radiation from gluons in a nuclear medium"; (6) Domogatsky G V (Institute for Nuclear Research, RAS, Moscow) "Cherenkov detectors for high-energy neutrino astrophysics"; (7) Kravchenko E A (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Cherenkov detectors with aerogel radiators"; (8) Malinovski E I (Institute for Nuclear Research, RAS, Moscow) "Cherenkov total absorption spectrometers for high-energy electrons and photons"; (9) Maltseva Yu I (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Distributed beam loss monitor based on the Cherenkov effect in an optical fiber". Papers based on oral reports 1-4, 6-9 are presented below. Some aspects of report 5 can be found in the review by I M Dremin and A V Leonidov published in 2010 in Physics-Uspekhi (Vol. 53, p. 1123). • Cherenkov radiation: from discovery to RICH, Yu A Bashmakov Physics-Uspekhi, 2015, Volume 58, Number 5, Pages 467-471 • Cherenkov radiation as a serendipitous phenomenon, S G Kadmensky Physics

  4. Simulation of Cherenkov photons emitted in photomultiplier windows induced by Compton diffusion using the Monte Carlo code GEANT4

    International Nuclear Information System (INIS)

    The implementation of the TDCR method (Triple to Double Coincidence Ratio) is based on a liquid scintillation system which comprises three photomultipliers; at LNHB, this counter can also be used in the β-channel of a 4π(LS)β-γ coincidence counting equipment. It is generally considered that the γ-sensitivity of the liquid scintillation detector comes from the interaction of the γ-photons in the scintillation cocktail but when introducing solid γ-ray emitting sources instead of the scintillation vial, light emitted by the surrounding of the counter is observed. The explanation proposed in this article is that this effect comes from the emission of Cherenkov photons induced by Compton diffusion in the photomultiplier windows. In order to support this assertion, the creation and the propagation of Cherenkov photons inside the TDCR counter is simulated using the Monte Carlo code GEANT4. Stochastic calculations of double coincidences confirm the hypothesis of Cherenkov light produced in the photomultiplier windows.

  5. Particle Identification in Cherenkov Detectors using Convolutional Neural Networks

    CERN Document Server

    Theodore, Tomalty

    2016-01-01

    Cherenkov detectors are used for charged particle identification. When a charged particle moves through a medium faster than light can propagate in that medium, Cherenkov radiation is released in the shape of a cone in the direction of movement. The interior of the Cherenkov detector is instrumented with PMTs to detect this Cherenkov light. Particles, then, can be identified by the shapes of the images on the detector walls.

  6. Volcanoes muon imaging using Cherenkov telescopes

    CERN Document Server

    Catalano, Osvaldo; Mineo, Teresa; Cusumano, Giancarlo; Maccarone, Maria Concetta; Pareschi, Giovanni

    2015-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energ...

  7. The Cherenkov Radiation for Non-Trivial Systems; La Radiacion Cherenkov en Sistemas No Triviales

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.

    2002-07-01

    The charge pathways and the dielectric properties of the medium are two essential aspects to be considered in the study of the emission of Cherenkov radiation. We described the evolution of the Cherenkov wavefront when the charges follow circular or helical pathways. Also we derive expressions for the refractive Index in different transparent media (solid, liquid or gas), focusing our attention on optically active plasmas. The optical analogies between the plasma and the birefringent crystals is studied in detail. Finally, we list some examples of plasmas, which can be considered emitters of Cherenkov radiation. (Author) 52 refs.

  8. Trends in the development of large area photon detectors for Cherenkov light imaging applications

    CERN Document Server

    Nappi, E

    2003-01-01

    Since the successful operations of hi-tech devices at OMEGA, DELPHI and SLD, the technique of Cherenkov light imaging has gone through an impressive and fruitful evolution driven by the conception of novel large area photon detectors. The well-assessed potentialities of thin CsI films, employed as reflective photoconverters in gas counters operated at atmospheric pressure, will be compared with the promising features of hybrid and multianode vacuum photomultipliers. Recently proposed single-photon gaseous detectors based on GEMs will also be reviewed.

  9. The BRAHMS ring imaging Cherenkov detector

    Science.gov (United States)

    Debbe, R.; Jørgensen, C. E.; Olness, J.; Yin, Z.

    2007-01-01

    A Ring Imaging Cherenkov detector built for the BRAHMS experiment at the Brookhaven RHIC is described. This detector has a high index of refraction gas radiator. Cherenkov light is focused on a photo-multiplier based photon detector with a large spherical mirror. The combination of momentum and ring radius measurement provides particle identification from 2.5 to 35 GeV/ c for pions and kaons and well above 40 GeV/ c for protons during runs that had the radiator index of refraction set at n-1=1700×10-6.

  10. All-fiber femtosecond Cherenkov radiation source

    OpenAIRE

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2012-01-01

    An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave-conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580–630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. ...

  11. All-fiber femtosecond Cherenkov source

    OpenAIRE

    Tu H.; Møller U.; Lægsgaard J.; Liu X.; Boppart S. A.; Turchinovich D.

    2013-01-01

    An all-fiber femtosecond Cherenkov radiation source is demonstrated for the first time, to the best of our knowledge. Using a stable monolithic femtosecond Ybdoped fiber laser as the pump source, and the combination of photonic crystal fibers as the wave-conversion medium, we have generated tunable Cherenkov radiation at visible wavelengths 580 – 630 nm, with pulse duration of sub-160 fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such femtosecond source can find applications in pra...

  12. All-fiber femtosecond Cherenkov source

    Directory of Open Access Journals (Sweden)

    Tu H.

    2013-03-01

    Full Text Available An all-fiber femtosecond Cherenkov radiation source is demonstrated for the first time, to the best of our knowledge. Using a stable monolithic femtosecond Ybdoped fiber laser as the pump source, and the combination of photonic crystal fibers as the wave-conversion medium, we have generated tunable Cherenkov radiation at visible wavelengths 580 – 630 nm, with pulse duration of sub-160 fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such femtosecond source can find applications in practical biophotonics such as bio-imaging and microscopy.

  13. Flipping photons backward: reversed Cherenkov radiation

    Directory of Open Access Journals (Sweden)

    Hongsheng Chen

    2011-01-01

    Full Text Available Charged particles moving faster than light in a medium produce Cherenkov radiation. In traditional, positive index-of-refraction materials this radiation travels forward. Metamaterials, with negative indices of refraction, flip the radiation backward. This readily separates it from the particles, providing higher flexibility in photon manipulation and is useful for particle identification and counting. Here we review recent advances in reversed Cherenkov radiation research, including the first demonstration of backward emission. We also discuss the potential for developing new types of devices, such as ones that pierce invisibility cloaks.

  14. All-fiber femtosecond Cherenkov source

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe Visbech;

    2013-01-01

    An all-fiber femtosecond Cherenkov radiation source is demonstrated for the first time, to the best of our knowledge. Using a stable monolithic femtosecond Ybdoped fiber laser as the pump source, and the combination of photonic crystal fibers as the wave-conversion medium, we have generated tunable...... Cherenkov radiation at visible wavelengths 580 - 630 nm, with pulse duration of sub-160 fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such femtosecond source can find applications in practical biophotonics such as bio-imaging and microscopy....

  15. Particle identification performance of the prototype aerogel RICH counter for the Belle II experiment

    Science.gov (United States)

    Iwata, S.; Adachi, I.; Hara, K.; Iijima, T.; Ikeda, H.; Kakuno, H.; Kawai, H.; Kawasaki, T.; Korpar, S.; Križan, P.; Kumita, T.; Nishida, S.; Ogawa, S.; Pestotnik, R.; Šantelj, L.; Seljak, A.; Sumiyoshi, T.; Tabata, M.; Tahirovic, E.; Yusa, Y.

    2016-03-01

    We have developed a new type of particle identification device, called an aerogel ring imaging Cherenkov (ARICH) counter, for the Belle II experiment. It uses silica aerogel tiles as Cherenkov radiators. For detection of Cherenkov photons, hybrid avalanche photo-detectors (HAPDs) are used. The designed HAPD has a high sensitivity to single photons under a strong magnetic field. We have confirmed that the HAPD provides high efficiency for single-photon detection even after exposure to neutron and γ -ray radiation that exceeds the levels expected in the 10-year Belle II operation. In order to confirm the basic performance of the ARICH counter system, we carried out a beam test at the using a prototype of the ARICH counter with six HAPD modules. The results are in agreement with our expectations and confirm the suitability of the ARICH counter for the Belle II experiment. Based on the in-beam performance of the device, we expect that the identification efficiency at 3.5 GeV/c is 97.4% and 4.9% for pions and kaons, respectively. This paper summarizes the development of the HAPD for the ARICH and the evaluation of the performance of the prototype ARICH counter built with the final design components.

  16. Cherenkov radiation imaging of beta emitters: in vitro and in vivo results

    International Nuclear Information System (INIS)

    The main purpose of this work was to investigate both in vitro and in vivo Cherenkov radiation (CR) emission coming from 18F and 32P. The main difference between 18F and 32P is mainly the number of the emitted light photons, more precisely the same activity of 32P emits more CR photons with respect to 18F. In vitro results obtained by comparing beta counter measurements with photons average radiance showed that Cherenkov luminescence imaging (CLI) allows quantitative tracer activity measurements. In order to investigate in vivo the CLI approach, we studied an experimental xenograft tumor model of mammary carcinoma (BB1 tumor cells). Cherenkov in vivo dynamic whole body images of tumor bearing mice were acquired and the tumor tissue time activity curves reflected the well-known physiological accumulation of 18F-FDG in malignant tissues with respect to normal tissues. The results presented here show that it is possible to use conventional optical imaging devices for in vitro or in vivo study of beta emitters.

  17. The PHENIX ring imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, Y.; Begay, R.; Burwood-Hoy, J.; Chappell, R.B.; Crook, D.W.; Ebisu, K.; Emery, M.S.; Ferrierra, J.; Frawley, A.D.; Hamagaki, H.; Hara, H.; Hayano, R.S.; Hemmick, T.K.; Hibino, M.; Hutter, R.; Kennedy, M.; Kikuchi, J.; Matsumoto, T.; Moscone, G.G.; Nagasaka, Y.; Nishimura, S.; Oyama, K.; Sakaguchi, T.; Salomone, S.; Shigaki, K.; Tanaka, Y.; Walker, J.W.; Wintenberg, A.L.; Young, G.R

    2000-10-11

    The PHENIX experiment at RHIC is primarily a lepton and photon detector. Electron detection takes place in the two central arms of PHENIX, with the primary electron identifier in each arm being a ring imaging Cherenkov detector. This paper contains a description of the two identical RICH detectors and of their expected performance.

  18. Progress on Cherenkov Reconstruction in MICE

    CERN Document Server

    Kaplan, Daniel M; Rajaram, Durga; Winter, Miles; Cremaldi, Lucien; Sanders, David; Summers, Don

    2016-01-01

    Two beamline Cherenkov detectors (Ckov-a,-b) support particle identification in the MICE beamline. Electrons and high-momentum muons and pions can be identified with good efficiency. We report on the Ckov-a,-b performance in detecting pions and muons with MICE Step I data and derive an upper limit on the pion contamination in the standard MICE muon beam.

  19. Fundamental and exotic physics with Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, A., E-mail: alessandro.de.angelis@cern.c [Dipartimento di Fisica dell' Universita di Udine and INFN, Udine (Italy); De Lotto, B. [Dipartimento di Fisica dell' Universita di Udine and INFN, Udine (Italy); Roncadelli, M. [INFN Pavia (Italy)

    2011-02-21

    The detection of high-energy {gamma} rays from astrophysical sources, using the Fermi/LAT detector and in the very-high-energy limit the Cherenkov telescopes MAGIC, H.E.S.S. and VERITAS, can provide tests of fundamental physics with unprecedented sensitivity, and possibly allows to probe new and exotic scenarios.

  20. Performance Studies of Pixel Hybrid Photon Detectors for the LHCb RICH Counters

    CERN Document Server

    Aglieri Rinella, G; Piedigrossi, D; Van Lysebetten, A

    2004-01-01

    The Pixel Hybrid Photon Detector is a vacuum tube with a multi-alkali photo cathode, high voltage cross-focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a readout CMOS electronic chip fully encapsulated in the device. The Pixel HPD fulfils the requirements of the Ring Imaging Cherenkov counters of the LHCb experiment at LHC. The performances of the Pixel HPD will be discussed with reference to laboratory measurements, Cherenkov light imaging in recent beam tests, image distortions due to a magnetic field.

  1. Performance studies of pixel hybrid photon detectors for the LHCb RICH counters

    CERN Document Server

    Aglieri-Rinella, G; Piedigrossi, D; Van Lysebetten, A

    2006-01-01

    The Pixel Hybrid Photon Detector is a vacuum tube with a multi-alkali photo cathode, high voltage cross-focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a readout CMOS electronic chip fully encapsulated in the device. The Pixel HPD fulfils the requirements of the Ring Imaging Cherenkov counters of the LHCb experiment at LHC. The performances of the Pixel HPD will be discussed with reference to laboratory measurements, Cherenkov light imaging in recent beam tests, image distortions due to a magnetic field.

  2. Counter-cryptanalysis

    NARCIS (Netherlands)

    Stevens, M.M.J.; Canetti, R.; Garay, J.A.

    2013-01-01

    We introduce \\emph{counter-cryptanalysis} as a new paradigm for strengthening weak cryptographic primitives against cryptanalytic attacks. Redesigning a weak primitive to more strongly resist cryptanalytic techniques will unavoidably break backwards compatibility. Instead, counter-cryptanalysis expl

  3. Particle identification performance of the prototype Aerogel RICH counter for the Belle II experiment

    CERN Document Server

    Iwata, S; Hara, K; Iijima, T; Ikeda, H; Kakuno, H; Kawai, H; Kawasaki, T; Korpar, S; Krizan, P; Kumita, T; Nishida, S; Ogawa, S; Pestotnik, R; Šantelj, L; Seljak, A; Tabata, M; Tahirović, E; Yusa, Y

    2016-01-01

    We have developed a new type of particle identification device, called an Aerogel Ring Imaging Cherenkov (ARICH) counter, for the Belle II experiment. It uses silica aerogel tiles as Cherenkov radiators. For detection of Cherenkov photons, Hybrid Avalanche Photo-Detectors (HAPDs) are used. The designed HAPD has a high sensitivity to single photons under a strong magnetic field. We have confirmed that the HAPD provides high efficiency for single-photon detection even after exposure to neutron and gamma-ray radiation that exceeds the levels expected in the 10-year Belle II operation. In order to confirm the basic performance of the ARICH counter system, we carried out a beam test at the DESY using a prototype of the ARICH counter with six HAPD modules. The results are in agreement with our expectations and confirm the suitability of the ARICH counter for the Belle II experiment. Based on the in-beam performance of the device, we expect that the identification efficiency at 3.5 GeV/c is 97.4% and 4.9% for pions ...

  4. Wavelength Shifters for Water Cherenkov Detectors

    CERN Document Server

    Dai, Xiongxin; Bellerive, Alain; Hargrove, Cliff; Sinclair, David; Mifflin, Cathy; Zhang Feng

    2008-01-01

    The light yield of a water-based Cherenkov detector can be significantly improved by adding a wavelength shifter. Wavelength shifter (WLS) molecules absorb ultraviolet photons and re-emit them at longer wavelengths where typical photomultiplier tubes are more sensitive. In this study, several wavelength shifter compounds are tested for possible deployment in the Sudbury Neutrino Observatory (SNO). Test results on optical properties and chemical compatibility for a few WLS candidates are reported; together with timing and gain measurements. A Monte Carlo simulation of the SNO detector response is used to estimate the total light gain with WLS. Finally, a cosmic ray Cherenkov detector was built to investigate the optical properties of WLS.

  5. Mirror Development for the Cherenkov Telescope Array

    CERN Document Server

    Förster, A; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; De Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; MANDAT, D; Mariotti, M; Medina, C; Michałowski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pareschi, G; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; Van Eldik, C; Vassiliev, V; Wiśniewski, Ł; Wörnlein, A; Yoshida, T

    2013-01-01

    The Cherenkov Telescope Array (CTA) is a planned observatory for very-high energy gamma-ray astronomy. It will consist of several tens of telescopes of different sizes, with a total mirror area of up to 10,000 square meters. Most mirrors of current installations are either polished glass mirrors or diamond-turned aluminium mirrors, both labour intensive technologies. For CTA, several new technologies for a fast and cost-efficient production of light-weight and reliable mirror substrates have been developed and industrial pre-production has started for most of them. In addition, new or improved aluminium-based and dielectric surface coatings have been developed to increase the reflectance over the lifetime of the mirrors compared to those of current Cherenkov telescope instruments.

  6. Characterization of coherent Cherenkov radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.V.

    2015-01-21

    Engineering formulae for calculation of peak, and spectral brightness of resonant long-range wakefield extractor are given. It is shown that the brightness is dominated by beam density in the slow wave structure and antenna gain of the outcoupling. Far field radiation patterns and brightness of circular and high aspect ratio planar radiators are compared. A possibility to approach diffraction limited brightness is demonstrated. The role of group velocity in designing of the Cherenkov source is analyzed. The approach can be applied for design and characterization of various structure-dominated sources (e.g., wakefield extractors with gratings or dielectrics, or FEL-Cherenkov combined sources) radiating into a free space using an antenna (in microwave to sub-mm wave regions). The high group velocity structures can be also effective as energy dechirpers and for diagnostics of microbunched relativistic electron beams.

  7. Bokeh Mirror Alignment for Cherenkov Telescopes

    CERN Document Server

    Ahnen, M L; Balbo, M; Bergmann, M; Biland, A; Blank, M; Bretz, T; Bruegge, K A; Buss, J; Domke, M; Dorner, D; Einecke, S; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Mannheim, K; Mueller, S A; Neise, D; Neronov, A; Noethe, M; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Shukla, A; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2016-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alignment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflector's aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment ...

  8. Reverse surface-polariton cherenkov radiation

    Science.gov (United States)

    Tao, Jin; Wang, Qi Jie; Zhang, Jingjing; Luo, Yu

    2016-08-01

    The existence of reverse Cherenkov radiation for surface plasmons is demonstrated analytically. It is shown that in a metal-insulator-metal (MIM) waveguide, surface plasmon polaritons (SPPs) excited by an electron moving at a speed higher than the phase velocity of SPPs can generate Cherenkov radiation, which can be switched from forward to reverse direction by tuning the core thickness of the waveguide. Calculations are performed in both frequency and time domains, demonstrating that a radiation pattern with a backward-pointing radiation cone can be achieved at small waveguide core widths, with energy flow opposite to the wave vector of SPPs. Our study suggests the feasibility of generating and steering electron radiation in simple plasmonic systems, opening the gate for various applications such as velocity-selective particle detections.

  9. Performance of the STACEE Atmospheric Cherenkov Telescope

    CERN Document Server

    Williams, D A; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gingrich, D M; Gregorich, D T; Hanna, D S; Mohanty, G B; Mukherjee, R; Ong, R A; Oser, S M; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Vincent, F; Zweerink, J A

    2000-01-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is located at the National Solar Thermal Test Facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The field of solar tracking mirrors (heliostats) around a central receiver tower is used to direct Cherenkov light from atmospheric showers onto secondary mirrors on the tower, which in turn image the light onto cameras of photomultiplier tubes. The STACEE Collaboration has previously reported a detection of the Crab Nebula with approximately 7 standard deviation significance, using 32 heliostats (STACEE-32). This result demonstrates both the viability of the technique and the suitability of the site. We are in the process of completing an upgrade to 48 heliostats (STACEE-48) en route to an eventual configuration using 64 heliostats (STACEE-64) in early 2001. In this paper, we summarize the results obtained on the sensitivity of STACEE-32 and our expectations for STACEE-48 and STACEE-64.

  10. Recent progress in silica aerogel Cherenkov radiator

    CERN Document Server

    Tabata, Makoto; Kawai, Hideyuki; Kubo, Masato; Sato, Takeshi

    2012-01-01

    In this paper, we present recent progress in the development of hydrophobic silica aerogel as a Cherenkov radiator. In addition to the conventional method, the recently developed pin-drying method for producing high-refractive-index aerogels with high transparency was studied in detail. Optical qualities and large tile handling for crack-free aerogels were investigated. Sufficient photons were detected from high-performance aerogels in a beam test.

  11. Study of TOF PET using Cherenkov light

    Science.gov (United States)

    Korpar, S.; Dolenec, R.; Križan, P.; Pestotnik, R.; Stanovnik, A.

    We report on measurements of coincident 511 keV annihilation photons via detection of Cherenkov radiation in PbF2 crystals attached to a microchannel plate photomultiplier. Back to back timing resolution has been studied with segmented crystals. The detection efficiency has also been measured and compared to the simulation results. We have also searched for the optimum radiator parameters by simulating timing resolution and effciency as a function of crystal thickness and transmission cut-off.

  12. Volcanoes muon imaging using Cherenkov telescopes

    Science.gov (United States)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  13. QUEST: wide angle Cherenkov light measurements at EAS-TOP

    Science.gov (United States)

    EAS-Top Collaboration; Korosteleva, E. E.; Kuzmichev, L. A.; Prosin, V. V.; Lubsandorzhiev, B. K.

    Wide angle Cherenkov light detectors based upon the QUASAR-370 photo-multipliers have been installed on five Cherenkov telescopes of the EAS-TOP array to study the energy spectrum and composition of primary cosmic rays around the knee . The energy threshold of quasars array was close to that of EAS-TOP electromagnetic detectors array. The first results of joint analysis of Cherenkov and electromagnetic data together with the adequate CORSIKA simulation results are discussed.

  14. Roughness tolerances for Cherenkov telescope mirrors

    Science.gov (United States)

    Tayabaly, K.; Spiga, D.; Canestrari, R.; Bonnoli, G.; Lavagna, M.; Pareschi, G.

    2015-09-01

    The Cherenkov Telescope Array (CTA) is a forthcoming international ground-based observatory for very high-energy gamma rays. Its goal is to reach sensitivity five to ten times better than existing Cherenkov telescopes such as VERITAS, H.E.S.S. or MAGIC and extend the range of observation to energies down to few tens of GeV and beyond 100 TeV. To achieve this goal, an array of about 100 telescopes is required, meaning a total reflective surface of several thousands of square meters. Thence, the optimal technology used for CTA mirrors' manufacture should be both low-cost (~1000 euros/m2) and allow high optical performances over the 300-550 nm wavelength range. More exactly, a reflectivity higher than 85% and a PSF (Point Spread Function) diameter smaller than 1 mrad. Surface roughness can significantly contribute to PSF broadening and limit telescope performances. Fortunately, manufacturing techniques for mirrors are now available to keep the optical scattering well below the geometrically-predictable effect of figure errors. This paper determines first order surface finish tolerances based on a surface microroughness characterization campaign, using Phase Shift Interferometry. That allows us to compute the roughness contribution to Cherenkov telescope PSF. This study is performed for diverse mirror candidates (MAGIC-I and II, ASTRI, MST) varying in manufacture technologies, selected coating materials and taking into account the degradation over time due to environmental hazards.

  15. Detection of atmospheric Cherenkov radiation using solar heliostat mirrors

    CERN Document Server

    Ong, R A

    1996-01-01

    The gamma-ray energy region between 20 and 250 GeV is largely unexplored. Ground-based atmospheric Cherenkov detectors offer a possible way to explore this region, but large Cherenkov photon collection areas are needed to achieve low energy thresholds. This paper discusses the development of a Cherenkov detector using the heliostat mirrors of a solar power plant as the primary collector. As part of this development, we built a prototype detector consisting of four heliostat mirrors and used it to record atmospheric Cherenkov radiation produced in extensive air showers created by cosmic ray particles.

  16. The Non-Imaging CHErenkov Array (NICHE): A TA/TALE Extension to Measure the Flux and Composition of Very-High Energy Cosmic Rays

    CERN Document Server

    Krizmanic, John

    2013-01-01

    Co-sited with TA/TALE, the Non-Imaging CHErenkov Array (NICHE) will measure the flux and nuclear composition of cosmic rays from below 10^16 eV to 10^18 eV in its initial deployment. Furthermore, the low-energy threshold can be significantly decreased below the cosmic ray knee via counter redeployment or by including additional counters. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. NICHE will have sufficient area and angular acceptance to have significant overlap with the TA/TALE detectors to allow for energy cross-calibration. Simulated NICHE performance has shown that the array has the ability to distinguish between several different composition models as well as measure the end of Galactic cosmic ray spectrum.

  17. FLEXIBLE GEIGER COUNTER

    Science.gov (United States)

    Richter, H.G.; Gillespie, A.S. Jr.

    1963-11-12

    A flexible Geiger counter constructed from materials composed of vinyl chloride polymerized with plasticizers or co-polymers is presented. The counter can be made either by attaching short segments of corrugated plastic sleeving together, or by starting with a length of vacuum cleaner hose composed of the above materials. The anode is maintained substantially axial Within the sleeving or hose during tube flexing by means of polystyrene spacer disks or an easily assembled polyethylene flexible cage assembly. The cathode is a wire spiraled on the outside of the counter. The sleeving or hose is fitted with glass end-pieces or any other good insulator to maintain the anode wire taut and to admit a counting gas mixture into the counter. Having the cathode wire on the outside of the counter substantially eliminates the objectional sheath effect of prior counters and permits counting rates up to 300,000 counts per minute. (AEC)

  18. An Experiment to Demonstrate Cherenkov / Scintillation Signal Separation

    CERN Document Server

    Caravaca, J; Land, B J; Wallig, J; Yeh, M; Gann, G D Orebi

    2016-01-01

    The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. The CHESS (CHErenkov / Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. This paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstruct Cherenkov rings is demonstrated in a water target, and a time precision of 338 +/- 12 ps FWHM is achieved. Monte Carlo based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 +/- 1% and 81 +/- 1...

  19. The GERDA Muon Veto Cherenkov Detector

    International Nuclear Information System (INIS)

    The GERDA experiment is designed to examine 0νββ of 76Ge with a lifetime of 1026 years. To reach the goal of 10-3 background events/(keV*kg*year), several background reduction techniques will be used. Cosmic muons can produce background in form of particles and radioactivity. To reject them a muon veto system, using the water tank surrounding the GERDA cryostat as an active Cherenkov veto, is built up. The design, simulations and the construction of this veto are described in the poster. (author)

  20. The Cherenkov Telescope Array Large Size Telescope

    CERN Document Server

    Ambrosi, G; Baba, H; Bamba, A; Barceló, M; de Almeida, U Barres; Barrio, J A; Bigas, O Blanch; Boix, J; Brunetti, L; Carmona, E; Chabanne, E; Chikawa, M; Colin, P; Conteras, J L; Cortina, J; Dazzi, F; Deangelis, A; Deleglise, G; Delgado, C; Díaz, C; Dubois, F; Fiasson, A; Fink, D; Fouque, N; Freixas, L; Fruck, C; Gadola, A; García, R; Gascon, D; Geffroy, N; Giglietto, N; Giordano, F; Grañena, F; Gunji, S; Hagiwara, R; Hamer, N; Hanabata, Y; Hassan, T; Hatanaka, K; Haubold, T; Hayashida, M; Hermel, R; Herranz, D; Hirotani, K; Inoue, S; Inoue, Y; Ioka, K; Jablonski, C; Kagaya, M; Katagiri, H; Kishimoto, T; Kodani, K; Kohri, K; Konno, Y; Koyama, S; Kubo, H; Kushida, J; Lamanna, G; Flour, T Le; López-Moya, M; López, R; Lorenz, E; Majumdar, P; Manalaysay, A; Mariotti, M; Martínez, G; Martínez, M; Mazin, D; Miranda, J M; Mirzoyan, R; Monteiro, I; Moralejo, A; Murase, K; Nagataki, S; Nakajima, D; Nakamori, T; Nishijima, K; Noda, K; Nozato, A; Ohira, Y; Ohishi, M; Ohoka, H; Okumura, A; Orito, R; Panazol, J L; Paneque, D; Paoletti, R; Paredes, J M; Pauletta, G; Podkladkin, S; Prast, J; Rando, R; Reimann, O; Ribó, M; Rosier-Lees, S; Saito, K; Saito, T; Saito, Y; Sakaki, N; Sakonaka, R; Sanuy, A; Sasaki, H; Sawada, M; Scalzotto, V; Schultz, S; Schweizer, T; Shibata, T; Shu, S; Sieiro, J; Stamatescu, V; Steiner, S; Straumann, U; Sugawara, R; Tajima, H; Takami, H; Tanaka, S; Tanaka, M; Tejedor, L A; Terada, Y; Teshima, M; Totani, T; Ueno, H; Umehara, K; Vollhardt, A; Wagner, R; Wetteskind, H; Yamamoto, T; Yamazaki, R; Yoshida, A; Yoshida, T; Yoshikoshi, T

    2013-01-01

    The two arrays of the Very High Energy gamma-ray observatory Cherenkov Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA to achieve a low-energy threshold of 20 GeV, which is critical for important studies in astrophysics, astroparticle physics and cosmology. This work presents the key specifications and performance of the current LST design in the light of the CTA scientific objectives.

  1. Cherenkov detector for beam quality measurement

    Science.gov (United States)

    Orfanelli, S.

    2016-07-01

    A new detector to measure the machine induced background at larger radii has been developed and installed in the CMS experiment at the LHC. It consists of forty modules, each comprising a quartz bar read out by a photomultiplier tube. Since Cherenkov radiation is emitted in a forward cone around the charged particle trajectory, these detectors can distinguish between the arrival directions of the machine induced background and the collision products. The back-end electronics consists of a uTCA readout with excellent time resolution. The installation in the CMS is described and first commissioning measurements with the LHC beams in Run II are presented.

  2. Gadolinium study for a water Cherenkov detector

    CERN Document Server

    Kibayashi, Atsuko

    2009-01-01

    Modification of large water Cherenkov detectors by addition of gadolinium has been proposed. The large cross section for neutron capture on Gd will greatly improve the sensitivity to antielectron neutrinos from supernovae and reactors. A five-year project to build and develop a prototype detector based on Super-Kamiokande (SK) has started. We are performing various studies, including a material soak test in Gd solution, light attenuation length measurements, purification system development, and neutron tagging efficiency measurements using SK data and a Geant4-based simulation. We present an overview of the project and the recent R&D results.

  3. Cherenkov radiation as a serendipitous phenomenon

    Science.gov (United States)

    Kadmensky, S. G.

    2015-05-01

    A brief account is given of P A Cherenkov's Voronezh years, a period during which the future Nobel laureate in physics attended school (in the village of Novaya Chigla near Voronezh) and studied at Voronezh State University. The history of the serendipitous discovery of the radiation which was to be named after him is described and its importance for modern science is discussed. Possible modern approaches are considered to explain — without using the concept of 'cold nuclear synthesis' — some other unexpected experimental results on the nonthermonuclear fusion of light nuclei stimulated by electron beams and by laser and gamma radiations.

  4. Modelling and study of the Cherenkov effect

    Energy Technology Data Exchange (ETDEWEB)

    Mishev, A. E-mail: libor.makovicka@pu-pm.univ-fcomte.fr; Duverger, E.; Makovicka, L.; Stamenov, J

    2001-06-01

    Studies at the Institute for Nuclear Research and Nuclear Energy particularly in regard to cosmic ray detection and construction of the Muonic Cherenkov telescope at the University of Blagoevgrad indicate a need for the development of a theoretical model based on observed phenomena and a refinement of this for detection system optimisation. This was introduced in the EGS4 code system. The first simulations consecrate on a number of different geometries of the water tank in total reflection. The model was compared with experimental data involving a {sup 60}Co gamma source and the telescope. (author)

  5. Atmospheric Cherenkov Gamma-ray Telescopes

    CERN Document Server

    Holder, Jamie

    2015-01-01

    The stereoscopic imaging atmospheric Cherenkov technique, developed in the 1980s and 1990s, is now used by a number of existing and planned gamma-ray observatories around the world. It provides the most sensitive view of the very high energy gamma-ray sky (above 30 GeV), coupled with relatively good angular and spectral resolution over a wide field-of-view. This Chapter summarizes the details of the technique, including descriptions of the telescope optical systems and cameras, as well as the most common approaches to data analysis and gamma-ray reconstruction.

  6. The Ring Imaging Cherenkov Detectors for LHCb

    CERN Document Server

    Papanestis, Antonis

    2005-01-01

    The success of the LHCb experiment depends heavily on particle identification over the momentum 2-100 GeV/c. To meet this challenge, LHCb uses a Ring Imaging Cherenkov (RICH) system composed of two detectors with three radiators. RICH1 has both aerogel and gas (C$_4$F$_{10}$) radiators, while RICH2 has only a gas (CF$_4$) radiator. The design of RICH1 is almost complete, whereas RICH2 has been constructed and installed (Nov 2005). Novel Hybrid Photon Detectors (HPDs) have been developed in collaboration with industry to detect the Cherenkov photons. A silicon pixel detector bump-bonded to a readout chip is encapsulated in a vacuum tube. A bi-alkali photocathode is deposited on the inside of the quartz entrance window to convert photons in the range 200-600 nm. The pixel chip is manufactured in 0.25 $\\mu$m deep-submicron radiation-tolerant technology and consists of 1024 logical pixels, each pixel having an area of 0.5 mm x 05. Mm. Photo-electrons are accelerated by a 20kV potential, resulting in a signal of ...

  7. A microwave inverse Cherenkov accelerator (MICA)

    Science.gov (United States)

    Zhang, T. B.; Marshall, T. C.

    1996-02-01

    By "inverting" the stimulated Cherenkov effect to stimulated Cherenkov absorption, it is possible to build an electron accelerator device driven by high power microwaves that propagate in a slow-wave TM mode (axial E-field). In this paper, we have solved for the wave dispersion in the structure, found the field distributions, and then used the Lorentz force equations to obtain the motion of a group of electrons distributed in radius and velocity. We find the radial forces are focusing. Electrons in a well-defined filament ( r < 0.5 mm) remain collimated and do not strike the dielectric. By using the 15 MW of rf power available at 2.865 GHz, we can accelerate an electron beam (˜6 MeV, few ps pulses) to energy ˜16 MeV. This results in a relatively compact structure that has the advantage of a smooth-bore design and no need of magnetic focusing. The techniques for improving the dielectric breakdown the surface should permit axial fields in the range of 100-200 kV/cm.

  8. The high-altitude water Cherenkov Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Miguel A., E-mail: miguel@psu.edu [Department of Physics, Colorado State University, Ft Collins, CO (United States)

    2014-07-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ -ray experiment under construction at 4,100ma.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ -ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ -ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array. (author)

  9. Roughness tolerances for Cherenkov telescope mirrors

    CERN Document Server

    Tayabaly, K; Canestrari, R; Bonnoli, G; Lavagna, M; Pareschi, G

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a forthcoming international ground-based observatory for very high-energy gamma rays. Its goal is to reach sensitivity five to ten times better than existing Cherenkov telescopes such as VERITAS, H.E.S.S. or MAGIC and extend the range of observation to energies down to few tens of GeV and beyond 100 TeV. To achieve this goal, an array of about 100 telescopes is required, meaning a total reflective surface of several thousands of square meters. Thence, the optimal technology used for CTA mirrors manufacture should be both low-cost (~1000 euros/m2) and allow high optical performances over the 300-550 nm wavelength range. More exactly, a reflectivity higher than 85% and a PSF (Point Spread Function) diameter smaller than 1 mrad. Surface roughness can significantly contribute to PSF broadening and limit telescope performances. Fortunately, manufacturing techniques for mirrors are now available to keep the optical scattering well below the geometrically-predictable effect of ...

  10. The High Altitude Water Cherenkov Observatory

    CERN Document Server

    ,

    2013-01-01

    The High Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV gamma-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV gamma-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from gamma-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first thirty WCDs (forming an array approximately the size of Milagro) were deployed in Summer...

  11. The first CEDAR counter

    CERN Multimedia

    1976-01-01

    The first differential Cerenkov counter with chromatic corrections (called CEDAR) successfully tested at the PS in July 75. These counters were used in the SPS hadronic beams for particle identification. Some of the eight photomultipliers can be seen: they receive the light reflected back through the annular diaphragm. René Maleyran stands on the left.

  12. Anticoincidence scintillation counter

    CERN Multimedia

    1966-01-01

    This anticoincidence scintillation counter will be mounted in a hydrogen target vessel to be used in a measurement of the .beta. parameter in the .LAMBDA0. decay. The geometry of the counter optimizes light collection in the central part where a scintillation disk of variable thickness can be fitted.

  13. Proportional counter radiation camera

    Science.gov (United States)

    Borkowski, C.J.; Kopp, M.K.

    1974-01-15

    A gas-filled proportional counter camera that images photon emitting sources is described. A two-dimensional, positionsensitive proportional multiwire counter is provided as the detector. The counter consists of a high- voltage anode screen sandwiched between orthogonally disposed planar arrays of multiple parallel strung, resistively coupled cathode wires. Two terminals from each of the cathode arrays are connected to separate timing circuitry to obtain separate X and Y coordinate signal values from pulse shape measurements to define the position of an event within the counter arrays which may be recorded by various means for data display. The counter is further provided with a linear drift field which effectively enlarges the active gas volume of the counter and constrains the recoil electrons produced from ionizing radiation entering the counter to drift perpendicularly toward the planar detection arrays. A collimator is interposed between a subject to be imaged and the counter to transmit only the radiation from the subject which has a perpendicular trajectory with respect to the planar cathode arrays of the detector. (Official Gazette)

  14. Rapid screening of {sup 90}Sr activity in water and milk samples using Cherenkov radiation

    Energy Technology Data Exchange (ETDEWEB)

    Stamoulis, K.C. [Archaeometry Center, University of Ioannina, 45110 Ioannina (Greece)]. E-mail: kstamoul@cc.uoi.gr; Ioannides, K.G. [Archaeometry Center, University of Ioannina, 45110 Ioannina (Greece); Nuclear Physics Laboratory, University of Ioannina, 45110 Ioannina (Greece); Karamanis, D.T. [Nuclear Physics Laboratory, University of Ioannina, 45110 Ioannina (Greece); Patiris, D.C. [Nuclear Physics Laboratory, University of Ioannina, 45110 Ioannina (Greece)

    2007-07-01

    A method for screening {sup 90}Sr in milk samples is proposed. This method is based on a liquid scintillation technique taking advantage of Cherenkov radiation, which is produced in a liquid medium and then detected by the photomultipliers of a Liquid Scintillation Counter (LSC). Twenty millilitres of water and milk samples spiked with various concentrations of {sup 90}Sr/{sup 90}Y in equilibrium were added in plastic vials and then were measured with an LSC (TriCarb 3170 TR/SL). The derived efficiencies were 49% for water samples and 14% for milk samples. The detection limit was 470 mBq L{sup -1} {sup 90}Sr for water, without any pretreatment. Milk contains potassium, which also produces Cherenkov radiation due to the presence of {sup 40}K. For this reason, the interference of {sup 40}K in the measurements of {sup 90}Sr in milk samples was also investigated. The detection limit for milk was 1.7 Bq L{sup -1} {sup 90}Sr.

  15. Module of silicon photomultipliers as a detector of individual Cherenkov photons

    Science.gov (United States)

    Pestotnik, Rok; Dolenec, Rok; Korpar, Samo; Križan, Peter; Stanovnik, Aleš

    2011-05-01

    We have studied the possibility of using silicon photomultipliers as single photon detectors in a proximity focusing RICH with aerogel radiator. Such a counter is considered for the upgrade of the Belle detector. The main advantage of silicon over conventional photomultiplier tubes is their operation in high magnetic fields. Their disadvantage is the relatively high dark noise count rate (≈MHz/mm2) which can be overcome by using a narrow time window in the data acquisition. A module, consisting of 64 (8×8) Hamamatsu MPPC S10362-11-100P silicon photomultipliers, has been designed, constructed and tested with Cherenkov photons emitted in an aerogel radiator by 120 GeV/ c pions from the CERN T4-H6 beam. To increase the signal-to-noise ratio, i.e. to increase the effective surface on which light is detected, light concentrators have been employed.

  16. A Medium Sized Schwarzschild-Couder Cherenkov Telescope Mechanical Design Proposed for the Cherenkov Telescope Array

    CERN Document Server

    Byrum, K; Benbow, W; Cameron, R; Criswell, S; Errando, M; Guarino, V; Kaaret, P; Kieda, D; Mukherjee, R; Naumann, D; Nieto, D; Northrop, R; Okumura, A; Roache, E; Rousselle, J; Schlenstedt, S; Sternberger, R; Vassiliev, V; Wakely, S; Zhao, H

    2015-01-01

    The Cherenkov Telescope Array (CTA) is an international next-generation ground-based gamma-ray observatory. CTA will be implemented as southern and northern hemisphere arrays of tens of small, medium and large-sized imaging Cherenkov telescopes with the goal of improving the sensitivity over the current-generation experiments by an order of magnitude. CTA will provide energy coverage from ~20 GeV to more than 300 TeV. The Schwarzschild-Couder (SC) medium size (9.5m) telescopes will feature a novel aplanatic two-mirror optical design capable of accommodating a wide field-of-view with significantly improved angular resolution as compared to the traditional Davies-Cotton optical design. A full-scale prototype SC medium size telescope structure has been designed and will be constructed at the Fred Lawrence Whipple Observatory in southern Arizona during the fall of 2015. concentrate on the novel features of the design.

  17. Optical and radiographical characterization of silica aerogel for Cherenkov radiator

    CERN Document Server

    Tabata, Makoto; Hatakeyama, Yoshikiyo; Kawai, Hideyuki; Morita, Takeshi; Nishikawa, Keiko

    2012-01-01

    We present optical and X-ray radiographical characterization of silica aerogels with refractive index from 1.05 to 1.07 for a Cherenkov radiator. A novel pin-drying method enables us to produce highly transparent hydrophobic aerogels with high refractive index by shrinking wet-gels. In order to investigate the uniformity in the density (i.e., refractive index) of an individual aerogel monolith, we use the laser Fraunhofer method, an X-ray absorption technique, and Cherenkov imaging by a ring imaging Cherenkov detector in a beam test. We observed an increase in density at the edge of the aerogel tiles, produced by pin-drying.

  18. Cherenkov light-based beam profiling for ultrarelativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Adli, E., E-mail: Erik.Adli@fys.uio.no [Department of Physics, University of Oslo, N-0316 Oslo (Norway); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Gessner, S.J.; Corde, S.; Hogan, M.J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bjerke, H.H. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2015-05-21

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. The profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. We report on the measured performance of this profile monitor.

  19. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    International Nuclear Information System (INIS)

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas

  20. Tachyonic Cherenkov emission from Jupiter's radio electrons

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman, E-mail: tom@geminga.org

    2013-12-17

    Tachyonic Cherenkov radiation from inertial relativistic electrons in the Jovian radiation belts is studied. The tachyonic modes are coupled to a frequency-dependent permeability tensor and admit a negative mass-square, rendering them superluminal and dispersive. The superluminal radiation field can be cast into Maxwellian form, using 3D field strengths and inductions, and the spectral densities of tachyonic Cherenkov radiation are derived. The negative mass-square gives rise to a longitudinal flux component. A spectral fit to Jupiter's radio spectrum, inferred from ground-based observations and the Cassini 2001 fly-by, is performed with tachyonic Cherenkov flux densities averaged over a thermal electron population.

  1. The Cherenkov Radiation for Non-Trivial Systems

    International Nuclear Information System (INIS)

    The charge pathways and the dielectric properties of the medium are two essential aspects to be considered in the study of the emission of Cherenkov radiation. We described the evolution of the Cherenkov wavefront when the charges follow circular or helical pathways. Also we derive expressions for the refractive Index in different transparent media (solid, liquid or gas), focusing our attention on optically active plasmas. The optical analogies between the plasma and the birefringent crystals is studied in detail. Finally, we list some examples of plasmas, which can be considered emitters of Cherenkov radiation. (Author) 52 refs

  2. The Gamma-ray Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Tibaldo, L; Allan, D; Amans, J -P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Brown, A M; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Franco, A; De Frondat, F; Dournaux, J -L; Dumas, D; Ernenwein, J -P; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jankowsky, D; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Rulten, C B; Sato, Y; Sayede, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Trichard, C; Vink, J; Watson, J J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view $\\gtrsim 8^\\circ$ and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cher...

  3. Calibration of the Cherenkov Telescope Array

    CERN Document Server

    Gaug, Markus; Berge, David; Reyes, Raquel de los; Doro, Michele; Foerster, Andreas; Maccarone, Maria Concetta; Parsons, Dan; van Eldik, Christopher

    2015-01-01

    The construction of the Cherenkov Telescope Array is expected to start soon. We will present the baseline methods and their extensions currently foreseen to calibrate the observatory. These are bound to achieve the strong requirements on allowed systematic uncertainties for the reconstructed gamma-ray energy and flux scales, as well as on the pointing resolution, and on the overall duty cycle of the observatory. Onsite calibration activities are designed to include a robust and efficient calibration of the telescope cameras, and various methods and instruments to achieve calibration of the overall optical throughput of each telescope, leading to both inter-telescope calibration and an absolute calibration of the entire observatory. One important aspect of the onsite calibration is a correct understanding of the atmosphere above the telescopes, which constitutes the calorimeter of this detection technique. It is planned to be constantly monitored with state-of-the-art instruments to obtain a full molecular and...

  4. Observer Access to the Cherenkov Telescope Array

    CERN Document Server

    Knödlseder, Jürgen; Boisson, Catherine; Brau-Nogué, Sylvie; Deil, Christoph; Khélifi, Bruno; Mayer, Michael; Walter, Roland

    2015-01-01

    The Cherenkov Telescope Array (CTA), a ground-based facility for very-high-energy (VHE) gamma-ray astronomy, will operate as an open observatory, serving a wide scientific community to explore and to study the non-thermal universe. Open community access is a novelty in this domain, putting a challenge on the implementation of services that make VHE gamma-ray astronomy as accessible as any other waveband. We present here the design of the CTA Observer Access system that comprises support of scientific users, dissemination of data and software, tools for scientific analysis, and the system to submit observing proposals. We outline the scientific user workflows and provide the status of the current developments.

  5. A Neutron Rem Counter

    International Nuclear Information System (INIS)

    A neutron detector is described which measures the neutron dose rate in rem/h independently of the energy of the neutrons from thermal to 15 MeV. The detector consists of a BF3 proportional counter surrounded by a shield made of polyethylene and boron plastic that gives the appropriate amount of moderation and absorption to the impinging neutrons to obtain rem response. Two different versions have been developed. One model can utilize standard BF3 counters and is suitable for use in installed monitors around reactors and accelerators and the other model is specially designed for use in a portable survey instrument. The neutron rem counter for portable instruments has a sensitivity of 2.4 cps/mrem/h and is essentially nondirectional in response. With correct bias setting the counter is insensitive to gamma exposure up to 200 r/h from Co-60

  6. A large Cerenkov counter

    CERN Multimedia

    1981-01-01

    The photo shows the vertex Cerenkov counter C0 back side (with 12 mirrors) of the NA9 experiment. On foreground are members of the team (CERN and Wuppertal Uni), Salvo .., Manfred Poetsch, ..., Jocelyn Thadome, Helmut Braun, Heiner Brueck.

  7. Constraint on ghost-free bigravity from gravitational Cherenkov radiation

    Science.gov (United States)

    Kimura, Rampei; Tanaka, Takahiro; Yamamoto, Kazuhiro; Yamashita, Yasuho

    2016-09-01

    We investigate gravitational Cherenkov radiation in a healthy branch of background solutions in the ghost-free bigravity model. In this model, because of the modification of dispersion relations, each polarization mode can possess subluminal phase velocities, and the gravitational Cherenkov radiation could be potentially emitted from a relativistic particle. In the present paper, we derive conditions for the process of the gravitational Cherenkov radiation to occur and estimate the energy emission rate for each polarization mode. We found that the gravitational Cherenkov radiation emitted even from an ultrahigh energy cosmic ray is sufficiently suppressed for the graviton's effective mass less than 100 eV, and the bigravity model with dark matter coupled to the hidden metric is therefore consistent with observations of high energy cosmic rays.

  8. Constraint on ghost-free bigravity from gravitational Cherenkov radiation

    CERN Document Server

    Kimura, Rampei; Yamamoto, Kazuhiro; Yamashita, Yasuho

    2016-01-01

    We investigate gravitational Cherenkov radiation in a healthy branch of background solutions in the ghost-free bigravity model. In this model, because of the modification of dispersion relations, each polarization mode can possess subluminal phase velocities, and the gravitational Cherenkov radiation could be potentially emitted from a relativistic particle. In the present paper, we derive conditions for the process of the gravitational Cherenkov radiation to occur and estimate the energy emission rate for each polarization mode. We found that the gravitational Cherenkov radiation emitted even from an ultrahigh energy cosmic ray is sufficiently suppressed for the graviton's effective mass less than $100\\,{\\rm eV}$, and the bigravity model with dark matter coupled to the hidden metric is therefore consistent with observations of high energy cosmic rays.

  9. X-ray diffraction radiation in conditions of Cherenkov effect

    NARCIS (Netherlands)

    Tishchenko, A. A.; Potylitsyn, A. P.; Strikhanov, M. N.

    2006-01-01

    X-ray diffraction radiation from ultra-relativistic electrons moving near an absorbing target is considered. The emission yield is found to increase significantly in conditions of Cherenkov effect. (c) 2006 Elsevier B.V. All rights reserved.

  10. Design of Reversible Counter

    OpenAIRE

    Md. Selim Al Mamun; B. K. Karmaker

    2014-01-01

    This article presents a research work on the design and synthesis of sequential circuits and flip-flops that are available in digital arena; and describes a new synthesis design of reversible counter that is optimized in terms of quantum cost, delay and garbage outputs compared to the existing designs. We proposed a new model of reversible T flip-flop in designing reversible counter.

  11. Wavelet Imaging Cleaning Method for Atmospheric Cherenkov Telescopes

    OpenAIRE

    Lessard, R. W.; Cayón, L.; Sembroski, G.H.; Gaidos, J. A.

    2001-01-01

    We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more ac...

  12. Fast timing and trigger Cherenkov detector for collider experiments

    OpenAIRE

    Grigoryev, V. A.; Kaplin, V. A.; Karavicheva, T.L.; Konevskikh, A. S.; Kurepin, A. B.; Loginov, V. A.; Melikyan, A.; Morozov, I. V.; Reshetin, A. I.; Serebryakov, D. V.; Shabanov, A. I.; Slupecki, Maciej; Trzaska, Wladyslaw; Tykmanov, E. M.

    2016-01-01

    Analysis of fast timing and trigger Cherenkov detector’s design for its use in collider experiments is presented. Several specific requirements are taken into account – necessity of the radiator’s placement as close to the beam pipe as possible along with the requirement of gapless (solid) radiator’s design. Characteristics of the Cherenkov detector’s laboratory prototype obtained using a pion beam at the CERN Proton Synchrotron are also presented, showing the possibility of ob...

  13. Ring imaging Cherenkov counter of HERMES for pion, kaon, proton and anti-proton identification

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Toshi-Aki

    2014-12-01

    RICH of HERMES was built for identification of pion, kaon, proton and anti-proton in the momentum range of 2–15 GeV/c. It was a dual-radiator RICH. The radiators were aerogel and C{sub 4}F{sub 10} gas. Produced hadrons in electron–nucleon deep inelastic scattering were identified by the RICH and spin structure of the nucleon was studied by correlation between the directions of the target spin, scattered electron and produced hadrons.

  14. Development of the micro-channel plate photomultiplier for the Belle II time-of-propagation counter

    International Nuclear Information System (INIS)

    The time-of-propagation counter for the Belle II experiment is a new particle identification device using ring imaging Cherenkov technique. In order to detect each Cherenkov photon with a timing precision of 30–40 ps in a 1.5 T magnetic field, a micro-channel plate photomultiplier tube is a suitable device for the TOP counter. By introducing an atomic layer deposition technique on the micro-channel plate surface, the tube lifetime was improved by a factor of 3–10 relative to more conventional devices. A total of 530 tubes have been produced. To ensure appropriate tube performance, the quantum efficiency, gain and transit time spread have been measured for all units. The results from each measurement are discussed. Results from a beamtest with a 2 GeV/c positron beam are also reported and demonstrate the good tube performance

  15. Cherenkov imaging and biochemical sensing in vivo during radiation therapy

    Science.gov (United States)

    Zhang, Rongxiao

    While Cherenkov emission was discovered more than eighty years ago, the potential applications of imaging this during radiation therapy have just recently been explored. With approximately half of all cancer patients being treated by radiation at some point during their cancer management, there is a constant challenge to ensure optimal treatment efficiency is achieved with maximal tumor to normal tissue therapeutic ratio. To achieve this, the treatment process as well as biological information affecting the treatment should ideally be effective and directly derived from the delivery of radiation to the patient. The value of Cherenkov emission imaging was examined here, primarily for visualization of treatment monitoring and then secondarily for Cherenkov-excited luminescence for tissue biochemical sensing within tissue. Through synchronized gating to the short radiation pulses of a linear accelerator (200Hz & 3 micros pulses), and applying a gated intensified camera for imaging, the Cherenkov radiation can be captured near video frame rates (30 frame per sec) with dim ambient room lighting. This procedure, sometimes termed Cherenkoscopy, is readily visualized without affecting the normal process of external beam radiation therapy. With simulation, phantoms and clinical trial data, each application of Cherenkoscopy was examined: i) for treatment monitoring, ii) for patient position monitoring and motion tracking, and iii) for superficial dose imaging. The temporal dynamics of delivered radiation fields can easily be directly imaged on the patient's surface. Image registration and edge detection of Cherenkov images were used to verify patient positioning during treatment. Inter-fraction setup accuracy and intra-fraction patient motion was detectable to better than 1 mm accuracy. Cherenkov emission in tissue opens up a new field of biochemical sensing within the tissue environment, using luminescent agents which can be activated by this light. In the first study of

  16. An efficient anticoincidence counter

    CERN Multimedia

    1977-01-01

    This scintillation counter (about 25 cm diameter) was prepared at CERN for an experiment at the Saclay 600 MeV electron linac studying molecular processes originated in liquid hydrogen by muons. The counter is meant to surround the target and detect charged particles emerging from the hydrogen. The experiment was a CERN-Saclay collaboration which used the linac so as to take advantage of the time structure of the electron beam(see CERN Courier Sep 1977 and J. Bardin et al. Phys. Lett. B104 (1981) 320)

  17. Sensivity studies for the Cherenkov Telescope Array

    Science.gov (United States)

    Collado, Tarek Hassan

    2015-06-01

    Since the creation of the first telescope in the 17th century, every major discovery in astrophysics has been the direct consequence of the development of novel observation techniques, opening new windows in the electromagnetic spectrum. After Karl Jansky discovered serendipitously the first radio source in 1933, Grote Reber built the first parabolic radio telescope in his backyard, planting the seed of a whole new field in astronomy. Similarly, new technologies in the 1950s allowed the establishment of other fields, such as the infrared, ultraviolet or the X-rays. The highest energy end of the electromagnetic spectrum, the γ-ray range, represents the last unexplored window for astronomers and should reveal the most extreme phenomena that take place in the Universe. Given the technical complexity of γ-ray detection and the extremely relative low fluxes, γ-ray astronomy has undergone a slower development compared to other wavelengths. Nowadays, the great success of consecutive space missions together with the development and refinement of new detection techniques from the ground, has allowed outstanding scientific results and has brought gamma-ray astronomy to a worthy level in par with other astronomy fields. This work is devoted to the study and improvement of the future Cherenkov Telescope Array (CTA), the next generation of ground based γ-ray detectors, designed to observe photons with the highest energies ever observed from cosmic sources.

  18. Digital electronics for the Pierre Auger Observatory AMIGA muon counters

    Science.gov (United States)

    Wainberg, O.; Almela, A.; Platino, M.; Sanchez, F.; Suarez, F.; Lucero, A.; Videla, M.; Wundheiler, B.; Melo, D.; Hampel, M. R.; Etchegoyen, A.

    2014-04-01

    The ``Auger Muons and Infill for the Ground Array'' (AMIGA) project provides direct muon counting capacity to the Pierre Auger Observatory and extends its energy detection range down to 0.3 EeV. It currently consists of 61 detector pairs (a Cherenkov surface detector and a buried muon counter) distributed over a 23.5 km2 area on a 750 m triangular grid. Each counter relies on segmented scintillator modules storing a logical train of `0's and `1's on each scintillator segment at a given time slot. Muon counter data is sampled and stored at 320 MHz allowing both the detection of single photoelectrons and the implementation of an offline trigger designed to mitigate multi-pixel PMT crosstalk and dark rate undesired effects. Acquisition is carried out by the digital electronics built around a low power Cyclone III FPGA. This paper presents the digital electronics design, internal and external synchronization schemes, hardware tests, and first results from the Observatory.

  19. Digital Electronics for the Pierre Auger Observatory AMIGA Muon Counters

    CERN Document Server

    Wainberg, O; Platino, M; Sanchez, F; Suarez, F; Lucero, A; Videla, M; Wundheiler, B; Melo, D; Hampel, M; Etchegoyen, A

    2013-01-01

    The "Auger Muons and Infill for the Ground Array" (AMIGA) project provides direct muon counting capacity to the Pierre Auger Observatory and extends its energy detection range down to 0.3 EeV. It currently consists of 61 detector pairs (a Cherenkov surface detector and a buried muon counter) distributed over a 23.5 km2 area on a 750 m triangular grid. Each counter relies on segmented scintillator modules storing a logical train of '0's and '1's on each scintillator segment at a given time slot. Muon counter data is sampled and stored at 320 MHz allowing both the detection of single photoelectrons and the implementation of an offline trigger designed to mitigate multi-pixel PMT crosstalk and dark rate undesired effects. Acquisition is carried out by the digital electronics built around a low power Cyclone III FPGA. This paper presents the digital electronics design, internal and external synchronization schemes, hardware tests, and first results from the Observatory.

  20. Detection of tau neutrinos by imaging air Cherenkov telescopes

    Science.gov (United States)

    Góra, D.; Bernardini, E.

    2016-09-01

    This paper investigates the potential to detect tau neutrinos in the energy range of 1-1000 PeV searching for very inclined showers with imaging Cherenkov telescopes. A neutrino induced tau lepton escaping from the Earth may decay and initiate an air shower which can be detected by a fluorescence or Cherenkov telescope. We present here a study of the detection potential of Earth-skimming neutrinos taking into account neutrino interactions in the Earth crust, local matter distributions at various detector sites, the development of tau-induced showers in air and the detection of Cherenkov photons with IACTs. We analyzed simulated shower images on the camera focal plane and implemented generic reconstruction chains based on Hillas parameters. We find that present IACTs can distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range. We present the neutrino trigger efficiency obtained for a few configurations being considered for the next-generation Cherenkov telescopes, i.e. the Cherenkov Telescope Array. Finally, for a few representative neutrino spectra expected from astrophysical sources, we compare the expected event rates at running IACTs to what is expected for the dedicated IceCube neutrino telescope.

  1. Characteristics of Cherenkov Radiation in Naturally Occuring Ice

    CERN Document Server

    Mikkelsen, R E; Uggerhøj, U I; Klein, S R

    2016-01-01

    We revisit the theory of Cherenkov radiation in uniaxial crystals. Historically, a number of flawed attempts have been made at explaining this radiation phenomenon and a consistent error-free description is nowhere available. We apply our calculation to a large modern day telescope - IceCube. Being located at the Antarctica, this detector makes use of the naturally occuring ice as a medium to generate Cherenkov radiation. However, due to the high pressure at the depth of the detector site, large volumes of hexagonal ice crystals are formed. We calculate how this affects the Cherenkov radiation yield and angular dependence. We conclude that the effect is small, at most about a percent, and would only be relevant in future high precision instruments like e.g. Precision IceCube Next Generation Upgrade (PINGU). For radio-Cherenkov experiments which use the presence of a clear Cherenkov cone to determine the arrival direction, any variation in emission angle will directly and linearly translate into a change in ap...

  2. GAW (Gamma Air Watch) a novel imaging Cherenkov telescope

    CERN Document Server

    Cusumano, G; Biondo, B; Catalano, O; Giarrusso, S; Gugliotta, G; La Fata, L; Maccarone, M C; Mangano, A; Mineo, T; Russo, F; Sacco, B

    2001-01-01

    GAW (Gamma Air Watch) is a new imaging Cherenkov telescope designed for observation of very high-energy gamma-ray sources. GAW will be equipped with a 3 meter diameter Fresnel lens as light collector and with an array of 300 multi-anode photomultipliers at the focal plane. The pixel size will be 4 arcmin wide for a total field of view of 10.5 degrees. Whith respect to the planned imaging Cherenkov telescopes (CANGAROO III, HESS, MAGIC, VERITAS) GAW follows a different approach for what concerns both the optical system and the detection working mode: the Cherenkov light collector is a single acrylic flat Fresnel lens (instead of mirrors) that allows to achieve wide field of view; the photomultipliers operate in single photoelectron counting mode (instead of charge integration). The single photoelectron counting mode allows to reach a low energy threshold of ~200 GeV, in spite of the relatively small dimension of the GAW optic system.

  3. Lunar Imaging and Ionospheric Calibration for the Lunar Cherenkov Technique

    CERN Document Server

    McFadden, Rebecca; Mevius, Maaijke

    2013-01-01

    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the ionosphere is an important experimental concern as it reduces the pulse amplitude and subsequent chances of detection. We are continuing to investigate a new method to calibrate the dispersive effect of the ionosphere on lunar Cherenkov pulses via Faraday rotation measurements of the Moon's polarised emission combined with geomagnetic field models. We also extend this work to include radio imaging of the Lunar surface, which provides information on the physical and chemical properties of the lunar surface that may affect experimental strategies for the lunar Cherenkov technique.

  4. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    Science.gov (United States)

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2016-09-01

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7 ± 3.0) ns and (36.6 ± 2.4) ns , respectively, while the full width [-3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. The scintillation light yield was measured to be (1.01 ± 0.12) ×103 photons / MeV .

  5. Separation of Scintillation and Cherenkov Lights in Linear Alkyl Benzene

    CERN Document Server

    Li, Mohan; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2015-01-01

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay researches. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator being developed. In this paper we observed a good separation of scintillation and Cherenkov lights in an LAB sample. The rising and decay times of the scintillation light of the LAB were measured to be $(7.7\\pm3.0)\\ \\rm{ns}$ and $(36.6\\pm2.4)\\ \\rm{ns}$, respectively, while the full width [-3$\\sigma$, 3$\\sigma$] of the Cherenkov light was 12 ns dominated by the time resolution of our photomultiplier tubes. The light yield of the scintillation was measured to be $(1.01\\pm0.12)\\times10^3\\ \\rm{photons}/\\rm{MeV}$.

  6. The first GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    De Franco, A.; Allan, D.; Armstrong, T.; Ashton, T.; Balzer, A.; Berge, D.; Bose, R.; Brown, A.M.; Buckley, J.; Chadwick, P.M.; Cooke, P.; Cotter, G.; Daniel, M.K.; Funk, S.; Greenshaw, T.; Hinton, J.; Kraus, M.; Lapington, J.; Molyneux, P.; Moore, P.; Nolan, S.; Okumura, A.; Ross, D.; Rulten, C.; Schmoll, J.; Schoorlemmer, H.; Stephan, M.; Sutcliffe, P.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Varner, G.; Watson, J.; Zink, A.

    2015-01-01

    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\\deg} angular size, resulting in a field of view of ~9{\\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.

  7. The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array

    CERN Document Server

    Daniel, M K

    2015-01-01

    The Imaging Atmospheric Cherenkov Technique (IACT) is unusual in astronomy as the atmosphere actually forms an intrinsic part of the detector system, with telescopes indirectly detecting very high energy particles by the generation and transport of Cherenkov photons deep within the atmosphere. This means that accurate measurement, characterisation and monitoring of the atmosphere is at the very heart of successfully operating an IACT system. The Cherenkov Telescope Array (CTA) will be the next generation IACT observatory with an ambitious aim to improve the sensitivity of an order of magnitude over current facilities, along with corresponding improvements in angular and energy resolution and extended energy coverage, through an array of Large (23m), Medium (12m) and Small (4m) sized telescopes spread over an area of order ~km$^2$. Whole sky coverage will be achieved by operating at two sites: one in the northern hemisphere and one in the southern hemisphere. This proceedings will cover the characterisation of...

  8. Research and Development for a Gadolinium Doped Water Cherenkov Detector

    CERN Document Server

    Renshaw, Andrew

    2012-01-01

    The proposed introduction of a soluble gadolinium (Gd) compound into water Cherenkov detectors can result in a high efficiency for the detection of free neutrons capturing on the Gd. The delayed 8 MeV gamma cascades produced by these captures, in coincidence with a prompt positron signal, serve to uniquely identify electron antineutrinos interacting via inverse beta decay. Such coincidence detection can reduce backgrounds, allowing a large Gd-enhanced water Cherenkov detector to make the first observation of supernova relic neutrinos and high precision measurements of Japan's reactor antineutrino flux, while still allowing for all current physics studies to be continued. Now, a dedicated Gd test facility is operating in the Kamioka Mine. This new facility houses everything needed to successfully operate a Gd doped water Cherenkov detector. Successful running of this facility will demonstrate that adding Gd salt to SK is both safe for the detector and is capable of delivering the expected physics benefits.

  9. The GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    Brown, Anthony M; Allan, D; Amans, J P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Franco, A; De Frondat, F; Dournaux, J -L; Dumas, D; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Sato, Y; Sayede, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Tibaldo, L; Trichard, C; Vink, J; Watson, J J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Gamma-ray Cherenkov Telescope (GCT) is proposed for the Small-Sized Telescope component of the Cherenkov Telescope Array (CTA). GCT's dual-mirror Schwarzschild-Couder (SC) optical system allows the use of a compact camera with small form-factor photosensors. The GCT camera is ~0.4 m in diameter and has 2048 pixels; each pixel has a ~0.2 degree angular size, resulting in a wide field-of-view. The design of the GCT camera is high performance at low cost, with the camera housing 32 front-end electronics modules providing full waveform information for all of the camera's 2048 pixels. The first GCT camera prototype, CHEC-M, was commissioned during 2015, culminating in the first Cherenkov images recorded by a SC telescope and the first light of a CTA prototype. In this contribution we give a detailed description of the GCT camera and present preliminary results from CHEC-M's commissioning.

  10. Cherenkov and Scintillation Light Separation in Organic Liquid Scintillators

    CERN Document Server

    Caravaca, J; Land, B J; Yeh, M; Gann, G D Orebi

    2016-01-01

    The CHErenkov / Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2g/L of PPO as a fluor (LAB/PPO). This is the first such demonstration for the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 +/- 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 +/- 3% and 63 +/- 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 +/- 5% and 38 +/- 4%. LAB/PPO data is consistent with a rise time of 0.75 +/- 0.25 ns.

  11. The GERDA muon veto Cherenkov detector

    International Nuclear Information System (INIS)

    The GERmanium Detector Array, GERDA, is a new experiment designed to examine the neutrinoless double beta decay 0νββ of 76Ge which has a lifetime of at least 1026 years and a single energy deposition of 2039 keV. To reach the goal of 10-3 background events/(keVkgy), several background reduction techniques like anti-coincidence and pulse shape analysis will be used. Cosmic muons can produce background in form of particles and radioactivity. To reject them, two independent detector systems will be integrated in GERDA. One of these is a Cherenkov muon veto detector, that uses the water tank around the cryostat in which the crystals will be operated. It is equipped with 66 photomultipliers (PMTs) with 8 in. diameter. The PMT distribution was found via extensive Monte Carlo studies to reach the highest efficiencies for dangerous muons (these are muons that cause an energy deposition of around 2 MeV in the germanium detectors), even though the PMTs cover less than 0.1% of the water tank surface. High efficiencies depend strongly on the amount of detected photons. For this, as many surfaces as possible will be covered with 'VM2000', a highly reflective foil from 3 M. This foil has a high reflectivity in a wide range of wavelength and it also shifts photons from the UV into the optical range. It, more or less, doubles the amount of detectable photons, because the photomultipliers used, have an detection maximum between 370 and 400 nm. Thus, a detection efficiency of 98% should be easily achieved.

  12. A Cherenkov Radiation Detector with High Density Aerogels

    CERN Document Server

    Cremaldi, Lucien; Sonnek, Peter; Summers, Donald J; Reidy, Jim

    2009-01-01

    We have designed a threshold Cherenkov detector at the Rutherford-Appleton Laboratory to identify muons with momenta between 230 and 350 MeV/c. We investigated the properties of three aerogels for the design. The nominal indexes of refraction were n = 1.03, 1.07, 1.12, respectively. Two of the samples are of high density aerogel not commonly used for Cherenkov light detection. We present results of an examination of some optical properties of the aerogel samples and present basic test beam results.

  13. Light-weight spherical mirrors for Cherenkov detectors

    CERN Document Server

    Cisbani, E; Colilli, S; Crateri, R; Cusanno, F; De Leo, R; Fratoni, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Iodice, M; Iommi, R; Lagamba, L; Lucentini, M; Mostarda, A; Nappi, E; Pierangeli, L; Santavenere, F; Urciuoli, G M; Vernin, P

    2003-01-01

    Light-weight spherical mirrors have been appositely designed and built for the gas threshold Cherenkov detectors of the two Hall A spectrometers. The mirrors are made of a 1 mm thick aluminized plexiglass sheet, reinforced by a rigid backing consisting of a phenolic honeycomb sandwiched between two carbon fiber mats epoxy glued. The produced mirrors have a thickness equivalent to 0.55% of radiation length, and an optical slope error of about 5.5 mrad. These characteristics make these mirrors suitable for the implementation in Cherenkov threshold detectors. Ways to improve the mirror features are also discussed in view of their possible employment in RICH detectors.

  14. Counting Extra Dimensions Magnetic Cherenkov Radiation from High Energy Neutrinos

    CERN Document Server

    Domokos, Gabor K; Kövesi-Domokos, S; Erdas, Andrea

    2003-01-01

    In theories which require a space of dimension d > 4, there is a natural mechanism of suppressing neutrino masses: while Standard Model fields are confined to a 3-brane, right handed neutrinos live in the bulk. Due to Kaluza-Klein excitations, the effective magnetic moments of neutrinos are enhanced. The effective magnetic moment is a monotonically growing function of the energy of the neutrino: consequently, high energy neutrinos can emit observable amounts of magnetic Cherenkov radiation. By observing the energy dependence of the magnetic Cherenkov radiation, one may be able to determine the number of compactified dimensions.

  15. Holography without Counter Terms

    CERN Document Server

    Ahn, Byoungjoon; Kim, Kyung Kiu; Park, Sang-A; Yi, Sang-Heon

    2016-01-01

    By using the scaling symmetry in the reduced action formalism, we obtain novel Smarr-like relations for anti-de-Sitter planar black holes, which have useful information in the condensed matter systems through the AdS/CMT correspondence. By using our results, we propose another way to obtain the holographically renormalized on-shell action without counter terms. We find the complete consistency of our results with those in various models discussed in the recent literatures and obtain new implications.

  16. Characterizing the radiation response of Cherenkov glass detectors with isotopic sources

    Energy Technology Data Exchange (ETDEWEB)

    Hayward, J P [University of Tennessee, Knoxville (UTK); Hobbs, C. L. [University of Tennessee, Knoxville (UTK); Bell, Zane W [ORNL; Boatner, Lynn A [ORNL; Johnson, Rose E [ORNL; Ramey, Joanne Oxendine [ORNL; Jellison Jr, Gerald Earle [ORNL; Lillard, Cole R [ORNL; Ramey, Lucas A [ORNL

    2012-01-01

    Abstract Cherenkov detectors are widely used for particle identification and threshold detectors in high-energy physics. Glass Cherenkov detectors that are sensitive to beta emissions originating from neutron activation have been demonstrated recently as a potential replacement for activation foils. In this work, we set the groundwork to evaluate large Cherenkov glass detectors for sensitivity to MeV photons through first understanding the measured response of small Cherenkov glass detectors to isotopic gamma-ray sources. Counting and pulse height measurements are acquired with reflected glass Cherenkov detectors read out with a photomultiplier tube. Simulation was used to inform our understanding of the measured results. This simulation included radioactive source decay, radiation interaction, Cherenkov light generation, optical ray tracing, and photoelectron production. Implications for the use of Cherenkov glass detectors to measure low energy gammaray response are discussed.

  17. Lunar imaging and ionospheric calibration for the Lunar Cherenkov technique

    NARCIS (Netherlands)

    McFadden, R.; Scholten, O.; Mevius, M.

    2013-01-01

    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the iono

  18. The ARCADE Raman Lidar System for the Cherenkov Telescope Array

    CERN Document Server

    Valore, Laura; Doro, Michele; Iarlori, Marco; Rizi, Vincenzo; Tonachini, Aurelio Siro; Vallania, Piero

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation of ground-based very high energy gamma-ray instruments; the facility will be organized in two arrays, one for each hemisphere. The atmospheric calibration of the CTA telescopes is a critical task. The atmosphere affects the measured Cherenkov yield in several ways: the air-shower development itself, the variation of the Cherenkov angle with altitude, the loss of photons due to scattering and absorption of Cherenkov light out of the camera field-of-view and the scattering of photons into the camera. In this scenario, aerosols are the most variable atmospheric component in time and space and therefore need a continuous monitoring. Lidars are among the most used instruments in atmospheric physics to measure the aerosol attenuation profiles of light. The ARCADE Lidar system is a very compact and portable Raman Lidar system that has been built within the FIRB 2010 grant and is currently taking data in Lamar, Colorado. The ARCADE Lidar is proposed to operat...

  19. Detection of atmospheric Cherenkov radiation using solar heliostat mirrors

    Science.gov (United States)

    Ong, R. A.; Bhattacharya, D.; Covault, C. E.; Dixon, D. D.; Gregorich, D. T.; Hanna, D. S.; Oser, S.; Québert, J.; Smith, D. A.; Tümer, O. T.; Zych, A. D.

    1996-10-01

    There is considerable interest world-wide in developing large area atmospheric Cherenkov detectors for ground-based gamma-ray astronomy. This interest stems, in large part, from the fact that the gamma-ray energy region between 20 and 250 GeV is unexplored by any experiment. Atmospheric Cherenkov detectors offer a possible way to explore this region, but large photon collection areas are needed to achieve low energy thresholds. We are developing an experiment using the heliostat mirrors of a solar power plant as the primary collecting element. As part of this development, we built a detector using four heliostat mirrors, a secondary Fresnel lens, and a fast photon detection system. In November 1994, we used this detector to record atmospheric Cherenkov radiation produced by cosmic ray particles showering in the atmosphere. The detected rate of cosmic ray events was consistent with an energy threshold near 1 TeV. The data presented here represent the first detection of atmospheric Cherenkov radiation using solar heliostats viewed from a central tower.

  20. Electromagnetic shower counter

    CERN Multimedia

    1974-01-01

    The octogonal block of lead glass is observed by eight photomultiplier tubes. Four or five such counters, arranged in succession, are used on each arm of the bispectrometer in order to detect heavy particles of the same family as those recently observed at Brookhaven and SLAC. They provide a means of identifying electrons. The arrangement of eight lateral photomultiplier tubes offers an efficient means of collecting the photons produced in the showers and determining, with a high resolution, the energy of the incident electrons. The total width at half-height is less than 6.9% for electrons having an energy of 1 GeV.

  1. A track ion counter

    International Nuclear Information System (INIS)

    A method to measure the frequency of production of ions in a gas is described. The characteristics of a device, which is named a track ion counter, are presented. The counter consists of two cylindrical volumes separated by a diaphragm with 500μm dia. orifice. The device is connected to an oil diffusion pump with high pumping speed. The gas flow through the orifice determines the pressure in the upper and the lower volumes of the device. The positive ions produced in a cylindrical volume above an orifice by charged particles traversing that volume move in a constant electric field. Some of these ions passing through the orifice are accelerated and detected by an electron multiplier. The absolute efficiency of ions detection from the domain above the orifice have been determined. The measurements were carried out for single charged ions of N2, H2, CH4, CO2. The preliminary measurements of the frequency of ions created within cylindrical gas domain equivalent to 0.15nm dia. and 7.6nm height tissue cylinder are reported

  2. Radium-228 analysis of natural waters by Cherenkov counting of Actinium-228

    Energy Technology Data Exchange (ETDEWEB)

    Aleissa, Khalid A.; Almasoud, Fahad I.; Islam, Mohammed S. [Atomic Energy Research Institute, King Abdul Aziz City for Science and Technology, P.O. Box 6086, Riyadh 11442 (Saudi Arabia); L' Annunziata, Michael F. [IAEA Expert, Montague Group, P.O. Box 5033, Oceanside, CA 92052-5033 (United States)], E-mail: mlannunziata@cox.net

    2008-12-15

    The activities of {sup 228}Ra in natural waters were determined by the Cherenkov counting of the daughter nuclide {sup 228}Ac. The radium was pre-concentrated on MnO{sub 2} and the radium purified via ion exchange and, after a 2-day period of incubation to allow for secular equilibrium between the parent-daughter {sup 228}Ra({sup 228}Ac), the daughter nuclide {sup 228}Ac was isolated by ion exchange according to the method of Nour et al. [2004. Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin. Appl. Radiat. Isot. 61, 1173-1178]. The Cherenkov photons produced by {sup 228}Ac were counted directly without the addition of any scintillation reagents. The optimum Cherenkov counting window, sample volume, and vial type were determined experimentally to achieve optimum Cherenkov photon detection efficiency and lowest background count rates. An optimum detection efficiency of 10.9{+-}0.1% was measured for {sup 228}Ac by Cherenkov counting with a very low Cherenkov photon background of 0.317{+-}0.013 cpm. The addition of sodium salicylate into the sample counting vial at a concentration of 0.1 g/mL yielded a more than 3-fold increase in the Cherenkov detection efficiency of {sup 228}Ac to 38%. Tests of the Cherenkov counting technique were conducted with several water standards of known activity and the results obtained compared closely with a conventional liquid scintillation counting technique. The advantages and disadvantages of Cherenkov counting compared to liquid scintillation counting methods are discussed. Advantages include much lower Cherenkov background count rates and consequently lower minimal detectable activities for {sup 228}Ra and no need for expensive environmentally unfriendly liquid scintillation cocktails. The disadvantages of the Cherenkov counting method include the need to measure {sup 228}Ac Cherenkov photon detection efficiency and optimum Cherenkov counting volume

  3. Radium-228 analysis of natural waters by Cherenkov counting of Actinium-228.

    Science.gov (United States)

    Aleissa, Khalid A; Almasoud, Fahad I; Islam, Mohammed S; L'Annunziata, Michael F

    2008-12-01

    The activities of (228)Ra in natural waters were determined by the Cherenkov counting of the daughter nuclide (228)Ac. The radium was pre-concentrated on MnO(2) and the radium purified via ion exchange and, after a 2-day period of incubation to allow for secular equilibrium between the parent-daughter (228)Ra((228)Ac), the daughter nuclide (228)Ac was isolated by ion exchange according to the method of Nour et al. [2004. Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin. Appl. Radiat. Isot. 61, 1173-1178]. The Cherenkov photons produced by (228)Ac were counted directly without the addition of any scintillation reagents. The optimum Cherenkov counting window, sample volume, and vial type were determined experimentally to achieve optimum Cherenkov photon detection efficiency and lowest background count rates. An optimum detection efficiency of 10.9+/-0.1% was measured for (228)Ac by Cherenkov counting with a very low Cherenkov photon background of 0.317+/-0.013cpm. The addition of sodium salicylate into the sample counting vial at a concentration of 0.1g/mL yielded a more than 3-fold increase in the Cherenkov detection efficiency of (228)Ac to 38%. Tests of the Cherenkov counting technique were conducted with several water standards of known activity and the results obtained compared closely with a conventional liquid scintillation counting technique. The advantages and disadvantages of Cherenkov counting compared to liquid scintillation counting methods are discussed. Advantages include much lower Cherenkov background count rates and consequently lower minimal detectable activities for (228)Ra and no need for expensive environmentally unfriendly liquid scintillation cocktails. The disadvantages of the Cherenkov counting method include the need to measure (228)Ac Cherenkov photon detection efficiency and optimum Cherenkov counting volume, which are not at all required when liquid

  4. The Non-Imaging CHErenkov Array (NICHE): A TA/TALE extension to measure the flux and composition of Very-High Energy Cosmic Rays

    Science.gov (United States)

    Bergman, Douglas; Krizmanic, John; Sokolsky, Pierre

    2013-04-01

    Co-sited with TA/TALE, the Non-Imaging CHErenkov Array (NICHE) will measure the flux and nuclear composition of cosmic rays from below 10^16 eV to over 10^18 eV in its initial deployment. Furthermore, the low-energy reach can be lowered below the cosmic ray knee via counter redeployment or additional counters. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. NICHE will have sufficient area and angular acceptance to have significant overlap with the TA/TALE detectors to allow for energy cross-calibration. Simulated NICHE performance has shown that the array has the ability to distinguish between several different composition models as well as measure the end of Galactic cosmic ray spectrum. In this talk, the NICHE design, array performance, and status will be discussed as well as NICHE's ability to measure the cosmic ray nuclear composition as a function of energy.

  5. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  6. Space and power efficient hybrid counters array

    Science.gov (United States)

    Gara, Alan G.; Salapura, Valentina

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  7. Study of a Cherenkov TOF-PET module

    Science.gov (United States)

    Korpar, S.; Dolenec, R.; Križan, P.; Pestotnik, R.; Stanovnik, A.

    2013-12-01

    An apparatus, consisting of two PbF2 crystals, each coupled to a multichannel plate photomultiplier (MCP-PMT), has been constructed in order to measure the time-of-flight (TOF) of the two 511 keV annihilation photons produced in positron emission tomography (PET). Excellent timing is achieved by detecting the prompt Cherenkov photons produced by the absorption of the 511 keV gamma photons. The present work describes the measurement and image reconstruction of two 22Na point sources. In addition, the influence of the radiator thickness and the Cherenkov light absorption cut-off of the crystal on the efficiency and the timing resolution have been studied by Monte Carlo simulation.

  8. Stellar intensity interferometry: Optimizing air Cherenkov telescope array layouts

    CERN Document Server

    Jensen, Hannes; LeBohec, Stephan; Nuñez, Paul D; 10.1117/12.856412

    2010-01-01

    Kilometric-scale optical imagers seem feasible to realize by intensity interferometry, using telescopes primarily erected for measuring Cherenkov light induced by gamma rays. Planned arrays envision 50--100 telescopes, distributed over some 1--4 km$^2$. Although array layouts and telescope sizes will primarily be chosen for gamma-ray observations, also their interferometric performance may be optimized. Observations of stellar objects were numerically simulated for different array geometries, yielding signal-to-noise ratios for different Fourier components of the source images in the interferometric $(u,v)$-plane. Simulations were made for layouts actually proposed for future Cherenkov telescope arrays, and for subsets with only a fraction of the telescopes. All large arrays provide dense sampling of the $(u,v)$-plane due to the sheer number of telescopes, irrespective of their geographic orientation or stellar coordinates. However, for improved coverage of the $(u,v)$-plane and a wider variety of baselines (...

  9. An Analog Trigger System for Atmospheric Cherenkov Telescopes

    CERN Document Server

    Barcelo, M; Bigas, O Blanch; Boix, J; Delgado, C; Herranz, D; Lopez-Coto, R; Martinez, G

    2013-01-01

    Arrays of Cherenkov telescopes typically use multi-level trigger schemes to keep the rate of random triggers from the night sky background low. At a first stage, individual telescopes produce a trigger signal from the pixel information in the telescope camera. The final event trigger is then formed by combining trigger signals from several telescopes. In this poster, we present a possible scheme for the Cherenkov Telescope Array telescope trigger, which is based on the analog pulse information of the pixels in a telescope camera. Advanced versions of all components of the system have been produced and working prototypes have been tested, showing a performance that meets the original specifications. Finally, issues related to integrating the trigger system in a telescope camera and in the whole array will be dealt with.

  10. Normalized and Asynchronous Mirror Alignment for Cherenkov Telescopes

    CERN Document Server

    Ahnen, M L; Balbo, M; Bergmann, M; Biland, A; Blank, M; Bretz, T; Bruegge, K A; Buss, J; Domke, M; Dorner, D; Einecke, S; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Mannheim, K; Mueller, S A; Neise, D; Neronov, A; Noethe, M; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Shukla, A; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2016-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and as they are composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment is a challenge. Here we present a computer vision based star tracking alignment method, which also works for limited or changing star light visibility. Our method normalizes the mirror facet reflection intensities to become independent of the reference star's intensity or the cloud coverage. Using two CCD cameras, our method records the mirror facet orientations asynchronously of the telescope drive system, and thus makes the method easy to integrate into existing telescopes. It can be combined with remote facet actuation, but does not require one to work. Furthermore, it ca...

  11. Performance test of wavelength-shifting acrylic plastic Cherenkov detector

    CERN Document Server

    Beckford, B; de la Puente, A; Fuji, Y; Futatsukawa, K; Hashimoto, O; Kaneta, M; Kanda, H; Koike, T; Maeda, K; Matsumura, A; Nakamura, S N; Okayasu, Y; Perez, N; Reinhold, J; Shirotori, K; Tamura, H; Tang, L; Tsukada, K

    2010-01-01

    The collection efficiency for Cherenkov light incident on a wavelength shifting plate (WLS) has been determined during a beam test at the Proton Synchrotron facility located in the National Laboratory for High Energy Physics (KEK), Tsukuba, Japan. The experiment was conducted in order to determine the detector's response to photoelectrons converted from photons produced by a fused silica radiator; this allows for an approximation of the detector's quality. The yield of the photoelectrons was measured as a function of the momentum of the incident hadron beam. The yield is proportional to sin2{\\theta}c, where {\\theta}c is the opening angle of the Cherenkov light created. Based on estimations and results from similarly conducted tests, where the collection efficiency was roughly 39%, the experimental result was expected to be around 40% for internally produced light from the WLS. The results of the experiment determined the photon collection response efficiency of the WLS to be roughly 62% for photons created in...

  12. G-APDs in Cherenkov astronomy: The FACT camera

    Energy Technology Data Exchange (ETDEWEB)

    Kraehenbuehl, T., E-mail: thomas.kraehenbuehl@phys.ethz.ch [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Anderhub, H. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Backes, M. [Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Biland, A.; Boller, A.; Braun, I. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Bretz, T. [Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Commichau, V.; Djambazov, L. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Dorner, D.; Farnier, C. [ISDC Data Center for Astrophysics, CH-1290 Versoix (Switzerland); Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Huber, B.; Kim, K.-S. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Koehne, J.-H.; Krumm, B. [Technische Universitaet Dortmund, D-44221 Dortmund (Germany); and others

    2012-12-11

    Geiger-mode avalanche photodiodes (G-APD, SiPM) are a much discussed alternative to photomultiplier tubes in Cherenkov astronomy. The First G-APD Cherenkov Telescope (FACT) collaboration builds a camera based on a hexagonal array of 1440 G-APDs and has now finalized its construction phase. A light-collecting solid PMMA cone is glued to each G-APD to eliminate dead space between the G-APDs by increasing the active area, and to restrict the light collection angle of the sensor to the reflector area in order to reduce the amount of background light. The processing of the signals is integrated in the camera and includes the digitization using the domino ring sampling chip DRS4.

  13. The Ring Imaging Cherenkov detector (RICH) of the AMS experiment

    CERN Document Server

    Barão, F; Alcaraz, J; Arruda, L; Barrau, A; Barreira, G; Belmont, E; Berdugo, J; Brinet, M; Buénerd, M; Casadei, D; Casaus, J; Cortina, E; Delgado, C; Díaz, C; Derome, L; Eraud, L; Garcia-Lopez, R J; Gallin-Martel, L; Giovacchini, F; Gonçalves, P; Lanciotti, E; Laurenti, G; Malinine, A; Maña, C; Marin, J; Martínez, G; Menchaca-Rocha, A; Molla, M; Palomares, C; Panniello, M; Pereira, R; Pimenta, M; Protasov, K; Sánchez, E; Seo, E S; Sevilla, N; Torrento, A; Vargas-Trevino, M; Veziant, O

    2006-01-01

    The Alpha Magnetic Spectrometer (AMS) experiment to be installed on the International Space Station (ISS) will be equipped with a proximity focusing Ring Imaging Cherenkov (RICH) detector for measuring the electric charge and velocity of the charged cosmic particles. A RICH prototype consisting of 96 photomultiplier units, including a piece of the conical reflector, was built and its performance evaluated with ion beam data. Preliminary results of the in-beam tests performed with ion fragments resulting from collisions of a 158 GeV/c/nuc primary beam of Indium ions (CERN SPS) on a Pb target are reported. The collected data included tests to the final front-end electronics and to different aerogel radiators. Cherenkov rings for a large range of charged nuclei and with reflected photons were observed. The data analysis confirms the design goals. Charge separation up to Fe and velocity resolution of the order of 0.1% for singly charged particles are obtained.

  14. A Resolution to Cherenkov-like Radiation of OPERA Neutrinos

    CERN Document Server

    Oda, Ichiro

    2011-01-01

    The OPERA collabotation has reported evidence of superluminal neutrinos with a mean energy 17.5 GeV ranging up to 50 GeV. However, the superluminal interpretation of the OPERA results has been recently refuted theoretically by Cherenkov-like radiation. We discuss a loophole of this argument from the kinematical viewpoint and find it possible to avoid the Cherenkov-like radiation of the OPERA neutrinos. The key idea of our argument is to admit the fact that the neutrinos travel faster than the observed speed of light while they do slower than the true speed of light in vacuum so strictly speaking they are not superluminal but subluminal. Moreover, we present a model where these two velocities of light can be constructed by taking account of influences from dark matters near the earth.

  15. The Ring Imaging CHerenkov Detectors of the LHCb Experiment

    CERN Document Server

    Perego, Davide Luigi

    2012-01-01

    Particle identification is a fundamental requirement of the LHCb experiment to fulfill its physics programme. Positive hadron identification is performed by two Ring Imaging CHerenkov (RICH) detectors. This system covers the full angular acceptance of the experiment and is equipped with three Cherenkov radiators to identify particles in a wide momentum range from1 GeV/ c up to 100 GeV/ c . The Hybrid Photon Detectors (HPDs) located outside the detector acceptance provide the photon detection with 500,000 channels. Specific read–out electronics has been developed to readout and process data from the HPDs including data transmission and power distribution. The operation and performanceoftheRICHsystemare ensuredbythe constant controland monitoringoflowandhighvoltage systems,of thegas qualityandenvironmental parameters,ofthe mirror alignment,and finallyofthe detector safety. The description of the LHCb RICH is given. The experience in operating the detector at the Large Hadron Collider is presented and discusse...

  16. Cherenkov loss factor of short relativistic bunches:general approach

    CERN Document Server

    Baturin, S S

    2013-01-01

    The interaction of short relativistic charged particle bunches with waveguides and other accelerator system components is a critical issue for the development of X-ray FELs (free electron lasers) and linear collider projects. Wakefield Cherenkov losses of short bunches have been studied previously for resistive wall, disk-loaded, corrugated and dielectric loaded waveguides. It was noted in various publications [1] that if the slowdown layer is thin, the Cherenkov loss factor of a short bunch does not depend on the guiding system material and is a constant for any given transverse cross section dimensions of the waveguides. In this paper, we consider a new approach to the analysis of loss factors for relativistic short bunches and formulate a general integral relation that allows calculation of the loss factor for a short relativistic bunch passing an arbitrary waveguide system. The loss factors calculated by this new method for various types of waveguides with arbitrary thickness slowdown layers, including in...

  17. Gas breakdown limits for inverse Cherenkov laser accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. [California Univ., Los Angeles, CA (United States). Dept. of Physics; Pogorelsky, I.V. [Brookhaven National Lab., Upton, NY (United States)

    1995-07-01

    The probability of avalanche, tunneling and multiphoton ionization induced by a CO{sub 2} laser in H{sub 2} gas has been calculated. Laser light screening by a self-induced plasma density gradient is considered as the limiting factor for upscaling a CO{sub 2} laser-driven Inverse Cherenkov Laser Accelerator beyond 650 MeV/m. However, in near-resonance inverse Cherenkov acceleration where a shorter wavelength laser is used at a wavelength near the resonance of the gas (e.g. 248nm in H{sub 2}), the formation of a plasma is not a problem because the plasma density is below the critical density. In that case, the laser beam propagates unaffected through the plasma and the acceleration gradient is not limited by gas breakdown. Gradients > 1 GeV/m are possible.

  18. Design of light concentrators for Cherenkov telescope observatories

    CERN Document Server

    Hénault, F; jocou, L; Khélifi, B; Manigot, P; Hormigos, S; Knodlseder, J; Olive, J F; Jean, P; Punch, M

    2013-01-01

    The Cherenkov Telescope Array (CTA) will be the largest cosmic gamma ray detector ever built in the world. It will be installed at two different sites in the North and South hemispheres and should be operational for about 30 years. In order to cover the desired energy range, the CTA is composed of typically 50-100 collecting telescopes of various sizes (from 6 to 24-m diameters). Most of them are equipped with a focal plane camera consisting of 1500 to 2000 Photomultipliers (PM) equipped with light concentrating optics, whose double function is to maximize the amount of Cherenkov light detected by the photo-sensors, and to block any stray light originating from the terrestrial environment. Two different optical solutions have been designed, respectively based on a Compound Parabolic Concentrator (CPC), and on a purely dioptric concentrating lens. In this communication are described the technical specifications, optical designs and performance of the different solutions envisioned for all these light concentra...

  19. Counter-Learning under Oppression

    Science.gov (United States)

    Kucukaydin, Ilhan

    2010-01-01

    This qualitative study utilized the method of narrative analysis to explore the counter-learning process of an oppressed Kurdish woman from Turkey. Critical constructivism was utilized to analyze counter-learning; Frankfurt School-based Marcusian critical theory was used to analyze the sociopolitical context and its impact on the oppressed. Key…

  20. Over-the-Counter Medicines

    Science.gov (United States)

    Over-the-counter (OTC) medicines are drugs you can buy without a prescription. Some OTC medicines relieve aches, pains and itches. Some prevent or cure ... the Food and Drug Administration decides whether a medicine is safe enough to sell over-the-counter. ...

  1. The fluid systems for the SLD Cherenkov ring imaging detector

    International Nuclear Information System (INIS)

    We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C2H6 + TMAE), radiator gas (C5F12 + N2) and radiator liquid (C6F14). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported

  2. A quartz Cherenkov detector for polarimetry at the ILC

    International Nuclear Information System (INIS)

    At the proposed International Linear Collider (ILC), the use of polarised electron and positron beams is a key ingredient of the physics program. A measurement of the polarisation with a yet unprecedented precision of δP/P=0.25% is required. To achieve this, Compton polarimeter measurements in front of and behind the collision point are foreseen. In this thesis, a novel concept for a detector for ILC polarimetry is introduced to eliminate one of the dominating systematics limiting the previous best measurement of beam polarisation: a detector using quartz as Cherenkov medium could increase the tolerance against non-linear photodetector responses. The high refractive index of quartz results in a higher Cherenkov light yield compared to conventional Cherenkov gases. This could allow single-peak resolution in the Cherenkov photon spectra produced by the Compton electrons at the polarimeters. The detailed simulation studies presented in this work imply that such single-peak resolution is possible. Considerations for the choice of a suitable detector geometry are discussed. A four-channel prototype has been constructed and successfully operated in a first testbeam campaign at the DESY testbeam, confirming simulation predictions. Although further studies have to be considered to quantify all aspects of the detector response, the findings of the analysis of the data from the first testbeam are promising with regards to reaching the desired light yield. In the final part of this thesis, the application of a detector concept allowing single-peak resolution to the polarisation measurement at the ILC is examined. Two of the main sources of systematic uncertainties on the polarimeter measurements are detector non-linearities and misalignments. The performance of the suggested quartz detector concept in Monte Carlo studies promises a control of these systematics which meets the precision requirements for ILC polarimetry.

  3. Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin;

    2010-01-01

    -transform-limited ultrashort mid-IR pulses with pulse durations much shorter than the input near-IR pulse. The Cherenkov radiation for the crystal considered (β-barium borate) is found for pump wavelengths in the range λ = 0.95–1.45 μm, and is located in the regime λ = 1.5–3.5 μm. For shorter pump wavelengths, the phase...

  4. An Innovative Workspace for The Cherenkov Telescope Array

    OpenAIRE

    Costa, Alessandro; Sciacca, Eva; Becciani, Ugo; Massimino, Piero; Riggi, Simone; Sanchez, David; Vitello, Fabio

    2016-01-01

    The Cherenkov Telescope Array (CTA) is an initiative to build the next generation, ground-based gamma-ray observatories. We present a prototype workspace developed at INAF that aims at providing innovative solutions for the CTA community. The workspace leverages open source technologies providing web access to a set of tools widely used by the CTA community. Two different user interaction models, connected to an authentication and authorization infrastructure, have been implemented in this wo...

  5. Single domain wall effect on parametric processes via Cherenkov-type phase matching

    OpenAIRE

    Deng, Xuewei; Ren, Huaijin; Zheng, Yuanlin; Chen, Xianfeng

    2010-01-01

    We report on important influence of single domain wall (DW) of electrically poled ferroelectric crystal on parametric processes via Cherenkov-type phase matching. It shows that the effective nonlinear polarization is confined in DW and its phase velocity can be modulated when incident light is off domain wall's direction. These effects lead to novel Cherenkov second harmonic generation (CSHG) which has no analogue in bulk ferroelectrics. Complex DW-modulated parametric process via Cherenkov-t...

  6. Normalized and asynchronous mirror alignment for Cherenkov telescopes

    Science.gov (United States)

    Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Domke, M.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Lustermann, W.; Mannheim, K.; Mueller, S. A.; Neise, D.; Neronov, A.; Noethe, M.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Toscano, S.; Vogler, P.; Walter, R.; Wilbert, A.

    2016-09-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and as they are composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment is a challenge. Here we present a computer vision based star tracking alignment method, which also works for limited or changing star light visibility. Our method normalizes the mirror facet reflection intensities to become independent of the reference star's intensity or the cloud coverage. Using two CCD cameras, our method records the mirror facet orientations asynchronously of the telescope drive system, and thus makes the method easy to integrate into existing telescopes. It can be combined with remote facet actuation, but does not require one to work. Furthermore, it can reconstruct all individual mirror facet point spread functions without moving any mirror. We present alignment results on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).

  7. Photo multiplier tubes candidates for the Cherenkov telescope array project

    International Nuclear Information System (INIS)

    Photo Multiplier Tubes (PMTs) are the most wide spread detectors for fast low-level light signals. They are commonly used as standard light sensors for camera systems in imaging atmospheric Cherenkov telescopes. Years ago, an improvement program for the PMT candidates for the Cherenkov Telescope Array (CTA) project was initialized with the companies Hamamatsu Photonics K.K. (Japan) and Electron Tubes Enterprises Ltd. (England). CTA is the next generation of imaging atmospheric Cherenkov telescopes for high energy gamma ray astrophysics. Therefore, we need PMTs with outstanding good parameters concerning quantum efficiency, pulse width, after-pulsing and transit time spread. The currently available ''super-bialkali'' PMTs show a peak Quantum Efficiency of 40% and have an enhanced collection efficiency of up to 95-98% for wavelengths≥400 nm. The pulse width averages around 3ns at a gain of 40000. Also, the after-pulsing for a set threshold level of ≥4 photo electrons is reduced down to 0,02%. We report on the measurement results of PMT R-12292-100 from Hamamatsu as the final version and the intermediate version PMT D569/3SA from Electron Tubes Enterprises as candidate PMTs for the CTA project.

  8. Detection of tau neutrinos by Imaging Air Cherenkov Telescopes

    CERN Document Server

    Gora, Dariusz

    2015-01-01

    This paper investigates the potential to detect tau neutrinos in the energy range of 1-1000 PeV searching for very inclined showers with imaging Cherenkov telescopes. A neutrino induced tau lepton escaping from the Earth may decay and initiate an air shower which can be detected by a fluorescence or Cherenkov telescope. We present here a study of the detection potential of Earth-skimming neutrinos taking into account neutrino interactions in the Earth crust, local matter distributions at various detector sites, the development of tau-induced showers in air and the detection of Cherenkov photons with IACTs. We analysed simulated shower images on the camera focal plane and implemented generic reconstruction chains based on Hillas parameters. We find that present IACTs can distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range. We present the neutrino trigger efficiency obtained for a few configurations being considered for the next-generation Cherenk...

  9. PyFACT: Python and FITS analysis for Cherenkov telescopes

    Science.gov (United States)

    Raue, Martin; Deil, Christoph

    2012-12-01

    Ground-based very-high energy (VHE; E>100 GeV) gamma-ray astronomy is growing from being conducted by small teams in closed collaborations into a full-fledged branch of astronomy with open observatories. This is best illustrated by the number of known sources: it increased by one order of magnitude in the past ten years, from 10 in the year 2000 to more than 100 in 2010. It is expected that this trend will continue with the next-generation instrument Cherenkov Telescope Array (CTA). This transformation has a profound impact on the data format and analysis of Imaging Atmospheric Cherenkov Telescopes (IACTs). Up to now, IACT data analysis was an internal task performed by specialists with no public access to the data or software. In the future, a large community of VHE astronomers from different scientific topics should be enabled to work with the data. Ease of use, compatibility, and integration with existing astronomy standards and tools will be key. In this contribution, a collection of Python tools for the analysis of data in FITS format (PyFACT; Python and FITS Analysis for Cherenkov Telescopes) is presented, which connects with existing tools like xspec, sherpa, and ds9. The package is available as open source (https://github.com/mraue/pyfact, comments and contributions welcome). Advantages of the chosen ansatz are discussed and implications for future observatories and data archival are presented.

  10. Detection of tau neutrinos by Imaging Air Cherenkov Telescopes

    CERN Document Server

    Gora, Dariusz

    2016-01-01

    This paper investigates the potential to detect tau neutrinos in the energy range of 1-1000 PeV searching for very inclined showers with imaging Cherenkov telescopes. A neutrino induced tau lepton escaping from the Earth may decay and initiate an air shower which can be detected by a fluorescence or Cherenkov telescope. We present here a study of the detection potential of Earth-skimming neutrinos taking into account neutrino interactions in the Earth crust, local matter distributions at various detector sites, the development of tau-induced showers in air and the detection of Cherenkov photons with IACTs. We analyzed simulated shower images on the camera focal plane and implemented generic reconstruction chains based on Hillas parameters. We find that present IACTs can distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range. We present the neutrino trigger efficiency obtained for a few configurations being considered for the next-generation Cherenk...

  11. Experimental study and Monte Carlo modeling of the Cherenkov effect

    Energy Technology Data Exchange (ETDEWEB)

    Mishev, A.; Angelov, I.; Duverger, E.; Gschwind, R.; Makovicka, L. E-mail: libor.makovicka@pu-pm.univ-fcomte.fr; Stamenov, J

    2001-12-01

    Studies realised at the Institute for Nuclear Research and Nuclear Energy (INRNE) particularly in cosmic ray detection and construction of Muonic Cherenkov Telescope at the South West University 'Neofit Rilski' Blagoevgrad show the need to develop a theoretical model based on observed phenomena and to refinement of this for detection system optimisation. The Cherenkov effect was introduced in EGS4 code system. The first simulations realised in collaboration between the french and the bulgarian team were consecrated to different geometries of water tank in total reflection. An additional modeling of photons mean trajectory and the mean number of reflections in the tank were made. This simple model was compared with experimental data realised with {sup 60}Co gamma source, the telescope and the most efficient water tank. A trajectory simulation of Cherenkov photons in water tank was made. An efficiency estimation of the detector registration was calculated. The atmospheric model was introduced in EGS4 code and a comparison between CORSIKA5.62 and EGS4 codes was made.

  12. Novel Photo Multiplier Tubes for the Cherenkov Telescope Array Project

    CERN Document Server

    Toyama, Takeshi; Dickinson, Hugh; Fruck, Christian; Hose, Jürgen; Kellermann, Hanna; Knötig, Max; Lorenz, Eckart; Menzel, Uta; Nakajima, Daisuke; Orito, Reiko; Paneque, David; Schweizer, Thomas; Teshima, Masahiro; Yamamoto, Tokonatsu

    2013-01-01

    Currently the standard light sensors for imaging atmospheric Cherenkov telescopes are the classical photo multiplier tubes that are using bialkali photo cathodes. About eight years ago we initiated an improvement program with the Photo Multiplier Tube (PMT) manufacturers Hamamatsu (Japan), Electron Tubes Enterprises (England) and Photonis (France) for the needs of imaging atmospheric Cherenkov telescopes. As a result, after about 40 years of stagnation of the peak Quantum Efficiency (QE) on the level of 25-27%, new PMTs appeared with a peak QE of 35%. These have got the name super-bialkali. The second significant upgrade has happened very recently, as a result of a dedicated improvement program for the candidate PMT for Cherenkov Telescope Array. The latter is going to be the next generation major instrument in the field of very high energy gamma astrophysics and will consist of over 100 telescopes of three different sizes of 23m, 12m and 4-7m, located both in southern and northern hemispheres. Now PMTs with ...

  13. Soft x-ray generation by the Cherenkov effect

    Energy Technology Data Exchange (ETDEWEB)

    Moran, M.J.; Chang, B.

    1987-01-01

    The Cherenkov effect may be used to generate coherent soft x rays by taking advantage of the dielectric constants of materials in the neighborhood of atomic resonances. The Cherenkov effect usually is not possible for x rays because the refractive index is less than one for most x-ray frequencies. However, for narrow frequency bands near atomic resonances, the refractive index can exceed unity with values large enough to generate coherent x rays with efficiencies higher than any other electron-driven technique. The basic physics of the process is discussed and is used to make rough estimates of photon production efficiencies. An exact theoretical description of Cherenkov production in thin foils is used together with recently-measured refractive indices to calculate the emission distributions of 100 eV photons from thin silicon foils. These distributions are found to be roughly consistent with the simple estimates. In addition, unusual behavior by the distributions suggests a technique that can be used to increase dramatically the peak angular intensities.

  14. Soft x-ray generation by the Cherenkov effect

    International Nuclear Information System (INIS)

    The Cherenkov effect may be used to generate coherent soft x rays by taking advantage of the dielectric constants of materials in the neighborhood of atomic resonances. The Cherenkov effect usually is not possible for x rays because the refractive index is less than one for most x-ray frequencies. However, for narrow frequency bands near atomic resonances, the refractive index can exceed unity with values large enough to generate coherent x rays with efficiencies higher than any other electron-driven technique. The basic physics of the process is discussed and is used to make rough estimates of photon production efficiencies. An exact theoretical description of Cherenkov production in thin foils is used together with recently-measured refractive indices to calculate the emission distributions of 100 eV photons from thin silicon foils. These distributions are found to be roughly consistent with the simple estimates. In addition, unusual behavior by the distributions suggests a technique that can be used to increase dramatically the peak angular intensities. 15 refs., 10 figs

  15. Soft x-ray generation by the Cherenkov effect

    International Nuclear Information System (INIS)

    The Cherenkov effect may be used to generate coherent soft x rays by taking advantage of the dielectric constants of materials in the neighborhood of atomic resonances. The Cherenkov effect usually is not possible for x rays because the refractive index is less than one for most x-ray frequencies. However, for narrow frequency bands near atomic resonances, the refractive index can exceed unity with values large enough to generate coherent x rays with efficiencies higher than any other electron-driven technique. The basic physics of the process is discussed and is used to make rough estimates of photon production efficiencies. An exact theoretical description of Cherenkov production in thin foils is used together with recently-measured refractive indices to calculate the emission distributions of 100 eV photons from thin silicon foils. These distributions are found to be roughly consistent with the simple estimates. In addition, unusual behavior by the distributions suggests a technique that can be used to increase dramatically the peak angular intensities

  16. Soft x-ray generation by the Cherenkov effect

    Energy Technology Data Exchange (ETDEWEB)

    Moran, M.J.; Chang, B.

    1987-02-25

    The Cherenkov effect may be used to generate coherent soft x rays by taking advantage of the dielectric constants of materials in the neighborhood of atomic resonances. The Cherenkov effect usually is not possible for x rays because the refractive index is less than one for most x-ray frequencies. However, for narrow frequency bands near atomic resonances, the refractive index can exceed unity with values large enough to generate coherent x rays with efficiencies higher than any other electron-driven technique. The basic physics of the process is discussed and is used to make rough estimates of photon production efficiencies. An exact theoretical description of Cherenkov production in thin foils is used together with recently-measured refractive indices to calculate the emission distributions of 100 eV photons from thin silicon foils. These distributions are found to be roughly consistent with the simple estimates. In addition, unusual behavior by the distributions suggests a technique that can be used to increase dramatically the peak angular intensities. 15 refs., 10 figs.

  17. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    Science.gov (United States)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  18. Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Otte, A N; Dickinson, H.; Funk, S.; Jogler, T.; Johnson, C.A.; Karn, P.; Meagher, K.; Naoya, H.; Nguyen, T.; Okumura, A.; Santander, M.; Sapozhnikov, L.; Stier, A.; Tajima, H.; Tibaldo, L.; Vandenbroucke, J.; Wakely, S.; Weinstein, A.; Williams, D.A.

    2015-01-01

    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give ...

  19. The Student Dust Counter

    Science.gov (United States)

    Horanyi, M.; Bagenal, F.; Finley, T.; Christensen, F.; Holland, G.; Bryant, C.; Bunch, N.; Neeland, M.; Chanthawanich, T.; Fernandez, A.; Hoxie, V.; Jenkins, A.; Vaudrin, C.; Krauss, E.; Krauss, O.; Crayton, J.; James, D.; Krauss, C.; Mitchell, C.; Colgan, M.; Grogan, B.; Christofferson, J.

    2005-12-01

    This talk will describe the scientific goals, the technical, and the human challenges of the Student Dust Counter (SDC) experiment for the New Horizons Mission to Pluto. CU's Laboratory for Atmospheric and Space Physics (LASP) organized a team of students to design, fabricate, test, calibrate, and fly SDC, one of seven science instruments onboard New Horizons. The student team was responsible for all phases of this development under the supervision of LASP professionals. Both undergraduate and graduate students worked on this project, representing a variety of disciplines, including Electrical and Mechanical Engineering, Computer Science, Physics, Journalism, and Business. The SDC project is part of the EPO effort of the New Horizons mission. Though it is a student project, the requirements for passing all standard NASA milestones for reviews were identical to other experiments. The students performed at a professional level and SDC was delivered on time and within budget. It is now integrated to the spacecraft awaiting the scheduled launch in January of 2006. To date, SDC provided a group of about 20 students an opportunity to learn first hand how to build instruments, and graduate with years of experience in space exploration.

  20. The Cherenkov Surface Detector of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Billoir, Pierre, E-mail: billoir@lpnhe.in2p3.fr [LPNHE, CNRS/IN2P3 and Univ. P. and M. Curie and Univ. D. Diderot, 4 place Jussieu 75272 Paris Cedex 05 (France); Observatorio Pierre Auger, av. San Martín Norte, 304 5613, Malargüe (Argentina)

    2014-12-01

    The Pierre Auger Observatory detects the atmospheric showers induced by cosmic rays of ultra-high energy (UHE). It is the first one to use the hybrid technique. A set of telescopes observes the fluorescence of the nitrogen molecules on clear moonless nights, giving access to the longitudinal profile of the shower. These telescopes surround a giant array of 1600 water Cherenkov tanks (covering more than 3000 km{sup 2}), which works continuously and samples the particles reaching the ground (mainly muons, photons and electrons/positrons); the light produced within the water is recorded into FADC (Fast Analog to Digital Convertes) traces. A subsample of hybrid events provides a cross calibration of the two components. We describe the structure of the Cherenkov detectors, their sensitivity to different particles and the information they can give on the direction of origin, the energy and the nature of the primary UHE object; we discuss also their discrimination power for rare events (UHE photons or neutrinos). To cope with the variability of weather conditions and the limitations of the communication system, the procedures for trigger and real time calibration have been shared between local processors and a central acquisition system. The overall system has been working almost continuously for 10 years, while being progressively completed and increased by the creation of a dense “infill” subarray. - Highlights: • The water Cherenkov technique is used in the Surface Detector of the Pierre Auger Observatory. • Cross-calibrated with the Fluorescence Detector, it provides a measurement of the primary energy. • The spectrum of the UHE cosmic rays exhibits clearly an “ankle” and a cutoff. • The muon observed muon content of the atmospheric showers is larger than expected from the models. • Stringent limits on the flux of UHE neutrinos and photons are obtained.

  1. Study of Cherenkov Light Lateral Distribution Function around the Knee Region in Extensive Air Showers

    CERN Document Server

    Al-Rubaiee, A A; M., Marwah; Al-Douri, Y

    2015-01-01

    The Cherenkov light lateral distribution function (LDF) was simulated with the CORSIKA code, in the energy range (10^13-10^16) eV. This simulation was performed for conditions and configurations of the Tunka EAS Cherenkov array for two primary particles (p and Fe). Basing on the simulated results, many approximated functions are structured for two primary particles and different zenith angles. This allowed us to reconstruct the EAS events, which is, to determine the type and energy of the primary particles that produced showers from signal amplitudes of Cherenkov radiation which measured with Tunka Cherenkov array experiment. Comparison of the calculated LDF of Cherenkov radiation with that measured at the Tunka EAS array shows the ability for identifying of the primary particle that initiated the EAS cascades determining of its primary energy around the knee region of the cosmic ray spectrum.

  2. MEMPHYS: A large scale water Cherenkov detector at Frejus

    Energy Technology Data Exchange (ETDEWEB)

    Bellefon, A. de; Dolbeau, J.; Gorodetzky, P.; Katsanevas, S.; Patzak, T.; Salin, P.; Tonazzo, A. [APC Paris, Paris (France); Bouchez, J. [APC Paris, Paris (France)]|[DAPNIA-CEA Saclay (France); Busto, J. [CPP Marseille (France); Campagne, J.E. [LAL Orsay (France); Cavata, C.; Mosca, L. [DAPNIA-CEA Saclay (France); Dumarchez, J. [LPNHE Paris (France); Mezzetto, M. [INFN Padova (Italy); Volpe, C. [IPN Orsay (France)

    2006-07-15

    A water Cherenkov detector project, of megaton scale, to be installed in the Frejus underground site and dedicated to nucleon decay, neutrinos from supernovae, solar and atmospheric neutrinos, as well as neutrinos from a super-beam and/or a beta-beam coming from CERN, is presented and compared with competitor projects in Japan and in the USA. The performances of the European project are discussed, including the possibility to measure the mixing angle {theta}{sub 13} and the CP-violating phase {delta}. (authors)

  3. Measurements and simulations of Cherenkov light in lead fluoride crystals

    OpenAIRE

    P. Achenbach(Mainz U., Inst. Phys); Baunack, S.; Grimm, K.; Hammel, T.; von Harrach, D.,; Ginja, A. Lopes; Maas, F. E.; Schilling, E.; Stroeher, H.

    2001-01-01

    The anticipated use of more than one thousand lead fluoride (PbF2) crystals as a fast and compact Cherenkov calorimeter material in a parity violation experiment at MAMI stimulated the investigation of the light yield (L.Y.) of these crystals. The number of photoelectrons (p.e.) per MeV deposited energy has been determined with a hybrid photomultiplier tube (HPMT). In response to radioactive sources a L.Y. between 1.7 and 1.9 p.e./MeV was measured with 4% statistical and 5% systematic error. ...

  4. Nonlinear Cherenkov difference-frequency generation exploiting birefringence of KTP

    International Nuclear Information System (INIS)

    In this letter, we demonstrate the realization of nonlinear Cherenkov difference-frequency generation (CDFG) exploiting the birefringence property of KTiOPO4 (KTP) crystal. The pump and signal waves were set to be along different polarizations, thus the phase-matching requirement of CDFG, which is, the refractive index of the pump wave should be smaller than that of the signal wave, was fulfilled. The radiation angles and the intensity dependence of the CDFG on the pump wave were measured, which agreed well with the theoretical ones

  5. Towards a network of atmospheric Cherenkov detectors 7

    Energy Technology Data Exchange (ETDEWEB)

    Robin, M. [Ecole Polytechnique, 91 - Palaiseau (France); Weekes, T.C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Mori, M. [Tokyo Univ., Institute for Cosmic Ray Research (Japan); Mariotti, M. [Padova Univ., INFN (Italy); Hofmann, W.; Aharonian, F. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Sinitsyna, V. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Smith, D. [Centre d' Etudes Nucleaires de Bordeaux Gradignan, 33 - Gradignan (France); Marleau, P. [California Univ., Davis, CA (United States); Sinnis, G. [Los Alamos National Lab., NM (United States); Volk, H. [Max-Planck-Institut fur Kernphysik (Germany); Jager, O. de [South Africa Univ., North-West (South Africa); Harding, A. [NASA Goddard Space Flight Center (United States); Coppi, P. [Yale Univ., New Haven, CT (United States); Dermer, C. [Naval Research Laboratory (United States); Goldwurm, A.; Paul, J. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Puhlhofer, G. [Landessternwarte Heidelberg (Germany); Bernardini, E. [DESy-Zeuthen (Germany); Swordy, S. [Chicago Univ., IL (United States); Yoshikoshi, T. [Tokyo Univ., Tanashi (Japan). Inst. for Cosmic Ray Research; Teshima, M. [Max-Planck-Institute for Physics, Munich (Germany); Punch, M. [Astrophysique et Cosmologie (APC), College de France, 75 - Paris (France)

    2005-07-01

    This document gathers the papers and transparencies presented at the conference. The main part of the conference was organized into 6 sessions: 1) the review of present experiments (Veritas, Cangaroo-3, Magic, Hess-1, Shalon, Cactus, Cygnus-X-3...), 2) calibration and analysis techniques in VHE (very high energy) astrophysics, 3) multi-wavelength observations and phenomenology of sources, 4) the future of ground-based VHE astronomy, 5) developments in instrumentation for Cherenkov telescopes, and 6) the evolution of the field and its link with mainstream astrophysics.

  6. CELESTE an atmospheric Cherenkov telescope for high energy gamma astrophysics

    CERN Document Server

    Paré, E; Bazer-Bachi, R; Bergeret, H; Berny, F; Briand, N; Bruel, P; Cerutti, M; Collon, J; Cordier, A; Cornebise, P; Debiais, G; Dezalay, J P; Dumora, D; Durand, E; Eschstruth, P T; Espigat, P; Fabre, B; Fleury, P; Gilly, J; Gouillaud, J C; Gregory, C; Herault, N; Holder, J; Hrabovsky, M; Incerti, S; Jouenne, A; Kalt, L; Legallou, R; Lott, B; Lodygensky, O; Manigot, P; Manseri, H; Manitaz, H; Martin, M; Morano, R; Morineaud, G; Muenz, F; Musquere, A; Naurois, M D; Neveu, J; Noppe, J M; Olive, J F; Palatka, M; Pérez, A; Quebert, J; Rebii, A; Reposeur, T; Rob, L; Roy, P; Sans, J L; Sako, T; Schovanek, P; Smith, D A; Snabre, P; Villard, G

    2002-01-01

    CELESTE is an atmospheric Cherenkov telescope based on the sampling method which makes use of the de-commissioned THEMIS solar electrical plant in the French Pyrenees. A large (2000 m sup 2) mirror surface area from 40 independent heliostats followed by a secondary optic, a trigger system using analog summing techniques and signal digitization with 1 GHz flash ADCs make possible the detection of cosmic gamma-rays down to 30 GeV. This paper provides a detailed technical description of the CELESTE installation.

  7. Development of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE)

    CERN Document Server

    Ong, R A

    1998-01-01

    STACEE is a proposed atmospheric Cherenkov telescope for ground-based gamma-ray astrophysics between 25 and 500 GeV. The telescope will make use of the large solar mirrors (heliostats) available at a solar research facility to achieve an energy threshold lower than any existing ground-based instrument. This paper describes the development of STACEE, including an overview of the complete instrument design and a discussion of results from recent prototype tests at the large solar heliostat field of Sandia National Laboratories.

  8. Relativistic Cherenkov radiation in a magneto-dielectric media

    Directory of Open Access Journals (Sweden)

    2016-09-01

    Full Text Available In this paper, relativistic Cherenkov radiation was studied in a 3-D magneto-dielectric medium. Electric permittivity and magnetic permeability of the medium as functions of frequency, are assumed to satisfy Kramers- Kronig equations. A new interaction Hamiltonian, which is different from Hamiltonian term in non-relativistic state, was introduced by the quantized vector potential field and particle field operator obtained from the second quantization method. The rate of electron energy dissipation was calculated using Fermi’s golden rule.

  9. Control Software for the VERITAS Cherenkov Telescope System

    CERN Document Server

    Krawczynski, H; Sembroski, G; Gibbs, K

    2003-01-01

    The VERITAS collaboration is developing a system of initially 4 and eventually 7 Cherenkov Telescopes of the 12 m diameter class for high sensitivity gamma-ray astronomy in the >50 GeV energy range. In this contribution we describe the software that controls and monitors the various VERITAS sub-systems. The software uses an object-oriented approach to cope with the complexities that arise from using sub-groups of the 7 VERITAS telescopes to observe several sources at the same time. Inter-process communication is based on the CORBA Object Request Broker protocol and watch-dog processes monitor the sub-system performance.

  10. Novel Components for Neutron Counters

    International Nuclear Information System (INIS)

    Neutron counters for safeguards proposes have been developed during the last thirty years at the Joint Research Centre. The paper describes some of the latest developments and implementations in modern neutron counter. The design of a neutron counter is nowadays largely done by MCNP calculations. We have studied the behaviour of some components for a specific counter with respect to optimising the performance of the counter. This includes the moderator materials, thermal neutron absorbers, and 3-He detectors. Also the electronics for neutron counter has evolved over the years. Modern neutron counters require a large number of detectors and signal amplifiers to provide optimised parameters for the data interpretation. For this purpose we have developed a new pre-amplifier/amplifier/discriminator circuit which is both compact and inexpensive. The new circuit will be used in existing and future neutron counters. Concerning the treatment of the digital signal pulse train we intend to makes use of the latest advances in computer technology. A novel electronic system has been developed with a maximum of 128 input channels, which can cope with the high count rate of more than 1 million counts per second with zero dead-time. The Multi Input-Pulse Train Analysis (MI-PTA) system can be used with standard instruments, like Shift Register Analysers. However, it has been designed to perform a variety of pulse train analysis techniques itself, or in combination with a Personal Computer to which the system is connected via a High Speed USB2.0 connection. Pulse data can exchanged between the MI-PTA and PC at the rate of 480 Mb/s, allowing real time analysis on a PC and providing the basis for a Virtual Instrument approach: by modifying the software new instruments can be configured. The system consists of a number of base units, each with 8 TTL compatible inputs. Only one unit, configured as a Master, is connected to a PC. Up-to 15 Slave units can be connected to the Master via a

  11. Underground muon counters as a tool for composition analyses

    Science.gov (United States)

    Supanitsky, A. D.; Etchegoyen, A.; Medina-Tanco, G.; Allekotte, I.; Gómez Berisso, M.; Medina, M. C.

    2008-07-01

    The transition energy from galactic to extragalactic cosmic ray sources is still uncertain, but it should be associated either with the region of the spectrum known as the second knee or with the ankle. The baseline design of the Pierre Auger Observatory was optimized for the highest energies. The surface array is fully efficient above 3 × 10 18 eV and, even if the hybrid mode can extend this range below 10 18 eV, the second knee and a considerable portion of the wide ankle structure are left outside its operating range. Therefore, in order to encompass these spectral features and gain further insight into the cosmic ray composition variation along the transition region, enhancements to the surface and fluorescence components of the baseline design are being implemented that will lower the full efficiency regime of the Observatory down to ˜10 17 eV. The surface enhancements consist of a graded infilled area of standard Auger water Cherenkov detectors deployed in two triangular grids of 433 m and 750 m of spacing. Each surface station inside this area will have an associated muon counter detector. The fluorescence enhancement, on the other hand, consists of three additional fluorescence telescopes with higher elevation angle (30°-58°) than the ones in operation at present. The aim of this paper is threefold. We study the effect of the segmentation of the muon counters and find an analytical expression to correct for the under counting due to muon pile-up. We also present a detailed method to reconstruct the muon lateral distribution function for the 750 m spacing array. Finally, we study the mass discrimination potential of a new parameter, the number of muons at 600 m from the shower axis, obtained by fitting the muon data with the above mentioned reconstruction method.

  12. The Cherenkov Surface Detector of the Pierre Auger Observatory

    Science.gov (United States)

    Billoir, Pierre

    2014-12-01

    The Pierre Auger Observatory detects the atmospheric showers induced by cosmic rays of ultra-high energy (UHE). It is the first one to use the hybrid technique. A set of telescopes observes the fluorescence of the nitrogen molecules on clear moonless nights, giving access to the longitudinal profile of the shower. These telescopes surround a giant array of 1600 water Cherenkov tanks (covering more than 3000 km2), which works continuously and samples the particles reaching the ground (mainly muons, photons and electrons/positrons); the light produced within the water is recorded into FADC (Fast Analog to Digital Convertes) traces. A subsample of hybrid events provides a cross calibration of the two components. We describe the structure of the Cherenkov detectors, their sensitivity to different particles and the information they can give on the direction of origin, the energy and the nature of the primary UHE object; we discuss also their discrimination power for rare events (UHE photons or neutrinos). To cope with the variability of weather conditions and the limitations of the communication system, the procedures for trigger and real time calibration have been shared between local processors and a central acquisition system. The overall system has been working almost continuously for 10 years, while being progressively completed and increased by the creation of a dense "infill" subarray.

  13. Highlights from the High Altitude Water Cherenkov Observatory

    CERN Document Server

    Pretz, John

    2015-01-01

    The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory was completed this year at a 4100-meter site on the flank of the Sierra Negra volcano in Mexico. HAWC is a water Cherenkov ground array with the capability to distinguish 100 GeV - 100 TeV gamma rays from the hadronic cosmic-ray background. HAWC is uniquely suited to study extremely high energy cosmic-ray sources, search for regions of extended gamma-ray emission, and to identify transient gamma-ray phenomena. HAWC will play a key role in triggering multi-wavelength and multi-messenger studies of active galaxies, gamma-ray bursts, supernova remnants and pulsar wind nebulae. Observation of TeV photons also provide unique tests for a number of fundamental physics phenomena including dark matter annihilation and primordial black hole evaporation. Operation began mid-2013 with the partially-completed detector. Multi-TeV emission from the Galactic Plane is clearly seen in the first year of operation, confirming a number of known TeV sources, and a numb...

  14. INFN Camera demonstrator for the Cherenkov Telescope Array

    CERN Document Server

    Ambrosi, G; Aramo, C.; Bertucci, B.; Bissaldi, E.; Bitossi, M.; Brasolin, S.; Busetto, G.; Carosi, R.; Catalanotti, S.; Ciocci, M.A.; Consoletti, R.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Palma, F.; Desiante, R.; Di Girolamo, T.; Di Giulio, C.; Doro, M.; D'Urso, D.; Ferraro, G.; Ferrarotto, F.; Gargano, F.; Giglietto, N.; Giordano, F.; Giraudo, G.; Iacovacci, M.; Ionica, M.; Iori, M.; Longo, F.; Mariotti, M.; Mastroianni, S.; Minuti, M.; Morselli, A.; Paoletti, R.; Pauletta, G.; Rando, R.; Fernandez, G. Rodriguez; Rugliancich, A.; Simone, D.; Stella, C.; Tonachini, A.; Vallania, P.; Valore, L.; Vagelli, V.; Verzi, V.; Vigorito, C.

    2015-01-01

    The Cherenkov Telescope Array is a world-wide project for a new generation of ground-based Cherenkov telescopes of the Imaging class with the aim of exploring the highest energy region of the electromagnetic spectrum. With two planned arrays, one for each hemisphere, it will guarantee a good sky coverage in the energy range from a few tens of GeV to hundreds of TeV, with improved angular resolution and a sensitivity in the TeV energy region better by one order of magnitude than the currently operating arrays. In order to cover this wide energy range, three different telescope types are envisaged, with different mirror sizes and focal plane features. In particular, for the highest energies a possible design is a dual-mirror Schwarzschild-Couder optical scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based camera is being proposed as a solution to match the dimensions of the pixel (angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made by 9 Photo Sensor Modules (PSMs...

  15. The readout system of the MAGIC-II Cherenkov Telescope

    CERN Document Server

    Tescaro, D; Barcelo, M; Bitossi, M; Cortina, J; Fras, M; Hadasch, D; Illa, J M; Martínez, M; Mazin, D; Paoletti, R; Pegna, R

    2009-01-01

    In this contribution we describe the hardware, firmware and software components of the readout system of the MAGIC-II Cherenkov telescope on the Canary island La Palma. The PMT analog signals are transmitted by means of optical fibers from the MAGIC-II camera to the 80 m away counting house where they are routed to the new high bandwidth and fully programmable receiver boards (MONSTER), which convert back the signals from optical to electrical ones. Then the signals are split, one half provide the input signals for the level ONE trigger system while the other half is sent to the digitizing units. The fast Cherenkov pulses are sampled by low-power Domino Ring Sampler chips (DRS2) and temporarily stored in an array of 1024 capacitors. Signals are sampled at the ultra-fast speed of 2 GSample/s, which allows a very precise measurement of the signal arrival times in all pixels. They are then digitized with 12-bit resolution by an external ADC readout at 40 MHz speed. The Domino samplers are integrated in the newly...

  16. Sites in Argentina for the Cherenkov Telescope Array Project

    CERN Document Server

    Allekotte, Ingo; Etchegoyen, Alberto; García, Beatriz; Mancilla, Alexis; Maya, Javier; Ravignani, Diego; Rovero, Adrián

    2013-01-01

    The Cherenkov Telescope Array (CTA) Project will consist of two arrays of atmospheric Cherenkov telescopes to study high-energy gamma radiation in the range of a few tens of GeV to beyond 100 TeV. To achieve full-sky coverage, the construction of one array in each terrestrial hemisphere is considered. Suitable candidate sites are being explored and characterized. The candidate sites in the Southern Hemisphere include two locations in Argentina, one in San Antonio de los Cobres (Salta Province, Lat. 24:02:42 S, Long. 66:14:06 W, at 3600 m.a.s.l) and another one in El Leoncito (San Juan Province, Lat. 31:41:49 S, Long. 69:16:21 W, at 2600 m.a.s.l). Here we describe the two sites and the instrumentation that has been deployed to characterize them. We summarize the geographic, atmospheric and climatic data that have been collected for both of them.

  17. Workshop on Non-Imaging Cherenkov at High Energy

    CERN Document Server

    2013-01-01

    The non-Imaging Cherenkov air shower measurement technique holds great promise in furthering our understanding the Knee-to-Ankle region of the cosmic ray spectrum. In particular, this technique offers a unique way to determine the evolution of the cosmic ray nuclear composition, and an example is given by the recent spectrum results of the Tunka Collaboration. With this in mind, we are organizing a workshop, to be held at the University of Utah, to bring together the various practitioners of this cosmic ray measurement technique to share simulations, analyses, detector designs, and past experimental results amongst the community. The workshop will also be in support of our effort, NICHE, to extend the reach of the TA/TALE detector systems down to the Knee. We anticipate that the workshop will result in a white paper on the scientific importance of these high-energy cosmic ray measurements and on using the Cherenkov technique to accomplish them. Our goal is to have contributions from members of the previous ge...

  18. Measurements and simulations of Cherenkov light in lead fluoride crystals

    CERN Document Server

    Achenbach, P; Grimm, K; Hammel, T; Von Harrach, D; Ginja, A L; Maas, F E; Schilling, E P; Ströher, H

    2001-01-01

    The anticipated use of more than one thousand lead fluoride (PbF2) crystals as a fast and compact Cherenkov calorimeter material in a parity violation experiment at MAMI stimulated the investigation of the light yield (L.Y.) of these crystals. The number of photoelectrons (p.e.) per MeV deposited energy has been determined with a hybrid photomultiplier tube (HPMT). In response to radioactive sources a L.Y. between 1.7 and 1.9 p.e./MeV was measured with 4% statistical and 5% systematic error. The L.Y. optimization with appropriate wrappings and couplings was investigated by means of the HPMT. Furthermore, a fast Monte Carlo simulation based on the GEANT code was employed to calculate the characteristics of Cherenkov light in the PbF2 crystals. The computing time was reduced by a factor of 50 compared to the regular photon tracking method by implementing detection probabilities as a three-dimensional look-up table. For a single crystal a L.Y. of 2.1 p.e./MeV was calculated. The corresponding detector response t...

  19. The On-Site Analysis of the Cherenkov Telescope Array

    CERN Document Server

    Bulgarelli, Andrea; Zoli, Andrea; Aboudan, Alessio; Rodríguez-Vázquez, Juan José; De Cesare, Giovanni; De Rosa, Adriano; Maier, Gernot; Lyard, Etienne; Bastieri, Denis; Lombardi, Saverio; Tosti, Gino; Bergamaschi, Sonia; Beneventano, Domenico; Lamanna, Giovanni; Jacquemier, Jean; Kosack, Karl; Antonelli, Lucio Angelo; Boisson, Catherine; Borkowski, Jerzy; Buson, Sara; Carosi, Alessandro; Conforti, Vito; Colomé, Pep; Reyes, Raquel de los; Dumm, Jon; Evans, Phil; Fortson, Lucy; Fuessling, Matthias; Gotz, Diego; Graciani, Ricardo; Gianotti, Fulvio; Grandi, Paola; Hinton, Jim; Humensky, Brian; Inoue, Susumu; Knödlseder, Jürgen; Flour, Thierry Le; Lindemann, Rico; Malaguti, Giuseppe; Markoff, Sera; Marisaldi, Martino; Neyroud, Nadine; Nicastro, Luciano; Ohm, Stefan; Osborne, Julian; Oya, Igor; Rodriguez, Jerome; Rosen, Simon; Ribo, Marc; Tacchini, Alessandro; Schüssler, Fabian; Stolarczyk, Thierry; Torresi, Eleonora; Testa, Vincenzo; Wegner, Peter

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory will be one of the largest ground-based very high-energy gamma-ray observatories. The On-Site Analysis will be the first CTA scientific analysis of data acquired from the array of telescopes, in both northern and southern sites. The On-Site Analysis will have two pipelines: the Level-A pipeline (also known as Real-Time Analysis, RTA) and the level-B one. The RTA performs data quality monitoring and must be able to issue automated alerts on variable and transient astrophysical sources within 30 seconds from the last acquired Cherenkov event that contributes to the alert, with a sensitivity not worse than the one achieved by the final pipeline by more than a factor of 3. The Level-B Analysis has a better sensitivity (not be worse than the final one by a factor of 2) and the results should be available within 10 hours from the acquisition of the data: for this reason this analysis could be performed at the end of an observation or next morning. The latency (in part...

  20. Tagging Spallation Backgrounds with Showers in Water-Cherenkov Detectors

    CERN Document Server

    Li, Shirley Weishi

    2015-01-01

    Cosmic-ray muons and especially their secondaries break apart nuclei ("spallation") and produce fast neutrons and beta-decay isotopes, which are backgrounds for low-energy experiments. In Super-Kamiokande, these beta decays are the dominant background in 6--18 MeV, relevant for solar neutrinos and the diffuse supernova neutrino background. In a previous paper, we showed that these spallation isotopes are produced primarily in showers, instead of in isolation. This explains an empirical spatial correlation between a peak in the muon Cherenkov light profile and the spallation decay, which Super-Kamiokande used to develop a new spallation cut. However, the muon light profiles that Super-Kamiokande measured are grossly inconsistent with shower physics. We show how to resolve this discrepancy and how to reconstruct accurate profiles of muons and their showers from their Cherenkov light. We propose a new spallation cut based on these improved profiles and quantify its effects. Our results can significantly benefit ...

  1. Characterization study of silica aerogel for Cherenkov imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sallaz-Damaz, Y. [LPSC, IN2P3/CNRS, 53 av. des Martyrs, 38026 Grenoble Cedex (France); Derome, L., E-mail: derome@lpsc.in2p3.f [LPSC, IN2P3/CNRS, 53 av. des Martyrs, 38026 Grenoble Cedex (France); Mangin-Brinet, M.; Loth, M.; Protasov, K.; Putze, A.; Vargas-Trevino, M.; Veziant, O.; Buenerd, M. [LPSC, IN2P3/CNRS, 53 av. des Martyrs, 38026 Grenoble Cedex (France); Menchaca-Rocha, A.; Belmont, E.; Vargas-Magana, M.; Leon-Vargas, H.; Ortiz-Velasquez, A. [Instituto de Fisica, UNAM, AP 20-364, Mexico DF (Mexico); Malinine, A. [University of Maryland, College Park, MD 20742 (United States); Barao, F.; Pereira, R. [LIP, Avenida Elias Garcia 14-1, P - 1000 Lisboa (Portugal); Bellunato, T.; Matteuzzi, C.; Perego, D.L. [Universita degli Studi di Milano-Bicocca and INFN, Milano (Italy)

    2010-03-01

    Different methods to measure the characteristics of silica aerogel tiles used as Cherenkov radiator in the CREAM and AMS experiments have been investigated to optimize the detector performances. The measurement accuracy dictated by the physics objectives on the velocity and charge resolutions set stringent requirements on the aerogel refractive index determination, namely DELTAnapprox1.5x10{sup -4} and DELTAnapprox5x10{sup -4} for the AMS and CREAM imagers, respectively. The matching of such accuracies for this material turned out to be a metrological challenge, and finally led to a full R and D program, to develop an appropriate characterization procedure. Preliminary studies performed with a standard refractive index measurement technique (laser beam deviation by a prism) have revealed a significant systematic index nonuniformity for the AMS tiles at a level (10{sup -3}), not acceptable considering the aimed accuracy. These large variations were confirmed in a beam test. A second method, mapping the transverse index gradient by deflection of a laser beam entering normally to the tile has then been developed. It is shown that this procedure is suitable to reach the required accuracy, at the price of using both methods combined. The several hundreds of tiles of the radiator plane of the CREAM and AMS Cherenkov imagers were characterized using a simplified procedure, however, appropriate for each case, compromising between the amount of work and the time available. The experimental procedures and set-ups used are described in the text, and the obtained results are reported.

  2. The water Cherenkov detectors of the HAWC Observatory

    Science.gov (United States)

    Longo, Megan; Mostafa, Miguel

    2012-10-01

    The High Altitude Water Cherenkov (HAWC) observatory is a very high-energy gamma-ray detector which is currently under construction at 4100 m in Sierra Negra, Mexico. The observatory will be composed of an array of 300 Water Cherenkov Detectors (WCDs). Each WCD consists of a 5 m tall by 7.3 m wide steel tank containing a hermetically sealed plastic bag, called a bladder, which is filled with 200,000 liters of purified water. The detectors are each equipped with four upward-facing photomultiplier tubes (PMTs), anchored to the bottom of the bladder. At Colorado State University (CSU) we have the only full-size prototype outside of the HAWC site. It serves as a testbed for installation and operation procedures for the HAWC observatory. The WCD at CSU has been fully operational since March 2011, and has several components not yet present at the HAWC site. In addition to the four HAWC position PMTs, our prototype has three additional PMTs, including one shrouded (dark) PMT. We also have five scintillator paddles, four buried underneath the HAWC position PMTs, and one freely moving paddle above the volume of water. These extra additions will allow us to work on muon reconstruction with a single WCD. We will describe the analysis being done with the data taken with the CSU prototype, its impact on the HAWC detector, and future plans for the prototype.

  3. Open-structure composite mirrors for the Cherenkov Telescope Array

    CERN Document Server

    Dyrda, Michal; Niemiec, Jacek; Stodulski, Marek

    2013-01-01

    The Cherenkov Telescope Array (CTA) Observatory for high-energy gamma-ray astronomy will comprise several tens of imaging atmospheric Cherenkov telescopes (IACTs) of different size with a total reflective area of about 10,000 m$^2$. Here we present a new technology for the production of IACT mirrors that has been developed in the Institute of Nuclear Physics PAS in Krakow, Poland. An open-structure composite mirror consists of a rigid flat sandwich support structure and cast-in-mould spherical epoxy resin layer. To this layer a thin glass sheet complete with optical coating is cold-slumped to provide the spherical reflective layer of the mirror. The main components of the sandwich support structure are two flat float glass panels inter spaced with V-shape aluminum spacers of equal length. The sandwich support structure is open, thus enabling good cooling and ventilation of the mirror. A special arrangement of the aluminum spacers also prohibits water being trapped inside. The open-structure technology thus re...

  4. NECTAr: New electronics for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiov, S., E-mail: vorobiov@lpta.in2p3.f [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Feinstein, F. [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Glicenstein, J.-F. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France); Sanuy, A. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Toussenel, F.; Vincent, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France)

    2011-05-21

    The European astroparticle physics community aims to design and build the next generation array of Imaging Atmospheric Cherenkov Telescopes (IACTs), that will benefit from the experience of the existing H.E.S.S. and MAGIC detectors, and further expand the very-high energy astronomy domain. In order to gain an order of magnitude in sensitivity in the 10 GeV to >100TeV range, the Cherenkov Telescope Array (CTA) will employ 50-100 mirrors of various sizes equipped with 1000-4000 channels per camera, to be compared with the 6000 channels of the final H.E.S.S. array. A 3-year program, started in 2009, aims to build and test a demonstrator module of a generic CTA camera. We present here the NECTAr design of front-end electronics for the CTA, adapted to the trigger and data acquisition of a large IACTs array, with simple production and maintenance. Cost and camera performances are optimized by maximizing integration of the front-end electronics (amplifiers, fast analog samplers, ADCs) in an ASIC, achieving several GS/s and a few {mu}s readout dead-time. We present preliminary results and extrapolated performances from Monte Carlo simulations.

  5. A Compact High Energy Camera for the Cherenkov Telescope Array

    CERN Document Server

    Daniel, M K; Berge, D; Buckley, J; Chadwick, P M; Cotter, G; Funk, S; Greenshaw, T; Hidaka, N; Hinton, J; Lapington, J; Markoff, S; Moore, P; Nolan, S; Ohm, S; Okumura, A; Ross, D; Sapozhnikov, L; Schmoll, J; Sutcliffe, P; Sykes, J; Tajima, H; Varner, G S; Vandenbroucke, J; Vink, J; Williams, D

    2013-01-01

    The Compact High Energy Camera (CHEC) is a camera-development project involving UK, US, Japanese and Dutch institutes for the dual-mirror Small-Sized Telescopes (SST-2M) of the Cherenkov Telescope Array (CTA). Two CHEC prototypes, based on different photosensors are funded and will be assembled and tested in the UK over the next ~18 months. CHEC is designed to record flashes of Cherenkov light lasting from a few to a hundred nanoseconds, with typical RMS image width and length of ~0.2 x 1.0 degrees, and has a 9 degree field of view. The physical camera geometry is dictated by the telescope optics: a curved focal surface with radius of curvature 1m and diameter ~35cm is required. CHEC is designed to work with both the ASTRI and GATE SST-2M telescope structures and will include an internal LED flasher system for calibration. The first CHEC prototype will be based on multi-anode photomultipliers (MAPMs) and the second on silicon photomultipliers (SiPMs or MPPCs). The first prototype will soon be installed on the...

  6. The small size telescope projects for the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    The small size telescopes (SSTs), spread over an area of several square km, dominate the CTA sensitivity in the photon energy range from a few TeV to over 100 TeV, enabling for the detailed exploration of the very high energy gamma-ray sky. The proposed telescopes are innovative designs providing a wide field of view. Two of them, the ASTRI (Astrophysics con Specchi a Tecnologia Replicante Italiana) and the GCT (Gamma-ray Cherenkov Telescope) telescopes, are based on dual mirror Schwarzschild-Couder optics, with primary mirror diameters of 4 m. The third, SST-1M, is a Davies-Cotton design with a 4 m diameter mirror. Progress with the construction and testing of prototypes of these telescopes is presented. The SST cameras use silicon photomultipliers, with preamplifier and readout/trigger electronics designed to optimize the performance of these sensors for (atmospheric) Cherenkov light. The status of the camera developments is discussed. The SST sub-array will consist of about 70 telescopes at the CTA souther...

  7. Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Ogata, Yoshimune [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu [Radiotracer Imaging Group, Japan Atomic Energy Agency (Japan)

    2015-03-21

    After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since {sup 137}Cs and {sup 134}Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from {sup 137}Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm {sup 137}Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq {sup 137}Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a {sup 137}Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.

  8. Turbulent mixing condensation nucleus counter

    Science.gov (United States)

    Mavliev, Rashid

    The construction and operating principles of the Turbulent Mixing Condensation Nucleus Counter (TM CNC) are described. Estimations based on the semiempirical theory of turbulent jets and the classical theory of nucleation and growth show the possibility of detecting particles as small as 2.5 nm without the interference of homogeneous nucleation. This conclusion was confirmed experimentally during the International Workshop on Intercomparison of Condensation Nuclei and Aerosol Particle Counters (Vienna, Austria). Number concentration, measured by the Turbulent Mixing CNC and other participating instruments, is found to be essentially equal.

  9. Cherenkov and parametric (quasi-Cherenkov) radiation from relativistic charged particles moving in crystals formed by metallic wires

    CERN Document Server

    Baryshevsky, Vladimir

    2016-01-01

    Until recently, the interaction of electromagnetic waves with crystals built from parallel metallic wires (wire media) was analyzed in the approximation of isotropic scattering of the electromagnetic wave by a single wire. However, if the wires are thick (kR~1), electromagnetic wave scattering by a wire is anisotropic, i.e., the scattering amplitude depends on the scattering angle. In this work, we derive the equations that describe diffraction of electromagnetic waves and spontaneous emission of charged particles in wire media, and take into account the angular dependence of scattering amplitude. Numerical solutions of these equations show that the radiation intensity increases as the wire radius is increased and achieves its maximal value in the range kR~1. The case when the condition kR~1 is fulfilled in the THz frequency range is considered in detail. The calculations show that the instantaneous power of Cherenkov and parametric (quasi-Cherenkov) radiations from electron bunches in the crystal can be tens...

  10. Characterization of a 6×6-mm2 75-μm cell MPPC suitable for the Cherenkov Telescope Array project

    Science.gov (United States)

    Romeo, G.; Bonanno, G.; Garozzo, S.; Grillo, A.; Marano, D.; Munari, M.; Timpanaro, M. C.; Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G.

    2016-08-01

    This paper presents the latest characterization results of a novel Low Cross-Talk (LCT) large-area (6×6-mm2) Multi-Pixel Photon Counter (MPPC) detector manufactured by Hamamatsu, belonging to the recent LCT5 family and achieving a fill-factor enhancement and cross-talk reduction. In addition, the newly adopted resin coating is demonstrated to yield improved photon detection capabilities in the 290-350 nm spectral range, making the new LCT MPPC particularly suitable for emerging applications like Cherenkov Telescopes. For a 3×3-mm2 version of the new MPPC under test, a comparative analysis of the large pixel pitch (75-μm) detector versus the smaller pixel pitch (50-μm) detector is also undertaken. Furthermore, measurements of the 6×6-mm2 MPPC response versus the angle of incidence are provided for the characterized device.

  11. Quenching the scintillation in CF{sub 4} Cherenkov gas radiator

    Energy Technology Data Exchange (ETDEWEB)

    Blake, T. [Department of Physics, University of Warwick, Coventry (United Kingdom); D' Ambrosio, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Easo, S. [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Eisenhardt, S. [School of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Fitzpatrick, C. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Forty, R.; Frei, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Gibson, V. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Gys, T. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Harnew, N.; Hunt, P. [Department of Physics, University of Oxford, Oxford (United Kingdom); Jones, C.R. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Lambert, R.W. [Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam (Netherlands); Matteuzzi, C. [Sezione INFN di Milano Bicocca, Milano (Italy); Muheim, F. [School of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Papanestis, A., E-mail: antonis.papanestis@stfc.ac.uk [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Perego, D.L. [Sezione INFN di Milano Bicocca, Milano (Italy); Università di Milano Bicocca, Milano (Italy); Piedigrossi, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Plackett, R. [Imperial College London, London (United Kingdom); Powell, A. [Department of Physics, University of Oxford, Oxford (United Kingdom); and others

    2015-08-11

    CF{sub 4} is used as a Cherenkov gas radiator in one of the Ring Imaging Cherenkov detectors at the LHCb experiment at the CERN Large Hadron Collider. CF{sub 4} is well known to have a high scintillation photon yield in the near and far VUV, UV and in the visible wavelength range. A large flux of scintillation photons in our photon detection acceptance between 200 and 800 nm could compromise the particle identification efficiency. We will show that this scintillation photon emission system can be effectively quenched, consistent with radiationless transitions, with no significant impact on the photons resulting from Cherenkov radiation.

  12. Study of TeV range cosmic ray detection with Cherenkov imaging techniques

    International Nuclear Information System (INIS)

    The Monte Carlo study of cosmic ray detection in the TeV energy range has been triggered by the authors' interest in the ARTEMIS (Antimatter Research Through the Earth Moon Ion Spectrometer) proposal. The properties of cosmic ray showers detected by Cherenkov imaging in the visible domain are studied. The detection sensitivity and the accuracy of the reconstruction of the parent particle direction using Cherenkov imaging are discussed. The backbone of the study is the atmospheric shower Monte Carlo generator developed by A.M. Hillas. A comparison between nucleon and photon induced showers of Cherenkov detection is also included. (R.P.) 14 refs., 48 figs., 3 tabs

  13. Cherenkov angle and charge reconstruction with the RICH detector of the AMS experiment

    CERN Document Server

    Barão, F; Borges, J; Gonçalves, P; Pimenta, M; Pérez, I

    2003-01-01

    The Alpha Magnetic Spectrometer experiment to be installed on the International Space Station will be equipped with a proximity focusing Ring Imaging Cherenkov (RICH) detector, for measurements of particle electric charge and velocity. In this note, two possible methods for reconstructing the Cherenkov angle and the electric charge with the RICH are discussed. A Likelihood method for the Cherenkov angle reconstruction was applied leading to a velocity determination for protons with a resolution of around 0.1%. The existence of a large fraction of background photons which can vary from event to event implied a charge reconstruction method based on an overall efficiency estimation on an event-by-event basis.

  14. Calculation of the Cherenkov light yield from electromagnetic cascades in ice with Geant4

    CERN Document Server

    Rädel, Leif

    2012-01-01

    In this work we investigate and parameterize the amount and angular distribution of Cherenkov photons which are generated by electro-magnetic cascades in water or ice. We simulate electromagnetic cascades with Geant-4 for primary electrons, positrons and photons with energies ranging from 1 GeV to 10 TeV. We parameterize the total Cherenkov light yield as a function of energy, the longitudinal evolution of the Cherenkov emission along the cascade-axis and the angular distribution of photons. Furthermore, we investigate the fluctuations of the total light yield, the fluctuations in azimuth and changes of the emission with increasing age of the cascade.

  15. A Pointing Solution for the Medium Size Telescopes for the Cherenkov Telescope Array

    CERN Document Server

    Tiziani, D; Oakes, L; Schwanke, U

    2016-01-01

    An important aspect of the calibration of the Cherenkov Telescope Array is the pointing, which enables an exact alignment of each telescope and therefore allows to transform a position in the sky to a point in the plane of the Cherenkov camera and vice versa. The favoured approach for the pointing calibration of the medium size telescopes (MST) is the installation of an optical CCD-camera in the dish of the telescope that captures the position of the Cherenkov camera and of the stars in the night sky simultaneously during data taking. The adaption of this approach is presented in this proceeding.

  16. First year results of the High Altitude Water Cherenkov observatory

    CERN Document Server

    Carramiñana, Alberto

    2016-01-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view (1.8 Sr) and high duty cycle (>95% up-time) detector of unique capabilities for the study of TeV gamma-ray sources. Installed at an altitude of 4100m in the Northern slope of Volc\\'an Sierra Negra, Puebla, by a collaboration of about thirty institutions of Mexico and the United States, HAWC has been in full operations since March 2015, surveying 2/3 of the sky every sidereal day, monitoring active galaxies and mapping sources in the Galactic Plane to a detection level of 1 Crab per day. This contribution summarizes the main results of the first year of observations of the HAWC gamma-ray observatory.

  17. Suppressing the numerical Cherenkov radiation in the Yee numerical scheme

    Science.gov (United States)

    Nuter, Rachel; Tikhonchuk, Vladimir

    2016-01-01

    The next generation of laser facilities will routinely produce relativistic particle beams from the interaction of intense laser pulses with solids and/or gases. Their modeling with Particle-In-Cell (PIC) codes needs dispersion-free Maxwell solvers in order to properly describe the interaction of electromagnetic waves with relativistic particles. A particular attention is devoted to the suppression of the numerical Cherenkov instability, responsible for the noise generation. It occurs when the electromagnetic wave is artificially slowed down because of the finite mesh size, thus allowing for the high energy particles to propagate with super-luminous velocities. In the present paper, we show how a slight increase of the light velocity in the Maxwell's equations enables to suppress this instability while keeping a good overall precision of calculations.

  18. Building Medium Size Telescope Structures for the Cherenkov Telescope Array

    CERN Document Server

    Schulz, A; Oakes, L; Schlenstedt, S; Schwanke, U

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the future instrument in ground-based gamma-ray astronomy in the energy range from 20 GeV to 300 TeV. Its sensitivity will surpass that of current generation experiments by a factor $\\sim$10, facilitated by telescopes of three sizes. The performance in the core energy regime will be dominated by Medium Size Telescopes (MST) with a reflector of 12 m diameter. A full-size mechanical prototype of the telescope structure has been constructed in Berlin. The performance of the prototype is being evaluated and optimisations, among others, facilitating the assembly procedure and mass production possibilities are being implemented. We present the current status of the developments from prototyping towards pre-production telescopes, which will be deployed at the final site.

  19. Application of Geiger-mode photosensors in Cherenkov detectors

    Science.gov (United States)

    Gamal, Ahmed; Paul, Bühler; Michael, Cargnelli; Roland, Hohler; Johann, Marton; Herbert, Orth; Ken, Suzuki

    2011-05-01

    Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. We are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8×8 cells to increase the active photon detection area of an 8×8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.

  20. Early attempts at atmospheric simulations for the Cherenkov Telescope Array

    CERN Document Server

    Rulten, Cameron B

    2014-01-01

    The Cherenkov Telescope Array (CTA) will be the world's first observatory for detecting gamma-rays from astrophysical phenomena and is now in its prototyping phase with construction expected to begin in 2015/16. In this work we present the results from early attempts at detailed simulation studies performed to assess the need for atmospheric monitoring. This will include discussion of some lidar analysis methods with a view to determining a range resolved atmospheric transmission profile. We find that under increased aerosol density levels, simulated gamma-ray astronomy data is systematically shifted leading to softer spectra. With lidar data we show that it is possible to fit atmospheric transmission models needed for generating lookup tables, which are used to infer the energy of a gamma-ray event, thus making it possible to correct affected data that would otherwise be considered unusable.

  1. Coherent Cherenkov radiation as an intense THz source

    Science.gov (United States)

    Bleko, V.; Karataev, P.; Konkov, A.; Kruchinin, K.; Naumenko, G.; Potylitsyn, A.; Vaughan, T.

    2016-07-01

    Diffraction and Cherenkov radiation of relativistic electrons from a dielectric target has been proposed as mechanism for production of intense terahertz (THz) radiation. The use of an extremely short high-energy electron beam of a 4th generation light source (X-ray free electron laser) appears to be very promising. A moderate power from the electron beam can be extracted and converted into THz radiation with nearly zero absorption losses. The initial experiment on THz observation will be performed at CLARA/VELA FEL test facility in the UK to demonstrate the principle to a wider community and to develop the radiator prototype. In this paper, we present our theoretical predictions (based on the approach of polarization currents), which provides the basis for interpreting the future experimental measurements. We will also present our hardware design and discuss a plan of the future experiment.

  2. Vacuum Cherenkov radiation and bremsstrahlung from disformal couplings

    Science.gov (United States)

    van de Bruck, Carsten; Burrage, Clare; Morrice, Jack

    2016-08-01

    The simplest way to modify gravity is to extend the gravitational sector to include an additional scalar degree of freedom. The most general metric that can be built in such a theory includes disformal terms, so that standard model fields move on a metric which is the sum of the space time metric and a tensor constructed from first derivatives of the scalar. In such a theory gravitational waves and photons can propagate at different speeds, and these can in turn be different from the maximum speed limit for matter particles. In this work we show that disformal couplings can cause charged particles to emit Cherenkov radiation and bremsstrahlung apparently in vacuum, depending on the background evolution of the scalar field. We discuss the implications of this for observations of cosmic rays, and the constraints that arise for models of dark energy with disformal couplings.

  3. Vacuum Cherenkov radiation and bremsstrahlung from disformal couplings

    CERN Document Server

    van de Bruck, Carsten; Morrice, Jack

    2016-01-01

    The simplest way to modify gravity is to extend the gravitational sector to include an additional scalar degree of freedom. The most general metric that can be built in such a theory includes disformal terms, so that standard model fields move on a metric which is the sum of the space time metric and a tensor constructed from first derivatives of the scalar. In such a theory gravitational waves and photons can propagate at different speeds, and these can in turn be different from the maximum speed limit for matter particles. In this work we show that disformal couplings can cause charged particles to emit Cherenkov radiation and bremsstrahlung apparently in vacuum, depending on the background evolution of the scalar field. We discuss the implications of this for observations of cosmic rays, and the constraints that arise for models of dark energy with disformal couplings.

  4. Signal Temporal Profile of a Water Cherenkov Detector

    Science.gov (United States)

    Salazar, H.; Martinez, O.; Cotzomi, J.; Moreno, E.; Villaseñor, L.

    2003-07-01

    The suggested existence of temporal structure in the signals of extensive air showers (EAS) for energies greater than 1017 eV at core distances of about 500 m, and its correlation with important parameters of EASs has stimulated us to study this structure for showers with lower energies in an Auger water Cherenkov detector(WCD). Preliminary analysis of experimental data on the widths of signals in a WCD and their correlation with other parameters of the signal are presented. The detector was triggered by the EAS-BUAP array which operates in the region of 1014 - 1016 eV. The distance of the WCD to the EAS core is larger than 30 m.

  5. The HERMES dual-radiator ring imaging Cherenkov detector

    CERN Document Server

    Akopov, N; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van De Kerckhove, K; Van De Vyver, R; Yoneyama, S; Zhang, L F; Zohrabyan, H G

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  6. FACT: Towards Robotic Operation of an Imaging Air Cherenkov Telescope

    CERN Document Server

    Biland, A; Backes, M; Boccone, V; Braun, I; Bretz, T; Buss, J; Cadoux, F; Commichau, V; Djambazov, L; Dorner, D; Einecke, S; Eisenacher, D; Gendotti, A; Grimm, O; von Gunten, H; Haller, C; Hildebrand, D; Horisberger, U; Huber, B; Kim, K -S; Knoetig, M L; Koehne, J -H; Kraehenbuehl, T; Krumm, B; Lee, M; Lorenz, E; Lustermann, W; Lyard, E; Mannheim, K; Meharga, M; Meier, K; Montaruli, T; Neise, D; Nessi-Tedaldi, F; Overkemping, A -K; Paravac, A; Pauss, F; Renker, D; Rhode, W; Ribordy, M; Roeser, U; Stucki, J -P; Schneider, J; Steinbring, T; Temme, F; Thaele, J; Tobler, S; Viertel, G; Vogler, P; Walter, R; Warda, K; Weitzel, Q; Zaenglein, M

    2013-01-01

    The First G-APD Cherenkov Telescope (FACT) became operational at La Palma in October 2011. Since summer 2012, due to very smooth and stable operation, it is the first telescope of its kind that is routinely operated from remote, without the need for a data-taking crew on site. In addition, many standard tasks of operation are executed automatically without the need for manual interaction. Based on the experience gained so far, some alterations to improve the safety of the system are under development to allow robotic operation in the future. We present the setup and precautions used to implement remote operations and the experience gained so far, as well as the work towards robotic operation.

  7. Data compression for the First G-APD Cherenkov Telescope

    CERN Document Server

    Ahnen, M L; Bergmann, M; Biland, A; Bretz, T; Buß, J; Dorner, D; Einecke, S; Freiwald, J; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Lyard, E; Mannheim, K; Meier, K; Mueller, S; Neise, D; Neronov, A; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Steinbring, T; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2015-01-01

    The First Geiger-mode Avalanche photodiode (G-APD) Cherenkov Telescope (FACT) has been operating on the Canary island of La Palma since October 2011. Operations were automated so that the system can be operated remotely. Manual interaction is required only when the observation schedule is modified due to weather conditions or in case of unexpected events such as a mechanical failure. Automatic operations enabled high data taking efficiency, which resulted in up to two terabytes of FITS files being recorded nightly and transferred from La Palma to the FACT archive at ISDC in Switzerland. Since long term storage of hundreds of terabytes of observations data is costly, data compression is mandatory. This paper discusses the design choices that were made to increase the compression ratio and speed of writing of the data with respect to existing compression algorithms. Following a more detailed motivation, the FACT compression algorithm along with the associated I/O layer is discussed. Eventually, the performances...

  8. Evidence for Observation of Virtual Radio Cherenkov Fields

    CERN Document Server

    Bean, Alice; Snow, James

    2010-01-01

    We present evidence for observation of virtual electromagnetic fields in the radio domain from experiment T926 at the Fermilab Meson Test Beam Facility. Relativistic protons with 120 GeV energy traversed a sealed electromagnetic cavity and were observed in the radio regime of 200MHz-GHz. Closely related to ordinary Cherenkov radiation, which we also measured, the virtual fields require no acceleration for their existence. The experiment is also the first observation of fields from hadronic showers, an independent and new confirmation of coherent radio emission from ultra-relativistic particles. Conditions of very low signal to noise were overcome by a novel and unbiased filtering strategy that exploits exhaustive studies of correlations in the noise backgrounds. Linear scaling of the signal region with the number of beam particles provides evidence of coherence. Extrapolation to measurement of the field of a single relativistic proton charge is consistent within errors. Our study also illustrates new data pro...

  9. An Innovative Workspace for The Cherenkov Telescope Array

    CERN Document Server

    Costa, Alessandro; Becchini, Ugo; Massimino, Piero; Riggi, Simone; Sanchez, David; Vitello, Fabio

    2016-01-01

    The Cherenkov Telescope Array (CTA) is an initiative to build the next generation, ground-based gamma-ray observatories. We present a prototype workspace developed at INAF that aims at providing innovative solutions for the CTA community. The workspace leverages open source technologies providing web access to a set of tools widely used by the CTA community. Two different user interaction models, connected to an authentication and authorization infrastructure, have been implemented in this workspace. The first one is a workflow management system accessed via a science gateway (based on the Liferay platform) and the second one is an interactive virtual desktop environment. The integrated workflow system allows to run applications used in astronomy and physics researches into distributed computing infrastructures (ranging from clusters to grids and clouds). The interactive desktop environment allows to use many software packages without any installation on local desktops exploiting their native graphical user i...

  10. The SST-1M camera for the Cherenkov Telescope Array

    CERN Document Server

    Schioppa, E J; Christov, A.; della Volpe, D.; Favre, Y.; Heller, M.; Montaruli, T.; Porcelli, A.; Rameez, M.; Pujadas, I. Troyano; Bilnik, W.; Blocki, J.; Bogacz, L.; Bulik, T.; Curylo, M.; Dyrda, M.; Frankowski, A.; Grudniki, L.; Grudzinska, M.; Idzkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszalek, A.; Michaowski, J.; Moderski, R.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Pasko, P.; Pech, M.; Prandini, E.; Rajda, P.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowinski, M.; Stawarz, L.; Stodulska, M.; Stodulski, M.; Toscano, S.; Walter, R.; Wiecek, M.; Zagdanski, A.; Zietara, K.; Zychowski, P.

    2015-01-01

    The prototype camera of the single-mirror Small Size Telescopes (SST-1M) proposed for the Cherenkov Telescope Array (CTA) project has been designed to be very compact and to deliver high performance over thirty years of operation. The camera is composed of an hexagonal photo-detection plane made of custom designed large area hexagonal silicon photomultipliers and a high throughput, highly configurable, fully digital readout and trigger system (DigiCam). The camera will be installed on the telescope structure at the H. Niewodnicza{\\'n}ski institute of Nuclear Physics in Krakow in fall 2015. In this contribution, we review the steps that led to the development of the innovative photo-detection plane and readout electronics, and we describe the test and calibration strategy adopted.

  11. Charged Kaon Mass Measurement using the Cherenkov Effect

    CERN Document Server

    Graf, N; Abrams, R J; Akgun, U; Aydin, G; Baker, W; Barnes, P D; Bergfeld, T; Beverly, L; Bujak, A; Carey, D; Dukes, C; Duru, F; Feldman, G J; Godley, A; Gülmez, E; Günaydın, Y O; Gustafson, H R; Gutay, L; Hartouni, E; Hanlet, P; Hansen, S; Heffner, M; Johnstone, C; Kaplan, D; Kamaev, O; Kilmer, J; Klay, J; Kostin, M; Lange, D; Ling, J; Longo, M J; Lu, L C; Materniak, C; Messier, M D; Meyer, H; Miller, D E; Mishra, S R; Nelson, K; Nigmanov, T; Norman, A; Onel, Y; Paley, J M; Park, H K; Penzo, A; Peterson, R J; Raja, R; Rajaram, D; Ratnikov, D; Rosenfeld, C; Rubin, H; Seun, S; Solomey, N; Soltz, R; Swallow, E; Schmitt, R; Subbarao, P; Torun, Y; Tope, T E; Wilson, K; Wright, D; Wu, K

    2009-01-01

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 +/- 1.7 MeV/c^2, which is within 1.4 sigma of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  12. CPT-Violating, Massive Photons and Cherenkov Radiation

    CERN Document Server

    Colladay, Don

    2016-01-01

    CPT-Violating photons are well-known to have problems with energy positivity in certain cases and therefore have not been convincingly quantized to date. We find that by adding a small mass term, consistent with experimental bounds, the theory can be regulated and allows for a consistent covariant quantization procedure. This new framework is applied to a consistent quantum calculation of vacuum Cherenkov radiation rates. These rates turn out to be largely independent of the mass of the photon regulator used. In the physical regime, accessible by ultra high energy cosmic rays, the behavior of the rate is proportional to the square of the CPT-violating parameter and is not realistically observable.

  13. The HERMES dual-radiator ring imaging Cherenkov detector

    International Nuclear Information System (INIS)

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet

  14. Advances in Multi-Pixel Photon Counter technology: First characterization results

    Science.gov (United States)

    Bonanno, G.; Marano, D.; Romeo, G.; Garozzo, S.; Grillo, A.; Timpanaro, M. C.; Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G.

    2016-01-01

    Due to the recent advances in silicon photomultiplier technology, new types of Silicon Photomultiplier (SiPM), also named Multi-Pixel Photon Counter (MPPC) detectors have become recently available, demonstrating superior performance in terms of their most important electrical and optical parameters. This paper presents the latest characterization results of the novel Low Cross-Talk (LCT) MPPC families from Hamamatsu, where a noticeable fill-factor enhancement and cross-talk reduction is achieved. In addition, the newly adopted resin coating has been proven to yield improved photon detection capabilities in the 280-320 nm spectral range, making the new LCT MPPCs particularly suitable for emerging applications like Cherenkov Telescope Array, and Astroparticle Physics.

  15. Characterization study of silica aerogel for Cherenkov imaging

    International Nuclear Information System (INIS)

    Different methods to measure the characteristics of silica aerogel tiles used as Cherenkov radiator in the CREAM and AMS experiments have been investigated to optimize the detector performances. The measurement accuracy dictated by the physics objectives on the velocity and charge resolutions set stringent requirements on the aerogel refractive index determination, namely Δn∼1.5x10-4 and Δn∼5x10-4 for the AMS and CREAM imagers, respectively. The matching of such accuracies for this material turned out to be a metrological challenge, and finally led to a full R and D program, to develop an appropriate characterization procedure. Preliminary studies performed with a standard refractive index measurement technique (laser beam deviation by a prism) have revealed a significant systematic index nonuniformity for the AMS tiles at a level (10-3), not acceptable considering the aimed accuracy. These large variations were confirmed in a beam test. A second method, mapping the transverse index gradient by deflection of a laser beam entering normally to the tile has then been developed. It is shown that this procedure is suitable to reach the required accuracy, at the price of using both methods combined. The several hundreds of tiles of the radiator plane of the CREAM and AMS Cherenkov imagers were characterized using a simplified procedure, however, appropriate for each case, compromising between the amount of work and the time available. The experimental procedures and set-ups used are described in the text, and the obtained results are reported.

  16. Characterization study of silica aerogel for Cherenkov imaging

    Science.gov (United States)

    Sallaz-Damaz, Y.; Derome, L.; Mangin-Brinet, M.; Loth, M.; Protasov, K.; Putze, A.; Vargas-Trevino, M.; Véziant, O.; Buénerd, M.; Menchaca-Rocha, A.; Belmont, E.; Vargas-Magaña, M.; Léon-Vargas, H.; Ortiz-Velàsquez, A.; Malinine, A.; Baraõ, F.; Pereira, R.; Bellunato, T.; Matteuzzi, C.; Perego, D. L.

    2010-03-01

    Different methods to measure the characteristics of silica aerogel tiles used as Cherenkov radiator in the CREAM and AMS experiments have been investigated to optimize the detector performances. The measurement accuracy dictated by the physics objectives on the velocity and charge resolutions set stringent requirements on the aerogel refractive index determination, namely Δn˜1.5×10-4 and Δn˜5×10-4 for the AMS and CREAM imagers, respectively. The matching of such accuracies for this material turned out to be a metrological challenge, and finally led to a full R&D program, to develop an appropriate characterization procedure. Preliminary studies performed with a standard refractive index measurement technique (laser beam deviation by a prism) have revealed a significant systematic index nonuniformity for the AMS tiles at a level (10-3), not acceptable considering the aimed accuracy. These large variations were confirmed in a beam test. A second method, mapping the transverse index gradient by deflection of a laser beam entering normally to the tile has then been developed. It is shown that this procedure is suitable to reach the required accuracy, at the price of using both methods combined. The several hundreds of tiles of the radiator plane of the CREAM and AMS Cherenkov imagers were characterized using a simplified procedure, however, appropriate for each case, compromising between the amount of work and the time available. The experimental procedures and set-ups used are described in the text, and the obtained results are reported.

  17. Optical properties of water for the Yangbajing water cherenkov detector

    Science.gov (United States)

    Gao, Shang-qi; Sun, Zhi-bin; Jiang, Yuan-da; Wang, Chao; Du, Ke-ming

    2011-08-01

    Cherenkov radiation is used to study the production of particles during collisions, cosmic rays detections and distinguishing between different types of neutrinos and electrons. The optical properties of water are very important to the research of Cherenkov Effect. Lambert-beer law is a method to study the attenuation of light through medium. In this paper, optical properties of water are investigated by use of a water attenuation performance test system. The system is composed of the light-emitting diode (LED) light source and the photon receiver models. The LED light source model provides a pulse light signal which frequency is 1 kHz and width is 100ns. In photon receiver model, a high sensitivity photomultiplier tube (PMT) is used to detect the photons across the water. Because the output voltage amplitude of PMT is weak which is from 80mv to 120mV, a low noise pre-amplifier is used to improve the detector precise. An effective detector maximum time window of PMT is 100ns for a long lifetime, so a peak holder circuit is used to hold the maximum peak amplitude of PMT for the induced photons signal before the digitalization. In order to reduce the noise of peak holder, a multi-pulse integration is used before the sampling of analog to digital converter. At last, the detector of photons from the light source to the PMT across the water is synchronized to the pulse width of the LED. In order to calculate the attenuation coefficient and attenuation length of water precisely, the attenuation properties of air-to-water boundary is considered in the calculation.

  18. Basic Research Needs for Countering Terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, W.; Michalske, T.; Trewhella, J.; Makowski, L.; Swanson, B.; Colson, S.; Hazen, T.; Roberto, F.; Franz, D.; Resnick, G.; Jacobson, S.; Valdez, J.; Gourley, P.; Tadros, M.; Sigman, M.; Sailor, M.; Ramsey, M.; Smith, B.; Shea, K.; Hrbek, J.; Rodacy, P.; Tevault, D.; Edelstein, N.; Beitz, J.; Burns, C.; Choppin, G.; Clark, S.; Dietz, M.; Rogers, R.; Traina, S.; Baldwin, D.; Thurnauer, M.; Hall, G.; Newman, L.; Miller, D.; Kung, H.; Parkin, D.; Shuh, D.; Shaw, H.; Terminello, L.; Meisel, D.; Blake, D.; Buchanan, M.; Roberto, J.; Colson, S.; Carling, R.; Samara, G.; Sasaki, D.; Pianetta, P.; Faison, B.; Thomassen, D.; Fryberger, T.; Kiernan, G.; Kreisler, M.; Morgan, L.; Hicks, J.; Dehmer, J.; Kerr, L.; Smith, B.; Mays, J.; Clark, S.

    2002-03-01

    To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism.

  19. Large acceptance forward Cherenkov detector for the BRAHMS experiment at RHIC

    Science.gov (United States)

    Budick, B.; Beavis, D.; Chasman, C.

    2010-09-01

    A multi-element detector based on Cherenkov radiation in plastic and on photomultiplier tubes has been constructed that is particularly useful in collider experiments. The detector covers the pseudorapidity interval 3.23BRAHMS.

  20. Ionospheric propagation effects for UHE neutrino detection with the lunar Cherenkov technique

    CERN Document Server

    McFadden, Rebecca; Bray, Justin

    2013-01-01

    Lunar Cherenkov experiments aim to detect nanosecond pulses of Cherenkov emission produced during UHE cosmic ray or neutrino interactions in the lunar regolith. Pulses from these interactions are dispersed, and therefore reduced in amplitude, during propagation through the Earth's ionosphere. Pulse dispersion must therefore be corrected to maximise the received signal to noise ratio and subsequent chances of detection. The pulse dispersion characteristic may also provide a powerful signature to determine the lunar origin of a pulse and discriminate against pulses of terrestrial radio frequency interference (RFI). This characteristic is parameterised by the instantaneous Total Electron Content (TEC) of the ionosphere and therefore an accurate knowledge of the ionospheric TEC provides an experimental advantage for the detection and identification of lunar Cherenkov pulses. We present a new method to calibrate the dispersive effect of the ionosphere on lunar Cherenkov pulses using lunar Faraday rotation measurem...

  1. Studies on the Cherenkov Effect for Improved Time Resolution of TOF-PET

    CERN Document Server

    Brunner, S E; Marton, J; Suzuki, K; Hirtl, A

    2013-01-01

    With the newly gained interest in the time of flight method for positron emission tomography (TOF-PET), many options for pushing the time resolution to its borders have been investigated. As one of these options the exploitation of the Cherenkov effect has been proposed, since it allows to bypass the scintillation process and therefore provides almost instantaneous response to incident 511keV annihilation photons. Our simulation studies on the yield of Cherenkov photons, their arrival rate at the photon detector and their angular distribution reveal a significant influence by Cherenkov photons on the rise time of inorganic scintillators - a key-parameter for TOF in PET. A measurement shows the feasibility to detect Cherenkov photons in this low energy range.

  2. Low-Noise Operation of All-Fiber Femtosecond Cherenkov Laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Villanueva Ibáñez, Guillermo Eduardo; Lægsgaard, Jesper;

    2013-01-01

    We investigate the noise properties of a femtosecond all-fiber Cherenkov radiation source with emission wavelength around 600 nm, based on an Yb-fiber laser and a highly-nonlinear photonic crystal fiber. A relative intensity noise as low as - 103 dBc/Hz, corresponding to 2.48 % pulse......-to-pulse fluctuation in energy, was observed at the Cherenkov radiation output power of 4.3 mW, or 150 pJ pulse energy. This pulse-to-pulse fluctuation is at least 10.6 dB lower compared to spectrally-sliced supercontinuum sources traditionally used for ultrafast fiberbased generation at visible wavelengths. Low noise...... makes allfiber Cherenkov sources promising for biophotonics applications such as multi-photon microscopy, where minimum pulse-to-pulse energy fluctuation is required. We present the dependency of the noise figure on both the Cherenkov radiation output power and its spectrum....

  3. Extension of Cherenkov Light LDF Parametrization for Tunka and Yakutsk EAS Arrays

    Indian Academy of Sciences (India)

    A. A. Al-Rubaiee

    2014-12-01

    The Cherenkov light Lateral Distribution Function (LDF) from particles initiated Extensive Air Showers (EAS) with ultrahigh energies ( > 1016 eV) was simulated using CORSIKA program for configuration of Tunka and Yakutsk EAS arrays for different primary particles (p, Fe and O2) and different zenith angles. By depending on the Breit–Wigner function, a parametrization of the Cherenkov light LDF was reconstructed on the basis of this simulation as a function of the primary energy. The comparison of the approximated Cherenkov light LDF with that measured on Tunka and Yakutsk EAS arrays gives the possibility of identification of energy spectrum and mass composition of particles initiating EAS about the knee region of the cosmic ray spectrum. The extrapolation of approximated Cherenkov light LDF for energies 20, 30 and 50 PeV was obtained for different primary particles and different zenith angles.

  4. Simulated response of Cherenkov glass detectors to MeV photons

    Energy Technology Data Exchange (ETDEWEB)

    Hayward, J P [University of Tennessee, Knoxville (UTK); Bell, Zane W [ORNL; Boatner, Lynn A [ORNL; Hobbs, C. L. [University of Tennessee, Knoxville (UTK); Johnson, Rose E [ORNL; Ramey, Joanne Oxendine [ORNL; Jellison Jr, Gerald Earle [ORNL

    2012-01-01

    Cherenkov detectors are widely used for par ticle identification in high-energy physics and for track imaging in astrophysics. Glass Cherenkov detectors that are sensitive to beta emissions originating from neutron activation have been demonstrated recently as a potential replacement for activation foils. In this work, we evaluate Cherenkov glass detectors for sensitivity and specificity to MeV photons through simulations using Geant4. The model has been previously compared with measurements of isotopic gamma sources. It includes Cherenkov gener ation, light transport, light collection, photoelectron pro duction and time response in photomultiplier tubes. The model incorporates measured, wavelength-dependent absorption and refractive index data. Simulations are con ducted for glasses the size of fabricated samples and also for the same glasses in monolithic, square-meter-size. Implications for selective detection of MeV photons are discussed.

  5. Very high energy emission of Crab-like pulsars driven by the Cherenkov drift radiation

    CERN Document Server

    Osmanov, Z

    2015-01-01

    In this paper we study the generation of very high energy (VHE) emission in Crab-like pulsars driven by means of the feedback of Cherenkov drift waves on distribution of magnetospheric electrons. We have found that the unstable Cherenkov drift modes lead to the quasi-linear diffusion (QLD), keeping the pitch angles from vanishing, which in turn, maintains the synchrotron mechanism. Considering the Crab-like pulsars it has been shown that the growth rate of the Cherenkov drift instability (ChDI) is quite high, indicating high efficiency of the process. Analyzing the mechanism for the typical parameters we have found that the Cherenkov drift emission from the extreme UV to hard $X$-rays is strongly correlated with the VHE synchrotron emission in the GeV band.

  6. Angular width of Cherenkov radiation with inclusion of multiple scattering: an path-integral approach

    CERN Document Server

    Zheng, Jian

    2016-01-01

    Visible Cherenkov radiation can offers a method of the measurement of the velocity of a charged particles. The angular width of the radiation is important since it determines the resolution of the velocity measurement. In this article, the angular width of Cherenkov radiation with inclusion of multiple scattering is calculated through the path-integral method, and and the analytical expressions are presented. The condition that multiple scattering process dominates the angular distribution is obtained.

  7. Angular width of the Cherenkov radiation with inclusion of multiple scattering

    Science.gov (United States)

    Zheng, Jian

    2016-06-01

    Visible Cherenkov radiation can offer a method of the measurement of the velocity of charged particles. The angular width of the radiation is important since it determines the resolution of the velocity measurement. In this article, the angular width of Cherenkov radiation with inclusion of multiple scattering is calculated through the path-integral method, and the analytical expressions are presented. The condition that multiple scattering processes dominate the angular distribution is obtained.

  8. Intense Cherenkov-type terahertz electromagnetic radiation from ultrafast laser-plasma interaction

    Institute of Scientific and Technical Information of China (English)

    Hu Qiang-Lin; Liu Shi-Bing; Li Wei

    2008-01-01

    A Cherenkov-type terahertz electromagnetic radiation is revealed, which results efficiently from the collective effects in the time-domain of ultrafast pulsed electron current produced by ultrafast intense laser-plasma interaction.The emitted pulse waveform and spectrum, and the dependence of laser pulse parameters on the structure of the radiation field are investigated numerically. The condition of THz radiation generation in this regime and Cherenkov geometry of the radiation field are studied analytically.

  9. Ionospheric propagation effects for UHE neutrino detection with the lunar Cherenkov technique

    OpenAIRE

    McFadden, Rebecca; Ekers, Ron; Bray, Justin

    2013-01-01

    Lunar Cherenkov experiments aim to detect nanosecond pulses of Cherenkov emission produced during UHE cosmic ray or neutrino interactions in the lunar regolith. Pulses from these interactions are dispersed, and therefore reduced in amplitude, during propagation through the Earth's ionosphere. Pulse dispersion must therefore be corrected to maximise the received signal to noise ratio and subsequent chances of detection. The pulse dispersion characteristic may also provide a powerful signature ...

  10. Cherenkov Radiation from $e^+e^-$ Pairs and Its Effect on $\

    CERN Document Server

    Mandal, S K; Jackson, David J; Mandal, Sourav K.; Klein, Spencer R.

    2005-01-01

    We calculate the Cherenkov radiation from an $e^+e^-$ pair at small separations, as occurs shortly after a pair conversion. The radiation is reduced (compared to that from two independent particles) when the pair separation is smaller than the wavelength of the emitted light. We estimate the reduction in light in large electromagnetic showers, and discuss the implications for detectors that observe Cherenkov radiation from showers in the Earth's atmosphere, as well as in oceans and Antarctic ice.

  11. Photosensor Characterization for the Cherenkov Telescope Array: Silicon Photomultiplier versus Multi-Anode Photomultiplier Tube

    OpenAIRE

    Bouvier, Aurelien; Gebremedhin, Lloyd; Johnson, Caitlin; Kuznetsov, Andrey; Williams, David; Otte, Nepomuk; Strausbaugh, Robert; Hidaka, Naoya; Tajima, Hiroyasu; Hinton, Jim; White, Richard; Errando, Manel; Mukherjee, Reshmi

    2013-01-01

    Photomultiplier tube technology has been the photodetector of choice for the technique of imaging atmospheric Cherenkov telescopes since its birth more than 50 years ago. Recently, new types of photosensors are being contemplated for the next generation Cherenkov Telescope Array. It is envisioned that the array will be partly composed of telescopes using a Schwarzschild-Couder two mirror design never built before which has significantly improved optics. The camera of this novel optical design...

  12. Measurable difference in Cherenkov light between gamma and hadron induced EAS

    Energy Technology Data Exchange (ETDEWEB)

    Cabot, H.; Meynadier, Ch. [Universite de Perpignan, Groupe de Physique Fondamentale, Perpignan (France); Sobczynska, D. [Experimental Physics Department, University of Lodz, Lodz (Poland); Szabelska, B. [Soltan Institute for Nuclear Studies, Lodz (Poland); Szabelski, J. [Universite de Perpignan, Groupe de Physique Fondamentale, Perpignan (France)]|[Soltan Institute for Nuclear Studies, Lodz (Poland); Wibig, T. [Experimental Physics Department, University of Lodz, Lodz (Poland)

    1997-12-31

    We describe the possibly measurable difference in the Cherenkov light component of EAS induced by en electromagnetic particle (i.e. e{sup +}, e{sup -} or {gamma}) and induced by a hadron (i.e. proton or heavier nuclei) in TeV range. The method can be applied in experiments which use wavefront sampling method of EAS Cherenkov light detection (e.g. THEMISTOCLE, ASGAT). (author) 16 refs, 9 figs

  13. Prototyping the graphical user interface for the operator of the Cherenkov Telescope Array

    OpenAIRE

    Sadeh, Iftach; Oya, Igor; Schwarz, Joseph; Pietriga, Emmanuel

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a planned gamma-ray observatory. CTA will incorporate about 100 imaging atmospheric Cherenkov telescopes (IACTs) at a Southern site, and about 20 in the North. Previous IACT experiments have used up to five telescopes. Subsequently, the design of a graphical user interface (GUI) for the operator of CTA involves new challenges. We present a GUI prototype, the concept for which is being developed in collaboration with experts from the field of Human-Comput...

  14. Science Experimenter: Experimenting with a Geiger Counter.

    Science.gov (United States)

    Mims, Forrest M., III

    1992-01-01

    Describes the use of geiger counters for scientific investigations and experiments. Presents information about background radiation, its sources and detection. Describes how geiger counters work and other methods of radiation detection. Provides purchasing information for geiger counters, related computer software and equipment. (MCO)

  15. Counter-Rotation in Disk Galaxies

    CERN Document Server

    Corsini, E M

    2014-01-01

    Counter-rotating galaxies host two components rotating in opposite directions with respect to each other. The kinematic and morphological properties of lenticulars and spirals hosting counter-rotating components are reviewed. Statistics of the counter-rotating galaxies and analysis of their stellar populations provide constraints on the formation scenarios which include both environmental and internal processes.

  16. Risk assessment for one-counter threads

    NARCIS (Netherlands)

    A. Ponse; M.B. van der Zwaag

    2008-01-01

    Threads as contained in a thread algebra are used for the modeling of sequential program behavior. A thread that may use a counter to control its execution is called a ‘one-counter thread’. In this paper the decidability of risk assessment (a certain form of action forecasting) for one-counter threa

  17. Counter-discourse in Zimbabwean literature

    NARCIS (Netherlands)

    Mangena, Tendai

    2015-01-01

    Counter-Discourse in Zimbabwean Literature is a study of specific aspects of counter-discursive Zimbabwean narratives in English. In discussing the selected texts, my thesis is based on Terdiman’s (1989) the postcolonial concept of counter-discourse. In Zimbabwean literature challenges to a dominant

  18. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    International Nuclear Information System (INIS)

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given. -- Highlights: • The technique of the water Cherenkov array is studied. • Engineering issues of the water Cherenkov array are investigated. • The PMTs and electronics of the water Cherenkov array are tested. • Some key parameters of the water Cherenkov array are measured

  19. Angular distribution of Cherenkov radiation from relativistic heavy ions taking into account deceleration in the radiator

    Science.gov (United States)

    Bogdanov, O. V.; Fiks, E. I.; Pivovarov, Yu. L.

    2012-09-01

    Numerical methods are used to study the dependence of the structure and the width of the angular distribution of Vavilov-Cherenkov radiation with a fixed wavelength in the vicinity of the Cherenkov cone on the radiator parameters (thickness and refractive index), as well as on the parameters of the relativistic heavy ion beam (charge and initial energy). The deceleration of relativistic heavy ions in the radiator, which decreases the velocity of ions, modifies the condition of structural interference of the waves emitted from various segments of the trajectory; as a result, a complex distribution of Vavilov-Cherenkov radiation appears. The main quantity is the stopping power of a thin layer of the radiator (average loss of the ion energy), which is calculated by the Bethe-Bloch formula and using the SRIM code package. A simple formula is obtained to estimate the angular distribution width of Cherenkov radiation (with a fixed wavelength) from relativistic heavy ions taking into account the deceleration in the radiator. The measurement of this width can provide direct information on the charge of the ion that passes through the radiator, which extends the potentialities of Cherenkov detectors. The isotopic effect (dependence of the angular distribution of Vavilov-Cherenkov radiation on the ion mass) is also considered.

  20. Discharge quenching circuit for counters

    International Nuclear Information System (INIS)

    A circuit for quenching discharges in gas-discharge detectors with working voltage of 3-5 kV based on transistors operating in the avalanche mode is described. The quenching circuit consists of a coordinating emitter follower, amplifier-shaper for avalanche key cascade control which changes potential on the counter electrodes and a shaper of discharge quenching duration. The emitter follower is assembled according to a widely used flowsheet with two transistors. The circuit permits to obtain a rectangular quenching pulse with front of 100 ns and an amplitude of up to 3.2 kV at duration of 500 μm-8 ms. Application of the quenching circuit described permits to obtain countering characteristics with the slope less than or equal to 0.02%/V and plateau extent greater than or equal to 300 V

  1. Counter support for WA35

    CERN Multimedia

    1977-01-01

    This assembly was equipped with 78 counters, each consisting of a lucite cone, to produce Cerenkov light, and a CsI scintillator plate of 3 mm thickness glued on the face of the cone. The experiment WA35 was set-up in the s1 beam (West Hall) by the Darmstadt-Heidelberg-Virginia-Warsaw Collaboration to measure angular distributions and multiplicities of pions and recoil protons produced by hadrons interacting in nuclei. (See Annual Report 1976 p. 39)

  2. Proportional counter as neutron detector

    Science.gov (United States)

    Braby, L. A.; Badhwar, G. D.

    2001-01-01

    A technique to separate out the dose, and lineal energy spectra of neutrons and charged particles is described. It is based on using two proportional counters, one with a wall, and the other with similar characteristics but wall made from a non-hydrogen containing material. Results of a calibration in a neutron field are also shown. c2001 Elsevier Science Ltd. All rights reserved.

  3. New electronics for the Cherenkov Telescope Array (NECTAr)

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, C.L., E-mail: christopher.naumann@lpnhe.in2p3.fr [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU, CEA/DSM, Saclay, Gif-sur-Yvette (France); Bolmont, J.; Corona, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Dzahini, D. [LPSC, Universite Joseph Fourier, INPG and IN2P3/CNRS, Grenoble (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona (Spain); Glicenstein, J.-F.; Guilloux, F. [IRFU, CEA/DSM, Saclay, Gif-sur-Yvette (France); Nayman, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Rarbi, F. [LPSC, Universite Joseph Fourier, INPG and IN2P3/CNRS, Grenoble (France); Sanuy, A. [ICC-UB, Universitat Barcelona (Spain); Tavernet, J.-P.; Toussenel, F.; Vincent, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Vorobiov, S. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); DESY Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany)

    2012-12-11

    The international CTA consortium has recently entered into its preparatory phase towards the construction of the next-generation Cherenkov Telescope Array CTA. This experiment will be a successor, and based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS, and aims to significantly improve upon the sensitivity as well as the energy range of its highly successful predecessors. Construction is planned to begin by 2013, and when finished, CTA will be able to explore the highest-energy gamma ray sky in unprecedented detail. To achieve this increase in sensitivity and energy range, CTA will employ the order of 100 telescopes of three different sizes on two sites, with around 1000-4000 channels per camera, depending on the telescope size. To equip and reliably operate the order of 100000 channels of photodetectors (compared to 6000 of the H.E.S.S. array), a new kind of flexible and powerful yet inexpensive front-end hardware will be required. One possible solution is pursued by the NECTAr (New Electronics for the Cherenkov Telescope Array) project. Its main feature is the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC, which will allow very fast readout performances while significantly reducing the cost and the power consumption per channel. Also included is a low-cost FPGA for digital treatment and online data processing, as well as an Ethernet connection. Other priorities of NECTAr are the modularity of the system, a high degree of flexibility in the trigger system as well as the possibility of flexible readout modes to optimise the signal-to-noise ratio while at the same time allowing a significant reduction of data rates, both of which could improve the sensitivity of CTA compared to current detection systems. This paper gives an overview over the development work for the Nectar system, with particular focus on its main

  4. WIMP search and a Cherenkov detector prototype for ILC polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Christoph

    2011-10-15

    The planned International Linear Collider (ILC) will be an essential experiment to precisely determine the properties and structure of physics at the TeV scale. An important feature of the ILC is the possibility to use polarized electrons and positrons. In part 1 of this thesis, a model independent search for Weakly Interacting Massive Particles (WIMPs) at ILC is presented. The signal channel under study is direct WIMP pair production with associated Initial State Radiation (ISR), e{sup +}e{sup -} {yields} {chi}{chi}{gamma}, where the WIMPs leave the detector without any further interaction, and only the emitted photon is detected. From the energy spectrum of the detected photons the coupling structure, cross sections, masses and the quantum number of the dominant partial wave in the production process can be inferred. The analysis includes the dominant SM, as well as machine-induced backgrounds, and is performed using a full simulation of the ILD detector concept. For an integrated luminosity of L=500 fb{sup -1}, the signal cross sections can be measured to a precision of 3%, dominated by systematic uncertainties on the polarization measurement of the initial electrons and positrons. Masses can be measured to a precision of up to 2% by a comparison of the data photon spectrum to parametrized template spectra. In part 2 of this thesis, a Cherenkov detector prototype for Compton polarimetry at ILC is presented. For the polarization measurement a systematic uncertainty of {delta} P/P = 0.25% or better is envisioned. To achieve this goal, the Cherenkov detector has to be precisely aligned with the fan of Compton scattered electrons and its signal response needs to be highly linear. For the detector prototype data driven alignment strategies have been developed by comparing data recorded at the Elsa accelerator in Bonn, Germany, with detailed Geant4 simulations. With the use of multi-anode photomultipliers, data driven alignment strategies promise to provide the

  5. SU-E-I-87: Calibrating Cherenkov Emission to Match Superficial Dose in Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Pogue, B [Dartmouth College, Hanover, NH (United States); Glaser, A; Gladstone, D [Dartmouth Hitchcock-Medical Center, Hanover, NH (United States)

    2015-06-15

    Purpose: Through Monte Carlo simulations and phantom studies, the dominant factors affecting the calibration of superficial Cherenkov intensity to absolute surface dose was investigated, including tissue optical properties, curvatures, beam properties and imaging angle. Methods: The phasespace files for the TrueBeam system from Varian were used in GAMOS (a GEANT4 based Monte Carlo simulation toolkit) to simulate surface emission Cherenkov signals and the correlated deposited dose. The parameters examined were: i) different tissue optical properties (skin color from light to dark), ii) beam types (X-ray and electron beam), iii) beam energies, iv) thickness of tissues (2.5 cm to 20 cm), v) SSD (80 cm to 120 cm), vi) field sizes (0.5×0.5 cm2 to 20×20 cm2), vii) entrance/exit sides, viii) curvatures (cylinders with diameters from 2.5 cm to 20cm) and ix) imaging angles (0 to 90 degrees). In a specific case, for any Cherenkov photon emitted from the surface, the original position and direction, final position and direction and energy were recorded. Similar experimental measurements were taken in a range of the most pertinent parameters using tissue phantoms. Results: Combining the dose distribution and sampling sensitivity of Cherenkov emission, quantitatively accurate calibration factors (the amount of radiation dose represented by a single Cherenkov photon) were calculated. The data showed relatively large dependence upon different optical properties, curvature, entrance/exit and beam types. For a diffusive surface, the calibration factor was insensitive to imaging angles smaller than 60 degrees. Normalization with the reflectance image was experimentally validated as a simple and accurate method for calibrations of different optical properties. Conclusion: This study sheds light on how and to what extent different conditions affect the calibration from Cherenkov intensity to absolute superficial dose and provides practical solutions to allow quantitative Cherenkov

  6. Development of Ring Imaging Cherenkov Detectors for LHCb

    CERN Document Server

    Bellunato, T; Matteuzzi, C

    2003-01-01

    The work described in this thesis has been carried out in the framework of the development program of the Ring Imaging Cherenkov (RICH) detectors of the LHCb experiment. LHCb will operate at the Large Hadron Collider at CERN, and it will perform a wide range of measurements in the b-hadrons realm. The extensive study of CP violation and rare decays in the b-hadron system are the main goals of the experiment. An introduction to CP violation in hadronic interactions is given in chapter 1. The high b-b bar production cross section at the LHC energy will provide an unprecedented amount of data which will give LHCb a unique opportunity for precision tests on a large set of physics channels as well as a promising discovery potential for sources of CP violation arising from physics beyond the Standard Model. The experiment is designed in such a way to optimally match the kinematic structure of events where a pair of b quarks is produced in the collision between to 7 GeV protons. Chapter 2 is devoted to an overview o...

  7. Design constraints on Cherenkov telescopes with Davies-Cotton reflectors

    CERN Document Server

    Bretz, Thomas

    2013-01-01

    This paper discusses the construction of high-performance ground-based gamma-ray Cherenkov telescopes with a Davies-Cotton reflector. For the design of such telescopes, usually physics constrains the field-of-view, while the photo-sensor size is defined by limited options. Including the effect of light-concentrators in front of the photo sensor, it is demonstrated that these constraints are enough to mutually constrain all other design parameters. The dependability of the various design parameters naturally arises once a relationship between the value of the point-spread functions at the edge of the field-of-view and the pixel field-of-view is introduced. To be able to include this constraint into a system of equations, an analytical description for the point-spread function of a tessellated Davies-Cotton reflector is derived from Taylor developments and ray-tracing simulations. Including higher order terms renders the result precise on the percent level. Design curves are provided within the typical phase sp...

  8. An outdoor test facility for the Cherenkov Telescope Array mirrors

    CERN Document Server

    Medina, M C; Maya, J; Mancilla, A; Larrarte, J J; Rasztocky, E; Benitez, M; Dipold, J; Platino, M

    2013-01-01

    The Cherenkov Telescopes Array (CTA) is planned to be an Observatory for very high energy gamma ray astronomy and will consist of several tens of telescopes which account for a reflective surface of more than 10000 m$^2$. The mirrors of these telescopes will be formed by a set of facets. Different technological solutions, for a fast and cost efficient production of light-weight mirror facets are under test inside the CTA Consortium. Most of them involve composite structures whose behavior under real observing conditions is not yet fully tested. An outdoor test facility has been built in one of the candidate sites for CTA, in Argentina (San Antonio de los Cobres [SAC], 3600m a.s.l) in order to monitor the optical and mechanical properties of these facets exposed to the local atmospheric conditions for a given period of time. In this work we present the preliminary results of the first Middle Size Telescope (MST) mirror-monitoring campaign, started in 2013.

  9. Monte Carlo design studies for the Cherenkov Telescope Array

    CERN Document Server

    Bernlöhr, K; Becherini, Y; Bigas, O Blanch; Carmona, E; Colin, P; Decerprit, G; Di Pierro, F; Dubois, F; Farnier, C; Funk, S; Hermann, G; Hinton, J A; Humensky, T B; Khélifi, B; Kihm, T; Komin, N; Lenain, J -P; Maier, G; Mazin, D; Medina, M C; Moralejo, A; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Parsons, R D; Arribas, M Paz; Pedaletti, G; Pita, S; Prokoph, H; Rulten, C B; Schwanke, U; Shayduk, M; Stamatescu, V; Vallania, P; Vorobiov, S; Wischnewski, R; Yoshikoshi, T; Zech, A

    2012-01-01

    The Cherenkov Telescopes Array (CTA) is planned as the future instrument for very-high-energy (VHE) gamma-ray astronomy with a wide energy range of four orders of magnitude and an improvement in sensitivity compared to current instruments of about an order of magnitude. Monte Carlo simulations are a crucial tool in the design of CTA. The ultimate goal of these simulations is to find the most cost-effective solution for given physics goals and thus sensitivity goals or to find, for a given cost, the solution best suited for different types of targets with CTA. Apart from uncertain component cost estimates, the main problem in this procedure is the dependence on a huge number of configuration parameters, both in specifications of individual telescope types and in the array layout. This is addressed by simulation of a huge array intended as a superset of many different realistic array layouts, and also by simulation of array subsets for different telescope parameters. Different analysis methods -- in use with cu...

  10. TORCH - a Cherenkov-based time-of-flight detector

    CERN Document Server

    van Dijk, M W U; Cowie, E N; Cussans, D; D' Ambrosio, C; Forty, R; Frei, C; Gys, T; Piedigrossi, D; Castillo Garcia, L; Fopma, J; Gao, R; Harnew, N; Keri, T

    2014-01-01

    TORCH is an innovative high-precision time-of-flight system to provide particle identification in the difficult intermediate momentum region up to 10 GeV/c. It is also suitable for large-area applications. The detector provides a time-of-flight measurement from the imaging of Cherenkov photons emitted in a 1 cm thick quartz radiator. The photons propagate by total internal reflection to the edge of the quartz plate, where they are focused onto an array of photon detectors at the periphery. A time-of-flight resolution of about 10–15 ps per incident charged particle needs to be achieved for a three sigma kaon–pion separation up to 10 GeV/c momentum for the TORCH located 9.5 m from the interaction point. Given ∼ 30 detected photons per incident charged particle, this requires measuring the time-of-arrival of individual photons to about 70 ps. This paper will describe the design of a TORCH prototype involving a number of ground-breaking and challenging techniques.

  11. Status of the Cherenkov Telescope Array's Large Size Telescopes

    CERN Document Server

    Cortina, J

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory, will be deployed over two sites in the two hemispheres. Both sites will be equipped with four Large Size Telescopes (LSTs), which are crucial to achieve the science goals of CTA in the 20-200 GeV energy range. Each LST is equipped with a primary tessellated mirror dish of 23 m diameter, supported by a structure made mainly of carbon fibre reinforced plastic tubes and aluminum joints. This solution guarantees light weight (around 100 tons), essential for fast repositioning to any position in the sky in <20 seconds. The camera is composed of 1855 PMTs and embeds the control, readout and trigger electronics. The detailed design is now complete and production of the first LST, which will serve as a prototype for the remaining seven, is well underway. In 2016 the first LST will be installed at the Roque de los Muchachos Observatory on the Canary island of La Palma (Spain). In this talk we will outline the technical solutions adopted to fulfill the design requirem...

  12. Cherenkov radiation with massive, C P T -violating photons

    Science.gov (United States)

    Colladay, Don; McDonald, Patrick; Potting, Robertus

    2016-06-01

    The source of C P T violation in the photon sector of the Standard Model Extension arises from a Chern-Simons-like contribution that involves a coupling to a fixed background vector field kAF μ . These Lorentz- and C P T -violating photons have well-known theoretical issues that arise from missing states at low momenta when kAF μ is timelike. In order to make the theory consistent, a tiny mass for the photon can be introduced, well below current experimental bounds. The implementation of canonical quantization can then be implemented as in the C P T -preserving case by using the Stückelberg mechanism. We explicitly construct a covariant basis of properly normalized polarization vectors at fixed three-momentum satisfying the momentum space field equations, in terms of which the vector field can be expanded. As an application of the theory, we calculate the Cherenkov radiation rate for the case of purely timelike kAF μ and find a radiation rate at high energies that has a contribution that does not depend on the mass used to regulate the photons.

  13. Cherenkov Radiation with Massive, CPT-violating Photons

    CERN Document Server

    Colladay, Don; Potting, Robertus

    2016-01-01

    The source of CPT-violation in the photon sector of the Standard Model Extension arises from a Chern-Simons-like contribution that involves a coupling to a fixed background vector field $k_{AF}^\\mu$. These Lorentz- and CPT-violating photons have well-known theoretical issues that arise from missing states at low momenta when $k_{AF}^\\mu$ is timelike. In order to make the theory consistent, a tiny mass for the photon can be introduced, well below current experimental bounds. The implementation of canonical quantization can then be implemented as in the CPT-preserving case by using the St\\"uckelberg mechanism. We explicitly construct a covariant basis of properly-normalized polarization vectors at fixed three-momentum satisfying the momentum space field equations, in terms of which the vector field can be expanded. As an application of the theory, we calculate the Cherenkov radiation rate for the case of purely timelike $k_{AF}^\\mu$, and find a radiation rate at high energies that has a contribution that does n...

  14. Latest news from the High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    González Muñoz, A.; HAWC Collaboration

    2016-07-01

    The High Altitude Water Cherenkov Observatory is an air shower detector designed to study very-high-energy gamma rays (∼ 100 GeV to ∼ 100 TeV). It is located in the Pico de Orizaba National Park, Mexico, at an elevation of 4100 m. HAWC started operations since August 2013 with 111 tanks and in April of 2015 the 300 tanks array was completed. HAWC's unique capabilities, with a field of view of ∼ 2 sr and a high duty cycle of 5%, allow it to survey 2/3 of the sky every day. These features makes HAWC an excellent instrument for searching new TeV sources and for the detection of transient events, like gamma-ray bursts. Moreover, HAWC provides almost continuous monitoring of already known sources with variable gamma-ray fluxes in most of the northern and part of the southern sky. These observations will bring new information about the acceleration processes that take place in astrophysical environments. In this contribution, some of the latest scientific results of the observatory will be presented.

  15. Kalman filter tracking in a Cherenkov neutrino telescope

    International Nuclear Information System (INIS)

    The reconstruction of tracks in underwater Cherenkov neutrino telescopes is strongly complicated due to large background counting rate originates from 40K beta decay and to the electromagnetic showers accompanying high energy muons together with the effects of light propagation in the water, in particular the photon scattering. These two effects lead to a non-linear problem with a non-Gaussian measurement noise. A method for track reconstruction based on Kalman filter approach in this situation is presented. We use Gaussian Sum Filter algorithm to take into account non-Gaussian process noise. While usual Kalman filter estimators based on linear least-square method are optimal in case all observations are Gaussian distributed, the Gaussian Sum Filter offers a better treatment of non-Gaussian process noise and/or measurement errors when these are modeled by Gaussian mixtures. As an example of the application, the results of muon track reconstruction in NEMO underwater neutrino telescope are presented as well as the comparison of its capability with other standard track reconstruction methods.

  16. Calibration of the Cherenkov Telescope Array using Cosmic Ray Electrons

    CERN Document Server

    Parsons, R D; Schoorlemmer, H

    2016-01-01

    Cosmic ray electrons represent a background for gamma-ray observations with Cherenkov telescopes, initiating air-showers which are difficult to distinguish from photon-initiated showers. This similarity, however, and the presence of cosmic ray electrons in every field observed, makes them potentially very useful for calibration purposes. Here we study the precision with which the relative energy scale and collection area/efficiency for photons can be established using electrons for a major next generation instrument such as CTA. We find that variations in collection efficiency on hour timescales can be corrected to better than 1%. Furthermore, the break in the electron spectrum at ~0.9 TeV can be used to calibrate the energy scale at the 3% level on the same timescale. For observations on the order of hours, statistical errors become negligible below a few TeV and allow for an energy scale cross-check with instruments such as CALET and AMS. Cosmic ray electrons therefore provide a powerful calibration tool, e...

  17. Gravitational Cherenkov losses in theories based on modified Newtonian dynamics.

    Science.gov (United States)

    Milgrom, Mordehai

    2011-03-18

    Survival of high-energy cosmic rays (HECRs) against gravitational Cherenkov losses is shown not to cast strong constraints on modified Newtonian dynamics (MOND) theories that are compatible with general relativity (GR): theories that coincide with GR for accelerations ≫a(0) (a(0) is the MOND constant). The energy-loss rate, E, is many orders smaller than those derived in the literature for theories with no extra scale. Modification to GR, which underlies E, enters only beyond the MOND radius of the particle: r(M)=(Gp/ca(0))(1/2). The spectral cutoff, entering E quadratically, is thus r(M)(-1), not k(dB)=p/ℏ. Thus, E is smaller than published rates, which use k(dB), by a factor ∼(r(M)k(dB))(2)≈10(39)(cp/3×10(11)  Gev)(3). Losses are important only beyond D(loss)≈qℓ(M), where q is a dimensionless factor, and ℓ(M)=c(2)/a(0) is the MOND length, which is ≈2π times the Hubble distance. PMID:21469855

  18. The Instrument Response Function Format for the Cherenkov Telescope Array

    CERN Document Server

    Ward, John E

    2015-01-01

    The Cherenkov Telescope Array (CTA) is a future ground-based observatory (with two locations, in the Northern and Southern Hemispheres) that will be used in the study of the very-high-energy gamma-ray sky. CTA observations will be proposed by external users or initiated by the observatory, with the resulting measurements being processed by the CTA observatory and the reduced data made accessible to the corresponding proposer. Instrument Response Functions (IRFs) will also be provided to convert the quantities measured by the array(s) into relevant science products (i.e. spectra, sky maps, light curves). As the response of the telescopes depend on many correlated observational and physical quantities (e.g. gamma-ray arrival direction, energy, telescope orientation, background light, weather conditions etc.) the CTA IRFs could grow into increasingly larger and larger file sizes, which can become unwieldy or impractical for use in specific observation cases. To this end, a customized IRF format (complying with t...

  19. The Medium Size Telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Pühlhofer, G

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the planned next-generation instrument for ground-based gamma-ray astronomy, covering a photon energy range of ~20 GeV to above 100 TeV. CTA will consist of the order of 100 telescopes of three sizes, installed at two sites in the Northern and Southern Hemisphere. This contribution deals with the 12 meter Medium Size Telescopes (MST) having a single mirror (modified Davies-Cotton, DC) design. In the baseline design of the CTA arrays, 25 MSTs in the South and 15 MSTs in the North provide the necessary sensitivity for CTA in the core energy range of 100 GeV to 10 TeV. DC-MSTs will be equipped with photomultiplier (PMT)-based cameras. Two options are available for these focal plane instruments, that will be provided by the FlashCam and the NectarCAM sub-consortia. In this contribution, a short introduction to the projects and their status is given.

  20. Condensation Particle Counter Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-01

    The Model 3772 CPC is a compact, rugged, and full-featured instrument that detects airborne particles down to 10 nm in diameter, at an aerosol flow rate of 1.0 lpm, over a concentration range from 0 to 1x104 #/cc. This CPC is ideally suited for applications without high concentration measurements, such as basic aerosol research, filter and air-cleaner testing, particle counter calibrations, environmental monitoring, mobile aerosol studies, particle shedding and component testing, and atmospheric and climate studies.

  1. A facility to evaluate the focusing performance of mirrors for Cherenkov Telescopes

    CERN Document Server

    Canestrari, Rodolfo; Bonnoli, Giacomo; Farisato, Giancarlo; Lessio, Luigi; Rodeghiero, Gabriele; Spiga, Rossella; Toso, Giorgio; Pareschi, Giovanni

    2015-01-01

    With the advent of the imaging atmospheric Cherenkov technique in late 1980's, ground-based observations of Very High-Energy gamma rays came into reality. Since the first source detected at TeV energies in 1989 by Whipple, the number of high energy gamma-ray sources has rapidly grown up to more than 150 thanks to the second generation experiments like MAGIC, H.E.S.S. and VERITAS. The Cherenkov Telescope Array observatory is the next generation of Imaging Atmospheric Cherenkov Telescopes, with at least 10 times higher sensitivity than current instruments. Cherenkov Telescopes have to be equipped with optical dishes of large diameter -- in general based on segmented mirrors -- with typical angular resolution of a few arc-minutes. To evaluate the mirror's quality specific metrological systems are required that possibly take into account the environmental conditions in which typically Cherenkov telescopes operate (in open air without dome protection). For this purpose a new facility for the characterization of mi...

  2. NICHE: Using Cherenkov radiation to extend Telescope Array to sub-PeV energies

    Science.gov (United States)

    Bergman, Douglas; Krizmanic, John; Tsunesada, Yoshiki; Abu-Zayyad, Tareq; Belz, John; Thomson, Gordon

    2016-03-01

    The Non-Imaging CHErenkov (NICHE) Array will measure the flux and nuclear composition evolution of cosmic rays (CRs) from below 1 PeV to 1 EeV. NICHE will be co-sited with the Telescope Array (TA) Low Energy (TALE) extension, and will observe events simultaneously with the TALE telescopes acting in imaging-Cherenkov mode. This will be the first hybrid-Cherenkov (simultaneous imaging and non-imaging Cherenkov) measurements of CRs in the Knee region of the CR energy spectrum. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. First generation detectors are under construction and will form an initial prototype array (j-NICHE) that will be deployed in Summer 2016. In this talk, the NICHE design, array performance, prototype development, and status will be discussed as well as NICHE's ability to measure the cosmic ray nuclear composition as a function of energy.

  3. Synchronous Counters Implemented in the PLD Devices

    Directory of Open Access Journals (Sweden)

    J. Kolouch

    1999-04-01

    Full Text Available The implementability of synchronous counters in the Programmable Logic Devices (PLD is discussed in this paper. The most commonly used counters are analysed from this point of view. The expressions for their individual bits are given and the number of product terms is derived to allow to estimate the size of the particular counter which can be implemented in the chosen PLD.

  4. Compact fission counter for DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed

  5. Compact fission counter for DANCE

    International Nuclear Information System (INIS)

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF2 crystals with equal solid-angle coverage. DANCE is a 4π γ-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed γ-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture γ rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to α particles, which is important for experiments with α-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from α's. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter and still be able to maintain a stable

  6. Status and updates from the High Altitude Water Cherenkov (HAWC) Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Baughman, B.M., E-mail: bbaugh@umdgrb.umd.edu

    2013-06-15

    The High Altitude Water Cherenkov Observatory (HAWC) is currently being deployed on the slopes of Volcan Sierra Negra, Puebla, Mexico. The HAWC observatory will consist of 300 Water Cherenkov Detectors totaling approximately 22,000 m{sup 2} of instrumented area. The water Cherenkov technique allows HAWC to have a nearly 100% duty cycle and large field of view, making the HAWC observatory an ideal instrument for the study of transient phenomena. With its large effective area, excellent angular and energy resolutions, and efficient gamma-hadron separation, HAWC will survey the TeV gamma ray sky, measure spectra of galactic sources from 1 TeV to beyond 100 TeV, and map galactic diffuse gamma ray emission. The science goals and performance of the HAWC observatory as well as how it will complement contemporaneous space and ground-based detectors will be presented.

  7. Quantum calculation of the Vavilov-Cherenkov radiation by twisted electrons

    Science.gov (United States)

    Ivanov, I. P.; Serbo, V. G.; Zaytsev, V. A.

    2016-05-01

    We present a detailed quantum electrodynamical description of Vavilov-Cherenkov radiation emitted by a relativistic twisted electron in the transparent medium. Simple expressions for the spectral and spectral-angular distributions as well as for the polarization properties of the emitted radiation are obtained. Unlike the plane-wave case, the twisted electron produces radiation within the annular angular region, with enhancement towards its boundaries. Additionally, the emitted photons can have linear polarization not only in the scattering plane but also in the orthogonal direction. We find that the Vavilov-Cherenkov radiation emitted by an electron in a superposition of two vortex states exhibits a strong azimuthal asymmetry. Thus, the Vavilov-Cherenkov radiation offers itself as a convenient diagnostic tool of such electrons and complements the traditional microscopic imaging.

  8. Cherenkov light detection as a velocity selector for uranium fission products at intermediate energies

    Science.gov (United States)

    Yamaguchi, T.; Enomoto, A.; Kouno, J.; Yamaki, S.; Matsunaga, S.; Suzaki, F.; Suzuki, T.; Abe, Y.; Nagae, D.; Okada, S.; Ozawa, A.; Saito, Y.; Sawahata, K.; Kitagawa, A.; Sato, S.

    2014-12-01

    The in-flight particle separation capability of intermediate-energy radioactive ion (RI) beams produced at a fragment separator can be improved with the Cherenkov light detection technique. The cone angle of Cherenkov light emission varies as a function of beam velocity. This can be exploited as a velocity selector for secondary beams. Using heavy ion beams available at the HIMAC synchrotron facility, the Cherenkov light angular distribution was measured for several thin radiators with high refractive indices (n = 1.9 ~ 2.1). A velocity resolution of ~10-3 was achieved for a 56Fe beam with an energy of 500 MeV/nucleon. Combined with the conventional rigidity selection technique coupled with energy-loss analysis, the present method will enable the efficient selection of an exotic species from huge amounts of various nuclides, such as uranium fission products at the BigRIPS fragment separator located at the RI Beam Factory.

  9. Prototype Test Results of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE)

    CERN Document Server

    Williams, D A; Manna, D S; Marion, G M; Ong, R A; Tunner, T O; Dragovan, M; Oser, S; Chantel, M C; Bhattacharya, D P; Covault, C E; Fernholx, R

    1998-01-01

    There are currently no experiments, either satellite or ground-based, that are sensitive to astrophysical gamma-rays at energies between 20 and 250 GeV. We are developing the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) to explore this energy range. STACEE will use heliostat mirrors at a solar research facility to collect Cherenkov light from extensive air showers produced by high energy gamma-rays. Here we report on the results of prototype test work at the solar facility of Sandia National Laboratories (Albuquerque, NM). The work demonstrates that the facility is suitable for use as an astrophysical observatory. In addition, using a full scale prototype of part of STACEE, we detected atmospheric Cherenkov radiation at energies lower than any other ground-based experiment to date.

  10. Synchrotron emission driven by the Cherenkov-drift instability in active galactic nuclei

    CERN Document Server

    Osmanov, Zaza

    2012-01-01

    In the present paper we study generation of the synchrotron emission by means of the feedback of Cherenkov drift waves on the particle distribution via the diffusion process. It is shown that despite the efficient synchrotron losses the excited Cherenkov drift instability leads to the quasi-linear diffusion (QLD), effect of which is balanced by dissipation factors and as a result the pitch angles are prevented from damping, maintaining the corresponding synchrotron emission. The model is analyzed for a wide range of physical parameters and it is shown that the mechanism of QLD guarantees the generation of electromagnetic radiation from soft $X$-rays up to soft $\\gamma$-rays, strongly correlated with Cherenkov drift emission ranging from IR up to UV energy domains.

  11. Influence of aerosols from biomass burning on the spectral analysis of Cherenkov telescopes

    CERN Document Server

    Reyes, R de los; Bernloehr, K; Krueger, P; Deil, C; Gast, H; Kosack, K; Marandon, V

    2013-01-01

    During the last decade, imaging atmospheric Cherenkov telescopes (IACTs) have proven themselves as astronomical detectors in the very-high-energy (VHE; E>0.1 TeV) regime. The IACT technique observes the VHE photons indirectly, using the Earth's atmosphere as a calorimeter. Much of the calibration of Cherenkov telescope experiments is done using Monte Carlo simulations of the air shower development, Cherenkov radiation and detector, assuming certain models for the atmospheric conditions. Any deviation of the real conditions during observations from the assumed atmospheric model will result in a wrong reconstruction of the primary gamma-ray energy and the resulting source spectra. During eight years of observations, the High Energy Stereoscopic System (H.E.S.S.) has experienced periodic natural as well as anthropogenic variations of the atmospheric transparency due to aerosols created by biomass burning. In order to identify data that have been taken under such long-term reductions in atmospheric transparency, ...

  12. Quantum calculation of the Vavilov-Cherenkov radiation by twisted electrons

    CERN Document Server

    Ivanov, I P; Zaytsev, V A

    2016-01-01

    We present the detailed quantum electrodynamical description of Vavilov-Cherenkov radiation emitted by a relativistic twisted electron in the transparent medium. Simple expressions for the spectral and spectral-angular distributions as well as for the polarization properties of the emitted radiation are obtained. Unlike the plane-wave case, the twisted electron produces radiation within the annular angular region, with enhancement towards its boundaries. Additionally, the emitted photons can have linear polarization not only in the scattering plane but also in the orthogonal direction. We find that the Vavilov-Cherenkov radiation emitted by an electron in a superposition of two vortex states exhibits a strong azimuthal asymmetry. Thus, the Vavilov-Cherenkov radiation offers itself as a convenient diagnostic tool of such electrons and complements the traditional microscopic imaging.

  13. Distributed beam loss monitor based on the Cherenkov effect in an optical fiber

    Science.gov (United States)

    Maltseva, Yu; Emanov, F. A.; Petrenko, A. V.; Prisekin, V. G.

    2015-05-01

    This review discusses a distributed beam loss monitor which is based on the Cherenkov effect in an optical fiber and which has been installed at the VEPP-5 Injection Complex at the Budker Institute of Nuclear Physics. The principle of the device operation consists in detecting the Cherenkov radiation generated in an optical fiber by relativistic charged particles that are produced in an electromagnetic shower when highly relativistic beam particles (electrons or positrons) hit the accelerator vacuum chamber wall. Our experiments used a photomultiplier tube (PMT) to detect the Cherenkov light. Knowing when the PMT signal arrives tells us where the beam loss occurs. Using a 20-m-long optical fiber allowed a detector spatial resolution of 3 m. The way to improve the resolution is to optimize the monitor working conditions and optical fiber and PMT parameters, potentially leading to a resolution of as fine as 0.5 m according to our estimates.

  14. Lateral density and arrival time distributions of Cherenkov photons in extensive air showers: a simulation study

    CERN Document Server

    Hazarika, P; Chitnis, V R; Acharya, B S; Das, G S; Singh, B B; Britto, R

    2014-01-01

    We have investigated some features of the density and arrival time distributions of Cherenkov photons in extensive air showers using different high and low energy hadronic interaction models available in the CORSIKA simulation package. We have found that, for all primary particles, their energies and hadronic interaction model combinations, the density distribution patterns of Cherenkov photons follow the negative exponential function with different coefficients and slopes depending on the type of primary particle, its energy and the type of model combination. Whereas the arrival time distribution patterns of Cherenkov photons follow the function of the form $t (r) = t_{0}e^{\\Gamma/r^{\\lambda}}$, with different values of the function parameters. Flatness of the density distribution increases with decreasing energy and increasing mass of the primary particle. The shift from the spherical shape of the arrival time distribution near the shower core increases with increasing mass of the low energy primary particl...

  15. Countering 21st Century Threats

    DEFF Research Database (Denmark)

    Scharling Pedersen, Peter; Pillai, Chad M.; Hun, Lee Jae

    2015-01-01

    (UW). Other obstacles such as resolving tensions in U.S. statutory law between traditional military and intelligence activities, bridging the gap with non-security Departments and Agencies, and developing the necessary trust with bilateral and multilateral partners are components that need...... to be addressed in order to successfully conduct IW. As result of researching the issues associated with developing a JIIM approach to IW, the paper makes the following recommendations: • Establishing universally accepted concepts and doctrines for IW, UW, Foreign Internal Defense (FID), Counter Insurgency (COIN.......S. and its Allies need to develop a Joint, Interagency, Intergovernmental and Multinational (JIIM) approach to Irregular Warfare (IW). This is crucial because according to Department of Defense (DOD) Instruction on Irregular Warfare, DOD considers IW “as strategically important as traditional warfare and DOD...

  16. Scintillation counter: photomultiplier tube alignment

    International Nuclear Information System (INIS)

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into the sample receiving zone. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (auth)

  17. Scintillation counter, maximum gamma aspect

    International Nuclear Information System (INIS)

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  18. On-site mirror facet condensation measurements for the Cherenkov Telescope Array

    Science.gov (United States)

    Dipold, J.; Medina, M. C.; García, B.; Rasztocky, E.; Mancilla, A.; Maya, J.; Larrarte, J. J.; de Souza, V.

    2016-09-01

    The Imaging Atmospheric Cherenkov Technique (IACT) has provided very important discoveries in Very High Energy (VHE) γ-ray astronomy for the last two decades, being exploited mainly by experiments such as H.E.S.S., MAGIC and VERITAS. The same technique will be used by the next generation of γ-ray telescopes, Cherenkov Telescope Array - CTA, which is conceived to be an Observatory composed by two arrays strategically placed in both hemispheres, one in the Northern and one in the Southern. Each site will consist of several tens of Cherenkov telescopes of different sizes and will be equipped with about 10000 m2 of reflective surface. Because of its large size, the reflector of a Cherenkov telescope is composed of many individual mirror facets. Cherenkov telescopes operate without any protective system from weather conditions therefore it is important to understand how the reflective surfaces behave under different environmental conditions. This paper describes a study of the behavior of the mirrors in the presence of water vapor condensation. The operational time of a telescope is reduced by the presence of condensation on the mirror surface, therefore, to control and to monitor the formation of condensation is an important issue for IACT observatories. We developed a method based on pictures of the mirrors to identify the areas with water vapor condensation. The method is presented here and we use it to estimate the time and area two mirrors had condensation when exposed to the environmental conditions in the Argentinean site. The study presented here shows important guidelines in the selection procedure of mirror technologies and shows an innovative monitoring tool to be used in future Cherenkov telescopes.

  19. Layout design studies for medium-sized telescopes within the Cherenkov Telescope Array

    CERN Document Server

    Hassan, T; Nieto, D; Wood, M

    2015-01-01

    The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma-ray observatory. CTA, conceived as an array of tens of imaging atmospheric Cherenkov telescopes, comprising small, medium and large-size telescopes, is aiming to improve on the sensitivity of current-generation experiments by an order of magnitude and provide energy coverage from 20 GeV to more than 300 TeV. In this study we explore how the medium-sized telescopes layout design and composition impacts the overall CTA performance by analyzing Monte Carlo simulations including Davies-Cotton and Schwarzschild-Couder medium-sized telescopes.

  20. Large size SiPM matrix for Imaging Atmospheric Cherenkov Telescopes applications

    Science.gov (United States)

    Ambrosi, G.; Corti, D.; Ionica, M.; Manea, C.; Mariotti, M.; Rando, R.; Reichardt, I.; Schultz, C.

    2016-07-01

    SiPM photo detectors are nowadays commonly used in many applications. For large size telescopes like MAGIC or the future Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) project, a pixel size of some square centimeters is needed. An analog amplifier and sum stage was built and characterized. A large and compact SiPM matrix prototype, with the associated focusing optics, was assembled into a monolithic light detector with an active area of 3 cm2. The performance of the electronics is tailored for Imaging Atmospheric Cherenkov Telescopes (IACT) applications, with fast signal and adequate signal-to-noise (S/N) ratio.

  1. Prototyping the graphical user interface for the operator of the Cherenkov Telescope Array

    CERN Document Server

    Sadeh, Iftach; Schwarz, Joseph; Pietriga, Emmanuel

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a planned gamma-ray observatory. CTA will incorporate about 100 imaging atmospheric Cherenkov telescopes (IACTs) at a Southern site, and about 20 in the North. Previous IACT experiments have used up to five telescopes. Subsequently, the design of a graphical user interface (GUI) for the operator of CTA involves new challenges. We present a GUI prototype, the concept for which is being developed in collaboration with experts from the field of Human-Computer Interaction. The prototype is based on Web technology; it incorporates a Python web server, Web Sockets and graphics generated with the d3.js Javascript library.

  2. A G-APD based Camera for Imaging Atmospheric Cherenkov Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anderhub, H. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Backes, M. [Technische Universitaet Dortmund, 44221 Dortmund (Germany); Biland, A.; Boller, A.; Braun, I. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Bretz, T. [Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Commichau, S.; Commichau, V.; Dorner, D.; Gendotti, A. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Grimm, O., E-mail: oliver.grimm@phys.ethz.c [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Gunten, H. von; Hildebrand, D.; Horisberger, U. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Koehne, J.-H. [Technische Universitaet Dortmund, 44221 Dortmund (Germany); Kraehenbuehl, T.; Kranich, D.; Lorenz, E.; Lustermann, W. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Mannheim, K. [Universitaet Wuerzburg, 97074 Wuerzburg (Germany)

    2011-02-01

    Imaging Atmospheric Cherenkov Telescopes (IACT) for Gamma-ray astronomy are presently using photomultiplier tubes as photo sensors. Geiger-mode avalanche photodiodes (G-APD) promise an improvement in sensitivity and, important for this application, ease of construction, operation and ruggedness. G-APDs have proven many of their features in the laboratory, but a qualified assessment of their performance in an IACT camera is best undertaken with a prototype. This paper describes the design and construction of a full-scale camera based on G-APDs realized within the FACT project (First G-APD Cherenkov Telescope).

  3. About Modeling the Excitation Conditions of Cherenkov and Diffraction Radiations in Periodic Metal-dielectric Structures

    Directory of Open Access Journals (Sweden)

    G.S. Vorobjov

    2015-06-01

    Full Text Available General procedure for modeling the excitation conditions of Cherenkov and diffraction radiations in periodic metal-dielectric structures is described. It is based on the representation of the electron beam space-charge wave in the form of a dielectric waveguide surface-wave. On the experimental facility of millimeter-wave the basic modes of excitation conditions of spatial harmonics of the Cherenkov and diffraction radiations are simulated. The method is tested by comparing the numerical analysis and experimental results on the layout of the device of the orotron type - generator of diffraction radiation.

  4. Cherenkov and Fano effects at the origin of asymmetric vector mesons in nuclear media

    CERN Document Server

    Dremin, I M

    2015-01-01

    It is argued that the experimentally observed phenomenon of asymmetric vector mesons produced in nuclear media during high energy nucleus-nucleus collisions can be explained as Cherenkov and Fano effects. The mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape in the low-mass wing of the resonance. That is explained by the positive real part of the amplitude in this wing for classic Cherenkov treatment and further detalized in quantum mechanics as the interference of direct and continuum states in Fano effect. The corresponding parameters are found from the comparison with rho-meson data and admit reasonable explanation.

  5. Monitor and control systems for the SLD Cherenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    To help ensure the stable long-term operation of a Cherenkov Ring Detector at high efficiency, a comprehensive monitor and control system is being developed. This system will continuously monitor and maintain the correct operating temperatures, and will provide an on-line monitor and maintain the correct operating temperatures, and will provide an on-line monitor of the pressures, flows, mixing, and purity of the various fluids. In addition the velocities and trajectories of Cherenkov photoelectrons drifting within the imaging chambers will be measured using a pulsed uv lamp and a fiberoptic light injection system. 9 refs., 6 figs

  6. Analytical Solution for the Stopping Power of the Cherenkov Radiation in a Uniaxial Nanowire Material

    Directory of Open Access Journals (Sweden)

    Tiago A. Morgado

    2015-06-01

    Full Text Available We derive closed analytical formulae for the power emitted by moving charged particles in a uniaxial wire medium by means of an eigenfunction expansion. Our analytical expressions demonstrate that, in the absence of material dispersion, the stopping power of the uniaxial wire medium is proportional to the charge velocity, and that there is no velocity threshold for the Cherenkov emission. It is shown that the eigenfunction expansion formalism can be extended to the case of dispersive lossless media. Furthermore, in the presence of material dispersion, the optimal charge velocity that maximizes the emitted Cherenkov power may be less than the speed of light in a vacuum.

  7. SST-GATE: A dual mirror telescope for the Cherenkov Telescope Array

    OpenAIRE

    Zech, A.; Amans, J.-P.; Blake, S; Boisson, C.; Costille, C.; De-Frondat, F.; Dournaux, J. -L.; Dumas, D.; Fasola, G.; T. Greenshaw; Hervet, O.; Huet, J. -M.; Laporte, P.; Rulten, C.; Savoie, D.

    2013-01-01

    The Cherenkov Telescope Array (CTA) will be the world's first open observatory for very high energy gamma-rays. Around a hundred telescopes of different sizes will be used to detect the Cherenkov light that results from gamma-ray induced air showers in the atmosphere. Amongst them, a large number of Small Size Telescopes (SST), with a diameter of about 4 m, will assure an unprecedented coverage of the high energy end of the electromagnetic spectrum (above ~1TeV to beyond 100 TeV) and will ope...

  8. Spectral dependence of angular distribution halfwidths of Vavilov-Cherenkov radiation

    International Nuclear Information System (INIS)

    Angular distributions of Vavilov-Cherenkov radiation have been measured. This radiaiton is excited during 210 keV electron propagation in a mica 2.5 mm thick target in a spectral range from 2500 up to 5000 A. A formula for diffraction halfwidth of angular distribution has been derived, its applicability limits are pointed out. Experimental halfwidth agrees with the calculated ones. The deviation of angular distribution maximum from Vavilov-Cherenkov radiation angle is analyzed. This deviation is due to radiator boundaries and multiple scattering of electrons

  9. A Cherenkov imager for the charge measurement of the elements of nuclear cosmic radiation

    International Nuclear Information System (INIS)

    A Cherenkov imager, CHERCAM (Cherenkov Camera) has been designed and built for the CREAM (Cosmic Ray Energetics and Mass) balloon-borne experiment. The instrument will perform charge measurements of nuclear cosmic-ray over a range extending from proton to iron in the energy domain from 1010 to 1015 eV. This work has focused on the development of CHERCAM by creating a simulation of the detector and on the aerogel plan characterization for the radiator. But it has also expanded on the technical aspects of the construction of the detector and its various tests, as well as the development of calibration software and data analysis. (author)

  10. Combined complex Doppler and Cherenkov effect in left-handed metamaterials

    CERN Document Server

    Ziemkiewicz, David

    2015-01-01

    We derive the formula of the complex Doppler shift in a two-dimensional, dispersive metamaterial and we show that a moving, monochromatic radiation source generates multiple frequency modes. The role of the group velocity is stressed and the Doppler shifted radiation field exhibits features of the Cherenkov effect. The presented theory is also applicable to the case of a moving, nonoscillating charge and explains many peculiar characteristics of the Cherenkov radiation in lefthanded metamaterials such as the backward direction of power emission, the constant radiation angle and the lack of velocity threshold.

  11. Measuring the Attenuation Length of Water in the CHIPS-M Water Cherenkov Detector

    CERN Document Server

    Amat, F; Bryant, J; Carroll, T J; Germani, S; Joyce, T; Kreisten, B; Marshak, M; Meier, J; Nelson, J; Perch, A; Pfuzner, M; De Rijck, S; Salazar, R; Thomas, J; Trokan-Tenorio, J; Vahle, P; Wade, R; Whitehead, L; Whitney, M

    2016-01-01

    The water at the proposed site of the CHIPS water Cherenkov detector has been studied to measure its attenuation length for Cherenkov light as a function of filtering time. A scaled model of the CHIPS detector filled with water from the Wentworth 2W pit, proposed site of the CHIPS deployment, in conjunction with a 3.2\\unit{m} vertical column filled with this water, was used to study the transmission of 405nm laser light. Results consistent with attenuation lengths of up to 100m were observed for this wavelength with filtration and UV sterilization alone.

  12. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    Science.gov (United States)

    Rose, Paul B.; Erickson, Anna S.

    2016-08-01

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  13. AMIGA at the Pierre Auger Observatory: The interface and control electronics of the first prototype muon counters

    Energy Technology Data Exchange (ETDEWEB)

    Videla, M., E-mail: mariela.videla@iteda.cnea.gov.ar [Instituto de Tecnologías en Detección de Astropartículas (CNEA, CONICET, UNSAM) Centro Atómico Constituyentes, Avda. Gral. Paz 1499 (1650) San Martin, Pcia. de Buenos Aires (Argentina); Platino, M., E-mail: manuel.platino@iteda.cnea.gov.ar [Instituto de Tecnologías en Detección de Astropartículas (CNEA, CONICET, UNSAM) Centro Atómico Constituyentes, Avda. Gral. Paz 1499 (1650) San Martin, Pcia. de Buenos Aires (Argentina); García, B. [Instituto de Tecnologías en Detección y Astropartículas, (CNEA, CONICET, UNSAM) Regional Cuyo, Azopardo 313 (5501) Godoy Cruz, Pcia. de Mendoza (Argentina); Universidad Tecnológica Nacional, Facultad Regional Mendoza Rodriguez 273, Ciudad Mendoza, CP (M5502AJE) (Argentina); Almela, A. [Instituto de Tecnologías en Detección de Astropartículas (CNEA, CONICET, UNSAM) Centro Atómico Constituyentes, Avda. Gral. Paz 1499 (1650) San Martin, Pcia. de Buenos Aires (Argentina); Vega, G. de la [Instituto de Tecnologías en Detección y Astropartículas, (CNEA, CONICET, UNSAM) Regional Cuyo, Azopardo 313 (5501) Godoy Cruz, Pcia. de Mendoza (Argentina); and others

    2015-08-11

    AMIGA is an enhancement of the Pierre Auger Observatory. The main goals of AMIGA are to extend the full efficiency range to lower energies of the Observatory and to measure the muon content of extensive air showers. Currently, it consists of 61 detector pairs, each one composed of a surface water-Cherenkov detector and a buried muon counter. Prototypes of the muon counter – buried at a depth of 2.25 m – were installed at each vertex of a hexagon and at its center with 750 m spacing. Each prototype has a detection area of 10 m{sup 2} segmented in 64 scintillation strips and coupled to a multi-anode PMT through optical fibers. The electronic systems of these prototypes are accessible via a service tube. An electronics interface and control board were designed to extract the data from the counter and to provide a remote control of the system. This article presents the design of the interface and control board and the results and performance during the first AMIGA acquisition period in 2012.

  14. AMIGA at the Pierre Auger Observatory: The interface and control electronics of the first prototype muon counters

    Science.gov (United States)

    Videla, M.; Platino, M.; García, B.; Almela, A.; de la Vega, G.; Lucero, A.; Suarez, F.; Wainberg, O.; Sanchez, F.; Yelos, D.

    2015-08-01

    AMIGA is an enhancement of the Pierre Auger Observatory. The main goals of AMIGA are to extend the full efficiency range to lower energies of the Observatory and to measure the muon content of extensive air showers. Currently, it consists of 61 detector pairs, each one composed of a surface water-Cherenkov detector and a buried muon counter. Prototypes of the muon counter - buried at a depth of 2.25 m - were installed at each vertex of a hexagon and at its center with 750 m spacing. Each prototype has a detection area of 10 m2 segmented in 64 scintillation strips and coupled to a multi-anode PMT through optical fibers. The electronic systems of these prototypes are accessible via a service tube. An electronics interface and control board were designed to extract the data from the counter and to provide a remote control of the system. This article presents the design of the interface and control board and the results and performance during the first AMIGA acquisition period in 2012.

  15. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H

    2015-09-23

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  16. The Ω Counter, a Frequency Counter Based on the Linear Regression.

    Science.gov (United States)

    Rubiola, Enrico; Lenczner, Michel; Bourgeois, Pierre-Yves; Vernotte, Francois

    2016-07-01

    This paper introduces the Ω counter, a frequency counter-i.e., a frequency-to-digital converter-based on the linear regression (LR) algorithm on time stamps. We discuss the noise of the electronics. We derive the statistical properties of the Ω counter on rigorous mathematical basis, including the weighted measure and the frequency response. We describe an implementation based on a system on chip, under test in our laboratory, and we compare the Ω counter to the traditional Π and Λ counters. The LR exhibits the optimum rejection of white phase noise, superior to that of the Π and Λ counters. White noise is the major practical problem of wideband digital electronics, both in the instrument internal circuits and in the fast processes, which we may want to measure. With a measurement time τ , the variance is proportional to 1/τ(2) for the Π counter, and to 1/τ(3) for both the Λ and Ω counters. However, the Ω counter has the smallest possible variance, 1.25 dB smaller than that of the Λ counter. The Ω counter finds a natural application in the measurement of the parabolic variance, described in the companion article in this Journal [vol. 63 no. 4 pp. 611-623, April 2016 (Special Issue on the 50th Anniversary of the Allan Variance), DOI 10.1109/TUFFC.2015.2499325]. PMID:27244731

  17. The Omega Counter, a Frequency Counter Based on the Linear Regression

    CERN Document Server

    Rubiola, E; Bourgeois, P -Y; Vernotte, F

    2015-01-01

    This article introduces the {\\Omega} counter, a frequency counter -- or a frequency-to-digital converter, in a different jargon -- based on the Linear Regression (LR) algorithm on time stamps. We discuss the noise of the electronics. We derive the statistical properties of the {\\Omega} counter on rigorous mathematical basis, including the weighted measure and the frequency response. We describe an implementation based on a SoC, under test in our laboratory, and we compare the {\\Omega} counter to the traditional {\\Pi} and {\\Lambda} counters. The LR exhibits optimum rejection of white phase noise, superior to that of the {\\Pi} and {\\Lambda} counters. White noise is the major practical problem of wideband digital electronics, both in the instrument internal circuits and in the fast processes which we may want to measure. The {\\Omega} counter finds a natural application in the measurement of the Parabolic Variance, described in the companion article arXiv:1506.00687 [physics.data-an].

  18. Design of a 7m Davies-Cotton Cherenkov telescope mount for the high energy section of the Cherenkov Telescope Array

    CERN Document Server

    Rovero, A C; Vallejo, G; Supanitsky, A D; Actis, M; Botani, A; Ochoa, I; Hughes, G

    2013-01-01

    The Cherenkov Telescope Array is the next generation ground-based observatory for the study of very-high-energy gamma-rays. It will provide an order of magnitude more sensitivity and greater angular resolution than present systems as well as an increased energy range (20 GeV to 300 TeV). For the high energy portion of this range, a relatively large area has to be covered by the array. For this, the construction of ~7 m diameter Cherenkov telescopes is an option under study. We have proposed an innovative design of a Davies-Cotton mount for such a telescope, within Cherenkov Telescope Array specifications, and evaluated its mechanical and optical performance. The mount is a reticulated-type structure with steel tubes and tensioned wires, designed in three main parts to be assembled on site. In this work we show the structural characteristics of the mount and the optical aberrations at the focal plane for three options of mirror facet size caused by mount deformations due to wind and gravity.

  19. Over-the-Counter Medicines: What's Right for You?

    Science.gov (United States)

    ... counter medicine (OTCs) Over-the-Counter Medicines: What's Right for You? Share Tweet Linkedin Pin it More ... org Back to top More in Choosing the right over-the-counter medicine (OTCs) Resources for You ...

  20. The Principal and Staff Development: Countering the School Culture.

    Science.gov (United States)

    Martin, Mary; Rogus, Joseph F.

    1979-01-01

    After addressing the problems inherent in developing staff improvement programs, the author offers starter planning steps for countering the energy drainage of teachers, countering the weak technology of teaching, and countering the feeling of aloneness of the teacher. (KC)

  1. Acoustic counter-sniper system

    Science.gov (United States)

    Duckworth, Gregory L.; Gilbert, Douglas C.; Barger, James E.

    1997-02-01

    BBN has developed, tested, and fielded pre-production versions of a versatile acoustics-based counter-sniper system. This system was developed by BBN for the DARPA Tactical Technology Office to provide a low cost and accurate sniper detection and localization system. The system uses observations of the shock wave from supersonic bullets to estimate the bullet trajectory, Mach number, and caliber. If muzzle blast observations are also available from unsilenced weapons, the exact sniper location along the trajectory is also estimated. A newly developed and very accurate model of the bullet ballistics and acoustic radiation is used which includes bullet deceleration. This allows the use of very flexible acoustic sensor types and placements, since the system can model the bullet's flight, and hence the acoustic observations, over a wide area very accurately. System sensor configurations can be as simple as two small four element tetrahedral microphone arrays on either side of the area to be protected, or six omnidirectional microphones spread over the area to be monitored. Increased performance can be obtained by expanding the sensor field in size or density, and the system software is easily reconfigured to accommodate this at deployment time. Sensor nodes can be added using wireless network telemetry or hardwired cables to the command node processing and display computer. The system has been field tested in three government sponsored tests in both rural and simulated urban environments at the Camp Pendleton MOUT facility. Performance was characterized during these tests for various shot geometries and bullet speeds and calibers.

  2. An analog neural network hardware solution to a Cherenkov ring imaging particle identifier

    International Nuclear Information System (INIS)

    This paper describes the implementation of an analog neural network chip (Intel 80170NX) to the pad readout of a Cherenkov ring imaging detector system. A similar system has previously been tested in software in order to separate proton and pion events. The architecture, training and testing in analog hardware is described. (orig.)

  3. Gamma Ray Measurements at OMEGA with the Newest Gas Cherenkov Detector “GCD-3”

    Science.gov (United States)

    McEvoy, A. M.; Herrmann, H. W.; Kim, Y.; Zylstra, A. B.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Sedillo, T. J.; Archuleta, T. N.; Aragonez, R. J.; Malone, R. M.; Horsfield, C. J.; Rubery, M.; Gales, S.; Leatherland, A.; Stoeffl, W.; Gatu Johnson, M.; Shmayda, W. T.; Batha, S. H.

    2016-05-01

    Initial results from the newest Gas Cherenkov Detector (GCD-3) are reported demonstrating improved performance over previous GCD iterations. Increased shielding and lengthening of the Cherenkov photon optical path have resulted in a diminished precursor signal with increased temporal separation between the precursor and the primary DT Cherenkov signal. Design changes resulted in a measured GCD-3 sensitivity comparable to GCD-1 at identical 100 psia CO2 operation. All metal gasket seals and pressure vessel certification to 400 psia operation allow for a GCD-3 lower Cherenkov threshold of 1.8 MeV using the fluorinated gas C2F6 as compared to the 6.3 MeV lower limit of GCD-1 and GCD-2. Calibration data will be used to benchmark GEANT4 and ACCEPT detector models. The GCD-3 acts as a prototype for the Super GCD being fielded at the National Ignition Facility (NIF) as part of the National Diagnostics Plan and will be installed at NIF in early 2016.

  4. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    International Nuclear Information System (INIS)

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultraviolet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as 1.88±0.02 for 4-Methylumbelliferone, stable within 0.5% over 50 days, 1.37±0.03 for Carbostyril-124, and 1.20±0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  5. The Potential of Spaced-based High-Energy Neutrino Measurements via the Airshower Cherenkov Signal

    CERN Document Server

    Krizmanic, John F

    2011-01-01

    Future space-based experiments, such as OWL and JEM-EUSO, view large atmospheric and terrestrial neutrino targets. With energy thresholds slightly above 10^19 eV for observing airshowers via air fluorescence, the potential for observing the cosmogenic neutrino flux associated with the GZK effect is limited. However, the forward Cherenkov signal associated with the airshower can be observed at much lower energies. A simulation was developed to determine the Cherenkov signal strength and spatial extent at low-Earth orbit for upward-moving airshowers. A model of tau neutrino interactions in the Earth was employed to determine the event rate of interactions that yielded a tau lepton which would induce an upward-moving airshower observable by a space-based instrument. The effect of neutrino attenuation by the Earth forces the viewing of the Earth's limb to observe the nu_tau-induced Cherenkov airshower signal at above the OWL Cherenkov energy threshold of ~10^16.5 eV for limb-viewed events. Furthermore, the neutri...

  6. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sweany, M; Bernstein, A; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, S M

    2011-09-21

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 {+-} 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 {+-} 0.03 for Carbostyril-124, and 1.20 {+-} 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  7. Digital FDIRC: A focused differential internal reflection Cherenkov imaged by SiPM arrays

    Science.gov (United States)

    Marrocchesi, P. S.; Bagliesi, M. G.; Basti, A.; Bigongiari, G.; Bonechi, S.; Brogi, P.; Checchia, C.; Collazuol, G.; Maestro, P.; Morsani, F.; Piemonte, C.; Stolzi, F.; Suh, J. E.; Sulaj, A.

    2016-07-01

    A prototype of an Internal Reflection Cherenkov, equipped with a SiO2 (fused silica) radiator bar optically connected to a cylindrical mirror, was tested at CERN SPS in March 2015 with a beam of relativistic ions obtained from fragmentation of primary argon nuclei at energies 13, 19 and 30 GeV/n. The detector, designed to identify cosmic nuclei, features an imaging focal plane of dimensions ~ 4 cm × 3 cm equipped with 16 arrays of NUV-SiPM (near-ultraviolet sensitive silicon photon avalanche detector) for a total of 1024 sensitive elements. The outstanding performance of the photodetectors (with negligible background in between adjacent photopeaks) allowed us to apply the technique of photon counting to the Cherenkov light collected on the focal plane. Thanks to the fine granularity of the array elements, the Cherenkov pattern was recorded together with the total number of detected photoelectrons increasing as Z2 as a function of the atomic number Z. In this paper, we report the performance of the SiPM arrays and the excellent resolution achieved by the digital Cherenkov prototype in the charge identification of the elements present in the beam.

  8. Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Ullaland, O

    2011-01-01

    Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors in 'Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors 3.3.1 Introduction 3.3.2 Time of Flight Measurements 3.3.2.1 Scintillator hodoscopes 3.3.2.2 Parallel plate ToF detectors 3.3.3 Cherenkov Radiation 3.3.3.1 ...

  9. Gas breakdown limit and maximum acceleration gradient for inverse Cherenkov laser accelerator

    CERN Document Server

    Liu, Y; Cline, D

    1999-01-01

    Laser intensity thresholds for CO sub 2 laser-induced gas breakdown, such as tunneling, multiphoton, and cascade ionization have been estimated for the inverse Cherenkov accelerator experiment at the Brookhaven Accelerator Test Facility. The gas breakdown is dominated by cascade ionization and the maximum acceleration gradient is up to 300 MeV/m for a 3 ps CO sub 2 laser.

  10. Features and performance of a large gas Cherenkov detector with threshold regulation

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Alvarez-Taviel, J.; Asenjo, L.; Colino, N.; Diez-Hedo. F.; Duran, I.; Gonzalez, J.; Hernandez, J.J.; Ladron de Guevara, P.; Marquina, M.A.

    1988-01-15

    We present here the development, main features and calibration procedures for a new type of gas Cherenkov detector, based upon the ability to control its threshold by regulating the temperature of the gas used as radiator. We also include the performance of this detector in particle identification.

  11. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M. -O.; Van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; CruzTorres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C. T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; ElRifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Faerber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Torreira, A. Gallas; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Pardinas, J.; Garofoli, J.; Tico, J. Garra; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Gandara, M. Grabalosa; Diaz, R. Graciani; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. P.

    2015-01-01

    A search is performed for heavy long-lived charged particles using 3.0 fb(-1) of proton-proton collisions collected at root s = 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from

  12. Electrostatic design of the barrel CRID (Cherenkov Ring Imaging Detector) and associated measurements

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H. (Tohoku Univ., Sendai (Japan). Dept. of Physics); Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; Muller, D.; Nagamine, T.; Pavel, T.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va' Vra, J. Williams, H. (Stanford Linear Accelerator Center, Menlo Park, CA (US

    1990-04-01

    We report on the electrostatic design and related measurements of the barrel Cherenkov Ring Imaging Detector for the Stanford Large Detector experiment at the Stanford Linear Accelerator Center Linear Collider. We include test results of photon feedback in TMAE-laden gas, distortion measurements in the drift boxes and corona measurements. 13 refs., 21 figs.

  13. Recent modelling studies for analysing the partial‑defect detection capability of the Digital Cherenkov Viewing Device

    International Nuclear Information System (INIS)

    Strong sources of radioactivity, such as spent nuclear fuel stored in water pools, give rise to Cherenkov light. This light originates from particles, in this case electrons released from gamma‑ray interactions, which travel faster than the speed of light in the water. In nuclear safeguards, detection of the Cherenkov light intensity is used as a means for verifying gross and partial defect of irradiated fuel assemblies in wet storage. For spent nuclear fuel, the magnitude of the Cherenkov light emission depends on the initial fuel enrichment (IE), the power history (in particular the total fuel burnup (BU)) and the cooling time (CT). This paper presents recent results on the expected Cherenkov light emission intensity obtained from modelling a full 8x8 BWR fuel assembly with varying values of IE, BU and CT. These results are part of a larger effort to also investigate the Cherenkov light emission for fuels with varying irradiation history and other fuel geometries in order to increase the capability to predict the light intensity and thus lower the detection limits for the Digital Cherenkov Viewing Device (DCVD). The results show that there is a strong dependence of the Cherenkov light intensity on BU and CT, in accordance with previous studies. However, the dependences demonstrated previously are not fully repeated; the current study indicates a less steep decrease of the intensity with increasing CT. Accordingly, it is suggested to perform dedicated experimental studies on fuel with different BU and CT to resolve the differences and to enhance future predictive capability. In addition to this, the dependence of the Cherenkov light intensity on the IE has been investigated. Furthermore, the modelling of the Cherenkov light emission has been extended to CTs shorter than one year. The results indicate that high‑accuracy predictions for short‑cooled fuel may require more detailed information on the irradiation history.

  14. GEIGER-MULLER TYPE COUNTER TUBE

    Science.gov (United States)

    Fowler, I.L.; Watt, L.A.K.

    1959-12-15

    A single counter tube capable of responding to a wide range of intensities is described. The counter tube comprises a tubular cathode and an anode extending centrally of the cathode. The spacing between the outer surface of the anode and the inner surface of the cathode is varied along the length of the tube to provide different counting volumes in adjacent portions of the tube. A large counting volume in one portion adjacent to a low-energy absorption window gives adequate sensitivity for measuring lowintensity radiation, while a smaller volume with close electrode spacing is provided in the counter to make possible measurement of intense garnma radiation fields.

  15. A new type of gas scintillation counter

    International Nuclear Information System (INIS)

    Design and construction of a new type of gas scintillation counter are discussed. It includes a scintillation gas proportional counter coupled to a photomultiplier. The electric field applied to the counter in the proportional region increases the number of photons resulting of the excitation of the inert gas, during the discharge produced by the passage of the primary ionizing particle. The number of initial photons is then increased and so is the impulse amplitude of the photomultiplier. The complexity of the electronic system necessary for the observation is thereby reduced. The influence of the electricfield on the resolution of the detector is especially emphasized. (I. C. R.)

  16. Asymmetric counter propagation of domain walls

    Science.gov (United States)

    Andrade-Silva, I.; Clerc, M. G.; Odent, V.

    2016-07-01

    Far from equilibrium systems show different states and domain walls between them. These walls, depending on the type of connected equilibria, exhibit a rich spatiotemporal dynamics. Here, we investigate the asymmetrical counter propagation of domain walls in an in-plane-switching cell filled with a nematic liquid crystal. Experimentally, we characterize the shape and speed of the domain walls. Based on the molecular orientation, we infer that the counter propagative walls have different elastic deformations. These deformations are responsible of the asymmetric counter propagating fronts. Theoretically, based on symmetry arguments, we propose a simple bistable model under the influence of a nonlinear gradient, which qualitatively describes the observed dynamics.

  17. Note on the Typ. 2 counter problem

    International Nuclear Information System (INIS)

    The distribution function of the distance between two successive registered particles if the distribution function of the primary process, pulse distribution and the counter type and known is determined on the basis of the joint Laplace transform. The generating function of the number of particles arriving to the counting device during the dead time for the so-called Type 2 counter (counter with prolonging dead time) is determined toon some remarks on the registrations of m types of particles (m>= 1) are made

  18. MO-A-BRD-06: In Vivo Cherenkov Video Imaging to Verify Whole Breast Irradiation Treatment

    International Nuclear Information System (INIS)

    Purpose: To show in vivo video imaging of Cherenkov emission (Cherenkoscopy) can be acquired in the clinical treatment room without affecting the normal process of external beam radiation therapy (EBRT). Applications of Cherenkoscopy, such as patient positioning, movement tracking, treatment monitoring and superficial dose estimation, were examined. Methods: In a phase 1 clinical trial, including 12 patients undergoing post-lumpectomy whole breast irradiation, Cherenkov emission was imaged with a time-gated ICCD camera synchronized to the radiation pulses, during 10 fractions of the treatment. Images from different treatment days were compared by calculating the 2-D correlations corresponding to the averaged image. An edge detection algorithm was utilized to highlight biological features, such as the blood vessels. Superficial dose deposited at the sampling depth were derived from the Eclipse treatment planning system (TPS) and compared with the Cherenkov images. Skin reactions were graded weekly according to the Common Toxicity Criteria and digital photographs were obtained for comparison. Results: Real time (fps = 4.8) imaging of Cherenkov emission was feasible and feasibility tests indicated that it could be improved to video rate (fps = 30) with system improvements. Dynamic field changes due to fast MLC motion were imaged in real time. The average 2-D correlation was about 0.99, suggesting the stability of this imaging technique and repeatability of patient positioning was outstanding. Edge enhanced images of blood vessels were observed, and could serve as unique biological markers for patient positioning and movement tracking (breathing). Small discrepancies exists between the Cherenkov images and the superficial dose predicted from the TPS but the former agreed better with actual skin reactions than did the latter. Conclusion: Real time Cherenkoscopy imaging during EBRT is a novel imaging tool that could be utilized for patient positioning, movement tracking

  19. MO-A-BRD-06: In Vivo Cherenkov Video Imaging to Verify Whole Breast Irradiation Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Glaser, A [Dartmouth College, Hanover, NH - New Hampshire (United States); Jarvis, L [Dartmouth-Hitchcock Medical Center, City Of Lebanon, New Hampshire (United States); Gladstone, D [Dartmouth-Hitchcock Medical Center, Hanover, City of Lebanon (Lebanon); Andreozzi, J; Hitchcock, W; Pogue, B [Dartmouth College, Hanover, NH (United States)

    2014-06-15

    Purpose: To show in vivo video imaging of Cherenkov emission (Cherenkoscopy) can be acquired in the clinical treatment room without affecting the normal process of external beam radiation therapy (EBRT). Applications of Cherenkoscopy, such as patient positioning, movement tracking, treatment monitoring and superficial dose estimation, were examined. Methods: In a phase 1 clinical trial, including 12 patients undergoing post-lumpectomy whole breast irradiation, Cherenkov emission was imaged with a time-gated ICCD camera synchronized to the radiation pulses, during 10 fractions of the treatment. Images from different treatment days were compared by calculating the 2-D correlations corresponding to the averaged image. An edge detection algorithm was utilized to highlight biological features, such as the blood vessels. Superficial dose deposited at the sampling depth were derived from the Eclipse treatment planning system (TPS) and compared with the Cherenkov images. Skin reactions were graded weekly according to the Common Toxicity Criteria and digital photographs were obtained for comparison. Results: Real time (fps = 4.8) imaging of Cherenkov emission was feasible and feasibility tests indicated that it could be improved to video rate (fps = 30) with system improvements. Dynamic field changes due to fast MLC motion were imaged in real time. The average 2-D correlation was about 0.99, suggesting the stability of this imaging technique and repeatability of patient positioning was outstanding. Edge enhanced images of blood vessels were observed, and could serve as unique biological markers for patient positioning and movement tracking (breathing). Small discrepancies exists between the Cherenkov images and the superficial dose predicted from the TPS but the former agreed better with actual skin reactions than did the latter. Conclusion: Real time Cherenkoscopy imaging during EBRT is a novel imaging tool that could be utilized for patient positioning, movement tracking

  20. Development of a Mobile Ice Nucleus Counter

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Gregory; Kulkarni, Gourihar

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70 deg C, and a single stage system can operate the warm wall at -45 deg C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  1. Synchronization in counter-rotating oscillators

    OpenAIRE

    Bhowmick, S. K.; Ghosh, Dibakar; Dana, Syamal K.

    2011-01-01

    An oscillatory system can have clockwise and anticlockwise senses of rotation. We propose a general rule how to obtain counter-rotating oscillators from the definition of a dynamical system and then investigate synchronization. A type of mixed synchronization emerges in counter-rotating oscillators under diffusive scalar coupling when complete synchronization and antisynchronization coexist in different state variables. Stability conditions of mixed synchronization are obtained analytically i...

  2. Counter public spheres and global modernity

    OpenAIRE

    Fenton, Natalie; Downey, John

    2015-01-01

    This article explores the concept of counter public spheres and their relationship to the dominant public sphere. We argue that counter public spheres are increasingly relevant due to particular social and political configurations that mark out a distinct stage of modernity. We suggest that this stage is characterised in particular by the intensification of globalisation, the rise of neo-liberalism and a decline of trust and social democracy resulting in instability in the dominant public sph...

  3. Counter public spheres and global modernity:

    OpenAIRE

    Downey, John; Fenton, Natalie

    2003-01-01

    This article explores the concept of counter public spheres and their relationship to the dominant public sphere. We argue that counter public spheres are increasingly relevant due to particular social and political configurations that mark out a distinct stage of modernity. We suggest that this stage is characterised in particular by the intensification of globalisation, the rise of neo-liberalism and a decline of trust and social democracy resulting in instability in the dominant public sph...

  4. Design optimization of the proximity focusing RICH with dual aerogel radiator using a maximum-likelihood analysis of Cherenkov rings

    Science.gov (United States)

    Pestotnik, R.; Križan, P.; Korpar, S.; Iijima, T.

    2008-09-01

    The use of a sequence of aerogel radiators with different refractive indices in a proximity focusing Cherenkov ring imaging detector has been shown to improve the resolution of the Cherenkov angle. In order to obtain further information on the capabilities of such a detector, a maximum-likelihood analysis has been performed on simulated data, with the simulation being appropriate for the upgraded Belle detector. The results show that by using a sequence of two aerogel layers with different refractive indices, the K/π separation efficiency is improved in the kinematic region above 3 GeV/ c. In the low momentum region, the focusing configuration (with n1 and n2 chosen such that the Cherenkov rings from different aerogel layers at 4 GeV/ c overlap) shows a better performance than the defocusing one (where the two Cherenkov rings are well separated).

  5. MPGD-based counters of single photons developed for COMPASS RICH-1

    Science.gov (United States)

    Alexeev, M.; Birsa, R.; Bodlak, M.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Dasgupta, S.; Denisov, O.; Duic, V.; Finger, M.; Finger, M., Jr.; Fischer, H.; Giorgi, M.; Gobbo, B.; Gregori, M.; Herrmann, F.; Königsmann, K.; Levorato, S.; Maggiora, A.; Martin, A.; Menon, G.; Novakova, K.; Novy, J.; Panzieri, D.; Pereira, F. A.; Santos, C. A.; Sbrizzai, G.; Schiavon, P.; Schopferer, S.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Tessarotto, F.; Veloso, J. F. C. A.

    2014-09-01

    In fundamental research, gas detectors of single photons are a must in the field of Cherenkov imaging techniques (RICH counters) for particle identification in large momentum ranges and with wide coverage of the phase space domain. These counters, already extensively used, are foreseen in the setups of future experiments in a large variety of fields in nuclear and particle physics. The quest of novel gaseous photon detector is dictated by the fact that the present generation of detectors has unique characteristics concerning operation in magnetic field, low material budget and cost, but it suffers of severe limitations in effective efficiency, rates, life time and stability, discouraging their use in high precision and high rate experiments. We are developing large size THick GEM (THGEM)-based detector of single photons. The R&D program includes the complete characterization of the THGEM electron multipliers, the study of the aspects related to the detection of single photons and the engineering towards large size detector prototype. Our most recent achievements include: dedicated studies concerning the ion back-flow to the photo-cathode; relevant progress in the engineering aspects, in particular related to the production of large-size THGEMs, where the strict correlation between the local gain-value and the local thickness-value has been demonstrated the operation of a 300 mm × 300 mm2 active area detector at the CERN PS T10 test beam; the introduction of a new hybrid detector architecture offering promising indication, which is formed by a THGEM layer which acts as CsI support and pre-amplification device followed by a MICROMEGAS multiplication stage. The general status of the R&D program and the recent progress are reported

  6. Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays

    CERN Document Server

    Bourrion, O; Bondoux, D; Bouly, J L; Bouvier, J; Boyer, B; Brinet, M; Buenerd, M; Damieux, G; Derome, L; Eraud, L; Foglio, R; Fombaron, D; Grondin, D; Lee, M H; Lutz, L; Marton, M; Menchaca-Rocha, A; Pelissier, A; Périé, J N; Putze, A; Roudier, S; Sallaz-Damaz, Y; Seo, E S; Scordilis, J P; Yoon, Y S

    2011-01-01

    A proximity focusing Cherenkov imager called CHERCAM, has been built for the charge measurement of nuclear cosmic rays with the CREAM instrument. It consists of a silica aerogel radiator plane across from a detector plane equipped with 1,600 1" diameter photomultipliers. The two planes are separated by a ring expansion gap. The Cherenkov light yield is proportional to the charge squared of the incident particle. The expected relative light collection accuracy is in the few percents range. It leads to an expected single element separation over the range of nuclear charge Z of main interest 1 < Z < 26. CHERCAM is designed to fly with the CREAM balloon experiment. The design of the instrument and the implemented technical solutions allowing its safe operation in high altitude conditions (radiations, low pressure, cold) are presented.

  7. Divergent pointing with the Cherenkov Telescope Array for surveys and beyond

    CERN Document Server

    ,

    2015-01-01

    The galactic and extragalactic surveys are two of the main proposed legacy projects of the Cherenkov Telescope Array (CTA), providing an unbiased view of the Universe at energies above tens of GeV. Considering Cherenkov telescopes' limited field of view ($<10^\\circ$), the time needed for those projects is large. The many telescopes of CTA will allow taking full advantage of new pointing modes in which telescopes point slightly offset from one another. This divergent pointing mode leads to an increase of the array field of view ($\\sim 14^\\circ$ or larger) with competitive performance compared to normal pointing. We present here a study of the performance of the divergent pointing for different array configurations and number of telescopes. We briefly discuss the prospect of using divergent pointing for surveys.

  8. Active optics system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gardiol, Daniele; Capobianco, Gerardo; Fantinel, Daniela; Giro, Enrico; Lessio, Luigi; Loreggia, Davide; Rodeghiero, Gabriele; Russo, Federico; Volpicelli, Antonio C.

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) SST-2M is an end-to-end prototype of Small Size class of Telescope for the Cherenkov Telescope Array. It will apply a dual mirror configuration to Imaging Atmospheric Cherenkov Telescopes. The 18 segments composing the primary mirror (diameter 4.3 m) are equipped with an active optics system enabling optical re-alignment during telescope slew. The secondary mirror (diameter 1.8 m) can be moved along three degrees of freedom to perform focus and tilt corrections. We describe the kinematic model used to predict the system performance as well as the hardware and software design solution that will be implemented for optics control.

  9. Space-charge effects and gain in Cherenkov free-electron lasers

    International Nuclear Information System (INIS)

    This paper presents a quantum mechanical treatment to study the growth rate characteristics of Cherenkov free-electron laser. For this purpose, we basically use the single-particle model in which the dynamics of a single electron in the presence of the laser field is analyzed. The inclusions of the space-charge (collective) effects are considered by taking into account the static electric field of neighboring electrons in the dynamics formulations. An analytical expression for the gain per pass in the Cherenkov laser is derived. It is shown that the space-charge effects depend mainly on the operating wavelength, the electron density, and the electron beam neutralization due to the possible presence of positive ions. We discuss the validity boundaries of the interaction mode evolved from the single-particle regime to the collective regime. Using quantum mechanical concepts, we finally present a formula for calculating the inclusion of the spontaneous emission power

  10. Detection of Cherenkov light from air showers with Geiger-APDs

    CERN Document Server

    Otte, A N; Biland, A; Göbel, F; Lorenz, E; Pauss, F; Renker, D; Röser, U; Schweizer, T

    2007-01-01

    We have detected Cherenkov light from air showers with Geiger-mode APDs (G-APDs). G-APDs are novel semiconductor photon-detectors, which offer several advantages compared to conventional photomultiplier tubes in the field of ground-based gamma-ray astronomy. In a field test with the MAGIC telescope we have tested the efficiency of a G-APD / light catcher setup to detect Cherenkov light from air showers. We estimate a detection efficiency, which is 60% higher than the efficiency of a MAGIC camera pixel. Ambient temperature dark count rates of the tested G-APDs are below the rates of the night sky light background. According to these recent tests G-APDs promise a major progress in ground-based gamma-ray astronomy.

  11. Schwarzschild-Couder telescope for the Cherenkov Telescope Array: Development of the Optical System

    CERN Document Server

    Rousselle, Julien; Errando, Manel; Humensky, Brian; Mukherjee, Reshmi; Nieto, Daniel; Okumura, Akira; Vassiliev, Vladimir

    2013-01-01

    The CTA (Cherenkov Telescope Array) is the next generation ground-based experiment for very high-energy (VHE) gamma-ray observations. It will integrate several tens of imaging atmospheric Cherenkov telescopes (IACTs) with different apertures into a single astronomical instrument. The US part of the CTA collaboration has proposed and is developing a novel IACT design with a Schwarzschild-Couder (SC) aplanatic two mirror optical system. In comparison with the traditional single mirror Davies-Cotton IACT the SC telescope, by design, can accommodate a wide field-of-view, with significantly improved imaging resolution. In addition, the reduced plate scale of an SC telescope makes it compatible with highly integrated cameras assembled from silicon photo multipliers. In this submission we report on the status of the development of the SC optical system, which is part of the effort to construct a full-scale prototype telescope of this type at the Fred Lawrence Whipple Observatory in southern Arizona.

  12. Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Bourrion, O; Bernard, C; Bondoux, D; Bouly, J L; Bouvier, J; Boyer, B; Brinet, M; Buenerd, M; Damieux, G; Derome, L; Eraud, L; Foglio, R; Fombaron, D; Grondin, D; Marton, M; Pelissier, A [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53, rue des Martyrs, Grenoble (France); Lee, M H; Lutz, L [University of Maryland, College Park MD 20742 (United States); Menchaca-Rocha, A [Instituto de Fisica, UNAM, A.P. 20-364, 01000 Mexico DF (Mexico); Perie, J N, E-mail: olivier.bourrion@lpsc.in2p3.fr [Universite de Toulouse, INSA, UPS, Mines Albi, ISAE, ICA (Institut Clement Ader), 133, avenue de Rangueil, F-31077 Toulouse (France)

    2011-06-15

    A proximity focusing Cherenkov imager called CHERCAM, has been built for the charge measurement of nuclear cosmic rays with the CREAM instrument. It consists of a silica aerogel radiator plane across from a detector plane equipped with 1,600 1'' diameter photomultipliers. The two planes are separated by a ring expansion gap. The Cherenkov light yield is proportional to the charge squared of the incident particle. The expected relative light collection accuracy is in the few percents range. It leads to an expected single element separation over the range of nuclear charge Z of main interest 1 {<=} Z{approx}<26. CHERCAM is designed to fly with the CREAM balloon experiment. The design of the instrument and the implemented technical solutions allowing its safe operation in high altitude conditions (radiations, low pressure, cold) are presented.

  13. Study of timing performance of Silicon Photomultiplier and application for a Cherenkov detector

    CERN Document Server

    Ahmed, G S M; Marton, J; Suzuki, K

    2010-01-01

    Silicon photomultipliers are very versatile photo detectors due to their high photon detection efficiency, fast response, single photon counting capability, high amplification, and their insensitivity to magnetic fields. At our institute we are studying the performance of these photo detectors at various operating conditions. On the basis of the experience in the laboratory we built a prototype of a timing Cherenkov detector consisting of a quartz radiator with two $3\\times 3$ mm$^2$ MPPCs S10362-33-100C from Hamamatsu Photonics as photodetectors. The MPPC sensors were operated with Peltier cooling to minimize thermal noise and to avoid gain drifts. The test measurements at the DA$\\Phi$NE Beam-Test Facility (BTF) at the Laboratori Nazionali di Frascati (LNF) with pulsed 490 MeV electrons and the results on timing performance with Cherenkov photons are presented.

  14. Developments for coating, testing, and aligning Cherenkov Telescope Array mirrors in T\\"ubingen

    CERN Document Server

    Bonardi, A; Kendziorra, E; Pühlhofer, G

    2013-01-01

    The Cherenkov Telescope Array (CTA) is the next generation very-high energy gamma-ray air-shower Cherenkov observatory. CTA will consist of many segmented-mirror telescopes of three different diameters, placed in two arrays, one in the Northern hemisphere and one in the South, thus covering the whole sky. The total number of mirror tiles will be of the order of 10000, corresponding to a reflective area of ~10^4 m^2. The Institute for Astronomy and Astrophysics in T\\"ubingen is developing procedures to coat glass-substrate-based mirror tiles, is participating to the CTA mirror prototype testing, and is prototyping Active Mirror Control alignment mechanics, electronics and software. We will present the current status of our work and plans for future developments.

  15. Photonic chip-based optical frequency comb using soliton Cherenkov radiation.

    Science.gov (United States)

    Brasch, V; Geiselmann, M; Herr, T; Lihachev, G; Pfeiffer, M H P; Gorodetsky, M L; Kippenberg, T J

    2016-01-22

    Optical solitons are propagating pulses of light that retain their shape because nonlinearity and dispersion balance each other. In the presence of higher-order dispersion, optical solitons can emit dispersive waves via the process of soliton Cherenkov radiation. This process underlies supercontinuum generation and is of critical importance in frequency metrology. Using a continuous wave-pumped, dispersion-engineered, integrated silicon nitride microresonator, we generated continuously circulating temporal dissipative Kerr solitons. The presence of higher-order dispersion led to the emission of red-shifted soliton Cherenkov radiation. The output corresponds to a fully coherent optical frequency comb that spans two-thirds of an octave and whose phase we were able to stabilize to the sub-Hertz level. By preserving coherence over a broad spectral bandwidth, our device offers the opportunity to develop compact on-chip frequency combs for frequency metrology or spectroscopy. PMID:26721682

  16. Studies of Multi-Anode PMTs for a Ring Imaging Cherenkov for CLAS12

    Science.gov (United States)

    Lendacky, Andrew; Benmokhtar, Fatiha; Kubarovsky, Valery; Kim, Andrey

    2015-10-01

    At Thomas Jefferson National Accelerator Facility (TJNAF), the CLAS12 detector in Hall B is undergoing an upgrade. A Ring Imaging Cherenkov (R.I.C.H) detector is being built to improve particle identification in the 3-8 GeV/c momentum range. Approximately four hundred Hamamatsu H121700 Multi-Anode Photomultiplier Tubes (MA-PMTs) are being used in this detector to measure photons emitted through Cherenkov Radiation. These MA-PMTs' characteristics are being tested and measured, and I will be presenting my work about the crosstalk study. Crosstalk is the occurrence of incident light striking one area of the photocathode, but is additionally measured in nearby areas. By using a Class 3b laser in the 470 nm wavelength, and an optical density resembling the single photon emission spectrum, the crosstalk for the H121700 MA-PMTs are measured and categorized into a database for future reference.

  17. Monte Carlo Studies of medium-size telescope designs for the Cherenkov Telescope Array

    CERN Document Server

    Wood, M; Dumm, J; Funk, S

    2015-01-01

    We present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parameters including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters repre...

  18. CHerenkov detectors In mine PitS (CHIPS) Letter of Intent to FNAL

    CERN Document Server

    Adamson, P; Davies, G S; Evans, J J; Guzowski, P; Habig, A; Hartnell, J; Holin, A; Huang, J; Kreymer, A; Kordosky, M; Lang, K; Marshak, M L; Mehdiyev, R; Meier, J; Miller, W; Naples, D; Nelson, J K; Nichol, R J; Patterson, R B; Perch, A; Pfutzner, M; Proga, M; Radovic, A; Sanchez, M C; Schreiner, S; Soldner-Rembold, S; Sousa, A; Thomas, J; Vahle, P; Wendt, C; Whitehead, L H; Wojcicki, S

    2013-01-01

    This Letter of Intent outlines a proposal to build a large, yet cost-effective, 100 kton fiducial mass water Cherenkov detector that will initially run in the NuMI beam line. The CHIPS detector (CHerenkov detector In Mine PitS) will be deployed in a flooded mine pit, removing the necessity and expense of a substantial external structure capable of supporting a large detector mass. There are a number of mine pits in northern Minnesota along the NuMI beam that could be used to deploy such a detector. In particular, the Wentworth Pit 2W is at the ideal off-axis angle to contribute to the measurement of the CP violating phase. The detector is designed so that it can be moved to a mine pit in the LBNE beam line once that becomes operational.

  19. Towards a full Atmospheric Calibration system for the Cherenkov Telescope Array

    CERN Document Server

    Doro, M; Blanch, O; Font, LL; Garrido, D; Lopez-Oramas, A

    2013-01-01

    The current generation of Cherenkov telescopes is mainly limited in their gamma-ray energy and flux reconstruction by uncertainties in the determination of atmospheric parameters. The Cherenkov Telescope Array (CTA) aims to provide high-precision data extending the duty cycle as much as possible. To reach this goal, it is necessary to continuously and precisely monitor the atmosphere by means of remote-sensing devices, which are able to provide altitude-resolved and wavelength-dependent extinction factors, sensitive up to the tropopause and higher. Raman LIDARs are currently the best suited technology to achieve this goal with one single instrument. However, the synergy with other instruments like radiometers, solar and stellar photometers, all-sky cameras, and possibly radio-sondes is desirable in order to provide more precise and accurate results, and allows for weather forecasts and now-casts. In this contribution, we will discuss the need and features of such multifaceted atmospheric calibration systems.

  20. First ground based measurement of atmospheric Cherenkov light from cosmic rays

    CERN Document Server

    Aharonian, F A; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Brion, E; Brown, A M; Buhler, R; Büsching, I; Carrigan, S; Chadwick, P M; Chounet, L M; Coignet, G; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Atai, A; O'Connor-Drury, L; Dubus, G; Egberts, K; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Ferrero, E; Fiasson, A; Fontaine, G; Funk, Seb; Funk, S; Fussling, M; Gallant, Y A; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; De Jager, O C; Kendziorra, E; Kerschhaggl, M; Khelifi, B; Komin, Nu; Konopelko, A; Kosack, K; Lamanna, G; Latham, I J; Le Gallou, R; Lemiere, A; Lemoine-Goumard, M; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, G; McComb, T J L; Moulin, E; De Naurois, Mathieu; Nedbal, D; Nolan, S J; Noutsos, A; Olive, J P; Orford, K J; Osborne, J L; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Ranchon, S; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, A; Ripken, J; Rob, L; Rolland, L; Rosier-Lees, S; Rowell, G; Sahakian, V V; Santangelo, A; Sauge, L; Schlenker, S; Schlickeiser, R; Schroder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sol, H; Spangler, D; Spanier, F; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J P; Terrier, R; Tluczykont, M; Van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Völk, H J; Wagner, S J; Ward, M

    2007-01-01

    A recently proposed novel technique for the detection of cosmic rays with arrays of Imaging Atmospheric Cherenkov Telescopes is applied to data from the High Energy Stereoscopic System (H.E.S.S.). The method relies on the ground based detection of Cherenkov light emitted from the primary particle prior to its first interaction in the atmosphere. The charge of the primary particle (Z) can be estimated from the intensity of this light, since it is proportional to Z$^2$. Using H.E.S.S. data, an energy spectrum for cosmic-ray iron nuclei in the energy range 13--200 TeV is derived. The reconstructed spectrum is consistent with previous direct measurements and is one of the most precise so far in this energy range.

  1. A template method for measuring the iron spectrum in cosmic rays with Cherenkov telescopes

    CERN Document Server

    ,

    2015-01-01

    Understanding the sources, acceleration mechanisms, and propagation of cosmic rays is an active area of research in astro-particle physics. Measuring the spectrum and elemental composition of cosmic rays on earth can help solve this question. IACTs, while mainly used for $\\gamma$-ray astronomy and indirect searches for dark matter, can make an important contribution here. In particular, they are able to distinguish heavy nuclei in cosmic rays from protons and lighter nuclei by exploiting the direct Cherenkov light emitted by charged particles high in the atmosphere. In this paper, a method to reconstruct relevant properties of primary cosmic ray particles from the Cherenkov light emitted by the primary particles and the air showers induced by them will be presented.

  2. Recent developments for the testing of Cherenkov Telescope Array mirrors and actuators in T\\"ubingen

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation Cherenkov telescope facility. It will consist of a large number of segmented-mirror telescopes of three different diameters, placed in two locations, one in the northern and one in the southern hemisphere, thus covering the whole sky. The total number of mirror tiles will be on the order of 10,000, corresponding to a reflective area of ~10^4 m^2. The Institute for Astronomy and Astrophysics in T\\"ubingen (IAAT) is currently developing mirror control alignment mechanics, electronics, and software optimized for the medium sized telescopes. In addition, IAAT is participating in the CTA mirror prototype testing. In this paper we present the status of the current developments, the main results of recent tests, and plans for the production phase of the mirror control system. We also briefly present the T\\"ubingen facility for mirror testing.

  3. Status of the Schwarzchild-Couder Medium-Sized Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Benbow, W

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next-generation very-high-energy (VHE; E > 100 GeV) gamma-ray observatory. It is anticipated that CTA will improve upon the sensitivity of the current generation of VHE experiments, such as VERITAS, HESS and MAGIC, by an order of magnitude. CTA is planned to consist of two graded arrays of Cherenkov telescopes with three primary-mirror sizes. A proof-of-concept telescope, based on the dual-mirror Schwarzchild-Couder design, is being constructed on the VERITAS site at the F.L. Whipple Observatory in southern Arizona, USA, and is a candidate design for the medium-sized telescopes. The construction of the telescope will be completed in early 2017, and the status of this project is presented here.

  4. The ASTRI project within Cherenkov Telescope Array: data analysis and archiving

    Science.gov (United States)

    Antonelli, Lucio Angelo; Bastieri, Denis; Capalbi, Milvia; Carosi, Alessandro; Catalano, Osvaldo; Di Paola, Andrea; Gallozzi, Stefano; Lombardi, Saverio; Lucarelli, Fabrizio; Perri, Matteo; Testa, Vincenzo

    2014-07-01

    ASTRI is the flagship project of INAF (Italian National Institute for Astrophysics) mainly devoted to the development of Cherenkov small-size dual-mirror telescopes (SST-2M) in the framework of the international Cherenkov Telescope Array (CTA) Project. ASTRI SST-2M is an end-to-end prototype including scientific and technical operations as well as the related data analysis and archiving activities. We present here the ASTRI data handling and archiving system: it is responsible for both the on-site and off-site data processing and archiving. All the scientific, calibration, and engineering ASTRI data will be stored and organized in dedicated archives aimed to provide access to both the monitoring and data analysis systems.

  5. Development of new photon detection device for Cherenkov and fluorescence radiation

    Science.gov (United States)

    Aramo, C.; Ambrosio, A.; Ambrosio, M.; Battiston, R.; Castrucci, P.; Cilmo, M.; De Crescenzi, M.; Fiandrini, E.; Guarino, F.; Grossi, V.; Maddalena, P.; Nappi, E.; Passacantando, M.; Pignatel, G.; Santucci, S.; Scarselli, M.; Tinti, A.; Valentini, A.

    2013-06-01

    Recent progress on the development of a new solid state detector allowed the use of finely pixelled photocathodes obtained from silicon semiconductors. SiPM detectors seem to be an ideal tool for the detection of Cherenkov and fluorescence light in spite of their not yet resolved criticism for operating temperature and intrinsic noise. The main disadvantage of SiPM in this case is the poor sensitivity in the wavelength range 300-400 nm, where the Cherenkov light and fluorescence radiation are generated. We report on the possibility to realize a new kind of pixelled photodetector based on the use of silicon substrate with carbon nanotube compounds, more sensitive to the near UV radiation. Also if at the very beginning, the development of such detector appears very promising and useful for astroparticle physics, both in the ground based arrays and in the space experiments. The detectors are ready to be operated in conditions of measurements without signal amplification.

  6. Observations Of The Egret Blazar W Comae With The Solar Tower Atmospheric Cherenkov Effect Experiment

    CERN Document Server

    Scalzo, R A

    2004-01-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a wavefront-sampling atmospheric Cherenkov telescope which uses an array of solar heliostat mirrors as its primary optic. STACEE is designed to detect air showers from astrophysical gamma rays with energies between 50 and 250 GeV. Recent observations of the BL Lac object W Comae (ON+231), made in the spring of 2003 using STACEE, detect no significant gamma ray emission. The implications of this null result for the composition of the relativistic jet in W Comae is discussed, examining both leptonic and hadronic jet models from the literature. The 95% confidence level upper limit on the flux ranges from 1.5–3.5 × 10−10 cm−2 s−1 above 100 GeV for the leptonic models, and from 0.5–1.1 × 10−10 cm−2 s−1 above 150 GeV for the hadronic models.

  7. Photonic chip based optical frequency comb using soliton induced Cherenkov radiation

    CERN Document Server

    Brasch, Victor; Geiselmann, Michael; Lihachev, Grigoriy; Pfeiffer, Martin H P; Gorodetsky, Michael L; Kippenberg, Tobias J

    2014-01-01

    By continuous wave pumping of a dispersion engineered, planar silicon nitride microresonator, continuously circulating, sub-30fs short temporal dissipative solitons are generated, that correspond to pulses of 6 optical cycles and constitute a coherent optical frequency comb in the spectral domain. Emission of soliton induced Cherenkov radiation caused by higher order dispersion broadens the spectral bandwidth to 2/3 of an octave, sufficient for self referencing, in excellent agreement with recent theoretical predictions and the broadest coherent microresonator frequency comb generated to date. The ability to preserve coherence over a broad spectral bandwidth using soliton induced Cherenkov radiation marks a critical milestone in the development of planar optical frequency combs, enabling on one hand application in e.g. coherent communications, broadband dual comb spectroscopy and Raman spectral imaging, while on the other hand significantly relaxing dispersion requirements for broadband microresonator frequen...

  8. SiPM and front-end electronics development for Cherenkov light detection

    CERN Document Server

    Ambrosi, G; Bissaldi, E; Ferri, A; Giordano, F; Gola, A; Ionica, M; Paoletti, R; Piemonte, C; Paternoster, G; Simone, D; Vagelli, V; Zappala, G; Zorzi, N

    2015-01-01

    The Italian Institute of Nuclear Physics (INFN) is involved in the development of a demonstrator for a SiPM-based camera for the Cherenkov Telescope Array (CTA) experiment, with a pixel size of 6$\\times$6 mm$^2$. The camera houses about two thousands electronics channels and is both light and compact. In this framework, a R&D program for the development of SiPMs suitable for Cherenkov light detection (so called NUV SiPMs) is ongoing. Different photosensors have been produced at Fondazione Bruno Kessler (FBK), with different micro-cell dimensions and fill factors, in different geometrical arrangements. At the same time, INFN is developing front-end electronics based on the waveform sampling technique optimized for the new NUV SiPM. Measurements on 1$\\times$1 mm$^2$, 3$\\times$3 mm$^2$, and 6$\\times$6 mm$^2$ NUV SiPMs coupled to the front-end electronics are presented

  9. The image camera of the 17 m diameter air Cherenkov telescope MAGIC

    CERN Document Server

    Ostankov, A P

    2001-01-01

    The image camera of the 17 m diameter MAGIC telescope, an air Cherenkov telescope currently under construction to be installed at the Canary island La Palma, is described. The main goal of the experiment is to cover the unexplored energy window from approx 10 to approx 300 GeV in gamma-ray astrophysics. In its first phase with a classical PMT camera the MAGIC telescope is expected to reach an energy threshold of approx 30 GeV. The operational conditions, the special characteristics of the developed PMTs and their use with light concentrators, the fast signal transfer scheme using analog optical links, the trigger and DAQ organization as well as image reconstruction strategy are described. The different paths being explored towards future camera improvements, in particular the constraints in using silicon avalanche photodiodes and GaAsP hybrid photodetectors in air Cherenkov telescopes are discussed.

  10. Status of the technologies for the production of the Cherenkov Telescope Array (CTA) mirrors

    CERN Document Server

    Pareschi, G; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; de Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Förster, A; Garczarczyk, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; Mandat, D; Mariotti, M; Medina, C; Michałowski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; van Eldik, C; Vassiliev, V; Wiśniewski, Ł; Wörnlein, A; Yoshida, T

    2013-01-01

    The Cherenkov Telescope Array (CTA) is the next generation very high-energy gamma-ray observatory, with at least 10 times higher sensitivity than current instruments. CTA will comprise several tens of Imaging Atmospheric Cherenkov Telescopes (IACTs) operated in array-mode and divided into three size classes: large, medium and small telescopes. The total reflective surface could be up to 10,000 m2 requiring unprecedented technological efforts. The properties of the reflector directly influence the telescope performance and thus constitute a fundamental ingredient to improve and maintain the sensitivity. The R&D status of lightweight, reliable and cost-effective mirror facets for the CTA telescope reflectors for the different classes of telescopes is reviewed in this paper.

  11. Design and Operation of FACT -- The First G-APD Cherenkov Telescope

    CERN Document Server

    Anderhub, H; Biland, A; Boccone, V; Braun, I; Bretz, T; Buß, J; Cadoux, F; Commichau, V; Djambazov, L; Dorner, D; Einecke, S; Eisenacher, D; Gendotti, A; Grimm, O; von Gunten, H; Haller, C; Hildebrand, D; Horisberger, U; Huber, B; Kim, K -S; Knoetig, M L; K"ohne, J H; Kr"ahenb"uhl, T; Krumm, B; Lee, M; Lorenz, E; Lustermann, W; Lyard, E; Mannheim, K; Meharga, M; Meier, K; Montaruli, T; Neise, D; Nessi-Tedaldi, F; Overkemping, A -K; Paravac, A; Pauss, F; Renker, D; Rhode, W; Ribordy, M; R"oser, U; Stucki, J -P; Schneider, J; Steinbring, T; Temme, F; Thaele, J; Tobler, S; Viertel, G; Vogler, P; Walter, R; Warda, K; Weitzel, Q; Z"anglein, M

    2013-01-01

    The First G-APD Cherenkov Telescope (FACT) is designed to detect cosmic gamma-rays with energies from several hundred GeV up to about 10 TeV using the Imaging Atmospheric Cherenkov Technique. In contrast to former or existing telescopes, the camera of the FACT telescope is comprised of solid-state Geiger-mode Avalanche Photodiodes (G-APD) instead of photomultiplier tubes for photo detection. It is the first full-scale device of its kind employing this new technology. The telescope is operated at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain) since fall 2011. This paper describes in detail the design, construction and operation of the system, including hardware and software aspects. Technical experiences gained after one year of operation are discussed and conclusions with regard to future projects are drawn.

  12. Photon Detection Efficiency Measurements of the VERITAS Cherenkov Telescope Photomultipliers after four Years of Operation

    CERN Document Server

    Gazda, Eliza; Otte, Nepomuk; Richards, Gregory

    2016-01-01

    The photon detection efficiency of two sets of R10560-100-20 superbialkali photomultiplier tubes from Hamamatsu were measured between 200 nm and 750 nm to quantify a possible degradation of the photocathode sensitivity after four years of operation in the cameras of the VERITAS Cherenkov telescopes. A sample of 20 photomultiplier tubes, which was removed from the telescopes was compared with a sample of 20 spare photomultiplier tubes, which had been kept in storage. It is found that the average photocathode sensitivity marginally increased below 300 nm and dropped by 10% to 30% above 500 nm. The average photocathode sensitivity folded with the Cherenkov spectrum emitted by particles in air showers, however, reveals a consistent detection yield of 18.9+/-0.2% and 19.1+/-0.2% for the sample removed from the telescope and the spare sample, respectively.

  13. Study of timing performance of silicon photomultiplier and application for a Cherenkov detector

    Science.gov (United States)

    Ahmed, G. S. M.; Bühler, P.; Marton, J.; Suzuki, K.

    2011-02-01

    Silicon photomultipliers are very versatile photo-detectors due to their high photon detection efficiency, fast response, single photon counting capability, high amplification, and their insensitivity to magnetic fields. At our institute we are studying the performance of these photo-detectors at various operating conditions. On the basis of the experience in the laboratory we built a prototype of a timing Cherenkov detector consisting of a quartz radiator with two 3×3 mm 2 MPPCs S10362-33-100C from Hamamatsu Photonics as photo-detectors. The MPPC sensors were operated with Peltier cooling to minimize thermal noise and to avoid gain drifts. The test measurements at the DA Φ NE Beam-Test Facility (BTF) at the Laboratori Nazionali di Frascati (LNF) with pulsed 490 MeV electrons and the results on timing performance with Cherenkov photons are presented.

  14. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    CERN Document Server

    Giomi, Matteo; Maier, Gernot

    2016-01-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the...

  15. Photosensor Characterization for the Cherenkov Telescope Array: Silicon Photomultiplier versus Multi-Anode Photomultiplier Tube

    CERN Document Server

    Bouvier, Aurelien; Johnson, Caitlin; Kuznetsov, Andrey; Williams, David; Otte, Nepomuk; Strausbaugh, Robert; Hidaka, Naoya; Tajima, Hiroyasu; Hinton, Jim; White, Richard; Errando, Manel; Mukherjee, Reshmi

    2013-01-01

    Photomultiplier tube technology has been the photodetector of choice for the technique of imaging atmospheric Cherenkov telescopes since its birth more than 50 years ago. Recently, new types of photosensors are being contemplated for the next generation Cherenkov Telescope Array. It is envisioned that the array will be partly composed of telescopes using a Schwarzschild-Couder two mirror design never built before which has significantly improved optics. The camera of this novel optical design has a small plate scale which enables the use of compact photosensors. We present an extensive and detailed study of the two most promising devices being considered for this telescope design: the silicon photomultiplier and the multi-anode photomultiplier tube. We evaluated their most critical performance characteristics for imaging gamma-ray showers, and we present our results in a cohesive manner to clearly evaluate the advantages and disadvantages that both types of device have to offer in the context of GeV-TeV gamma...

  16. The Physics and Nuclear Nonproliferation Goals of WATCHMAN: A WAter CHerenkov Monitor for ANtineutrinos

    CERN Document Server

    Askins, M; Bernstein, A; Dazeley, S; Dye, S T; Handler, T; Hatzikoutelis, A; Hellfeld, D; Jaffke, P; Kamyshkov, Y; Land, B J; Learned, J G; Marleau, P; Mauger, C; Gann, G D Orebi; Roecker, C; Rountree, S D; Shokair, T M; Smy, M B; Svoboda, R; Sweany, M; Vagins, M R; van Bibber, K A; Vogelaar, R B; Wetstein, M J; Yeh, M

    2015-01-01

    This article describes the physics and nonproliferation goals of WATCHMAN, the WAter Cherenkov Monitor for ANtineutrinos. The baseline WATCHMAN design is a kiloton scale gadolinium-doped (Gd) light water Cherenkov detector, placed 13 kilometers from a civil nuclear reactor in the United States. In its first deployment phase, WATCHMAN will be used to remotely detect a change in the operational status of the reactor, providing a first- ever demonstration of the potential of large Gd-doped water detectors for remote reactor monitoring for future international nuclear nonproliferation applications. During its first phase, the detector will provide a critical large-scale test of the ability to tag neutrons and thus distinguish low energy electron neutrinos and antineutrinos. This would make WATCHMAN the only detector capable of providing both direction and flavor identification of supernova neutrinos. It would also be the third largest supernova detector, and the largest underground in the western hemisphere. In a...

  17. Detection of the Cherenkov light diffused by Sea Water with the ULTRA Experiment

    CERN Document Server

    Agnetta, G; Biondo, B; Brogueira, P; Cappa, A; Catalano, O; Chauvin, J; Staiti, G D'Ali'; Dattoli, M; Espirito-Santo, M C; Fava, L; Galeotti, P; Giarrusso, S; Gugliotta, G; La Rosa, G; Lebrun, D; Maccarone, M C; Mangano, A; Melo, L; Moreggia, S; Pimenta, M; Russo, F; Saavedra, O; Segreto, A; Silva, J C; Stassi, P; Tome', B; Vallania, P; Vigorito, C

    2007-01-01

    The study of Ultra High Energy Cosmic Rays represents one of the most challenging topic in the Cosmic Rays and in the Astroparticle Physics fields. The interaction of primary particles with atmospheric nuclei produces a huge Extensive Air Shower together with isotropic emission of UV fluorescence light and highly directional Cherenkov photons, that are reflected/diffused isotropically by the impact on the Earth's surface or on high optical depth clouds. For space-based observations, detecting the reflected Cherenkov signal in a delayed coincidence with the fluorescence light improves the accuracy of the shower reconstruction in space and in particular the measurement of the shower maximum, giving a strong signature for discriminating hadrons and neutrinos, and helping to estimate the primary chemical composition. Since the Earth's surface is mostly covered by water, the ULTRA (UV Light Transmission and Reflection in the Atmosphere)experiment has been designed to provide the diffusing properties of sea water, ...

  18. Influence of thermal fluctuations on Cherenkov radiation from fluxons in dissipative Josephson systems

    DEFF Research Database (Denmark)

    Antonov, A. A.; Pankratov, A. L.; Yulin, A. V.;

    2000-01-01

    The nonlinear dynamics of fluxons in Josephson systems with dispersion and thermal fluctuations is analyzed using the "quasiparticle" approach to investigate the influence of noise on the Cherenkov radiation effect. Analytical expressions for the stationary amplitude of the emitted radiation...... and its spectral distribution have been obtained in an annular geometry. It is demonstrated that noise reduces the amplitude of the radiated wave and broadens its spectrum. The effect of the radiated wave on the fluxon dynamics leads to a considerably smaller linewidth than observed in the usual flux flow...... oscillator. A resonant behavior of both the mean amplitude and the linewidth as functions of bias current is found. The obtained results enable an optimization of the main parameters (power, tunability, and linewidth) of practical mm- and sub-mm wave Cherenkov flux flow oscillators....

  19. Monte Carlo Performance Studies of Candidate Sites for the Cherenkov Telescope Array

    CERN Document Server

    Maier, G; Bernlöhr, K; Bregeon, J; Di Pierro, F; Hassan, T; Jogler, T; Hinton, J; Moralejo, A; Wood, M

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray observatory with sensitivity in the energy range from 20 GeV to beyond 300 TeV. CTA is proposed to consist of two arrays of 40-100 imaging atmospheric Cherenkov telescopes, with one site located in each of the Northern and Southern Hemispheres. The evaluation process for the candidate sites for CTA is supported by detailed Monte Carlo simulations, which take different attributes like site altitude and geomagnetic field configuration into account. In this contribution we present the comparison of the sensitivity and performance of the different CTA site candidates for the measurement of very-high energy gamma rays.

  20. On the Use of Cherenkov Telescopes for Outer Solar System Body Occultations

    CERN Document Server

    Lacki, Brian C

    2014-01-01

    Imaging Atmosphere Cherenkov Telescopes (IACT) are arrays of very large optical telescopes that are well-suited for rapid photometry of bright sources. I investigate their potential in observing stellar occultations by small objects in the outer Solar System, Transjovian Objects (TJOs). These occultations cast diffraction patterns on the Earth. Current IACT arrays are capable of detecting objects smaller than 100 meters in radius in the Kuiper Belt and 1 km radius out to 5000 AU. The future Cherenkov Telescope Array (CTA) will have even greater capabilities. Because the arrays include several telescopes, they can potentially measure the speeds of TJOs without degeneracies, and the sizes of the TJOs and background stars. I estimate the achievable precision using a Fisher matrix analysis. With CTA, the precisions of these parameter estimations will be as good as a few percent. I consider how often IACTs can observe occultations by members of different TJO populations, including Centaurs, Kuiper Belt Objects (KB...

  1. Sensitivity of the space-based CHerenkov from Astrophysical Neutrinos Telescope (CHANT)

    CERN Document Server

    Neronov, A; Anchordoqui, L A; Adams, J; Olinto, A V

    2016-01-01

    Neutrinos with energies in the PeV to EeV range produce upgoing extensive air showers when they interact underground close enough to the surface of the Earth. We study the possibility for detection of such showers with a system of very wide field-of-view imaging atmospheric Cherenkov telescopes, named CHANT for CHerenkov from Astrophysical Neutrinos Telescope, pointing down to a strip below the Earth's horizon from space. We find that CHANT provides sufficient sensitivity for the study of the astrophysical neutrino flux in a wide energy range, from 10~PeV to 10~EeV. A space-based CHANT system can discover and study in detail the cosmogenic neutrino flux originating from interactions of ultra-high-energy cosmic rays in the intergalactic medium.

  2. Data analysis for solar neutrinos observed by water Cherenkov detectors{sup *}

    Energy Technology Data Exchange (ETDEWEB)

    Koshio, Yusuke [Okayama University, Okayama (Japan)

    2016-04-15

    A method of analyzing solar neutrino measurements using water-based Cherenkov detectors is presented. The basic detection principle is that the Cherenkov photons produced by charged particles via neutrino interaction are observed by photomultiplier tubes. A large amount of light or heavy water is used as a medium. The first detector to successfully measure solar neutrinos was Kamiokande in the 1980's. The next-generation detectors, i.e., Super-Kamiokande and the Sudbury Neutrino Observatory (SNO), commenced operation from the mid-1990's. These detectors have been playing the critical role of solving the solar neutrino problem and determining the neutrino oscillation parameters over the last decades. The future prospects of solar neutrino analysis using this technique are also described. (orig.)

  3. Analogue Sum ASIC for L1 Trigger Decision in Cherenkov Telescope Cameras

    CERN Document Server

    Barrio, Joan Abel; Boix, Joan; Delagnes, Eric; Delgado, Carlos; Coromina, Lluis Freixas; Gascon, David; Guilloux, Fabrice; Coto, Ruben Lopez; Martinez, Gustavo; Sanuy, Andreu; Tejedor, Luis Angel

    2014-01-01

    The Cherenkov Telescope Array (CTA) project aims to build the largest ground-based gamma-ray observatory based on an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The CTA will implement a multi-level trigger system to distinguish between gamma ray-like induced showers and background images induced by night sky background (NSB) light. The trigger system is based on coincident detections among pixels (level 0 trigger), clusters of pixels (level 1) or telescopes. In this article, the first version of the application specific integrated circuit (ASIC) for Level 1 trigger system is presented, capable of working with different Level 0 strategies and different trigger region sizes. In addition, it complies with all the requirements specified by the CTA project, specially the most critical ones as regards noise, bandwidth, dynamic range and power consumption. All these features make the presented system very suitable for use in the CTA cameras and improve the features of discrete components prototypes of...

  4. Detecting the Elusive Blazar Counter-Jets

    CERN Document Server

    Liodakis, I; Angelakis, E

    2016-01-01

    Detection of blazar pc scale counter-jets is difficult, but it can provide invaluable insight into the relativistic effects, radiative processes and the complex mechanisms of jet production, collimation and accelation in blazars. We build on recent populations models (optimized using the MOJAVE apparent velocity and redshift distributions) in order to derive the distribution of jet-to-counter-jet ratios and the flux densities of the counter-jet at different frequencies, in an effort to set minimum sensitivity limits required for existing and future telescope arrays in order to detect these elusive counter-jets. We find that: for the BL Lacs $5\\%$ of their counter-jets have a flux-density higher than 100mJy, $15\\%$ are higher than 10 mJy, and $32\\%$ have higher flux-density than 1 mJy, whereas for the FSRQs $8\\%$ have a flux-density higher than 10mJy, $17\\%$ are higher than 1 mJy, and $32\\%$ are higher than 0.1 mJy (at 15 GHz). Future telescopes like the SKA and newly operating like e-MERLIN and JVLA may detec...

  5. Observing muon decays in water Cherenkov detectors at the Pierre Auger Observatory

    OpenAIRE

    Allison, P.; Arneodo, F.; Bertou, X.; Busca, N.G.; Ghia, P.L.; C. Medina; Navarra, G.; Nellen, L.; Ibarguen, H. Salazar; Ranchon, S.; Urban, M.; Villasenor, L.; Collaboration, for the Pierre Auger

    2005-01-01

    Muons decaying in the water volume of a Cherenkov detector of the Pierre Auger Observatory provide a useful calibration point at low energy. Using the digitized waveform continuously recorded by the electronics of each tank, we have devised a simple method to extract the charge spectrum of the Michel electrons, whose typical signal is about 1/8 of a crossing vertical muon. This procedure, moreover, allows continuous monitoring of the detector operation and of its water level. We have checked ...

  6. Atmospheric multiple scattering of fluorescence and Cherenkov light emitted by extensive air showers

    OpenAIRE

    Pekala, J.; Homola, P.; Wilczynska, B.; Wilczynski, H.

    2009-01-01

    Atmospheric scattering of light emitted by an air shower not only attenuates direct fluorescence light from the shower, but also contributes to the observed shower light. So far only direct and singly-scattered Cherenkov photons have been taken into account in routine analyses of the observed optical image of air showers. In this paper a Monte Carlo method of evaluating the contribution of multiply scattered light to the optical air shower image is presented, as well as results of simulations...

  7. Prospects for CHIPS (R&D of Water Cherenkov Detectors in Mine Pits)

    OpenAIRE

    Lang, Karol

    2015-01-01

    CHIPS is an R&D program focused on designing and constructing a cost-effective large water Cherenkov detector (WCD) to study neutrino oscillations using accelerator beams. Traditional WCD's with a low energy threshold have been built in special large underground caverns. Civil construction of such facilities is costly and the excavation phase significantly delays the detector installation although, in the end, it offers a well-shielded apparatus with versatile physics program. Using concepts ...

  8. Picosecond Cherenkov detectors for high-energy heavy ion experiments at LHEP/JINR

    Science.gov (United States)

    Yurevich, V. I.; Batenkov, O. I.

    2016-07-01

    The modular Cherenkov detectors based on MCP-PMTs are developed for study Au+Au collisions in MPD and BM@N experiments with beams of Nuclotron and future collider NICA in Dubna. The aim of the detector is fast and effective triggering nucleus-nucleus collisions and generation of start signal for TOF detectors. The detector performance is studied with MC simulation and test measurements with a beam of Nuclotron.

  9. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications

    International Nuclear Information System (INIS)

    Cherenkov radiation has recently emerged as an interesting phenomenon for a number of applications in the biomedical sciences. Its unique properties, including broadband emission spectrum, spectral weight in the ultraviolet and blue wavebands, and local generation of light within a given tissue, have made it an attractive new source of light within tissue for molecular imaging and phototherapy applications. While several studies have investigated the total Cherenkov light yield from radionuclides in units of [photons/decay], further consideration of the light propagation in tissue is necessary to fully consider the utility of this signal in vivo. Therefore, to help further guide the development of this novel field, quantitative estimates of the light fluence rate of Cherenkov radiation from both radionuclides and radiotherapy beams in a biological tissue are presented for the first time. Using Monte Carlo simulations, these values were found to be on the order of 0.01–1 nW cm−2 per MBq g−1 for radionuclides, and 1–100 μW cm−2 per Gy s−1 for external radiotherapy beams, dependent on the given waveband, optical properties, and radiation source. For phototherapy applications, the total light fluence was found to be on the order of nJ cm−2 for radionuclides, and mJ cm−2 for radiotherapy beams. The results indicate that diagnostic potential is reasonable for Cherenkov excitation of molecular probes, but phototherapy may remain elusive at such exceedingly low fluence values. The results of this study are publicly available for distribution online at www.dartmouth.edu/optmed/. (paper)

  10. The Potential of Spaced-based High-Energy Neutrino Measurements via the Airshower Cherenkov Signal

    Science.gov (United States)

    Krizmanic, John F.; Mitchell, John W.

    2011-01-01

    Future space-based experiments, such as (Orbiting Wide-angle Light Collectors (OWL) and JEM-EUSO, view large atmospheric and terrestrial neutrino targets. With energy thresholds slightly above 10(exp 19) eV for observing airshowers via air fluorescence, the potential for observing the cosmogenic neutrino flux associated with the GZK effect is limited. However, the forward Cherenkov signal associated with the airshower can be observed at much lower energies. A simulation was developed to determine the Cherenkov signal strength and spatial extent at low-Earth orbit for upward-moving airshowers. A model of tau neutrino interactions in the Earth was employed to determine the event rate of interactions that yielded a tau lepton which would induce an upward-moving airshower observable by a space-based instrument. The effect of neutrino attenuation by the Earth forces the viewing of the Earth's limb to observe the vT-induced Cherenkov airshower signal at above the OWL Cherenkov energy threshold of approximately 10(exp 16.5) eV for limb-viewed events. Furthermore, the neutrino attenuation limits the effective terrestrial neutrino target area to approximately 3 x 10(exp 5) square km at 10(exp 17) eV, for an orbit of 1000 km and an instrumental full Field-of-View of 45 deg. This translates into an observable cosmogenic neutrino event rate of approx. l/year based upon two different models of the cosmogenic neutrino flux, assuming neutrino oscillations and a 10% duty cycle for observation.

  11. Performance of the Two Aerogel Cherenkov Detectors of the JLab Hall A Hadron Spectrometer

    OpenAIRE

    Marrone, S.; Wojtsekhowski, B. B.; Acha, A.; Cisbani, E.; M. COMAN; Cusanno, F.; de Jager, C. W.; De Leo, R; Gao, H.; Garibaldi, F.; Higinbotham, D.W.; Iodice, M.; LeRose, J.J.; Macchia, D; Markowitz, P.

    2008-01-01

    We report on the design and commissioning of two silica aerogel Cherenkov detectors with different refractive indices. In particular, extraordinary performance in terms of the number of detected photoelectrons was achieved through an appropriate choice of PMT type and reflector, along with some design considerations. After four years of operation, the number of detected photoelectrons was found to be noticeably reduced in both detectors as a result of contamination, yellowing, of the aerogel ...

  12. Experimental set-up of the LUNASKA lunar Cherenkov observations at the ATCA

    OpenAIRE

    James, C.W.; Ekers, R. D.; Philips, C. J.; Protheroe, R.J.; Roberts, P.; Robinson, R A; Alvarez-Muñiz, J.; Bray, J. D.

    2009-01-01

    This contribution describes the experimental set-up implemented by the LUNASKA project at the Australia Telescope Compact Array (ATCA) to enable the radio-telescope to be used to search for pulses of coherent Cherenkov radiation from UHE particle interactions in the Moon with an unprecedented bandwidth, and hence sensitivity. Our specialised hardware included analogue de-dispersion filters to coherently correct for the dispersion expected of a ~nanosecond pulse in the Earth's ionosphere over ...

  13. Simulation of Imaging Atmospheric Cherenkov Telescopes with CORSIKA and sim_telarray

    OpenAIRE

    Bernlohr, Konrad

    2008-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) have resulted in a breakthrough in very-high energy (VHE) gamma-ray astrophysics. While early IACT installations faced the problem of detecting any sources at all, current instruments are able to see many sources, often over more than two orders of magnitude in energy. As instruments and analysis methods have matured, the requirements for calibration and modelling of physical and instrumental effects have increased. In this article, a set of Mo...

  14. Sub-millimeter Bunch Length Non-invasive Diagnostic Based on the Diffraction and Cherenkov Radiation

    International Nuclear Information System (INIS)

    A layout for the investigation the coherent Cherenkov radiation from a dielectric target with a large spectral dispersion and the coherent diffraction radiation from a conducting screen as a tool for non-invasive longitudinal electron beam profile diagnostics are proposed for the 20∼30MeV Linac at Shanghai Institute of Applied Physics (SINAP). In this paper the status of the joint experiment and future plans are presented.

  15. Cherenkov detection of cosmic rays in Hanoi: Response to low signals

    Science.gov (United States)

    Thao, N. T.; Anh, P. T.; Darriulat, P.; Diep, P. N.; Dong, P. N.; Hiep, N. V.; Hoai, D. T.; Nhung, P. T. T.

    2013-05-01

    A replica of one of the 1660 Cherenkov detectors used in the ground array of the Pierre Auger Cosmic Ray Observatory in Argentina has been constructed on the roof of the VATLY astrophysics laboratory in Ha Noi (Viet Nam). We report on measurements of low amplitude signals using the detector to study event pairs occurring within a small time window. The data include time autocorrelation and charge distributions.

  16. Solar panels as air Cherenkov detectors for extremely high energy cosmic rays

    OpenAIRE

    Cecchini, S.; D'Antone, I; Esposti, L. Degli; Giacomelli, G.; Guerra, M; Lax, I; Mandrioli, G.; Parretta, A.; Sarno, A.; Schioppo, R.; Sorel, M.; Spurio, M.

    2000-01-01

    Increasing interest towards the observation of the highest energy cosmic rays has motivated the development of new detection techniques. The properties of the Cherenkov photon pulse emitted in the atmosphere by these very rare particles indicate low-cost semiconductor detectors as good candidates for their optical read-out. The aim of this paper is to evaluate the viability of solar panels for this purpose. The experimental framework resulting from measurements performed with suitably-designe...

  17. The optical reflector system for the CANGAROO-II imaging atmospheric Cherenkov telescope

    CERN Document Server

    Kawachi, A; Jimbo, J; Kamei, S; Kifune, T; Kubo, H; Kushida, J; Le Bohec, S; Miyawaki, K; Mori, M; Nishijima, K; Patterson, J R; Suzuki, R; Tanimori, T; Yanagita, S; Yoshikoshi, T; Yuki, A

    2001-01-01

    A new imaging atmospheric Cherenkov telescope (CANGAROO-II) with a light-weight reflector has been constructed. Light, robust, and durable mirror facets of containing CFRP (Carbon Fiber Reinforced Plastic) laminates were developed for the telescope. The attitude of each facet can be adjusted by stepping motors. In this paper, we describe the design, manufacturing, alignment procedure, and the performance of the CANGAROO-II optical reflector system.

  18. Effects of radiation damage caused by proton irradiation on Multi-Pixel Photon Counters (MPPCs)

    CERN Document Server

    Matsumura, T; Hiraiwa, T; Horie, K; Kuze, M; Miyabayashi, K; Okamura, A; Sawada, T; Shimizu, S; Shinkawa, T; Tsunemi, T; Yosoi, M

    2009-01-01

    We have investigated the effects caused by proton-induced radiation damage on Multi-Pixel Photon Counter (MPPC), a pixelized photon detector developed by Hamamatsu Photonics. The leakage current of irradiated MPPC samples linearly increases with total irradiated doses due to radiation damage, which is not completely recovered even after a year from the irradiation. No significant change has been observed in the gains at least up to 8.0 Gy (9.1x10^7 n/mm^2 in 1 MeV neutron equivalent fluence, Phi_eq). The device has completely lost its photon-counting capability due to baseline fluctuations and noise pile-up after 21 Gy irradiation (2.4x10^8 n/mm^2 in Phi_eq), which might be problematic for some applications, such as ring-imaging Cherenkov detectors. We have found that the pulse-height resolution has been slightly deteriorated after 42 Gy irradiation (4.8x10^8 n/mm^2 in Phi_eq), where the measured sample has been illuminated with a few hundred photons. This effect should be considered in the case of energy-mea...

  19. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin;

    2011-01-01

    When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the λ = 2...... efficiency is up to 25%. Thus, optical Cherenkov waves formed with cascaded nonlinearities could become an efficient source of energetic near- to mid-IR few-cycle pulses....

  20. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.B., E-mail: prose6@gatech.edu; Erickson, A.S., E-mail: anna.erickson@me.gatech.edu

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in {sup 11}B(d,n-γ){sup 12}C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example {sup 232}Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  1. Development of a mid-sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.

    2012-06-28

    The Cherenkov Telescope Array (CTA) is a ground-based observatory for very high-energy (10 GeV to 100 TeV) gamma rays, planned for operation starting in 2018. It will be an array of dozens of optical telescopes, known as Atmospheric Cherenkov Telescopes (ACTs), of 8 m to 24 m diameter, deployed over an area of more than 1 square km, to detect flashes of Cherenkov light from showers initiated in the Earth's atmosphere by gamma rays. CTA will have improved angular resolution, a wider energy range, larger fields of view and an order of magnitude improvement in sensitivity over current ACT arrays such as H.E.S.S., MAGIC and VERITAS. Several institutions have proposed a research and development program to eventually contribute 36 medium-sized telescopes (9 m to 12 m diameter) to CTA to enhance and optimize its science performance. The program aims to construct a prototype of an innovative, Schwarzschild-Couder telescope (SCT) design that will allow much smaller and less expensive cameras and much larger fields of view than conventional Davies-Cotton designs, and will also include design and testing of camera electronics for the necessary advances in performance, reliability and cost. We report on the progress of the mid-sized SCT development program.

  2. Evaluation of Multi-Anode Photomultipliers for the CLAS12 Ring-Imaging Cherenkov Detector

    Science.gov (United States)

    Samuel, Jenna

    2015-04-01

    Thomas Jefferson National Accelerator Facility has recently upgraded its Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS12) to provide a comprehensive study of the complex internal structure and dynamics of the nucleon. The upgrade includes new detectors such as the Ring Imaging Cherenkov detector (RICH). The RICH will use multi-anode photomultipliers (MAPMTs) for the detection of Cherenkov photons. Our study compared two models of Hamamatsu MAPMTs (H8500 and H12700) under consideration for the CLAS12 RICH in terms of their single photoelectron (SPE) peak, dark current, and crosstalk. The MAPMTs were tested inside a light-tight box, using a low intensity laser to simulate single photoelectron events similar to Cherenkov radiation. The H12700's SPE peaks were on average 78% the width of the H8500's peaks. For both models, the probability of dark current was on the order of 10-4. The probability of crosstalk for H8500s was 1.6 to 2.7 times that for H12700s. The H12700s were deemed better because they had negligible crosstalk and dark current while providing a narrower peak for single photoelectron events. Thomas Jefferson National Accelerator Facility, Science Undergraduate Laboratory Internship.

  3. R and D on high momentum particle identification with a pressurized Cherenkov radiator

    Energy Technology Data Exchange (ETDEWEB)

    Agócs, A.G. [Wigner RCP of the HAS, Budapest (Hungary); Barile, F. [INFN Sezione di Bari and Universit´a degli Studi di Bari, Dipartimento Interateneo di Fisica M. Merlin, Bari (Italy); Barnaföldi, G.G. [Wigner RCP of the HAS, Budapest (Hungary); Bellwied, R. [University of Houston, Houston (United States); Bencédi, G.; Bencze, G.; Berényi, D.; Boldizsár, L. [Wigner RCP of the HAS, Budapest (Hungary); Chattopadhyay, S. [Saha Institute of Nuclear Physics, Kolkata (India); Chinellato, D.D. [University of Houston, Houston (United States); Cindolo, F. [University of Salerno, Salerno (Italy); Cossyleon, K. [Chicago State University, Chicago, IL (United States); Das, D.; Das, K.; Das-Bose, L. [Saha Institute of Nuclear Physics, Kolkata (India); De Cataldo, G.; Di Bari, D. [INFN Sezione di Bari and Universit´a degli Studi di Bari, Dipartimento Interateneo di Fisica M. Merlin, Bari (Italy); Di Mauro, A. [CERN, CH1211 Geneva 23 (Switzerland); Futó, E. [Wigner RCP of the HAS, Budapest (Hungary); Garcia-Solis, E. [Chicago State University, Chicago, IL (United States); and others

    2014-12-01

    We report on the R and D results for a Very High Momentum Particle Identification (VHMPID) detector, which was proposed to extend the charged hadron track-by-track identification in the momentum range from 5 to 25 GeV/c in the ALICE experiment at CERN. It is a RICH detector with focusing geometry using pressurized perfluorobutane (C{sub 4}F{sub 8}O) as a Cherenkov radiator. A MWPC with a CsI photocathode was investigated as the baseline option for the photon detector. The results of beam tests performed on RICH prototypes using both liquid C{sub 6}F{sub 14} radiator (in proximity focusing geometry for reference measurements) and pressurized C{sub 4}F{sub 8}O gaseous radiator will be shown in this paper. In addition, we present studies of a CsI based gaseous photon detector equipped with a MWPC having an adjustable anode–cathode gap, aiming at the optimization of the chamber layout and performance in the detection of single photoelectrons. - Highlights: • Pressurized and heated C{sub 4}F{sub 8}O was used as Cherenkov radiator gas. • A Cherenkov angle resolution of 1.5 mrad was achieved. • The separation of electrons, pions, and kaons in a large momentum range is shown.

  4. Inauguration and First Light of the GCT-M Prototype for the Cherenkov Telescope Array

    CERN Document Server

    Watson, J J; Abchiche, A; Allan, D; Amans, J -P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Brown, A M; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Frondat, F; Dournaux, J -L; Dumas, D; Ernenwein, J -P; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Rulten, C B; Sato, Y; Sayéde, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Tibaldo, L; Trichard, C; Vink, J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Gamma-ray Cherenkov Telescope (GCT) is a candidate for the Small Size Telescopes (SSTs) of the Cherenkov Telescope Array (CTA). Its purpose is to extend the sensitivity of CTA to gamma-ray energies reaching 300 TeV. Its dual-mirror optical design and curved focal plane enables the use of a compact camera of 0.4 m diameter, while achieving a field of view of above 8 degrees. Through the use of the digitising TARGET ASICs, the Cherenkov flash is sampled once per nanosecond continuously and then digitised when triggering conditions are met within the analogue outputs of the photosensors. Entire waveforms (typically covering 96 ns) for all 2048 pixels are then stored for analysis, allowing for a broad spectrum of investigations to be performed on the data. Two prototypes of the GCT camera are under development, with differing photosensors: Multi-Anode Photomultipliers (MAPMs) and Silicon Photomultipliers (SiPMs). During November 2015, the GCT MAPM (GCT-M) prototype camera was integrated onto the GCT structure...

  5. Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time

    International Nuclear Information System (INIS)

    Purpose: To determine whether Cherenkov light imaging can visualize radiation therapy in real time during breast radiation therapy. Methods and Materials: An intensified charge-coupled device (CCD) camera was synchronized to the 3.25-μs radiation pulses of the clinical linear accelerator with the intensifier set × 100. Cherenkov images were acquired continuously (2.8 frames/s) during fractionated whole breast irradiation with each frame an accumulation of 100 radiation pulses (approximately 5 monitor units). Results: The first patient images ever created are used to illustrate that Cherenkov emission can be visualized as a video during conditions typical for breast radiation therapy, even with complex treatment plans, mixed energies, and modulated treatment fields. Images were generated correlating to the superficial dose received by the patient and potentially the location of the resulting skin reactions. Major blood vessels are visible in the image, providing the potential to use these as biological landmarks for improved geometric accuracy. The potential for this system to detect radiation therapy misadministrations, which can result from hardware malfunction or patient positioning setup errors during individual fractions, is shown. Conclusions: Cherenkoscopy is a unique method for visualizing surface dose resulting in real-time quality control. We propose that this system could detect radiation therapy errors in everyday clinical practice at a time when these errors can be corrected to result in improved safety and quality of radiation therapy

  6. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    CERN Document Server

    Sweany, M; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, M

    2011-01-01

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 $\\pm$ 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 $\\pm$ 0.03 for Carbostyril-124, and 1.20 $\\pm$ 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modele...

  7. Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Lesley A., E-mail: Lesley.a.jarvis@hitchcock.org [Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (United States); Norris Cotton Cancer Center at the Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire (United States); Gladstone, David J. [Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (United States); Norris Cotton Cancer Center at the Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Jiang, Shudong [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire (United States); Hitchcock, Whitney [Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (United States); Friedman, Oscar D.; Glaser, Adam K.; Jermyn, Michael [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire (United States); Pogue, Brian W. [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire (United States); Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire (United States)

    2014-07-01

    Purpose: To determine whether Cherenkov light imaging can visualize radiation therapy in real time during breast radiation therapy. Methods and Materials: An intensified charge-coupled device (CCD) camera was synchronized to the 3.25-μs radiation pulses of the clinical linear accelerator with the intensifier set × 100. Cherenkov images were acquired continuously (2.8 frames/s) during fractionated whole breast irradiation with each frame an accumulation of 100 radiation pulses (approximately 5 monitor units). Results: The first patient images ever created are used to illustrate that Cherenkov emission can be visualized as a video during conditions typical for breast radiation therapy, even with complex treatment plans, mixed energies, and modulated treatment fields. Images were generated correlating to the superficial dose received by the patient and potentially the location of the resulting skin reactions. Major blood vessels are visible in the image, providing the potential to use these as biological landmarks for improved geometric accuracy. The potential for this system to detect radiation therapy misadministrations, which can result from hardware malfunction or patient positioning setup errors during individual fractions, is shown. Conclusions: Cherenkoscopy is a unique method for visualizing surface dose resulting in real-time quality control. We propose that this system could detect radiation therapy errors in everyday clinical practice at a time when these errors can be corrected to result in improved safety and quality of radiation therapy.

  8. Performance study of wavelength shifting acrylic plastic for Cherenkov light detection

    Energy Technology Data Exchange (ETDEWEB)

    Beckford, B., E-mail: beckford@aps.org [American Physical Society, One Physics Ellipse, College Park, MD 20740 (United States); De la Puente, A. [TRIUMF Laboratory, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3 (Canada); Fujii, Y.; Hashimoto, O.; Kaneta, M.; Kanda, H.; Maeda, K.; Matsumura, A.; Nakamura, S.N. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Perez, N.; Reinhold, J. [Department of Physics, Florida International University, Miami, FL 33199 (United States); Tang, L. [Department of Physics, Hampton University, Hampton, VA 23668 (United States); Tsukada, K. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

    2014-01-21

    The collection efficiency for Cherenkov light incident on a wavelength shifting plate (WLS) has been determined during a beam test at the Proton Synchrotron facility located in the National Laboratory for High Energy Physics (KEK), Tsukuba, Japan. The experiment was conducted in order to determine the detector's response to photoelectrons converted from photons produced by a fused silica radiator; this allows for an approximation of the detector's quality. The yield of the photoelectrons produced through internally generated Cherenkov light as well as light incident from the radiator was measured as a function of the momentum of the incident hadron beam. The yield is proportional to sin{sup 2}θ{sub c}, where θ{sub c} is the opening angle of the Cherenkov light created. Based on estimations and results from similar conducted tests, where the collection efficiency was roughly 39%, the experimental result was expected to be around 40% for internally produced light from the WLS. The results of the experiment determined the photon collection response efficiency of the WLS to be roughly 62% for photons created in a fused silica radiator and 41% for light created in the WLS.

  9. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications

    Science.gov (United States)

    Glaser, Adam K.; Zhang, Rongxiao; Andreozzi, Jacqueline; Gladstone, David; Pogue, Brian

    2016-03-01

    Cherenkov radiation has emerged as a novel source of light with a number of applications in the biomedical sciences. It's unique properties, including its broadband emission spectrum, spectral weighting in the ultraviolet and blue wavebands, and local generation of light within a given tissue have made it an attractive source of light for techniques ranging from widefield imaging to oximetry and phototherapy. To help guide the future development of this field in the context of molecular imaging, quantitative estimates of the light fluence rates of Cherenkov radiation from a number of radionuclide and external radiotherapy beams in tissue was explored for the first time. Using Monte Carlo simulations, these values were found to be on the order of 0.1 - 1 nW/cm2 per MBq/g for radionuclides and 1 - 10 μW/cm2 per Gy/sec for external radiotherapy beams, dependent on the given waveband and optical properties. For phototherapy applications, the total light fluence was found to be on the order of nJ/cm2 for radionuclides, and mJ/cm2 for radiotherapy beams. To validate these findings, experimental validation was completed with an MV x-ray photon beam incident onto a tissue phantom, confirming the magnitudes of the simulation values. The results indicate that diagnostic potential is reasonable for Cherenkov excitation of molecular probes, but phototherapy may remain elusive at these relatively low fluence values.

  10. A versatile digital camera trigger for telescopes in the Cherenkov Telescope Array

    CERN Document Server

    Schwanke, U; Sulanke, K -H; Vorobiov, S; Wischnewski, R

    2015-01-01

    This paper describes the concept of an FPGA-based digital camera trigger for imaging atmospheric Cherenkov telescopes, developed for the future Cherenkov Telescope Array (CTA). The proposed camera trigger is designed to select images initiated by the Cherenkov emission of extended air showers from very-high energy (VHE, E>20 GeV) photons and charged particles while suppressing signatures from background light. The trigger comprises three stages. A first stage employs programmable discriminators to digitize the signals arriving from the camera channels (pixels). At the second stage, a grid of low-cost FPGAs is used to process the digitized signals for camera regions with 37 pixels. At the third stage, trigger conditions found independently in any of the overlapping 37-pixel regions are combined into a global camera trigger by few central FPGAs. Trigger prototype boards based on Xilinx FPGAs have been designed, built and tested and were shown to function properly. Using these components a full camera trigger wi...

  11. TARGET: A Digitizing And Trigger ASIC For The Cherenkov Telescope Array

    CERN Document Server

    Funk, S; Katagiri, H; Kraus, M; Okumura, A; Schoorlemmer, H; Shigenaka, A; Tajima, H; Tibaldo, L; Varner, G; Zink, A; Zorn, J

    2016-01-01

    The future ground-based gamma-ray observatory Cherenkov Telescope Array (CTA) will feature multiple types of imaging atmospheric Cherenkov telescopes, each with thousands of pixels. To be affordable, camera concepts for these telescopes have to feature low cost per channel and at the same time meet the requirements for CTA in order to achieve the desired scientific goals. We present the concept of the TeV Array Readout Electronics with GSa/s sampling and Event Trigger (TARGET) Application Specific Circuit (ASIC), envisaged to be used in the cameras of various CTA telescopes, e.g. the Gamma-ray Cherenkov Telescope (GCT), a proposed 2-Mirror Small-Sized Telescope, and the Schwarzschild-Couder Telescope (SCT), a proposed Medium-Sized Telescope. In the latest version of this readout concept the sampling and trigger parts are split into dedicated ASICs, TARGET C and T5TEA, both providing 16 parallel input channels. TARGET C features a tunable sampling rate (usually 1 GSa/s), a 16k sample deep buffer for each chann...

  12. Educational cosmic ray experiments with Geiger counters

    CERN Document Server

    Blanco, F; Rocca, P L; Librizzi, F; Parasole, O; Riggi, F

    2006-01-01

    Experiments concerning the physics of cosmic rays offer to high-school teachers and students a relatively easy approach to the field of research in high energy physics. The detection of cosmic rays does not necessarily require the use of sophisticated equipment, and various properties of the cosmic radiation can be observed and analysed even by the use of a single Geiger counter. Nevertheless, the variety of such kind of experiments and the results obtained are limited because of the inclusive nature of these measurements. A significant improvement may be obtained when two or more Geiger counters are operated in coincidence. In this paper we discuss the potential of performing educational cosmic ray experiments with Geiger counters. In order to show also the educational value of coincidence techniques, preliminary results of cosmic ray experiments carried out by the use of a simple coincidence circuit are briefly discussed.

  13. Neutron spectroscopy with the Spherical Proportional Counter

    CERN Document Server

    Bougamont, E; Derre, J; Galan, J; Gerbier, G; Giomataris, I; Gros, M; Katsioulas, I; Jourde, D; Magnier, P; Navick, X F; Papaevangelou, T; Savvidis, I; Tsiledakis, G

    2015-01-01

    A novel large volume spherical proportional counter, recently developed, is used for neutron measurements. Gas mixtures of $N_{2}$ with $C_{2}H_{6}$ and pure $N_{2}$ are studied for thermal and fast neutron detection, providing a new way for the neutron spectroscopy. The neutrons are detected via the ${}^{14}N(n, p)C^{14}$ and ${}^{14}N(n, \\alpha)B^{11}$ reactions. Here we provide studies of the optimum gas mixture, the gas pressure and the most appropriate high voltage supply on the sensor of the detector in order to achieve the maximum amplification and better resolution. The detector is tested for thermal and fast neutrons detection with a ${}^{252}Cf$ and a ${}^{241}Am-{}^{9}Be$ neutron source. The atmospheric neutrons are successfully measured from thermal up to several MeV, well separated from the cosmic ray background. A comparison of the spherical proportional counter with the current available neutron counters is also given.

  14. Whole Body Counters in Biomedical Research

    Directory of Open Access Journals (Sweden)

    S. C. Jain

    1994-01-01

    Full Text Available Whole body counter plays an important role in medical diagnosis and clinical research. It has been used for monitoring of radiation workers for the assessment of internal contamination or assessment of activity in persons exposed to radiation fallout. In a nuclear emergency like Chernobyl, neutron exposure to the radiation victims was assessed by measuring the induced activity of /sup 24/Na. Apart from its use in determining certain element composition in the body, it has got a number of clinical applications like absorption tests, and metabolic and kinetic studies. The work done at INMAS whole body counter facility is also discussed.

  15. Whole body counters: types, performance and uses

    International Nuclear Information System (INIS)

    The present monograph deals with Whole Counters, since its definition, evolution, performance, clinical indications and results. Scintillation crystals detection systems were described as well as scintillant solutions, plastic scintillations, and gaseous detectors, including its interplay forms and basal characteristics. Geometric arrangements of standard chair, arc and hammock, arrangements with scintillant solutions and plastic scintillations, as well as special geometric arrangements were equally commented. Clinic and experimental studies were also dealt with Whole Body Counters, giving examples with potassium, iron vitamin B12 and albumin. (author)

  16. Extruded plastic counters with WLS fiber readout

    CERN Document Server

    Kudenko, Yu G; Mayatski, V A; Mineev, O V; Yershov, N V

    2001-01-01

    Extruded plastic scintillation counters with WLS fiber readout are described. For a 7 mm thick counter with 4.3 m long double-clad fibers spaced at 7 mm a light yield of 18.7 photoelectrons/MeV and a time resolution of 0.71 ns (sigma) were obtained. A prototype photon veto module consisting of 10 layers of 7 mm thick grooved plastic slabs interleaved with 1 mm lead sheets was also tested, which yielded 122 photoelectrons per minimum ionizing particle and time resolution of 360 ps.

  17. Development of DUPIC safeguards neutron counter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Gil; Cha, Hong Ryul; Kim, Ho Dong; Hong, Jong Sook; Kang, Hee Young

    1999-08-01

    KAERI, in cooperation with LANL, developed DSNC (DUPIC Safeguards Neutron Counter) for safeguards implementing on DUPIC process which is under development by KAERI for direct use of spent PWR fuel in CANDU reactors. DSNC is a well-type neutron coincidence counter with substantial shielding to protect system from high gamma radiation of spent fuel. General development procedures in terms of design, manufacturing, fabrication, cold and hot test, performance test for DSNC authentication by KAERI-IAEA-LANL are described in this report. It is expected that the techniques related DSNC development and associated neutron detection and evaluation method could be applied for safeguards improvement. (Author). 20 refs., 16 tabs. 98 figs.

  18. Analysis of counter-rotating wind turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zakkam, Vinod Arun Kumar; Sørensen, Jens Nørkær;

    2007-01-01

    This paper presents a study on the performance of a wind turbine with two counter-rotating (CRWT) rotors. The characteristics of the two counter-rotating rotors are on a 3-bladed Nordtank 500 kW rotor. The analysis has been carried out by using an Actuator Line technique implemented in the Navier......-Stokes code EllipSys3D. The analysis shows that the Annual Energy Production can be increased to about 43.5 %, as compared to a wind turbine with a single rotor. In order to determine the optimal settings of the CRWT turbine, parameters such as distance between two rotors and rotational speed have been...

  19. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, Jacqueline M., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu; Glaser, Adam K. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Jarvis, Lesley A.; Gladstone, David J. [Department of Medicine, Geisel School of Medicine and Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States); Pogue, Brian W., E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2015-02-15

    Purpose: To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Methods: Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Results: Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary

  20. Micropipette as Coulter counter for submicron particles

    Science.gov (United States)

    Rudzevich, Yauheni; Ordonez, Tony; Evans, Grant; Chow, Lee

    2011-03-01

    Coulter counter based on micropipette has been around for several decades. Typical commercial Coulter counter has a pore size of 20 μ m, and is designed to detect micron-size blood cells. In recent years, there are a lot of interests in using nanometer pore size Coulter counter to detect single molecule and to sequence DNA. Here we describe a simple nanoparticle counter based on pulled micropipettes with a diameter of 50 -- 500 nm. Borosilicate micropipettes with an initial outer diameter of 1.00 mm and inner diameter of 0.5 mm are used. After pulling, the micropipettes are fire polished and ultrasound cleaned. Chlorinated Ag/AgCl electrodes and 0.1 M of KCl solution are used. The ionic currents are measured using an Axopatch 200B amplifier in the voltage-clamp mode. Several types and sizes of nanoparticles are measured, including plain silica and polystyrene nanospheres. The results will be discussed in terms of pH values of the solution and concentrations of the nanoparticles. Financial support from National Science Foundation (NSF-0901361) is acknowledged.

  1. Energy resolution of the proportional counter

    International Nuclear Information System (INIS)

    Resolution values 11.6% and 12.2% for 5.9 keV have been obtained experimentally for proportional counters with gas fillings Ne+0.5% Ar or Ar+0.5% C2H2. This is appreciably better than earlier measurements which exceed 14%. Theoretical computation indicates that even better resolutions can be obtained. (Auth.)

  2. Townsend coefficients of gases in avalanche counters

    International Nuclear Information System (INIS)

    Though much work has been done by many authors in the last few years in the development and application of avalanche counters for ion radiation, it is based upon values of the Townsend coefficients as the essential gas parameter, which were determined many years ago for much lower reduced field strengths F/p than prevail in such counters. Therefore absolute determinations of α in vapours of methyl alcohol, cyclohexane, acetone, and n-heptene were performed under original conditions of avalanche counters. The values obtained do not differ by more than 30%-50% from the former values indeed, extrapolated over F/p for the first three mentioned substances, but the amounts of A and B in the usual representation α/p=A exp(-B(F/p)) are much greater for the stronger reduced fields. This is of importance for such counter properties as the dependence of pulse heights on pressure, voltage, electrode distance etc., which are governed by other combinations of A and B than α/p itself. A comparison of results for different ionic radiations shows a marked influence of the primary ionization density along the particle tracks which is hard to explain. (Auth.)

  3. Cerenkov counters at the Omega Facility

    CERN Multimedia

    1975-01-01

    P. Petroff on the left. Here one sees both the gas Cerenkov counters sitting in front of the magnet to select forward emitted particles. The smaller one, working at high pressure, sits nearest to the Omega magnet (see photo 7505073X), the other (see photo 7505071X) works at atmospheric pressure.

  4. COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Cayatte, V.; Sauty, C. [Laboratoire Univers et Théories, Observatoire de Paris, UMR 8102 du CNRS, Université Paris Diderot, F-92190 Meudon (France); Vlahakis, N.; Tsinganos, K. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece); Matsakos, T. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Lima, J. J. G., E-mail: veronique.cayatte@obspm.fr [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2014-06-10

    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.

  5. Can counter-stereotypes boost flexible thinking?

    NARCIS (Netherlands)

    M.A. Goclowska; R.J. Crisp; K. Labuschagne

    2012-01-01

    To reduce prejudice psychologists design interventions requiring people to think of counter-stereotypes (i.e., people who defy stereotypic expectations—a strong woman, a Black President). Grounded in the idea that stereotypes constrain the ability to think flexibly, we propose that thinking of count

  6. One-Counter Markov Decision Processes

    NARCIS (Netherlands)

    Brazdil, T.; Brozek, V.; Etessami, K.; Kucera, A.; Wojtczak, D.K.; Charikar, M.

    2010-01-01

    We study the computational complexity of central analysis problems for One-Counter Markov Decision Processes (OC-MDPs), a class of finitely-presented, countable-state MDPs. OC-MDPs are equivalent to a controlled extension of (discrete-time) Quasi-Birth-Death processes (QBDs), a stochastic model stud

  7. Ultrafine Condensation Particle Counter Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-01

    The Model 3776 Ultrafine Condensation Particle Counter (UCPC; pictured in Appendix A) is designed for researchers interested in airborne particles smaller than 20 nm. With sensitivity to particles down to 2.5 nm in diameter, this UCPC is ideally suited for atmospheric and climate research, particle formation and growth studies, combustion and engine exhaust research, and nanotechnology research.

  8. A proportional-scintillation counter beta spectrometer

    International Nuclear Information System (INIS)

    Using a proportional counter for coincidence gating of events in a plastic scintillator provides selective registration of beta interactions in the scintillator. This technique has been used to construct a field instrument that can selectively collect beta spectra (coincidence gating) or gamma spectra (anticoincidence gating). Associated dose rates are calculated from the spectra

  9. Measurements and elimination of Cherenkov light in fiber-optic scintillating detector for electron beam therapy dosimetry

    International Nuclear Information System (INIS)

    In this study, a miniature fiber-optic radiation detector has been developed using a water-equivalent organic scintillator for electron beam therapy dosimetry. Usually, two kinds of light signals such as fluorescent and Cherenkov lights are generated in a fiber-optic radiation detector when a high-energy electron beam is irradiated. The fluorescent light signal is produced in the scintillator and is transmitted through a plastic optical fiber to a remote light-measuring device such as a PMT or a photodiode. The Cherenkov light could be also produced in the plastic optical fiber itself and be detected by a light-measuring device. Therefore, it could cause problems or limit the accuracy of the detection of a fluorescent light signal that is proportional to dose. The objectives of this study are to measure, characterize and eliminate Cherenkov light generated in a plastic optical fiber used as a component of a fiber-optic radiation detector and to detect a real fluorescent light signal from the scintillator. In this study, the intensity of Cherenkov light is measured and characterized as a function of the incident angle of an electron beam from a LINAC, as a function of the electron beam energy, and as a function of electron beam size. Also, a subtraction method using a background optical fiber without a scintillator and an optical discrimination method using optical filters are investigated to remove Cherenkov light

  10. Upaya Perumusan Prinsip Counter Accounting Melalui Filosofi Punk sebagai Counter Culture

    OpenAIRE

    Dayno Utama

    2015-01-01

    The aim of this research is to demonstrate that resistance to mainstream research contained in top/elite accounting journals for sparking creativity and innovation unconsciously has utilized the philosophy of punk. The research method of this research is argumentation technique. The result of this research shows that the philosophy of punk as counter culture can be utilized for accounting research through formulation the accounting principles namely counter accounting. Creative and innovative...

  11. Diseño de montura Davies-Cotton de telescopio Cherenkov de 6m de diámetro para el proyecto CTA

    Science.gov (United States)

    Actis, M.; Ringegni, P.; Antico, F.; Bottani, A.; Vallejo, G.; Ochoa, I.; Marconi, D.; Supanitsky, A. D.; Rovero, A. C.

    For the next generation of ground-based instruments for the observation of gamma-rays, the construction of 6 m diameter Cherenkov telescopes is foreseen. We have proposed a design of Davies-Cotton mount for such a telescope, within Cherenkov Telescope Array specifications, and evaluated its mechanical and optical performance. FULL TEXT IN SPANISH

  12. Efficiency calibration of solid track spark auto counter

    International Nuclear Information System (INIS)

    The factors influencing detection efficiency of solid track spark auto counter were analyzed, and the best etch condition and parameters of charge were also reconfirmed. With small plate fission ionization chamber, the efficiency of solid track spark auto counter at various experiment assemblies was re-calibrated. The efficiency of solid track spark auto counter at various experimental conditions was obtained. (authors)

  13. 21 CFR 864.5200 - Automated cell counter.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated cell counter. 864.5200 Section 864.5200....5200 Automated cell counter. (a) Identification. An automated cell counter is a fully-automated or semi... corpuscular hemoglobin concentration). These devices may use either an electronic particle counting method...

  14. Calibration and performance of the photon sensor response of FACT -- The First G-APD Cherenkov telescope

    CERN Document Server

    Biland, A; Buß, J; Commichau, V; Djambazov, L; Dorner, D; Einecke, S; Eisenacher, D; Freiwald, J; Grimm, O; von Gunten, H; Haller, C; Hempfling, C; Hildebrand, D; Hughes, G; Horisberger, U; Knoetig, M L; Krähenbühl, T; Lustermann, W; Lyard, E; Mannheim, K; Meier, K; Mueller, S; Neise, D; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Röser, U; Stucki, J -P; Steinbring, T; Temme, F; Thaele, J; Vogler, P; Walter, R; Weitzel, Q

    2014-01-01

    The First G-APD Cherenkov Telescope (FACT) is the first in-operation test of the performance of silicon photo detectors in Cherenkov Astronomy. For more than two years it is operated on La Palma, Canary Islands (Spain), for the purpose of long-term monitoring of astrophysical sources. For this, the performance of the photo detectors is crucial and therefore has been studied in great detail. Special care has been taken for their temperature and voltage dependence implementing a correction method to keep their properties stable. Several measurements have been carried out to monitor the performance. The measurements and their results are shown, demonstrating the stability of the gain below the percent level. The resulting stability of the whole system is discussed, nicely demonstrating that silicon photo detectors are perfectly suited for the usage in Cherenkov telescopes, especially for long-term monitoring purpose.

  15. Experimental study of the atmospheric neutrino backgrounds for proton decay to positron and neutral pion searches in water Cherenkov detectors

    CERN Document Server

    Mine, S; Andringa, S; Aoki, S; Argyriades, J; Asakura, K; Ashie, R; Berghaus, F; Berns, H; Bhang, H; Blondel, A; Borghi, S; Bouchez, J; Burguet-Castell, J; Casper, D; Catala, J; Cavata, C; Cervera-Villanueva, Anselmo; Chen, S M; Cho, K O; Choi, J H; Dore, U; Espinal, X; Fechner, M; Fernández, E; Fujii, Y; Fukuda, Y; Gomez-Cadenas, J; Gran, R; Hara, T; Hasegawa, M; Hasegawa, T; Hayato, Y; Helmer, R L; Hiraide, K; Hosaka, J; Ichikawa, A K; Iinuma, M; Ikeda, A; Ishida, T; Ishihara, K; Ishii, T; Ishitsuka, M; Itow, Y; Iwashita, T; Jang, H I; Jeon, E J; Jeong, I S; Joo, K K; Jover, G; Jung, C K; Kajita, T; Kameda, J; Kaneyuki, K; Kato, I; Kearns, E; Kim, C O; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kim, J Y; Kim, S B; Kitching, P; Kobayashi, K; Kobayashi, T; Konaka, A; Koshio, Y; Kropp, W; Kudenko, Yu; Kuno, Y; Kurimoto, Y; Kutter, T; Learned, J; Likhoded, S; Lim, I T; Loverre, P F; Ludovici, L; Maesaka, H; Mallet, J; Mariani, C; Matsuno, S; Matveev, V; McConnel, K; McGrew, C; Mikheyev, S; Minamino, A; Mineev, O; Mitsuda, C; Miura, M; Moriguchi, Y; Moriyama, S; Nakadaira, T; Nakahata, M; Nakamura, K; Nakano, I; Nakaya, T; Nakayama, S; Namba, T; Nambu, R; Nawang, S; Nishikawa, K; Nitta, K; Nova, F; Novella, P; Obayashi, Y; Okada, A; Okumura, K; Oser, S M; Oyama, Y; Pac, M Y; Pierre, F; Rodríguez, A; Saji, C; Sakuda, M; Sánchez, F; Scholberg, K; Schroeter, R; Sekiguchi, M; Shiozawa, M; Shiraishi, K; Sitjes, G; Smy, M; Sobel, H; Sorel, M; Stone, J; Sulak, L; Suzuki, A; Suzuki, Y; Tada, M; Takahashi, T; Takenaga, Y; Takeuchi, Y; Taki, K; Takubo, Y; Tamura, N; Tanaka, M; Terri, R; T'Jampens, S; Tornero-Lopez, A; Totsuka, Y; Vagins, M; Whitehead, L; Walter, C W; Wang, W; Wilkes, R J; Yamada, S; Yamada, Y; Yamamoto, S; Yanagisawa, C; Yershov, N; Yokoyama, H; Yokoyama, M; Yoo, J; Yoshida, M; Zalipska, J

    2008-01-01

    The atmospheric neutrino background for proton decay to positron and neutral pion in ring imaging water Cherenkov detectors is studied with an artificial accelerator neutrino beam for the first time. In total, about 314,000 neutrino events corresponding to about 10 megaton-years of atmospheric neutrino interactions were collected by a 1,000 ton water Cherenkov detector (KT). The KT charged-current single neutral pion production data are well reproduced by simulation programs of neutrino and secondary hadronic interactions used in the Super-Kamiokande (SK) proton decay search. The obtained proton to positron and neutral pion background rate by the KT data for SK from the atmospheric neutrinos whose energies are below 3 GeV is about two per megaton-year. This result is also relevant to possible future, megaton-scale water Cherenkov detectors.

  16. A GPU-based Calculation Method for Near Field Effects of Cherenkov Radiation Induced by Ultra High Energy Cosmic Neutrinos

    CERN Document Server

    Hu, Chia-Yu; Chen, Pisin

    2010-01-01

    The radio approach for detecting the ultra-high energy cosmic neutrinos has become a mature field. The Cherenkov signals in radio detection are originated from the charge excess of particle showers due to Askaryan effect. The conventional way of calculating the Cherenkov pulses by making Fraunhofer approximation fails when the sizes of the elongated showers become comparable with the detection distances. We present a calculation method of Cherenkov pulses based on the finite-difference time-domain (FDTD) method, and attain a satisfying effeciency via the GPU- acceleration. Our method provides a straightforward way of the near field calculation, which would be important for ultra high energy particle showers, especailly the electromagnetic showers induced by the high energy leptons produced in the neutrino charge current interactions.

  17. Development of the optical system for the SST-1M telescope of the Cherenkov Telescope Array observatory

    CERN Document Server

    Seweryn, K; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Chruślińska, M.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Rozwadowski, P.; Schioppa, E. jr; Schovanek, P.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Pujadas, I. Troyano; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.; Barciński, T.; Karczewski, M.; Kukliński, J. Nicolau; Płatos, Ł.; Rataj, M.; Wawer, P.; Wawrzaszek, R.

    2015-01-01

    The prototype of a Davies-Cotton small size telescope (SST-1M) has been designed and developed by a consortium of Polish and Swiss institutions and proposed for the Cherenkov Telescope Array (CTA) observatory. The main purpose of the optical system is to focus the Cherenkov light emitted by extensive air showers in the atmosphere onto the focal plane detectors. The main component of the system is a dish consisting of 18 hexagonal mirrors with a total effective collection area of 6.47 m2 (including the shadowing and estimated mirror reflectivity). Such a solution was chosen taking into account the analysis of the Cherenkov light propagation and based on optical simulations. The proper curvature and stability of the dish is ensured by the mirror alignment system and the isostatic interface to the telescope structure. Here we present the design of the optical subsystem together with the performance measurements of its components.

  18. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses

    CERN Document Server

    Bache, M; Zhou, B B; Moses, J; Wise, F W

    2011-01-01

    When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the $\\lambda=2.2-4.5\\mic$ range when pumping at $\\lambda_1=1.2-1.8\\mic$. The exact phase-matching point depends on the soliton wavelength, and we show that a simple longpass filter can separate the Cherenkov waves from the solitons. The Cherenkov waves are born few-cycle with an excellent Gaussian pulse shape, and the conversion efficiency is up to 25%. Thus, optical Cherenkov waves formed with cascaded nonlinearities could become an efficient source of energetic near- to mid-IR few-cycle pulses.

  19. Observing muon decays in water Cherenkov detectors at the Pierre Auger Observatory

    CERN Document Server

    Allison, P; Bertou, X; Busca, N G; Ghia, P L; Medina, C; Navarra, G; Nellen, L; Ibarguen, H S; Ranchon, S; Urban, M; Villaseñor, L

    2005-01-01

    Muons decaying in the water volume of a Cherenkov detector of the Pierre Auger Observatory provide a useful calibration point at low energy. Using the digitized waveform continuously recorded by the electronics of each tank, we have devised a simple method to extract the charge spectrum of the Michel electrons, whose typical signal is about 1/8 of a crossing vertical muon. This procedure, moreover, allows continuous monitoring of the detector operation and of its water level. We have checked the procedure with high statistics on a test tank at the Observatory base and applied with success on the whole array.

  20. Atmospheric multiple scattering of fluorescence and Cherenkov light emitted by extensive air showers

    CERN Document Server

    Pekala, J; Wilczynska, B; Wilczynski, H; 10.1016/j.nima.2009.03.244

    2009-01-01

    Atmospheric scattering of light emitted by an air shower not only attenuates direct fluorescence light from the shower, but also contributes to the observed shower light. So far only direct and singly-scattered Cherenkov photons have been taken into account in routine analyses of the observed optical image of air showers. In this paper a Monte Carlo method of evaluating the contribution of multiply scattered light to the optical air shower image is presented, as well as results of simulations and a parameterization of scattered light contribution to measured shower signal.

  1. Vacuum Cherenkov radiation and photon decay rates from generic Lorentz Invariance Violation

    CERN Document Server

    Martínez-Huerta, H

    2016-01-01

    Among the most studied approaches to introduce the breaking of Lorentz symmetry, the generic approach is one of the most frequently used for phenomenology, it converges on the modification of the free particle dispersion relation. Using this approach in the photon sector, we have calculated the squared probability amplitude for vacuum Cherenkov radiation and photon decay by correcting the QED coupling at tree level and first order in LIV parameters. For the lower order energy correction we calculate the emission and decay rate for each process.

  2. The ASTRI Project: a mini-array of dual-mirror small Cherenkov telescopes for CTA

    OpenAIRE

    La Palombara, N.; Agnetta, G; Antonelli, L.A.; Bastieri, D.; Bellassai, G.; Belluso, M; Bigongiari, C.; Billotta, S.; Biondo, B.; Bonanno, G.; Bonnoli, G.; Bruno, P; Bulgarelli, A.; Canestrari, R.; Capalbi, M.

    2013-01-01

    ASTRI is a flagship project of the Italian Ministry of Education, University and Research, which aims to develop an end-to-end prototype of the CTA small-size telescope. The proposed design is characterized by a dual-mirror Schwarzschild-Couder configuration and a camera based on Silicon photo-multipliers, two challenging but innovative technological solutions which will be adopted for the first time on a Cherenkov telescope. Here we describe the current status of the project, the expected pe...

  3. Observation of Optical Flashes of the Night Star Sky on the Atmospheric Cherenkov Installation Tunka-13

    OpenAIRE

    Gress, O. A.; Gress, T. I.; Pan'kov, L. V.; Parfenov, Yu. V.; Semeney, Yu. A.; Kuzmichev, L. A.

    2000-01-01

    Experiment on the study of fluctuation of night glow is conducted on the base of 13 module atmospheric Cherenkov telescope TUNKA-13.Basic task of TUNKA-13 is registration of light from Extended Air Shower (EAS) initiated by primary cosmic particles. Observation of light flashes radiating in nigght atmosphere is one more experiment which is run for TUNKA-13 to study the background condition for EAS registration. At a period from December 1997 on a May 1998 was registered 149 light flashes of r...

  4. A new solution for mirror coating in $\\gamma$-ray Cherenkov Astronomy

    OpenAIRE

    Bonardi, Antonio; Pühlhofer, Gerd; Hermanutz, Stephan; Santangelo, Andrea

    2014-01-01

    In the $\\gamma$-ray Cherenkov Astronomy framework mirror coating plays a crucial role in defining the light response of the telescope. We carried out a study for new mirror coating solutions with both a numerical simulation software and a vacuum chamber for small sample production. In this article, we present a new mirror coating solution consisting of a 28-layer interferometric SiO$_{2}$-TiO$_{2}$-HfO$_{2}$ design deposited on a glass substrate, whose average reflectance is above $90\\%$ for ...

  5. Large Size Telescope camera support structures for the Cherenkov Telescope Array

    CERN Document Server

    Deleglise, G; Lamanna, G

    2013-01-01

    The design of the camera support structures for the Cherenkov Telescope Array (CTA) Large Size Telescopes (LSTs) is based on an elliptical arch geometry reinforced along its orthogonal projection by two symmetric sets of stabilizing ropes. The main requirements in terms of minimal camera displacement, minimal weight, minimal shadowing on the telescope mirror, maximal strength of the structures and fast dynamical stabilization have led to the application of Carbon Fibre Plastic Reinforced (CFPR) technologies. This work presents the design, static and dynamic performance of the telescope fulfilling critical specifications for the major scientific objectives of the CTA LST, e.g. Gamma Ray Burst detection.

  6. On high frequency Cherenkov-type radiation in pulsar magnetospheric electron-positron plasma

    CERN Document Server

    Machabeli, George

    2014-01-01

    Emission process of a charged particle propagating in a medium with a curved magnetic field is considered. This mechanism combines features of conventional Cherenkov and curvature emission. Thus, presence of a medium with the index of refraction larger than the unity is essential for the emission. In the present paper the generation of high frequency radiation by the mentioned mechanism is considered. The generated waves are vacuum-like electromagnetic waves and may leave the medium directly. Consequently, this emission mechanism may be important for the problem of pulsar X-ray and gamma-ray emission generation.

  7. The ASTRI Project: a mini-array of dual-mirror small Cherenkov telescopes for CTA

    CERN Document Server

    La Palombara, N; Antonelli, L A; Bastieri, D; Bellassai, G; Belluso, M; Bigongiari, C; Billotta, S; Biondo, B; Bonanno, G; Bonnoli, G; Bruno, P; Bulgarelli, A; Canestrari, R; Capalbi, M; Caraveo, P; Carosi, A; Cascone, E; Catalano, O; Cereda, M; Conconi, P; Conforti, V; Cusumano, G; De Caprio, V; De Luca, A; Di Paola, A; Di Pierro, F; Fantinel, D; Fiorini, M; Fugazza, D; Gardiol, D; Ghigo, M; Gianotti, F; Giarrusso, S; Giro, E; Grillo, A; Impiombato, D; Incorvaia, S; La Barbera, A; La Parola, V; La Rosa, G; Lessio, L; Leto, G; Lombardi, S; Lucarelli, F; Maccarone, M C; Malaguti, G; Malaspina, G; Mangano, V; Marano, D; Martinetti, E; Millul, R; Mineo, T; Mistó, A; Morello, C; Morlino, G; Panzera, M R; Pareschi, G; Rodeghiero, G; Romano, P; Russo, F; Sacco, B; Sartore, N; Schwarz, J; Segreto, A; Sironi, G; Sottile, G; Stamerra, A; Strazzeri, E; Stringhetti, L; Tagliaferri, G; Testa, V; Timpanaro, M C; Toso, G; Tosti, G; Trifoglio, M; Vallania, P; Vercellone, S; Zitelli, V

    2013-01-01

    ASTRI is a flagship project of the Italian Ministry of Education, University and Research, which aims to develop an end-to-end prototype of the CTA small-size telescope. The proposed design is characterized by a dual-mirror Schwarzschild-Couder configuration and a camera based on Silicon photo-multipliers, two challenging but innovative technological solutions which will be adopted for the first time on a Cherenkov telescope. Here we describe the current status of the project, the expected performance and the possibility to realize a mini-array composed by a few small-size telescopes, which shall be placed at the final CTA Southern Site.

  8. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation.

    Science.gov (United States)

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R; Esipova, Tatiana V; Vinogradov, Sergei; Gladstone, David J; Jarvis, Lesley A; Pogue, Brian W

    2016-05-21

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5

  9. TORCH - Cherenkov and Time-of-Flight PID Detector for the LHCb Upgrade at CERN

    Science.gov (United States)

    Föhl, K.; Brook, N.; Castillo García, L.; Conneely, T.; Cussans, D.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Milnes, J.; Piedigrossi, D.; Rademacker, J.; Ros Garcì a, A.; van Dijk, M.

    2016-05-01

    TORCH is a large-area precision time-of-flight detector, based on Cherenkov light production and propagation in a quartz radiator plate, which is read out at its edges. TORCH is proposed for the LHCb experiment at CERN to provide positive particle identification for kaons, and is currently in the Research-and-Development phase. A brief overview of the micro-channel plate photon sensor development, the custom-made electronics, and an introduction to the current test beam activities is given. Optical readout solutions are presented for the potential use of BaBar DIRC bar boxes as part of the TORCH configuration in LHCb.

  10. The possibilities of Cherenkov telescopes to perform cosmic-ray muon imaging of volcanoes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Vercellone, Stefano; Zuccarello, Luciano

    2016-04-01

    Volcanic activity is regulated by the interaction of gas-liquid flow with conduit geometry. Hence, the quantitative understanding of the inner shallow structure of a volcano is mandatory to forecast the occurrence of dangerous stages of activity and mitigate volcanic hazards. Among the techniques used to investigate the underground structure of a volcano, muon imaging offers some advantages, as it provides a fine spatial resolution, and does not require neither spatially dense measurements in active zones, nor the implementation of cost demanding energizing systems, as when electric or active seismic sources are utilized. The principle of muon radiography is essentially the same as X-ray radiography: muons are more attenuated by higher density parts inside the target and thus information about its inner structure are obtained from the differential muon absorption. Up-to-date, muon imaging of volcanic structures has been mainly accomplished with detectors that employ planes of scintillator strips. These telescopes are exposed to different types of background noise (accidental coincidence of vertical shower particles, horizontal high-energy electrons, flux of upward going particles), whose amplitude is high relative to the tiny flux of interest. An alternative technique is based on the detection of the Cherenkov light produced by muons. The latter can be imaged as an annular pattern that contains the information needed to reconstruct both direction and energy of the particle. Cherenkov telescopes have never been utilized to perform muon imaging of volcanoes. Nonetheless, thanks to intrinsic features, they offer the possibility to detect the through-target muon flux with negligible levels of background noise. Under some circumstances, they would also provide a better spatial resolution and acceptance than scintillator-based telescopes. Furthermore, contrarily to the latter systems, Cherenkov detectors allow in-situ measurements of the open-sky energy spectrum of

  11. Performance of the SST-1M telescope for the Cherenkov Telescope Array observatory

    CERN Document Server

    Moderski, R; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Chruślińska, M.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Rozwadowski, P.; Schioppa, E. jr; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Pujadas, I. Troyano; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.

    2015-01-01

    The single mirror small-size telescope (SST-1M) is one of the telescope projects being proposed for the Cherenkov Telescope Array observatory by a sub-consortium of Polish and Swiss institutions. The SST-1M prototype structure is currently being constructed at the Institute of Nuclear Physics in Cracow, Poland, while the camera will be assembled at the University of Geneva, Switzerland. This prototype enables measurements of parameters having a decisive influence on the telescope performance. We present results of numerical simulations of the SST-1M performance based on such measurements. The telescope effective area, the expected trigger rates and the optical point spread function are calculated.

  12. Prototype of the SST-1M Telescope Structure for the Cherenkov Telescope Array

    CERN Document Server

    Niemiec, J; Błocki, J; Bogacz, L; Borkowski, J; Bulik, T; Cadoux, F; Christov, A; Curyło, M; della Volpe, D; Dyrda, M; Favre, Y; Frankowski, A; Grudnik, Ł; Grudzińska, M; Heller, M; Idźkowski, B; Jamrozy, M; Janiak, M; Kasperek, J; Lalik, K; Lyard, E; Mach, E; Mandat, D; Marszałek, A; Michałowski, J; Moderski, R; Montaruli, T; Neronov, A; Ostrowski, M; Paśko, P; Pech, M; Porcelli, A; Prandini, E; Rajda, P; Rameez, M; Schioppa, E jr; Schovanek, P; Seweryn, K; Skowron, K; Sliusar, V; Sowiński, M; Stawarz, Ł; Stodulska, M; Stodulski, M; Pujadas, I Troyano; Toscano, S; Walter, R; Wiȩcek, M; Zagdański, A; Ziȩtara, K

    2015-01-01

    A single-mirror small-size (SST-1M) Davies-Cotton telescope with a dish diameter of 4 m has been built by a consortium of Polish and Swiss institutions as a prototype for one of the proposed small-size telescopes for the southern observatory of the Cherenkov Telescope Array (CTA). The design represents a very simple, reliable, and cheap solution. The mechanical structure prototype with its drive system is now being tested at the Institute of Nuclear Physics PAS in Krakow. Here we present the design of the prototype and results of the performance tests of the structure and the drive and control system.

  13. The response of wavelength shifting panels in large water Cherenkov systems

    International Nuclear Information System (INIS)

    This paper describes a series of tests performed with a panel Bicron wavelength shifting acrylic plastic (BC-480) coupled to an EMI 9623B photomultiplier tube. The aim was to effectively increase the cathode coverage and its sensitivity to incident Cherenkov radiation, so that such a system could be employed in a solar neutrino detector. Measurements of the uniformity and effective efficiency of the system have been made and compared with the results of various simulation runs. The effects of side mirrors, back reflector, water interface and possible shaping of the panel to enhance its response are also assessed. (orig.)

  14. Solar panels as air Cherenkov detectors for extremely high energy cosmic rays

    International Nuclear Information System (INIS)

    Increasing interest towards the observation of the highest energy cosmic rays has motivated the development of new detection techniques. The properties of the Cherenkov photon pulse emitted in the atmosphere by these very rare particles indicate low-cost semiconductor detectors as good candidates for their optical read-out. The aim of this paper is to evaluate the viability of solar panels for this purpose. The experimental framework resulting from measurements performed with suitably-designed solar cells and large conventional photovoltaic areas is presented. A discussion on the obtained and achievable sensitivities follows

  15. A new solution for mirror coating in $\\gamma$-ray Cherenkov Astronomy

    CERN Document Server

    Bonardi, Antonio; Hermanutz, Stephan; Santangelo, Andrea

    2014-01-01

    In the $\\gamma$-ray Cherenkov Astronomy framework mirror coating plays a crucial role in defining the light response of the telescope. We carried out a study for new mirror coating solutions with both a numerical simulation software and a vacuum chamber for small sample production. In this article, we present a new mirror coating solution consisting of a 28-layer interferometric SiO$_{2}$-TiO$_{2}$-HfO$_{2}$ design deposited on a glass substrate, whose average reflectance is above $90\\%$ for normally incident light in the wavelength range between 300 and 550 nm.

  16. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation

    Science.gov (United States)

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R.; Esipova, Tatiana V.; Vinogradov, Sergei; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-05-01

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600–900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5

  17. The multimodal argumentation of persuasive counter discourses

    DEFF Research Database (Denmark)

    Maier, Carmen Daniela

    are given prominence in the argumentation by examining their complex interplay and functional differentiation. The ways in which speech, writing and images articulate the counter discourse occupy a central position in the analysis. A special focus is put on the multimodal configuration of specific...... the persuasive counter discourse of Media Bites videos: http://griid.org/category/media-bites/. The videos are a part of GRIID organization’s efforts directed at revealing misleading communicative strategies employed in various business contexts. In these instructive videos, the viewers are made familiar...... the misleading strategies employed. The viewers are also instructed where else they can find information about these strategies and the consequences of misleading advertising discourse. The argumentation framework of the Media Bites videos is also persuasively articulated for engaging the viewers as active...

  18. Neutron counter based on beryllium activation

    Energy Technology Data Exchange (ETDEWEB)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw (Poland); Scholz, M.; Igielski, A. [Institute of Nuclear Physics PAS (IFJPAN), Radzikowskiego 152, 31-342 Krakow (Poland); Karpinski, L. [Faculty of Electrical Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszow (Poland); Pytel, K. [National Centre for Nuclear Research (NCBJ), Soltana 7, 05-400 Otwock - Swierk (Poland)

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  19. Neutron counter based on beryllium activation

    Science.gov (United States)

    Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.

    2014-08-01

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  20. Securitization and Counter-Securitization in Afghanistan

    OpenAIRE

    Stritzel, Holger; Chang, Sean C

    2015-01-01

    This article confronts securitization theory with the war in Afghanistan and thus explores questions and dynamics of securitization in a specific communicative situation of military combat. The confrontation highlights not only less well researched questions of implementation, resistance, legitimacy and difficulties of establishing authority in securitizations, but it also inspires a conceptualization of counter-securitization within the theory. In Afghanistan sovereign power to control and r...

  1. Cherenkov imaging during volumetric modulated arc therapy for real-time radiation beam tracking and treatment response monitoring

    Science.gov (United States)

    Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-03-01

    External beam radiotherapy utilizes high energy radiation to target cancer with dynamic, patient-specific treatment plans. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high energy beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to track the radiation beam on the surface of the patient in real-time, even for complex cases such as volumetric modulated arc therapy (VMAT). Two patients undergoing VMAT of the head and neck were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  2. FlashCam: a fully-digital camera for the medium-sized telescopes of the Cherenkov Telescope Array

    OpenAIRE

    Pühlhofer, G.; Bauer, C.; Bernhard, S.; Capasso, M.; Diebold, S; Eisenkolb, F.; Florin, D.; Föhr, C.; S Funk; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.(Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany); Kalkuhl, C.

    2015-01-01

    The FlashCam group is currently preparing photomultiplier-tube based cameras proposed for the medium-sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The cameras are designed around the FlashCam readout concept which is the first fully-digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for the front-end electronics modules and a high performance camera server as back-end. This contribution describes the progress of the full-scale ...

  3. Gamma/hadron segregation for a ground based imaging atmospheric Cherenkov telescope using machine learning methods: Random Forest leads

    International Nuclear Information System (INIS)

    A detailed case study of γ-hadron segregation for a ground based atmospheric Cherenkov telescope is presented. We have evaluated and compared various supervised machine learning methods such as the Random Forest method, Artificial Neural Network, Linear Discriminant method, Naive Bayes Classifiers, Support Vector Machines as well as the conventional dynamic supercut method by simulating triggering events with the Monte Carlo method and applied the results to a Cherenkov telescope. It is demonstrated that the Random Forest method is the most sensitive machine learning method for γ-hadron segregation. (research papers)

  4. Hardware support for software controlled fast multiplexing of performance counters

    Science.gov (United States)

    Salapura, Valentina; Wisniewski, Robert W.

    2013-01-01

    Performance counters may be operable to collect one or more counts of one or more selected activities, and registers may be operable to store a set of performance counter configurations. A state machine may be operable to automatically select a register from the registers for reconfiguring the one or more performance counters in response to receiving a first signal. The state machine may be further operable to reconfigure the one or more performance counters based on a configuration specified in the selected register. The state machine yet further may be operable to copy data in selected one or more of the performance counters to a memory location, or to copy data from the memory location to the counters, in response to receiving a second signal. The state machine may be operable to store or restore the counter values and state machine configuration in response to a context switch event.

  5. Muon data from a water Cherenkov detector prototype at Colorado State University

    Science.gov (United States)

    Longo, Megan; Mostafa, Miguel

    2013-04-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a very high energy gamma-ray experiment currently under construction in Sierra Negra in the state of Puebla, Mexico, at an altitude of 4,100 m a.s.l. The HAWC Observatory will consist of 300 water Cherenkov detectors (WCDs), each instrumented with three 8'' photomultiplier tubes (PMTs) and one 10'' high efficiency (HE) PMT. The PMTs are upward facing, anchored to the bottom of a 5 m deep by 7.3 m diameter steel tank, containing a multilayer hermetic plastic bag holding 200,000 L of purified water. The only full size WCD prototype outside of the HAWC site is located at Colorado State University (CSU) in Fort Collins, CO at an altitude of 1,525 m a.s.l. This prototype is instrumented with six 8'' PMTs, one 10'' HE PMT, and the same laser calibration system, electronics, and data acquisition system as the WCDs at the HAWC site. The CSU prototype is additionally equipped with scintillator paddles both under and above the volume of water, temperature probes (in the water, outside, and in the DAQ room), and one covered PMT. Preliminary results for muon rates and their temperature dependance using data collected with the CSU prototype will be presented.

  6. Simulated gamma-ray pulse profile of the Crab pulsar with the Cherenkov Telescope Array

    Science.gov (United States)

    Burtovoi, A.; Zampieri, L.

    2016-07-01

    We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) mini-array. The northern CTA configuration will provide an improvement of a factor of ˜3 in accuracy with an observing time comparable to that of MAGIC (73 h). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large Size Telescopes. CTA will provide a significant improvement in determining the VHE pulse shape parameters necessary to constrain theoretical models of the gamma-ray emission of the Crab pulsar. One of such parameters is the shift in phase between peaks in the pulse profile at VHE and in other energy bands that, if detected, may point to different locations of the emission regions.

  7. The Topo-trigger: a new concept of stereo trigger system for imaging atmospheric Cherenkov telescopes

    CERN Document Server

    López-Coto, Rubén; Paoletti, Riccardo; Bigas, Oscar Blanch; Cortina, Juan

    2016-01-01

    Imaging atmospheric Cherenkov telescopes (IACTs) such as the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes endeavor to reach the lowest possible energy threshold. In doing so the trigger system is a key element. Reducing the trigger threshold is hampered by the rapid increase of accidental triggers generated by ambient light, the so-called Night Sky Background (NSB). In this paper we present a topological trigger, dubbed Topo-trigger, which rejects events on the basis of their relative orientation in the telescope cameras. We have simulated and tested the trigger selection algorithm in the MAGIC telescopes. The algorithm was tested using MonteCarlo simulations and shows a rejection of 85% of the accidental stereo triggers while preserving 99 % of the gamma rays. A full implementation of this trigger system would achieve an increase in collection area between 10 and 20% at the energy threshold. The analysis energy threshold of the instrument is expected to decrease by ?8 %. The selection alg...

  8. SST-GATE: A dual mirror telescope for the Cherenkov Telescope Array

    CERN Document Server

    Zech, A; Blake, S; Boisson, C; Costille, C; De-Frondat, F; Dournaux, J -L; Dumas, D; Fasola, G; Greenshaw, T; Hervet, O; Huet, J -M; Laporte, P; Rulten, C; Savoie, D; Sayede, F; Schmoll, J

    2013-01-01

    The Cherenkov Telescope Array (CTA) will be the world's first open observatory for very high energy gamma-rays. Around a hundred telescopes of different sizes will be used to detect the Cherenkov light that results from gamma-ray induced air showers in the atmosphere. Amongst them, a large number of Small Size Telescopes (SST), with a diameter of about 4 m, will assure an unprecedented coverage of the high energy end of the electromagnetic spectrum (above ~1TeV to beyond 100 TeV) and will open up a new window on the non-thermal sky. Several concepts for the SST design are currently being investigated with the aim of combining a large field of view (~9 degrees) with a good resolution of the shower images, as well as minimizing costs. These include a Davies-Cotton configuration with a Geiger-mode avalanche photodiode (GAPD) based camera, as pioneered by FACT, and a novel and as yet untested design based on the Schwarzschild-Couder configuration, which uses a secondary mirror to reduce the plate-scale and to all...

  9. Prototype of a production system for Cherenkov Telescope Array with DIRAC

    CERN Document Server

    Arrabito, L; Haupt, A; Graciani Diaz, R; Stagni, F; Tsaregorodtsev, A

    2015-01-01

    The Cherenkov Telescope Array (CTA) — an array of many tens of Imaging Atmospheric Cherenkov Telescopes deployed on an unprecedented scale — is the next generation instrument in the field of very high energy gamma-ray astronomy. CTA will operate as an open observatory providing data products to the scientific community. An average data stream of about 10 GB/s for about 1000 hours of observation per year, thus producing several PB/year, is expected. Large CPU time is required for data-processing as well for massive Monte Carlo simulations needed for detector calibration purposes. The current CTA computing model is based on a distributed infrastructure for the archive and the data off-line processing. In order to manage the off-line data-processing in a distributed environment, CTA has evaluated the DIRAC (Distributed Infrastructure with Remote Agent Control) system, which is a general framework for the management of tasks over distributed heterogeneous computing environments. In particular, a production sy...

  10. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    International Nuclear Information System (INIS)

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs

  11. Development of new photon detection device for Cherenkov and fluorescence radiation

    Directory of Open Access Journals (Sweden)

    Tinti A.

    2013-06-01

    Full Text Available Recent progress on the development of a new solid state detector allowed the use of finely pixelled photocathodes obtained from silicon semiconductors. SiPM detectors seem to be an ideal tool for the detection of Cherenkov and fluorescence light in spite of their not yet resolved criticism for operating temperature and intrinsic noise. The main disadvantage of SiPM in this case is the poor sensitivity in the wavelength range 300-400 nm, where the Cherenkov light and fluorescence radiation are generated. We report on the possibility to realize a new kind of pixelled photodetector based on the use of silicon substrate with carbon nanotube compounds, more sensitive to the near UV radiation. Also if at the very beginning, the development of such detector appears very promising and useful for astroparticle physics, both in the ground based arrays and in the space experiments. The detectors are ready to be operated in conditions of measurements without signal amplification.

  12. Expected performance of the ASTRI mini-array in the framework of the Cherenkov Telescope Array

    Science.gov (United States)

    Di Pierro, F.; Bigongiari, C.; Stamerra, A.; Vallania, P.; ASTRI Collaboration; CTA Consortium, the

    2016-05-01

    The Cherenkov Telescope Array (CTA) Observatory is a world-wide project for the ground-based study of the sources of the highest energy photons. By adopting telescopes of three different size categories it will cover the wide energy range from tens of GeV up to hundreds of TeV, limited only by the source physical properties and the gamma absorption by the extragalactic background light. The full sky coverage will be assured by two arrays, one in each hemisphere. An array of small size telescopes (SSTs), covering the highest energy region (3-100 TeV), the region most flux limited for current imaging atmospheric Cherenkov telescopes, is planned to be deployed at the southern CTA site in the first phase of the CTA project. The ASTRI collaboration has developed a prototype of a dual mirror SST equipped with a SiPM-based focal plane (ASTRI SST-2M) and has proposed to install a mini-array of nine of such telescopes at the CTA southern site (the ASTRI mini-array). In order to study the expected performance and the scientific capabilities of different telescope configurations, full Monte Carlo (MC) simulations of the shower development in the atmosphere for both gammas and hadronic background have been performed, followed by detailed simulations of the telescopes. In this work the expected performance of the ASTRI mini-array in terms of sensitivity, angular and energy resolution are presented and discussed.

  13. Silicon Photomultiplier Research and Development Studies for the Large Size Telescope of the Cherenkov Telescope Array

    CERN Document Server

    Rando, Riccardo; Dazzi, Francesco; De Angelis, Alessandro; Dettlaff, Antonios; Dorner, Daniela; Fink, David; Fouque, Nadia; Grundner, Felix; Haberer, Werner; Hahn, Alexander; Hermel, Richard; Korpar, Samo; Mezek, Gašper Kukec; Maier, Ronald; Manea, Christian; Mariotti, Mosè; Mazin, Daniel; Mehrez, Fatima; Mirzoyan, Razmik; Podkladkin, Sergey; Reichardt, Ignasi; Rhode, Wolfgang; Rosier, Sylvie; Schultz, Cornelia; Stella, Carlo; Teshima, Masahiro; Wetteskind, Holger; Zavrtanik, Marko

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the the next generation facility of imaging atmospheric Cherenkov telescopes; two sites will cover both hemispheres. CTA will reach unprecedented sensitivity, energy and angular resolution in very-high-energy gamma-ray astronomy. Each CTA array will include four Large Size Telescopes (LSTs), designed to cover the low-energy range of the CTA sensitivity ($\\sim$20 GeV to 200 GeV). In the baseline LST design, the focal-plane camera will be instrumented with 265 photodetector clusters; each will include seven photomultiplier tubes (PMTs), with an entrance window of 1.5 inches in diameter. The PMT design is based on mature and reliable technology. Recently, silicon photomultipliers (SiPMs) are emerging as a competitor. Currently, SiPMs have advantages (e.g. lower operating voltage and tolerance to high illumination levels) and disadvantages (e.g. higher capacitance and cross talk rates), but this technology is still young and rapidly evolving. SiPM technology has a strong pot...

  14. A Prototype Data Format for the Cherenkov Telescope Array: Regions Of Interest (ROI)

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA) is a ground-based $\\gamma$-ray observatory that will observe the full sky in the energy range from 20 GeV to 100 TeV from facilities in both hemispheres. It is proposed to consist of more than 100 telescopes and the large amount of data produced will exceed the volume of current VHE Imaging Atmospheric Cherenkov Telescopes by $\\sim$two orders of magnitude. This volume of data represents a new challenge to the community, which is looking for new data formats to transfer and store the CTA data. One of the prototypes currently under study is the ROI (Regions Of Interest) file format for camera images. It can store only those pixels of a camera image that are close to the shower, thus removing the major part of the night sky background (NSB) while keeping all pixels that might belong to the shower. Simple on-the-fly compression is used to reduce the file size even further. Here, we explain the ROI prototype in detail and present preliminary results when applied to simulations.

  15. The IFAE/UAB and LUPM Raman LIDARs for Cherenkov Telescope Array Observatory

    CERN Document Server

    López-Oramas, A; Bigas, O Blanch; Boix, J; Da Deppo, V; Doro, M; Font, L; Garrido, D; Gaug, M; Martínez, M; Vasileiadis, G

    2013-01-01

    The Cherenkov Telescope Array (CTA) is the next generation of Imaging Atmospheric Cherenkov Telescopes. It will reach a sensitivity and an energy resolution with no precendent in very high energy gamma-ray astronomy. In order to achieve this goal, the systematic uncertainties derived from the atmospheric conditions shall be reduced to the minimum. Different instruments may help account for these uncertainties. The Barcelona IFAE/UAB (acronyms for Institut de F\\'isica d'Altes Energies and Universitat Aut\\`onoma de Barcelona, respectively) and the Montpellier LUPM (Laboratoire Univers et Particules de Montpellier) groups are building Raman LIDARs, devices which can reduce the systematic uncertainties in the reconstruction of the gamma-ray energies from 20$%$ down to 5$%$. The Raman LIDARs subject of this work have coaxial 1.8 m mirrors with a Nd-YAG laser each. A liquid light-guide collects the light at the focal plane and transports it to the readout system. We are developping a monochromator with the purpose ...

  16. Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Hellfeld, D. [Texas A & M Univ., College Station, TX (United States); Dazeley, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marianno, C. [Texas A & M Univ., College Station, TX (United States)

    2015-11-25

    The potential of elastic antineutrino-electron scattering (ν¯e + e → ν¯e + e) in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13 km standoff from a 3.758 GWt light water nuclear reactor. Background was estimated via independent simulations and by appropriately scaling published measurements from similar detectors. Many potential backgrounds were considered, including solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclide and water-borne radon decays, and gamma rays from the photomultiplier tubes, detector walls, and surrounding rock. The detector response was modeled using a GEANT4-based simulation package. The results indicate that with the use of low radioactivity PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. The directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. Lastly, the results provide a list of theoretical conditions that, if satisfied in practice, would enable nuclear reactor antineutrino directionality in a Gd-doped water Cherenkov detector approximately 10 km from a large power reactor.

  17. A template method for measuring the iron spectrum in cosmic rays with Cherenkov telescopes

    CERN Document Server

    Fleischhack, Henrike

    2015-01-01

    The energy-dependent abundance of elements in cosmic rays plays an important role in understanding their acceleration and propagation. Most current results are obtained either from direct measurements by balloon- or satellite-borne detectors, or from indirect measurements by air shower detector arrays on the Earth's surface. Imaging Atmospheric Cherenkov Telescopes (IACTs), used primarily for $\\gamma$-ray astronomy, can also be used for cosmic-ray physics. They are able to measure Cherenkov light emitted both by heavy nuclei and by secondary particles produced in air showers, and are thus sensitive to the charge and energy of cosmic ray particles with energies of tens to hundreds of TeV. A template-based method, which can be used to reconstruct the charge and energy of primary particles simultaneously from images taken by IACTs, will be introduced. Heavy nuclei, such as iron, can be separated from lighter cosmic rays with this method, and thus the abundance and spectrum of these nuclei can be measured in the ...

  18. Real-Time Analysis sensitivity evaluation of the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA), the new generation very high-energy gamma-ray observatory, will improve the flux sensitivity of the current Cherenkov telescopes by an order of magnitude over a continuous range from about 10 GeV to above 100 TeV. With tens of telescopes distributed in the Northern and Southern hemispheres, the large effective area and field of view coupled with the fast pointing capability make CTA a crucial instrument for the detection and understanding of the physics of transient, short-timescale variability phenomena (e.g. Gamma-Ray Bursts, Active Galactic Nuclei, gamma-ray binaries, serendipitous sources). The key CTA system for the fast identification of flaring events is the Real-Time Analysis (RTA) pipeline, a science alert system that will automatically detect and generate science alerts with a maximum latency of 30 seconds with respect to the triggering event collection and ensure fast communication to/from the astrophysics community. According to the CTA design requirements, the...

  19. Approximation of lateral distribution of atmospheric Cherenkov light at different observation levels. Comparison with previous results

    CERN Document Server

    Mishev, A; Stamenov, J

    2005-01-01

    This work summarizes the results presented at 29th International Cosmic Ray Conference in Pune India. Generally the aim of this work is to obtain the lateral distribution of the atmospheric Cherenkov light in extensive air showers produced by different primary particles in wide energy range and at several observation levels and to fit the obtained lateral distributions. Using one large detector and partially modified CORSIKA code version are obtained the lateral distributions of Cherenkov light flux densities at several observation levels for different particle primaries precisely at 536 g/cm2 Chacaltaya, 700 g/cm2 Moussala and 875 g/cm2 Kartalska field observation levels for hadronic primaries and gamma quanta in the energy range 1011 eV-1016 eV. On the basis of the solution of over-determined inverse problem the approximation of these distributions is obtained. The same model function for all the primaries is used and for the different observation levels. The different model parameters for the different pri...

  20. A method of observing cherenkov light from extensive air shower at Yakutsk EAS array

    Science.gov (United States)

    Timofeev, Lev; Anatoly, Ivanov

    2016-07-01

    Proposed a new method for measuring the cherenkov light from the extensive air shower (EAS) of cosmic rays (CR), which allows to determine not only the primary particle energy and angle of arrival, but also the parameters of the shower in the atmosphere - the maximum depth and "age". For measurements Cherenkov light produced by EAS is proposed to use a ground network of wide-angle telescopes which are separated from each other by a distance 100-300 m depending on the total number of telescopes operating in the coincidence signals, acting autonomously, or includes a detector of the charged components, radio waves, etc. as part of EAS. In a results such array could developed, energy measurement and CR angle of arrival data on the depth of the maximum and the associated mass of the primary particle generating by EAS. This is particularly important in the study of galactic cosmic ray in E> 10^14 eV, where currently there are no direct measurements of the maximum depth of the EAS.

  1. Typical atmospheric aerosol behavior at the Cherenkov Telescope Array candidate sites in Argentina

    CERN Document Server

    Piacentini, Rubén D; Micheletti, María I; Salum, Graciela M; Maya, Javier; Mancilla, Alexis; García, Beatriz

    2013-01-01

    Aerosols from natural and antropogenic sources are one of the atmospheric components that have the largest spacial-temporal variability, depending on the type (land or ocean) surface, human activity and climatic conditions (mainly temperature and wind). Since Cherenkov photons generated by the incidence of a primary ultraenergetic cosmic gamma photon have a spectral intensity distribution concentrated in the UV and visible ranges [Hillas AM. Space Science Reviews, 75, 17-30, 1996], it is important to know the aerosol concentration and its contribution to atmospheric radiative transfer. We present results of this concentration measured in typical rather calm (not windy) days at San Antonio de los Cobres (SAC) and El Leoncito/CASLEO proposed Argentinean Andes range sites for the placement of the Cherenkov Telescope Array (CTA). In both places, the aerosol concentration has a peak in the 2.5-5.0$\\mu$m range of the mean aerosol diameter and a very low mean total concentration of 0.097$\\mu$g/m$^3$ (0.365$\\mu$g/m$^...

  2. The modeling of the nuclear composition measurement performance of the Non-Imaging CHErenkov Array (NICHE)

    CERN Document Server

    Krizmanic, John; Sokolsky, Pierre

    2013-01-01

    In its initial deployment, the Non-Imaging CHErenkov Array (NICHE)will measure the flux and nuclear composition of cosmic rays from below 10^16 eV to 10^18 eV by using measurements of the amplitude and time-spread of the air-shower Cherenkov signal to achieve a robust event-by-event measurement of Xmax and energy. NICHE will have sufficient area and angular acceptance to have significant overlap with TA/TALE, within which NICHE is located, to allow for energy cross-calibration. In order to quantify NICHE's ability to measure the cosmic ray nuclear composition, 4-component composition models were constructed based upon a poly-gonato model of J. Hoerandel using simulated Xmax distributions of the composite composition as a function of energy. These composition distributions were then unfolded into individual components via an analysis technique that included NICHE's simulated Xmax and energy resolution performance as a function of energy as well as the effects of finite event statistics. Details of the construc...

  3. The Cherenkov Telescope Array On-Site integral sensitivity: observing the Crab

    CERN Document Server

    Fioretti, Valentina; Schussler, Fabian

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the future large observatory in the very high energy (VHE) domain. Operating from 20 GeV to 300 TeV, it will be composed of tens of Imaging Air Cherenkov Telescopes (IACTs) displaced in a large area of a few square kilometers in both the southern and northern hemispheres. The CTA/DATA On-Site Analysis (OSA) is the system devoted to the development of dedicated pipelines and algorithms to be used at the CTA site for the reconstruction, data quality monitoring, science monitoring and realtime science alerting during observations. The OSA integral sensitivity is computed here for the most studied source at Gamma-rays, the Crab Nebula, for a set of exposures ranging from 1000 seconds to 50 hours, using the full CTA Southern array. The reason for the Crab Nebula selection as the first example of OSA integral sensitivity is twofold: (i) this source is characterized by a broad spectrum covering the entire CTA energy range; (ii) it represents, at the time of writing, the standar...

  4. Status and Plans for the Array Control and Data Acquisition System of the Cherenkov Telescope Array

    CERN Document Server

    Oya, I; Schwanke, U; Wegner, P; Balzer, A; Berge, D; Borkowski, J; Camprecios, J; Colonges, S; Colome, J; Champion, C; Conforti, V; Gianotti, F; Flour, T Le; Lindemann, R; Lyard, E; Mayer, M; Melkumyan, D; Punch, M; Tanci, C; Schmidt, T; Schwarz, J; Tosti, G; Verma, K; Weinstein, A; Wiesand, S; Wischnewski, R

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next-generation atmospheric Cherenkov gamma-ray observatory. CTA will consist of two installations, one in the northern, and the other in the southern hemisphere, containing tens of telescopes of different sizes. The CTA performance requirements and the inherent complexity associated with the operation, control and monitoring of such a large distributed multi-telescope array leads to new challenges in the field of the gamma-ray astronomy. The ACTL (array control and data acquisition) system will consist of the hardware and software that is necessary to control and monitor the CTA arrays, as well as to time-stamp, read-out, filter and store -at aggregated rates of few GB/s- the scientific data. The ACTL system must be flexible enough to permit the simultaneous automatic operation of multiple sub-arrays of telescopes with a minimum personnel effort on site. One of the challenges of the system is to provide a reliable integration of the control of a large and heterogene...

  5. From MAGIC to CTA: the INAF participation to Cherenkov Telescopes experiments for very high energy astrophysics .

    Science.gov (United States)

    Antonelli, L. A.; INAF MAGIC Collaboration

    The next decade can be considered the "golden age" of the Gamma Ray Astronomy with the two satellites for Gamma Ray Astronomy (AGILE and GLAST) in orbit. Therefore, thanks to many other X-ray experiments already in orbit (e.g. Swift, Chandra, NewtonXMM, etc.) it will be possible to image the Universe for the first time all over the electromagnetic spectrum almost contemporarily. The new generations of ground-based very high gamma-ray instruments are ready to extend the observed band also to the very high frequencies. Scientists from the Italian National Institute for Astrophysics (INAF) are involved in many, both space- and ground- based gamma ray experiments, and recently such an involvement has been largely improved in the field of the Imaging Atmospheric Cherenkov Telescopes (IACT). INAF is now member of the MAGIC collaboration and is participating to the realization of the second MAGIC telescope. MAGIC, as well other IACT experiments, is not operated as an observatory so a proper guest observer program does not exist. A consortium of European scientists (including INAF scientists) is thus now thinking to the design of a new research infrastructure: the Cherenkov Telescope Array (CTA). CTA is conceived to provide 10 times the sensitivity of current instruments, combined with increased flexibility and increased coverage from some 10 GeV to some 100 TeV. CTA will be operated as an observatory to serve a wider community of astronomer and astroparticle physicists.

  6. Cosmic ray composition measurements and cosmic ray background free gamma-ray observations with Cherenkov telescopes

    CERN Document Server

    Neronov, A; Vovk, Ie; Mirzoyan, R

    2016-01-01

    Muon component of extensive air showers (EAS) initiated by cosmic ray particles carries information on the primary particle identity. We show that the muon content of EAS could be measured in a broad energy range from 10-100 TeV up to ultra-high-energy cosmic ray range using wide field-of-view imaging atmospheric Cherenkov telescopes observing strongly inclined or nearly horizontal EAS from the ground of from high altitude. Cherenkov emission from muons in such EAS forms a distinct component (halo or tail) of the EAS image in the telescope camera. We show that detection of the muon signal could be used to measure composition of the cosmic ray spectrum in the energy ranges of the knee, the ankle and of the Galactic-to-extragalactic transition. It could also be used to veto the cosmic ray background in gamma-ray observations. This technique provides a possibility for up to two orders of magnitude improvement of sensitivity for gamma-ray flux in the energy band above 10 PeV, compared to KASCADE-Grande, and an or...

  7. Supernova remnants and pulsar wind nebulae with Imaging Atmospheric Cherenkov Telescopes (IACTs)

    Science.gov (United States)

    Eger, Peter

    2015-08-01

    The observation of very-high-energy (VHE, E > 100 GeV) gamma rays is an excellent tool to study the most energetic and violent environments in the Galaxy. This energy range is only accessible with ground-based instruments such as Imaging Atmospheric Cherenkov Telescopes (IACTs) that reconstruct the energy and direction of the primary gamma ray by observing the Cherenkov light from the induced extended air showers in Earths atmosphere. The main goals of Galactic VHE gamma-ray science are the identification of individual sources of cosmic rays (CRs), such as supernova remnants (SNRs), and the study of other extreme astrophysical objects at the highest energies, such as gamma-ray binaries and pulsar wind nebulae (PWNe). One of the main challenges is the discrimination between leptonic and hadronic gamma-ray production channels. To that end, the gamma-ray signal from each individual source needs to be brought into context with the multi-wavelength environment of the astrophysical object in question, particularly with observations tracing the density of the surrounding interstellar medium, or synchrotron radiation from relativistic electrons. In this review presented at the European Cosmic Ray Symposium 2014 (ECRS2014), the most recent developments in the field of Galactic VHE gamma-ray science are highlighted, with particular emphasis on SNRs and PWNe.

  8. Developments of a new mirror technology for the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory for very high-energy gamma rays will consist of about a hundred of imaging atmospheric Cherenkov telescopes (IACTs) of different size with a total reflective area of about 10,000 m$^2$. Here we present a novel technology for the production of IACT mirrors that has been developed in the Institute of Nuclear Physics PAS in Krakow, Poland. The mirrors are made by cold-slumping of the front reflecting aluminium-coated panel and the rear panel interspaced with aluminium spacers. Each panel is built of two glass panels laminated with a layer of a fibreglass tissue in between for reinforcement of the structure against mechanical damage. The mirror structure is open and does not require a perfect sealing needed in closed-type designs. It prohibits water to be trapped inside and enables a proper ventilation of the mirror. Full-size hexagonal prototype mirrors produced for the medium-sized CTA telescopes will be presented together with the results of recent comprehensive ...

  9. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  10. Using Raster Scans of Bright Stars to Measure the Relative Total Throughputs of Cherenkov Telescopes

    CERN Document Server

    Griffin, Sean

    2013-01-01

    Gamma-ray astronomy at energies in excess of 100 GeV is carried out using arrays of imaging Cherenkov telescopes. Each telescope comprises a large reflector, of order 10 m diameter, made of many mirror facets, and a camera consisting of a matrix of photomultiplier pixels. Differences in the total throughput between nominally identical telescopes, due to aging of the mirrors and PMTs and other effects, should be monitored to reduce possible systematic errors. One way to directly measure the throughput of such telescopes is to track bright stars and measure the photocurrents produced by their light falling on camera pixels. We have developed such a procedure using the four telescopes in the VERITAS array. We note the technique is general, however, and could be applied to other imaging Cherenkov experiments. For this measurement, a raster scan is performed on a single star such that its image is swept across the central pixels in the camera, thus providing a statistically robust set of measurements in a short pe...

  11. GAW - An Imaging Atmospheric Cherenkov Telescope with Large Field of View

    CERN Document Server

    Cusumano, G; Alberdi, A; Alvarez, M; Assis, P; Biondo, B; Bocchino, F; Brogueira, P; Caballero, J A; Carvajal, M; Castro-Tirado, A J; Catalano, O; Celi, F; Delgado, C; Di Cocco, G; Dominguez, A; Navas, J M Espino; Santo, M C Espirito; Gallardo, M I; García, J E; Giarrusso, S; Gómez, M; Gómez, J L; Gonçalves, P; Guerriero, M; La Barbera, A; La Rosa, G; Lozano, M; Maccarone, M C; Mangano, A; Martel, I; Massaro, E; Mineo, T; Moles, M; Pérez-Bernal, F; Peres-Torres, M A; Pimenta, M; Pina, A; Prada, F; Quesada, J M; Quintana, J M; Quintero, J R; Rodríguez, J; Russo, F; Sacco, B; Sanchez-Conde, M A; Segreto, A; Tome', B; Postigo, A de Ugarte; Vallania, P

    2007-01-01

    GAW, acronym for Gamma Air Watch, is a Research and Development experiment in the TeV range, whose main goal is to explore the feasibility of large field of view Imaging Atmospheric Cherenkov Telescopes. GAW is an array of three relatively small telescopes (2.13 m diameter) which differs from the existing and presently planned projects in two main features: the adoption of a refractive optics system as light collector and the use of single photoelectron counting as detector working mode. The optics system allows to achieve a large field of view (24x24 squared degrees) suitable for surveys of large sky regions. The single photoelectron counting mode in comparison with the charge integration mode improves the sensitivity by permitting also the reconstruction of events with a small number of collected Cherenkov photons. GAW, which is a collaboration effort of Research Institutes in Italy, Portugal and Spain, will be erected in the Calar Alto Observatory (Sierra de Los Filabres - Andalucia, Spain), at 2150 m a.s....

  12. Design of a Cherenkov telescope for the measurement of PCR composition above 1 PeV

    Directory of Open Access Journals (Sweden)

    Galkin V I

    2013-06-01

    Full Text Available The problem of PCR Composition at super high energies is far from being solved.EAS Cherenkov light spatial-angular distribution (CL SAD can yield important information on the primary mass. In order to use EAS CL SAD for the study of PCR composition one needs a set of imaging telescopes with the appropriate parameters supported by a dense net of fast optical detectors capable of measuring EAS Cherenkov light pulses. On the basis of full Monte-Carlo simulations the pixel size of imaging telescopes is optimized for a specific observation level ∼4km which is typical for the Eastern Pamir mountains. Another goal to be pursued by the new detector array is the search for ultra high energy gamma ray sources and this is where the imaging technique can help a lot. A simple criterion is introduced to recognize gamma-quanta against the proton background and its performance, once again analyzed using simulated events, sets certain limits to the pixel size.

  13. Multi-anode photon-multiplier readout electronics for the LHCb ring imaging Cherenkov detectors

    CERN Document Server

    Smale, N J

    2004-01-01

    A readout system for the Ring Imaging CHerenkov (RICH) detectors of the LHCb experiment has been developed. Two detector technologies for the measurement of Cherenkov photons are considered, the Multi-Anode Photo-Multiplier Tube (MAPMT) and the Hybrid Photon Detector (HPD), both of which meet the RICH requirements. The properties of the MAPMT are evaluated using a controlled single-photon source; a pixel-to-pixel gain variation of ~3 and a typical signal to noise of ~20 is measured. The relative tube efficiency is found to be reduced by ~26 % due to the detailed focusing structure of the MAPMT device. A radiation hard application-specific integrated circuit (ASIC) chip, the Beetle1.2MA0, has been developed to capture and store signals from a pair of MAPMTs. The Beetle1.2MA0 is built on the architecture of the Beetle family that was designed for silicon strip detectors, the difference being a modified front-end amplifier. The 128 input-channels of the Beetle1.2MA0 have a charge-sensitive pre-amplifier followed...

  14. The design and performance of a prototype water Cherenkov optical time-projection chamber

    CERN Document Server

    Oberla, E

    2015-01-01

    A first experimental test of tracking relativistic charged particles by `drifting' Cherenkov photons in a water-based optical time-projection chamber (OTPC) has been performed at the Fermilab Test Beam Facility. The prototype OTPC detector consists of a 77~cm long, 28~cm diameter, 40~kg cylindrical water mass instrumented with a combination of commercial $5.1\\times5.1$~cm$^2$ micro-channel plate photo-multipliers (MCP-PMT) and $6.7\\times6.7$~cm$^2$ mirrors. Five MCP-PMTs are installed in two columns along the OTPC cylinder in a small-angle stereo configuration. A mirror is mounted opposite each MCP-PMT on the far side of the detector cylinder, effectively doubling the photo-detection efficiency and providing a time-resolved image of the Cherenkov light on the opposing wall. Each MCP-PMT is coupled to an anode readout consisting of thirty 50 Ohm microstrips. A 180-channel data acquisition system digitizes the MCP-PMT signals on one end of the microstrips using the PSEC4 waveform sampling-and-digitizing chip op...

  15. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.T., E-mail: chenytao@ynu.edu.cn [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Yunnan University, 650091 Kunming (China); La Taille, C. de [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Suomijärvi, T. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Cao, Z. [Institute of High Energy Physics, 100049 Beijing (China); Deligny, O. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Dulucq, F. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Ge, M.M. [Yunnan University, 650091 Kunming (China); Lhenry-Yvon, I. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Martin-Chassard, G. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Nguyen Trung, T.; Wanlin, E. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Xiao, G.; Yin, L.Q. [Institute of High Energy Physics, 100049 Beijing (China); Yun Ky, B. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Zhang, L. [Yunnan University, 650091 Kunming (China); Zhang, H.Y. [Tsinghua University, 100084 Beijing (China); Zhang, S.S.; Zhu, Z. [Institute of High Energy Physics, 100049 Beijing (China)

    2015-09-21

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs.

  16. The Single Mirror Small Sized Telescope For The Cherenkov Telescope Array

    CERN Document Server

    Heller, M; Porcelli, A; Pujadas, I Troyano; Zietara, K; della Volpe, D; Montaruli, T; Cadoux, F; Favre, Y; Aguilar, J A; Christov, A; Prandini, E; Rajda, P; Rameez, M; Bilnik, W; Blocki, J; Bogacz, L; Borkowski, J; Bulik, T; Frankowski, A; Grudzinska, M; Idzkowski, B; Jamrozy, M; Janiak, M; Kasperek, J; Lalik, K; Lyard, E; Mach, E; Mandat, D; Marszalek, A; Miranda, L D Medina; Michalowski, J; Moderski, R; Neronov, A; Niemiec, J; Ostrowski, M; Pasko, P; Pech, M; Schovanek, P; Seweryn, K; Sliusar, V; Skowron, K; Stawarz, L; Stodulska, M; Stodulski, M; Walter, R; Wiecek, M; Zagdanski, A

    2016-01-01

    The Small Size Telescope with Single Mirror (SST-1M) is one of the proposed types of Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA). About 70 SST telescopes will be part the CTA southern array which will also include Medium Sized Telescopes (MST) in its threshold configuration. Optimized for the detection of gamma rays in the energy range from 5 TeV to 300 TeV, the SST-1M uses a Davies-Cotton optics with a 4 m dish diameter with a field of view of 9 degrees. The Cherenkov light resulting from the interaction of the gamma-rays in the atmosphere is focused onto a 88 cm side-to-side hexagonal photo-detection plane. The latter is composed of 1296 hollow light guides coupled to large area hexagonal silicon photomultipliers (SiPM). The SiPM readout is fully digital readout as for the trigger system. The compact and lightweight design of the SST-1M camera offers very high performance ideal for gamma-ray observation requirement. In this contribution, the concept, design, performance and status of...

  17. Detection of Shielded Special Nuclear Material With a Cherenkov-Based Transmission Imaging System

    Science.gov (United States)

    Rose, Paul; Erickson, Anna; Mayer, Michael; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material, SSNM, while in transit, offers a unique challenge. Typical cargo imaging systems are Bremsstrahlung-based and cause an abundance of unnecessary signal in the detectors and doses to the cargo contents and surroundings. Active interrogation with dual monoenergetic photons can unveil the illicit material when coupled with a high-contrast imaging system while imparting significantly less dose to the contents. Cherenkov detectors offer speed, resilience, inherent energy threshold rejection, directionality and scalability beyond the capability of most scintillators. High energy resolution is not a priority when using two well separated gamma rays, 4.4 and 15.1 MeV, generated from low energy nuclear reactions such as 11B(d,n- γ)12C. These gamma rays offer a measure of the effective atomic number, Z, of the cargo by taking advantage of the large difference in photon interaction cross sections, Compton scattering and pair production. This imaging system will be coupled to neutron detectors to provide unique signature of SNM by monitoring delayed neutrons. Our experiments confirm that the Cherenkov imaging system can be used with the monoenergetic source to relate transmission and atomic number of the scanned material.

  18. Consumer Preferences for High Welfare Meat in Germany: Self-service Counter or Service Counter?

    Directory of Open Access Journals (Sweden)

    Ramona Weinrich

    2015-01-01

    Full Text Available Many people view animal welfare standards in the agricultural industry as critical and some consumers would prefer to buy high welfare meat. In order to successfully introduce high welfare meat products onto the market, some important marketing decisions must be made. Due to limited shelf space in retail outlets, niche products like high welfare meat cannot be placed both at the self-service counter and at the service counter. In order to analyze where to place it best an online survey of 642 German consumers was conducted. By means of factor and cluster analyses, consumers’ animal welfare attitudes and their preference for a point of purchase were combined. The different target groups were joint using cross tabulation analysis. The results reveal that consumers in the target group show a more positive attitude to the service counter.

  19. Precision optical systems for the new generation of Ring Imaging Cherenkov detectors in high energy physics experiments

    International Nuclear Information System (INIS)

    High precision optical systems are required for the new generation of Ring Imaging Cherenkov detectors in high energy physics experiments. In the framework of the LHCb and COMPASS experiments, we have started an R and D programme to assess and to eventually overcome the limits of present technologies. Here, we present the available mirror technologies and discuss the optical and mechanical parameters

  20. Temporal signatures of the Cherenkov light induced by extensive air showers of cosmic rays detected with the Yakutsk array

    CERN Document Server

    Ivanov, A A

    2016-01-01

    We analyze temporal characteristics of signals from the wide field-of-view (WFOV) Cherenkov telescope (CT) detecting extensive air showers (EAS) of cosmic rays (CR) in coincidence with surface detectors of the Yakutsk array. Our aim is to reveal causal relationships between measured characteristics and physical properties of EAS.