WorldWideScience

Sample records for chemotherapeutic drugs radiation

  1. Experimental studies on interactions of radiation and cancer chemotherapeutic drugs in normal tissues and a solid tumour

    International Nuclear Information System (INIS)

    Maase, H. van der

    1986-01-01

    The interactions of radiation and seven cancer chemotherapeutic drugs have been investigated in four normal tissues and in a solid C 3 H mouse mammary carcinoma in vivo. The investigated drugs were adriamycin (ADM), bleomycin (BLM), cyclophosphamide (CTX), 5-fluorouracil (5-FU), methotrexate (MTX), mitomycin C (MM-C) and cis-diamminedichloroplatinum(II) (cis-DDP). The drugs enhanced the radiation response in most cases. However, signs of radioprotection was observed for CTX in skin and for MTX in haemopoietic tissue. The interval and the sequence of the two treatment modalities were of utmost importance for the normal tissue reactions. In general, the most serious interactions occurred when drugs were administered simultaneously with or a few hours before radiation. The radiation-modifying effect of the drugs deviated from this pattern in the haemopoietic tissue as the radiation response was most enhanced on drug administration 1-3 days after radiation. Enhancement of the radiation response was generally less pronounced in the tumour model than in the normal tissues. The combined drug-radiation effect was apparently less time-dependent in the tumour than in the normal tissues. (Auth.)

  2. Biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy

    DEFF Research Database (Denmark)

    Stenvang, Jan; Kümler, Iben; Nygård, Sune Boris

    2013-01-01

    -standard chemotherapeutic drug will be relatively low in such a patient cohort it is a pre-requisite that such testing is based on predictive biomarkers. This review describes our strategy of biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy, taking the repurposing of topoisomerase I (Top1...

  3. Interactions of radiation with novel chemotherapeutic agents: Taxanes and nucleoside analogs

    International Nuclear Information System (INIS)

    Milas, Luka

    1997-01-01

    The combination of chemotherapeutic agents and radiotherapy is an appealing approach to improving the results of cancer treatment. By their independent action or interactive action chemotherapeutic drugs reduce cell burden in tumors undergoing radiotherapy, thereby increasing the chances of tumor control. In addition, the drugs may spatially cooperate with radiotherapy through their systemic action on metastatic disease. Recently, a number of new chemotherapeutic agents have been introduced for cancer treatment, which in addition have high potential to increase therapeutic ratio of radiotherapy. These agents include taxanes (paclitaxel and docetaxel) and the nucleoside analogs fludarabine and gemcitabine. Paclitaxel is a natural product isolated from the bark of Taxus brevifolia and taxotere is a semisynthetic analogue of paclitaxel prepared from needle extracts of Taxus baccata. By binding to cellular tubulin structures, taxanes interfere with tubulin polymerization and promote microtubule assembly, resulting in accumulation of cells in the radiosensitive G2 and M phases of the cell cycle. In vivo studies have demonstrated two major mechanisms of tumor radioenhancement by taxanes: mitotic arrest and tumor reoxygenation. Fludarabine and gemcitabine inhibit DNA synthesis and the repair of radiation-induced chromosome breaks. The mechanism of their radioenhancing activity include inhibition of repair of radiation induced damage, apoptosis induction and cell cycle synchronization. Because both classes of these agents affect radioresponse of normal dose-limiting tissues much less than that of tumors, they can greatly increase therapeutic ratio of radiotherapy. The objective of this course is to overview the rationale for using these drugs as radioenhancing agents, the experimental findings in preclinical studies, the mechanisms of their interaction, and the clinical application of these agents

  4. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles.

    Science.gov (United States)

    Tang, Ke; Zhang, Yi; Zhang, Huafeng; Xu, Pingwei; Liu, Jing; Ma, Jingwei; Lv, Meng; Li, Dapeng; Katirai, Foad; Shen, Guan-Xin; Zhang, Guimei; Feng, Zuo-Hua; Ye, Duyun; Huang, Bo

    2012-01-01

    Cellular microparticles are vesicular plasma membrane fragments with a diameter of 100-1,000 nanometres that are shed by cells in response to various physiological and artificial stimuli. Here we demonstrate that tumour cell-derived microparticles can be used as vectors to deliver chemotherapeutic drugs. We show that tumour cells incubated with chemotherapeutic drugs package these drugs into microparticles, which can be collected and used to effectively kill tumour cells in murine tumour models without typical side effects. We describe several mechanisms involved in this process, including uptake of drug-containing microparticles by tumour cells, synthesis of additional drug-packaging microparticles by these cells that contribute to the cytotoxic effect and the inhibition of drug efflux from tumour cells. This study highlights a novel drug delivery strategy with potential clinical application.

  5. Chemotherapeutic Drugs and Mitochondrial Dysfunction: Focus on Doxorubicin, Trastuzumab, and Sunitinib

    Directory of Open Access Journals (Sweden)

    Stefania Gorini

    2018-01-01

    Full Text Available Many cancer therapies produce toxic side effects whose molecular mechanisms await full elucidation. The most feared and studied side effect of chemotherapeutic drugs is cardiotoxicity. Also, skeletal muscle physiology impairment has been recorded after many chemotherapeutical treatments. However, only doxorubicin has been extensively studied for its side effects on skeletal muscle. Chemotherapeutic-induced adverse side effects are, in many cases, mediated by mitochondrial damage. In particular, trastuzumab and sunitinib toxicity is mainly associated with mitochondria impairment and is mostly reversible. Vice versa, doxorubicin-induced toxicity not only includes mitochondria damage but can also lead to a more robust and extensive cell injury which is often irreversible and lethal. Drugs interfering with mitochondrial functionality determine the depletion of ATP reservoirs and lead to subsequent reversible contractile dysfunction. Mitochondrial damage includes the impairment of the respiratory chain and the loss of mitochondrial membrane potential with subsequent disruption of cellular energetic. In a context of increased stress, AMPK has a key role in maintaining energy homeostasis, and inhibition of the AMPK pathway is one of the proposed mechanisms possibly mediating mitochondrial toxicity due to chemotherapeutics. Therapies targeting and protecting cell metabolism and energy management might be useful tools in protecting muscular tissues against the toxicity induced by chemotherapeutic drugs.

  6. New Insights into the Mechanism Underlying the Synergistic Action of Ionizing Radiation With Platinum Chemotherapeutic Drugs: The Role of Low-Energy Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel John; Sanche, Léon

    2013-11-15

    Purpose: To investigate the efficiencies of platinum chemotherapeutic drugs (Pt-drugs) in the sensitization of DNA to the direct effects of ionizing radiation and to determine the role of low-energy electrons (LEEs) in this process. Methods and Materials: Complexes of supercoiled plasmid DNA covalently bound to either cisplatin, carboplatin, or oxaliplatin were prepared in different molar ratios. Solid films of DNA and DNA modified by Pt-drugs were irradiated with either 10-KeV or 10-eV electrons. Damages to DNA were quantified by gel electrophoresis, and the yields for damage formation were obtained from exposure–response curves. Results: The presence of an average of 2 Pt-drug–DNA adducts (Pt-adducts) in 3199-bp plasmid DNA increases the probability of a double-strand break by factors of 3.1, 2.5, and 2.4 for carboplatin, cisplatin, and oxaliplatin, respectively. Electrons with energies of 10 eV and 10 KeV interact with Pt-adducts to preferentially enhance the formation of cluster lesions. The maximum increase in radiosensitivity per Pt-adduct is found at ratios up to 3.1 × 10{sup −4} Pt-adducts per nucleotide, which is equivalent to an average of 2 adducts per plasmid. Carboplatin and oxaliplatin show higher efficiencies than cisplatin in the radiosensitization of DNA. Because carboplatin and cisplatin give rise to identical reactive species that attach to DNA, carboplatin must be considered as a better radiosensitizer for equal numbers of Pt-adducts. Conclusion: Platinum chemotherapeutic drugs preferentially enhance the formation of cluster damage to DNA induced by the direct effect of ionizing radiation, and LEEs are the main species responsible for such an enhancement via the formation of electron resonances.

  7. New Insights into the Mechanism Underlying the Synergistic Action of Ionizing Radiation With Platinum Chemotherapeutic Drugs: The Role of Low-Energy Electrons

    International Nuclear Information System (INIS)

    Rezaee, Mohammad; Hunting, Darel John; Sanche, Léon

    2013-01-01

    Purpose: To investigate the efficiencies of platinum chemotherapeutic drugs (Pt-drugs) in the sensitization of DNA to the direct effects of ionizing radiation and to determine the role of low-energy electrons (LEEs) in this process. Methods and Materials: Complexes of supercoiled plasmid DNA covalently bound to either cisplatin, carboplatin, or oxaliplatin were prepared in different molar ratios. Solid films of DNA and DNA modified by Pt-drugs were irradiated with either 10-KeV or 10-eV electrons. Damages to DNA were quantified by gel electrophoresis, and the yields for damage formation were obtained from exposure–response curves. Results: The presence of an average of 2 Pt-drug–DNA adducts (Pt-adducts) in 3199-bp plasmid DNA increases the probability of a double-strand break by factors of 3.1, 2.5, and 2.4 for carboplatin, cisplatin, and oxaliplatin, respectively. Electrons with energies of 10 eV and 10 KeV interact with Pt-adducts to preferentially enhance the formation of cluster lesions. The maximum increase in radiosensitivity per Pt-adduct is found at ratios up to 3.1 × 10 −4 Pt-adducts per nucleotide, which is equivalent to an average of 2 adducts per plasmid. Carboplatin and oxaliplatin show higher efficiencies than cisplatin in the radiosensitization of DNA. Because carboplatin and cisplatin give rise to identical reactive species that attach to DNA, carboplatin must be considered as a better radiosensitizer for equal numbers of Pt-adducts. Conclusion: Platinum chemotherapeutic drugs preferentially enhance the formation of cluster damage to DNA induced by the direct effect of ionizing radiation, and LEEs are the main species responsible for such an enhancement via the formation of electron resonances

  8. Recent advances in nanoformulations for co-delivery of curcumin and chemotherapeutic drugs

    Directory of Open Access Journals (Sweden)

    Maryam Hashemi

    2017-01-01

    Full Text Available The application of chemotherapy in cancer treatment has been limited due to cause side effects such as toxicity against normal cells and drug resistance. In recent years, numerous studies have been focused on using natural products with chemotherapeutic drugs to enhance therapeutic efficiency and reduce cytotoxicity. On the other hand, encapsulation of drugs into nanoparticles (NPs can improve solubility of hydrophobic drug; circulation time in blood and the residence at the pathological site by enhance permeation and retention (EPR effect. It has been shown that curcumin (CUR has  wide range of pharmacological activities against many diseases such as cancer. CUR has been demonstrated to be a potent chemosensitizer that can induce additive or synergistic effects with chemotherapeutic drugs against different cancer cell lines.  Recently, various types of nanocarriers have been investigated for CUR.  In this review, different co-formulations containing Cur and chemotherapeutic drugs used in cancer therapy are discussed with emphasis on their pharmaceutical properties.

  9. Biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy: a novel strategy in drug development

    Directory of Open Access Journals (Sweden)

    Jan eStenvang

    2013-12-01

    Full Text Available Cancer is a leading cause of mortality worldwide and matters are only set to worsen as its incidence continues to rise. Traditional approaches to combat cancer include improved prevention, early diagnosis, optimized surgery, development of novel drugs and honing regimens of existing anti-cancer drugs. Although discovery and development of novel and effective anti-cancer drugs is a major research area, it is well known that oncology drug development is a lengthy process, extremely costly and with high attrition rates. Furthermore, those drugs that do make it through the drug development mill are often quite expensive, laden with severe side-effects and, unfortunately, to date, have only demonstrated minimal increases in overall survival. Therefore, a strong interest has emerged to identify approved non-cancer drugs that possess anti-cancer activity, thus shortcutting the development process. This research strategy is commonly known as drug repurposing or drug repositioning and provides a faster path to the clinics. We have developed and implemented a modification of the standard drug repurposing strategy that we review here; rather than investigating target-promiscuous non-cancer drugs for possible anti-cancer activity, we focus on the discovery of novel cancer indications for already approved chemotherapeutic anti-cancer drugs. Clinical implementation of this strategy is normally commenced at clinical phase II trials and includes pre-treated patients. As the response rates to any non-standard chemotherapeutic drug will be relatively low in such a patient cohort it is a pre-requisite that such testing is based on predictive biomarkers. This review describes our strategy of biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy, taking the repurposing of topoisomerase I inhibitors and topoisomerase I as a potential predictive biomarker as case in point.

  10. New in vitro system to predict chemotherapeutic efficacy of drug combinations in fresh tumor samples

    Directory of Open Access Journals (Sweden)

    Frank Christian Kischkel

    2017-03-01

    Full Text Available Background To find the best individual chemotherapy for cancer patients, the efficacy of different chemotherapeutic drugs can be predicted by pretesting tumor samples in vitro via the chemotherapy-resistance (CTR-Test®. Although drug combinations are widely used among cancer therapy, so far only single drugs are tested by this and other tests. However, several first line chemotherapies are combining two or more chemotherapeutics, leading to the necessity of drug combination testing methods. Methods We established a system to measure and predict the efficacy of chemotherapeutic drug combinations with the help of the Loewe additivity concept in combination with the CTR-test. A combination is measured by using half of the monotherapy’s concentration of both drugs simultaneously. With this method, the efficacy of a combination can also be calculated based on single drug measurements. Results The established system was tested on a data set of ovarian carcinoma samples using the combination carboplatin and paclitaxel and confirmed by using other tumor species and chemotherapeutics. Comparing the measured and the calculated values of the combination testings revealed a high correlation. Additionally, in 70% of the cases the measured and the calculated values lead to the same chemotherapeutic resistance category of the tumor. Conclusion Our data suggest that the best drug combination consists of the most efficient single drugs and the worst drug combination of the least efficient single drugs. Our results showed that single measurements are sufficient to predict combinations in specific cases but there are exceptions in which it is necessary to measure combinations, which is possible with the presented system.

  11. Prevalence and sunlight photolysis of controlled and chemotherapeutic drugs in aqueous environments

    International Nuclear Information System (INIS)

    Lin, Angela Yu-Chen; Lin, Yen-Ching; Lee, Wan-Ning

    2014-01-01

    This study addresses the occurrences and natural fates of chemotherapeutics and controlled drugs when found together in hospital effluents and surface waters. The results revealed the presence of 11 out of 16 drugs in hospital effluents, and the maximum detected concentrations were at the μg L −1 level in the hospital effluents and the ng L −1 level in surface waters. The highest concentrations corresponded to meperidine, morphine, 5-fluorouracil and cyclophosphamide. The sunlight photolysis of the target compounds was investigated, and the results indicated that morphine and codeine can be significantly attenuated, with half-lives of 0.27 and 2.5 h, respectively, in natural waters. Photolysis can lower the detected environmental concentrations, also lowering the estimated environmental risks of the target drugs to human health. Nevertheless, 5-fluorouracil and codeine were found to have a high risk quotient (RQ), demonstrating the high risks of directly releasing hospital wastewater into the environment. - Highlights: • High occurrence of chemotherapeutics and controlled substances in aqueous systems. • Photolysis lowers the detected concentrations of morphine and codeine. • 5-fluorouracil and codeine in hospital effluents have high risk quotients. - Chemotherapeutics and controlled drugs occur at significant levels in hospital effluents and surface waters. Natural sunlight photolysis reduces their environmental occurrence

  12. Effects of cytotoxic chemotherapeutic agents on split-dose repair in intestinal crypt cells

    International Nuclear Information System (INIS)

    Phillips, Theodore L.; Ross, Glenda Y.

    1997-01-01

    Purpose: Many cancer chemotherapeutic agents interact with radiation to enhance the amount of radiation damage observed in both tumor and normal tissues. It is important to predict this interaction and to determine the effect of drug on sublethal damage repair. To evaluate for effects in rapid renewing normal tissues, the intestinal crypt cell in vivo assay is an excellent one to employ. These studies investigate the effect of eleven cancer chemotherapeutic drugs on split-dose repair in the intestinal crypt cell of the mouse. Methods and Materials: LAF1 male mice, age 10-12 weeks, were exposed to whole-body irradiation with orthovoltage x-rays delivered as a single dose or as equally divided doses delivered with intervals between the two exposures of 2 to 24 h. In the experimental group, the cancer chemotherapeutic agent was administered intraperitoneally 2 h before the first radiation dose. At 3.6 days after the second irradiation, the mice were sacrificed; the jejunum was removed, fixed, and sectioned for light microscopy. The number of regenerating crypts were counted and corrected to represent the number of surviving cells per circumference. Results: Of the eleven drugs tested, only carmustine eliminated split-dose repair. Cisplatin delayed repair, and methotrexate caused marked synchronization obliterating the observation of split-dose repair. Conclusions: Most cytotoxic chemotherapeutic agents do not inhibit sublethal damage repair in intestinal crypt cells when given 2 h before the first radiation exposure. Absence of the initial increase in survival seen with split-dose radiation is noted with carmustine and high-dose methotrexate

  13. Labelled chemotherapeutic drugs and neurotransmitter precursors

    International Nuclear Information System (INIS)

    Diksic, M.

    1989-01-01

    The authors have synthesized several chemotherapeutic drugs and their analogs labelled with 11 C or 18 F positron emitting radionuclides. The pharmacokinetics of several of these, 1,3-bis-2-chloroethylnitroso [ 11 C] urea [ 11 C-BCNU] and sarcosinamide congenerate of BCNU [SarCNU] were studied in animals and humans. This evaluation permitted them to have a better understanding of the tissue trapping of nitrosoureas and also the opportunity to do biological modelling permitting a better schedule of chemotherapy for these drugs. They have also been working on an analog of tryptophan, α-methyl-L-tryptophan, the compound studied for the past 15 years. An introduction of 11 C-label permitted in vivo evaluation of that compound and in conjunction with biochemical measurements done with 14 C-compound estimates of the rate of the brain serotonin synthesis without any metabolic manipulation

  14. DMH1 (4-[6-(4-isopropoxyphenylpyrazolo[1,5-a]pyrimidin-3-yl]quinoline inhibits chemotherapeutic drug-induced autophagy

    Directory of Open Access Journals (Sweden)

    Yue Sheng

    2015-07-01

    Full Text Available Our previous work found that DMH1 (4-[6-(4-isopropoxyphenylpyrazolo [1,5-a]pyrimidin-3-yl]quinoline was a novel autophagy inhibitor. Here, we aimed to investigate the effects of DMH1 on chemotherapeutic drug-induced autophagy as well as the efficacy of chemotherapeutic drugs in different cancer cells. We found that DMH1 inhibited tamoxifen- and cispcis-diaminedichloroplatinum (II (CDDP-induced autophagy responses in MCF-7 and HeLa cells, and potentiated the anti-tumor activity of tamoxifen and CDDP for both cells. DMH1 inhibited 5-fluorouracil (5-FU-induced autophagy responses in MCF-7 and HeLa cells, but did not affect the anti-tumor activity of 5-FU for these two cell lines. DMH1 itself did not induce cell death in MCF-7 and HeLa cells, but inhibited the proliferation of these cells. In conclusion, DMH1 inhibits chemotherapeutic drug-induced autophagy response and the enhancement of efficacy of chemotherapeutic drugs by DMH1 is dependent on the cell sensitivity to drugs.

  15. Laboratory determination of chemotherapeutic drug resistance in tumor cells from patients with leukemia, using a fluorometric microculture cytotoxicity assay (FMCA).

    Science.gov (United States)

    Larsson, R; Kristensen, J; Sandberg, C; Nygren, P

    1992-01-21

    An automated fluorometric microculture cytotoxicity assay (FMCA) based on the measurement of fluorescence generated from cellular hydrolysis of fluorescein diacetate (FDA) to fluorescein was employed for chemotherapeutic-drug-sensitivity testing of tumor-cell suspensions from patients with leukemia. Fluorescence was linearly related to cell number, and reproducible measurements of drug sensitivity could be performed using fresh or cryopreserved leukemia cells. A marked heterogeneity with respect to chemotherapeutic drug sensitivity was observed for a panel of cytotoxic drugs tested in 43 samples from 35 patients with treated or untreated acute and chronic leukemia. For samples obtained from patients with chronic lymphocytic and acute myelocytic leukemia, sensitivity profiles for standard drugs corresponded to known clinical activity and the assay detected primary and acquired drug resistance. Individual in vitro/in vivo correlations indicated high specificity with respect to the identification of drug resistance. The results suggest that the FMCA may be a simple and rapid method for in vivo-representative determinations of chemotherapeutic drug resistance in tumor cells obtained from patients with leukemia.

  16. Well-Defined Poly(Ortho Ester Amides) for Potential Drug Carriers: Probing the Effect of Extra- and Intracellular Drug Release on Chemotherapeutic Efficacy.

    Science.gov (United States)

    Yan, Guoqing; Wang, Jun; Qin, Jiejie; Hu, Liefeng; Zhang, Panpan; Wang, Xin; Tang, Rupei

    2017-07-01

    To compare the chemotherapeutic efficacy determined by extra- and intracellular drug release strategies, poly(ortho ester amide)-based drug carriers (POEAd-C) with well-defined main-chain lengths, are successfully constructed by a facile method. POEAd-C3-doxorubicin (DOX) can be rapidly dissolved to release drug at tumoral extracellular pH (6.5-7.2), while POEAd-C6-DOX can rapidly release drug following gradual swelling at intracellular pH (5.0-6.0). In vitro cytotoxicity shows that POEAd-C3-DOX exhibits more toxic effect on tumor cells than POEAd-C6-DOX at extracellular pH, but POEAd-C6-DOX has stronger tumor penetration and inhibition in vitro and in vivo tumor models. So, POEAd-C6-DOX with the intracellular drug release strategy has stronger overall chemotherapeutic efficacy than POEAd-C3-DOX with extracellular drug release strategy. It is envisioned that these poly(ortho ester amides) can have great potential as drug carriers for efficient chemotherapy with further optimization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Increased Toxicity of Chemotherapeutic Drugs by All-Trans Retinoic Acid in Cd44 Cells

    Directory of Open Access Journals (Sweden)

    A Abbasi

    2016-03-01

    Full Text Available BACKGROUND AND OBJECTIVE: In recent studies, undifferentiated CD44 cells have been introduced as the major cause of chemotherapeutic drug resistance in esophageal cancer. In this study, we aimed to evaluate the effects of all-trans retinoic acid on reducing chemotherapeutic drug resistance and improving the associated toxic effects. METHODS: In this clinical study, CD44+ and CD44- cells were separated from KYSE-30 cell line, using magnetic-activated cell sorting (MACS method. The cytotoxic effects of retinoic acid treatment, combined with cisplatin and 5-fluorouracil, were separately evaluated in two cell groups, i.e., CD44+ and CD44-. Cytotoxicity was determined by identifying cellular metabolic activity, acridine orange/ethidium bromide staining, and flow cytometry. FINDINGS: In this study, CD44 marker was expressed in 6.25% of the cell population in KYSE-30 cell line. The results of flow cytometry revealed that treatment with a combination of retinoic acid and chemotherapeutic drugs could improve cell cycle arrest in CD44+ cells (p<0.05, unlike CD44- cells. Determination of cellular metabolic activity, increased cell apoptosis along with decreased half maximal inhibitory concentration (IC50, and acridine orange/ethidium bromide staining were indicative of the increased percentage of primary and secondary apoptotic CD44+ cells. However, in CD44- cells, these effects were only observed by using a combination of retinoic acid and cisplatin (p<0.05. CONCLUSION: The present results showed that all-trans retinoic acid could increase the toxicity of cisplatin and 5-fluorouracil in CD44+ cells.

  18. Transgenic Plants as Low-Cost Platform for Chemotherapeutic Drugs Screening

    Directory of Open Access Journals (Sweden)

    Daniele Vergara

    2015-01-01

    Full Text Available In this work we explored the possibility of using genetically modified Arabidopsis thaliana plants as a rapid and low-cost screening tool for evaluating human anticancer drugs action and efficacy. Here, four different inhibitors with a validated anticancer effect in humans and distinct mechanism of action were screened in the plant model for their ability to interfere with the cytoskeletal and endomembrane networks. We used plants expressing a green fluorescent protein (GFP tagged microtubule-protein (TUA6-GFP, and three soluble GFPs differently sorted to reside in the endoplasmic reticulum (GFPKDEL or to accumulate in the vacuole through a COPII dependent (AleuGFP or independent (GFPChi mechanism. Our results demonstrated that drugs tested alone or in combination differentially influenced the monitored cellular processes including cytoskeletal organization and endomembrane trafficking. In conclusion, we demonstrated that A. thaliana plants are sensitive to the action of human chemotherapeutics and can be used for preliminary screening of drugs efficacy. The cost-effective subcellular imaging in plant cell may contribute to better clarify drugs subcellular targets and their anticancer effects.

  19. Clinical developments of chemotherapeutic nanomedicines: Polymers and liposomes for delivery of camptothecins and platinum (II) drugs

    KAUST Repository

    Kieler-Ferguson, Heidi M.; Frechet, Jean; Szoka, Francis C.

    2013-01-01

    For the past 40 years, liposomal and polymeric delivery vehicles have been studied as systems capable of modulating the cytotoxicity of small molecule chemotherapeutics, increasing tumor bearing animal survival times, and improving drug targeting

  20. Co-delivery of chemotherapeutics and proteins for synergistic therapy.

    Science.gov (United States)

    He, Chaoliang; Tang, Zhaohui; Tian, Huayu; Chen, Xuesi

    2016-03-01

    Combination therapy with chemotherapeutics and protein therapeutics, typically cytokines and antibodies, has been a type of crucial approaches for synergistic cancer treatment. However, conventional approaches by simultaneous administration of free chemotherapeutic drugs and proteins lead to limitations for further optimizing the synergistic effects, due to the distinct in vivo pharmacokinetics and distribution of small drugs and proteins, insufficient tumor selectivity and tumor accumulation, unpredictable drug/protein ratios at tumor sites, short half-lives, and serious systemic adverse effects. Consequently, to obtain optimal synergistic anti-tumor efficacy, considerable efforts have been devoted to develop the co-delivery systems for co-incorporating chemotherapeutics and proteins into a single carrier system and subsequently releasing the dual or multiple payloads at desired target sites in a more controllable manner. The co-delivery systems result in markedly enhanced blood stability and in vivo half-lives of the small drugs and proteins, elevated tumor accumulation, as well as the capability of delivering the multiple agents to the same target sites with rational drug/protein ratios, which may facilitate maximizing the synergistic effects and therefore lead to optimal antitumor efficacy. This review emphasizes the recent advances in the co-delivery systems for chemotherapeutics and proteins, typically cytokines and antibodies, for systemic or localized synergistic cancer treatment. Moreover, the proposed mechanisms responsible for the synergy of chemotherapeutic drugs and proteins are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cdt1 is differentially targeted for degradation by anticancer chemotherapeutic drugs.

    Directory of Open Access Journals (Sweden)

    Athanasia Stathopoulou

    Full Text Available BACKGROUND: Maintenance of genome integrity is crucial for the propagation of the genetic information. Cdt1 is a major component of the pre-replicative complex, which controls once per cell cycle DNA replication. Upon DNA damage, Cdt1 is rapidly targeted for degradation. This targeting has been suggested to safeguard genomic integrity and prevent re-replication while DNA repair is in progress. Cdt1 is deregulated in tumor specimens, while its aberrant expression is linked with aneuploidy and promotes tumorigenesis in animal models. The induction of lesions in DNA is a common mechanism by which many cytotoxic anticancer agents operate, leading to cell cycle arrest and apoptosis. METHODOLOGY/PRINCIPAL FINDING: In the present study we examine the ability of several anticancer drugs to target Cdt1 for degradation. We show that treatment of HeLa and HepG2 cells with MMS, Cisplatin and Doxorubicin lead to rapid proteolysis of Cdt1, whereas treatment with 5-Fluorouracil and Tamoxifen leave Cdt1 expression unaffected. Etoposide affects Cdt1 stability in HepG2 cells and not in HeLa cells. RNAi experiments suggest that Cdt1 proteolysis in response to MMS depends on the presence of the sliding clamp PCNA. CONCLUSION/SIGNIFICANCE: Our data suggest that treatment of tumor cells with commonly used chemotherapeutic agents induces differential responses with respect to Cdt1 proteolysis. Information on specific cellular targets in response to distinct anticancer chemotherapeutic drugs in different cancer cell types may contribute to the optimization of the efficacy of chemotherapy.

  2. Lung Damage due to Chemotherapeutic Agents

    Directory of Open Access Journals (Sweden)

    Serdar Kalemci

    2014-12-01

    Full Text Available Chemotherapeutic drug-induced pulmonary toxicity not only emerges in cumulative doses, but also can be observed even at low dosages. Combined administration of many drugs, concurrent radiotherapy applications, opportunistic infections, lymphangitic tumor extension and pleural metastases complicate the disease diagnosis.

  3. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor

    Directory of Open Access Journals (Sweden)

    Li X

    2015-12-01

    Full Text Available Xiaoyu Li, Meiying Wu, Limin Pan, Jianlin Shi State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: To overcome the drawback of drug non-selectivity in traditional chemotherapy, the construction of multifunctional targeting drug delivery systems is one of the most effective and prevailing approaches. The intratumoral anti-angiogenesis and the tumor cell-killing are two basic approaches in fighting tumors. Herein we report a novel tumor vascular-targeting multidrug delivery system using mesoporous silica nanoparticles as carrier to co-load an antiangiogenic agent (combretastatin A4 and a chemotherapeutic drug (doxorubicin and conjugate with targeting molecules (iRGD peptide for combined anti-angiogenesis and chemotherapy. Such a dual-loaded drug delivery system is capable of delivering the two agents at tumor vasculature and then within tumors through a differentiated drug release strategy, which consequently results in greatly improved antitumor efficacy at a very low doxorubicin dose of 1.5 mg/kg. The fast release of the antiangiogenic agent at tumor vasculatures led to the disruption of vascular structure and had a synergetic effect with the chemotherapeutic drug slowly released in the following delivery of chemotherapeutic drug into tumors. Keywords: mesoporous silica nanoparticles, drug delivery, tumor vasculatures targeting, antiangiogenic agent

  4. Role of Reactive Oxygen Species and Nitric Oxide in Mediating Chemotherapeutic Drug Induced Bystander Response in Human Cancer Cells Exposed In-Vitro

    Science.gov (United States)

    Chinnadurai, Mani; Rao, Bhavna S; Deepika, Ramasamy; Paul, Solomon F.D.; Venkatachalam, Perumal

    2012-01-01

    Background The intention of cancer chemotherapy is to control the growth of cancer cells using chemical agents. However, the occurrence of second malignancies has raised concerns, leading to re-evaluation of the current strategy in use for chemotherapeutic agents. Although the mechanisms involved in second malignancy remain ambiguous, therapeutic-agent-induced non-DNA targeted effects like bystander response and genomic instability cannot be eliminated completely. Hence, Bleomycin (BLM) and Neocarzinostatin (NCS), chemotherapeutic drugs with a mode of action similar to ionizing radiation, were used to study the mechanism of bystander response in human cancer cells (A549, CCRF-CEM and HL-60) by employing co-culture methodology. Methods Bystander effect was quantified using micronucleus (MN) assay and in-situ immunofluorescence(γH2AX assay).The role of reactive oxygen species (ROS) and nitric oxide (NO) in mediating the bystander response was explored by pre-treating bystander cells with dimethylsulphoxide (DMSO) and C-PTIO respectively. Results Bystander response was observed only in CCRF-CEM and A549 cells (P bystander response on treatment with DMSO, suggests that ROS has a more significant role in mediating the bystander response.Since the possibility of the ROS and NO in mediating these bystander effect was confirmed, mechanistic control of these signaling molecules could either reduce radiation damage and potential carcinogenicity of normal tissues (by reducing bystander signaling) or maximize cell sterilization during chemotherapy (by amplifying bystander responses in tumors). PMID:29147282

  5. Drug/radiation interactions and central nervous system injury

    International Nuclear Information System (INIS)

    DeAngelis, L.M.; Shapiro, W.R.

    1991-01-01

    Central nervous system (CNS) injury caused by combined treatment with cranial radiation therapy (CRT) and chemotherapy is a complicated and difficult problem. Interactions between the two modalities at the cellular level, the effect of treatment sequencing, and chemotherapy and RT dosages are all poorly understood. While this is generally true and applicable to toxicities expressed in multiple organs and tissue types, it is particularly true for the brain. There are many clinical descriptions and situations that strongly implicate an enhanced neurotoxic potential for combined treatment compared to either therapy alone; there is a paucity of definitive experimental evidence, however, and few animal models that can be used to elucidate the nature and pathophysiology of this clinical association. This paper addresses the neurotoxic potential of a specific chemotherapeutic drug when combined with CRT; outlines whose drugs known to cause CNS injury when combined with CRT. Although many of the clinical situations are complicated because multiple cytotoxic agents have been used, usually only one is thought to contribute to the CNS injury. The authors discuss each drug separately

  6. Radiation recall cutaneous induced by chlorambucil. Case report

    International Nuclear Information System (INIS)

    Dei-Cas, Ignacio; Wright, Dolores; Rigo, Bettina; Cohen Sabban, Emilia; Lacasagne, Jorgelina; Pietropaolo, Nelida; Cabo, Horacio; Molina, Malena

    2005-01-01

    Radiation recall refers to a tissue reaction produced by the use of certain drugs, usually chemotherapeutic agents, in a previously irradiated area. We report a patient with cutaneous radiation recall associated with chlorambucil, drug previously unreported as a causative agent in the literature. (author) [es

  7. Oncolytic herpes viruses, chemotherapeutics, and other cancer drugs

    Directory of Open Access Journals (Sweden)

    Braidwood L

    2013-12-01

    Full Text Available Lynne Braidwood,1 Sheila V Graham,2 Alex Graham,1 Joe Conner11Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK; 2MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Jarrett Building, University of Glasgow, Glasgow, UKAbstract: Oncolytic viruses are emerging as a potential new way of treating cancers. They are selectively replication-competent viruses that propagate only in actively dividing tumor cells but not in normal cells and, as a result, destroy the tumor cells by consequence of lytic infection. At least six different oncolytic herpes simplex viruses (oHSVs have undergone clinical trials worldwide to date, and they have demonstrated an excellent safety profile and intimations of efficacy. The first pivotal Phase III trial with an oHSV, talimogene laherparepvec (T-Vec [OncoVexGM-CSF], is almost complete, with extremely positive early results reported. Intuitively, therapeutically beneficial interactions between oHSV and chemotherapeutic and targeted therapeutic drugs would be limited as the virus requires actively dividing cells for maximum replication efficiency and most anticancer agents are cytotoxic or cytostatic. However, combinations of such agents display a range of responses, with antagonistic, additive, or, perhaps most surprisingly, synergistic enhancement of antitumor activity. When synergistic interactions in cancer cell killing are observed, chemotherapy dose reductions that achieve the same overall efficacy may be possible, resulting in a valuable reduction of adverse side effects. Therefore, the combination of an oHSV with “standard-of-care” drugs makes a logical and reasonable approach to improved therapy, and the addition of a targeted oncolytic therapy with “standard-of-care” drugs merits further investigation, both preclinically and in the clinic. Numerous publications report

  8. Chemotherapeutic drug delivery by tumoral extracellular matrix targeting

    NARCIS (Netherlands)

    Raavé , R.; Kuppevelt, T.H. van; Daamen, W.F.

    2018-01-01

    Systemic chemotherapy is a primary strategy in the treatment of cancer, but comes with a number of limitations such as toxicity and unfavorable biodistribution. To overcome these issues, numerous targeting systems for specific delivery of chemotherapeutics to tumor cells have been designed and

  9. Synergistic effects of plasma-activated medium and chemotherapeutic drugs in cancer treatment

    Science.gov (United States)

    Chen, Chao-Yu; Cheng, Yun-Chien; Cheng, Yi-Jing

    2018-04-01

    Chemotherapy is an important treatment method for metastatic cancer, but the drug-uptake efficiency of cancer cells needs to be enhanced in order to diminish the side effects of chemotherapeutic drugs and improve survival. The use of a nonequilibrium low-temperature atmospheric-pressure plasma jet (APPJ) has been demonstrated to exert selective effects in cancer therapy and to be able to enhance the uptake of molecules by cells, which makes an APPJ a good candidate adjuvant in combination chemotherapy. This study estimated the effects of direct helium-based APPJ (He-APPJ) exposure (DE) and He-APPJ-activated RPMI medium (PAM) on cell viability and migration. Both of these treatments decreased cell viability and inhibited cell migration, but to different degrees in different cell types. The use of PAM as a culture medium resulted in the dialkylcarbocyanine (DiI) fluorescent dye entering the cells more efficiently. PAM was combined with the anticancer drug doxorubicin (Doxo) to treat human heptocellular carcinoma HepG2 cells and human adenocarcinomic alveolar basal epithelial A549 cells. The results showed that the synergistic effects of combined PAM and Doxo treatment resulted in stronger lethality in cancer cells than did PAM or Doxo treatment alone. To sum up, PAM has potential as an adjuvant in combination with other drugs to improve curative cancer therapies.

  10. The ROS/SUMO Axis Contributes to the Response of Acute Myeloid Leukemia Cells to Chemotherapeutic Drugs

    Directory of Open Access Journals (Sweden)

    Guillaume Bossis

    2014-06-01

    Full Text Available Chemotherapeutic drugs used in the treatment of acute myeloid leukemias (AMLs are thought to induce cancer cell death through the generation of DNA double-strand breaks. Here, we report that one of their early effects is the loss of conjugation of the ubiquitin-like protein SUMO from its targets via reactive oxygen species (ROS-dependent inhibition of the SUMO-conjugating enzymes. Desumoylation regulates the expression of specific genes, such as the proapoptotic gene DDIT3, and helps induce apoptosis in chemosensitive AMLs. In contrast, chemotherapeutics do not activate the ROS/SUMO axis in chemoresistant cells. However, pro-oxidants or inhibition of the SUMO pathway by anacardic acid restores DDIT3 expression and apoptosis in chemoresistant cell lines and patient samples, including leukemic stem cells. Finally, inhibition of the SUMO pathway decreases tumor growth in mice xenografted with AML cells. Thus, targeting the ROS/SUMO axis might constitute a therapeutic strategy for AML patients resistant to conventional chemotherapies.

  11. Clinical developments of chemotherapeutic nanomedicines: Polymers and liposomes for delivery of camptothecins and platinum (II) drugs

    KAUST Repository

    Kieler-Ferguson, Heidi M.

    2013-01-17

    For the past 40 years, liposomal and polymeric delivery vehicles have been studied as systems capable of modulating the cytotoxicity of small molecule chemotherapeutics, increasing tumor bearing animal survival times, and improving drug targeting. Although a number of macromolecular-drug conjugates have progressed to clinical trials, tuning drug release to maintain efficacy in conjunction with controlling drug toxicity has prevented the clinical adoption of many vehicles. In this article, we review the motivations for and approaches to polymer and liposomal delivery with regard to camptothecin and cisplatin delivery. WIREs Nanomed Nanobiotechnol 2013, 5:130-138. doi: 10.1002/wnan.1209 For further resources related to this article, please visit the WIREs website. Conflict of interest: Drs Kieler-Ferguson and Fréchet declare no conflicts of interest. Dr Szoka is the founder of a liposome drug delivery company that is not working on any of the compounds mentioned in this article. © 2013 Wiley Periodicals, Inc.

  12. Cytotoxic effects of chemotherapeutic drugs and heterocyclic compounds at application on the cells of primary culture of neuroepithelium tumors.

    Science.gov (United States)

    Kulchitsky, Vladimir A; Potkin, Vladimir I; Zubenko, Yuri S; Chernov, Alexander N; Talabaev, Michael V; Demidchik, Yuri E; Petkevich, Sergei K; Kazbanov, Vladimir V; Gurinovich, Tatiana A; Roeva, Margarita O; Grigoriev, Dmitry G; Kletskov, Alexei V; Kalunov, Vladimir N

    2012-01-01

    Neuroepithelial tumor cells were cultured in vitro. The biopsy material was taken from 93 children at removal of the brain tumors during neurosurgical operations. The individual features of the cells sensitivity of primary cultures in respect to protocol-approved chemotherapy drugs and changes in the Interleukin-6 (Il-6) level in the culture medium after the application of chemotherapy were established. The initial level of Il-6 exceeded 600.0 pg/ml in the cultural medium with histologically verified pilomyxoid astrocytoma cells, and ranged from 100.0 to 200.0 pg/ml in the medium at cultivation of ganglioneuroblastoma and pilocytic astrocytoma. A decrease in the Il-6 level in the medium culture of primary tumors cells was observed after the application of chemotherapeutic agents on the cells of pilomyxoid astrocytoma, astrocytomas, and pilocytic desmoplastic/nodular medulloblastoma. The production of Il-6 increased after application of cytostatic drugs on the cells of oligoastrocytomas. A decrease in Il-6 level after application of Cisplatin and Methotrexate and a 5-10 fold increase in the level of Il-6 after application of Etoposide, Carboplatin, Cytarabine, and Gemcitabine were registered in the medium with ganglioneuroblastoma. To improve the cytotoxic action of chemotherapeutic agents, the combined application of cytostatics with heterocyclic compounds was carried out. A computer modeling of ligand-protein complexes of carbamide using the Dock 6.4 and USF Chimera program packages was performed with molecular mechanics method. Special attention was drawn to the ability of several isoxazole heterocycles and isothiazolyl to inhibit the tyrosine kinase. It was proved in vitro that the joint application of chemotherapeutic agents and heterocyclic compounds could reduce the concentration of the cytostatic factor by 10 or more times, having maintained the maximum cytotoxic effect. It was assumed that the target amplification of cytotoxic action of chemotherapeutic

  13. Pharmacokinetically guided dosing of (high-dose) chemotherapeutic agents

    NARCIS (Netherlands)

    Attema-de Jonge, M.E. (Milly Ellen)

    2004-01-01

    Due to variation in drug distribution, metabolism and elimination processes between patients, systemic exposure to chemotherapeutic agents may be highly variable from patient to patient after administration of similar doses. This pharmacokinetic variability may explain in part the large variability

  14. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Thys, Ryan G., E-mail: rthys@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016 (United States); Lehman, Christine E., E-mail: clehman@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016 (United States); Pierce, Levi C.T., E-mail: Levipierce@gmail.com [Human Longevity, Inc., San Diego, California 92121 (United States); Wang, Yuh-Hwa, E-mail: yw4b@virginia.edu [Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0733 (United States)

    2015-09-15

    Highlights: • Environmental/chemotherapeutic agents cause DNA breakage in MLL and CBFB in HSPCs. • Diethylnitrosamine-induced DNA breakage at MLL and CBFB shown for the first time. • Chemical-induced DNA breakage occurs at topoisomerase II cleavage sites. • Chemical-induced DNA breaks display a pattern similar to those in leukemia patients. • Long-term exposures suggested to generate DNA breakage at leukemia-related genes. - Abstract: Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The

  15. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells

    International Nuclear Information System (INIS)

    Thys, Ryan G.; Lehman, Christine E.; Pierce, Levi C.T.; Wang, Yuh-Hwa

    2015-01-01

    Highlights: • Environmental/chemotherapeutic agents cause DNA breakage in MLL and CBFB in HSPCs. • Diethylnitrosamine-induced DNA breakage at MLL and CBFB shown for the first time. • Chemical-induced DNA breakage occurs at topoisomerase II cleavage sites. • Chemical-induced DNA breaks display a pattern similar to those in leukemia patients. • Long-term exposures suggested to generate DNA breakage at leukemia-related genes. - Abstract: Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The

  16. Self-assembled Nanomaterials for Chemotherapeutic Applications

    Science.gov (United States)

    Shieh, Aileen

    The self-assembly of short designed peptides into functional nanostructures is becoming a growing interest in a wide range of fields from optoelectronic devices to nanobiotechnology. In the medical field, self-assembled peptides have especially attracted attention with several of its attractive features for applications in drug delivery, tissue regeneration, biological engineering as well as cosmetic industry and also the antibiotics field. We here describe the self-assembly of peptide conjugated with organic chromophore to successfully deliver sequence independent micro RNAs into human non-small cell lung cancer cell lines. The nanofiber used as the delivery vehicle is completely non-toxic and biodegradable, and exhibit enhanced permeability effect for targeting malignant tumors. The transfection efficiency with nanofiber as the delivery vehicle is comparable to that of the commercially available RNAiMAX lipofectamine while the toxicity is significantly lower. We also conjugated the peptide sequence with camptothecin (CPT) and observed the self-assembly of nanotubes for chemotherapeutic applications. The peptide scaffold is non-toxic and biodegradable, and drug loading of CPT is high, which minimizes the issue of systemic toxicity caused by extensive burden from the elimination of drug carriers. In addition, the peptide assembly drastically increases the solubility and stability of CPT under physiological conditions in vitro, while active CPT is gradually released from the peptide chain under the slight acidic tumor cell environment. Cytotoxicity results on human colorectal cancer cells and non-small cell lung cancer cell lines display promising anti-cancer properties compared to the parental CPT drug, which cannot be used clinically due to its poor solubility and lack of stability in physiological conditions. Moreover, the peptide sequence conjugated with 5-fluorouracil formed a hydrogel with promising topical chemotherapeutic applications that also display

  17. Comparison of the oncogenic potential of several chemotherapeutic agents

    International Nuclear Information System (INIS)

    Miller, R.C.; Hall, E.J.; Osmak, R.S.

    1981-01-01

    Several chemotherapeutic drugs that have been routinely used in cancer treatment were tested for their carcinogenic potential. Two antitumor antibiotics (adriamycin and vincristine), an alkalating agent (melphalan), 5-azacytidine and the bifunctional agent cis-platinum that mimics alkylating agents and/or binds Oxygen-6 or Nitrogen-7 atoms of quanine were tested. Cell killing and cancer induction was assessed using in vitro transformation system. C3H/10T 1/2 cells, while normally exhibiting contact inhibition, can undergo transformation from normal contact inhibited cells to tumorgenic cells when exposed to chemical carcinogens. These cells have been used in the past by this laboratory to study oncogenic transformation of cells exposed to ionizing radiation and electron affinic compounds that sensitize hypoxic cells to x-rays. The endpoints of cell killing and oncogenic transformation presented here give an estimate of the carcinogenic potential of these agents

  18. A review on the study of bioreductive drugs

    International Nuclear Information System (INIS)

    Chen Xiaojing; Jin Yizun

    2003-01-01

    Hypoxia is a feature that exists in most solid tumors. Bio-reductive drugs are pro-drugs that can selectively target the hypoxia cells in tumors. In reductive environment, they are reductively metabolized to generate toxic species. There are 3 main classes of bio-reductive drugs: the nitro-aromatics, N-oxides and quinones. Recently, bio-reductive drugs were combined with GDEPT for the treatment of cancer, in addition to radiation and the chemotherapeutic agents. Bio-reductive drugs will play a significant role in future cancer therapy

  19. Gemcitabine concurrent with radiation therapy for locally advanced ...

    African Journals Online (AJOL)

    Background: Management of advanced head and neck carcinoma is a challenging proposition. Presently concomitant chemoirradiation has become the standard of care in such patients. Many chemotherapeutic drugs have shown radio-sensitising effects when used concomitantly along with radiation. The present study ...

  20. Repurposing the FDA-approved pinworm drug pyrvinium as a novel chemotherapeutic agent for intestinal polyposis.

    Directory of Open Access Journals (Sweden)

    Bin Li

    Full Text Available Mutations in the WNT-pathway regulator ADENOMATOUS POLYPOSIS COLI (APC promote aberrant activation of the WNT pathway that is responsible for APC-associated diseases such as Familial Adenomatous Polyposis (FAP and 85% of spontaneous colorectal cancers (CRC. FAP is characterized by multiple intestinal adenomas, which inexorably result in CRC. Surprisingly, given their common occurrence, there are few effective chemotherapeutic drugs for FAP. Here we show that the FDA-approved, anti-helminthic drug Pyrvinium attenuates the growth of WNT-dependent CRC cells and does so via activation of CK1α. Furthermore, we show that Pyrvinium can function as an in vivo inhibitor of WNT-signaling and polyposis in a mouse model of FAP: APCmin mice. Oral administration of Pyrvinium, a CK1α agonist, attenuated the levels of WNT-driven biomarkers and inhibited adenoma formation in APCmin mice. Considering its well-documented safe use for treating enterobiasis in humans, our findings suggest that Pyrvinium could be repurposed for the clinical treatment of APC-associated polyposes.

  1. Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Kemp, Kevin; Morse, Ruth; Sanders, Kelly; Hows, Jill; Donaldson, Craig

    2011-07-01

    The adverse effects of melphalan and cyclophosphamide on hematopoietic stem cells are well-known; however, the effects on the mesenchymal stem cells (MSCs) residing in the bone marrow are less well characterised. Examining the effects of chemotherapeutic agents on patient MSCs in vivo is difficult due to variability in patients and differences in the drug combinations used, both of which could have implications on MSC function. As drugs are not commonly used as single agents during high-dose chemotherapy (HDC) regimens, there is a lack of data comparing the short- or long-term effects these drugs have on patients post treatment. To help address these problems, the effects of the alkylating chemotherapeutic agents cyclophosphamide and melphalan on human bone marrow MSCs were evaluated in vitro. Within this study, the exposure of MSCs to the chemotherapeutic agents cyclophosphamide or melphalan had strong negative effects on MSC expansion and CD44 expression. In addition, changes were seen in the ability of MSCs to support hematopoietic cell migration and repopulation. These observations therefore highlight potential disadvantages in the use of autologous MSCs in chemotherapeutically pre-treated patients for future therapeutic strategies. Furthermore, this study suggests that if the damage caused by chemotherapeutic agents to marrow MSCs is substantial, it would be logical to use cultured allogeneic MSCs therapeutically to assist or repair the marrow microenvironment after HDC.

  2. The combination of reduced MCL-1 and standard chemotherapeutics is tolerable in mice.

    Science.gov (United States)

    Brinkmann, Kerstin; Grabow, Stephanie; Hyland, Craig D; Teh, Charis E; Alexander, Warren S; Herold, Marco J; Strasser, Andreas

    2017-12-01

    A common therapeutic strategy to combat human cancer is the use of combinations of drugs, each targeting different cellular processes or vulnerabilities. Recent studies suggest that addition of an MCL-1 inhibitor to such anticancer drug treatments could be an attractive therapeutic strategy. Thus, it is of great interest to understand whether combinations of conventional anticancer drugs with an MCL-1 inhibitor will be tolerable and efficacious. In order to mimic the combination of MCL-1 inhibition with other cancer therapeutics, we treated Mcl-1 +/- heterozygous mice, which have a ~50% reduction in MCL-1 protein in their cells, with a broad range of chemotherapeutic drugs. Careful monitoring of treated mice revealed that a wide range of chemotherapeutic drugs had no significant effect on the general well-being of Mcl-1 +/- mice with no overt damage to a broad range of tissues, including the haematopoietic compartment, heart, liver and kidney. These results indicate that MCL-1 inhibition may represent a tolerable strategy in cancer therapy, even when combined with select cytotoxic drugs.

  3. In vitro testing of chemotherapeutic drug combinations in acute myelocytic leukaemia using the fluorometric microculture cytotoxicity assay (FMCA).

    Science.gov (United States)

    Larsson, R; Fridborg, H; Kristensen, J; Sundström, C; Nygren, P

    1993-05-01

    The fluorometric microculture cytotoxicity assay (FMCA) was employed for analysing the effect of different chemotherapeutic drug combinations and their single constituents in 44 cases of acute myelocytic leukaemia (AML). A large heterogeneity with respect to cell kill was observed for all combinations tested, the interactions ranging from antagonistic to synergistic in terms of the multiplicative concept for drug interactions. However, an 'additive' model provided a significantly better fit of the data compared to the effect of the most active single agent of the combination (Dmax) for several common antileukaemic drug combinations. When the two interaction models were related to treatment outcome 38% of the non-responders showed preference for the additive model whereas the corresponding figure for responders was 80%. Overall, in 248 of 290 (85%) tests performed with drug combinations, there was an agreement between the effect of the combination and that of the most active single component. Direct comparison of Dmax and the combination for correlation with clinical outcome demonstrated only minor differences in the ability to predict drug resistance. The results show that FMCA appear to report drug interactions in samples from patients with AML in accordance with clinical experience. Furthermore, testing single agents as a substitute for drug combinations may be adequate for detection of clinical drug resistance to combination therapy in AML.

  4. Radiation and platinum drug interaction

    International Nuclear Information System (INIS)

    Nias, A.H.W.

    1985-01-01

    The ideal platinum drug-radiation interaction would achieve radiosensitization of hypoxic tumour cells with the use of a dose of drug which is completely non-toxic to normal tissues. Electron-affinic agents are employed with this aim, but the commoner platinum drugs are only weakly electron-affinic. They do have a quasi-alkylating action however, and this DNA targeting may account for the radiosensitizing effect which occurs with both pre- and post-radiation treatments. Because toxic drug dosage is usually required for this, the evidence of the biological responses to the drug and to the radiation, as well as to the combination, requires critical analysis before any claim of true enhancement, rather than simple additivity, can be accepted. The amount of enhancement will vary with both the platinum drug dose and the time interval between drug administration and radiation. Clinical schedules may produce an increase in tumour response and/or morbidity, depending upon such dose and time relationships. (author)

  5. Long-term exposure to estrogen enhances chemotherapeutic efficacy potentially through epigenetic mechanism in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Wei Chang

    Full Text Available Chemotherapy is the most common clinical option for treatment of breast cancer. However, the efficacy of chemotherapy depends on the age of breast cancer patients. Breast tissues are estrogen responsive and the levels of ovarian estrogen vary among the breast cancer patients primarily between pre- and post-menopausal age. Whether this age-dependent variation in estrogen levels influences the chemotherapeutic efficacy in breast cancer patients is not known. Therefore, the objective of this study was to evaluate the effects of natural estrogen 17 beta-estradiol (E2 on the efficacy of chemotherapeutic drugs in breast cancer cells. Estrogen responsive MCF-7 and T47D breast cancer cells were long-term exposed to 100 pg/ml estrogen, and using these cells the efficacy of chemotherapeutic drugs doxorubicin and cisplatin were determined. The result of cell viability and cell cycle analysis revealed increased sensitivities of doxorubicin and cisplatin in estrogen-exposed MCF-7 and T47D cells as compared to their respective control cells. Gene expression analysis of cell cycle, anti-apoptosis, DNA repair, and drug transporter genes further confirmed the increased efficacy of chemotherapeutic drugs in estrogen-exposed cells at molecular level. To further understand the role of epigenetic mechanism in enhanced chemotherapeutic efficacy by estrogen, cells were pre-treated with epigenetic drugs, 5-aza-2-deoxycytidine and Trichostatin A prior to doxorubicin and cisplatin treatments. The 5-aza-2 deoxycytidine pre-treatment significantly decreased the estrogen-induced efficacy of doxorubicin and cisplatin, suggesting the role of estrogen-induced hypermethylation in enhanced sensitivity of these drugs in estrogen-exposed cells. In summary, the results of this study revealed that sensitivity to chemotherapy depends on the levels of estrogen in breast cancer cells. Findings of this study will have clinical implications in selecting the chemotherapy strategies for

  6. Measuring the Acoustic Release of a Chemotherapeutic Agent from Folate-Targeted Polymeric Micelles.

    Science.gov (United States)

    Abusara, Ayah; Abdel-Hafez, Mamoun; Husseini, Ghaleb

    2018-08-01

    In this paper, we compare the use of Bayesian filters for the estimation of release and re-encapsulation rates of a chemotherapeutic agent (namely Doxorubicin) from nanocarriers in an acoustically activated drug release system. The study is implemented using an advanced kinetic model that takes into account cavitation events causing the antineoplastic agent's release from polymeric micelles upon exposure to ultrasound. This model is an improvement over the previous representations of acoustic release that used simple zero-, first- and second-order release and re-encapsulation kinetics to study acoustically triggered drug release from polymeric micelles. The new model incorporates drug release and micellar reassembly events caused by cavitation allowing for the controlled release of chemotherapeutics specially and temporally. Different Bayesian estimators are tested for this purpose including Kalman filters (KF), Extended Kalman filters (EKF), Particle filters (PF), and multi-model KF and EKF. Simulated and experimental results are used to verify the performance of the above-mentioned estimators. The proposed methods demonstrate the utility and high-accuracy of using estimation methods in modeling this drug delivery technique. The results show that, in both cases (linear and non-linear dynamics), the modeling errors are expensive but can be minimized using a multi-model approach. In addition, particle filters are more flexible filters that perform reasonably well compared to the other two filters. The study improved the accuracy of the kinetic models used to capture acoustically activated drug release from polymeric micelles, which may in turn help in designing hardware and software capable of precisely controlling the delivered amount of chemotherapeutics to cancerous tissue.

  7. Dipeptidyl peptidase IV as a potential target for selective prodrug activation and chemotherapeutic action in cancers.

    Science.gov (United States)

    Dahan, Arik; Wolk, Omri; Yang, Peihua; Mittal, Sachin; Wu, Zhiqian; Landowski, Christopher P; Amidon, Gordon L

    2014-12-01

    The efficacy of chemotherapeutic drugs is often offset by severe side effects attributable to poor selectivity and toxicity to normal cells. Recently, the enzyme dipeptidyl peptidase IV (DPPIV) was considered as a potential target for the delivery of chemotherapeutic drugs. The purpose of this study was to investigate the feasibility of targeting chemotherapeutic drugs to DPPIV as a strategy to enhance their specificity. The expression profile of DPPIV was obtained for seven cancer cell lines using DNA microarray data from the DTP database, and was validated by RT-PCR. A prodrug was then synthesized by linking the cytotoxic drug melphalan to a proline-glycine dipeptide moiety, followed by hydrolysis studies in the seven cell lines with a standard substrate, as well as the glycyl-prolyl-melphalan (GP-Mel). Lastly, cell proliferation studies were carried out to demonstrate enzyme-dependent activation of the candidate prodrug. The relative RT-PCR expression levels of DPPIV in the cancer cell lines exhibited linear correlation with U95Av2 Affymetrix data (r(2) = 0.94), and with specific activity of a standard substrate, glycine-proline-p-nitroanilide (r(2) = 0.96). The significantly higher antiproliferative activity of GP-Mel in Caco-2 cells (GI₅₀ = 261 μM) compared to that in SK-MEL-5 cells (GI₅₀ = 807 μM) was consistent with the 9-fold higher specific activity of the prodrug in Caco-2 cells (5.14 pmol/min/μg protein) compared to SK-MEL-5 cells (0.68 pmol/min/μg protein) and with DPPIV expression levels in these cells. Our results demonstrate the great potential to exploit DPPIV as a prodrug activating enzyme for efficient chemotherapeutic drug targeting.

  8. Evaluation of radiation doses from radioactive drugs

    International Nuclear Information System (INIS)

    Halperin, J.A.; Grove, G.R.

    1977-01-01

    Radioactive new drugs are regulated by the Food and Drug Administration (FDA) in the United States. Before a new drug can be marketed it must have an approved New Drug Application (NDA). Clinical investigations of a radioactive new drug are carried out under a Notice of Claimed Investigational Exemption for a New Drug (IND), submitted to the FDA. In the review of the IND, radiation doses are projected on the basis of experimental data from animal models and from calculations based upon radiation characteristics, predicted biodistribution of the drug in humans, and activity to be administered. FDA physicians review anticipated doses and prevent clinical investigations in humans when the potential risk of the use of a radioactive substance outweighs the prospect of achieving beneficial results from the administration of the drug. In the evaluation of an NDA, FDA staff attempt to assure that the intended diagnostic or therapeutic effect is achievable with the lowest practicable radiation dose. Radiation doses from radioactive new drugs are evaluated by physicians within the FDA. Important radioactive new drugs are also evaluated by the Radiopharmaceuticals Advisory Committee. FDA also supports the Center for Internal Radiation Dosimetry at Oak Ridge, to provide information regarding in vivo distribution and dosimetry to critical organs and the whole body from radioactive new drugs. The process for evaluation of radiation doses from radioactive new drugs for protection against use of unnecessary radiation exposure by patients in nuclear medicine procedures, a

  9. Pilot study on developing a decision support tool for guiding re-administration of chemotherapeutic agent after a serious adverse drug reaction

    Directory of Open Access Journals (Sweden)

    Chew Lita

    2011-07-01

    Full Text Available Abstract Background Currently, there are no standard guidelines for recommending re-administration of a chemotherapeutic drug to a patient after a serious adverse drug reaction (ADR incident. The decision on whether to rechallenge the patient is based on the experience of the clinician and is highly subjective. Thus the aim of this study is to develop a decision support tool to assist clinicians in this decision making process. Methods The inclusion criteria for patients in this study are: (1 had chemotherapy at National Cancer Centre Singapore between 2004 to 2009, (2 suffered from serious ADRs, and (3 were rechallenged. A total of 46 patients fulfilled the inclusion criteria. A genetic algorithm attribute selection method was used to identify clinical predictors for patients' rechallenge status. A Naïve Bayes model was then developed using 35 patients and externally validated using 11 patients. Results Eight patient attributes (age, chemotherapeutic drug, albumin level, red blood cell level, platelet level, abnormal white blood cell level, abnormal alkaline phosphatase level and abnormal alanine aminotransferase level were identified as clinical predictors for rechallenge status of patients. The Naïve Bayes model had an AUC of 0.767 and was found to be useful for assisting clinical decision making after clinicians had identified a group of patients for rechallenge. A platform independent version and an online version of the model is available to facilitate independent validation of the model. Conclusion Due to the limited size of the validation set, a more extensive validation of the model is necessary before it can be adopted for routine clinical use. Once validated, the model can be used to assist clinicians in deciding whether to rechallenge patients by determining if their initial assessment of rechallenge status of patients is accurate.

  10. Lysosomes as mediators of drug resistance in cancer.

    Science.gov (United States)

    Zhitomirsky, Benny; Assaraf, Yehuda G

    2016-01-01

    Drug resistance remains a leading cause of chemotherapeutic treatment failure and cancer-related mortality. While some mechanisms of anticancer drug resistance have been well characterized, multiple mechanisms remain elusive. In this respect, passive ion trapping-based lysosomal sequestration of multiple hydrophobic weak-base chemotherapeutic agents was found to reduce the accessibility of these drugs to their target sites, resulting in a markedly reduced cytotoxic effect and drug resistance. Recently we have demonstrated that lysosomal sequestration of hydrophobic weak base drugs triggers TFEB-mediated lysosomal biogenesis resulting in an enlarged lysosomal compartment, capable of enhanced drug sequestration. This study further showed that cancer cells with an increased number of drug-accumulating lysosomes are more resistant to lysosome-sequestered drugs, suggesting a model of drug-induced lysosome-mediated chemoresistance. In addition to passive drug sequestration of hydrophobic weak base chemotherapeutics, other mechanisms of lysosome-mediated drug resistance have also been reported; these include active lysosomal drug sequestration mediated by ATP-driven transporters from the ABC superfamily, and a role for lysosomal copper transporters in cancer resistance to platinum-based chemotherapeutics. Furthermore, lysosomal exocytosis was suggested as a mechanism to facilitate the clearance of chemotherapeutics which highly accumulated in lysosomes, thus providing an additional line of resistance, supplementing the organelle entrapment of chemotherapeutics away from their target sites. Along with these mechanisms of lysosome-mediated drug resistance, several approaches were recently developed for the overcoming of drug resistance or exploiting lysosomal drug sequestration, including lysosomal photodestruction and drug-induced lysosomal membrane permeabilization. In this review we explore the current literature addressing the role of lysosomes in mediating cancer drug

  11. Comparison of the efficacy among multiple chemotherapeutic interventions combined with radiation therapy for patients with cervix cancer after surgery: A network meta-analysis.

    Science.gov (United States)

    Chang, Lei; Guo, Ruixia

    2017-07-25

    Cervix cancer was the second most common cancer in female. However, there was no network meta-analysis (NMA) comparing the efficacy of the multiple chemotherapeutic interventions combined with radiation therapy in patients after operation. Randomized controlled trials were retrieved from PubMed, Embase and Cochrane Library. Overall survival (OS), recurrence-free survival (RFS), incidence of recurrence and distant metastasis were the main outcomes, particularly 5-year OS and PFS were considered as primary outcomes. Furthermore, the hazard ratio (HR) or odds ratio (OR) and their 95% credible intervals (CrIs) were extracted. The surface under cumulative ranking curve (SUCRA) was also used in this NMA. A total of 39 eligible trials with 8,952 patients were included and 22 common chemotherapies were evaluated in this meta-analysis. For OS, cisplatin+fluorouracil+hydroxyurea, fluorouracil+mitomycin C, cisplatin and cisplatin+fluorouracil were better than placebo. As for RFS, cisplatin+fluorouracil, fluorouracil+mitomycin C, and cisplatin alone had the significant superiority compared with placebo. In terms of incidence of recurrence, the optimal drug combination was cisplatin+ifosfamide (0.93) based on SUCRA. Moreover, epirubicin (OR = 0.28, 95% CrI: 0.08-0.91) was the only one had the distinguished potency in reducing the occurrence of distant metastasis with a SUCRA rank probability of 0.88. We recommended cisplatin+fluorouracil+hydroxyurea and cisplatin+docetaxel for their good efficacy in long term survival. Meanwhile, the combination of multiple drugs with different mechanisms worked better.

  12. In vivo enhancement of anticancer therapy using bare or chemotherapeutic drug-bearing nanodiamond particles

    Directory of Open Access Journals (Sweden)

    Li Y

    2014-02-01

    Full Text Available Yingqi Li,1,2 Yaoli Tong,1 Ruixia Cao,1 Zhimei Tian,2 Binsheng Yang,2 Pin Yang2 1Department of Chemistry, College of Chemistry and Chemical Engineering, 2Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, People's Republic of China Background: This study investigated the use of nanodiamond particles (NDs as a promising material for drug delivery in vivo and in vitro. Methods: HepG2 cells (a human hepatic carcinoma cell line were used to determine the characteristics of a nanodiamond-doxorubicin complex (ND-DOX when taken up by cells in vitro using laser scanning confocal microscopy and dialysis experiments. We also compared the survival rate and histopathology of tumor-bearing mice after treatment with NDs or ND-DOX in vivo. Results: In vitro investigation showed that ND-DOX has slow and sustained drug release characteristics compared with free doxorubicin. In vivo, the survival rate of tumor-bearing mice treated with ND-DOX was four times greater than that of mice treated with free doxorubicin. Interestingly, the survival rate in mice treated with NDs alone was close to that of mice treated with free doxorubicin. This indicates that treatment with ND-DOX can prolong the lifespan of tumor-bearing mice significantly compared with conventional doxorubicin and that NDs can have this effect as well. Histopathological analysis showed that neither the NDs nor ND-DOX were toxic to the kidney, liver, or spleen in contrast with the well-known toxic effects of free doxorubicin on the kidney and liver. Further, both the bare NDs and ND-DOX could suppress tumor growth effectively. Conclusion: NDs can potentially prolong survival, and ND-DOX may act as a nanodrug with promising chemotherapeutic efficacy and safety.  Keywords: nanodiamond, drug delivery, sustained release, survival rate, cancer, treatment

  13. Stability Studies of Certain Chemotherapeutic Agents Following Gamma Irradiation and Silver Nanoparticles Conjugation

    International Nuclear Information System (INIS)

    El-Sayyad, Gh.E.S.M.

    2014-01-01

    The Chemical stability of drug is of great importance since it becomes less effective as it undergoes degradation in case of applied of gamma irradiation process. The application of gamma irradiation for different chemotherapeutic agents Such as (ofloxacin, sodium ampicillin, sodium cefotaxime, gentamycin and amoxicillin) and studying the effect of applied doses on chemical structure and biological activity of the irradiated antibiotics compared to unirradiated ones was studied by ultraviolet-Visible spectrophotometer (UV-Visible), Fourier transform infrared spectroscopy measurements (FTIR spectra) and high performance liquid chromatography (HPLC) in addition to microbiological assay were run before and after irradiation to probe any change after irradiation. The results showed that all of the irradiated compounds remain stable and radio resistant; retaining their structure and activity unchanged up to 25 KGy. The radiation-induced AgNPs synthesis is a simple, clean which involves radiolysis of aqueous solution that provides an efficient method to reduce metal ions. Also, in this study, Bacillus megaterium was found to be an effective biological tool for the extracellular biosynthesis of stable AgNPs which are highly stable and this method has advantages over other methods as the organism used here is safe. This study would therefore lead to an easy procedure for producing silver nanoparticles with the added advantage of bio safety. The Synthesized AgNPs exhibit remarkable antimicrobial activity against both Gram-positive and Gram negative bacterial strains regardless of their drug-resistant mechanisms. The bactericidal activity have proved that AgNPs kill bacteria at such low concentrations (units of ppm), which Stability Studies of Certain Chemotherapeutic Agents Following Gamma Irradiation and Silver Nanoparticles Conjugation. do not reveal acute toxic effects on human cell, in addition to overcoming resistance, and lowering cost when compared to conventional

  14. Microencapsulation of chemotherapeutic agents

    International Nuclear Information System (INIS)

    Byun, Hong Sik

    1993-01-01

    Mixing various amounts of chemotherapeutic agents such as cisplatinum, 5-fluorouracil, mitomycin-C, and adriamycin with polymers such as poly-d, 1-lactide, ethylhydroxyethylcellulose, and polycaprolactone, several kinds of microcapsules were made. Among them, microcapsule made from ethylhydroxyethylcellulose showed best yield. Under light microscopy, the capsules were observed as particles with refractive properties. For the basic toxicity test, intraarterial administration of cisplatinum was done in 6 adult mongrel dogs. Follow-up angiography was accomplished in 2 wk intervals for 6 wks. Despite no significant difference in the histopathological examination between the embolized and normal kidneys, follow-up angiogram showed atrophy of renal cortex and diminished numbers of arterial branches in the embolized kidneys. In order to identify the structural properties of microcapsules, and to determine the drug content and the rate of release, further experiment is thought to be necessary. (Author)

  15. Utilization of a selective tumour artery catheterization technique for the intra-arterial delivery of chemotherapeutic agents and radiopharmaceuticals in a combined chemotherapy-radiotherapy clinical research programme

    International Nuclear Information System (INIS)

    Wiley, A.L. Jr.; Wirtanen, G.W.; Holden, J.E.; Polcyn, R.E.

    1977-01-01

    Combined intra-arterial chemotherapeutic agents (principally actinomycin-D) and radiation therapy has been utilized in the treatment of 35 patients with massive unresectable malignancies. The goals may be separated into three distinct categories. An attempt has been made to convert unresectable malignancies to surgical resectability, to provide a definitive therapy for massive tumours in patients who either refuse surgery or are not surgery candidates, and to provide palliation. Twelve of 15 initially unresectable tumours treated with actinomycin-D became surgically resectable (no resection was attempted in the other four because they either developed metastasis during therapy or did not complete the therapy), 4 of 6 massive tumours treated definitively have remained locally controlled from 18 to 108 months, and 7 of 9 patients treated palliatively were significantly benefited by the therapy. Impressive responses were also achieved in several patients treated with intra-arterial 5-fluorouracil and 5-iodo-2'-deoxyuridine. The authors therefore consider combined, concurrent radiation therapy and intra-arterially administered chemotherapeutic agents worthy of further clinical investigation as a means of treating massive malignancies. They also suggest that the best chance of optimizing the therapeutic ratio of such therapy is dependent primarily on a proper understanding of clinical tumour vascularity and of its subsequent effect on drug and oxygen distributions within the radiation treatment volume. Accordingly, tumour vascularity has been clinically evaluated by the use of intra-arterially administered radiopharmaceuticals. Such clinical data, in conjunction with radiobiological data, might in the future be utilized to optimize both low and high LET combined therapy by allowing for correction of the physical isodose for drug and oxygen concentration variations. (author)

  16. Effects of combinations of chemotherapy and radiation on the emergence of drug resistant cells in 9L rat brain tumor spheroids

    International Nuclear Information System (INIS)

    Tofilon, P.J.; Arundel, C.; Vines, C.M.

    1987-01-01

    Repeated administration of antineoplastic chemotherapeutic agents is generally considered to induce and/or select for drug resistant cells. The authors recently begun to investigate whether chemotherapy interdigitated with radiation can minimize or eliminate the emergence of drug resiistent cells in 9L rat brain tumor spheroids grown from defined mixtures of cells sensitive (9L) and resistant (R/sub 3/) to BCNU. In this experimental system, the sister chromatid exchange (SCE) assay is used to quantitate the proportions of sensitive and resistant cells within the spheroids. While 9L and R/sub 3/ cell have different sensitivities to BCNU, they are equally sensitive to radiation. Mixed-cell spheroids consisting of 1% R/sub 3/ cells were treated with three doses of BCNU (10 μM) every 72 hr resulting in a shift in the 9L to R/sub 3/ ratio to greater than 50% R/sub 3/ cells. The combined protocols to be investigated will involve γ rays administered either 36 hr before or after each BCNU treatment. By initiating these combined protocols on spheroids of different sizes, the effectiveness of each protocol is evaluated with respect to the number of resistant cells present

  17. Radiation treatment of crude drugs

    International Nuclear Information System (INIS)

    Stock, A.; Gebhardt, G.; Helle, N.; Schuettler, C.; Boegl, K.W.

    1992-01-01

    It may be necessary to reduce microbiological contamination of crude drugs (medicinal plants or their parts like roots, leaves, flowers). This can be done by treating the drugs with ionizing radiation. Meethods for detection of such an irradiation were developed. It could be pointed out that measurements of luminescence, viscosity and electron spin resonance were suitable for specific drugs, but not for all drugs. (orig.) [de

  18. Recent advances in delivery of drug-nucleic acid combinations for cancer treatment.

    Science.gov (United States)

    Li, Jing; Wang, Yan; Zhu, Yu; Oupický, David

    2013-12-10

    Cancer treatment that uses a combination of approaches with the ability to affect multiple disease pathways has been proven highly effective in the treatment of many cancers. Combination therapy can include multiple chemotherapeutics or combinations of chemotherapeutics with other treatment modalities like surgery or radiation. However, despite the widespread clinical use of combination therapies, relatively little attention has been given to the potential of modern nanocarrier delivery methods, like liposomes, micelles, and nanoparticles, to enhance the efficacy of combination treatments. This lack of knowledge is particularly notable in the limited success of vectors for the delivery of combinations of nucleic acids with traditional small molecule drugs. The delivery of drug-nucleic acid combinations is particularly challenging due to differences in the physicochemical properties of the two types of agents. This review discusses recent advances in the development of delivery methods using combinations of small molecule drugs and nucleic acid therapeutics to treat cancer. This review primarily focuses on the rationale used for selecting appropriate drug-nucleic acid combinations as well as progress in the development of nanocarriers suitable for simultaneous delivery of drug-nucleic acid combinations. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Human toxoplasmosis-Searching for novel chemotherapeutics.

    Science.gov (United States)

    Antczak, Magdalena; Dzitko, Katarzyna; Długońska, Henryka

    2016-08-01

    The protozoan Toxoplasma gondii, an obligate intracellular parasite, is an etiological agent of human and animal toxoplasmosis. Treatment regimens for T. gondii-infected patients have not essentially changed for years. The most common chemotherapeutics used in the therapy of symptomatic toxoplasmosis are a combination of pyrimethamine and sulfadiazine plus folinic acid or a combination of pyrimethamine with lincosamide or macrolide antibiotics. To protect a fetus from parasite transplacental transmission, therapy of pregnant women is usually based on spiramycin, which is quite safe for the organism, but not efficient in the treatment of infected children. Application of recommended drugs limits replication of T. gondii, however, it may be associated with numerous an severe adverse effects. Moreover, medicines have no impact on the tissue cysts of the parasite located predominantly in a brain and muscles. Thus, there is urgent need to develop new drugs and establish "gold standard" treatment. In this review classical treatment of toxoplasmosis as well as potential compounds active against T. gondii have been discussed. For two last decades studies on the development of new anti-T. gondii medications have been focused on both natural and novel synthetic compounds based on existing chemical scaffolds. They have revealed several promising drug candidates characterized by a high selectivity, the low IC50 (the half maximal inhibitory concentration) and low cytotoxicity towards host cells. These drugs are expected to replace or supplement current anti-T. gondii drug arsenal soon. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. The use of chemotherapeutics for the treatment of keloid scars

    Directory of Open Access Journals (Sweden)

    Christopher David Jones

    2015-05-01

    Full Text Available Keloid scars are pathological scars, which develop as a result of exaggerated dermal tissue proliferation following cutaneous injury and often cause physical, psychological and cosmetic problems. Various theories regarding keloidogenesis exist, however the precise pathophysiological events remain unclear. Many different treatment modalities have been implicated in their management, but currently there is no entirely satisfactory method for treating all keloid lesions. We review a number of different chemotherapeutic agents which have been proposed for the treatment of keloid and hypertrophic scars while giving insight into some of the novel chemotherapeutic drugs which are currently being investigated. Non-randomized trials evaluating the influence of different chemotherapeutic agents, such as 5-fluorouracil (5-FU; mitomycin C; bleomycin and steroid injection, either alone or in combination with other chemotherapeutic agents or alternative treatment modalities, for the treatment of keloids were identified using a predefined PubMed search strategy. Twenty seven papers were identified. Scar improvement ≥50% was found in the majority of cases treated with 5-FU, with similar results found for mitomycin C, bleomycin and steroid injection. Combined intralesional 5-FU and steroid injection produced statistically significant improvements when compared to monotherapy. Monotherapy recurrence rates ranged from 0-47% for 5-FU, 0-15% for bleomycin and 0-50% for steroid injection. However, combined therapy in the form of surgical excision and adjuvant 5-FU or steroid injections demonstrated lower recurrence rates; 19% and 6% respectively. Currently, most of the literature supports the use of combination therapy (usually surgery and adjuvant chemotherapy as the mainstay treatment of keloids, however further investigation is necessary to determine success rates over longer time frames. Furthermore, there is the potential for novel therapies, but further

  1. Targeted drugs in radiation therapy

    International Nuclear Information System (INIS)

    Favaudon, V.; Hennequin, C.; Hennequin, C.

    2004-01-01

    New drugs aiming at the development of targeted therapies have been assayed in combination with ionizing radiation over the past few years. The rationale of this concept comes from the fact that the cytotoxic potential of targeted drugs is limited, thus requiring concomitant association with a cytotoxic agent for the eradication of tumor cells. Conversely a low level of cumulative toxicity is expected from targeted drugs. Most targeted drugs act through inhibition of post-translational modifications of proteins, such as dimerization of growth factor receptors, prenylation reactions, or phosphorylation of tyrosine or serine-threonine residues. Many systems involving the proteasome, neo-angiogenesis promoters, TGF-β, cyclooxygenase or the transcription factor NF-κB, are currently under investigation in hopes they will allow a control of cell proliferation, apoptosis, cell cycle progression, tumor angiogenesis and inflammation. A few drugs have demonstrated an antitumor potential in particular phenotypes. In most instances, however, radiation-drug interactions proved to be strictly additive in terms of cell growth inhibition or induced cell death. Strong potentiation of the response to radiotherapy is expected to require interaction with DNA repair mechanisms. (authors)

  2. Chemotherapeutic agent and tracer composition and use thereof

    International Nuclear Information System (INIS)

    Babb, A. L.

    1985-01-01

    A therapeutic composition suitable for extracorporeal treatment of whole blood comprises a dialyzable chemotherapeutic agent and a dialyzable fluorescable tracer means. The removal rate of the fluorescable tracer compound from treated blood during hemodialysis is a function of the removal rate of unreacted chemotherapeutic agent present. The residual chemotherapeutic agent concentration after hemodialysis is ascertained by measuring the concentration of the fluorescable tracer compound in a dialysate using fluorometric techniques

  3. Efficacy analysis of two drugs consisting platinum combined with first-line chemotherapeutics regimens on 117 elderly patients with advanced non-small cell lung carcinoma

    Directory of Open Access Journals (Sweden)

    Li-li ZHANG

    2013-09-01

    Full Text Available Objective To investigate the therapeutic effects of Gemcitabine(GEM, Vinorelbine(NVB,Paclitaxel(TAX and other first-line chemotherapeutics plus platinum containing drugs on the elderly patients with advanced non-small cell lung cancer(NSCLC who had undergone surgery, and analyze the clinicopathological factors influencing the prognosis. Methods One hundred and seventeen advanced NSCLC patients aged 60 or over were treated with GP(GEM+platinum, or NP(NVB+platinum, or TP(TAX+platinum, or other first-line chemotherapeutics plus platinum(OCP after surgery, and their clinical data were then retrospectively studied to look for the relationship of patients' prognosis to clinicopathological factors(gender, operation methods, pathologicaltypes, differentiation, clinical stages.The survival curve was plotted with Kaplan-Meier method, hypothesis test was performed by log-rank, and the independent prognostic factors were screened with Cox proportional hazards regression model. Results Theone-, three- and five-year survival rates of the 117 patients were 47.23%,17.52% and 8.05%, respectively. The progression free survival(PFS of GP, NP, TP and OCP groups were 6.0, 5.2, 6.1 and5.5 months(P>0.05, respectively. The median progression free survival was 5.7 months. Univariate and multivariate analysis showed that the differentiated degrees and clinical stages of elderly NSCLC patients were the independent prognostic factors. Conclusions Clinicopathological factors(differentiated degree andclinical stages are closely related to one-, three- and five-year survival rates of advanced NSCLC in elderly patients who received treatment of first-line chemotherapeutics plus platinum. However, the efficacy ofGP, NP, TP or OCP shows no significant difference.

  4. Chemotherapeutic treatment efficacy and sensitivity are increased by adjuvant alternating electric fields (TTFields)

    International Nuclear Information System (INIS)

    Kirson, Eilon D; Goldsher, Dorit; Wasserman, Yoram; Palti, Yoram; Schneiderman, Rosa S; Dbalý, Vladimír; Tovaryš, František; Vymazal, Josef; Itzhaki, Aviran; Mordechovich, Daniel; Gurvich, Zoya; Shmueli, Esther

    2009-01-01

    The present study explores the efficacy and toxicity of combining a new, non-toxic, cancer treatment modality, termed Tumor Treating Fields (TTFields), with chemotherapeutic treatment in-vitro, in-vivo and in a pilot clinical trial. Cell proliferation in culture was studied in human breast carcinoma (MDA-MB-231) and human glioma (U-118) cell lines, exposed to TTFields, paclitaxel, doxorubicin, cyclophosphamide and dacarbazine (DTIC) separately and in combinations. In addition, we studied the effects of combining chemotherapy with TTFields in an animal tumor model and in a pilot clinical trial in recurrent and newly diagnosed GBM patients. The efficacy of TTFields-chemotherapy combination in-vitro was found to be additive with a tendency towards synergism for all drugs and cell lines tested (combination index ≤ 1). The sensitivity to chemotherapeutic treatment was increased by 1–3 orders of magnitude by adjuvant TTFields therapy (dose reduction indexes 23 – 1316). Similar findings were seen in an animal tumor model. Finally, 20 GBM patients were treated with TTFields for a median duration of 1 year. No TTFields related systemic toxicity was observed in any of these patients, nor was an increase in Temozolomide toxicity seen in patients receiving combined treatment. In newly diagnosed GBM patients, combining TTFields with Temozolomide treatment led to a progression free survival of 155 weeks and overall survival of 39+ months. These results indicate that combining chemotherapeutic cancer treatment with TTFields may increase chemotherapeutic efficacy and sensitivity without increasing treatment related toxicity

  5. Radiation treatment of drugs, biochemicals and vaccines

    International Nuclear Information System (INIS)

    Nordheim, W.; Braeuniger, S.; Kirsch, B.; Kotowski, H.; Teupel, D.

    1984-12-01

    The concise and tabulated review reports experimental results on the effects of radiation treatment on drugs, vaccines, biochemicals and adjuvants including enzymes as well. Irradiation was mostly performed by γ-radiation using 60 Co and to a lesser extent by 137 Cs, 182 Ta, X-rays and accelerators. Ionizing radiation proved to be a useful tool for sterilization and inactivation in producing drugs, vaccines, and bioactive agents and will contribute to realize procedures difficultly solvable as to engineering and economy, respectively. 124 refs

  6. Drug delivery system and radiation therapy

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    2005-01-01

    This paper describes the review of radiation therapy, neutron capture therapy (NCT) and drug delivery system for the latter. In cancer radiation therapy, there are problems of body movement like breathing, needless irradiation of normal tissues, difficulty to decide the correct irradiation position and tumor morphology. NCT has advantages to overcome these, and since boron has a big cross section for thermal neutron, NPT uses the reaction 10 B(n, α) 7 Li in the target cancer which previously incorporated the boron-containing drug. During the period 1966-1996, 246 patients were treated with this in Japan and the treatment has been continued thereafter. The tasks for NCT are developments of drug delivery system efficient to deliver the drug into the tumor and of convenient neutron source like the accelerator. (S.I.)

  7. FDA's requirements for radiation dosimetry of radiopharmaceutical drug products

    International Nuclear Information System (INIS)

    Abel, N.M.

    1986-01-01

    The primary concern of the Office of Drug Research and Review of the Food and Drug Administration in the field of radiation dosimetry is to ensure that radiopharmaceutical drug products are safe when used as investigational drugs (INDs) and are both safe and effective when a new drug application (NDA) is approved. In order to accomplish this, the sponsor of either an IND or applicant in the case of NDA must provide information that clearly describes the radiation dose that a patient will receive from the administration of the drug. The submitted numerical estimates of the radiation dose should be based on an absorbed fraction method of radiation dose calculation, such as the system set forth by the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine or the system set forth by the International Commission on Radiological Protection (ICRP). This presentation will describe in detail the data that a sponsor of an IND needs to submit to satisfy the regulatory requirements. Examples will be given of common mistakes and omissions by sponsors in their presentation of data

  8. Participation of MT3 melatonin receptors in the synergistic effect of melatonin on cytotoxic and apoptotic actions evoked by chemotherapeutics.

    Science.gov (United States)

    Pariente, Roberto; Bejarano, Ignacio; Espino, Javier; Rodríguez, Ana B; Pariente, José A

    2017-11-01

    Melatonin has antitumor activity via several mechanisms including its antiproliferative and proapoptotic effects in addition to its potent antioxidant actions. Therefore, melatonin may be useful in the treatment of tumors in association with chemotherapy drugs. This study was performed to study the role of melatonin receptors on the cytotoxicity and apoptosis induced by the chemotherapeutic agents cisplatin and 5-fluorouracil in two tumor cell lines, such as human colorectal cancer HT-29 cells and cervical cancer HeLa cells. We found that both melatonin and the two chemotherapeutic agents tested induced a decrease in HT-29 and HeLa cell viability. Furthermore, melatonin significantly increased the cytotoxic effect of chemotherapeutic agents, particularly, in 5-fluorouracil-challenged cells. Stimulation of cells with either of the two chemotherapeutic agents in the presence of melatonin further increased caspase-3 activation. Concomitant treatments with melatonin and chemotherapeutic agents augmented the population of apoptotic cells compared to the treatments with chemotherapeutics alone. Blockade of MT1 and/or MT2 receptors with luzindole or 4-P-PDOT was unable to reverse the enhancing effects of melatonin on both cytotoxicity, caspase-3 activation and the amount of apoptotic cells evoked by the chemotherapeutic agents, whereas when MT3 receptors were blocked with prazosin, the synergistic effect of melatonin with chemotherapy on cytotoxicity and apoptosis was reversed. Our findings provided evidence that in vitro melatonin strongly enhances chemotherapeutic-induced cytotoxicity and apoptosis in two tumor cell lines, namely HT-29 and HeLa cells and, this potentiating effect of melatonin is mediated by MT3 receptor stimulation.

  9. Current Research and Development of Chemotherapeutic Agents for Melanoma

    Directory of Open Access Journals (Sweden)

    Kyaw Minn Hsan

    2010-04-01

    Full Text Available Cutaneous malignant melanoma is the most lethal form of skin cancer and an increasingly common disease worldwide. It remains one of the most treatment-refractory malignancies. The current treatment options for patients with metastatic melanoma are limited and in most cases non-curative. This review focuses on conventional chemotherapeutic drugs for melanoma treatment, by a single or combinational agent approach, but also summarizes some potential novel phytoagents discovered from dietary vegetables or traditional herbal medicines as alternative options or future medicine for melanoma prevention. We explore the mode of actions of these natural phytoagents against metastatic melanoma.

  10. Utilizing temporal variations in chemotherapeutic response to improve breast cancer treatment efficacy

    Directory of Open Access Journals (Sweden)

    Daniel J. McGrail

    2015-09-01

    Full Text Available Though survival rates for women with stage I breast cancer have radically improved, treatment options remain poor for the 40% of women diagnosed with later-stage disease. For these patients, improved chemotherapeutic treatment strategies are critical to eradicate any disseminated tumor cells. Despite many promising new drugs in vitro, most ultimately fail in the clinic. One aspect often lost during testing is in vivo circulation half-lives rarely exceed 24 hours, whereas in vitro studies involve drug exposure for 2-3 days. Here, we show how mimicking these exposure times alters efficacy. Next, using this model we show how drug response is highly time-dependent by extending analysis of cell viability out to two weeks. Variations in response both with feeding and time were dependent on drug mechanism of action. Finally, we show that by implementing this temporal knowledge of drug effects to optimize scheduling of drug administration we are able to regain chemosensitivity in a Carboplatin-resistant cell line.

  11. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    Cheng, Jonathan C.; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.

    2008-01-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age ≥18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function

  12. Mechanistic review of drug-induced steatohepatitis

    International Nuclear Information System (INIS)

    Schumacher, Justin D.; Guo, Grace L.

    2015-01-01

    Drug-induced steatohepatitis is a rare form of liver injury known to be caused by only a handful of compounds. These compounds stimulate the development of steatohepatitis through their toxicity to hepatocyte mitochondria; inhibition of beta-oxidation, mitochondrial respiration, and/or oxidative phosphorylation. Other mechanisms discussed include the disruption of phospholipid metabolism in lysosomes, prevention of lipid egress from hepatocytes, targeting mitochondrial DNA and topoisomerase, decreasing intestinal barrier function, activation of the adenosine pathway, increasing fatty acid synthesis, and sequestration of coenzyme A. It has been found that the majority of compounds that induce steatohepatitis have cationic amphiphilic structures; a lipophilic ring structure with a side chain containing a cationic secondary or tertiary amine. Within the last decade, the ability of many chemotherapeutics to cause steatohepatitis has become more evident coining the term chemotherapy-associated steatohepatitis (CASH). The mechanisms behind drug-induced steatohepatitis are discussed with a focus on cationic amphiphilic drugs and chemotherapeutic agents. - Highlights: • Reviewed the mechanisms underlying drug-induced steatohepatitis for many compounds • Mitochondrial dysfunction is critical in the development of drug-induced steatohepatitis. • Majority of drugs that induce steatohepatitis are cationic amphiphilic drugs. • Chemotherapeutics that induce CASH are cationic amphiphilic drugs. • Majority of drugs that induce steatohepatitis are carnitine palmitoyltransferase-I inhibitors.

  13. Mechanistic review of drug-induced steatohepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Justin D., E-mail: Justin.d.schumacher@rutgers.edu; Guo, Grace L.

    2015-11-15

    Drug-induced steatohepatitis is a rare form of liver injury known to be caused by only a handful of compounds. These compounds stimulate the development of steatohepatitis through their toxicity to hepatocyte mitochondria; inhibition of beta-oxidation, mitochondrial respiration, and/or oxidative phosphorylation. Other mechanisms discussed include the disruption of phospholipid metabolism in lysosomes, prevention of lipid egress from hepatocytes, targeting mitochondrial DNA and topoisomerase, decreasing intestinal barrier function, activation of the adenosine pathway, increasing fatty acid synthesis, and sequestration of coenzyme A. It has been found that the majority of compounds that induce steatohepatitis have cationic amphiphilic structures; a lipophilic ring structure with a side chain containing a cationic secondary or tertiary amine. Within the last decade, the ability of many chemotherapeutics to cause steatohepatitis has become more evident coining the term chemotherapy-associated steatohepatitis (CASH). The mechanisms behind drug-induced steatohepatitis are discussed with a focus on cationic amphiphilic drugs and chemotherapeutic agents. - Highlights: • Reviewed the mechanisms underlying drug-induced steatohepatitis for many compounds • Mitochondrial dysfunction is critical in the development of drug-induced steatohepatitis. • Majority of drugs that induce steatohepatitis are cationic amphiphilic drugs. • Chemotherapeutics that induce CASH are cationic amphiphilic drugs. • Majority of drugs that induce steatohepatitis are carnitine palmitoyltransferase-I inhibitors.

  14. Effect of radiation decontamination on drug-resistant bacteria

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    2006-01-01

    More than 80% of food poisoning bacteria such as Salmonella are reported as antibiotic-resistant to at least one type antibiotic, and more than 50% as resistant to two or more. For the decontamination of food poisoning bacteria in foods, radiation resistibility on drug-resistant bacteria were investigated compared with drug-sensitive bacteria. Possibility on induction of drug-resistant mutation by radiation treatment was also investigated. For these studies, type strains of Escherichia coli S2, Salmonella enteritidis YK-2 and Staphylococcus aureus H12 were used to induce drug-resistant strains with penicillin G. From the study of radiation sensitivity on the drug-resistant strain induced from E. coli S2, D 10 value was obtained to be 0.20 kGy compared with 0.25 kGy at parent strain. On S. enteritidis YK-2, D 10 value was obtained to be 0.14 kGy at drug-resistant strain compared with 0.16 kGy at parent strain. D 10 value was also obtained to be 0.15 kGy at drug-resistant strain compared with 0.21 kGy at parent strain of St. aureus H12. Many isolates of E. coli 157:H7 or other type of E. coli from meats such as beef were resistant to penicillin G, and looked to be no relationship on radiation resistivities between drug-resistant strains and sensitive strains. On the study of radiation sensitivity on E. coli S2 at plate agars containing antibiotics, higher survival fractions were obtained at higher doses compared with normal plate agar. The reason of higher survival fractions at higher doses on plate agar containing antibiotics should be recovery of high rate of injured cells by the relay of cell division, and drug-resistant strains by mutation are hardly induced by irradiation. (author)

  15. Enhanced killing of mammalian cells by radiation combined with m-AMSA

    International Nuclear Information System (INIS)

    Roberts, P.B.; Millar, B.C.

    1980-01-01

    m-AMSA is an intercalating agent at present on Phase II trial as a chemotherapeutic drug. A 30min exposure of Chinese hamster (Line V79-753B) cells to submicromolar concentrations of m-AMSA killed 50% of the cells. The survivors had an enhanced sensitivity to radiation-induced cell killing. Depending upon the conditions, m-AMSA enhanced the radiation effect by either a decrease in the survival-curve shoulder or by an increase in slope. m-AMSA may act partly by suppressing the accumulation of sublethal damage but, if so, recovery from damage as measured in split-dose experiments with cells pretreated with the drug is not affected. m-AMSA increased radiation lethality throughout the cell cycle, but a contribution to its radiation effect from selective toxicity to cells in a radioresistant phase of the cell cycle cannot be excluded. Radiation and the drug interacted to give increased cell killing, even when the exposures to each agent were separated in time. It is concluded that m-ASMA may behave like actinomycin D and adriamycin, and enhance clinical radiation responses. In vivo testing to determine the effect of m-AMSA on the therapeutic index is recommended. (author)

  16. Enhanced killing of mammalian cells by radiation combined with m-AMSA

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, P B; Millar, B C [Institute of Cancer Research, Sutton (UK). Surrey Branch

    1980-11-01

    m-AMSA is an intercalating agent at present on Phase II trial as a chemotherapeutic drug. A 30 min exposure of Chinese hamster (Line V79-753B) cells to submicromolar concentrations of m-AMSA killed 50% of the cells. The survivors had an enhanced sensitivity to radiation-induced cell killing. Depending upon the conditions, m-AMSA enhanced the radiation effect by either a decrease in the survival-curve shoulder or by an increase in slope. m-AMSA may act partly by suppressing the accumulation of sublethal damage but, if so, recovery from damage as measured in split-dose experiments with cells pretreated with the drug is not affected. m-AMSA increased radiation lethality throughout the cell cycle, but a contribution to its radiation effect from selective toxicity to cells in a radioresistant phase of the cell cycle cannot be excluded. Radiation and the drug interacted to give increased cell killing, even when the exposures to each agent were separated in time. It is concluded that m-ASMA may behave like actinomycin D and adriamycin, and enhance clinical radiation responses. In vivo testing to determine the effect of m-AMSA on the therapeutic index is recommended.

  17. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents.

    Directory of Open Access Journals (Sweden)

    Jiaolin Bao

    Full Text Available Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU, camptothecin (CPT, and paclitaxel (TAX. The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer.

  18. Drugs and lactation

    International Nuclear Information System (INIS)

    Kelssering, G.; Aguiar, L.F.; Ribeiro, R.M.; Souza, A.Z. de

    1988-01-01

    Different kinds of drugs who can be transferred through the mother's milk to the lactant and its effects are showed in this work. A list of them as below: cardiotonics, diuretics, anti-hypertensives, beta-blockings, anti-arrythmics, drugs with gastrintestinal tract action, hormones, antibiotics and chemotherapeutics, citostatic drugs, central nervous system action drugs and anticoagulants drugs. (L.M.J.) [pt

  19. The cell's nucleolus: an emerging target for chemotherapeutic intervention.

    Science.gov (United States)

    Pickard, Amanda J; Bierbach, Ulrich

    2013-09-01

    The transient nucleolus plays a central role in the up-regulated synthesis of ribosomal RNA (rRNA) to sustain ribosome biogenesis, a hallmark of aberrant cell growth. This function, in conjunction with its unique pathohistological features in malignant cells and its ability to mediate apoptosis, renders this sub-nuclear structure a potential target for chemotherapeutic agents. In this Minireview, structurally and functionally diverse small molecules are discussed that have been reported to either interact with the nucleolus directly or perturb its function indirectly by acting on its dynamic components. These molecules include all major classes of nucleic-acid-targeted agents, antimetabolites, kinase inhibitors, anti-inflammatory drugs, natural product antibiotics, oligopeptides, as well as nanoparticles. Together, these molecules are invaluable probes of structure and function of the nucleolus. They also provide a unique opportunity to develop novel strategies for more selective and therefore better-tolerated chemotherapeutic intervention. In this regard, inhibition of RNA polymerase-I-mediated rRNA synthesis appears to be a promising mechanism for killing cancer cells. The recent development of molecules targeted at G-quadruplex-forming rRNA gene sequences, which are currently undergoing clinical trials, seems to attest to the success of this approach. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Drug release control in delivery system for biodegradable polymer drugs by γ-radiation

    International Nuclear Information System (INIS)

    Yoshioka, Sumie; Azo, Yukio; Kojima, Shigeo

    1997-01-01

    Characterizations of the drug release from microsphere and hydrogel preparation made from biodegradable polymers were investigated aiming at development of a drug delivery system which allows an optimum drug delivery and the identification of the factors which control its delivery. Poly-lactic acid microspheres containing 10% of progesterone were produced from poly DL-lactic acid and exposed to γ-ray at 5-1000 kGy. And its glass transition temperature (Tg) was determined by differential scanning calorimetry. The temperature was gradually lowered with an increase in the dose of radiation. Tg of the microsphere exposed at 1000 kGy was lower by 10degC compared with the untreated one, showing that Tg control is possible without changing the size distribution of microsphere. Then, the amount of progesterone released from microsphere was determined. The release rate of the drug linearly increased with a square root of radiation time. These results indicate that the control of drug release rate is possible through controling the microsphere's Tg by γ-ray radiation. (M.N.)

  1. Gastrointestinal drug absorption in rats exposed to 60Co γ-radiation

    International Nuclear Information System (INIS)

    Brady, M.E.

    1976-01-01

    Following exposure of the gastrointestinal (GI) tract to ionizing radiation, its structure and function are altered for several days. Such alterations may affect the bioavailability of orally administered drugs. The potential mechanisms by which radiation may affect drug absorption were explored by studying the absorption of four test drugs, sulfanilamide, bretylium, sulfisoxazole acetyl, and riboflavin, in rats that were exposed to 850 R cobalt-60 gamma-radiation or sham irradiated. In one series of experiments, the drugs were administered orally and the amount of drug excreted in urine was used as a measure of the extent of their absorption. Cumulative urinary excretion of the drugs was shown to be a valid measure of absorption since it was not affected by radiation after intravenous administration of the drugs. At one day post-irradiation, the extent of absorption of sulfanilamide and bretylium was not affected by radiation but the absorption of sulfisoxazole acetyl and riboflavin was increased. At five days post-irradiation, there was no detectable difference between irradiated and control animals in the extent of absorption of the drugs. The fraction of sulfanilamide excreted in the urine as 4 N-conjugate was increased at one day post-irradiation. The increased excretion of metabolite appeared to result from metabolism of the drug by gut flora prior to absorption. This study shows that radiation-induced alterations in the absorption of orally administered drugs are due primarily to slowed gastric emptying. In general, slowed gastric emptying causes the rate of drug absorption to decline. The extent of absorption of drugs that are normally well absorbed is not affected by radiation while the extent of absorption of drugs that normally are absorbed poorly may be increased after irradiation of the GI tract

  2. Susceptibility of ATM-deficient pancreatic cancer cells to radiation.

    Science.gov (United States)

    Ayars, Michael; Eshleman, James; Goggins, Michael

    2017-05-19

    Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.

  3. Cellular mechanisms in drug - radiation interaction

    International Nuclear Information System (INIS)

    Trott, K.R.

    1979-01-01

    Some cytotoxic drugs, especially those belonging to the group of antibiotics and antimetabolites, sensitize the cells having survived drug treatment to the subsequent irradiation by either increasing the slope of the radiation dose response curves or by decreasing extrapolation number. Bleomycin was found to interact with radiation in L-cells and FM3A cells, but not in HeLa-cells. The data with EMT-6 cells suggest that the interaction depends on drug dose: no interaction occurred after the exposure to bleomycin which killed only 20 - 40% of the cells; yet the exposure to bleomycin which killed 90% of the cells in addition sensitized the surviving cells by the DMF of 1.3. The sensitization found 24 hr after the exposure of HeLa cells to methotrexate was due to cell synchronization. Other cytostatic drugs were found to synchronize proliferating cells even better. Therefore, the fluctuation of radiosensitivity has been commonly observed after the termination of exposure to these drugs. Preirradiation may lead to the change in drug dose response curves. The recruitment of resting cells into cycle occurs hours or days later, in some irradiated normal and malignant tissues. Since many cytostatic drugs are far more active in proliferating cells than in resting cells, the recruitment after irradiation may lead to the sudden increase in drug sensitivity, days after the irradiation. No single, simple theory seems to exist to classify and predict the cellular response to combined modality treatment. (Yamashita, S.)

  4. Brain tumor chemo-radiotherapy: a study of direct intratumoral perfusion with antineoplastic drugs

    International Nuclear Information System (INIS)

    Rousseau, J.

    2007-10-01

    High grade gliomas are aggressive tumors for which current treatments remain palliative. Radiotherapy efficacy is restricted by the surrounding brain tissue tolerance. One method based on the concomitant use of chemotherapeutic drugs and external photon irradiation has been proposed to improve the treatment outcome. The systemic administration of drugs is not effective in achieving the therapeutic level of drug needed for brain tumor treatment. This is due to the blood brain barrier (BBB) that prevents molecules passing through the vascular endothelium. Recent methods have been developed to circumvent the BBB. Among them, convection-enhanced delivery (CED) relies on the continuous infusion of a fluid containing a therapeutic agent, under a pressure gradient. It permits a homogeneous and controlled drug distribution. The aims of this study were to characterise the CED method, and then to utilize it for glioma treatment in preclinical studies. Several drugs were tested: cisplatin, carbo-platin, oxaliplatin, and iodo-deoxyuridine. Two radiation modalities were evaluated: synchrotron stereotactic radiotherapy (monochromatic beam < 100 keV) and high energy irradiation (6 MV) obtained with a conventional medical linear accelerator. The results obtained reveal that the effectiveness of the combined treatment (platinated drug plus photon irradiation) is highly related to that of the chemotherapy. The data, obtained with the platinated chemotherapy, also show that high-energy X-ray irradiation (6 MV) is as effective as synchrotron X-ray irradiation. The results broaden the applicability of this chemotherapeutic approach to clinical trials. (author)

  5. Targeted drug delivery and penetration into solid tumors.

    Science.gov (United States)

    Corti, Angelo; Pastorino, Fabio; Curnis, Flavio; Arap, Wadih; Ponzoni, Mirco; Pasqualini, Renata

    2012-09-01

    Delivery and penetration of chemotherapeutic drugs into tumors are limited by a number of factors related to abnormal vasculature and altered stroma composition in neoplastic tissues. Coupling of chemotherapeutic drugs with tumor vasculature-homing peptides or administration of drugs in combination with biological agents that affect the integrity of the endothelial lining of tumor vasculature is an appealing strategy to improve drug delivery to tumor cells. Promising approaches to achieve this goal are based on the use of Asn-Gly-Arg (NGR)-containing peptides as ligands for drug delivery and of NGR-TNF, a peptide-tumor necrosis factor-α fusion protein that selectively alters drug penetration barriers and that is currently tested in a randomized Phase III trial in patients with malignant pleural mesothelioma. © 2011 Wiley Periodicals, Inc.

  6. Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Shan Wan

    Full Text Available Low doses of anticancer drugs have been shown to enhance antitumor immune response and increase the efficacy of immunotherapy. The molecular basis for such effects remains elusive, although selective depletion of T regulatory cells has been demonstrated. In the current studies, we demonstrate that topotecan (TPT, a topoisomerase I-targeting drug with a well-defined mechanism of action, stimulates major histocompatibility complex class I (MHC I expression in breast cancer cells through elevated expression/secretion of interferon-β (IFN-β and activation of type I IFN signaling. First, we show that TPT treatment elevates the expression of both total and cell-surface MHC I in breast cancer cells. Second, conditioned media from TPT-treated breast cancer ZR-75-1 cells induce elevated expression of cell-surface MHC I in drug-naïve recipient cells, suggesting the involvement of cytokines and/or other secreted molecules. Consistently, TPT-treated cells exhibit elevated expression of multiple cytokines such as IFN-β, TNF-α, IL-6 and IL-8. Third, either knocking down the type I interferon receptor subunit 1 (IFNAR1 or addition of neutralizing antibody against IFN-β results in reduced MHC I expression in TPT-treated cells. Together, these results suggest that TPT induces increased IFN-β autocrine/paracrine signaling through type I IFN receptor, resulting in the elevated MHC I expression in tumor cells. Studies have also demonstrated that other chemotherapeutic agents (e.g. etoposide, cisplatin, paclitaxel and vinblastine similarly induce increased IFN-β secretion and elevated MHC I expression. In addition, conditioned media from γ-irradiated donor cells are shown to induce IFN-β-dependent MHC I expression in unirradiated recipient cells. In the aggregate, our results suggest that many cancer therapeutics induce elevated tumor antigen presentation through MHC I, which could represent a common mechanism for enhanced antitumor immune response through

  7. Cellular robustness conferred by genetic crosstalk underlies resistance against chemotherapeutic drug doxorubicin in fission yeast.

    Directory of Open Access Journals (Sweden)

    Zoey Tay

    Full Text Available Doxorubicin is an anthracycline antibiotic that is among one of the most commonly used chemotherapeutic agents in the clinical setting. The usage of doxorubicin is faced with many problems including severe side effects and chemoresistance. To overcome these challenges, it is important to gain an understanding of the underlying molecular mechanisms with regards to the mode of action of doxorubicin. To facilitate this aim, we identified the genes that are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe. We further demonstrated interplay between factors controlling various aspects of chromosome metabolism, mitochondrial respiration and membrane transport. In the nucleus we observed that the subunits of the Ino80, RSC, and SAGA complexes function in the similar epistatic group that shares significant overlap with the homologous recombination genes. However, these factors generally act in synergistic manner with the chromosome segregation regulator DASH complex proteins, possibly forming two major arms for regulating doxorubicin resistance in the nucleus. Simultaneous disruption of genes function in membrane efflux transport or the mitochondrial respiratory chain integrity in the mutants defective in either Ino80 or HR function resulted in cumulative upregulation of drug-specific growth defects, suggesting a rewiring of pathways that synergize only when the cells is exposed to the cytotoxic stress. Taken together, our work not only identified factors that are required for survival of the cells in the presence of doxorubicin but has further demonstrated that an extensive molecular crosstalk exists between these factors to robustly confer doxorubicin resistance.

  8. Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria.

    Science.gov (United States)

    Lehouritis, Panos; Stanton, Michael; McCarthy, Florence O; Jeavons, Matthieu; Tangney, Mark

    2016-01-28

    Some chemotherapeutic drugs (prodrugs) require activation by an enzyme for efficacy. We and others have demonstrated the ability of probiotic bacteria to grow specifically within solid tumours following systemic administration, and we hypothesised that the natural enzymatic activity of these tumour-localised bacteria may be suitable for activation of certain such chemotherapeutic drugs. Several wild-type probiotic bacteria; Escherichia coli Nissle, Bifidobacterium breve, Lactococcus lactis and Lactobacillus species, were screened against a panel of popular prodrugs. All strains were capable of activating at least one prodrug. E. coli Nissle 1917 was selected for further studies because of its ability to activate numerous prodrugs and its resistance to prodrug toxicity. HPLC data confirmed biochemical transformation of prodrugs to their toxic counterparts. Further analysis demonstrated that different enzymes can complement prodrug activation, while simultaneous activation of multiple prodrugs (CB1954, 5-FC, AQ4N and Fludarabine phosphate) by E. coli was confirmed, resulting in significant efficacy improvement. Experiments in mice harbouring murine tumours validated in vitro findings, with significant reduction in tumour growth and increase in survival of mice treated with probiotic bacteria and a combination of prodrugs. These findings demonstrate the ability of probiotic bacteria, without the requirement for genetic modification, to enable high-level activation of multiple prodrugs specifically at the site of action. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Characterization of the microDNA through the response to chemotherapeutics in lymphoblastoid cell lines.

    Directory of Open Access Journals (Sweden)

    Pamela Mehanna

    Full Text Available Recently, a new class of extrachromosomal circular DNA, called microDNA, was identified. They are on average 100 to 400 bp long and are derived from unique non-repetitive genomic regions with high gene density. MicroDNAs are thought to arise from DNA breaks associated with RNA metabolism or replication slippage. Given the paucity of information on this entirely novel phenomenon, we aimed to get an additional insight into microDNA features by performing the microDNA analysis in 20 independent human lymphoblastoid cell lines (LCLs prior and after treatment with chemotherapeutic drugs. The results showed non-random genesis of microDNA clusters from the active regions of the genome. The size periodicity of 190 bp was observed, which matches DNA fragmentation typical for apoptotic cells. The chemotherapeutic drug-induced apoptosis of LCLs increased both number and size of clusters further suggesting that part of microDNAs could result from the programmed cell death. Interestingly, proportion of identified microDNA sequences has common loci of origin when compared between cell line experiments. While compatible with the original observation that microDNAs originate from a normal physiological process, obtained results imply complementary source of its production. Furthermore, non-random genesis of microDNAs depicted by redundancy between samples makes these entities possible candidates for new biomarker generation.

  10. Perfluorocarbon (PFC) emulsions as potential drug carriers

    International Nuclear Information System (INIS)

    Yuhas, J.M.; Goodman, R.L.; Moore, R.E.

    1984-01-01

    PFC emulsions have excellent oxygen transporting properties and have been reported to enhance the response of murine tumors to both radiation and BCNU. While the presently available emulsions are far too toxic to the immune system to be used in cancer therapy, they can be used to investigate the overall potential of this approach. As an example, the authors have found that these emulsions can alter drug availability. The lipophilicity of both the PFC and the drug in question determine the partitioning of the drug between the organic and aqueous phases of an emulsion. In vitro, this can reduce drug effectiveness by reducing the amount of drug available to the cells. In vivo, however, this partitioning may produce sustained drug exposure, which could be of benefit in cancer therapy and other applications. In brief, as the drug is absorbed from the circulating aqueous phase, additional drug would leach from the PFC, thereby providing a sustained drug exposure similar to that obtained with liposomes. While a great deal more work will be required to evaluate the practicality of this approach, the existence of this phenomenon must be taken into account in both the design and interpretation of efficacy studies in which anesthetics, chemotherapeutics, etc are employed

  11. In vitro sensitivity of Trichomonas vaginalis and Candida albicans to chemotherapeutic agents.

    Science.gov (United States)

    Lövgren, T; Salmela, I

    1978-06-01

    Strains of fresh clinical isolates of Trichomonas vaginalis and Candida albicans have been tested in vitro for their sensitivity to eight drugs used in the therapy of monilial and trichomonal vaginitis. Three of the chemotherapeutic agents, chlorchinaldol, clotrimazole and broxyquinoline were effective against both organisms. Tinidazole and metronidazole were active against T. vaginalis. The strains of C. albicans were also sensitive to trichomycin, natamycin and nystatin. Tinidazole was the most effective trichomonacide, clotrimazole and chlorchinaldol were most effective against C. albicans, while chlorchinaldol had the best in vitro effect against both organisms. The ranges of the MICs are compared to values previously reported.

  12. Radiation as a microbiological contamination control of drugs, cosmetics and medical devices

    International Nuclear Information System (INIS)

    Ishizeki, Chuichi

    1985-01-01

    This paper deals with current status of radiation sterilization or disinfection of drugs, cosmetics, their materials, and medical devices, and with quality control as a tool for securing microbiological safety, especially current status of sterilization tests. Ointment containing tetracyclin, steroid hormones, gelatin, and enzymes are presented as drug samples to be irradiated, and explanations for radiation sterilization of these drugs are provided. An outline of the application of radiation in cosmetics and medical devices is given. Issues are also provided from the viewpoint of safey and effectiveness of radiation sterilization. (Namekawa, K.)

  13. Transarterial chemoembolization with drug-eluting beads in hepatocellular carcinoma

    Science.gov (United States)

    Nam, Hee Chul; Jang, Bohyun; Song, Myeong Jun

    2016-01-01

    Transarterial chemoembolization (TACE) is a widely used standard treatment for patients with hepatocellular carcinoma (HCC) who are not suitable candidates for curative treatments. The rationale for TACE is that intra-arterial chemotherapy using lipiodol and chemotherapeutic agents, followed by selective vascular embolization, results in a strong cytotoxic effect as well as ischemia (conventional TACE). Recently, drug-eluting beads (DC Beads®) have been developed for transcatheter treatment of HCC to deliver higher doses of the chemotherapeutic agent and to prolong contact time with the tumor. DC Beads® can actively sequester doxorubicin hydrochloride from solution and release it in a controlled sustained fashion. Treatment with DC Beads® substantially reduced the amount of chemotherapeutic agent that reached the systemic circulation compared with conventional, lipiodol-based regimens, significantly reducing drug-related adverse events. In this article, we describe the treatment response, survival, and safety of TACE used with drug-eluting beads for the treatment of HCC and discuss future therapeutic possibilities. PMID:27833376

  14. Cancer therapy with drug loaded magnetic nanoparticles-magnetic drug targeting

    International Nuclear Information System (INIS)

    Alexiou, Christoph; Tietze, Rainer; Schreiber, Eveline; Jurgons, Roland; Richter, Heike; Trahms, Lutz; Rahn, Helene; Odenbach, Stefan; Lyer, Stefan

    2011-01-01

    The aim of magnetic drug targeting (MDT) in cancer therapy is to concentrate chemotherapeutics to a tumor region while simultaneously the overall dose is reduced. This can be achieved with coated superparamagnetic nanoparticles bound to a chemotherapeutic agent. These particles are applied intra arterially close to the tumor region and focused to the tumor by a strong external magnetic field. The interaction of the particles with the field gradient leads to an accumulation in the region of interest (i.e. tumor). The particle enrichment and thereby the drug-load in the tumor during MDT has been proven by several analytical and imaging methods. Moreover, in pilot studies we investigated in an experimental in vivo tumor model the effectiveness of this approach. Complete tumor regressions without any negative side effects could be observed. - Research Highlights: →Iron oxide nanoparticles can be enriched in tumors by external magnetic fields. → Histology evidences the intravasation of particles enter the intracellular space. → Non-invasive imaging techniques can display the spatial arrangement of particles. → HPLC-analysis show outstanding drug enrichment in tumors after MDT.

  15. Cancer therapy with drug loaded magnetic nanoparticles-magnetic drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    Alexiou, Christoph, E-mail: c.alexiou@web.d [Department of Oto-rhino-laryngology, Head and Neck Surgery, University Hospital Erlangen, Section for Experimental Oncology and Nanomedicine at the Else Kroener-Fresenius-Stiftung-Professorship (Germany); Tietze, Rainer; Schreiber, Eveline [Department of Oto-rhino-laryngology, Head and Neck Surgery, University Hospital Erlangen, Section for Experimental Oncology and Nanomedicine at the Else Kroener-Fresenius-Stiftung-Professorship (Germany); Jurgons, Roland [Franz Penzoldt Center, University Hospital Erlangen (Germany); Richter, Heike; Trahms, Lutz [PTB Berlin (Germany); Rahn, Helene; Odenbach, Stefan [TU Dresden, Chair of Magnetofluiddynamics, 01062 Dresden (Germany); Lyer, Stefan [Department of Oto-rhino-laryngology, Head and Neck Surgery, University Hospital Erlangen, Section for Experimental Oncology and Nanomedicine at the Else Kroener-Fresenius-Stiftung-Professorship (Germany)

    2011-05-15

    The aim of magnetic drug targeting (MDT) in cancer therapy is to concentrate chemotherapeutics to a tumor region while simultaneously the overall dose is reduced. This can be achieved with coated superparamagnetic nanoparticles bound to a chemotherapeutic agent. These particles are applied intra arterially close to the tumor region and focused to the tumor by a strong external magnetic field. The interaction of the particles with the field gradient leads to an accumulation in the region of interest (i.e. tumor). The particle enrichment and thereby the drug-load in the tumor during MDT has been proven by several analytical and imaging methods. Moreover, in pilot studies we investigated in an experimental in vivo tumor model the effectiveness of this approach. Complete tumor regressions without any negative side effects could be observed. - Research Highlights: Iron oxide nanoparticles can be enriched in tumors by external magnetic fields. Histology evidences the intravasation of particles enter the intracellular space. Non-invasive imaging techniques can display the spatial arrangement of particles. HPLC-analysis show outstanding drug enrichment in tumors after MDT.

  16. Radiation induction of drug resistance in RIF-1: Correlation of tumor and cell culture results

    International Nuclear Information System (INIS)

    Moulder, J.E.; Hopwood, L.E.; Volk, D.M.; Davies, B.M.

    1991-01-01

    The RIF-1 tumor line contains cells that are resistant to various anti-neoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), adriamycin (ADR), and etoposide (VP16). The frequency of these drug-resistant cells is increased after irradiation. The frequency of drug-resistant cells and the magnitude of radiation-induced drug resistance are different in cell culture than in tumors. The dose-response and expression time relationships for radiation induction of drug resistance observed in RIF-1 tumors are unusual.We hypothesize that at high radiation doses in vivo, we are selecting for cells that are both drug resistant and radiation resistant due to microenvironmental factors, whereas at low radiation doses in vivo and all radiation doses in vitro, we are observing true mutants. These studies indicate that there can be significant differences in drug-resistance frequencies between tumors and their cell lines of origin, and that radiation induction of drug resistance depends significantly on whether the induction is done in tumors or in cell culture. These results imply that theories about the induction of drug resistance that are based on cell culture studies may be inapplicable to the induction of drug resistance in tumors

  17. Effect of Anti-Parasite Chemotherapeutic Agents on Immune Reactions.

    Science.gov (United States)

    1980-08-01

    observations). Similar effects of a number of other alkylating agents have been noticed (9, and personal observa- tions). Similarly, corticosteroids inhibit...Wellham, L. L., and Sigel, M. M. Ef- fect of anti-cancer chemotherapeutic agents on immune reactions of mice. I. Comparison of two nitrosoureas . J...7 D-Ri138 852 EFFECT OF ANTI-PARASITE CHEMOTHERAPEUTIC AGENTS ON i/i IMMUNE REACTIONS(U) SOUTH CAROLINA UNIV COLUMBIA DEPT OF MICROBIOLOGY AND

  18. Near-infrared fluorescence imaging platform for quantifying in vivo nanoparticle diffusion from drug loaded implants.

    Science.gov (United States)

    Markovic, Stacey; Belz, Jodi; Kumar, Rajiv; Cormack, Robert A; Sridhar, Srinivas; Niedre, Mark

    2016-01-01

    Drug loaded implants are a new, versatile technology platform to deliver a localized payload of drugs for various disease models. One example is the implantable nanoplatform for chemo-radiation therapy where inert brachytherapy spacers are replaced by spacers doped with nanoparticles (NPs) loaded with chemotherapeutics and placed directly at the disease site for long-term localized drug delivery. However, it is difficult to directly validate and optimize the diffusion of these doped NPs in in vivo systems. To better study this drug release and diffusion, we developed a custom macroscopic fluorescence imaging system to visualize and quantify fluorescent NP diffusion from spacers in vivo. To validate the platform, we studied the release of free fluorophores, and 30 nm and 200 nm NPs conjugated with the same fluorophores as a model drug, in agar gel phantoms in vitro and in mice in vivo. Our data verified that the diffusion volume was NP size-dependent in all cases. Our near-infrared imaging system provides a method by which NP diffusion from implantable nanoplatform for chemo-radiation therapy spacers can be systematically optimized (eg, particle size or charge) thereby improving treatment efficacy of the platform.

  19. Cytotoxic Autophagy in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Khushboo Sharma

    2014-06-01

    Full Text Available Autophagy is a process of cellular self-digestion, whereby the cell degrades subcellular materials in order to generate energy and metabolic precursors in order to prolong survival, classically under conditions of nutrient deprivation. Autophagy can also involve the degradation of damaged or aged organelles, and misfolded or damaged proteins to eliminate these components that might otherwise be deleterious to cellular survival. Consequently, autophagy has generally been considered a prosurvival response. Many, if not most chemotherapeutic drugs and radiation also promote autophagy, which is generally considered a cytoprotective response, in that its inhibition frequently promotes apoptotic cells death. Furthermore, it has been shown that conventional chemotherapeutic drugs and radiation alone rarely induce a form of autophagy that leads to cell death. However, there are multiple examples in the literature where newer chemotherapeutic agents, drug combinations or drugs in combination with radiation promote autophagic cell death. This review will describe autophagic cell death induced in breast tumor cells, lung cancer cells as well as glioblastoma, demonstrating that it cannot be concluded that stress induced autophagy is, of necessity, cytoprotective in function.

  20. Technical advances in radiation therapy

    International Nuclear Information System (INIS)

    Sause, W.T.

    1986-01-01

    Substantial advances have been made in radiation therapy. Many of these advances can be applied in most radiation therapy departments without expensive improvements in equipment. Changes in radiation fractionation, chemotherapeutic sensitization, intraoperative radiation, and interstitial implants can be performed with experience and improved physician training in most medium-sized departments. Advances that require investments in expensive equipment such as particle radiation and hyperthermia will need to be evaluated at designated treatment centers. 106 references

  1. Radiation Chemistry Studies on Chemotherapeutic Agents

    DEFF Research Database (Denmark)

    Gohn, M.; Getoff, N.; Bjergbakke, Erling

    1977-01-01

    Adrenalin has been studied as a model radiation protective agent by means of pulse radiolysis in aqueous solutions. The rate constants for the reactions of adrenalin with e–aq and OH were determined : k(e–aq+ adr—NH+2)= 7.5 × 108 dm3 mol–1 s–1, k(e–aq+ adr—NH)= 2.5 × 108 dm3 mol–1 s–1, and k......(OH + adr)= 2.2 × 1010 dm3 mol–1 s–1(pH = 9.2). e–aq attacks the amino group by splitting off methylamine, whereas OH and O–aq lead to the formation of the corresponding adducts of the cyclohexadienyl type. OH radicals can also abstract an electron from an O– group at pH > 8....

  2. The Herb Medicine Formula “Chong Lou Fu Fang” Increases the Cytotoxicity of Chemotherapeutic Agents and Down-Regulates the Expression of Chemotherapeutic Agent Resistance-Related Genes in Human Gastric Cancer Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Yongping Liu

    2011-01-01

    Full Text Available The herb medicine formula “Chong Lou Fu Fang” (CLFF has efficacy in inhibiting the proliferation of human gastric cancer in vitro and in vivo. To explore the potentially useful combination of CLFF with chemotherapeutic agents commonly used in gastric cancer therapy, we assess the interaction between CLFF and these chemotherapeutic agents in both SGC-7901 cell lines and BGC-823 cell lines using a median effect analysis and apoptosis analysis, and we also investigate the influence of CLFF on chemotherapeutic agent-associated gene expression. The synergistic analysis indicated that CLFF had a synergistic effect on the cytotoxicity of 5-fluorouracil (5-FU in a relative broad dose inhibition range (20–95% fraction affected in SGC-7901cell lines and 5–65% fraction affected in BGC-823 cell lines, while the synergistic interaction between CLFF and oxaliplatin or docetaxel only existed in a low dose inhibition range (≤50% fraction affected in both cell lines. Combination of CLFF and chemotherapeutic agents could also induce apoptosis in a synergistic manner. After 24 h, CLFF alone or CLFF combination with chemotherapeutic agents could significantly suppress the levels of expression of chemotherapeutic agent resistance related genes in gastric cancer cells. Our findings indicate that there are useful synergistic interactions between CLFF and chemotherapeutic agents in gastric cancer cells, and the possible mechanisms might be partially due to the down-regulation of chemotherapeutic agent resistance related genes and the synergistic apoptotic effect.

  3. Radiation sterilization of traditional medicine drugs in Vietnam

    International Nuclear Information System (INIS)

    Hang, N.D.; Canh, T.T.; Thuy, T.T.

    1995-01-01

    With the application of Gamma Co-60 radiation sterilization in pharmaceutical industry, attention should be paid to the possibilities of sterilizing traditional medicine drugs produced in Vietnam. In this paper the opinion which traditional medicine drugs can be satisfactorily sterilized by irradiation is based on the changes of physical and chemical properties of the products and microbiological examinations. The sterilizing radiation dose were calculated and the results are the following (in Mrad) Rheumatine-2.2, Hasinh-3.3, snake extract-1.8, Samcotgiao-2.2. The changes of physical and chemical properties of the products and their toxicity after irradiation have been shown to be not over the levels of allowance. (Author)

  4. Radiation sterilization of traditional medicine drugs in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Hang, N.D.; Canh, T.T.; Thuy, T.T. [Nuclear Research Inst., Da Lat (Viet Nam)

    1995-10-01

    With the application of Gamma Co-60 radiation sterilization in pharmaceutical industry, attention should be paid to the possibilities of sterilizing traditional medicine drugs produced in Vietnam. In this paper the opinion which traditional medicine drugs can be satisfactorily sterilized by irradiation is based on the changes of physical and chemical properties of the products and microbiological examinations. The sterilizing radiation dose were calculated and the results are the following (in Mrad) Rheumatine-2.2, Hasinh-3.3, snake extract-1.8, Samcotgiao-2.2. The changes of physical and chemical properties of the products and their toxicity after irradiation have been shown to be not over the levels of allowance. (Author).

  5. G2 checkpoint abrogator abates the antagonistic interaction between antimicrotubule drugs and radiation therapy

    International Nuclear Information System (INIS)

    Sui Meihua; Zhang Hongfang; Di Xiaoyun; Chang Jinjia; Shen Youqing; Fan Weimin

    2012-01-01

    Background and purpose: We previously demonstrated that radiation may arrest tumor cells at G2 phase, which in turn prevents the cytotoxicity of antimicrotubule drugs and results in antagonistic interaction between these two modalities. Herein we tested whether G2 abrogators would attenuate the above antagonistic interaction and improve the therapeutic efficacy of combination therapy between radiation and antimicrotubule drugs. Materials and methods: Breast cancer BCap37 and epidermoid carcinoma KB cell lines were administered with radiation, UCN-01 (a model drug of G2 abrogator), paclitaxel or vincristine, alone or in combinations. The antitumor activities of single and combined treatments were analyzed by a series of cytotoxic, apoptotic, cell cycle, morphological and biochemical assays. Results: UCN-01 significantly enhanced the cytotoxicity of radiation, antimitotic drugs, and their combined treatments in vitro. Further investigations demonstrated that UCN-01 attenuated radiation-induced G2 arrest, and subsequently repressed the inhibitory effect of radiation on drug-induced mitotic arrest and apoptosis. Conclusions: This is the first report demonstrating that G2 checkpoint abrogation represses the inhibitory effect of radiation on antimicrotubule drugs, which may be implicated in cancer combination therapy. Considering that G2 abrogators are under extensive evaluation for cancer treatment, our findings provide valuable information for this class of promising compounds.

  6. Radiation chemistry studies on chemotherapeutic agents

    International Nuclear Information System (INIS)

    Gohn, M.; Getoff, N.; Bjergbakke, E.

    1977-01-01

    Adrenalin has been studied as a model radiation protective agent by means of pulse radiolysis in aqueous solutions. The rate constants for the reactions of adrenalin with e - sub(aq) and OH were determined: k(e - sub(aq) + adr -NH + 2 ) = 7.5 x 10 8 dm 3 mol -1 s -1 , k(e - sub(aq) + adr - NH) = 2.5 x 10 8 dm 3 mol -1 s -1 , and k(OH + adr) = 2.2 x 10 -10 dm 3 mol -1 s -1 (pH = 9.2). e - sub(aq) attacks the amino group by splitting off methylamine, whereas OH and O - sub(aq) lead to the formation of the corresponding adducts of the cyclohexadienyl type. OH radicals can also abstract an electron from an 0 - group at pH > 8. (author)

  7. Chemotherapeutic targets in parasites: contemporary strategies

    National Research Council Canada - National Science Library

    Mansour, Tag E; Mansour, Joan MacKinnon

    2002-01-01

    ... identify effective antiparasitic agents. An introduction to the early development of parasite chemotherapy is followed by an overview of biophysical techniques and genomic and proteomic analyses. Several chapters are devoted to specific types of chemotherapeutic agents and their targets in malaria, trypanosomes, leishmania, and amitochondrial...

  8. Preclinical Data on Efficacy of 10 Drug-Radiation Combinations: Evaluations, Concerns, and Recommendations

    Directory of Open Access Journals (Sweden)

    Helen B. Stone

    2016-02-01

    Full Text Available BACKGROUND: Clinical testing of new therapeutic interventions requires comprehensive, high-quality preclinical data. Concerns regarding quality of preclinical data have been raised in recent reports. This report examines the data on the interaction of 10 drugs with radiation and provides recommendations for improving the quality, reproducibility, and utility of future studies. The drugs were AZD6244, bortezomib, 17-DMAG, erlotinib, gefitinib, lapatinib, oxaliplatin/Lipoxal, sunitinib (Pfizer, Corporate headquarters, New York, NY, thalidomide, and vorinostat. METHODS: In vitro and in vivo data were tabulated from 125 published papers, including methods, radiation and drug doses, schedules of administration, assays, measures of interaction, presentation and interpretation of data, dosimetry, and conclusions. RESULTS: In many instances, the studies contained inadequate or unclear information that would hamper efforts to replicate or intercompare the studies, and that weakened the evidence for designing and conducting clinical trials. The published reports on these drugs showed mixed results on enhancement of radiation response, except for sunitinib, which was ineffective. CONCLUSIONS: There is a need for improved experimental design, execution, and reporting of preclinical testing of agents that are candidates for clinical use in combination with radiation. A checklist is provided for authors and reviewers to ensure that preclinical studies of drug-radiation combinations meet standards of design, execution, and interpretation, and report necessary information to ensure high quality and reproducibility of studies. Improved design, execution, common measures of enhancement, and consistent interpretation of preclinical studies of drug-radiation interactions will provide rational guidance for prioritizing drugs for clinical radiotherapy trials and for the design of such trials.

  9. 18-F-FDG PET-CT in Monitoring of Chemotherapeutic Effect in a Case of Metastatic Hepatic Epithelioid Hemangioendothelioma.

    Science.gov (United States)

    Shamim, Shamim Ahmed; Tripathy, Sarthak; Mukherjee, Anirban; Bal, Chandrasekhar; Roy, Shambo Guha

    2017-01-01

    Hepatic epithelioid hemangioendothelioma is a rare variant of mesenchymal tumor. Surgical resection or partial hepatectomy is the treatment of choice in the case of localized disease. However, in metastatic cases, chemotherapeutic drugs targeting the tyrosine kinase are being used. We hereby present 18-F-fludeoxyglucose positron emission tomography-computed tomography findings in a case of a 35-year old woman with metastatic HEHE showing significant response to Sorafenib therapy after 6 months.

  10. Differential impact of diverse anticancer chemotherapeutics on the Cdc25A-degradation checkpoint pathway

    International Nuclear Information System (INIS)

    Agner, Jeppe; Falck, Jacob; Lukas, Jiri; Bartek, Jiri

    2005-01-01

    When exposed to DNA-damaging insults such as ionizing radiation (IR) or ultraviolet light (UV), mammalian cells activate checkpoint pathways to halt cell cycle progression or induce cell death. Here we examined the ability of five commonly used anticancer drugs with different mechanisms of action to activate the Chk1/Chk2-Cdc25A-CDK2/cyclin E cell cycle checkpoint pathway, previously shown to be induced by IR or UV. Whereas exposure of human cells to topoisomerase inhibitors camptothecin, etoposide, or adriamycin resulted in rapid (within 1 h) activation of the pathway including degradation of the Cdc25A phosphatase and inhibition of cyclin E/CDK2 kinase activity, taxol failed to activate this checkpoint even after a prolonged treatment. Unexpectedly, although the alkylating agent cisplatin also induced degradation of Cdc25A (albeit delayed, after 8-12 h), cyclin E/CDK2 activity was elevated and DNA synthesis continued, a phenomena that correlated with increased E2F1 protein levels and consequently enhanced expression of cyclin E. These results reveal a differential impact of various classes of anticancer chemotherapeutics on the Cdc25A-degradation pathway, and indicate that the kinetics of checkpoint induction, and the relative balance of key components within the DNA damage response network may dictate whether the treated cells arrest their cell cycle progression

  11. Terbinafine-induced lichenoid drug eruption.

    Science.gov (United States)

    Zheng, Yue; Zhang, Jie; Chen, Haiyan; Lai, Wei; Maibach, Howard I

    2017-03-01

    Drug-induced lichen planus has been induced by antibiotics, anticonvulsants, antidiabetics, antimalarials, antitubercular drugs, antihypertensives, psychiatric drugs, chemotherapeutic agents, diuretic, heavy metals, NSAIDs, etc. Terbinafine, an antifungal agent, is widely used for dermatophyte infections and onychomycosis. Cutaneous adverse effects of terbinafine are rarely reported. Here, we report a case of terbinafine-induced lichenoid drug eruption in a 22-year-old who presented with generalized lichenoid eruption 2 weeks after terbinafine initiation of. The body and lip cleared completely after 8 weeks of drug withdrawal; nail change cleared after 12 weeks.

  12. Chemotherapeutic drugs sensitize human renal cell carcinoma cells to ABT-737 by a mechanism involving the Noxa-dependent inactivation of Mcl-1 or A1

    Directory of Open Access Journals (Sweden)

    Zantl Niko

    2010-06-01

    Full Text Available Abstract Background Human renal cell carcinoma (RCC is very resistant to chemotherapy. ABT-737 is a novel inhibitor of anti-apoptotic proteins of the Bcl-2 family that has shown promise in various preclinical tumour models. Results We here report a strong over-additive pro-apoptotic effect of ABT-737 and etoposide, vinblastine or paclitaxel but not 5-fluorouracil in cell lines from human RCC. ABT-737 showed very little activity as a single agent but killed RCC cells potently when anti-apoptotic Mcl-1 or, unexpectedly, A1 was targeted by RNAi. This potent augmentation required endogenous Noxa protein since RNAi directed against Noxa but not against Bim or Puma reduced apoptosis induction by the combination of ABT-737 and etoposide or vinblastine. At the level of mitochondria, etoposide-treatment had a similar sensitizing activity and allowed for ABT-737-induced release of cytochrome c. Conclusions Chemotherapeutic drugs can overcome protection afforded by Mcl-1 and A1 through endogenous Noxa protein in RCC cells, and the combination of such drugs with ABT-737 may be a promising strategy in RCC. Strikingly, A1 emerged in RCC cell lines as a protein of similar importance as the well-established Mcl-1 in protection against apoptosis in these cells.

  13. African indigenous plants with chemotherapeutic potentials and ...

    African Journals Online (AJOL)

    Herbal-based and plant-derived products can be exploited with sustainable comparative and competitive advantage. This review presents some indigenous African plants with chemotherapeutic properties and possible ways of developing them into potent pharmacological agents using biotechnological approaches.

  14. Study on the effects of radiation on microbial; contamination of crude drugs

    International Nuclear Information System (INIS)

    Satake, Motoyoshi; Sekita, Setsuko; Kamakura, Hiroyuki

    1999-01-01

    The effects of radiation on five kinds of crude drugs (fennel, cinnamon bark, rhubarb, senna leaf and peony root) from various countries were studied by 6, 12, 24, 30 and 60 KGy 60 Co-gamma-ray. Number of fungus and bacteria in these crude drugs were changed by radiation and decreased to 10 1 by 12 KGy. But a part of them needed 30 KGy. Contents of components such as PGG and paeonifrolin in peony root and aloe-emodin, rhein, aloe-emodin 8-Glc, rhein 8-Glc, sennoside A and sennoside B in senna leaf were not changed by radiation. Accordingly, the components of crude drugs were not affected by 60 KGy-gamma-ray. (S.Y.)

  15. Drug cocktail optimization in chemotherapy of cancer.

    Directory of Open Access Journals (Sweden)

    Saskia Preissner

    Full Text Available BACKGROUND: In general, drug metabolism has to be considered to avoid adverse effects and ineffective therapy. In particular, chemotherapeutic drug cocktails strain drug metabolizing enzymes especially the cytochrome P450 family (CYP. Furthermore, a number of important chemotherapeutic drugs such as cyclophosphamide, ifosfamide, tamoxifen or procarbazine are administered as prodrugs and have to be activated by CYP. Therefore, the genetic variability of these enzymes should be taken into account to design appropriate therapeutic regimens to avoid inadequate drug administration, toxicity and inefficiency. OBJECTIVE: The aim of this work was to find drug interactions and to avoid side effects or ineffective therapy in chemotherapy. DATA SOURCES AND METHODS: Information on drug administration in the therapy of leukemia and their drug metabolism was collected from scientific literature and various web resources. We carried out an automated textmining approach. Abstracts of PubMed were filtered for relevant articles using specific keywords. Abstracts were automatically screened for antineoplastic drugs and their synonyms in combination with a set of human CYPs in title or abstract. RESULTS: We present a comprehensive analysis of over 100 common cancer treatment regimens regarding drug-drug interactions and present alternatives avoiding CYP overload. Typical concomitant medication, e.g. antiemetics or antibiotics is a preferred subject to improvement. A webtool, which allows drug cocktail optimization was developed and is publicly available on http://bioinformatics.charite.de/chemotherapy.

  16. Anti-cancer effects of newly developed chemotherapeutic agent, glycoconjugated palladium (II) complex, against cisplatin-resistant gastric cancer cells

    International Nuclear Information System (INIS)

    Tanaka, Mamoru; Kamiya, Takeshi; Joh, Takashi; Kataoka, Hiromi; Yano, Shigenobu; Ohi, Hiromi; Kawamoto, Keisuke; Shibahara, Takashi; Mizoshita, Tsutomu; Mori, Yoshinori; Tanida, Satoshi

    2013-01-01

    Cisplatin (CDDP) is the most frequently used chemotherapeutic agent for various types of advanced cancer, including gastric cancer. However, almost all cancer cells acquire resistance against CDDP, and this phenomenon adversely affects prognosis. Thus, new chemotherapeutic agents that can overcome the CDDP-resistant cancer cells will improve the survival of advanced cancer patients. We synthesized new glycoconjugated platinum (II) and palladium (II) complexes, [PtCl 2 (L)] and [PdCl 2 (L)]. CDDP-resistant gastric cancer cell lines were established by continuous exposure to CDDP, and gene expression in the CDDP-resistant gastric cancer cells was analyzed. The cytotoxicity and apoptosis induced by [PtCl 2 (L)] and [PdCl 2 (L)] in CDDP-sensitive and CDDP-resistant gastric cancer cells were evaluated. DNA double-strand breaks by drugs were assessed by evaluating phosphorylated histone H2AX. Xenograft tumor mouse models were established and antitumor effects were also examined in vivo. CDDP-resistant gastric cancer cells exhibit ABCB1 and CDKN2A gene up-regulation, as compared with CDDP-sensitive gastric cancer cells. In the analyses of CDDP-resistant gastric cancer cells, [PdCl 2 (L)] overcame cross-resistance to CDDP in vitro and in vivo. [PdCl 2 (L)] induced DNA double-strand breaks. These results indicate that [PdCl 2 (L)] is a potent chemotherapeutic agent for CDDP-resistant gastric cancer and may have clinical applications

  17. Multi drug resistance to cancer chemotherapy: Genes involved and blockers

    International Nuclear Information System (INIS)

    Sayed-Ahmed, Mohamed M.

    2007-01-01

    During the last three decades, important and considerable research efforts had been performed to investigate the mechanism through which cancer cells overcome the cytotoxic effects of a variety of chemotherapeutic drugs. Most of the previously published work has been focused on the resistance of tumor cells to those anticancer drugs of natural source. Multidrug resistance (MDR) is a cellular cross-resistance to a broad spectrum of natural products used in cancer chemotherapy and is believed to be the major cause of the therapeutic failures of the drugs belonging to different naturally obtained or semisynthetic groups including vinca alkaloids, taxans, epipodophyllotoxins and certain antibiotics. This phenomenon results from overexpression of four MDR genes and their corresponding proteins that act as membrane-bound ATP consuming pumps. These proteins mediate the efflux of many structurally and functionally unrelated anticancer drugs of natural source. MDR may be intrinsic or acquired following exposure to chemotherapy. The existence of intrinsically resistant tumor cell clone before and following chemotherapeutic treatment has been associated with a worse final outcome because of increased incidence of distant metasis. In view of irreplaceability of natural product anticancer drugs as effective chemotherapeutic agents, and in view of MDR as a major obstacle to successful chemotherapy, this review is aimed to highlight the genes involved in MDR, classical MDR blockers and gene therapy approaches to overcome MDR. (author)

  18. [Relationship between sensitivity of tumor cells to chemotherapeutic agent in vivo and in vitro: experiment with mouse lymphoma cells].

    Science.gov (United States)

    Li, Chuan-gang; Li, Mo-lin; Shu, Xiao-hong; Jia, Yu-jie; Liu, Yong-ji; Li, Ming

    2007-06-12

    To study the relationship of the sensitivity of tumor cells to chemotherapeutic agent between in vivo and in vitro. Mouse lymphoma cells of the line E14 were cultured and melphalan resistant EL4 cell line (EL4/melphalan) was established by culturing EL4 cells with continuous low-concentration and intermittent gradually-increasing-concentration of melphalan in vitro. MTT assay was used to evaluate the drug sensitivity and the resistance index of the EL4/melphalan cells to melphalan was calculated. EL4/melphalan and EL4 cells of the concentration of 5 x 10(8)/L were inoculated separately into 20 C57BL/6 mice subcutaneously. 12 days later, the EL4 and EL4/melphalan tumor-bearing mice were randomly divided into 2 groups respectively, 5 mice in each group. Treatment groups were given 7.5 mg/kg melphalan intraperitoneally, and control groups were given the same volume of normal saline. The tumor size was observed every other day. Compared with the EL4 cells, the EL4/melphalan cells had no obvious changes morphologically. They could grow in RPMI 1640 medium containing 5 mg/ml melphalan. The resistance index was 2.87 against melphalan. After the treatment of melphalan of the dose 7.5 mg/kg, the tumor sizes of the treatment groups and control groups inoculated with both EL4 cells and the EL4/melphalan cells gradually decreased at the similar speed, and about one week later all tumors disappeared. However, the tumors of the control groups grew progressively and all the mice died at last. The chemotherapeutic effects of tumors in vivo have nothing to do with the effects of the chemotherapeutic agents on tumor cells in vitro. The tumor cells resistant to melphalan in vitro remain sensitive to the drug in vivo.

  19. Radiation- and Photo-induced Activation of 5-Fluorouracil Prodrugs as a Strategy for the Selective Treatment of Solid Tumors

    Directory of Open Access Journals (Sweden)

    Sei-ichi Nishimoto

    2008-10-01

    Full Text Available 5-Fluorouracil (5-FU is used widely as an anticancer drug to treat solid cancers, such as colon, breast, rectal, and pancreatic cancers, although its clinical application is limited because 5-FU has gastrointestinal and hematological toxicity. Many groups are searching for prodrugs with functions that are tumor selective in their delivery and can be activated to improve the clinical utility of 5-FU as an important cancer chemotherapeutic agent. UV and ionizing radiation can cause chemical reactions in a localized area of the body, and these have been applied in the development of site-specific drug activation and sensitization. In this review, we describe recent progress in the development of novel 5-FU prodrugs that are activated site specifically by UV light and ionizing radiation in the tumor microenvironment. We also discuss the chemical mechanisms underlying this activation.

  20. 1,3-Bis(2-chloroethyl)-1-nitrosourea-loaded bovine serum albumin nanoparticles with dual magnetic resonance-fluorescence imaging for tracking of chemotherapeutic agents.

    Science.gov (United States)

    Wei, Kuo-Chen; Lin, Feng-Wei; Huang, Chiung-Yin; Ma, Chen-Chi M; Chen, Ju-Yu; Feng, Li-Ying; Yang, Hung-Wei

    To date, knowing how to identify the location of chemotherapeutic agents in the human body after injection is still a challenge. Therefore, it is urgent to develop a drug delivery system with molecular imaging tracking ability to accurately understand the distribution, location, and concentration of a drug in living organisms. In this study, we developed bovine serum albumin (BSA)-based nanoparticles (NPs) with dual magnetic resonance (MR) and fluorescence imaging modalities (fluorescein isothiocyanate [FITC]-BSA-Gd/1,3-bis(2-chloroethyl)-1-nitrosourea [BCNU] NPs) to deliver BCNU for inhibition of brain tumor cells (MBR 261-2). These BSA-based NPs are water dispersible, stable, and biocompatible as confirmed by XTT cell viability assay. In vitro phantoms and in vivo MR and fluorescence imaging experiments show that the developed FITC-BSA-Gd/BCNU NPs enable dual MR and fluorescence imaging for monitoring cellular uptake and distribution in tumors. The T1 relaxivity (R1) of FITC-BSA-Gd/BCNU NPs was 3.25 mM(-1) s(-1), which was similar to that of the commercial T1 contrast agent (R1 =3.36 mM(-1) s(-1)). The results indicate that this multifunctional drug delivery system has potential bioimaging tracking of chemotherapeutic agents ability in vitro and in vivo for cancer therapy.

  1. Modeling chemotherapeutic neurotoxicity with human induced pluripotent stem cell-derived neuronal cells.

    Directory of Open Access Journals (Sweden)

    Heather E Wheeler

    Full Text Available There are no effective agents to prevent or treat chemotherapy-induced peripheral neuropathy (CIPN, the most common non-hematologic toxicity of chemotherapy. Therefore, we sought to evaluate the utility of human neuron-like cells derived from induced pluripotent stem cells (iPSCs as a means to study CIPN. We used high content imaging measurements of neurite outgrowth phenotypes to compare the changes that occur to iPSC-derived neuronal cells among drugs and among individuals in response to several classes of chemotherapeutics. Upon treatment of these neuronal cells with the neurotoxic drug paclitaxel, vincristine or cisplatin, we identified significant differences in five morphological phenotypes among drugs, including total outgrowth, mean/median/maximum process length, and mean outgrowth intensity (P < 0.05. The differences in damage among drugs reflect differences in their mechanisms of action and clinical CIPN manifestations. We show the potential of the model for gene perturbation studies by demonstrating decreased expression of TUBB2A results in significantly increased sensitivity of neurons to paclitaxel (0.23 ± 0.06 decrease in total neurite outgrowth, P = 0.011. The variance in several neurite outgrowth and apoptotic phenotypes upon treatment with one of the neurotoxic drugs is significantly greater between than within neurons derived from four different individuals (P < 0.05, demonstrating the potential of iPSC-derived neurons as a genetically diverse model for CIPN. The human neuron model will allow both for mechanistic studies of specific genes and genetic variants discovered in clinical studies and for screening of new drugs to prevent or treat CIPN.

  2. Ixabepilone: a new chemotherapeutic option for refractory metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    Shannon Puhalla

    2008-09-01

    Full Text Available Shannon Puhalla, Adam BrufskyUPMC Magee-Womens Cancer Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USAAbstract: Taxane therapy is commonly used in the treatment of metastatic breast cancer. However, most patients will eventually become refractory to these agents. Ixabepilone is a newly approved chemotherapeutic agent for the treatment of metastatic breast cancer. Although it targets microtubules similarly to docetaxel and paclitaxel, ixabepilone has activity in patients that are refractory to taxanes. This review summarizes the pharmacology of ixapebilone and clinical trials with the drug both as a single agent and in combination. Data were obtained using searches of PubMed and abstracts of the annual meetings of the American Society of Clinical Oncology and the San Antonio Breast Cancer Symposium from 1995 to 2008. Ixapebilone is a semi-synthetic analog of epothilone B that acts to induce apoptosis of cancer cells via the stabilization of microtubules. Phase I clinical trials have employed various dosing schedules ranging from daily to weekly to 3-weekly. Dose-limiting toxicites included neuropathy and neutropenia. Responses were seen in a variety of tumor types. Phase II studies verified activity in taxane-refractory metastatic breast cancer. The FDA has approved ixabepilone for use as monotherapy and in combination with capecitabine for the treatment of metastatic breast cancer. Ixabepilone is an efficacious option for patients with refractory metastatic breast cancer. The safety profile is similar to that of taxanes, with neuropathy and neutropenia being dose-limiting. Studies are ongoing with the use of both iv and oral formulations and in combination with other chemotherapeutic and biologic agents.Keywords: ixabepilone, epothilone, metastatic breast cancer, taxane-refractory

  3. Sensitivity to ionizing radiation and chemotherapeutic agents in gemcitabine-resistant human tumor cell lines

    International Nuclear Information System (INIS)

    Bree, Chris van; Kreder, Natasja Castro; Loves, Willem J.P.; Franken, Nicolaas A.P.; Peters, Godefridus J.; Haveman, Jaap

    2002-01-01

    Purpose: To determine cross-resistance to anti-tumor treatments in 2',2'difluorodeoxycytidine (dFdC, gemcitabine)-resistant human tumor cells. Methods and Materials: Human lung carcinoma cells SW-1573 (SWp) were made resistant to dFdC (SWg). Sensitivity to cisplatin (cDDP), paclitaxel, 5-fluorouracil (5-FU), methotrexate (MTX), cytarabine (ara-C), and dFdC was measured by a proliferation assay. Radiosensitivity and radioenhancement by dFdC of this cell panel and the human ovarian carcinoma cell line A2780 and its dFdC-resistant variant AG6000 were determined by clonogenic assay. Bivariate flowcytometry was performed to study cell cycle changes. Results: In the SWg, a complete deoxycytidine kinase (dCK) deficiency was found on mRNA and protein level. This was accompanied by a 10-fold decrease in dCK activity which resulted in the >1000-fold resistance to dFdC. Sensitivity to other anti-tumor drugs was not altered, except for ara-C (>100-fold resistance). Radiosensitivity was not altered in the dFdC-resistant cell lines SWg and AG6000. High concentrations (50-100 μM dFdC) induced radioenhancement in the dFdC-resistant cell lines similar to the radioenhancement obtained at lower concentrations (10 nM dFdC) in the parental lines. An early S-phase arrest was found in all cell lines after dFdC treatment where radioenhancement was achieved. Conclusions: In the dFdC-resistant lung tumor cell line SWg, the deficiency in dCK is related to the resistance to dFdC and ara-C. No cross-resistance was observed to other anti-tumor drugs used for the treatment in lung cancer. Sensitivity to ionizing radiation was not altered in two different dFdC-resistant cell lines. Resistance to dFdC does not eliminate the ability of dFdC to sensitize cells to radiation

  4. Porous Polymer Drug-Eluting Coating Prepared by Radiation Induced Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Veres, M.; Tóth, S.; Koós, M. [Research Institute for Solid State Physics and Optics, Budapest (Hungary); Beiler, B. [Institute of Isotopes, HAS, Budapest (Hungary)

    2009-07-01

    Drug-eluting stents have several advantages over bare metal implants. They eliminate restenosis, the main drawback of bare metal stents. In addition the locally delivered drug is more effective and causes less side-effects. However in some cases dangerous stent thrombosis, inflammatory and allergy reactions were observed after their implantation, which first of all related to the drug-eluting coating. This project is aimed to develop a novel biocompatible nanoporous polymer layer by radiation induced polymerization that is capable of holding and eluting drugs and promotes endothelization after the release of the drug. (author)

  5. Porous Polymer Drug-Eluting Coating Prepared by Radiation Induced Polymerization

    International Nuclear Information System (INIS)

    Veres, M.; Tóth, S.; Koós, M.; Beiler, B.

    2009-01-01

    Drug-eluting stents have several advantages over bare metal implants. They eliminate restenosis, the main drawback of bare metal stents. In addition the locally delivered drug is more effective and causes less side-effects. However in some cases dangerous stent thrombosis, inflammatory and allergy reactions were observed after their implantation, which first of all related to the drug-eluting coating. This project is aimed to develop a novel biocompatible nanoporous polymer layer by radiation induced polymerization that is capable of holding and eluting drugs and promotes endothelization after the release of the drug. (author)

  6. Evaluation of Radiation Response and Gold Nanoparticle Enhancement in Drug-Resistant Pancreatic Cancer Cells

    Science.gov (United States)

    Abourabia, Assya

    Pancreatic cancer is a major cause of cancer-related death worldwide after lung cancer and colorectal cancer Pancreatic treatment modalities consist of surgery, chemotherapy, and radiation therapy or combination of these therapies. These modalities are good to some extents but they do have some limitations. For example, during the chemotherapy, tumor cells can develop some escape mechanisms and become chemoresistant to protect themselves against the chemo drugs and pass on theses escape mechanisms to their offspring, despite the treatment given. Cancer Cells can become chemoresistant by many mechanisms, for example, decreased drug influx mechanisms, decreased of drug transport molecules, decreased drug activation, altered drug metabolism that diminishes the capacity of cytotoxic drugs, and enhanced repair of DNA damage. Given that some of these chemoresistance mechanisms may impact sensitivity to radiation. Therefore, there is a strong need for a new alternative treatment option to amplify the therapeutic efficacy of radiotherapy and eventually increase the overall efficacy of cancer treatment. Nano-radiation therapy is an emerging and promising modality aims to enhance the therapeutic efficacy of radiotherapy through the use of radiosensitizing nanoparticles. The primary goal of using GNP-enhanced radiation is that GNPs are potent radiosensitizer agents that sensitize the tumor cells to radiation, and these agents promote generation of the free radicals produced by Photo- and Auger- electrons emission at the molecular level which can enhance the effectiveness of radiation-induced cancer cell death. The main aim of this research is to analyze and compare the response to radiation of pancreatic cancer cells, PANC-1, and PANC-1 cells that are resistant to oxaliplatin, PANC-1/OR, and investigate the radiation dose enhancement effect attributable to GNP when irradiating the cells with low-energy (220 kVp) beam at various doses. Based on evidence from the existing

  7. Development of drugs and technology for radiation theragnosis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hwan Jeong [Dept. of Nuclear Medicine, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of); Lee, Byung Chul [Dept. of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of); Ahn, Byeong Cheol [Dept. of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu (Korea, Republic of); Kang, Keon Wook [Dept. of Nuclear Medicine and Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2016-06-15

    Personalized medicine is tailored medical treatment that targets the individual characteristics of each patient. Theragnosis, combining diagnosis and therapy, plays an important role in selecting appropriate patients. Noninvasive in vivo imaging can trace small molecules, antibodies, peptides, nanoparticles, and cells in the body. Recently, imaging methods have been able to reveal molecular events in cells and tissues. Molecular imaging is useful not only for clinical studies but also for developing new drugs and new treatment modalities. Preclinical and early clinical molecular imaging shows biodistribution, pharmacokinetics, mechanisms of action, and efficacy. When therapeutic materials are labeled using radioisotopes, nuclear imaging with positron emission tomography or gamma camera can be used to treat diseases and monitor therapy simultaneously. Such nuclear medicine technology is defined as radiation theragnosis. We review the current development of drugs and technology for radiation theragnosis using peptides, albumin, nanoparticles, and cells.

  8. Prediction of resistance development against drug combinations by collateral responses to component drugs

    DEFF Research Database (Denmark)

    Munck, Christian; Gumpert, Heidi; Nilsson Wallin, Annika

    2014-01-01

    the genomes of all evolved E. coli lineages, we identified the mutational events that drive the differences in drug resistance levels and found that the degree of resistance development against drug combinations can be understood in terms of collateral sensitivity and resistance that occurred during...... adaptation to the component drugs. Then, using engineered E. coli strains, we confirmed that drug resistance mutations that imposed collateral sensitivity were suppressed in a drug pair growth environment. These results provide a framework for rationally selecting drug combinations that limit resistance......Resistance arises quickly during chemotherapeutic selection and is particularly problematic during long-term treatment regimens such as those for tuberculosis, HIV infections, or cancer. Although drug combination therapy reduces the evolution of drug resistance, drug pairs vary in their ability...

  9. Gold Nanoparticles and Their Alternatives for Radiation Therapy Enhancement

    Directory of Open Access Journals (Sweden)

    Daniel R. Cooper

    2014-10-01

    Full Text Available Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79. However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy. Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions.

  10. The influence of toxicity constraints in models of chemotherapeutic protocol escalation

    KAUST Repository

    Boston, E. A. J.

    2011-04-06

    The prospect of exploiting mathematical and computational models to gain insight into the influence of scheduling on cancer chemotherapeutic effectiveness is increasingly being considered. However, the question of whether such models are robust to the inclusion of additional tumour biology is relatively unexplored. In this paper, we consider a common strategy for improving protocol scheduling that has foundations in mathematical modelling, namely the concept of dose densification, whereby rest phases between drug administrations are reduced. To maintain a manageable scope in our studies, we focus on a single cell cycle phase-specific agent with uncomplicated pharmacokinetics, as motivated by 5-Fluorouracil-based adjuvant treatments of liver micrometastases. In particular, we explore predictions of the effectiveness of dose densification and other escalations of the protocol scheduling when the influence of toxicity constraints, cell cycle phase specificity and the evolution of drug resistance are all represented within the modelling. For our specific focus, we observe that the cell cycle and toxicity should not simply be neglected in modelling studies. Our explorations also reveal the prediction that dose densification is often, but not universally, effective. Furthermore, adjustments in the duration of drug administrations are predicted to be important, especially when dose densification in isolation does not yield improvements in protocol outcomes. © The author 2011. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  11. Up-regulated Ectonucleotidases in Fas-Associated Death Domain Protein- and Receptor-Interacting Protein Kinase 1-Deficient Jurkat Leukemia Cells Counteract Extracellular ATP/AMP Accumulation via Pannexin-1 Channels during Chemotherapeutic Drug-Induced Apoptosis.

    Science.gov (United States)

    Boyd-Tressler, Andrea M; Lane, Graham S; Dubyak, George R

    2017-07-01

    Pannexin-1 (Panx1) channels mediate the efflux of ATP and AMP from cancer cells in response to induction of extrinsic apoptosis by death receptors or intrinsic apoptosis by chemotherapeutic agents. We previously described the accumulation of extracellular ATP /AMP during chemotherapy-induced apoptosis in Jurkat human leukemia cells. In this study, we compared how different signaling pathways determine extracellular nucleotide pools in control Jurkat cells versus Jurkat lines that lack the Fas-associated death domain (FADD) or receptor-interacting protein kinase 1 (RIP1) cell death regulatory proteins. Tumor necrosis factor- α induced extrinsic apoptosis in control Jurkat cells and necroptosis in FADD-deficient cells; treatment of both lines with chemotherapeutic drugs elicited similar intrinsic apoptosis. Robust extracellular ATP/AMP accumulation was observed in the FADD-deficient cells during necroptosis, but not during apoptotic activation of Panx1 channels. Accumulation of extracellular ATP/AMP was similarly absent in RIP1-deficient Jurkat cells during apoptotic responses to chemotherapeutic agents. Apoptotic activation triggered equivalent proteolytic gating of Panx1 channels in all three Jurkat cell lines. The differences in extracellular ATP/AMP accumulation correlated with cell-line-specific expression of ectonucleotidases that metabolized the released ATP/AMP. CD73 mRNA, and α β -methylene-ADP-inhibitable ecto-AMPase activity were elevated in the FADD-deficient cells. In contrast, the RIP1-deficient cells were defined by increased expression of tartrate-sensitive prostatic acid phosphatase as a broadly acting ectonucleotidase. Thus, extracellular nucleotide accumulation during regulated tumor cell death involves interplay between ATP/AMP efflux pathways and different cell-autonomous ectonucleotidases. Differential expression of particular ectonucleotidases in tumor cell variants will determine whether chemotherapy-induced activation of Panx1 channels

  12. Development of Drugs and Technology for Radiation Theragnosis

    Directory of Open Access Journals (Sweden)

    Hwan-Jeong Jeong

    2016-06-01

    Full Text Available Personalized medicine is tailored medical treatment that targets the individual characteristics of each patient. Theragnosis, combining diagnosis and therapy, plays an important role in selecting appropriate patients. Noninvasive in vivo imaging can trace small molecules, antibodies, peptides, nanoparticles, and cells in the body. Recently, imaging methods have been able to reveal molecular events in cells and tissues. Molecular imaging is useful not only for clinical studies but also for developing new drugs and new treatment modalities. Preclinical and early clinical molecular imaging shows biodistribution, pharmacokinetics, mechanisms of action, and efficacy. When therapeutic materials are labeled using radioisotopes, nuclear imaging with positron emission tomography or gamma camera can be used to treat diseases and monitor therapy simultaneously. Such nuclear medicine technology is defined as radiation theragnosis. We review the current development of drugs and technology for radiation theragnosis using peptides, albumin, nanoparticles, and cells.

  13. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    Science.gov (United States)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  14. Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics.

    Science.gov (United States)

    Garg, Abhishek D; More, Sanket; Rufo, Nicole; Mece, Odeta; Sassano, Maria Livia; Agostinis, Patrizia; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2017-01-01

    The expression "immunogenic cell death" (ICD) refers to a functionally unique form of cell death that facilitates (instead of suppressing) a T cell-dependent immune response specific for dead cell-derived antigens. ICD critically relies on the activation of adaptive responses in dying cells, culminating with the exposure or secretion of immunostimulatory molecules commonly referred to as "damage-associated molecular patterns". Only a few agents can elicit bona fide ICD, including some clinically established chemotherapeutics such as doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin. In this Trial Watch, we discuss recent progress on the development of ICD-inducing chemotherapeutic regimens, focusing on studies that evaluate clinical efficacy in conjunction with immunological biomarkers.

  15. Possible involvement of the Sigma-1 receptor chaperone in chemotherapeutic-induced neuropathic pain.

    Science.gov (United States)

    Tomohisa, Mori; Junpei, Ohya; Aki, Masumoto; Masato, Harumiya; Mika, Fukase; Kazumi, Yoshizawa; Teruo, Hayashi; Tsutomu, Suzuki

    2015-11-01

    Previous studies have shown that ligands of the sigma-1 receptor chaperone (Sig-1R) regulate pain-related behaviors. Clinical use of chemotherapeutics is often compromised due to their adverse side effects, particularly those related to neuropathy. Previous studies have shown that repeated administration of oxaliplatin and paclitaxel produces neuropathy in rodents. Therefore, the aim of the present study was to clarify the involvement of the Sig-1R in chemotherapeutic-induced neuropathy by examining the effects of oxaliplatin and paclitaxel on the Sig-1R levels in the spinal cord, and by examining the effects of Sig-1R agonist and antagonist on oxaliplatin- and paclitaxel-induced neuropathy in rats. Chemotherapeutic-induced neuropathic pain was accompanied by a significant reduction of the Sig-1R level in the spinal cord. Furthermore, the administration of paclitaxel to CHO cells that stably overexpressed Sig-1Rs induced the clustering of Sig-1Rs. We also found that the Sig-1R agonist SA4503 potently inhibited the neuropathy induced by oxaliplatin- and paclitaxel, whereas this action was abolished by the Sig-1R antagonist NE-100. These results suggest that the reduction of Sig-1R activity is involved in chemotherapeutic-induced neuropathy, and the Sig-1R agonist SA4503 could serve as a potential candidate for the treatment of chemotherapeutic-induced neuropathy. © 2015 Wiley Periodicals, Inc.

  16. Radiation Recall Reaction: Two Case Studies Illustrating an Uncommon Phenomenon Secondary to Anti-Cancer Agents

    International Nuclear Information System (INIS)

    Zhu, Su-yu; Yuan, Yuan; Xi, Zhen

    2012-01-01

    Radiation recall phenomenon is a tissue reaction that develops throughout a previously irradiated area, precipitated by the administration of certain drugs. Radiation recall is uncommon and easily neglected by physicians; hence, this phenomenon is underreported in literature. This manuscript reports two cases of radiation recall. First, a 44-year-old man with nasopharyngeal carcinoma was treated with radiotherapy in 2010 and subsequently developed multi-site bone metastases. A few days after the docetaxel-based chemotherapy, erythema and papules manifested dermatitis, as well as swallowing pain due to pharyngeal mucositis, developed on the head and neck that strictly corresponded to the previously irradiated areas. Second, a 19-year-old man with recurrent nasal NK/T cell lymphoma initially underwent radiotherapy followed by chemotherapy after five weeks. Erythema and edema appeared only at the irradiated skin. Both cases were considered chemotherapeutic agents that incurred radiation recall reactions. Clinicians should be knowledgeable of and pay attention to such rare phenomenon

  17. Brain tumor chemo-radiotherapy: a study of direct intratumoral perfusion with antineoplastic drugs; Chimio-radiotherapie des tumeurs cerebrales: interet de l'injection intratumorale de drogues antineoplasiques

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, J

    2007-10-15

    High grade gliomas are aggressive tumors for which current treatments remain palliative. Radiotherapy efficacy is restricted by the surrounding brain tissue tolerance. One method based on the concomitant use of chemotherapeutic drugs and external photon irradiation has been proposed to improve the treatment outcome. The systemic administration of drugs is not effective in achieving the therapeutic level of drug needed for brain tumor treatment. This is due to the blood brain barrier (BBB) that prevents molecules passing through the vascular endothelium. Recent methods have been developed to circumvent the BBB. Among them, convection-enhanced delivery (CED) relies on the continuous infusion of a fluid containing a therapeutic agent, under a pressure gradient. It permits a homogeneous and controlled drug distribution. The aims of this study were to characterise the CED method, and then to utilize it for glioma treatment in preclinical studies. Several drugs were tested: cisplatin, carbo-platin, oxaliplatin, and iodo-deoxyuridine. Two radiation modalities were evaluated: synchrotron stereotactic radiotherapy (monochromatic beam < 100 keV) and high energy irradiation (6 MV) obtained with a conventional medical linear accelerator. The results obtained reveal that the effectiveness of the combined treatment (platinated drug plus photon irradiation) is highly related to that of the chemotherapy. The data, obtained with the platinated chemotherapy, also show that high-energy X-ray irradiation (6 MV) is as effective as synchrotron X-ray irradiation. The results broaden the applicability of this chemotherapeutic approach to clinical trials. (author)

  18. Adriamycin-radiation combinations: drug induced delayed gastrointestinal radiosensitivity

    International Nuclear Information System (INIS)

    Schenken, L.L.; Burholt, D.R.; Kovacs, C.J.

    1979-01-01

    The administration of Adriamycin (ADR) results in acute short-term reductions in cell production within the gastrointestinal mucosa. Interactions between ADR doses and radiation appear minimized as the inter-treatment time interval expands to five days. However, as the times between drug administration and abdominal radiation exposure are further lengthened (from 14 to 49 days), a progressively severe defect in post-irradiation mucosal cell production is noted. Although the mucosa appears abnormal histologically and crypt cell cellularity and cell production are normal, the proliferative response following radiation is reduced by as much as 50% if ADR is given 7 weeks prior to the radiation exposure. We postulate that this effect is a manifestation of latent damage to the stem cell compartment within the crypt or that secondary support systems such as mucosal vascularity have been compromised by ADR

  19. The effects of radiation treatment on drugs and pharmaceutical additives. Pt. 5

    International Nuclear Information System (INIS)

    Schnell, R.; Boegl, W.

    1982-01-01

    The sterilization of medical instruments (e.g. catheters, one-way syringes) with ionizing radiation is successfully practiced in many countries. Simultaneously, the results of many experiments involving the sterilization of pharmaceuticals and aiding substances with radiation have been published during the past years. Experiences have shown that radiation treatment in many cases has brought about aberrations in the irradiated substances. In this bibliographic study (Part I-V), the results of 275 radiation tested pharmaceuticals are discussed and evaluated. The substances were treated with ionizing radiation in their pure form (solid substance or liquid), as aqueous or alcohol solution, as emulsion or in compound form, almost exclusively with gamma radiation from cobalt-60 sources. The radiation doses applied amounted from some krd to about 100 Mrd. The results of the original papers analyzed in this Part V are not summarized separately since the final Part VII of the study on the effects of irradiation of drugs and drug additives will contain a survey for all essential data discussed in Parts I to VI. (orig.) [de

  20. A Trojan horse in drug development

    DEFF Research Database (Denmark)

    Christensen, Søren Brøgger; Skytte, Dorthe Mondrup; Denmeade, Samuel R

    2009-01-01

    Available chemotherapeutics take advantage of the fast proliferation of cancer cells. Consequently slow growth makes androgen refractory prostate cancer resistant towards available drugs. No treatment is available at the present, when the cancer has developed metastases outside the prostate (T4 s...

  1. Characterization of the interaction forces in a drug carrier complex of doxorubicin with a drug-binding peptide.

    Science.gov (United States)

    Gocheva, Gergana; Ilieva, Nina; Peneva, Kalina; Ivanova, Anela

    2018-04-01

    Polypeptide-based materials are used as building blocks for drug delivery systems aimed at toxicity decrease in chemotherapeutics. A molecular-level approach is adopted for investigating the non-covalent interactions between doxorubicin and a recently synthesized drug-binging peptide as a key part of a system for delivery to neoplastic cells. Molecular dynamics simulations in aqueous solution at room and body temperature are applied to investigate the structure and the binding modes within the drug-peptide complex. The tryptophans are outlined as the main chemotherapeutic adsorption sites, and the importance of their placement in the peptide sequence is highlighted. The drug-peptide binging energy is evaluated by density functional theory calculations. Principal component analysis reveals comparable importance of several types of interaction for the binding strength. π-Stacking is dominant, but other factors are also significant: intercalation, peptide backbone stacking, electrostatics, dispersion, and solvation. Intra- and intermolecular H-bonding also stabilizes the complexes. The influence of solvent molecules on the binding energy is mild. The obtained data characterize the drug-to-peptide attachment as a mainly attractive collective process with interactions spanning a broad range of values. These results explain with atomistic detail the experimentally registered doxorubicin-binging ability of the peptide and outline the complex as a prospective carrying unit that can be employed in design of drug delivery systems. © 2017 John Wiley & Sons A/S.

  2. Regorafenib overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter in colorectal cancer: In vitro and in vivo study.

    Science.gov (United States)

    Wang, Yi-Jun; Zhang, Yun-Kai; Zhang, Guan-Nan; Al Rihani, Sweilem B; Wei, Meng-Ning; Gupta, Pranav; Zhang, Xiao-Yu; Shukla, Suneet; Ambudkar, Suresh V; Kaddoumi, Amal; Shi, Zhi; Chen, Zhe-Sheng

    2017-06-28

    Chemotherapeutic multidrug resistance (MDR) is a significant challenge to overcome in clinic practice. Several mechanisms contribute to MDR, one of which is the augmented drug efflux induced by the upregulation of ABCB1 in cancer cells. Regorafenib, a multikinase inhibitor targeting the RAS/RAF/MEK/ERK pathway, was approved by the FDA to treat metastatic colorectal cancer and gastrointestinal stromal tumors. We investigated whether and how regorafenib overcame MDR mediated by ABCB1. The results showed that regorafenib reversed the ABCB1-mediated MDR and increased the accumulation of [ 3 H]-paclitaxel in ABCB1-overexpressing cells by suppressing efflux activity of ABCB1, but not altering expression level and localization of ABCB1. Regorafenib inhibited ATPase activity of ABCB1. In mice bearing resistant colorectal tumors, regorafenib raised the intratumoral concentration of paclitaxel and suppressed the growth of resistant colorectal tumors. But regorafenib did not induce cardiotoxicity/myelosuppression of paclitaxel in mice. Strategy to reposition one FDA-approved anticancer drug regorafenib to overcome the resistance of another FDA-approved, widely used chemotherapeutic paclitaxel, may be a promising direction for the field of adjuvant chemotherapy. This study provides clinical rationale for combination of conventional chemotherapy and targeted anticancer agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Brain tumor chemo-radiotherapy: a study of direct intratumoral perfusion with antineoplastic drugs; Chimio-radiotherapie des tumeurs cerebrales: interet de l'injection intratumorale de drogues antineoplasiques

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, J

    2007-10-15

    High grade gliomas are aggressive tumors for which current treatments remain palliative. Radiotherapy efficacy is restricted by the surrounding brain tissue tolerance. One method based on the concomitant use of chemotherapeutic drugs and external photon irradiation has been proposed to improve the treatment outcome. The systemic administration of drugs is not effective in achieving the therapeutic level of drug needed for brain tumor treatment. This is due to the blood brain barrier (BBB) that prevents molecules passing through the vascular endothelium. Recent methods have been developed to circumvent the BBB. Among them, convection-enhanced delivery (CED) relies on the continuous infusion of a fluid containing a therapeutic agent, under a pressure gradient. It permits a homogeneous and controlled drug distribution. The aims of this study were to characterise the CED method, and then to utilize it for glioma treatment in preclinical studies. Several drugs were tested: cisplatin, carbo-platin, oxaliplatin, and iodo-deoxyuridine. Two radiation modalities were evaluated: synchrotron stereotactic radiotherapy (monochromatic beam < 100 keV) and high energy irradiation (6 MV) obtained with a conventional medical linear accelerator. The results obtained reveal that the effectiveness of the combined treatment (platinated drug plus photon irradiation) is highly related to that of the chemotherapy. The data, obtained with the platinated chemotherapy, also show that high-energy X-ray irradiation (6 MV) is as effective as synchrotron X-ray irradiation. The results broaden the applicability of this chemotherapeutic approach to clinical trials. (author)

  4. Evaluation of chemotherapeutic sequelae and quality of life in survivors of malignant sacrococcygeal teratoma

    NARCIS (Netherlands)

    Kremer, Marijke E B; Derikx, Joep P M; Kremer, Leontien C M; van Baren, Robertine; Heij, Hugo A.; Wijnen, Marc H W A; Wijnen, René M H; van der Zee, David C.; van Heurn, L. W Ernest

    2016-01-01

    Purpose: The impact of chemotherapeutic sequelae on long-term quality of life (QoL) for survivors of malignant sacrococcygeal teratoma (SCT) is unknown. The incidence of chemotherapeutic toxicity in patients treated for malignant SCT and possible effects on the QoL were analyzed. Methods:

  5. Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Gong, Xiaojuan; Moghaddam, Minoo J.; Conn, Charlotte E.; Kimpton, Kathleen; Waddington, Lynne J.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE); (CSIRO/LW)

    2014-09-24

    We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipid prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.

  6. Development of a novel, physiologically relevant cytotoxicity model: Application to the study of chemotherapeutic damage to mesenchymal stromal cells

    International Nuclear Information System (INIS)

    May, Jennifer E.; Morse, H. Ruth; Xu, Jinsheng; Donaldson, Craig

    2012-01-01

    There is an increasing need for development of physiologically relevant in-vitro models for testing toxicity, however determining toxic effects of agents which undergo extensive hepatic metabolism can be particularly challenging. If a source of such metabolic enzymes is inadequate within a model system, toxicity from prodrugs may be grossly underestimated. Conversely, the vast majority of agents are detoxified by the liver, consequently toxicity from such agents may be overestimated. In this study we describe the development of a novel in-vitro model, which could be adapted for any toxicology setting. The model utilises HepG2 liver spheroids as a source of metabolic enzymes, which have been shown to more closely resemble human liver than traditional monolayer cultures. A co-culture model has been developed enabling the effect of any metabolised agent on another cell type to be assessed. This has been optimised to enable the study of damaging effects of chemotherapy on mesenchymal stem cells (MSC), the supportive stem cells of the bone marrow. Several optimisation steps were undertaken, including determining optimal culture conditions, confirmation of hepatic P450 enzyme activity and ensuring physiologically relevant doses of chemotherapeutic agents were appropriate for use within the model. The developed model was subsequently validated using several chemotherapeutic agents, both prodrugs and active drugs, with resulting MSC damage closely resembling effects seen in patients following chemotherapy. Minimal modifications would enable this novel co-culture model to be utilised as a general toxicity model, contributing to the drive to reduce animal safety testing and enabling physiologically relevant in-vitro study. -- Highlights: ► An in vitro model was developed for study of drugs requiring hepatic metabolism ► HepG2 spheroids were utilised as a physiologically relevant source of liver enzymes ► The model was optimised to enable study of chemotherapeutic

  7. Development of a novel, physiologically relevant cytotoxicity model: Application to the study of chemotherapeutic damage to mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    May, Jennifer E., E-mail: Jennifer2.May@uwe.ac.uk; Morse, H. Ruth, E-mail: Ruth.Morse@uwe.ac.uk; Xu, Jinsheng, E-mail: Jinsheng.Xu@uwe.ac.uk; Donaldson, Craig, E-mail: Craig.Donaldson@uwe.ac.uk

    2012-09-15

    There is an increasing need for development of physiologically relevant in-vitro models for testing toxicity, however determining toxic effects of agents which undergo extensive hepatic metabolism can be particularly challenging. If a source of such metabolic enzymes is inadequate within a model system, toxicity from prodrugs may be grossly underestimated. Conversely, the vast majority of agents are detoxified by the liver, consequently toxicity from such agents may be overestimated. In this study we describe the development of a novel in-vitro model, which could be adapted for any toxicology setting. The model utilises HepG2 liver spheroids as a source of metabolic enzymes, which have been shown to more closely resemble human liver than traditional monolayer cultures. A co-culture model has been developed enabling the effect of any metabolised agent on another cell type to be assessed. This has been optimised to enable the study of damaging effects of chemotherapy on mesenchymal stem cells (MSC), the supportive stem cells of the bone marrow. Several optimisation steps were undertaken, including determining optimal culture conditions, confirmation of hepatic P450 enzyme activity and ensuring physiologically relevant doses of chemotherapeutic agents were appropriate for use within the model. The developed model was subsequently validated using several chemotherapeutic agents, both prodrugs and active drugs, with resulting MSC damage closely resembling effects seen in patients following chemotherapy. Minimal modifications would enable this novel co-culture model to be utilised as a general toxicity model, contributing to the drive to reduce animal safety testing and enabling physiologically relevant in-vitro study. -- Highlights: ► An in vitro model was developed for study of drugs requiring hepatic metabolism ► HepG2 spheroids were utilised as a physiologically relevant source of liver enzymes ► The model was optimised to enable study of chemotherapeutic

  8. Essential drugs for cancer chemotherapy. WHO consultation.

    OpenAIRE

    1994-01-01

    The WHO recommendation on essential drugs for cancer chemotherapy has been updated. General principles on the proper role of cancer chemotherapeutic agents in relation to efficacy and on the classification of tumours with respect to their curative potential are discussed. Curable cancers and those cancers where the cost-benefit ratio clearly favours drug treatment can be managed appropriately based on only 24 drugs. Fourteen of them should ideally be available for the treatment of the ten mos...

  9. Effect of nephrotoxic drugs on the development of radiation nephropathy after bone marrow transplantation

    International Nuclear Information System (INIS)

    Lawton, C.A.; Fish, B.L.; Moulder, J.E.

    1994-01-01

    Chronic renal failure is a significant cause of late morbidity in bone marrow transplant patients whose conditioning regimen includes total body irradiation (TBI). Radiation is a major cause of this syndrome (bone marrow transplant nephropathy), but it may not be the only cause. These studies use a rat syngeneic bone marrow transplant model to determine whether nephrotoxic agents used in conjunction with bone marrow transplantation (BMT) could be enhancing or accelerating the development of radiation nephropathy. Rats received 11-17 Gy TBI in six fractions over 3 days followed by syngeneic bone marrow transplant. In conjunction with the bone marrow transplants, animals received either no drugs, cyclosporine, amphotericin, gentamicin, or busulfan. Drugs were given in schedules analogous to their use in clinical bone marrow transplantation. Drug doses were chosen so that the drug regimen alone caused detectable acute nephrotoxicity. Animals were followed for 6 months with periodic renal function tests. Gentamicin had no apparent interactions with TBI. Amphotericin increased the incidence of engraftment failure, but did not enhance radiation nephropathy. Cyclosporin with TBI caused late morbidity that appeared to be due to neurological problems, but did not enhance radiation nephropathy. Busulfan resulted in a significant enhancement of radiation nephropathy. Of the nephrotoxins used in conjunction with bone marrow transplantation only radiation and busulfan were found to be risk factors for bone marrow transplant nephropathy. 34 refs., 4 figs., 2 tabs

  10. Investigation of the interaction of radiation and cardiotoxic anticancer agents using a fetal mouse heart organ culture system

    International Nuclear Information System (INIS)

    Kimler, B.F.; Rethorst, R.D.; Cox, G.G.

    1985-01-01

    The fetal mouse heart organ culture was utilized in an attempt to predict the cardiotoxic effects of combinations of radiation, Adriamycin (ADR), and Dihydroxyanthraquinone (DHAQ), antineoplastic agents which have been shown to produce clinical cardiomyopathy. Seventeen-day fetal hearts were removed and placed in a culture system of micro-titer plates. A single heart was placed in each well on a piece of aluminum mesh to keep the heart above the culture medium but bathed by capillary action. The plates were then placed in a 100% oxygen environment at 37 0 C. Treatments were performed on day 1 after culture: radiation doses (Cs-137) of 10, 20, or 40 Gy; drug treatment with 10, 30, or 100 μg/ml of ADR; 5, 20, or 50 μg/ml of DHAQ; and combinations and sequences of drug and radiation. Hearts were checked every day for functional activity as evidenced by a continuous heart beat. Untreated hearts beat rhythmically for up to 9 days; treated hearts stopped beating earlier. Using an endpoint of functional retention time, dose response curves were obtained for all individual agents and for combinations of agents. This system may help to predict the cardiotoxic effects that result from the use of these drugs and radiation. It may also aid in the development of new anthracycline chemotherapeutic agents that lack cardiotoxicity

  11. An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer.

    Directory of Open Access Journals (Sweden)

    Kelly H Salter

    Full Text Available A major challenge in oncology is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in cancer patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent and limiting the agents used to those most likely to be effective.Using gene expression data on the NCI-60 and corresponding drug sensitivity, mRNA and microRNA profiles were developed representing sensitivity to individual chemotherapeutic agents. The mRNA signatures were tested in an independent cohort of 133 breast cancer patients treated with the TFAC (paclitaxel, 5-fluorouracil, adriamycin, and cyclophosphamide chemotherapy regimen. To further dissect the biology of resistance, we applied signatures of oncogenic pathway activation and performed hierarchical clustering. We then used mRNA signatures of chemotherapy sensitivity to identify alternative therapeutics for patients resistant to TFAC. Profiles from mRNA and microRNA expression data represent distinct biologic mechanisms of resistance to common cytotoxic agents. The individual mRNA signatures were validated in an independent dataset of breast tumors (P = 0.002, NPV = 82%. When the accuracy of the signatures was analyzed based on molecular variables, the predictive ability was found to be greater in basal-like than non basal-like patients (P = 0.03 and P = 0.06. Samples from patients with co-activated Myc and E2F represented the cohort with the lowest percentage (8% of responders. Using mRNA signatures of sensitivity to other cytotoxic agents, we predict that TFAC non-responders are more likely to be sensitive to docetaxel (P = 0.04, representing a viable alternative therapy.Our results suggest that the optimal strategy for chemotherapy sensitivity prediction integrates molecular variables such as ER and HER2 status with corresponding micro

  12. Radiation Interaction with Therapeutic Drugs and Cell Membranes

    International Nuclear Information System (INIS)

    Martin, Diana I.; Manaila, Elena N.; Matei, Constantin I.; Iacob, Nicusor I.; Ighigeanu, Daniel I.; Craciun, Gabriela D.; Moisescu, Mihaela I.; Savopol, Tudor D.; Kovacs, Eugenia A.; Cinca, Sabin A.; Margaritescu, Irina D.

    2007-01-01

    This transient permeabilized state of the cell membrane, named the 'cell electroporation' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed

  13. An ETP model (exclusion-tolerance-progression for multi drug resistance

    Directory of Open Access Journals (Sweden)

    Kannan Subburaj

    2005-04-01

    Full Text Available Abstract Background It is known that sensitivity or resistance of tumor cells to a given chemotherapeutic agent is an acquired characteristic(s, depending on the heterogeneity of the tumor mass subjected to the treatment. The clinical success of a chemotherapeutic regimen depends on the ratio of sensitive to resistant cell populations. Results Based on findings from clinical and experimental studies, a unifying model is proposed to delineate the potential mechanism by which tumor cells progress towards multi drug resistance, resulting in failure of chemotherapy. Conclusion It is suggested that the evolution of multi drug resistance is a developmentally orchestrated event. Identifying stage-specific time windows during this process would help to identify valid therapeutic targets for the effective elimination of malignancy.

  14. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery.

    Science.gov (United States)

    Qu, Ying; Chu, BingYang; Shi, Kun; Peng, JinRong; Qian, ZhiYong

    2017-12-01

    Polymeric micelles have presented superior delivery properties for poorly water-soluble chemotherapeutic agents. However, it remains discouraging that there may be some additional short or long-term toxicities caused by the metabolites of high quantities of carriers. If carriers had simultaneous therapeutic effects with the drug, these issues would not be a concern. For this, carriers not only simply act as drug carriers, but also exert an intrinsic therapeutic effect as a therapeutic agent. The functional micellar carriers would be beneficial to maximize the anticancer effect, overcome the drug resistance and reduce the systemic toxicity. In this review, we aim to summarize the recent progress on the development of functional micellar carriers with intrinsic anticancer activities for the delivery of anticancer drugs. This review focuses on the design strategies, properties of carriers and the drug loading behavior. In addition, the combinational therapeutic effects between carriers and chemotherapeutic agents are also discussed.

  15. Essential drugs for cancer chemotherapy: Memorandum from a WHO Meeting*

    OpenAIRE

    1985-01-01

    Essential drugs for cancer chemotherapy were reviewed in a consultation convened by WHO in Geneva. General principles regarding the proper role of cancer chemotherapeutic agents in relation to other established treatment modalities and the classification of tumours with respect to curative potential are discussed. Curable cancers and those cancers where the cost-benefit ratio clearly favours drug treatment can be managed appropriately using only 14 drugs.

  16. Radiation response of drug-resistant variants of a human breast cancer cell line

    International Nuclear Information System (INIS)

    Lehnert, S.; Greene, D.; Batist, G.

    1989-01-01

    The radiation response of drug-resistant variants of the human tumor breast cancer cell line MCF-7 has been investigated. Two sublines, one resistant to adriamycin (ADRR) and the other to melphalan (MLNR), have been selected by exposure to stepwise increasing concentrations of the respective drugs. ADRR cells are 200-fold resistant to adriamycin and cross-resistant to a number of other drugs and are characterized by the presence of elevated levels of selenium-dependent glutathione peroxidase and glutathione-S-transferase. MLNR cells are fourfold resistant to melphalan and cross-resistant to some other drugs. The only mechanism of drug resistance established for MLNR cells to date is an enhancement of DNA excision repair processes. While the spectrum of drug resistance and the underlying mechanisms differ for the two sublines, their response to radiation is qualitatively similar. Radiation survival curves for ADRR and MLNR cells differ from that for wild-type cells in a complex manner with, for the linear-quadratic model, a decrease in the size of alpha and an increase in the size of beta. There is a concomitant decrease in the size of the alpha/beta ratio which is greater for ADRR cells than for MLNR cells. Analysis of results using the multitarget model gave values of D0 of 1.48, 1.43, and 1.67 Gy for MCF-7 cells are not a consequence of cell kinetic differences between these sublines. Results of split-dose experiments indicated that for both drug-resistant sublines the extent of sublethal damage repair reflected the width of the shoulder on the single-dose survival curve. For MCF-7 cells in the stationary phase of growth, the drug-resistant sublines did not show cross-resistance to radiation; however, delayed subculture following irradiation of stationary-phase cultures increased survival to a greater extent for ADRR and MLNR cells than for wild-type cells

  17. DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance.

    Science.gov (United States)

    Song, Linlin; Jiang, Qiao; Liu, Jianbing; Li, Na; Liu, Qing; Dai, Luru; Gao, Yuan; Liu, Weili; Liu, Dongsheng; Ding, Baoquan

    2017-06-14

    We herein demonstrate that DNA origami can work as a multifunctional platform integrating a chemotherapeutic drug (doxorubicin), gold nanorods and a tumour-specific aptamer MUC-1, to realize the effective circumvention of drug resistance. Doxorubicin (DOX) was loaded efficiently onto DNA origami through base pair intercalation and surface-modified gold nanorods (AuNRs) were assembled onto the DNA origami through DNA hybridization. Due to the active targeting effect of the assembled aptamers, the multifunctional nanostructures achieved increased cellular internalization of DOX and AuNRs. Upon near-infrared (NIR) laser irradiation, the P-glycoprotein (multidrug resistance pump) expression of multidrug resistant MCF-7 (MCF-7/ADR) cells was down-regulated, achieving the synergistically chemotherapeutic (DOX) and photothermal (AuNRs) effects.

  18. Effects of cancer, radiotherapy and cytotoxic drugs on intestinal structure and function

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M T; Spector, M H; Ladman, A J [New Mexico Univ., Albuquerque (USA)

    1979-09-01

    Intestinal malabsorption and the structural changes in the small intestine in relation to cancer, radiotherapy and cytotoxic drugs are reviewed. Primary intestinal malignancies are often associated with malabsorption; further studies have shown that tumours outside the gastrointestinal tract may also be accompanied by changes in intestinal structure resulting in malabsorption. Abdominal radiotherapy of cancer patients has been shown to result in ultrastructural changes in the small intestine, a decrease in intestinal enzyme activity and malabsorption of nutrients. The effects of cytotoxic drugs on the small intestinal structure and function are reviewed in more detail. The drugs discussed include the alkylating agents such as nitrogen mustard, cyclophosphamide, iphosphamide, 1,3-bis (2-chloroethyl)-1-nitrosourea and 1(2-chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea. The effects of antimetabolites such as aminopterin, methotrexate, 5-fluoracil, cytosine arabinoside and 6-mercaptorpurine are also reviewed. Other drugs discussed were adriamycin, vincrinstine sulfate, vinblastine and hydroxyurea. Studies of the effects of combination chemotherapy on small intestinal structure and function are also described. It is concluded that chemotherapeutic drugs and radiation therapy may aggravate a malabsorptive state in view of their toxicity to the small intestinal cell, or may by themselves be responsible for malabsorption with resultant increase in cachexia and weight loss.

  19. Effects of cancer, radiotherapy and cytotoxic drugs on intestinal structure and function

    International Nuclear Information System (INIS)

    Shaw, M.T.; Spector, M.H.; Ladman, A.J.

    1979-01-01

    Intestinal malabsorption and the structural changes in the small intestine in relation to cancer, radiotherapy and cytotoxic drugs are reviewed. Primary intestinal malignancies are often associated with malabsorption; further studies have shown that tumours outside the gastrointestinal tract may also be accompanied by changes in intestinal structure resulting in malabsorption. Abdominal radiotherapy of cancer patients has been shown to result in ultrastructural changes in the small intestine, a decrease in intestinal enzyme activity and malabsorption of nutrients. The effects of cytotoxic drugs on the small intestinal structure and function are reviewed in more detail. The drugs discussed include the alkylating agents such as nitrogen mustard, cyclophosphamide, iphosphamide, 1,3-bis (2-chloroethyl)-1-nitrosourea and 1(2-chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea. The effects of antimetabolites such as aminopterin, methotrexate, 5-fluoracil, cytosine arabinoside and 6-mercaptorpurine are also reviewed. Other drugs discussed were adriamycin, vincrinstine sulfate, vinblastine and hydroxyurea. Studies of the effects of combination chemotherapy on small intestinal structure and function are also described. It is concluded that chemotherapeutic drugs and radiation therapy may aggravate a malabsorptive state in view of their toxicity to the small intestinal cell, or may by themselves be responsible for malabsorption with resultant increase in cachexia and weight loss. (UK)

  20. A review of mechanisms of circumvention and modulation of chemotherapeutic drug resistance.

    Science.gov (United States)

    O'Connor, R

    2009-05-01

    Drug resistance is a serious limitation to the effective treatment of a number of common malignancies. Thirty years of laboratory and clinical research have greatly defined the molecular alterations underlying many drug resistance processes in cancer. Based on this knowledge, strategies to overcome the impact of resistance and increase the efficacy of cancer treatment have been translated from laboratory models to clinical trials. This article reviews laboratory and, in particular, clinical attempts at drug resistance circumvention from early forays in the inhibition of cellular efflux pump-mediated drug resistance through to more selective circumvention agent strategies and into inhibition of the other important mechanisms which can allow cancer cells to survive therapy, such as apoptosis resistance. Despite some promising results to date, resistance inhibition strategies have largely failed due to poor understanding of the pharmacology, dynamics and complexity of the resistance phenotype. With the realisation that new molecularly-targeted agents can also be rendered ineffectual by the actions of resistance mechanisms, a major focus is once again emerging on identifying new strategies/pharmaceuticals which can augment the activity of the arsenal of more conventional cytotoxics and newer targeted anti-cancer drugs. Future tactical directions where old and new resistance strategies may merge to overcome this challenge are discussed.

  1. Using adaptive model predictive control to customize maintenance therapy chemotherapeutic dosing for childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Noble, Sarah L; Sherer, Eric; Hannemann, Robert E; Ramkrishna, Doraiswami; Vik, Terry; Rundell, Ann E

    2010-06-07

    Acute lymphoblastic leukemia (ALL) is a common childhood cancer in which nearly one-quarter of patients experience a disease relapse. However, it has been shown that individualizing therapy for childhood ALL patients by adjusting doses based on the blood concentration of active drug metabolite could significantly improve treatment outcome. An adaptive model predictive control (MPC) strategy is presented in which maintenance therapy for childhood ALL is personalized using routine patient measurements of red blood cell mean corpuscular volume as a surrogate for the active drug metabolite concentration. A clinically relevant mathematical model is developed and used to describe the patient response to the chemotherapeutic drug 6-mercaptopurine, with some model parameters being patient-specific. During the course of treatment, the patient-specific parameters are adaptively identified using recurrent complete blood count measurements, which sufficiently constrain the patient parameter uncertainty to support customized adjustments of the drug dose. While this work represents only a first step toward a quantitative tool for clinical use, the simulated treatment results indicate that the proposed mathematical model and adaptive MPC approach could serve as valuable resources to the oncologist toward creating a personalized treatment strategy that is both safe and effective. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. RCC2 over-expression in tumor cells alters apoptosis and drug sensitivity by regulating Rac1 activation.

    Science.gov (United States)

    Wu, Nan; Ren, Dong; Li, Su; Ma, Wenli; Hu, Shaoyan; Jin, Yan; Xiao, Sheng

    2018-01-10

    Small GTP binding protein Rac1 is a component of NADPH oxidases and is essential for superoxide-induced cell death. Rac1 is activated by guanine nucleotide exchange factors (GEFs), and this activation can be blocked by regulator of chromosome condensation 2 (RCC2), which binds the switch regions of Rac1 to prevent access from GEFs. Three cancer cell lines with up- or down-regulation of RCC2 were used to evaluate cell proliferation, apoptosis, Rac1 signaling and sensitivity to a group of nine chemotherapeutic drugs. RCC2 expression in lung cancer and ovarian cancer were studied using immunochemistry stain of tumor tissue arrays. Forced RCC2 expression in tumor cells blocked spontaneous- or Staurosporine (STS)-induced apoptosis. In contrast, RCC2 knock down in these cells resulted in increased apoptosis to STS treatment. The protective activity of RCC2 on apoptosis was revoked by a constitutively activated Rac1, confirming a role of RCC2 in apoptosis by regulating Rac1. In an immunohistochemistry evaluation of tissue microarray, RCC2 was over-expressed in 88.3% of primary lung cancer and 65.2% of ovarian cancer as compared to non-neoplastic lung and ovarian tissues, respectively. Because chemotherapeutic drugs can kill tumor cells by activating Rac1/JNK pathway, we suspect that tumors with RCC2 overexpression would be more resistant to these drugs. Tumor cells with forced RCC2 expression indeed had significant difference in drug sensitivity compared to parental cells using a panel of common chemotherapeutic drugs. RCC2 regulates apoptosis by blocking Rac1 signaling. RCC2 expression in tumor can be a useful marker for predicting chemotherapeutic response.

  3. Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes

    Science.gov (United States)

    Muzi, Laura; Ménard-Moyon, Cécilia; Russier, Julie; Li, Jian; Chin, Chee Fei; Ang, Wee Han; Pastorin, Giorgia; Risuleo, Gianfranco; Bianco, Alberto

    2015-03-01

    The use of platinum-based chemotherapeutic drugs in cancer therapy still suffers from severe disadvantages, such as lack of appropriate selectivity for tumor tissues and insurgence of multi-drug resistance. Moreover, drug efficacy can be attenuated by several mechanisms such as premature drug inactivation, reduced drug uptake inside cells and increased drug efflux once internalized. The use of functionalized carbon nanotubes (CNTs) as chemotherapeutic drug delivery systems is a promising strategy to overcome such limitations due to their ability to enhance cellular internalization of poorly permeable drugs and thus increase the drug bioavailability at the diseased site, compared to the free drug. Furthermore, the possibility to encapsulate agents in the nanotubes' inner cavity can protect the drug from early inactivation and their external functionalizable surface is useful for selective targeting. In this study, a hydrophobic platinum(iv) complex was encapsulated within the inner space of two different diameter functionalized multi-walled CNTs (Pt(iv)@CNTs). The behavior of the complexes, compared to the free drug, was investigated on both HeLa human cancer cells and RAW 264.7 murine macrophages. Both CNT samples efficiently induced cell death in HeLa cancer cells 72 hours after the end of exposure to CNTs. Although the larger diameter CNTs were more cytotoxic on HeLa cells compared to both the free drug and the smaller diameter nanotubes, the latter allowed a prolonged release of the encapsulated drug, thus increasing its anticancer efficacy. In contrast, both Pt(iv)@CNT constructs were poorly cytotoxic on macrophages and induced negligible cell activation and no pro-inflammatory cytokine production. Both CNT samples were efficiently internalized by the two types of cells, as demonstrated by transmission electron microscopy observations and flow cytometry analysis. Finally, the platinum levels found in the cells after Pt(iv)@CNT exposure demonstrate that they can

  4. Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism.

    Science.gov (United States)

    Joyce, Helena; McCann, Andrew; Clynes, Martin; Larkin, Annemarie

    2015-05-01

    Chemotherapy involving the use of anticancer drugs remains an important strategy in the overall management of patients with metastatic cancer. Acquisition of multidrug resistance remains a major impediment to successful chemotherapy. Drug transporters in cell membranes and intracellular drug metabolizing enzymes contribute to the resistance phenotype and determine the pharmacokinetics of anticancer drugs in the body. ATP-binding cassette (ABC) transporters mediate the transport of endogenous metabolites and xenobiotics including cytotoxic drugs out of cells. Solute carrier (SLC) transporters mediate the influx of cytotoxic drugs into cells. This review focuses on the substrate interaction of these transporters, on their biology and what role they play together with drug metabolizing enzymes in eliminating therapeutic drugs from cells. The majority of anticancer drugs are substrates for the ABC transporter and SLC transporter families. Together, these proteins have the ability to control the influx and the efflux of structurally unrelated chemotherapeutic drugs, thereby modulating the intracellular drug concentration. These interactions have important clinical implications for chemotherapy because ultimately they determine therapeutic efficacy, disease progression/relapse and the success or failure of patient treatment.

  5. Drug-Loaded Microspheres for the Treatment of Liver Cancer: Review of Current Results

    International Nuclear Information System (INIS)

    Kettenbach, Joachim; Stadler, Alfred; Katzler, Isabella v.; Schernthaner, Ruediger; Blum, Melanie; Lammer, Johannes; Rand, Thomas

    2008-01-01

    Transarterial chemoembolization (TACE) involves the emulsification of a chemotherapeutic agent in a viscous drug carrier, delivered intra-arterially to liver tumor for maximum effect. TACE reduces arterial inflow, diminishes washout of the chemotherapeutic agent, and decreases systemic exposure. Despite evidence of some clinical success with TACE, a new type of microspheres with drug-eluting capabilities may offer a precisely controlled and sustainable release of the chemotherapeutic agent into the tumor bed. In animal trials tumor necrosis (approaching 100%) was greatest at 7 days, with significantly lower plasma concentrations of doxorubicin than in control animals treated with doxorubicin intra-arterially. Clinically, drug-eluting microspheres loaded with doxorubicin, either at 75 mg/m 2 or at a fixed dose of 150 mg, were used recently and no severe disorders of the hepatic function were observed postprocedure, while a substantial reduction of the fetoprotein levels occurred. An interim analysis of the first 15 patients from the Hong Kong group at 3 months showed an objective response rate of 61.54% and 53.84% according to EASL criteria and RECIST criteria, respectively, and a survival rate of 93.3%. In this paper we present how to use microspheres loaded with doxorubicin and review their clinical value and preliminary performance for treatment of unresectable liver cancer

  6. Radiation-protective drugs and their reaction mechanisms

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1985-01-01

    The objective of this book is to provide the reader with a concise review of radioprotective drugs and their reaction mechanisms. The first chapter reviews the effect of radiation on biological systems at the atomic, molecular, and subcellular levels. The second chapter discusses endogenous factors that influence radioresistance. Chapter 3 presents the main theme of the book, chemical radioprotection and its mechanisms, and examines the basis of natural radioprotection and how it may be affected by exogenous chemicals. Chapter 4, the Therapy of Radiation Damage, is a very brief general discussion that only touches on some of the experimental approaches to therapy. Chapter 5 contains recommendations for future research. The two appendices list research in progress in the United States and some radioprotective compounds of possible investigational interest. Also included is a brief discussion of structure-activity relationships

  7. Activation of the human immune system by chemotherapeutic or targeted agents combined with the oncolytic parvovirus H-1

    International Nuclear Information System (INIS)

    Moehler, Markus; Sieben, Maike; Roth, Susanne; Springsguth, Franziska; Leuchs, Barbara; Zeidler, Maja; Dinsart, Christiane; Rommelaere, Jean; Galle, Peter R

    2011-01-01

    Parvovirus H-1 (H-1PV) infects and lyses human tumor cells including melanoma, hepatoma, gastric, colorectal, cervix and pancreatic cancers. We assessed whether the beneficial effects of chemotherapeutic agents or targeted agents could be combined with the oncolytic and immunostimmulatory properties of H-1PV. Using human ex vivo models we evaluated the biological and immunological effects of H-1PV-induced tumor cell lysis alone or in combination with chemotherapeutic or targeted agents in human melanoma cells +/- characterized human cytotoxic T-cells (CTL) and HLA-A2-restricted dendritic cells (DC). H-1PV-infected MZ7-Mel cells showed a clear reduction in cell viability of >50%, which appeared to occur primarily through apoptosis. This correlated with viral NS1 expression levels and was enhanced by combination with chemotherapeutic agents or sunitinib. Tumor cell preparations were phagocytosed by DC whose maturation was measured according to the treatment administered. Immature DC incubated with H-1PV-induced MZ7-Mel lysates significantly increased DC maturation compared with non-infected or necrotic MZ7-Mel cells. Tumor necrosis factor-α and interleukin-6 release was clearly increased by DC incubated with H-1PV-induced SK29-Mel tumor cell lysates (TCL) and was also high with DC-CTL co-cultures incubated with H-1PV-induced TCL. Similarly, DC co-cultures with TCL incubated with H-1PV combined with cytotoxic agents or sunitinib enhanced DC maturation to a greater extent than cytotoxic agents or sunitinib alone. Again, these combinations increased pro-inflammatory responses in DC-CTL co-cultures compared with chemotherapy or sunitinib alone. In our human models, chemotherapeutic or targeted agents did not only interfere with the pronounced immunomodulatory properties of H-1PV, but also reinforced drug-induced tumor cell killing. H-1PV combined with cisplatin, vincristine or sunitinib induced effective immunostimulation via a pronounced DC maturation, better cytokine

  8. Radiation retinopathy caused by low dose irradiation and antithyroid drug-induced systemic vasculitis

    International Nuclear Information System (INIS)

    Sonoda, Koh-hei; Ishibashi, Tatsuro

    2005-01-01

    We report on a patient with Graves' disease with radiation retinopathy caused by low-dose irradiation and antithyroid drug-induced antineutrophil cytoplasmic antibody (ANCA)-positive vasculitis. A 38-year-old woman with Graves' disease presented with bilateral blurred vision, micro-aneurysms, telangiectasia, and macular edema. The patient was examined by ophthalmoscopy and fluorescein angiography, and radiation retinopathy was diagnosed. The patient had been treated with low-dose irradiation for her Graves' ophthalmopathy a few years earlier. She also had ANCA-positive vasculitis induced by the antithyroid drug (propylthiouracil, PTU) that had been prescribed for her at that time. Because of multiple avascular areas on both retinas, she was treated by intensive retinal photocoagulation to control progressive retinopathy. The radiation doses used to treat Graves' disease ophthalmopathy are low. Nevertheless, there is still a risk of radiation retinopathy developing in patients with PTU-induced ANCA-positive vasculitis. (author)

  9. 1,3-Bis(2-chloroethyl-1-nitrosourea-loaded bovine serum albumin nanoparticles with dual magnetic resonance–fluorescence imaging for tracking of chemotherapeutic agents

    Directory of Open Access Journals (Sweden)

    Wei KC

    2016-08-01

    Full Text Available Kuo-Chen Wei,1 Feng-Wei Lin,2 Chiung-Yin Huang,1 Chen-Chi M Ma,3 Ju-Yu Chen,1 Li-Ying Feng,1 Hung-Wei Yang2 1Department of Neurosurgery, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, 2Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 3Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China Abstract: To date, knowing how to identify the location of chemotherapeutic agents in the human body after injection is still a challenge. Therefore, it is urgent to develop a drug delivery system with molecular imaging tracking ability to accurately understand the distribution, location, and concentration of a drug in living organisms. In this study, we developed bovine serum albumin (BSA-based nanoparticles (NPs with dual magnetic resonance (MR and fluorescence imaging modalities (fluorescein isothiocyanate [FITC]-BSA-Gd/1,3-bis(2-chloroethyl-1-nitrosourea [BCNU] NPs to deliver BCNU for inhibition of brain tumor cells (MBR 261-2. These BSA-based NPs are water dispersible, stable, and biocompatible as confirmed by XTT cell viability assay. In vitro phantoms and in vivo MR and fluorescence imaging experiments show that the developed FITC-BSA-Gd/BCNU NPs enable dual MR and fluorescence imaging for monitoring cellular uptake and distribution in tumors. The T1 relaxivity (R1 of FITC-BSA-Gd/BCNU NPs was 3.25 mM-1 s-1, which was similar to that of the commercial T1 contrast agent (R1 =3.36 mM-1 s-1. The results indicate that this multifunctional drug delivery system has potential bioimaging tracking of chemotherapeutic agents ability in vitro and in vivo for cancer therapy. Keywords: drug tracking, fluorescence imaging, MR imaging, BSA nanoparticles, cancer therapy

  10. Decreased expression of microRNA let-7i and its association with chemotherapeutic response in human gastric cancer

    Directory of Open Access Journals (Sweden)

    Liu Kun

    2012-10-01

    Full Text Available Abstract Background MicroRNA let-7i has been proven to be down-regulated in many human malignancies and correlated with tumor progression and anticancer drug resistance. Our study aims to characterize the contribution of miRNA let-7i to the initiation and malignant progression of locally advanced gastric cancer (LAGC, and evaluate its possible value in neoadjuvant chemotherapeutic efficacy prediction. Methods Eighty-six previously untreated LAGC patients who underwent preoperative chemotherapy and radical resection were included in our study. Let-7i expression was examined for pairs of cancer tissues and corresponding normal adjacent tissues (NATs, using quantitative RT-PCR. The relationship of let-7i level to clinicopathological characteristics, pathologic tumor regression grades after chemotherapy, and overall survival (OS was also investigated. Results Let-7i was significantly down-regulated in most tumor tissues (78/86: 91% compared with paired NATs (P P =0.024 independently of other clinicopathological factors, including tumor node metastasis (TNM stage (HR = 3.226, P = 0.013, depth of infiltration (HR = 4.167, P P = 0.037. Conclusions These findings indicate that let-7i may be a good candidate for use a therapeutic target and a potential tissue marker for the prediction of chemotherapeutic sensitivity and prognosis in LAGC patients.

  11. Biological in situ Dose Painting for Image-Guided Radiation Therapy Using Drug-Loaded Implantable Devices

    International Nuclear Information System (INIS)

    Cormack, Robert A.; Sridhar, Srinivas; Suh, W. Warren; D'Amico, Anthony V.; Makrigiorgos, G. Mike

    2010-01-01

    Purpose: Implantable devices routinely used for increasing spatial accuracy in modern image-guided radiation treatments (IGRT), such as fiducials or brachytherapy spacers, encompass the potential for in situ release of biologically active drugs, providing an opportunity to enhance the therapeutic ratio. We model this new approach for two types of treatment. Methods and Materials: Radiopaque fiducials used in IGRT, or prostate brachytherapy spacers ('eluters'), were assumed to be loaded with radiosensitizer for in situ drug slow release. An analytic function describing the concentration of radiosensitizer versus distance from eluters, depending on diffusion-elimination properties of the drug in tissue, was developed. Tumor coverage by the drug was modeled for tumors typical of lung stereotactic body radiation therapy treatments for various eluter dimensions and drug properties. Six prostate 125 I brachytherapy cases were analyzed by assuming implantation of drug-loaded spacers. Radiosensitizer-induced subvolume boost was simulated from which biologically effective doses for typical radiosensitizers were calculated in one example. Results: Drug distributions from three-dimensional arrangements of drug eluters versus eluter size and drug properties were tabulated. Four radiosensitizer-loaded fiducials provide adequate radiosensitization for ∼4-cm-diameter lung tumors, thus potentially boosting biologically equivalent doses in centrally located stereotactic body treated lesions. Similarly, multiple drug-loaded spacers provide prostate brachytherapy with flexible shaping of 'biologically equivalent doses' to fit requirements difficult to meet by using radiation alone, e.g., boosting a high-risk region juxtaposed to the urethra while respecting normal tissue tolerance of both the urethra and the rectum. Conclusions: Drug loading of implantable devices routinely used in IGRT provides new opportunities for therapy modulation via biological in situ dose painting.

  12. Influence of vitamins on cytostatic drugs: radiation-chemical and radiation-biological investigations in vitro

    International Nuclear Information System (INIS)

    Heinrich, E.

    2002-03-01

    Many environmental burdens (air pollution, formation of ozone etc.), humans nowadays are exposed to, in connection with unhealthy way of living promote the formation of free radicals e.g. OH and peroxylradicals in the organism. Those show an enormous cell-damaging effect, and can weaken the immune system or cause cancer diseases. The number of humans suffering from different forms of cancer is rising world-wide. Therefore it is necessary to find new and better therapy forms for this illness. The organism has its own protective system, which is able to capture free radicals and make them innocuous to a large extent. Apart from various enzyme systems the antioxidizing vitamins C (ascorbic acid), E (α-tocopherol) and β-carotin play an important role in this process. Now it was of interest whether vitamin B1 (thiamine) also possesses the ability to work as a radiation protector or to influence the effect of different cytostatic drugs. In the context of this thesis the radiation-chemical and radiation-biological behaviour of vitamin B1 was examined under different conditions (in presence and absence of oxygen as well as in media saturated with N 2 O). HPLC analysis were performed to establish radiolysis products. Furthermore the synergistic effect of vitamin B1 on cytostatic drugs (sanazole, mitomycin C) was studied alone or in combination with other vitamins (C, E and β-carotin) by using two different E. coli bacteria strains as a model for living systems. (author)

  13. Nanomaterials potentiating standard chemotherapy drugs' effect

    Science.gov (United States)

    Kazantsev, S. O.; Korovin, M. S.

    2017-09-01

    Application of antitumor chemotherapeutic drugs is hindered by a number of barriers, multidrug resistance that makes effective drug deposition inside cancer cells difficult is among them. Recent research shows that potential efficiency of anticancer drugs can be increased with nanoparticles. This review is devoted to the application of nanoparticles for cancer treatment. Various types of nanoparticles currently used in medicine are reviewed. The nanoparticles that have been used for cancer therapy and targeted drug delivery to damaged sites of organism are described. Also, the possibility of nanoparticles application for cancer diagnosis that could help early detection of tumors is discussed. Our investigations of antitumor activity of low-dimensional nanostructures based on aluminum oxides and hydroxides are briefly reviewed.

  14. Design and Synthesis of Self-Assembled Polymeric Nanoparticles for Cancer Drug Delivery

    Science.gov (United States)

    Logie, Jennifer

    Current chemotherapeutics are plagued by poor solubility and selectivity, requiring toxic excipients in formulations and causing a number of dose limiting side effects. Nanoparticle delivery has emerged as a strategy to more effectively deliver chemotherapeutics to the tumour site. Specifically, polymeric micelles enable the solubilization of hydrophobic small molecule drugs within the core and mitigate the necessity of excipients. Notwithstanding the significant progress made in polymeric micelle delivery, translation is limited by poor stability and low drug loading. In this work, a rational design approach is used to chemically modify poly(D,L-lactide-co-2-methyl-2-carboxytrimethylene carbonate)-graft-poly(ethylene glycol) (P(LA-co-TMCC)-g-PEG) in order to overcome these limitations and effectively deliver drug to tumours. The PEG density of the polymer system was optimized to enhance the stability of our polymeric micelles. Higher PEG densities permitted the lyophilization of micelles and enhanced the serum stability of the system. To increase the drug loading of our system, we facilitated specific intermolecular interactions within the micelle core. For drugs that form colloidal aggregates, such as pentyl-PABC doxazolidine, polymers were used to stabilize the colloidal core against aggregation and protein adsorption. For more challenging molecules, where self-assembly cannot be controlled, such as docetaxel, we modified the polymeric backbone with a peptide from the binding site of the drug to achieve loadings five times higher than those achieved in conventional micelle systems. This novel docetaxel nanoparticle was assessed in vivo in an orthotopic mouse model of breast cancer, where it showed a wider therapeutic index than the conventional ethanolic polysorbate 80 formulation. The improved tolerability of this formulation enabled higher dosing regimens and led to heightened efficacy and survival in this mouse model. Combined, these studies validated P

  15. Alternative chemotherapeutic agents: nitrosoureas, cisplatin, irinotecan.

    Science.gov (United States)

    Carrillo, Jose A; Munoz, Claudia A

    2012-04-01

    Irinotecan, cisplatin, and nitrosoureas have a long history of use in brain tumors, with demonstrated efficacy in the adjuvant treatment of malignant gliomas. In the era of temozolomide with concurrent radiotherapy given as the standard of care, their use has shifted to treatment at progression or recurrence. Now with the widespread use of bevacizumab in the recurrent setting, irinotecan and other chemotherapies are seeing increased use in combination with bevacizumab and alone in the recurrent setting. The activity of these chemotherapeutic agents in brain tumors will likely ensure a place in the armamentarium of neuro-oncologists for many years. Published by Elsevier Inc.

  16. Characterization of the response of a human breast carcinoma cell line (T-47D) to radiation and chemotherapeutic agents

    International Nuclear Information System (INIS)

    Prager, A.; Ben-Hur, E.; Riklis, E.

    1981-01-01

    The response of a human breast carcinoma cell line (T-47D) to various antitumour agents, gamma irradiation, UV light and heat was studied, using the colony-forming ability technique. Combinations of radiation with drugs and heat were also tested. The resulting survival curves corresponded to one of five patterns: simple exponential, biphasic exponential, threshold exponential, exponential plateau and ineffectual. Whereas the cells were particularly sensitive to gamma irradiation, the response to UV light was normal. The patient from whom this cell line originated did not respond to METHOTREXATEsup(R) therapy. The in vitro results correlated with this observation. (author)

  17. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer.

    Science.gov (United States)

    Lv, Li; Liu, Chunxia; Chen, Chuxiong; Yu, Xiaoxia; Chen, Guanghui; Shi, Yonghui; Qin, Fengchao; Ou, Jiebin; Qiu, Kaifeng; Li, Guocheng

    2016-05-31

    The combination of a chemotherapeutic drug with a chemosensitizer has emerged as a promising strategy for cancers showing multidrug resistance (MDR). Herein we describe the simultaneous targeted delivery of two drugs to tumor cells by using biotin-decorated poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles encapsulating the chemotherapeutic drug doxorubicin and the chemosensitizer quercetin (BNDQ). Next, the potential ability of BNDQ to reverse MDR in vitro and in vivo was investigated. Studies demonstrated that BNDQ was more effectively taken up with less efflux by doxorubicin-resistant MCF-7 breast cancer cells (MCF-7/ADR cells) than by the cells treated with the free drugs, single-drug-loaded nanoparticles, or non-biotin-decorated nanoparticles. BNDQ exhibited clear inhibition of both the activity and expression of P-glycoprotein in MCF-7/ADR cells. More importantly, it caused a significant reduction in doxorubicin resistance in MCF-7/ADR breast cancer cells both in vitro and in vivo, among all the groups. Overall, this study suggests that BNDQ has a potential role in the treatment of drug-resistant breast cancer.

  18. Efficacy Comparison of Six Chemotherapeutic Combinations for Osteosarcoma and Ewing's Sarcoma Treatment: A Network Meta-Analysis.

    Science.gov (United States)

    Zhang, Tao; Zhang, Song; Yang, Feifei; Wang, Lili; Zhu, Sigang; Qiu, Bing; Li, Shunhua; Deng, Zhongliang

    2018-01-01

    This study aimed to address the insufficiency of traditional meta-analysis and provide improved guidelines for the clinical practice of osteosarcoma treatment. The heterogeneity of the fixed-effect model was calculated, and when necessary, a random-effect model was adopted. Furthermore, the direct and indirect evidence was pooled together and exhibited in the forest plot and slash table. The surface under the cumulative ranking curve (SUCRA) value was also measured to rank each intervention. Finally, heat plot was introduced to demonstrate the contribution of each intervention and the inconsistency between direct and indirect comparisons. This network meta-analysis included 32 trials, involving a total of 5,626 subjects reported by 28 articles. All the treatments were classified into six chemotherapeutic combinations: dual agent with or without ifosfamide (IFO), multi-agent with or without IFO, and dual agent or multi-agent with IFO and etoposide. For the primary outcomes, both overall survival (OS) and event-free survival (EFS) rates were considered. The multi-agent integrated with IFO and etoposide showed an optimal performance for 5-year OS, 10-year OS, 3-year EFS, 5-year EFS, and 10-year EFS when compared with placebo. The SUCRA value of this treatment was also the highest of these six interventions. However, multi-drug with IFO alone had the highest SUCRA value of 0.652 and 0.516 when it came to relapse and lung-metastasis. It was efficient to some extent, but no significant difference was observed in both outcomes. Chemotherapy, applied as induction or adjuvant treatment with radiation therapy or surgery, is able to increase the survival rate of patients, especially by combining multi-drug with IFO and etoposide, which demonstrated the best performance in both OS and EFS. As for relapse and the lung-metastasis, multiple agents with IFO alone seemed to have the optimal efficiency, although no significant difference was observed here. J. Cell. Biochem. 119: 250

  19. Sensitivity to TOP2 targeting chemotherapeutics is regulated by Oct1 and FILIP1L.

    Directory of Open Access Journals (Sweden)

    Huarui Lu

    Full Text Available Topoisomerase II (TOP2 targeting drugs like doxorubicin and etoposide are frontline chemotherapeutics for a wide variety of solid and hematological malignancies, including breast and ovarian adenocarcinomas, lung cancers, soft tissue sarcomas, leukemias and lymphomas. These agents cause a block in DNA replication leading to a pronounced DNA damage response and initiation of apoptotic programs. Resistance to these agents is common, however, and elucidation of the mechanisms causing resistance to therapy could shed light on strategies to reduce the frequency of ineffective treatments. To explore these mechanisms, we utilized an unbiased shRNA screen to identify genes that regulate cell death in response to doxorubicin treatment. We identified the Filamin A interacting protein 1-like (FILIP1L gene as a crucial mediator of apoptosis triggered by doxorubicin. FILIP1L shares significant similarity with bacterial SbcC, an ATPase involved in DNA repair. FILIP1L was originally described as DOC1, or "down-regulated in ovarian cancer" and has since been shown to be downregulated in a wide variety of human tumors. FILIP1L levels increase markedly through transcriptional mechanisms following treatment with doxorubicin and other TOP2 poisons, including etoposide and mitoxantrone, but not by the TOP2 catalytic inhibitors merbarone or dexrazoxane (ICRF187, or by UV irradiation. This induction requires the action of the OCT1 transcription factor, which relocalizes to the FILIP1L promoter and facilitates its expression following doxorubicin treatment. Our findings suggest that the FILIP1L expression status in tumors may influence the response to anti-TOP2 chemotherapeutics.

  20. Studies on the effects of ionizing radiation and chemotherapeutic agents on hematopoiesis according to the stem-cell kinetics

    International Nuclear Information System (INIS)

    Hirashima, Kunitake

    1975-01-01

    The fundamental problem of the effects of ionizing radiation and antineoplastic drugs on hematopoiesis can be explained by the kinetic study on the hematopoietic stem-cell population. Quantitative comparison of a single x-irradiation and a single administration of several antineoplastic drugs on the stem-cell population was performed by the splenic colony-forming method. The repopulation pattern of stem-cells in mice after a single 150 rad irradiation was compared with that after the administration of corresponding dose of cyclophosphamide. It was demonstrated that the additional administration of cyclophosphamide immediately after the x-irradiation significantly accelerated repopulation of the stem-cell compartment. The mechanism of repopulation of the stem-cell compartment after partial irradiation was also studied according to the immigration theory of stem-cells. An in vitro colony-forming technique for the human bone marrow cells was introduced and compared with other assay methods for stem-cells. From the hematological observations of accidentally irradiated patients, it was determined that the thromboelastogram values were regarded as one of the most useful indicators for detecting the earliest recovery sign of the hematopoietic stem-cells. (Evans, J.)

  1. Development of special medical foods and botanical drugs using HemoHIM for cancer patients during radiation therapy

    International Nuclear Information System (INIS)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran

    2010-02-01

    In vivo evaluation on the reductive effects of HemoHIM on the side-effects of radiation and anticancer drug treatment. - Evaluation on the promoting effects of HemoHIM on the tumor growth inhibitory activities of radiation and anticancer drug(cisplatin) in tumor-bearing mice. - Evaluation of the reductive effects of HemoHIM on the immune suppressive side-effects of radiation and anticancer drug(cisplatin) in tumor-bearing mice. - Evaluation of reductive effects of HemoHIM on the self-renewal tissue(intestine) damage of radiation and anticancer drug(5-FU) in mice. · Assessment of toxicological safety of HemoHIM (GLP) and establishment of analytical methods for active/index components of HemoHIM - Assurance of toxicological safety in single-dose and 3 month repeat-dose toxicity test in rats - Establishment of analytical methods for active/index compounds and content analysis result in various production lots. · Production of Special Medical Food pilot products for cancer patients and development of dosage forms for the natural new drugs. - Establishment of optimal formulations including HemoHIM for the Special Medical Food - Production of Special Medical Food pilot products for clinical test, analysis of nutrients, and official declaration of food production - Establishment of production process of HemoHIM for natural drug and production of pilot products for toxicity tests - Development of drug dosage forms of HemoHIM (tablet, granule, capsule) · Clinical evaluation of HemoHIM on reduction of side-effects of radiation and chemotherapy in cancer patients - Subjects: breast cancer patients who completed surgical operation and chemotherapy, HemoHIM administration during and after the radiation therapy (HemoHIM group: 15, placebo group 13) - Administration period: 3 months from few days before RT commencement - Results - Improvement of immunological biomarkers (immune cell subpopulations, cytokine production) - Reduction of and enhanced recovery from radiation skin

  2. Development of special medical foods and botanical drugs using HemoHIM for cancer patients during radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran

    2010-02-15

    In vivo evaluation on the reductive effects of HemoHIM on the side-effects of radiation and anticancer drug treatment. - Evaluation on the promoting effects of HemoHIM on the tumor growth inhibitory activities of radiation and anticancer drug(cisplatin) in tumor-bearing mice. - Evaluation of the reductive effects of HemoHIM on the immune suppressive side-effects of radiation and anticancer drug(cisplatin) in tumor-bearing mice. - Evaluation of reductive effects of HemoHIM on the self-renewal tissue(intestine) damage of radiation and anticancer drug(5-FU) in mice. {center_dot} Assessment of toxicological safety of HemoHIM (GLP) and establishment of analytical methods for active/index components of HemoHIM - Assurance of toxicological safety in single-dose and 3 month repeat-dose toxicity test in rats - Establishment of analytical methods for active/index compounds and content analysis result in various production lots. {center_dot} Production of Special Medical Food pilot products for cancer patients and development of dosage forms for the natural new drugs. - Establishment of optimal formulations including HemoHIM for the Special Medical Food - Production of Special Medical Food pilot products for clinical test, analysis of nutrients, and official declaration of food production - Establishment of production process of HemoHIM for natural drug and production of pilot products for toxicity tests - Development of drug dosage forms of HemoHIM (tablet, granule, capsule) {center_dot} Clinical evaluation of HemoHIM on reduction of side-effects of radiation and chemotherapy in cancer patients - Subjects: breast cancer patients who completed surgical operation and chemotherapy, HemoHIM administration during and after the radiation therapy (HemoHIM group: 15, placebo group 13) - Administration period: 3 months from few days before RT commencement - Results - Improvement of immunological biomarkers (immune cell subpopulations, cytokine production) - Reduction of and enhanced

  3. Overcoming STC2 mediated drug resistance through drug and gene co-delivery by PHB-PDMAEMA cationic polyester in liver cancer cells.

    Science.gov (United States)

    Cheng, Hongwei; Wu, Zhixian; Wu, Caisheng; Wang, Xiaoyuan; Liow, Sing Shy; Li, Zibiao; Wu, Yun-Long

    2018-02-01

    Stanniocalcin 2 (STC2) overexpression in hepatocellular carcinoma (HCC) could lead to poor prognosis, which might be due to its induced P-glycoprotein and Bcl-2 protein expression level increase. P-glycoprotein or membrane pump induced drug efflux and altered prosurvival Bcl-2 expression are key mechanisms for drug resistance leading to failure of chemotherapy in HCC. However, current strategy to overcome both P-glycoprotein and Bcl-2 protein induced drug resistance was rarely reported. In this work, we utilized an amphiphilic poly[(R)-3-hydroxybutyrate] (PHB)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) cationic polyester to encapsulate chemotherapeutic paclitaxel (PTX) in hydrophobic PHB domain and Bcl-2 convertor Nur77/ΔDBD gene (Nur77 without DNA binding domain for mitochondria localization) by formation of polyplex due to cationic PDMAEMA segment, to effectively inhibit the drug resistant HepG2/STC2 and SMCC7721/STC2 liver cancer cell growth. Thanks to the cationic nanoparticle complex formation ability and high transfection efficiency to express Bcl-2 conversion proteins, PHB-PDMAEMA/PTX@polyplex could partially impair P-glycoprotein induced PTX efflux and activate the apoptotic function of previous prosurvival Bcl-2 protein. This is the pioneer report of cationic amphiphilic polyester PHB-PDMAEMA to codeliver anticancer drug and therapeutic plasmid to overcome both pump and non-pump mediated chemotherapeutic resistance in liver cancer cells, which might be inspiring for the application of polyester in personalized cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    Science.gov (United States)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at phigh Fe

  5. Attenuation of radiation- and drug-induced conditioned taste aversions following area postrema lesions in the rat

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1983-01-01

    The effects of lesions of the area postrema on the acquisition of radiation- and drug-induced (histamine and lithium chloride) conditioned taste aversions were investigated. The results indicated that area postrema lesions caused a significant attenuation of the aversion produced by pairing a novel sucrose solution with radiation (100 rad) or drug injection. Further, the area postrema lesions produced a similar level of attenuation of the taste aversion in all three treatment conditions. The results are discussed in terms of the implications of this finding for defining the mechanisms by which exposure to ionizing radiation can lead to the acquisition of a conditioned taste aversion

  6. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents.

    Science.gov (United States)

    Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V; Bronich, Tatiana K

    2010-04-12

    Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca(2+)) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like nanospheres and demonstrated a time-dependent degradation in the conditions mimicking the intracellular reducing environment. The ionic character of the cores allowed to achieve a very high level of doxorubicin (DOX) loading (50% w/w) into the cross-linked micelles. DOX-loaded degradable cross-linked micelles exhibited more potent cytotoxicity against human A2780 ovarian carcinoma cells as compared to micellar formulations without disulfide linkages. These novel biodegradable cross-linked micelles are expected to be attractive candidates for delivery of anticancer drugs.

  7. Motor reactivity of animals exposed to ionizing radiation and treated with psychotropic drugs

    International Nuclear Information System (INIS)

    Szwaja, S.

    1978-01-01

    The influence of ionizing radiation on motor reactivity of animals and the influence of selected psychotropic drugs (fenactil, haloperidol, relanium) on the changes invoked by ionizing radiation were studied experimentally in rats whose motor reactivity was assessed on the basis of conditional reflexes. In unirradiated rats, fenactil and haloperidol, but not relanium, disordered positive conditional reactions. Roentgen irradiation of the rats with a single dose on the whole body caused a drop in positive conditional reactions. Relanium and fenactil enhanced psychomotor activity of rats after exposure to ionizing radiation. (author)

  8. Motor reactivity of animals exposed to ionizing radiation and treated with psychotropic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Szwaja, S [Uniwersytet Jagiellonski, Krakow (Poland)

    1978-01-01

    The influence of ionizing radiation on motor reactivity of animals and the influence of selected psychotropic drugs (fenactil, haloperidol, relanium) on the changes invoked by ionizing radiation were studied experimentally in rats whose motor reactivity was assessed on the basis of conditional reflexes. In unirradiated rats, fenactil and haloperidol, but not relanium, disordered positive conditional reactions. Roentgen irradiation of the rats with a single dose on the whole body caused a drop in positive conditional reactions. Relanium and fenactil enhanced psychomotor activity of rats after exposure to ionizing radiation.

  9. Role of secondary low energy electrons in radiobiology and chemoradiation therapy of cancer

    Science.gov (United States)

    Sanche, Léon

    2009-05-01

    With the chemotherapeutic agent cisplatin bound to DNA, damage to the molecule by electrons of low and high energies increases by factors varying from 1.3 to 4.4. The enhancement in bond dissociation is triggered by modifications of the interaction of low energy electrons with DNA. From our understanding of the latter, the present Letter attempts to explain the basic radiation-damage mechanism responsible for the efficiency of the concomitant chemoradiation treatment of cancer. Such a basic comprehension of the direct effects of radiation may have implications in the design of new chemotherapeutic and radiosensitizing drugs, as well as in the development of more efficient protocols in chemoradiation therapy.

  10. Methotrexate and epirubicin conjugates as potential antitumor drugs

    Directory of Open Access Journals (Sweden)

    Szymon Wojciech Kmiecik

    2017-07-01

    Full Text Available Introduction: The use of hybrid molecules has become one of the most significant approaches in new cytotoxic drug design. This study describes synthesis and characterization of conjugates consisting of two well-known and characterized chemotherapeutic agents: methotrexate (MTX and epirubicin (EPR. The synthesized conjugates combine two significant anticancer strategies: combinatory therapy and targeted therapy. These two drugs were chosen because they have different mechanisms of action, which can increase the anticancer effect of the obtained conjugates. MTX, which is a folic acid analog, has high cytotoxic properties and can serve as a targeting moiety that can reach folate receptors (FRs overexpresing tumor cells. Combination of nonselective drugs such as EPR with MTX can increase the selectivity of the obtained conjugates, while maintaining the high cytotoxic properties.Materials and methods: Conjugates were purified by RP-HPLC and the structure was investigated by MS and MS/MS methods. The effect of the conjugates on proliferation of LoVo, LoVo/Dx, MCF-7 and MV-4-11 human cancer cell lines was determined by SRB or MTT assay.Results: The conjugation reaction results in the formation of monosubstituted (α, γ and disubstituted MTX derivatives. In vitro proliferation data demonstrate that the conjugates synthesized in our study show lower cytotoxic properties than both chemotherapeutics used alone.Discussion: Epirubicin cytotoxicity was not observed in obtained conjugates. Effective drugs release after internalization needs further investigation.

  11. Polymer matrices obtained by ionizing radiation for using in controlled drug delivery systems

    International Nuclear Information System (INIS)

    Martellini, Flavia

    1998-01-01

    Two kinds of controlled drug delivery system were obtained by gamma radiation induced polymerization. One of the system was obtained from an acrylic derivative of acetaminophen (40-hydroxyacetanilide), by copolymerization of 4-(acryloyloxy) acetanilide and N,N-dimethylacrylamide (DMAA) in dimethylformamide solution with 0,16 kGy/h dose rate and 54 Gy dose. The values of reactivity rate, r-D MAA = 0,31 ± 0,02 e r AOA -0,07 ± 0,12, were determined by Fineman-Ross method. The acetaminophen hydrolysis was carried out in alkaline and enzymatic (trypsin) media. Another kind of drug delivery system studied was solvent controlled type, being the drug immobilized in the hydrogel,. The hydrogels prepared by radiation polymerization of acryloyl-L-propine methylester (A-Pro-OMe) with 10 Gy dose, showed thermosensible property, swelling or shrinking in water with decreased or increased temperatures. The hydrogels were obtained with different crosslink density, trimethylolpropane trimethacrylate, and the monomers N, N-dimethyl acrylamide (DMAA) and 2-cyanoethyl acrylate to study the influence of the composition in the drug delivery rate. It was verified that the porous size besides being a characteristic of the matrix composition, it was also temperature dependent (thermosensible). The analgesic drug acetaminophen was immobilized by entrapment and by physical adsorption into the hydrogels matrices for 'in vitro' study. The insulin was immobilized by adsorption for 'in vivo' study. (author)

  12. In vitro radiation and chemotherapy sensitivity of established cell lines of human small cell lung cancer and its large cell morphological variants

    International Nuclear Information System (INIS)

    Carney, D.N.; Mitchell, J.B.; Kinsella, T.J.

    1983-01-01

    The in vitro response to radiation and chemotherapeutic drugs of cell lines established from 7 patients with small cell (SC) lung cancer were tested using a soft agarose clonogenic assay. Five cell lines retained the typical morphological and biochemical amine precursor uptake decarboxylation characteristics of SC, while two cell lines had undergone ''transformation'' to large cell (LC) morphological variants with loss of amine precursor uptake decarboxylation cell characteristics of SC. The radiation survival curves for the SC lines were characterized by D0 values ranging from 51 to 140 rads and extrapolation values (n) ranging from 1.0 to 3.3. While the D0 values of the radiation survival curves of the LC variants were similar (91 and 80 rads), the extrapolation values were 5.6 and 11.1 In vitro chemosensitivity testing of the cell lines revealed an excellent correlation between prior treatment status of the patient and in vitro sensitivity or resistance. No correlation was observed between in vitro chemosensitivity and radiation response. These data suggest that transformation of SC to LC with loss of amine precursor uptake and decarboxylation characteristics is associated with a marked increase in radiation resistance (n) in vitro. The observation of a 2- to 5-fold increase in survival of the LC compared to the SC lines following 200 rads suggests that the use of larger daily radiation fractions and/or radiation-sensitizing drugs might lead to a significantly greater clinical response in patients with LC morphology. This clinical approach may have a major impact on patient response and survival

  13. Approaches to drug resistance in solid tumors : with emphasis on lung cancer

    NARCIS (Netherlands)

    Bakker, Marleen

    2005-01-01

    De novo or acquired resistance of tumor cells to anticancer agents remains a major problem for the therapeutic efficacy of chemotherapeutic drugs. Most solid tumors are intrinsically insensitive or acquire resistance after initial response to chemotherapy. Different mechanisms seem to play a role in

  14. Catabolism of pyrimidines in yeast: A tool to understand degradation of anticancer drugs

    DEFF Research Database (Denmark)

    Andersen, Gorm; Merico, A.; Bjornberg, O.

    2006-01-01

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides/antib...

  15. Radiosensitizers: rationale and potential

    International Nuclear Information System (INIS)

    Brown, J.M.

    1981-01-01

    This paper briefly reviews agents that are capable of sensitizing hypoxic cells to radiation and chemotherapeutic agents. The first part is a synopsis of the development of hypoxic radiosensitizers, which concludes that misonidazole can be effective against human tumors. Unfortunately, neurotoxicity limits its effectiveness in humans because the dose that can be given in conjunction with daily fractionated radiation is five to ten times lower than is required for full radiosensitization of the hypoxic cells. The second part covers our recent efforts to develop a drug that does not produce such limiting neurotoxicity. The primary rationale of our program was to synthesize a drug with a short plasma half-life that was too hydrophilic to cross the blood-brain barrier but was able to penetrate tumors and radiosensitize hypoxic cells. From this program, a new drug, SR-2508, has been found that is as efficient as misonidazole in its radiosensitizing ability, but is four to ten times less toxic. Finally, the potential of radiosensitizers not only as agents that can sensitize tumor cells to radiation, but also as agents that can specifically sensitize tumors to chemotherapeutic agents, is discussed. In addition, these drugs may be potential cytotoxic agents that produce toxicity only in solid tumors

  16. Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs

    Directory of Open Access Journals (Sweden)

    Lokeshwar Bal L

    2009-07-01

    Full Text Available Abstract Background The progression of all cancers is characterized by increased-cell proliferation and decreased-apoptosis. The androgen-independent prostate cancer (AIPC is the terminal stage of the disease. Many chemokines and cytokines are suspects to cause this increased tumor cell survival that ultimately leads to resistance to therapy and demise of the host. The AIPC cells, but not androgen-responsive cells, constitutively express abundant amount of the pro-inflammatory chemokine, Interleukin-8 (IL-8. The mechanism of IL-8 mediated survival and therapeutic resistance in AIPC cells is unclear at present. The purpose of this report is to show the pervasive role of IL-8 in malignant progression of androgen-independent prostate cancer (AIPC and to provide a potential new therapeutic avenue, using RNA interference. Results The functional consequence of IL-8 depletion in AIPC cells was investigated by RNA interference in two IL-8 secreting AIPC cell lines, PC-3 and DU145. The non-IL-8 secreting LNCaP and LAPC-4 cells served as controls. Cells were transfected with RISC-free siRNA (control or validated-pool of IL-8 siRNA. Transfection with 50 nM IL-8 siRNA caused >95% depletion of IL-8 mRNA and >92% decrease in IL-8 protein. This reduction in IL-8 led to cell cycle arrest at G1/S boundary and decreases in cell cycle-regulated proteins: Cyclin D1 and Cyclin B1 (both decreased >50% and inhibition of ERK1/2 activity by >50%. Further, the spontaneous apoptosis was increased by >43% in IL-8 depleted cells, evidenced by increases in caspase-9 activation and cleaved-PARP. IL-8 depletion caused significant decreases in anti-apoptotic proteins, BCL-2, BCL-xL due to decrease in both mRNA and post-translational stability, and increased levels of pro-apoptotic BAX and BAD proteins. More significantly, depletion of intracellular IL-8 increased the cytotoxic activity of multiple chemotherapeutic drugs. Specifically, the cytotoxicity of Docetaxel

  17. Classification of prophylactic antiradiation drugs as the consistency of conceptual basis of current radiation pharmacology

    International Nuclear Information System (INIS)

    Vasin, M.F

    1999-01-01

    The consistency of the classification of prophylactic antiradiation drugs have been given consideration as history of their discovery, theory of the radioprotection mechanisms and their use in applied medicine. Prophylactic drugs consists of radioprotectors with short-term of long-term action, drugs stimulating radioresistance, the ones suppressing symptoms of primary radiation reaction, the ones of early detoxication, the ones for adsorption and elimination of radionuclides from an organism [ru

  18. Molecular and cellular determinants of the cyto-toxicity in combined ionizing radiations and anti-tumoral drugs exposure

    International Nuclear Information System (INIS)

    Hennequin, Ch.

    1998-01-01

    The radio-chemo-therapy combinations represent a major research way in oncology. The knowledge of the interaction mechanisms can contribute to an improvement of the clinical protocols and to a knowledge of the action processes of drugs and radiations. Three different drugs have been studied - etoposide, camptothecine and taxoids (paclitaxel, docetaxel) - on different in vitro cell descendants (V79, HeLa and SQ-20B). For etoposide, the isobolic analysis shows an additive interaction in slightly deferred exposure but a strong supra-additive interaction in concomitant exposure. A sensitization to the drug effect inside the radio-induced G2 block is also noticed. The supra-additivity in concomitant exposure is linked with the alteration of the sub-lethal lesions repair. For camptothecine, the analysis of survival curves shows a strictly additive interaction (mode II) in concomitant exposure. However, the association becomes additive at low radiation dose rates (1 Gy/h). This synergy is the result of a cyto-kinetic effect corresponding to the radio-induced accumulation of cells inside the most drug sensible compartment. With taxoids, it is shown that all kinds of interactions are possible, from a pronounced antagonism to a significant synergy. The effect depends on drugs and radiation doses and on the cells descendants. Paclitaxel and docetaxel present major differences of phase specificity: the first one targets the mitosis transition, while the second one targets the S phase. These results have permitted to precise some of the mechanisms involved in drugs and radiations synergy. In particular, it is shown that two major mechanisms, the cyto-kinetic cooperation and the alteration of DNA lesions repair, determine the effect of combined treatments on proliferating cells. (J.S.)

  19. State-of-the-Art Materials for Ultrasound-Triggered Drug Delivery

    Science.gov (United States)

    Sirsi, Shashank; Borden, Mark

    2014-01-01

    Ultrasound is a unique and exciting theranostic modality that can be used to track drug carriers, trigger drug release and improve drug deposition with high spatial precision. In this review, we briefly describe the mechanisms of interaction between drug carriers and ultrasound waves, including cavitation, streaming and hyperthermia, and how those interactions can promote drug release and tissue uptake. We then discuss the rational design of some state-of-the-art materials for ultrasound-triggered drug delivery and review recent progress for each drug carrier, focusing on the delivery of chemotherapeutic agents such as doxorubicin. These materials include nanocarrier formulations, such as liposomes and micelles, designed specifically for ultrasound-triggered drug release, as well as microbubbles, microbubble-nanocarrier hybrids, microbubble-seeded hydrogels and phase-change agents. PMID:24389162

  20. Histopathologic and Radiologic Assessment of Chemotherapeutic Response in Ewing's Sarcoma: A Review.

    Science.gov (United States)

    García-Castellano, José M; Atallah Yordi, Nagib; Reyes, Carolina; Healey, John H

    2012-01-01

    Ewing's sarcoma is a highly malignant tumor that metastasizes rapidly and is thus associated with a low survival rate. The intensification of chemotherapy has been shown to improve the overall survival of patients with Ewing's sarcoma. However, intensified chemotherapy can lead to increased toxicity or even the development of secondary malignancies. The stratification of patients with Ewing's sarcoma into "good" and "poor" responders may help guide the administration of progressively more intensified chemotherapy. Thus, an accurate assessment of the chemotherapeutic response, as well as the extent of chemotherapy-induced tumor necrosis, is critical for avoiding potential treatment-related complications in these patients. This paper reviews the methods currently used to evaluate chemotherapeutic response in Ewing's sarcoma, focusing specifically on histopathologic and imaging analyses, and discusses novel therapies and imaging methods that may help improve the overall survival of these patients.

  1. The exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches

    Directory of Open Access Journals (Sweden)

    Vivek Agrahari

    2017-01-01

    Full Text Available Delivering therapeutics to the central nervous system (CNS and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in providing significant benefits to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier (BBB. The BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nanotherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer significant advantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are briefly discussed. The drug transport mechanisms at the BBB are outlined. The approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic approaches for their enhanced clinical application in brain-tumor therapy are discussed.

  2. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity

    Science.gov (United States)

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-06-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer.

  3. Porous Polymer Drug-Eluting Coating Prepared by Radiation Induced Polymerization

    International Nuclear Information System (INIS)

    Veres, M.; Beiler, B.; Himics, L.; Tóth, S.; Koós, M.

    2010-01-01

    Many areas of modern medicine are almost unimaginable without the use of different kinds of implants. They used as replacements, supports, auxiliary devices etc. for various parts or functions of the body. Their use has many advantages, however there could be some drawbacks too, like the possibility of rejection, inflammation and other side-effects. Many of these drawbacks are directly related to the materials used for the implant fabrication. Coatings are widely used to eliminate the unwanted effects appearing after the implantation. In addition to the protection and separation of tissues from the implant material they could also enhance the functionality and the acceptance of the artificial device and also promote the regeneration of the tissues after the intervention. Drug-eluting coatings are a good example for the latter. By delivery and controlled elution of drugs they could actively suppress inflammatory reactions, allergy and rejection of the implant, and their activity is localized to the place where these effects could mainly occur – to the region of the implant. This project is aimed to develop a drug-eluting porous polymer coating by radiation induced polymerization that can be used in different medical implants. The primary objects for this research are coronary stents however these porous layers could have perspective in other types of medical devices too. The main objectives are to develop a method for coating the surface of medical grade metallic alloy wires, plates and tubes with a porous polymer nanocomposite layer prepared by radiation induced polymerization and to characterize the obtained coatings

  4. Porous Polymer Drug-Eluting Coating Prepared by Radiation Induced Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Veres, M.; Beiler, B.; Himics, L.; Tóth, S.; Koós, M., E-mail: vm@szfki.hu [Hungarian Academy of Sciences, Research Institute for Solid State Physics and Optics, Department of Laser Applications, Konkoly Thege Miklós ut 29-33, 1121 Budapest, P.O. Box 49, 1525 Budapest (Hungary)

    2010-07-01

    Many areas of modern medicine are almost unimaginable without the use of different kinds of implants. They used as replacements, supports, auxiliary devices etc. for various parts or functions of the body. Their use has many advantages, however there could be some drawbacks too, like the possibility of rejection, inflammation and other side-effects. Many of these drawbacks are directly related to the materials used for the implant fabrication. Coatings are widely used to eliminate the unwanted effects appearing after the implantation. In addition to the protection and separation of tissues from the implant material they could also enhance the functionality and the acceptance of the artificial device and also promote the regeneration of the tissues after the intervention. Drug-eluting coatings are a good example for the latter. By delivery and controlled elution of drugs they could actively suppress inflammatory reactions, allergy and rejection of the implant, and their activity is localized to the place where these effects could mainly occur – to the region of the implant. This project is aimed to develop a drug-eluting porous polymer coating by radiation induced polymerization that can be used in different medical implants. The primary objects for this research are coronary stents however these porous layers could have perspective in other types of medical devices too. The main objectives are to develop a method for coating the surface of medical grade metallic alloy wires, plates and tubes with a porous polymer nanocomposite layer prepared by radiation induced polymerization and to characterize the obtained coatings.

  5. Combined Effects of Fe3O4 Nanoparticles and Chemotherapeutic Agents on Prostate Cancer Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Kanako Kojima

    2018-01-01

    Full Text Available Patients with metastatic castration-resistant prostate cancer (mCRPC have poor outcomes. Docetaxel (DTX-based therapy is a current standard treatment for patients with mCRPC. Approaches combining conventional chemotherapeutic agents and nanoparticles (NPs, particularly iron oxide NPs, may overcome the serious side effects and drug resistance, resulting in the establishment of new therapeutic strategies. We previously reported the combined effects of Fe3O4 nanoparticles (Fe3O4 NPs with DTX on prostate cancer cells in vitro. In this study, we investigated the combined effects of Fe3O4 NPs and rapamycin or carboplatin on prostate cancer cells in vitro. Treatment of DU145 and PC-3 cells with Fe3O4 NPs increased intracellular reactive oxygen species (ROS levels in a concentration-dependent manner. Treatment of both cell lines with 100 μg/mL Fe3O4 NPs for 72 h resulted in significant inhibition of cell viability with a different inhibitory effect. Combination treatments with 100 µg/mL Fe3O4 NPs and 10 µM carboplatin or 10 nM rapamycin in DU145 and PC-3 cells significantly decreased cell viability. Synergistic effects on apoptosis were observed in PC-3 cells treated with Fe3O4 NPs and rapamycin and in DU145 cells with Fe3O4 NPs and carboplatin. These results suggest the possibility of combination therapy with Fe3O4 NPs and various chemotherapeutic agents as a novel therapeutic strategy for patients with mCRPC.

  6. Alters Intratumoral Drug Distribution and Affects Therapeutic Synergy of Antiangiogenic Organoselenium Compound

    Directory of Open Access Journals (Sweden)

    Youcef M. Rustum

    2010-01-01

    Full Text Available Tumor differentiation enhances morphologic and microvascular heterogeneity fostering hypoxia that retards intratumoral drug delivery, distribution, and compromise therapeutic efficacy. In this study, the influence of tumor biologic heterogeneity on the interaction between cytotoxic chemotherapy and selenium was examined using a panel of human tumor xenografts representing cancers of the head and neck and lung along with tissue microarray analysis of human surgical samples. Tumor differentiation status, microvessel density, interstitial fluid pressure, vascular phenotype, and drug delivery were correlated with the degree of enhancement of chemotherapeutic efficacy by selenium. Marked potentiation of antitumor activity was observed in H69 tumors that exhibited a well-vascularized, poorly differentiated phenotype. In comparison, modulation of chemotherapeutic efficacy by antiangiogenic selenium was generally lower or absent in well-differentiated tumors with multiple avascular hypoxic, differentiated regions. Tumor histomorphologic heterogeneity was found prevalent in the clinical samples studied and represents a primary and critical physiological barrier to chemotherapy.

  7. Receptor-targeted, drug-loaded, functionalized graphene oxides for chemotherapy and photothermal therapy

    Directory of Open Access Journals (Sweden)

    Thapa RK

    2016-06-01

    Full Text Available Raj Kumar Thapa,1 Ju Yeon Choi,1 Bijay Kumar Poudel,1 Han-Gon Choi,2 Chul Soon Yong,1 Jong Oh Kim1 1College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsanbuk-do, South Korea; 2College of Pharmacy, Hanyang University, Ansan, South Korea Abstract: Cancer is one of the leading causes of death worldwide. Although different chemotherapeutic agents have been developed to treat cancers, their use can be limited by low cellular uptake, drug resistance, and side effects. Hence, targeted drug delivery systems are continually being developed in order to improve the efficacy of chemotherapeutic agents. The main aim of this study was to prepare folic acid (FA-conjugated polyvinyl pyrrolidone-functionalized graphene oxides (GO (FA-GO for targeted delivery of sorafenib (SF. GO were prepared using a modified Hummer’s method and subsequently altered to prepare FA-GO and SF-loaded FA-GO (FA-GO/SF. Characterization of GO derivatives was done using ultraviolet/visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, zeta potential measurements, and determination of in vitro drug release. Hemolytic toxicity, in vitro cytotoxicity, cellular uptake, and apoptotic effects of FA-GO/SF were also investigated. The results revealed that GO was successfully synthesized and that further transformation to FA-GO improved the stability and SF drug-loading capacity. In addition, the enhanced SF release under acidic conditions suggested possible benefits for cancer treatment. Conjugation of FA within the FA-GO/SF delivery system enabled targeted delivery of SF to cancer cells expressing high levels of FA receptors, thus increasing the cellular uptake and apoptotic effects of SF. Furthermore, the photothermal effect achieved by exposure of GO to near-infrared irradiation enhanced the anticancer effects of FA-GO/SF. Taken together, FA-GO/SF is a potential carrier for targeted delivery of chemotherapeutic agents in cancer

  8. Functional genetic research for radiation and drug resistant adenocarcinoma and its application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Chul, Shin Byung; Kook, Park Hyo; Lee, Hee Min

    2012-01-15

    The work scope of 'Functional genetic research for radiation and drug resistant adenocarcinoma and its application' had contained the research about effect of transgelin(SM22a), neurotensin, metallothionein-1G transgelin-2 genes on the cell death triggered ionizing radiation, cisplatin, MMS, luteolin and H{sub 2}O{sub 2}(toxic agents), which are highly expressed in radiation-induced mutant cells. In this study, to elucidate the role of these proteins in the ionizing radiation (toxic chemicals)-induced cell death, we utilized sensed (or antisense, small interference RNA) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation, H{sub 2}O{sub 2} and toxic chemicals. We also investigated the functions of downstream target genes of transgelin such as IGF-1Rβ/PI3K/AKT pathway and transgelin/metallothioneine in A-549 and HepG2 cells because such target genes are able to potentiate the cell-killing or cell protecting effects against radiation.

  9. Functional genetic research for radiation and drug resistant adenocarcinoma and its application

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Chul, Shin Byung; Kook, Park Hyo; Lee, Hee Min

    2012-01-01

    The work scope of 'Functional genetic research for radiation and drug resistant adenocarcinoma and its application' had contained the research about effect of transgelin(SM22a), neurotensin, metallothionein-1G transgelin-2 genes on the cell death triggered ionizing radiation, cisplatin, MMS, luteolin and H 2 O 2 (toxic agents), which are highly expressed in radiation-induced mutant cells. In this study, to elucidate the role of these proteins in the ionizing radiation (toxic chemicals)-induced cell death, we utilized sensed (or antisense, small interference RNA) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation, H 2 O 2 and toxic chemicals. We also investigated the functions of downstream target genes of transgelin such as IGF-1Rβ/PI3K/AKT pathway and transgelin/metallothioneine in A-549 and HepG2 cells because such target genes are able to potentiate the cell-killing or cell protecting effects against radiation

  10. Combining radiation with hyperthermochemotherapy (Cis-DDP) for advanced, recurrent esophageal cancer

    International Nuclear Information System (INIS)

    Endou, Masaru; Suzuki, Hirotoshi; Nakashima, Yukihiro

    1991-01-01

    We treated 20 cases of squamous cell carcinoma of the esophagus, combining radiation, chemotherapy and hyperthermia. Hyperthermia combining chemotherapy consisting of cis-dichlorodiamine platinum (25∼75 mg/body, every week) in the form continuous intravenous infusion was given. The hyperthermochemotherapy only had limited effectiveness but good response was noted for post-operative and post-irradiative adjuvant hyperthermochemotherapy. Heating could alleviate some chemotherapeutic side effects, especially renal damage or audiometric disturbance. Furthermore, hyperthermia relieved some radiation side effects, such as radiation-induced scleroderma probably due to hypercirculation. We believe that combining hyperthermochemotherapy with radiation is promising for advanced, recurrent esophageal cancer. (author)

  11. Combining radiation with hyperthermochemotherapy (Cis-DDP) for advanced, recurrent esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Endou, Masaru; Suzuki, Hirotoshi; Nakashima, Yukihiro (Saint Marianna Univ., Kawasaki, Kanagawa (Japan). School of Medicine) (and others)

    1991-10-01

    We treated 20 cases of squamous cell carcinoma of the esophagus, combining radiation, chemotherapy and hyperthermia. Hyperthermia combining chemotherapy consisting of cis-dichlorodiamine platinum (25{approx}75 mg/body, every week) in the form continuous intravenous infusion was given. The hyperthermochemotherapy only had limited effectiveness but good response was noted for post-operative and post-irradiative adjuvant hyperthermochemotherapy. Heating could alleviate some chemotherapeutic side effects, especially renal damage or audiometric disturbance. Furthermore, hyperthermia relieved some radiation side effects, such as radiation-induced scleroderma probably due to hypercirculation. We believe that combining hyperthermochemotherapy with radiation is promising for advanced, recurrent esophageal cancer. (author).

  12. Resistance to different classes of drugs is associated with impaired apoptosis in childhood acute lymphoblastic leukemia

    NARCIS (Netherlands)

    A. Holleman (Amy); M.L. den Boer (Monique); K.M. Kazemier (Karin); G.E. Janka-Schaub (Gritta); R. Pieters (Rob)

    2003-01-01

    textabstractResistance of leukemic cells to chemotherapeutic agents is associated with an unfavorable outcome in pediatric acute lymphoblastic leukemia (ALL). To investigate the underlying mechanisms of cellular drug resistance, the activation of various apoptotic parameters in

  13. Risk factors for the leakage of chemotherapeutic agents into systemic circulation after transcatheter arterial chemoembolization of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Ming-Yen Hsieh

    2011-10-01

    Full Text Available This prospective study was to investigate the possible risk factors for the leakage of chemotherapeutic agent into the systemic circulation after transcatheter arterial chemoembolization (TACE of hepatocellular carcinoma (HCC. Peripheral plasma concentrations of chemotherapeutic agents were determined at 1 hour and 72 hours after TACE by high-performance liquid chromatography in 53 patients. HCC were divided into three types namely single nodule (<5 cm, multiple nodules (all <5 cm, and main nodule measuring 5 cm or more. Forty-four patients (83% showed detectable chemotherapeutic concentrations within 72 hours after TACE. Patients with single nodular-type HCC had lower incidence of detectable plasma chemotherapeutic agents after TACE than the other two groups (all p<0.05. The injected doses of lipiodol, epirubicin, and mitomycin C were lower in patients without detection than in patients with detectable chemotherapeutic agents (all p<0.05. Multivariate logistic regression showed that tumor type and injected dose of lipiodol were two independent risk factors for the leakage of mitomycin C at 1 hour after TACE (all p<0.05, and the injected dose of mitomycin C was the risk factor for the leakage of epirubicin at 1 hour after TACE (p<0.05. In conclusion, multiple nodular type and large nodule measuring 5 cm or more have a risk of leakage of mitomycin C after TACE. Injected dose of lipiodol and mitomycin C as risk factor for the leakage of mitomycin C and epirubicin respectively may be because of competition of their injected volume within the limited space of target.

  14. Drug Interactions in Childhood Cancer

    Science.gov (United States)

    Haidar, Cyrine; Jeha, Sima

    2016-01-01

    Children with cancer are increasingly benefiting from novel therapeutic strategies and advances in supportive care, as reflected in improvements in both their survival and quality of life. However, the continuous emergence of new oncology drugs and supportive care agents has also increased the possibility of deleterious drug interactions and healthcare providers need to practice extreme caution when combining medications. In this review, we discuss the most common interactions of chemotherapeutic agents with supportive care drugs such as anticonvulsants, antiemetics, uric acid–lowering agents, acid suppressants, antimicrobials, and pain management medications in pediatric oncology patients. As chemotherapy agents interact not only with medications but also with foods and herbal supplements that patients receive during the course of their treatment, we also briefly review such interactions and provide recommendations to avoid unwanted and potentially fatal interactions in children with cancer. PMID:20869315

  15. Toxicophore exploration as a screening technology for drug design and discovery: techniques, scope and limitations.

    Science.gov (United States)

    Singh, Pankaj Kumar; Negi, Arvind; Gupta, Pawan Kumar; Chauhan, Monika; Kumar, Raj

    2016-08-01

    Toxicity is a common drawback of newly designed chemotherapeutic agents. With the exception of pharmacophore-induced toxicity (lack of selectivity at higher concentrations of a drug), the toxicity due to chemotherapeutic agents is based on the toxicophore moiety present in the drug. To date, methodologies implemented to determine toxicophores may be broadly classified into biological, bioanalytical and computational approaches. The biological approach involves analysis of bioactivated metabolites, whereas the computational approach involves a QSAR-based method, mapping techniques, an inverse docking technique and a few toxicophore identification/estimation tools. Being one of the major steps in drug discovery process, toxicophore identification has proven to be an essential screening step in drug design and development. The paper is first of its kind, attempting to cover and compare different methodologies employed in predicting and determining toxicophores with an emphasis on their scope and limitations. Such information may prove vital in the appropriate selection of methodology and can be used as screening technology by researchers to discover the toxicophoric potentials of their designed and synthesized moieties. Additionally, it can be utilized in the manipulation of molecules containing toxicophores in such a manner that their toxicities might be eliminated or removed.

  16. Histopathologic and Radiologic Assessment of Chemotherapeutic Response in Ewing's Sarcoma: A Review

    Directory of Open Access Journals (Sweden)

    José M. García-Castellano

    2012-01-01

    Full Text Available Ewing’s sarcoma is a highly malignant tumor that metastasizes rapidly and is thus associated with a low survival rate. The intensification of chemotherapy has been shown to improve the overall survival of patients with Ewing’s sarcoma. However, intensified chemotherapy can lead to increased toxicity or even the development of secondary malignancies. The stratification of patients with Ewing’s sarcoma into “good” and “poor” responders may help guide the administration of progressively more intensified chemotherapy. Thus, an accurate assessment of the chemotherapeutic response, as well as the extent of chemotherapy-induced tumor necrosis, is critical for avoiding potential treatment-related complications in these patients. This paper reviews the methods currently used to evaluate chemotherapeutic response in Ewing’s sarcoma, focusing specifically on histopathologic and imaging analyses, and discusses novel therapies and imaging methods that may help improve the overall survival of these patients.

  17. Drug delivery approaches for breast cancer

    Directory of Open Access Journals (Sweden)

    Singh SK

    2017-08-01

    Full Text Available Santosh Kumar Singh,1 Shriti Singh,2 James W Lillard Jr,1 Rajesh Singh1 1Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA; 2Department of Kriya Sharir, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India Abstract: Breast cancer is one of the most common cancers affecting women worldwide. The controlled release of drugs to the precise site of the disease using a nanocarrier vehicle increases the therapeutic efficiency of the drugs. Nanotechnology-based approaches used to endorse clinical improvement from a disease also help to understand the interaction of malignant cells with their microenvironment. Receptor-based targeting is another approach for drug delivery which is undergoing clinical trials. Nanoparticles (NPs delivery has been proven to promise high loading capacity, less toxicity, and stability of the drugs or biomolecules compared to traditional chemotherapeutic drugs. The goal of this review is to present the current problems of breast cancer therapy and discuss the NP-based targeting to overcome the hurdles of conventional drug therapy approach. Keywords: breast cancer, nanoparticles, drug delivery systems

  18. The role of exosomes and miRNAs in drug-resistance of cancer cells.

    Science.gov (United States)

    Bach, Duc-Hiep; Hong, Ji-Young; Park, Hyen Joo; Lee, Sang Kook

    2017-07-15

    Chemotherapy, one of the principal approaches for cancer patients, plays a crucial role in controlling tumor progression. Clinically, tumors reveal a satisfactory response following the first exposure to the chemotherapeutic drugs in treatment. However, most tumors sooner or later become resistant to even chemically unrelated anticancer agents after repeated treatment. The reduced drug accumulation in tumor cells is considered one of the significant mechanisms by decreasing drug permeability and/or increasing active efflux (pumping out) of the drugs across the cell membrane. The mechanisms of treatment failure of chemotherapeutic drugs have been investigated, including drug efflux, which is mediated by extracellular vesicles (EVs). Exosomes, a subset of EVs with a size range of 40-150 nm and a lipid bilayer membrane, can be released by all cell types. They mediate specific cell-to-cell interactions and activate signaling pathways in cells they either fuse with or interact with, including cancer cells. Exosomal RNAs are heterogeneous in size but enriched in small RNAs, such as miRNAs. In the primary tumor microenvironment, cancer-secreted exosomes and miRNAs can be internalized by other cell types. MiRNAs loaded in these exosomes might be transferred to recipient niche cells to exert genome-wide regulation of gene expression. How exosomal miRNAs contribute to the development of drug resistance in the context of the tumor microenvironment has not been fully described. In this review, we will highlight recent studies regarding EV-mediated microRNA delivery in formatting drug resistance. We also suggest the use of EVs as an advancing method in antiresistance treatment. © 2017 UICC.

  19. Study on chemotherapeutic sensitizing effect of nimotuzumab on different human esophageal squamous carcinoma cells.

    Science.gov (United States)

    Yang, Xiaoyu; Ji, Yinghua; Kang, Xiaochun; Chen, Meiling; Kou, Weizheng; Jin, Cailing; Lu, Ping

    2016-02-01

    Esophageal cancer is one of the leading causes of mortality worldwide. Although, surgery, radio- and chemotherapy are used to treat the disease, the identification of new drugs is crucial to increase the curative effect. The aim of the present study was to examine the chemotherapeutic sensitizing effect of nimotuzumab (h-R3) and cisplatin cytotoxic drugs cisplatin (DDP) and 5-fluorouracil (5-FU) on esophageal carcinoma cells with two different epidermal growth factor receptor (EGFR) expressions. The expression of EGFR was detected in the human EC1 or EC9706 esophageal squamous cell carcinoma cell line using immunohistochemistry. The inhibitory effect of DDP and 5-FU alone or combined with h-R3 on EC1 or EC9706 cell proliferation was detected using an MTT assay. Flow cytometry and the TUNEL assay were used to determine the effect of single or combined drug treatment on cell apoptosis. The results showed that the expression of EGFR was low in EC1 cells but high in EC9706 cells. The inhibitory effect of the single use of h-R3 on EC1 or EC9706 cell proliferation was decreased. The inhibitory effect between single use of h-R3 alone and combined use of the chemotherapy drugs showed no statistically significant difference (P>0.05) on the EC1 cell growth rate, but showed a statistically significant difference (a=0.05) on EC9706 cell growth rate. The results detected by flow cytometry and TUNEL assay showed that the difference between single use of h-R3 alone and the control group was statistically significant with regard to the EC1 apoptosis rate effect (P0.05). However, statistically significant differences were identified in the apoptotic rate of EC9706 cells between the h-R3 combined chemotherapy group and single chemotherapy group (P0.05). In conclusion, the sensitization effect of h-R3 on chemotherapy drugs is associated with the expression level of EGFR in EC1 or EC9706 cells. The cell killing effect of the combined use of h-R3 with DDP and 5-FU showed no obvious

  20. Strategy for chemotherapeutic delivery using a nanosized porous metal-organic framework with a central composite design.

    Science.gov (United States)

    Li, Yingpeng; Li, Xiuyan; Guan, Qingxia; Zhang, Chunjing; Xu, Ting; Dong, Yujing; Bai, Xinyu; Zhang, Weiping

    2017-01-01

    Enhancing drug delivery is an ongoing endeavor in pharmaceutics, especially when the efficacy of chemotherapy for cancer is concerned. In this study, we prepared and evaluated nanosized HKUST-1 (nanoHKUST-1), nanosized metal-organic drug delivery framework, loaded with 5-fluorouracil (5-FU) for potential use in cancer treatment. NanoHKUST-1 was prepared by reacting copper (II) acetate [Cu(OAc) 2 ] and benzene-1,3,5-tricarboxylic acid (H 3 BTC) with benzoic acid (C 6 H 5 COOH) at room temperature (23.7°C±2.4°C). A central composite design was used to optimize 5-FU-loaded nanoHKUST-1. Contact time, ethanol concentration, and 5-FU:material ratios were the independent variables, and the entrapment efficiency of 5-FU was the response parameter measured. Powder X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption were used to determine the morphology of nanoHKUST-1. In addition, 5-FU release studies were conducted, and the in vitro cytotoxicity was evaluated. Entrapment efficiency and drug loading were 9.96% and 40.22%, respectively, while the small-angle X-ray diffraction patterns confirmed a regular porous structure. The SEM and TEM images of the nanoHKUST-1 confirmed the presence of round particles (diameter: approximately 100 nm) and regular polygon arrays of mesoporous channels of approximately 2-5 nm. The half-maximal lethal concentration (LC 50 ) of the 5-FU-loaded nanoHKUST-1 was approximately 10 µg/mL. The results indicated that nanoHKUST-1 is a potential vector worth developing as a cancer chemotherapeutic drug delivery system.

  1. Cisplatin and derivatives with radiation therapy: for what clinical use?

    International Nuclear Information System (INIS)

    Durdux, C.

    2004-01-01

    Since its discovery by Rosenberg in 1965, cisplatin and its derivatives have appeared as the most important chemotherapeutic agents, particularly for their radiosensitizing properties and their clinical use with radiation. In spite of numerous preclinical and clinical studies, optimal schedules of platin and radiotherapy combination have to be defined. The first part of this overview will describe biological mechanisms of interaction between radiation therapy and platinum derivatives. The second part will report the major clinical impact of their association. (author)

  2. Radiation induction of drug resistance in RIF-1 tumors and tumor cells

    International Nuclear Information System (INIS)

    Hopwood, L.E.; Moulder, J.E.

    1989-01-01

    The RIF-1 tumor cell line contains a small number of cells (1-20 per 10(6) cells) that are resistant to various single antineoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), and adriamycin (ADR). For 5FU the frequency of drug resistance is lower for tumor-derived cells than for cells from cell culture; for MTX the reverse is true, and for ADR there is no difference. In vitro irradiation at 5 Gy significantly increased the frequency of drug-resistant cells for 5FU, MTX, and ADR. In vivo irradiation at 3 Gy significantly increased the frequency of drug-resistant cells for 5FU and MTX, but not for ADR. The absolute risk for in vitro induction of MTX, 5FU, and ADR resistance, and for in vivo induction of 5FU resistance, was 1-3 per 10(6) cells per Gy; but the absolute risk for in vivo induction of MTX resistance was 54 per 10(6) cells per Gy. The frequency of drug-resistant cells among individual untreated tumors was highly variable; among individual irradiated tumors the frequency of drug-resistant cells was significantly less variable. These studies provide supporting data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be due to radiation-induced drug resistance

  3. A novel chemotherapeutic sensitivity-testing system based on collagen gel droplet embedded 3D-culture methods for hepatocellular carcinoma.

    Science.gov (United States)

    Hou, Jun; Hong, Zhixian; Feng, Fan; Chai, Yantao; Zhang, Yunkai; Jiang, Qiyu; Hu, Yan; Wu, Shunquan; Wu, Yingsong; Gao, Xunian; Chen, Qiong; Wan, Yong; Bi, Jingfeng; Zhang, Zheng

    2017-11-08

    Patients suffering from advanced stage hepatocellular carcinoma (HCC) often exhibit a poor prognosis or dismal clinical outcomes due to ineffective chemotherapy or a multi-drug resistance (MDR) process. Thus, it is urgent to develop a new chemotherapeutic sensitivity testing system for HCC treatment. The presence study investigated the potential application of a novel chemotherapeutic sensitivity-testing system based on a collagen gel droplet embedded 3D-culture system (CD-DST). Primary cells were separating from surgical resection specimens and then tested by CD-DST. To identify whether HCC cell lines or cells separating from clinical specimens contain MDR features, the cells were treated with an IC 50 (half maximal inhibitory concentration) or IC max (maximal inhibitory concentration) concentration of antitumor agents, e.g., 5-furuolouracil (5-FU), paclitaxel (PAC), cisplatin (CDDP), epirubicin (EPI), or oxaliplatin (L-OHP), and the inhibitory rates (IRs) were calculated. HepG2 cells were sensitive to 5-FU, PAC, CDDP, EPI, or L-OHP; the IC 50 value is 0.83 ± 0.45 μg/ml, 0.03 ± 0.02 μg/ml, 1.15 ± 0.75 μg/ml, 0.09 ± 0.03 μg/ml, or 1.76 ± 0.44 μg/ml, respectively. Only eight (8/26), nine (9/26), or five (5/26) patients were sensitive to the IC max concentration of CDDP, EPI, or L-OHP; whereas only three (3/26), four (4/26), or two (2/26) patients were sensitive to the IC 50 concentration of CDDP, EPI, or L-OHP. No patients were sensitive to 5-FU or PAC. The in vitro drug sensitivity exanimation revealed the MDR features of HCC and examined the sensitivity of HCC cells from clinical specimens to anti-tumor agents. CD-DST may be a useful method to predict the potential clinical benefits of anticancer agents for HCC patients.

  4. Combined radiotherapy-chemotherapy

    International Nuclear Information System (INIS)

    Steel, G.G.

    1989-01-01

    This paper presents the clinically confirmed benefits of combined chemotherapy-radiotherapy. They have been found in a small group of diseases that respond to chemotherapy alone. According to the author, only when a drug or drug combination has the ability to eradicate occult disease or substantially to reduce the size of objectively measurable disease is there likely to be an demonstrable benefit from its use in conjunction with radiotherapy. It is the author's belief that the immediate future lies in selecting drugs and patients in which a good chemotherapeutic response can be expected, avoiding drugs that seriously enhance radiation damage to normal tissues and keeping drug and radiation treatments far enough apart in time to minimize interactions

  5. ERC/mesothelin as a marker for chemotherapeutic response in patients with mesothelioma.

    Science.gov (United States)

    Tajima, Ken; Hirama, Michihiro; Shiomi, Kazu; Ishiwata, Toshiji; Yoshioka, Masataka; Iwase, Akihiko; Iwakami, Shinichiro; Yamazaki, Mariko; Toba, Michie; Tobino, Kazunori; Sugano, Koji; Ichikawa, Masako; Hagiwara, Yoshiaki; Takahashi, Kazuhisa; Hino, Okio

    2008-01-01

    It has been recently reported that soluble mesothelin-related protein (SMRP), serum mesothelin, and osteopontin (OPN) are considered as relevant biomarkers for the diagnosis of mesothelioma. The aim of this study was to investigate whether serum N-ERC/mesothelin, an NH3-terminal fragment of mesothelin, and plasma OPN reflect chemotherapeutic effect in patients with mesothelioma. Serum N-ERC/mesothelin and plasma osteopontin were determined with a sandwich enzyme-linked immunosorbent assay (ELISA) system. The average N-ERC ratio, determined by dividing the N-ERC levels following chemotherapy by those prior to chemotherapy, in the partial response (PR) group was significantly lower than that of the stable disease (SD)/progressive disease (PD) group. In contrast, the average OPN ratio, determined by dividing the OPN levels following chemotherapy by those prior to chemotherapy, in the PR group was not statistically different from that of the SD/PD group. N-ERC/mesothelin is considered as relevant in monitoring chemotherapeutic response in patients with mesothelioma.

  6. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy.

    Science.gov (United States)

    Parhi, Priyambada; Mohanty, Chandana; Sahoo, Sanjeeb Kumar

    2012-09-01

    Combination therapy for the treatment of cancer is becoming more popular because it generates synergistic anticancer effects, reduces individual drug-related toxicity and suppresses multi-drug resistance through different mechanisms of action. In recent years, nanotechnology-based combination drug delivery to tumor tissues has emerged as an effective strategy by overcoming many biological, biophysical and biomedical barriers that the body stages against successful delivery of anticancer drugs. The sustained, controlled and targeted delivery of chemotherapeutic drugs in a combination approach enhanced therapeutic anticancer effects with reduced drug-associated side effects. In this article, we have reviewed the scope of various nanotechnology-based combination drug delivery approaches and also summarized the current perspective and challenges facing the successful treatment of cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A tissue-engineered gastric cancer model for mechanistic study of anti-tumor drugs

    International Nuclear Information System (INIS)

    Gao, Ming; Cai, Yiting; Wu, Wei; Shi, Yazhou; Fei, Zhewei

    2013-01-01

    The use of the traditional xenograft subcutaneous tumor model has been contested because of its limitations, such as a slow tumorigenesis, inconsistent chemotherapeutic results, etc. In light of these challenges, we aim to revamp the traditional model by employing an electrospun scaffold composed of polydioxanone, gelatin and elastin to boost the tumorigenesis. The scaffold featured a highly porous microstructure and successfully supported the growth of tumor cells in vitro without provoking apoptosis. In vivo studies showed that in the scaffold model the tumor volume increased by 43.27% and the weight by 75.58%, respectively, within a 12-week period. In addition, the scaffold model saw an increase of CD24 + and CD44 + cells in the tumor mass by 42% and 313%, respectively. The scaffolding materials did not lead to phenotypic changes during the tumorigenesis. Thereafter, in the scaffold model, we found that the chemotherapeutic regimen of docetaxel, cisplatin and fluorouracil unleashed a stronger capability than the regimen comprising cisplatin and fluorouracil to deplete the CD44 + subpopulation. This discovery sheds mechanistic lights on the role of docetaxel for its future chemotherapeutic applications. This revamped model affords cancer scientists a convenient and reliable platform to mechanistically investigate the chemotherapeutic drugs on gastric cancer stem cells. (paper)

  8. The reduction of radiation damage to the spinal cord by post-irradiation administration of vasoactive drugs

    International Nuclear Information System (INIS)

    Hornsey, S.; Myers, R.; Jenkinson, T.

    1990-01-01

    Radiation induced white matter necrosis in the rat spinal cord is preceded by changes in permeability of the blood brain-barrier, reduced blood flow, and infarction so that the necrosis is an ischemic necrosis. Attempts have been made to modify this developing pathology by the administration of drugs post-irradiation but just prior to the changes in vascular permeability. Verapamyl, a calcium channel blocker, had no effect on the development of ataxia. Dipyridamole, a drug which increases blood flow and reduces thrombosis, delayed and reduced the onset of ataxia. A low iron diet and desferrioxamine which reduces reperfusion injury also delayed and reduced ataxia. These results support the thesis that vascular changes are an important pathway in the development of radiation necrosis and that reperfusion injury is an important factor in the development and exacerbation of radiation damage to the spinal cord

  9. Synergistic Effects of Secretory Phospholipase A2 from the Venom of Agkistrodon piscivorus piscivorus with Cancer Chemotherapeutic Agents

    Directory of Open Access Journals (Sweden)

    Jennifer Nelson

    2013-01-01

    Full Text Available Healthy cells typically resist hydrolysis catalyzed by snake venom secretory phospholipase A2. However, during various forms of programmed cell death, they become vulnerable to attack by the enzyme. This observation raises the question of whether the specificity of the enzyme for dying cells could be used as a strategy to eliminate tumor cells that have been intoxicated but not directly killed by chemotherapeutic agents. This idea was tested with S49 lymphoma cells and a broad range of antineoplastic drugs: methotrexate, daunorubicin, actinomycin D, and paclitaxel. In each case, a substantial population of treated cells was still alive yet vulnerable to attack by the enzyme. Induction of cell death by these agents also perturbed the biophysical properties of the membrane as detected by merocyanine 540 and trimethylammonium-diphenylhexatriene. These results suggest that exposure of lymphoma cells to these drugs universally causes changes to the cell membrane that render it susceptible to enzymatic attack. The data also argue that the snake venom enzyme is not only capable of clearing cell corpses but can aid in the demise of tumor cells that have initiated but not yet completed the death process.

  10. Genome-wide local ancestry approach identifies genes and variants associated with chemotherapeutic susceptibility in African Americans.

    Directory of Open Access Journals (Sweden)

    Heather E Wheeler

    Full Text Available Chemotherapeutic agents are used in the treatment of many cancers, yet variable resistance and toxicities among individuals limit successful outcomes. Several studies have indicated outcome differences associated with ancestry among patients with various cancer types. Using both traditional SNP-based and newly developed gene-based genome-wide approaches, we investigated the genetics of chemotherapeutic susceptibility in lymphoblastoid cell lines derived from 83 African Americans, a population for which there is a disparity in the number of genome-wide studies performed. To account for population structure in this admixed population, we incorporated local ancestry information into our association model. We tested over 2 million SNPs and identified 325, 176, 240, and 190 SNPs that were suggestively associated with cytarabine-, 5'-deoxyfluorouridine (5'-DFUR-, carboplatin-, and cisplatin-induced cytotoxicity, respectively (p≤10(-4. Importantly, some of these variants are found only in populations of African descent. We also show that cisplatin-susceptibility SNPs are enriched for carboplatin-susceptibility SNPs. Using a gene-based genome-wide association approach, we identified 26, 11, 20, and 41 suggestive candidate genes for association with cytarabine-, 5'-DFUR-, carboplatin-, and cisplatin-induced cytotoxicity, respectively (p≤10(-3. Fourteen of these genes showed evidence of association with their respective chemotherapeutic phenotypes in the Yoruba from Ibadan, Nigeria (p<0.05, including TP53I11, COPS5 and GAS8, which are known to be involved in tumorigenesis. Although our results require further study, we have identified variants and genes associated with chemotherapeutic susceptibility in African Americans by using an approach that incorporates local ancestry information.

  11. TTFields alone and in combination with chemotherapeutic agents effectively reduce the viability of MDR cell sub-lines that over-express ABC transporters

    International Nuclear Information System (INIS)

    Schneiderman, Rosa S; Shmueli, Esther; Kirson, Eilon D; Palti, Yoram

    2010-01-01

    Exposure of cancer cells to chemotherapeutic agents may result in reduced sensitivity to structurally unrelated agents, a phenomenon known as multidrug resistance, MDR. The purpose of this study is to investigate cell growth inhibition of wild type and the corresponding MDR cells by Tumor Treating Fields - TTFields, a new cancer treatment modality that is free of systemic toxicity. The TTFields were applied alone and in combination with paclitaxel and doxorubicin. Three pairs of wild type/MDR cell lines, having resistivity resulting from over-expression of ABC transporters, were studied: a clonal derivative (C11) of parental Chinese hamster ovary AA8 cells and their emetine-resistant sub-line Emt R1 ; human breast cancer cells MCF-7 and their mitoxantrone-resistant sub lines MCF-7/Mx and human breast cancer cells MDA-MB-231 and their doxorubicin resistant MDA-MB-231/Dox cells. TTFields were applied for 72 hours with and without the chemotherapeutic agents. The numbers of viable cells in the treated cultures and the untreated control groups were determined using the XTT assay. Student t-test was applied to asses the significance of the differences between results obtained for each of the three cell pairs. TTFields caused a similar reduction in the number of viable cells of wild type and MDR cells. Treatments by TTFields/drug combinations resulted in a similar increased reduction in cell survival of wild type and MDR cells. TTFields had no effect on intracellular doxorubicin accumulation in both wild type and MDR cells. The results indicate that TTFields alone and in combination with paclitaxel and doxorubicin effectively reduce the viability of both wild type and MDR cell sub-lines and thus can potentially be used as an effective treatment of drug resistant tumors

  12. Drug selection principles in intra-arterial infusion chemotherapy

    International Nuclear Information System (INIS)

    Wang Gefang; Cheng Yongde

    2009-01-01

    The intra-arterial infusion chemotherapy is an effective treatment for malignant tumors. The following ten principles should be taken into account when the choice of infusion medication is to be made. (1) The tumor-sensitive drugs should be selected. (2) Pay attention to the compatibility of medicines. (3) Select the type of drug compatibility and drug interactions. (4) Concentration-dependent drugs are the drugs of first choice. (5) Pay attention to side effects when anti-cancer drug compatibility is considered.(6) The perfusion anti-cancer drugs exert their killing effect on the tumor cells in their prototype. (7) Pay attention to the administration order of the drugs and the intervals of treatment. (8) The medication should be individualized as the physical condition and tumor's heterogeneity are different from patient to patient. It is one of the fundamental principles to formulate a specific scheme for every given patient. (9) Make full use of the pharmacokinetics features of the anti-cancer drugs in clinical practice. (10) To be familiar with commonly used drugs and common tumor chemotherapeutic formulae is a matter of cardinal significance. (authors)

  13. Bibliometric study of radiation application on microdose useful for new drug development

    International Nuclear Information System (INIS)

    Komoda, Fumio; Suzuki, Akiko; Inoue, Tomio; Yanagisawa, Kazuaki

    2009-01-01

    In spite of the sharp increase in both private and government R and D fund, the number of newly approved medicines for market had decreased since the 1990s. This is attributed to a large extent to the bottleneck in the critical path arising from the great disparity between animal model in pre-clinical trial and human model in clinical trial. This bottleneck may be expected to be gotten rid of by change in paradigm of drug development based on microdosing, which is enabled by radiation-related imaging technology. However, this is impossible without being accompanied by interdisciplinary joint researches, in which clinical investigators belonging to medical schools or hospitals play the most decisive role. In this article, authors verify based on bibliometrics that Japan has not employed the opportunity for revitalizing drug research activities because Japanese researchers' attitude toward radiation technology may not be so positive in comparison with the United States (US), and because the role which clinical investigators play in the phase of preclinical trial is smaller in Japan than in the US. (author)

  14. Urinary schistosomiasis among schoolchildren in Yemen: prevalence, risk factors, and the effect of a chemotherapeutic intervention.

    Science.gov (United States)

    Al-Waleedi, Ali A; El-Nimr, Nessrin A; Hasab, Ali A; Bassiouny, Hassan K; Al-Shibani, Latifa A

    2013-12-01

    Schistosomiasis is one of the most important public health problems in Yemen. The prevalence of urinary schistosomiasis varies considerably across different parts of Yemen and was estimated to be 10% among schoolchildren in Sana'a. Praziquantel (PZQ) is highly effective against all five major human species of schistosomes. The aim of the present work was to estimate the prevalence of urinary schistosomiasis, describe the risk factors associated with its endemicity, and implement and assess a chemotherapeutic intervention using PZQ in a village in Yemen. The sample included 696 schoolchildren from a village in Abyan Governorate. During the baseline school survey, personal, sociodemographic, and environmental data, and data on practices in relation to water contact were collected from each study participant using a predesigned structured questionnaire. Urine samples from each participant were examined for macrohematuria and the presence of Schistosoma haematobium eggs. The chemotherapeutic intervention was assessed 3 and 6 months after the treatment and certain indicators were calculated. The prevalence of S. haematobium was 18.1%. The main significant risk factors were male sex; proximity of houses to water ponds; and using pond water for swimming, agricultural activities, and for bathing in houses. PZQ treatment reduced the prevalence of infection and decreased the prevalence of high-intensity infection. Survival analysis showed that the probability of residual infection also dropped after the treatment intervention. Male sex and using pond water for various activities were the main significant risk factors associated with urinary schistosomiasis. PZQ is still a cornerstone drug in reducing or eliminating morbidity associated with schistosomiasis infection. Health education programs tailored for the community are required for the control and prevention of urinary schistosomiasis. To address schoolchildren, school curricula should include lessons about urinary

  15. Cytotoxic effects of radiation and docetaxel in human tumour cells

    International Nuclear Information System (INIS)

    Dunne, A.L.

    2000-12-01

    Data from both single institutions and from randomised multicentre trials have demonstrated that the combination of chemotherapy with radiotherapy can increase the survival of cancer patients. Treatment regimens consisting of taxanes (paclitaxel and docetaxel), a potent class of new chemotherapeutic agents, combined with radiotherapy have recently undergone preclincal investigation. Overall, these studies show that taxanes can enhance the radiation sensitivity of tumour cells. However, data on docetaxel is very limited and the mechanism of radiosensitisation by docetaxel remains largely unknown. The chief purpose of this thesis was to investigate the ability of docetaxel to radiosensitise human tumour cells and investigate potential mechanisms for radiosensitisation. The results reported here for docetaxel indicate that for the cell fines examined this drug does have a synergistic effect and is thus a radiosensitising agent. The degree of radiosensitisation seen seems to be largely dependent on drug concentration. A mechanism involving docetaxel potentiation of radiation-induced apoptosis is also suggested. The second purpose of this thesis is to investigate the potential usefulness of an apoptosis assay and the comet assay as biological indicators for cellular radiosensitivity. Many scientists and clinicans have highlighted the need for development of new rapid, predictive assays of radiation responses. If the radiosensitivity of tumours could be predicted, it may eventually allow the individualisation of patient treatment by radiotherapy. In summary, initial DNA damage measured using the comet assay was successful in predicting the radiosensitivity of colorectal tumour cells. The results suggest that the comet assay appears more suitable than the detection of apoptosis for the prediction of radiosensitivity. We conclude that the results obtained from this thesis will contribute to the current attempts to improve the radiotherapeutic management of cancer. (author)

  16. Failure of Chemotherapy in Hepatocellular Carcinoma Due to Impaired and Dysregulated Primary Liver Drug Metabolizing Enzymes and Drug Transport Proteins: What to Do?

    Science.gov (United States)

    Ul Islam, Salman; Ahmed, Muhammad Bilal; Shehzad, Adeeb; Ul-Islam, Mazhar; Lee, Young Sup

    2018-05-28

    Most of the drugs are metabolized in the liver by the action of drug metabolizing enzymes. In hepatocellular carcinoma (HCC), primary drug metabolizing enzymes are severely dysregulated, leading to failure of chemotherapy. Sorafenib is the only standard systemic drug available, but it still presents certain limitations, and much effort is required to understand who is responsive and who is refractory to the drug. Preventive and therapeutic approaches other than systemic chemotherapy include vaccination, chemoprevention, liver transplantation, surgical resection, and locoregional therapies. This review details the dysregulation of primary drug metabolizing enzymes and drug transport proteins of the liver in HCC and their influence on chemotherapeutic drugs. Furthermore, it emphasizes the adoption of safe alternative therapeutic strategies to chemotherapy. The future of HCC treatment should emphasize the understanding of resistance mechanisms and the finding of novel, safe, and efficacious therapeutic strategies, which will surely benefit patients affected by advanced HCC. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Drug transporters in breast cancer

    DEFF Research Database (Denmark)

    Kümler, Iben; Stenvang, Jan; Moreira, José

    2015-01-01

    Despite the advances that have taken place in the past decade, including the development of novel molecular targeted agents, cytotoxic chemotherapy remains the mainstay of cancer treatment. In breast cancer, anthracyclines and taxanes are the two main chemotherapeutic options used on a routine...... basis. Although effective, their usefulness is limited by the inevitable development of resistance, a lack of response to drug-induced cancer cell death. A large body of research has resulted in the characterization of a plethora of mechanisms involved in resistance; ATP-binding cassette transporter...

  18. Breast cancer chemopreventive and chemotherapeutic effects of Camellia Sinensis (green tea): an updated review.

    Science.gov (United States)

    Rafieian-Kopaei, Mahmoud; Movahedi, Mino

    2017-02-01

    Camellia sinensis belongs to the plant family of Theaceae, native to East Asia, the Indian Subcontinent and Southeast Asia, but naturalized in many parts of the world. The aim of this study was to overview its anti-breast cancer chemopreventive and chemotherapeutic effects. This review article is aimed to overview breast cancer chemopreventive and chemotherapeutic effects of Camellia sinensis (green tea). This review article was carried out by searching studies in PubMed, Medline, Web of Science, and IranMedex databases. The initial search strategy identified around 108 references. In this study, 68 studies were accepted for further screening, and met all our inclusion criteria [in English, full text, chemopreventive and chemotherapeutic effects of Camellia sinensis and dated mainly from the year 1999 to 2016. The search terms were Camellia sinensis, chemopreventive, chemotherapeutic properties, pharmacological effects. The result of this study suggested that the catechin available in Camellia sinensis has properties which can prevent and treat breast cancer. It has also been shown to inhibit proliferation of breast cancer cells and to block carcinogenesis. It was found that increased Camellia sinensis consumption may lower the risk of breast cancer. Camellia sinensis intake was shown to reduce the risk of breast cancer incidence. In addition, potential breast cancer chemopreventive effect of Camellia sinensis both in vivo and in vitro was highly confirmed. However, the evidence of low effect and no effect was observed. More clinical trial studies are needed to prove its anti-breast cancer activity decisively. Camellia sinensis is broadly utilized as a part of customary medication since antiquated time because of its cost adequacy, and fewer reaction properties. The studies demonstrated anti-breast cancer activity of Camellia sinensis and its component by adjusting cell signaling pathways such as angiogenesis, apoptosis, and transcription factor. Furthermore

  19. A facile doxorubicin-dichloroacetate conjugate nanomedicine with high drug loading for safe drug delivery.

    Science.gov (United States)

    Yang, Conglian; Wu, Tingting; Qin, Yuting; Qi, Yan; Sun, Yu; Kong, Miao; Jiang, Xue; Qin, Xianya; Shen, Yaqi; Zhang, Zhiping

    2018-01-01

    Doxorubicin (DOX) is an effective chemotherapeutic agent but severe side effects limit its clinical application. Nanoformulations can reduce the toxicity while still have various limitations, such as complexity, low drug loading capability and excipient related concerns. An amphiphilic conjugate, doxorubicin-dichloroacetate, was synthesized and the corresponding nanoparticles were prepared. The in vitro cytotoxicity and intracellular uptake, in vivo imaging, antitumor effects and systemic toxicities of nanoparticles were carried out to evaluate the therapeutic efficiency of tumor. Doxorubicin-dichloroacetate conjugate can self-assemble into nanoparticles with small amount of DSPE-PEG 2000 , leading to high drug loading (71.8%, w/w) and diminished excipient associated concerns. The nanoparticles exhibited invisible systemic toxicity and high maximum tolerated dose of 75 mg DOX equiv./kg, which was 15-fold higher than that of free DOX. It also showed good tumor targeting capability and enhanced antitumor efficacy in murine melanoma model. This work provides a promising strategy to simplify the drug preparation process, increase drug loading content, reduce systemic toxicity as well as enhance antitumor efficiency.

  20. Inhaled Micro/Nanoparticulate Anticancer Drug Formulations: An Emerging Targeted Drug Delivery Strategy for Lung Cancers.

    Science.gov (United States)

    Islam, Nazrul; Richard, Derek

    2018-05-24

    Local delivery of drug to the target organ via inhalation offers enormous benefits in the management of many diseases. Lung cancer is the most common of all cancers and it is the leading cause of death worldwide. Currently available treatment systems (intravenous or oral drug delivery) are not efficient in accumulating the delivered drug into the target tumor cells and are usually associated with various systemic and dose-related adverse effects. The pulmonary drug delivery technology would enable preferential accumulation of drug within the cancer cell and thus be superior to intravenous and oral delivery in reducing cancer cell proliferation and minimising the systemic adverse effects. Site-specific drug delivery via inhalation for the treatment of lung cancer is both feasible and efficient. The inhaled drug delivery system is non-invasive, produces high bioavailability at low dose and avoids first pass metabolism of the delivered drug. Various anticancer drugs including chemotherapeutics, proteins and genes have been investigated for inhalation in lung cancers with significant outcomes. Pulmonary delivery of drugs from dry powder inhaler (DPI) formulation is stable and has high patient compliance. Herein, we report the potential of pulmonary drug delivery from dry powder inhaler (DPI) formulations inhibiting lung cancer cell proliferation at very low dose with reduced unwanted adverse effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. hTe exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches

    Institute of Scientific and Technical Information of China (English)

    Vivek Agrahari

    2017-01-01

    Delivering therapeutics to the central nervous system (CNS) and brain-tumor has been a major challenge. hTe current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in provid-ing signiifcant beneifts to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier (BBB). hTe BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nan-otherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer signiifcant ad vantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are brielfy discussed. hTe drug transport mechanisms at the BBB are outlined. hTe approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic ap-proaches for their enhanced clinical application in brain-tumor therapy are discussed.

  2. The anti-tumour properties and biodistribution (as determined by the radiolabeled equivalent) of Au-compounds intended as potential chemotherapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Nell, M.J. [Department of Pharmacology, University of Pretoria, P.O. Box 2034, Pretoria 0001 (South Africa); Wagener, J.M. [Radiochemistry, NECSA (South African Nuclear Energy Corporation Ltd.), P.O. Box 582, Pretoria 0001 (South Africa)], E-mail: jwagener@necsa.co.za; Zeevaart, J.R. [CARST, North West University, Mafikeng Campus, P. Bag X2046, Mmabatho 2735 (South Africa); Kilian, E. [Department of Pharmacology, Onderstepoort, University of Pretoria, P.O. Box 2034, Pretoria 0001 (South Africa); Mamo, M.A.; Layh, M. [Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits, 2050 Johannesburg (South Africa); Coyanis, M. [Project AuTEK, Mintek, Private Bag X3015, Randburg 2125 (South Africa); Rensburg, C.E.J. van [Department of Pharmacology, University of Pretoria, P.O. Box 2034, Pretoria 0001 (South Africa)

    2009-07-15

    The anti-tumour activity of the Au (I) phosphine complex [Au(dppe{sub 2}]Cl was first discovered in the mid 1980s although promising results were obtained it did not pass clinical studies because of its toxicity to organs such as the liver and heart. The aim of this study was to determine whether the two novel gold compounds (MM5 and MM6), selected for this study, have higher selectivity for cancer cells with less toxicity towards normal cells than [Au(dppe){sub 2}]Cl, and also to determine whether they have improved bio distribution compared to [Au(dppe){sub 2}]Cl. The Au-compounds as potential chemotherapeutic drugs were evaluated by using radioactive tracers in the in vitro and in vivo studies. Results obtained from these experiments showed that the uptake of these experimental compounds was dependent on their octanol/water partition coefficient. However; the inhibition of cell growth did not correlate with the uptake of these compounds by the cells that were tested. In terms of the total uptake it was found that the compounds that were less lipophilic (MM5, MM6) were taken up less efficiently in cells than those that are more lipophilic. Therefore hydrophilic drugs are expected to have a limited biodistribution compared to lipophilic drugs. This might imply a more selective tumour uptake.

  3. Effect of the nitroimidazole Ro 03-8799 on the activity of chemotherapeutic agents against a murine tumour in vivo.

    OpenAIRE

    Sheldon, P. W.; Gibson, P.

    1984-01-01

    The effect of the 2-nitroimidazole Ro 03-8799 (8799) on the activity of 11 chemotherapeutic agents against the anaplastic MT tumour in mice has been determined by soft agar cloning. The 8799, whilst producing little cytotoxicity by itself, potentiated the cytotoxic actions of the alkylating agents melphalan and cyclophosphamide, and the nitrosoureas BCNU, CCNU and MeCCNU. This potentiation was influenced by the time interval between the administration of 8799 and the chemotherapeutic agents, ...

  4. Preparation and its drug release property of radiation-polymerized poly(methyl methacrylate) capsule including potassium chloride

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Kumakura, Minoru; Kaetsu, Isao

    1979-01-01

    Porous flat circular capsules including KCl as a drug were prepared by radiation-induced polymerization of methyl methacrylate at room temperature in the presence of polyethylene glycol No. 600. The porous structure can be controlled by the methyl methacrylate-polyethylene glycol No. 600 composition. The amount of drug released was linearly related to the square root of time. The magnitude of drug release increased roughly in proportional to the water content of capsule, which can be related to porosity in the capsule. (author)

  5. Study of enteroparasites infection frequency and chemotherapeutic agents used in pediatric patients in a community living in Porto Alegre, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Morrone Fernanda B.

    2004-01-01

    Full Text Available Parasitic infections caused by intestinal protozoan and helminths affect more than two billion people worldwide and chemotherapy is the most commonly used therapeutic procedure. Considering the problems created by parasitic infections and the incorrect use of drugs, the aim of this work was to detect the frequency of enteroparasites infection and to estimate the use of chemotherapeutic agents in children living in the periphery of the city of Porto Alegre, RS, Brazil. Ninety-six preschool age children, who had parasitological exams and who used antiparasitic drugs, were analyzed. The efficacy of treatment was evaluated by stool examination repeated six months after treatment. The same diagnostic test was used to evaluate parasitological cure, which was defined as absence of eggs and cysts in the stool. From these children, 79 (82.3% were contaminated by some species of parasite, the most prevalent were Ascaris lumbricoides, Trichuris trichiura and Giardia lamblia. The most commonly used drugs were mebendazole (86% of prescriptions and metronidazole (30.3%. The cure rate in the 79 children, examined 6 months after treatment, was 65.3% for A. lumbricoides and 66.1% for T. trichiura. This study suggests that a continuous education program regarding the prevention and treatment of parasitic infections is an essential tool for their eradication.

  6. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy.

    Science.gov (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Kaasalainen, Martti H; Hagström, Marja V; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2015-04-01

    Dual-drug delivery of antiangiogenic and chemotherapeutic drugs can enhance the therapeutic effect for cancer therapy. Conjugation of methotrexate (MTX) to porous silicon (PSi) nanoparticles (MTX-PSi) with positively charged surface can improve the cellular uptake of MTX and inhibit the proliferation of cancer cells. Herein, MTX-PSi conjugates sustained the release of MTX up to 96 h, and the released fragments including MTX were confirmed by mass spectrometry. The intracellular distribution of the MTX-PSi nanoparticles was confirmed by transmission electron microscopy. Compared to pure MTX, the MTX-PSi achieved similar inhibition of cell proliferation in folate receptor (FR) over-expressing U87 MG cancer cells, and a higher effect in low FR-expressing EA.hy926 cells. Nuclear fragmentation analysis demonstrated programmed cell apoptosis of MTX-PSi in the high/low FR-expressing cancer cells, whereas PSi alone at the same dose had a minor effect on cell apoptosis. Finally, the porous structure of MTX-PSi enabled a successful concomitant loading of another anti-angiogenic hydrophobic drug, sorafenib, and considerably enhanced the dissolution rate of sorafenib. Overall, the MTX-PSi nanoparticles can be used as a platform for combination chemotherapy by simultaneously enhancing the dissolution rate of a hydrophobic drug and sustaining the release of a conjugated chemotherapeutic drug. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Mesenchymal Stromal Cells for Antineoplastic Drug Loading and Delivery.

    Science.gov (United States)

    Petrella, Francesco; Rimoldi, Isabella; Rizzo, Stefania; Spaggiari, Lorenzo

    2017-11-23

    Mesenchymal stromal cells are a population of undifferentiated multipotent adult cells possessing extensive self-renewal properties and the potential to differentiate into a variety of mesenchymal lineage cells. They express broad anti-inflammatory and immunomodulatory activity on the immune system and after transplantation can interact with the surrounding microenvironment, promoting tissue healing and regeneration. For this reason, mesenchymal stromal cells have been widely used in regenerative medicine, both in preclinical and clinical settings. Another clinical application of mesenchymal stromal cells is the targeted delivery of chemotherapeutic agents to neoplastic cells, maximizing the cytotoxic activity against cancer cells and minimizing collateral damage to non-neoplastic tissues. Mesenchymal stem cells are home to the stroma of several primary and metastatic neoplasms and hence can be used as vectors for targeted delivery of antineoplastic drugs to the tumour microenvironment, thereby reducing systemic toxicity and maximizing antitumour effects. Paclitaxel and gemcitabine are the chemotherapeutic drugs best loaded by mesenchymal stromal cells and delivered to neoplastic cells, whereas other agents, like pemetrexed, are not internalized by mesenchymal stromal cells and therefore are not suitable for advanced antineoplastic therapy. This review focuses on the state of the art of advanced antineoplastic cell therapy and its future perspectives, emphasizing in vitro and in vivo preclinical results and future clinical applications.

  8. Nanotechnology-Based Drug Delivery Systems for Melanoma Antitumoral Therapy: A Review.

    Science.gov (United States)

    Rigon, Roberta Balansin; Oyafuso, Márcia Helena; Fujimura, Andressa Terumi; Gonçalez, Maíra Lima; do Prado, Alice Haddad; Gremião, Maria Palmira Daflon; Chorilli, Marlus

    2015-01-01

    Melanoma (MEL) is a less common type of skin cancer, but it is more aggressive with a high mortality rate. The World Cancer Research Fund International (GLOBOCAN 2012) estimates that there were 230,000 new cases of MEL in the world in 2012. Conventional MEL treatment includes surgery and chemotherapy, but many of the chemotherapeutic agents used present undesirable properties. Drug delivery systems are an alternative strategy by which to carry antineoplastic agents. Encapsulated drugs are advantageous due to such properties as high stability, better bioavailability, controlled drug release, a long blood circulation time, selective organ or tissue distribution, a lower total required dose, and minimal toxic side effects. This review of scientific research supports applying a nanotechnology-based drug delivery system for MEL therapy.

  9. Drug loaded magnetic nanoparticles for cancer therapy

    International Nuclear Information System (INIS)

    Jurgons, R; Seliger, C; Hilpert, A; Trahms, L; Odenbach, S; Alexiou, C

    2006-01-01

    Magnetic nanoparticles have been investigated for biomedical applications for more than 30 years. In medicine they are used for several approaches such as magnetic cell separation or magnetic resonance imaging (MRI). The development of biocompatible nanosized drug delivery systems for specific targeting of therapeutics is the focus of medical research, especially for the treatment of cancer and diseases of the vascular system. In an experimental cancer model, we performed targeted drug delivery and used magnetic iron oxide nanoparticles, bound to a chemotherapeutic agent, which were attracted to an experimental tumour in rabbits by an external magnetic field (magnetic drug targeting). Complete tumour remission could be achieved. An important advantage of these carriers is the possibility for detecting these nanoparticles after treatment with common imaging techniques (i.e. x-ray-tomography, magnetorelaxometry, magnetic resonance imaging), which can be correlated to histology

  10. Liposome-based drug delivery in breast cancer treatment

    International Nuclear Information System (INIS)

    Park, John W

    2002-01-01

    Drug delivery systems can in principle provide enhanced efficacy and/or reduced toxicity for anticancer agents. Long circulating macromolecular carriers such as liposomes can exploit the 'enhanced permeability and retention' effect for preferential extravasation from tumor vessels. Liposomal anthracyclines have achieved highly efficient drug encapsulation, resulting in significant anticancer activity with reduced cardiotoxicity, and include versions with greatly prolonged circulation such as liposomal daunorubicin and pegylated liposomal doxorubicin. Pegylated liposomal doxorubucin has shown substantial efficacy in breast cancer treatment both as monotherapy and in combination with other chemotherapeutics. Additional liposome constructs are being developed for the delivery of other drugs. The next generation of delivery systems will include true molecular targeting; immunoliposomes and other ligand-directed constructs represent an integration of biological components capable of tumor recognition with delivery technologies

  11. Polymer based drug delivery systems for mycobacterial infections.

    Science.gov (United States)

    Pandey, Rajesh; Khuller, G K

    2004-07-01

    In the last decade, polymer based technologies have found wide biomedical applications. Polymers, whether synthetic (e.g. polylactide-co-glycolide or PLG) or natural (e.g. alginate, chitosan etc.), have the property of encapsulating a diverse range of molecules of biological interest and bear distinct therapeutic advantages such as controlled release of drugs, protection against the premature degradation of drugs and reduction in drug toxicity. These are important considerations in the long-duration treatment of chronic infectious diseases such as tuberculosis in which patient non-compliance is the major obstacle to successful chemotherapy. Antitubercular drugs, singly or in combination, have been encapsulated in polymers to provide controlled drug release and the system also offers the flexibility of selecting various routes of administration such as oral, subcutaneous and aerosol. The present review highlights the approaches towards the preparation of polymeric antitubercular drug delivery systems, emphasizing how the route of administration may influence drug bioavailability as well as the chemotherapeutic efficacy. In addition, the pros and cons of the various delivery systems are also discussed.

  12. Carbon nanotubes enhance the internalization of drugs by cancer cells and decrease their chemoresistance to cytostatics

    Science.gov (United States)

    Mahmood, M.; Xu, Y.; Dantuluri, V.; Mustafa, T.; Zhang, Y.; Karmakar, A.; Casciano, D.; Ali, S.; Biris, A.

    2013-02-01

    Etoposide is a semisynthetic, chemotherapeutic drug widely recommended to treat an extensive range of human cancers. Our studies indicate that, while etoposide is capable of killing human cancer cells, exposure to single-walled carbon nanotubes (SWCNTs) and etoposide results in enhanced cell death that appears to be synergistic and not merely additive. In this study, we used high pressure liquid chromatography and mass spectrometry to quantify the internal effective dose of etoposide when the human pancreatic cancer cell (PANC-1) was exposed to the combination of these agents. Our results unequivocally indicate that SWCNTs improve etoposide uptake and increase its capacity to kill cancer cells. We suggest that a combination of SWCNTs and etoposide may prove to be a more efficient chemotherapeutic protocol, especially because of the potential to lower toxic drug doses to levels that may be useful in decreasing adverse side effects, as well as in lowering the probability of inducing chemoresistance in exposed cancer cells.

  13. Carbon nanotubes enhance the internalization of drugs by cancer cells and decrease their chemoresistance to cytostatics

    International Nuclear Information System (INIS)

    Mahmood, M; Xu, Y; Dantuluri, V; Mustafa, T; Karmakar, A; Casciano, D; Biris, A; Zhang, Y; Ali, S

    2013-01-01

    Etoposide is a semisynthetic, chemotherapeutic drug widely recommended to treat an extensive range of human cancers. Our studies indicate that, while etoposide is capable of killing human cancer cells, exposure to single-walled carbon nanotubes (SWCNTs) and etoposide results in enhanced cell death that appears to be synergistic and not merely additive. In this study, we used high pressure liquid chromatography and mass spectrometry to quantify the internal effective dose of etoposide when the human pancreatic cancer cell (PANC-1) was exposed to the combination of these agents. Our results unequivocally indicate that SWCNTs improve etoposide uptake and increase its capacity to kill cancer cells. We suggest that a combination of SWCNTs and etoposide may prove to be a more efficient chemotherapeutic protocol, especially because of the potential to lower toxic drug doses to levels that may be useful in decreasing adverse side effects, as well as in lowering the probability of inducing chemoresistance in exposed cancer cells. (paper)

  14. Prediction of chemotherapeutic response in bladder cancer using K-means clustering of dynamic contrast-enhanced (DCE)-MRI pharmacokinetic parameters.

    Science.gov (United States)

    Nguyen, Huyen T; Jia, Guang; Shah, Zarine K; Pohar, Kamal; Mortazavi, Amir; Zynger, Debra L; Wei, Lai; Yang, Xiangyu; Clark, Daniel; Knopp, Michael V

    2015-05-01

    To apply k-means clustering of two pharmacokinetic parameters derived from 3T dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict the chemotherapeutic response in bladder cancer at the mid-cycle timepoint. With the predetermined number of three clusters, k-means clustering was performed on nondimensionalized Amp and kep estimates of each bladder tumor. Three cluster volume fractions (VFs) were calculated for each tumor at baseline and mid-cycle. The changes of three cluster VFs from baseline to mid-cycle were correlated with the tumor's chemotherapeutic response. Receiver-operating-characteristics curve analysis was used to evaluate the performance of each cluster VF change as a biomarker of chemotherapeutic response in bladder cancer. The k-means clustering partitioned each bladder tumor into cluster 1 (low kep and low Amp), cluster 2 (low kep and high Amp), cluster 3 (high kep and low Amp). The changes of all three cluster VFs were found to be associated with bladder tumor response to chemotherapy. The VF change of cluster 2 presented with the highest area-under-the-curve value (0.96) and the highest sensitivity/specificity/accuracy (96%/100%/97%) with a selected cutoff value. The k-means clustering of the two DCE-MRI pharmacokinetic parameters can characterize the complex microcirculatory changes within a bladder tumor to enable early prediction of the tumor's chemotherapeutic response. © 2014 Wiley Periodicals, Inc.

  15. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    Science.gov (United States)

    Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.

    2007-01-01

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  16. N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents.

    Science.gov (United States)

    Mazzoccoli, Carmela; Ruggieri, Vitalba; Tataranni, Tiziana; Agriesti, Francesca; Laurenzana, Ilaria; Fratello, Angelo; Capitanio, Nazzareno; Piccoli, Claudia

    2016-05-03

    Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil.To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment.

  17. Usefulness of radiatively obtained acrylamide polymers for production of drug forms with controlled release of the therapeutic component

    International Nuclear Information System (INIS)

    Mosiniak, T.; Switek, W.

    1988-01-01

    Using 60 Co gamma radiation as a factor initiating polymerization and cross-linking of polymers, polyacrylamide matrices were formed with the following therapeutic agents: aspirin, amidopyrin, sodium salicylate. Gamma radiation doses ranged from 3.5 to 22.5 kGy, dose rate was 0.138 Gy x s -1 . Kinetics of the therapeutic agent release from the matrix polymers was determined by measurement of per cent of the drug release in the course of time and calculations of release rate constants. The preparations containing slowly released drugs were obtained. 12 figs., 2 tabs., 11 refs. (author)

  18. A dual energy CT study on vascular effects of gold nanoparticles in radiation therapy

    Science.gov (United States)

    Ashton, Jeffrey R.; Hoye, Jocelyn; Deland, Katherine; Whitley, Melodi; Qi, Yi; Moding, Everett; Kirsch, David G.; West, Jennifer; Badea, Cristian T.

    2016-03-01

    Gold nanoparticles (AuNPs) are emerging as promising agents for both cancer therapy and CT imaging. AuNPs are delivered to tumors via the enhanced permeability and retention effect and they preferentially accumulate in close proximity to the tumor blood vessels. AuNPs produce low-energy, short-range photoelectrons during external beam radiation therapy (RT), boosting dose. This work is focused on understanding how tumor vascular permeability is influenced by AuNP-augmented radiation therapy (RT), and how this knowledge can potentially improve the delivery of additional nanoparticle-based chemotherapeutics. We use dual energy (DE) CT to detect accumulation of AuNPs and increased vascular permeability to liposomal iodine (i.e. a surrogate for chemotherapeutics with liposome encapsulation) following RT. We used sarcoma tumors generated in LSL-KrasG12D; p53FL/FL conditional mutant mice. A total of n=37 mice were used in this study. The treated mice were injected with 20 mg AuNP (0.1 ml/25 g mouse) 24 hours before delivery of 5 Gy RT (n=5), 10 Gy RT (n=3) or 20 Gy RT (n=6). The control mice received no AuNP injection and either no RT (n=6), 5 Gy RT (n=3), 10 Gy RT (n=3), 20 Gy RT (n=11). Twenty four hours post-RT, the mice were injected with liposomal iodine (0.3 ml/25 mouse) and imaged with DE-CT three days later. The results suggest that independent of any AuNP usage, RT levels of 10 Gy and 20 Gy increase the permeability of tumor vasculature to liposomal iodine and that the increase in permeability is dose-dependent. We found that the effect of RT on vasculature may already be at its maximum response i.e. saturated at 20 Gy, and therefore the addition of AuNPs had almost no added benefit. Similarly, at 5 Gy RT, our data suggests that there was no effect of AuNP augmentation on tumor vascular permeability. However, by using AuNPs with 10 Gy RT, we observed an increase in the vascular permeability, however this is not yet statistically significant due to the small

  19. The clinical application of ultrasonography-guided percutaneous transhepatic injection of iodized oil containing chemotherapeutic agent for the treatment of hilar lymphatic metastasis

    International Nuclear Information System (INIS)

    Zhao Guangsheng; Zhang Yuewei; Yang Xiaohong; Li Chuang; Zhao Mu; Wang Wenqing; Wang Ruoyu

    2010-01-01

    Objective: To discuss the technique and the clinical effect of ultrasonography-guided percutaneous transhepatic injection of iodized oil containing chemotherapeutic agent for the treatment of hepatic hilar lymphatic metastasis. Methods: Under ultrasonographic guidance,percutaneous transhepatic injection of iodized oil containing chemotherapeutic agent, so-called chemo-ablation, into the diseased lymph nodes was performed in thirteen patients with hepatic hilar lymphatic metastasis. The therapeutic results were evaluated based on the post-operative imaging examinations as well as the alleviation of the clinical symptoms. Results: Percutaneous transhepatic injection of iodized oil containing chemotherapeutic agent into the diseased lymph nodes was successfully carried out in all thirteen patients. After the procedure,the patients were followed up for a mean period of 13.5 months. The therapeutic effectiveness was 100%, while the regression rate of the lesions was 76.9%. No operation-related complications occurred. Conclusion: Percutaneous transhepatic injection of iodized oil containing chemotherapeutic agent into the diseased lymph nodes under ultrasonographic guidance is an effective and safe treatment for hepatic hilar lymphatic metastasis with reliable effectiveness. (authors)

  20. Hybrid hydrogels produces by ionizing radiation technique for drug delivery

    International Nuclear Information System (INIS)

    Oliveira, M.J.A.; Parra, D.F.; Lugao, A.B.; Amato, V.S.

    2011-01-01

    Complete text of publication follows. Interest in the preparation of biocompatible hydrogels with various properties has increased considerably in recent years due to their versatile applications in biomedicine, biotechnology, pharmacy, agriculture and controlled release of drugs. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of PVAl, PEG and 0.5, 1.0 and 1.5% nano-clay. They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for thermogravimetry analysis (TGA), infrared spectroscopic analysis (FTIR), swelling in solutions of different pH and gel determinations. The membranes have no toxicity and the gel content reveals the reticulation. The nano-clay influences directly the equilibrium swelling. Acknowledgement: Support by FAPESP 09/50926-1, FAPESP Process no. 2009/18627-4 CNPq Process no. 310849/2009-8, CAPES, IPEN/CNEN.

  1. [Current movements of four serious adverse events induced by medicinal drugs based on spontaneous reports in Japan].

    Science.gov (United States)

    Sudo, Chie; Azuma, Yu-ichiro; Maekawa, Keiko; Kaniwa, Nahoko; Sai, Kimie; Saito, Yoshiro

    2011-01-01

    Spontaneous reports on suspected serious adverse events caused by medicines from manufacturing/distributing pharmaceutical companies or medical institutions/pharmacies are regulated by the Pharmaceutical Affairs Law of Japan, and this system is important for post-marketing safety features. Although causal relationship between the medicine and the adverse event is not evaluated, and one incidence may be redundantly reported, this information would be useful to roughly grasp the current movements of drug-related serious adverse events, We searched open-source data of the spontaneous reports publicized by Pharmaceutical and Medical Devices Agency for 4 serious adverse events (interstitial lung disease, rhabdomyolysis, anaphylaxis, and Stevens-Johnson syndrome/toxic epidermal necrolysis) from 2004 to 2010 fiscal year (for 2010, from April 1 st to January 31th). Major drug-classes suspected to the adverse events were antineoplastics for interstitial lung disease, hyperlipidemia agents and psychotropics for rhabdomyolysis, antibiotics/chemotherapeutics, antineoplastics and intracorporeal diagnostic agents for anaphylaxis (anaphylactic shock, anaphylactic reactions, anaphylactoid shock and anaphylactoid reactions), and antibiotics/chemotherapeutics, antipyretics and analgesics, anti-inflammatory agents/common cold drugs, and antiepileptics for Stevens-Johnson syndrome/toxic epidermal necrolysis. These results would help understanding of current situations of the 4 drug-related serious adverse events in Japan.

  2. Inhibition of PKCδ reduces cisplatin-induced nephrotoxicity without blocking chemotherapeutic efficacy in mouse models of cancer

    Science.gov (United States)

    Pabla, Navjotsingh; Dong, Guie; Jiang, Man; Huang, Shuang; Kumar, M. Vijay; Messing, Robert O.; Dong, Zheng

    2011-01-01

    Cisplatin is a widely used cancer therapy drug that unfortunately has major side effects in normal tissues, notably nephrotoxicity in kidneys. Despite intensive research, the mechanism of cisplatin-induced nephrotoxicity remains unclear, and renoprotective approaches during cisplatin-based chemotherapy are lacking. Here we have identified PKCδ as a critical regulator of cisplatin nephrotoxicity, which can be effectively targeted for renoprotection during chemotherapy. We showed that early during cisplatin nephrotoxicity, Src interacted with, phosphorylated, and activated PKCδ in mouse kidney lysates. After activation, PKCδ regulated MAPKs, but not p53, to induce renal cell apoptosis. Thus, inhibition of PKCδ pharmacologically or genetically attenuated kidney cell apoptosis and tissue damage, preserving renal function during cisplatin treatment. Conversely, inhibition of PKCδ enhanced cisplatin-induced cell death in multiple cancer cell lines and, remarkably, enhanced the chemotherapeutic effects of cisplatin in several xenograft and syngeneic mouse tumor models while protecting kidneys from nephrotoxicity. Together these results demonstrate a role of PKCδ in cisplatin nephrotoxicity and support targeting PKCδ as an effective strategy for renoprotection during cisplatin-based cancer therapy. PMID:21633170

  3. WE-FG-BRA-02: Docetaxel Eluting Brachytherapy Spacers for Local Chemo-Radiation Therapy in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Belz, J [Northeastern University, Boston, MA (United States); Kumar, R; Sridhar, S [Northeastern University & Dana Farber Cancer Institute, Boston, MA (United States); Makrigiorgos, G; Nguyen, P [Dana Farber Cancer Institute, Boston, MA (United States); D’Amico, A [Brigham & Women’s Hospital, Boston, MA (United States); Cormack, R [Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: We propose an innovative combinatorial treatment strategy of Local ChemoRadiation Therapy (LCRT) using a sustained drug delivery platform in the form of a spacer to locally radio-sensitize the prostate with Docetaxel (DTX) enabling a synergistic cure with the use of lower radiation doses. These biodegradable spacers are physically similar to the inert spacers routinely used in prostate brachytherapy but are now loaded with formulations of DTX. Methods: Spacers were loaded with ∼500µg Docetaxel (DTX) for prostate cancer studies. The implants were characterized in vitro using SEM and HPLC. The release kinetic studies were carried out in buffer (pH 6.0) at 37°C. Subcutaneous PC3 tumors were xenografted in nude mice. Prostate cancer studies were done with and without radiation using SARRP at 5Gy, 10Gy, and 15Gy. Drug-loaded implants were injected once intratumorally using an 18G brachytherapy needle. Results: The release study in vitro showed a highly sustained release for multiple weeks at therapeutically relevant doses. The monotherapy with local DTX spacer showed sustained tumor inhibition compared to empty implants and an equivalent DTX dose given systemically. At 40 days, 89% survival was observed for mice treated with DTX implants compared with 0% in all other treatment groups. The combined treatment with local DTX spacer and radiation (10Gy) showed the highest degree of tumor suppression (significant tumor growth inhibition by day 90). The control mice showed continuous tumor growth and were scarified by day 56. Groups of mice treated with DTX-spacer or radiation alone showed initial tumor suppression but growth continued after day 60. A larger experiment is ongoing. Conclusion: This approach provides localized delivery of the chemotherapeutic sensitizer directly to the tumor and avoids the toxicities associated with both brachytherapy and current systemic delivery of docetaxel. Sustained release of DTX is an effective chemotherapy option alone or

  4. Breast cancer drugs dampen vascular functions by interfering with nitric oxide signaling in endothelium

    International Nuclear Information System (INIS)

    Gajalakshmi, Palanivel; Priya, Mani Krishna; Pradeep, Thangaraj; Behera, Jyotirmaya; Muthumani, Kandasamy; Madhuwanti, Srinivasan; Saran, Uttara; Chatterjee, Suvro

    2013-01-01

    Widely used chemotherapeutic breast cancer drugs such as Tamoxifen citrate (TC), Capecitabine (CP) and Epirubicin (EP) are known to cause various cardiovascular side-effects among long term cancer survivors. Vascular modulation warrants nitric oxide (NO) signal transduction, which targets the vascular endothelium. We hypothesize that TC, CP and EP interference with the nitric oxide downstream signaling specifically, could lead to cardiovascular dysfunctions. The results demonstrate that while all three drugs attenuate NO and cyclic guanosine mono-phosphate (cGMP) production in endothelial cells, they caused elevated levels of NO in the plasma and RBC. However, PBMC and platelets did not show any significant changes under treatment. This implies that the drug effects are specific to the endothelium. Altered eNOS and phosphorylated eNOS (Ser-1177) localization patterns in endothelial cells were observed following drug treatments. Similarly, the expression of phosphorylated eNOS (Ser-1177) protein was decreased under the treatment of drugs. Altered actin polymerization was also observed following drug treatment, while addition of SpNO and 8Br-cGMP reversed this effect. Incubation with the drugs decreased endothelial cell migration whereas addition of YC-1, SC and 8Br-cGMP recovered the effect. Additionally molecular docking studies showed that all three drugs exhibited a strong binding affinity with the catalytic domain of human sGC. In conclusion, results indicate that TC, CP and EP cause endothelial dysfunctions via the NO–sGC–cGMP pathway and these effects could be recovered using pharmaceutical agonists of NO signaling pathway. Further, the study proposes a combination therapy of chemotherapeutic drugs and cGMP analogs, which would confer protection against chemotherapy mediated vascular dysfunctions in cancer patients. - Highlights: • NO production is reduced in endothelial cells under breast cancer drug treatment. • Cellular cGMP level is decreased under

  5. Breast cancer drugs dampen vascular functions by interfering with nitric oxide signaling in endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Gajalakshmi, Palanivel; Priya, Mani Krishna; Pradeep, Thangaraj; Behera, Jyotirmaya; Muthumani, Kandasamy; Madhuwanti, Srinivasan; Saran, Uttara; Chatterjee, Suvro, E-mail: soovro@yahoo.ca

    2013-06-01

    Widely used chemotherapeutic breast cancer drugs such as Tamoxifen citrate (TC), Capecitabine (CP) and Epirubicin (EP) are known to cause various cardiovascular side-effects among long term cancer survivors. Vascular modulation warrants nitric oxide (NO) signal transduction, which targets the vascular endothelium. We hypothesize that TC, CP and EP interference with the nitric oxide downstream signaling specifically, could lead to cardiovascular dysfunctions. The results demonstrate that while all three drugs attenuate NO and cyclic guanosine mono-phosphate (cGMP) production in endothelial cells, they caused elevated levels of NO in the plasma and RBC. However, PBMC and platelets did not show any significant changes under treatment. This implies that the drug effects are specific to the endothelium. Altered eNOS and phosphorylated eNOS (Ser-1177) localization patterns in endothelial cells were observed following drug treatments. Similarly, the expression of phosphorylated eNOS (Ser-1177) protein was decreased under the treatment of drugs. Altered actin polymerization was also observed following drug treatment, while addition of SpNO and 8Br-cGMP reversed this effect. Incubation with the drugs decreased endothelial cell migration whereas addition of YC-1, SC and 8Br-cGMP recovered the effect. Additionally molecular docking studies showed that all three drugs exhibited a strong binding affinity with the catalytic domain of human sGC. In conclusion, results indicate that TC, CP and EP cause endothelial dysfunctions via the NO–sGC–cGMP pathway and these effects could be recovered using pharmaceutical agonists of NO signaling pathway. Further, the study proposes a combination therapy of chemotherapeutic drugs and cGMP analogs, which would confer protection against chemotherapy mediated vascular dysfunctions in cancer patients. - Highlights: • NO production is reduced in endothelial cells under breast cancer drug treatment. • Cellular cGMP level is decreased under

  6. APC selectively mediates response to chemotherapeutic agents in breast cancer

    International Nuclear Information System (INIS)

    VanKlompenberg, Monica K.; Bedalov, Claire O.; Soto, Katia Fernandez; Prosperi, Jenifer R.

    2015-01-01

    The Adenomatous Polyposis Coli (APC) tumor suppressor is mutated or hypermethylated in up to 70 % of sporadic breast cancers depending on subtype; however, the effects of APC mutation on tumorigenic properties remain unexplored. Using the Apc Min/+ mouse crossed to the Polyoma middle T antigen (PyMT) transgenic model, we identified enhanced breast tumorigenesis and alterations in genes critical in therapeutic resistance independent of Wnt/β-catenin signaling. Apc mutation changed the tumor histopathology from solid to squamous adenocarcinomas, resembling the highly aggressive human metaplastic breast cancer. Mechanistic studies in tumor-derived cell lines demonstrated that focal adhesion kinase (FAK)/Src/JNK signaling regulated the enhanced proliferation downstream of Apc mutation. Despite this mechanistic information, the role of APC in mediating breast cancer chemotherapeutic resistance is currently unknown. We have examined the effect of Apc loss in MMTV-PyMT mouse breast cancer cells on gene expression changes of ATP-binding cassette transporters and immunofluorescence to determine proliferative and apoptotic response of cells to cisplatin, doxorubicin and paclitaxel. Furthermore we determined the added effect of Src or JNK inhibition by PP2 and SP600125, respectively, on chemotherapeutic response. We also used the Aldefluor assay to measure the population of tumor initiating cells. Lastly, we measured the apoptotic and proliferative response to APC knockdown in MDA-MB-157 human breast cancer cells after chemotherapeutic treatment. Cells obtained from MMTV-PyMT;Apc Min/+ tumors express increased MDR1 (multidrug resistance protein 1), which is augmented by treatment with paclitaxel or doxorubicin. Furthermore MMTV-PyMT;Apc Min/+ cells are more resistant to cisplatin and doxorubicin-induced apoptosis, and show a larger population of ALDH positive cells. In the human metaplastic breast cancer cell line MDA-MB-157, APC knockdown led to paclitaxel and cisplatin

  7. Drug Repositioning for Effective Prostate Cancer Treatment.

    Science.gov (United States)

    Turanli, Beste; Grøtli, Morten; Boren, Jan; Nielsen, Jens; Uhlen, Mathias; Arga, Kazim Y; Mardinoglu, Adil

    2018-01-01

    Drug repositioning has gained attention from both academia and pharmaceutical companies as an auxiliary process to conventional drug discovery. Chemotherapeutic agents have notorious adverse effects that drastically reduce the life quality of cancer patients so drug repositioning is a promising strategy to identify non-cancer drugs which have anti-cancer activity as well as tolerable adverse effects for human health. There are various strategies for discovery and validation of repurposed drugs. In this review, 25 repurposed drug candidates are presented as result of different strategies, 15 of which are already under clinical investigation for treatment of prostate cancer (PCa). To date, zoledronic acid is the only repurposed, clinically used, and approved non-cancer drug for PCa. Anti-cancer activities of existing drugs presented in this review cover diverse and also known mechanisms such as inhibition of mTOR and VEGFR2 signaling, inhibition of PI3K/Akt signaling, COX and selective COX-2 inhibition, NF-κB inhibition, Wnt/β-Catenin pathway inhibition, DNMT1 inhibition, and GSK-3β inhibition. In addition to monotherapy option, combination therapy with current anti-cancer drugs may also increase drug efficacy and reduce adverse effects. Thus, drug repositioning may become a key approach for drug discovery in terms of time- and cost-efficiency comparing to conventional drug discovery and development process.

  8. Culture and Drug Profiling of Patient Derived Malignant Pleural Effusions for Personalized Cancer Medicine.

    Science.gov (United States)

    Ruiz, Christian; Kustermann, Stefan; Pietilae, Elina; Vlajnic, Tatjana; Baschiera, Betty; Arabi, Leila; Lorber, Thomas; Oeggerli, Martin; Savic, Spasenija; Obermann, Ellen; Singer, Thomas; Rothschild, Sacha I; Zippelius, Alfred; Roth, Adrian B; Bubendorf, Lukas

    2016-01-01

    The use of patients' own cancer cells for in vitro selection of the most promising treatment is an attractive concept in personalized medicine. Human carcinoma cells from malignant pleural effusions (MPEs) are suited for this purpose since they have already adapted to the liquid environment in the patient and do not depend on a stromal cell compartment. Aim of this study was to develop a systematic approach for the in-vitro culture of MPEs to analyze the effect of chemotherapeutic as well as targeted drugs. MPEs from patients with solid tumors were selected for this study. After morphological and molecular characterization, they were cultured in medium supplemented with patient-derived sterile-filtered effusion supernatant. Growth characteristics were monitored in real-time using the xCELLigence system. MPEs were treated with a targeted therapeutic (erlotinib) according to the mutational status or chemotherapeutics based on the recommendation of the oncologists. We have established a robust system for the ex-vivo culture of MPEs and the application of drug tests in-vitro. The use of an antibody based magnetic cell separation system for epithelial cells before culture allowed treatment of effusions with only moderate tumor cell proportion. Experiments using drugs and drug-combinations revealed dose-dependent and specific growth inhibitory effects of targeted drugs. We developed a new approach for the ex-vivo culture of MPEs and the application of drug tests in-vitro using real-time measuring of cell growth, which precisely reproduced the effect of clinically established treatments by standard chemotherapy and targeted drugs. This sets the stage for future studies testing agents against specific targets from genomic profiling of metastatic tumor cells and multiple drug-combinations in a personalized manner.

  9. Culture and Drug Profiling of Patient Derived Malignant Pleural Effusions for Personalized Cancer Medicine.

    Directory of Open Access Journals (Sweden)

    Christian Ruiz

    Full Text Available The use of patients' own cancer cells for in vitro selection of the most promising treatment is an attractive concept in personalized medicine. Human carcinoma cells from malignant pleural effusions (MPEs are suited for this purpose since they have already adapted to the liquid environment in the patient and do not depend on a stromal cell compartment. Aim of this study was to develop a systematic approach for the in-vitro culture of MPEs to analyze the effect of chemotherapeutic as well as targeted drugs.MPEs from patients with solid tumors were selected for this study. After morphological and molecular characterization, they were cultured in medium supplemented with patient-derived sterile-filtered effusion supernatant. Growth characteristics were monitored in real-time using the xCELLigence system. MPEs were treated with a targeted therapeutic (erlotinib according to the mutational status or chemotherapeutics based on the recommendation of the oncologists.We have established a robust system for the ex-vivo culture of MPEs and the application of drug tests in-vitro. The use of an antibody based magnetic cell separation system for epithelial cells before culture allowed treatment of effusions with only moderate tumor cell proportion. Experiments using drugs and drug-combinations revealed dose-dependent and specific growth inhibitory effects of targeted drugs.We developed a new approach for the ex-vivo culture of MPEs and the application of drug tests in-vitro using real-time measuring of cell growth, which precisely reproduced the effect of clinically established treatments by standard chemotherapy and targeted drugs. This sets the stage for future studies testing agents against specific targets from genomic profiling of metastatic tumor cells and multiple drug-combinations in a personalized manner.

  10. Pharmacological toxicological studies on certain drugs subjected to radiation or used radioprotective agents

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S H.M. [Durng Research Dept., National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, (Egypt)

    1995-10-01

    The present study represents two main subjects. The first encounters the effect of radiosterilization of certain pharmaceretical preparations such as antihistaminics (cimetidine), anticonvulsants (diazepam), beta and calcium channel blacker (propranolol and verapamil) on their pharmacological activity. Results of this study revealed that the previously mentioned drugs can be effectively and safely sterilized by gamma irradiation without deleterious effect on their pharmacological activity. The other subject presented in this study is essentially a pharmacological subject encountering toxicological problems. Data of this study demonstrated that chemical radiation protection has been successfully reported using single drug administration has been successfully reported using single drug administration such as imidazole, and Sh-bearing compounds. In the present work, the radioprotective effect of imidazole was demonstrated on the cardiovascular and respiratory systems. Furthermore, combined drug administration was found to exert more protective action with less toxicity and therefore minimize the side effects of the radioprotective drugs. Thus, combination of imidazole and serotonin showed potential protective effect on blood gases was also reported. In addition, combination of cysteine and vitamin E afforded a better protection on adrenocortical function in rats than either agent alone. 4 figs., 1 tab.

  11. Pharmacological toxicological studies on certain drugs subjected to radiation or used radioprotective agents

    International Nuclear Information System (INIS)

    Hassan, S.H.M.

    1995-01-01

    The present study represents two main subjects. The first encounters the effect of radiosterilization of certain pharmaceretical preparations such as antihistaminics (cimetidine), anticonvulsants (diazepam), beta and calcium channel blacker (propranolol and verapamil) on their pharmacological activity. Results of this study revealed that the previously mentioned drugs can be effectively and safely sterilized by gamma irradiation without deleterious effect on their pharmacological activity. The other subject presented in this study is essentially a pharmacological subject encountering toxicological problems. Data of this study demonstrated that chemical radiation protection has been successfully reported using single drug administration has been successfully reported using single drug administration such as imidazole, and Sh-bearing compounds. In the present work, the radioprotective effect of imidazole was demonstrated on the cardiovascular and respiratory systems. Furthermore, combined drug administration was found to exert more protective action with less toxicity and therefore minimize the side effects of the radioprotective drugs. Thus, combination of imidazole and serotonin showed potential protective effect on blood gases was also reported. In addition, combination of cysteine and vitamin E afforded a better protection on adrenocortical function in rats than either agent alone. 4 figs., 1 tab

  12. Validation and use of microdialysis for determination of pharmacokinetic properties of the chemotherapeutic agent mitomycin C - an experimental study

    International Nuclear Information System (INIS)

    Sørensen, Olaf; Andersen, Anders; Olsen, Harald; Alexandr, Kristian; Ekstrøm, Per Olaf; Giercksky, Karl-Erik; Flatmark, Kjersti

    2010-01-01

    Mitomycin C is a chemotherapeutic agent used in the treatment of peritoneal surface malignancies, administered as hyperthermic intraperitoneal chemotherapy after cytoreductive surgery. Pharmacokinetic studies have been based on analyses of blood, urine and abdominal perfusate, but actual tissue concentrations of the drug have never been determined. Microdialysis is an established method for continuous monitoring of low-molecular substances in tissues, and in the present study microdialysis of mitomycin C was studied in vitro and in vivo. Using in vitro microdialysis, relative recovery was determined when varying drug concentration, temperature and perfusion flow rate. In vivo microdialysis was performed in rats to verify long-term stability of relative recovery in four compartments (vein, peritoneum, extraperitoneal space and hind leg muscle). Subsequently, intravenous and intraperitoneal bolus infusion experiments were performed and pharmacokinetic parameters were calculated. In vitro, compatibility of mitomycin C and microdialysis equipment was demonstrated, and relative recovery was stable over an adequate concentration range, moderately increased by raising medium temperature and increased when flow rate was reduced, all according to theory. In vivo, stable relative recovery was observed over seven hours. Mitomycin C exhibited fast and even distribution in rat tissues, and equal bioavailability was achieved by intravenous and intraperitoneal infusion. The half-life of mitomycin C calculated after intravenous infusion was 40 minutes. Mitomycin C concentration can be reliable monitored in vivo using microdialysis, suggesting that this technique can be used in pharmacokinetic studies of this drug during hyperthermic intraperitoneal chemotherapy

  13. The slow cell death response when screening chemotherapeutic agents.

    Science.gov (United States)

    Blois, Joseph; Smith, Adam; Josephson, Lee

    2011-09-01

    To examine the correlation between cell death and a common surrogate of death used in screening assays, we compared cell death responses to those obtained with the sulforhodamine B (SRB) cell protein-based "cytotoxicity" assay. With the SRB assay, the Hill equation was used to obtain an IC50 and final cell mass, or cell mass present at infinite agent concentrations, with eight adherent cell lines and four agents (32 agent/cell combinations). Cells were treated with high agent concentrations (well above the SRB IC50) and the death response determined as the time-dependent decrease in cells failing to bind both annexin V and vital fluorochromes by flow cytometry. Death kinetics were categorized as fast (5/32) (similar to the reference nonadherent Jurkat line), slow (17/32), or none (10/32), despite positive responses in the SRB assay in all cases. With slow cell death, a single exposure to a chemotherapeutic agent caused a slow, progressive increase in dead (necrotic) and dying (apoptotic) cells for at least 72 h. Cell death (defined by annexin and/or fluorochrome binding) did not correlate with the standard SRB "cytotoxicity" assay. With the slow cell death response, a single exposure to an agent caused a slow conversion from vital to apoptotic and necrotic cells over at least 72 h (the longest time point examined). Here, increasing the time of exposure to agent concentrations modestly above the SRB IC50 provides a method of maximizing cell kill. If tumors respond similarly, sustained low doses of chemotherapeutic agents, rather than a log-kill, maximum tolerated dose strategy may be an optimal strategy of maximizing tumor cell death.

  14. Genome-Wide Mutational Signature of the Chemotherapeutic Agent Mitomycin C in Caenorhabditis elegans.

    Science.gov (United States)

    Tam, Annie S; Chu, Jeffrey S C; Rose, Ann M

    2015-11-12

    Cancer therapy largely depends on chemotherapeutic agents that generate DNA lesions. However, our understanding of the nature of the resulting lesions as well as the mutational profiles of these chemotherapeutic agents is limited. Among these lesions, DNA interstrand crosslinks are among the more toxic types of DNA damage. Here, we have characterized the mutational spectrum of the commonly used DNA interstrand crosslinking agent mitomycin C (MMC). Using a combination of genetic mapping, whole genome sequencing, and genomic analysis, we have identified and confirmed several genomic lesions linked to MMC-induced DNA damage in Caenorhabditis elegans. Our data indicate that MMC predominantly causes deletions, with a 5'-CpG-3' sequence context prevalent in the deleted regions of DNA. Furthermore, we identified microhomology flanking the deletion junctions, indicative of DNA repair via nonhomologous end joining. Based on these results, we propose a general repair mechanism that is likely to be involved in the biological response to this highly toxic agent. In conclusion, the systematic study we have described provides insight into potential sequence specificity of MMC with DNA. Copyright © 2016 Tam et al.

  15. Genome-Wide Mutational Signature of the Chemotherapeutic Agent Mitomycin C in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Annie S. Tam

    2016-01-01

    Full Text Available Cancer therapy largely depends on chemotherapeutic agents that generate DNA lesions. However, our understanding of the nature of the resulting lesions as well as the mutational profiles of these chemotherapeutic agents is limited. Among these lesions, DNA interstrand crosslinks are among the more toxic types of DNA damage. Here, we have characterized the mutational spectrum of the commonly used DNA interstrand crosslinking agent mitomycin C (MMC. Using a combination of genetic mapping, whole genome sequencing, and genomic analysis, we have identified and confirmed several genomic lesions linked to MMC-induced DNA damage in Caenorhabditis elegans. Our data indicate that MMC predominantly causes deletions, with a 5′-CpG-3′ sequence context prevalent in the deleted regions of DNA. Furthermore, we identified microhomology flanking the deletion junctions, indicative of DNA repair via nonhomologous end joining. Based on these results, we propose a general repair mechanism that is likely to be involved in the biological response to this highly toxic agent. In conclusion, the systematic study we have described provides insight into potential sequence specificity of MMC with DNA.

  16. Chemotherapy and Drug Targeting in the Treatment of Leishmaniasis

    Science.gov (United States)

    1989-05-30

    nucleotides with specific enzymes (67). Some commonly used purine analogs 20 6- Mercaptopurine 6-Thioguanine SH SH Ni N N N NH 2 NkN N H H Azathiopine CH3...Chemotherapeutic Drugs. 21 include: 6- Mercaptopurine , which is used for the treatment of acute leukemias (Fig 4). 6-Thioguanine, which is also used in the treatment... degradation of nucleic acids or nucleotides. In contrast, Leihmania. spp. rely primarily on the salvage pathways for their source of nucleotides. They

  17. Chemotherapeutic Impact Of Natural Antioxidant Flavonoids Gallic Acid Rutin Quercetin And Mannitol On Pathogenic Microbes And Their Synergistic Effect

    Directory of Open Access Journals (Sweden)

    Ganesh Ghosh

    2015-08-01

    Full Text Available Several studies suggest that natural flavonoids with antioxidants and can influence the response to chemotherapy as well as the development of adverse side effects that results from treatment with antineoplastic agents and Its prevalence over Multi drug resistant bacterial strain revived interest on Flavonoids. Synergistic effect is defined as passive interaction arises when two agents combine and together they exert an inhibitory effect that is greater than the sum of individual effect The new Synergistic therapy so that antioxidant are more effective in combination on multi drug resistant bacterial strain. Interaction between natural antioxidants and topoisomerase enzyme can be seen through Quercetin as a potent antimicrobial compound alone and in combination with other natural antioxidant like rutin. MICMBC result show antibacterial activity of the flavonoids were enhanced when used in combination against Staphylococcus aureus Bacillus cereus Bacillus subtilis Klebsiella pneumonae Escherichia coli as the test bacteria. The combination of rutin and quercetin rutin and gallic acid mannitol and gallic acid were much more effective than either flavonoid alone. Furthermore Its gave a good relation between these antioxidant compound and antimicrobial activity. Flavonoids as a chemotherapeutic agent and its Synergistic effect can be solution for various microbial disease conditions.

  18. Drug interaction with radiopharmaceuticals and the importance for the radiation dose to the patient

    International Nuclear Information System (INIS)

    Mattos, D.M.M.; Gomes, M.L.; Freitas, R.S.; Cardoso, V.N.; Bernardo-Filho, M.

    2001-01-01

    A central aspect of the profession of health physics is to establish practical scientifically based radiation protection standards with the worthy aim of minimizing the detriment while at the same time enhancing the benefits derived from sources of ionizing radiation. The biodistribution or pharmacokinetics of radiopharmaceuticals may be altered by drugs and it can lead to misdiagnosis or the necessity to repeat the examination, increasing the dose to the patient. Vincristine (0.03mg/ml) was administered into female mice. One hour after the last dose, 99m Tc-GHA (7.4 MBq) was administered and the animals (n=15) were sacrificed. The organs were isolated and the percentages of radioactivity (%ATI/g) in the organs were calculated. We calculated the Drug Interaction Factor (DIF) and the Effect Mass Factor (EMF). The results were statistically significant (Wilcoxon test, p 99m Tc-GHA was to thymus 1.70, to pancreas 1.68, to uterus 0.42, to spleen 0.78, to lymph node inguinal 0.55, to kidney 0.45, to heart 0.59. The EMF was to ovary 0.28, to uterus 0.64, to thymus 0.17, to spleen 0.45, to lymph node inguinal 0.24, to kidney 0.80, to liver 0.77, to pancreas 0.61. The effects could be explained by the metabolization and/or therapeutic action of these drug. (author)

  19. A novel concept for tumour targeting with radiation: Inverse dose-painting or targeting the "Low Drug Uptake Volume".

    Science.gov (United States)

    Yaromina, Ala; Granzier, Marlies; Biemans, Rianne; Lieuwes, Natasja; van Elmpt, Wouter; Shakirin, Georgy; Dubois, Ludwig; Lambin, Philippe

    2017-09-01

    We tested a novel treatment approach combining (1) targeting radioresistant hypoxic tumour cells with the hypoxia-activated prodrug TH-302 and (2) inverse radiation dose-painting to boost selectively non-hypoxic tumour sub-volumes having no/low drug uptake. 18 F-HX4 hypoxia tracer uptake measured with a clinical PET/CT scanner was used as a surrogate of TH-302 activity in rhabdomyosarcomas growing in immunocompetent rats. Low or high drug uptake volume (LDUV/HDUV) was defined as 40% of the GTV with the lowest or highest 18 F-HX4 uptake, respectively. Two hours post TH-302/saline administration, animals received either single dose radiotherapy (RT) uniformly (15 or 18.5Gy) or a dose-painted non-uniform radiation (15Gy) with 50% higher dose to LDUV or HDUV (18.5Gy). Treatment plans were created using Eclipse treatment planning system and radiation was delivered using VMAT. Tumour response was quantified as time to reach 3 times starting tumour volume. Non-uniform RT boosting tumour sub-volume with low TH-302 uptake (LDUV) was superior to the same dose escalation to HDUV (pvolume with no/low activity of hypoxia-activated prodrugs. This strategy applies on average a lower radiation dose and is as effective as uniform dose escalation to the entire tumour. It could be applied to other type of drugs provided that their distribution can be imaged. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. Pyrimidine nucleoside analogues, potential chemotherapeutic agents, and substrates/inhibitors in various enzyme systems

    International Nuclear Information System (INIS)

    Kulikowski, T.; Bretner, M.; Felczak, K.; Drabikowska, A.; Shugar, D.

    1998-01-01

    Full text. Pyrimidine nucleoside analogues are an important class of compounds with antimetabolic (antitumor, antiparasitic and antiviral) properties. The synthesis of thiated nucleoside and nucleotide analogues, determination of structures, conformation and dissociation constans, their potential chemotherapeutic activities, and their substrate/inhibitor properties in various enzyme systems, with emphasis on enzymes related to chemotherapeutic activities, were investigated. In the series of thionated inhibitors of thymidylate synthase (TS), potential antitumor agents, regioselective syntheses were elaborated for 2- and 4-thio, and 2,4-dithio derivatives of 2'-deoxyuridine (dUrd), 5-fluoro-2'-deoxyuridine (FdUrd), and several other 5-fluoro-, 5-bromo- and 5-trifluoromethyl congeners, and the 2-thio derivatives of FdUrd and its α-anomer, which proved to be selective agents with high cytotoxicities correlated with the inhibitory activities vs TS of their corresponding 5'-monophosphates. Regioslective syntheses were also elaborated for 2'-deoxycytidin e and 5-fluoro-2'-deoxycitidine derivatives. Solution conformation of these nucleosides were deduced from high-resolution (500 MHz) 1 H NMR spectra. Substrate/inhibitor properties of 2-thio-2'-deoxycitidine (S 2 dCyd) and 5-fluoro-2-thio-2'-deoxycitidine ( S 2 FdCyd) with respect to human leukemic spleen deoxycytidine kinase have been examined. Both are substrates, and also good inhibitors, of phosphorylation of 2'-deoxycitidine and 2'-deoxyadenosine. Particular attention was directed to the specificity of t he NTP phosphate donor for several nucleoside kinases, and procedures have been developed for distinguishing between ATP and other NTP donors, a problem of importance in chemotherapy with nucleoside analogues. Biological properties of the newly synthetize d thiated pyrimidine 2',3'-dideoxy-3'-fluoronucleosides, S 2 ,3'-FddUrd and S 2 ,3'-FddThd, were also investigated. Thiated 3'-fluoronucleosides were moderate

  1. Anti-microorganism contamination measures for crude drugs utilizing radiation sterilization

    International Nuclear Information System (INIS)

    Kimura, Syojiro

    1998-01-01

    Crude drugs are manufactured by simple processing of natural mineral, animal or plant part materials, and are used in Chinese medicine. Because these components are originated by nature, they tend to have a much higher level of contaminating microorganisms than chemically synthesized compound. Many plant-derived crude drugs contain bacteria; 10 3 -10 5 cells/g and fungi; 10 2 -10 4 spores/g. Some animal-derived crude drugs contain bacteria levels of up to 10 8 cells/g, including dangerous varieties like E. coli or Salmonella. The survival rate and the required dose can be quantified as follows: N/No=e -kD and SD=D 10 x log (No/SAL), respectively. Where, k is the sterilization constant of microorganism, No is the initial count of bacteria, D is the absorbed dose, D 10 is the dose required to decrease the count to 1/10 and SAL is the count limit or sterilization assurance. The D 10 value for general microorganism is approximately 2 kGy for bacteria, 1 kGy for fungi, and 3-4 kGy for spore-forming bacteria. The results of our past studies have shown that the dose of 5-7 kGy is necessary to sterilize general microorganism that are attached to crude drugs. Besides, the D 10 value of specific bacteria ranges from 0.1 to 0.8 kGy, so the above dose should be sufficient for sterilizing the specific microorganism (SAL; 10 -6 ). The stability of crude drugs can be quantified be the following formula, C/Co=e -k'D . Where, C/Co is the residual rate of drug components, and k' is the loss coefficient. The value of k is 1-2, but that of k' is three to four figures smaller. The C/Co ratio of most drug components is more than 0.99 with a dose of 5-7 kGy. Furthermore, radiolysis materials that are decomposed by radiation are similar to compounds that are decomposed by ultraviolet rays or sunlight. 60 Co ray are suitable for sterilizing raw materials. On the other hand, electron beams are used to sterilize a thin layer of pulverized specimens, and can be incorporated into the

  2. Tumor treatment by sustained intratumoral release of cisplatin: effects of drug alone and combined with radiation

    International Nuclear Information System (INIS)

    Yapp, Donald T.T.; Lloyd, David K.; Zhu, Julian; Lehnert, Shirley M.

    1997-01-01

    Purpose: The effect of intratumoral delivery of cisplatin to a mouse tumor model (RIF-1) by means of a biodegradable polymer implant with and without radiation was studied. Methods and Materials: The polymer bis(p-carboxyphenoxy)propane-sebacic acid (CPP:SA; 80:20) and its degradation products have been characterized. Polymer rods (8 x 0.5 mm) containing 17% cisplatin by weight were prepared by extrusion, and the in vitro degradation rate measured. The implants were placed into mouse tumors and their effect (with and without radiation) on tumor growth delay studied. The levels of Pt in the mouse kidney, tumor, and blood plasma at selected intervals after implant were also determined. These results were compared with those obtained when cisplatin was delivered systematically. Results: When cisplatin was delivered by the polymer implants, higher levels were present in the tumor for longer time periods (cf. systemic delivery of the drug). For both nonirradiated and irradiated tumors, those treated with the polymer implants had significantly longer tumor growth delays compared to nonimplanted controls and to systematically treated tumors. Conclusions: The results show that intratumoral delivery of cisplatin is more efficient than systemic delivery. Using the biodegradable polymer implant, higher doses of cisplatin can be tolerated by the animal as the drug is localized within the tumor, and the high levels of the drug in the tumor can be maintained for an extended period of time. When radiation is given in conjunction with cisplatin, the tumor response is supraadditive for all modes of cisplatin administration but is potentiated to a greater extent when cisplatin is delivered through the polymer implant. The greatest effect is seen for treatment with cisplatin delivered by polymer implant combined with fractionated radiation

  3. Strategy for chemotherapeutic delivery using a nanosized porous metal-organic framework with a central composite design

    Directory of Open Access Journals (Sweden)

    Li YP

    2017-02-01

    cancer chemotherapeutic drug delivery system. Keywords: 5-fluorouracil, drug delivery, nanoparticles, nano-MOFs

  4. The role of thiols in cellular response to radiation and drugs

    International Nuclear Information System (INIS)

    Biaglow, J.E.; Varnes, M.E.; Clark, E.P.; Epp, E.R.

    1983-01-01

    Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme A. GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Some nitroheterocyclic radiosensitizing drugs also deplete cellular thiols under aerobic conditions. Such reactivity may be the reason that they show anomalous radiation sensitization (i.e., better than predicted on the basis of electron affinity). Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole

  5. PET studies of potential chemotherapeutic agents: Pt. 10

    International Nuclear Information System (INIS)

    Conway, T.; Diksic, M.; McGill Univ., Montreal, PQ

    1991-01-01

    Carbon-11-labeled HECNU [1-(2-chloroethyl)-1-nitroso-3-(2-hydroxyethyl) urea] a potential chemotherapeutic agent, has been prepared by the nitrosation of the corresponding carbon-11-labeled urea, HECU, [1-(2-chloroethyl)-3-(2-hydroxyethyl) urea]. The isomeric byproduct of nitrosation, 1-(2-chloroethyl)-3-nitroso-3-(2-hydroxyethyl) urea can be efficiently removed by preparative scale HPLC on a Partisil column. ( 11 C)-HECU was prepared by reacting ethanolamine with ( 11 C)-2-chloroethyl-isocyanate which was itself prepared by reacting ( 11 C)-phosgene with 2-chloroethylamine hydrochloride suspended in dioxane at 60-65 o C. This synthesis yielded ( 11 C)-HECNU with an average radiochemical purity of 98% in an average radiochemical yield of 18% relative to the radioactivity measured at the end of the 11 C-phosgene introduction. (author)

  6. Toxic clinical hypoxic radiation sensitizers plus radiation-induced toxicity

    International Nuclear Information System (INIS)

    Richmond, R.C.

    1984-01-01

    The operational definition espoused twelve years ago that clinical hypoxic radiation sensitizers should be nontoxic interferes with the recognition and research of useful radiation sensitizers. Eight years ago the toxic antitumor drug cis-dichlorodiammineplatinum(II) was reported to be a hypoxic radiation sensitizer and the selective antitumor action of this drug was stressed as potentially creating tumor-targeted radiation sensitization. This rationale of oxidative antitumor drugs as toxic and targeted clinical sensitizers is useful, and has led to the study reported here. The antitumor drug cis-(1,1-cyclobutane-dicarboxylato)diammineplatinum(II), or JM-8, is being tested in clinical trials. Cells of S. typhimurium in PBS in the presence of 0.2mM JM-8 are found to be sensitized to irradiation under hypoxic, but not oxic, conditions. JM-8 is nontoxic to bacteria at this concentration, but upon irradiation the JM-8 solution becomes highly toxic. This radiation induced toxicity of JM-8 preferentially develops from hypoxic solution, and thus contributes to the rationale of hypoxic tumor cell destruction

  7. Carboplatin enhances the production and persistence of radiation-induced DNA single-strand breaks

    International Nuclear Information System (INIS)

    Yang, L.; Douple, E.B.; O'Hara, J.A.; Wang, H.J.

    1995-01-01

    Fluorometric analysis of DNA unwinding and alkaline elution were used to investigate the production and persistence of DNA single-strand breaks (SSBs) in Chinese hamster V79 and xrs-5 cells treated with the chemotherapeutic agent carboplatin in combination with radiation. Carboplatin was administered to cells before irradiation in hypoxic conditions, or the drug was added immediately after irradiation during the postirradiation recovery period in air. The results of DNA unwinding studies suggest that carboplatin enhances the production of radiation-induced SSBs in hypoxic V79 cells and xrs-5 cells by a factor of 1.86 and 1.83, respectively, when combined with radiation compared to the SSBs produced by irradiation alone. Carboplatin alone did not produce a measureable number of SSBs. Alkaline elution profiles also indicated that the rate of elution of SSBs was higher in cells treated with the carboplatin is present after irradiation and during the postirradiation recovery period, the rejoining of radiation-induced SSBs by a factor of 1.46 in V79 cells with 20 Gy irradiation and by a factor of 2.02 in xrs-5 cells with 20 Gy irradiation. When carboplatin is present after irradiation and during the postirradiation recovery period, the rejoining of radiation-induced SSBs is inhibited during this postirradiation incubation period (radiopotentiation) with a relative inhibition factor at 1 h postirradiation of 1.25 in V79 cells and 1.15 in xrs-5 cells. An increased production and persistence of SSBs resulting from the interaction of carboplatin with radiation may be an important step in the mechanism responsible for the potentiated cell killing previously from studies in animal tumors and in cultured cells. 31 refs., 7 figs

  8. Alpinetin inhibits lung cancer progression and elevates sensitization drug-resistant lung cancer cells to cis-diammined dichloridoplatium

    Directory of Open Access Journals (Sweden)

    Wu L

    2015-11-01

    Full Text Available Lin Wu, Wei Yang, Su-ning Zhang, Ji-bin Lu Department of Thoracic Surgery, Sheng Jing Hospital of China Medical University, Shenyang, People’s Republic of China Objective: Alpinetin is a novel flavonoid that has demonstrated potent antitumor activity in previous studies. However, the efficacy and mechanism of alpinetin in treating lung cancer have not been determined. Methods: We evaluated the impact of different doses and durations of alpinetin treatment on the cell proliferation, the apoptosis of lung cancer cells, as well as the drug-resistant lung cancer cells. Results: This study showed that the alpinetin inhibited the cell proliferation, enhanced the apoptosis, and inhibited the PI3K/Akt signaling in lung cancer cells. Moreover, alpinetin significantly increased the sensitivity of drug-resistant lung cancer cells to the chemotherapeutic effect of cis-diammined dichloridoplatium. Taken together, this study demonstrated that alpinetin significantly suppressed the development of human lung cancer possibly by influencing mitochondria and the PI3K/Akt signaling pathway and sensitized drug-resistant lung cancer cells. Conclusion: Alpinetin may be used as a potential compound for combinatorial therapy or as a complement to other chemotherapeutic agents when multiple lines of treatments have failed to reduce lung cancer. Keywords: alpinetin, cell proliferation and apoptosis, drug resistance reversal, PI3K/Akt, lung cancer

  9. Chemotherapeutic potential of 17-AAG against cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis.

    Science.gov (United States)

    Santos, Diego M; Petersen, Antonio L O A; Celes, Fabiana S; Borges, Valeria M; Veras, Patricia S T; de Oliveira, Camila I

    2014-10-01

    Leishmaniasis remains a worldwide public health problem. The limited therapeutic options, drug toxicity and reports of resistance, reinforce the need for the development of new treatment options. Previously, we showed that 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), a Heat Shock Protein 90 (HSP90)-specific inhibitor, reduces L. (L.) amazonensis infection in vitro. Herein, we expand the current knowledge on the leishmanicidal activity of 17-AAG against cutaneous leishmaniasis, employing an experimental model of infection with L. (V.) braziliensis. Exposure of axenic L. (V.) braziliensis promastigotes to 17-AAG resulted in direct dose-dependent parasite killing. These results were extended to L. (V.) braziliensis-infected macrophages, an effect that was dissociated from the production of nitric oxide (NO), superoxide (O(-2)) or inflammatory mediators such as TNF-α, IL-6 and MCP-1. The leishmanicidal effect was then demonstrated in vivo, employing BALB/c mice infected with L. braziliensis. In this model, 17-AAG treatment resulted in smaller skin lesions and parasite counts were also significantly reduced. Lastly, 17-AAG showed a similar effect to amphotericin B regarding the ability to reduce parasite viability. 17-AAG effectively inhibited the growth of L. braziliensis, both in vitro and in vivo. Given the chronicity of L. (V.) braziliensis infection and its association with mucocutaneous leishmaniasis, 17-AAG can be envisaged as a new chemotherapeutic alternative for cutaneous Leishmaniasis.

  10. Using a device for continuous infusion of a chemotherapeutic agent in the perception of the oncologic patient

    Directory of Open Access Journals (Sweden)

    Julianna de Freitas Siqueira

    2014-01-01

    Full Text Available This is a qualitative study whose aim was to describe the perception of an oncologic patient regarding the use of a device for continuous infusion of a chemotherapeutic agent. It was carried out with eight patients, through a semi-structured interview with this guiding question: “How do you feel about using a device for continuous infusion of a chemotherapeutic agent?”. Three categories emerged: avoiding hospitalization; unveiling the unknown; and performing activities. The patient highlights the benefit of going home and the possibility of performing activities, despite the anxiety regarding the presence of the device and the new experience in her/his daily life. The results were important to direct the guidelines related to the positive and negative aspects of this technology.

  11. Radiation crosslinked hydrogels as sustained release drug delivery systems

    International Nuclear Information System (INIS)

    Pekala, W.; Rosiak, J.; Rucinska-Rybus, A.; Burczak, K.; Galant, S.; Czolczynska, T.

    1986-01-01

    Radiation methods have been used for: i/modification of vascular prostheses, ii/ obtaining burn dressing materials enabling controlled drug release, iii/ the preparation of polymer ocular insert discs. The surface of polyester vascular prostheses, has been modified by deposition of acrylamide and inducing its polymerization in the solid state by γ-radiation. As a result of this treatment, tightness of the prosthesis walls and its surface hydrophilicity have been improved. Toxicological examinations and blood hemolysis studies of modified prostheses showed its good biocompatibility. Various burn dressings have been prepared and the most promising of all investigated turned to be composition consisting of a cotton gauze base and an active polyacrylamide hydrogel layer with addition of glycerin and immobilized Provital/protein preparation/. Preliminary clinical evaluations of this particular dressing showed that the process of burn healing is indeed fast and fully satisfactory. Ocular insert discs made of polymer and containing pilocarpin hydrochloride which is released at controlled rate have been prepared. It has been found that high hydrophilicity and good swelling properties of the ocular insert discs made possible to incorporate pilocarpin hydrochloride into hydrogel matrix. This work has been carried out under IAEA research contract RB 3379/R-1 POL. (author)

  12. An Innovative Cell Microincubator for Drug Discovery Based on 3D Silicon Structures

    Directory of Open Access Journals (Sweden)

    Francesca Aredia

    2016-01-01

    Full Text Available We recently employed three-dimensional (3D silicon microstructures (SMSs consisting in arrays of 3 μm-thick silicon walls separated by 50 μm-deep, 5 μm-wide gaps, as microincubators for monitoring the biomechanical properties of tumor cells. They were here applied to investigate the in vitro behavior of HT1080 human fibrosarcoma cells driven to apoptosis by the chemotherapeutic drug Bleomycin. Our results, obtained by fluorescence microscopy, demonstrated that HT1080 cells exhibited a great ability to colonize the narrow gaps. Remarkably, HT1080 cells grown on 3D-SMS, when treated with the DNA damaging agent Bleomycin under conditions leading to apoptosis, tended to shrink, reducing their volume and mimicking the normal behavior of apoptotic cells, and were prone to leave the gaps. Finally, we performed label-free detection of cells adherent to the vertical silicon wall, inside the gap of 3D-SMS, by exploiting optical low coherence reflectometry using infrared, low power radiation. This kind of approach may become a new tool for increasing automation in the drug discovery area. Our results open new perspectives in view of future applications of the 3D-SMS as the core element of a lab-on-a-chip suitable for screening the effect of new molecules potentially able to kill tumor cells.

  13. Study of qinolones usage in prevention and therapy of septic complications of radiation damage

    International Nuclear Information System (INIS)

    Petyrek, P.; Spelda, S.

    1994-01-01

    A standard model of experimental sepsis was elaborated at rats in dependence on a gamma irradiation dose and a time interval between irradiation and application infectious agents E. coli O 83:K 24:H 31. For a development of experimental sepsis was proved that it is not decisive in these laboratory animals when infectious agents is i.v. or i.p. applicated. Such amount of organisms (1-20.10 7-8 ) was applicated in particular not to develop sepsis in non-irradiated laboratory animals. Laboratory animals were irradiated with sublethal doses and approximately. LD 50-30 doses of gamma radiation. The laboratory animals were treated only in experiments and qinolone drug ofloxacin was used in the treatment of experimental sepsis. Ofloxacin perorally administrated in the dose of 40 mg/kg in an hour after application of infectious agents and its administration for 5 days in the 24-h intervals confirmed in fact 100% therapeutic effectiveness in irradiated experimental animals. In non-treated experimental groups, animals died in 24-28 hours interval after application of infectious agents and sepsis was a cause of death. In treated experimental groups, animal survived by day 30 after irradiation with sublethal doses or died during the period typical for a bone marrow syndrome of acute radiation injury after irradiation with lethal doses of gamma radiation. Acquired experimental outcomes may suggest that fluorochinolone chemotherapeuticals in the respect of their essential pharmacokinetic properties will be used for a prevention of infectious complications in acute radiation injury. (author)

  14. Drug resistance in colorectal cancer cell lines is partially associated with aneuploidy status in light of profiling gene expression

    DEFF Research Database (Denmark)

    Guo, Jiao; Xu, Shaohang; Huang, Xuanlin

    2016-01-01

    A priority in solving the problem of drug resistance is to understand the molecular mechanism of how a drug induces the resistance response within cells. Because many cancer cells exhibit chromosome aneuploidy, we explored whether changes of aneuploidy status result in drug resistance. Two typical...... colorectal cancer cells, HCT116 and LoVo, were cultured with the chemotherapeutic drugs irinotecan (SN38) or oxaliplatin (QxPt), and the non- and drug-resistant cell lines were selected. Whole exome sequencing (WES) was employed to evaluate the aneuploidy status of these cells, and RNAseq and LC-MS/MS were...... the aneuploidy status in cancer cells, which was partially associated with the acquired drug resistance....

  15. Rapid selection and proliferation of CD133+ cells from cancer cell lines: chemotherapeutic implications.

    Directory of Open Access Journals (Sweden)

    Sarah E Kelly

    2010-04-01

    Full Text Available Cancer stem cells (CSCs are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133+] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB (Celdyne, Houston, TX. For comparison, another bioreactor, the rotary cell culture system (RCCS manufactured by Synthecon (Houston, TX was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133+ cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a +15-fold proliferation of the CD133+ cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (-4.8-fold decrease in the CD133+cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133+ cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates.

  16. Transarterial ablation of hepatocellular carcinoma. Status and developments

    International Nuclear Information System (INIS)

    Radeleff, B.A.; Stampfl, U.; Sommer, C.M.; Bellemann, N.; Kauczor, H.U.; Hoffmann, K.; Ganten, T.; Ehehalt, R.

    2012-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and represents the main cause of death among European patients with liver cirrhosis. Only 30-40% of patients diagnosed with HCC are candidates for curative treatment options (e.g. surgical resection, liver transplantation or ablation). The remaining majority of patients must undergo local regional and palliative therapies. Transvascular ablation of HCC takes advantage of the fact that the hypervascularized HCC receives most of its blood supply from the hepatic artery. In this context transvascular ablation describes different therapy regimens which can be assigned to four groups: cTACE (conventional transarterial chemoembolization), bland embolization (transarterial embolization TAE), DEB-TACE (TACE with drug-eluting beads, DEB) and SIRT (selective internal radiation therapy, radioembolization). Conventional TACE is the most common type of transvascular ablation and represents a combination of intra-arterial chemotherapy and embolization with occlusion of the arterial blood supply. However, there is no standardized regimen with respect to the chemotherapeutic drug, the embolic agent, the usage of lipiodol and the interval between the TACE procedures. Even the exact course of a cTACE procedure (order of chemotherapy or embolization) is not standardized. It remains unclear whether or not intra-arterial chemotherapy is definitely required as bland embolization using very small, tightly calibrated spherical particles (without intra-arterial administration of a chemotherapeutic drug) shows tumor necrosis comparable to cTACE. For DEB-TACE microparticles loaded with a chemotherapeutic drug combine the advantages of cTACE and bland embolization. Thereby, a continuing chemotherapeutic effect within the tumor might cause a further increase in intratumoral cytotoxicity and at the same time a decrease in systemic toxicity. (orig.) [de

  17. Is There an Opportunity for Current Chemotherapeutics to Up-regulate MIC-A/B Ligands?

    Directory of Open Access Journals (Sweden)

    Kendel Quirk

    2017-10-01

    Full Text Available Natural killer (NK cells are critical effectors of the immune system. NK cells recognize unhealthy cells by specific ligands [e.g., MHC- class I chain related protein A or B (MIC-A/B] for further elimination by cytotoxicity. Paradoxically, cancer cells down-regulate MIC-A/B and evade NK cell’s anticancer activity. Recent data indicate that cellular-stress induces MIC-A/B, leading to enhanced sensitivity of cancer cells to NK cell-mediated cytotoxicity. In this Perspective article, we hypothesize that current chemotherapeutics at sub-lethal, non-toxic dose may promote cellular-stress and up-regulate the expression of MIC-A/B ligands to augment cancer’s sensitivity to NK cell-mediated cytotoxicity. Preliminary data from two human breast cancer cell lines, MDA-MB-231 and T47D treated with clinically relevant therapeutics such as doxorubicin, paclitaxel and methotrexate support the hypothesis. The goal of this Perspective is to underscore the prospects of current chemotherapeutics in NK cell immunotherapy, and discuss potential challenges and opportunities to improve cancer therapy.

  18. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  19. 8-aminoadenosine enhances radiation-induced cell death in human lung carcinoma A549 cells

    International Nuclear Information System (INIS)

    Meike, Shunsuke; Yamamori, Tohru; Yasui, Hironobu; Eitaki, Masato; Inanami, Osamu; Matsuda, Akira

    2011-01-01

    The combination of a chemotherapeutic agent and radiation is widely applied to enhance cell death in solid tumor cells in cancer treatment. The purine analogue 8-aminoadenosine (8-NH 2 -Ado) is known to be a transcription inhibitor that has proved very effective in multiple myeloma cell lines and primary indolent leukemia cells. In this report, to examine whether 8-NH 2 -Ado had the ability to enhance the radiation-induced cell killing in solid tumor cells, human lung adenocarcinoma A549 cells were irradiated in the presence and absence of 8-NH 2 -Ado. 8-NH 2 -Ado significantly increased reproductive cell death and apoptosis in A549 cells exposed to X-rays. When peptide inhibitors against caspase-3, -8, and -9 were utilized to evaluate the involvement of caspases, all inhibitors suppressed the enhancement of radiation-induced apoptosis, suggesting that not only mitochondria-mediated apoptotic signal transduction pathways but also death receptor-mediated pathways were involved in this enhancement of apoptosis. In addition, in the cells exposed to the treatment combining X-irradiation and 8-NH 2 -Ado, reduction of the intracellular ATP concentration was essential for survival, and down-regulation of the expression of antiapoptotic proteins such as survivin and X-linked inhibitor of apoptosis protein (XIAP) was observed. These results indicate that 8-NH 2 -Ado has potential not only as an anti-tumor drug for leukemia and lymphoma but also as a radiosensitizing agent for solid tumors. (author)

  20. Interstitial shadow on chest CT is associated with the onset of interstitial lung disease caused by chemotherapeutic drugs

    International Nuclear Information System (INIS)

    Niho, Seiji; Goto, Koichi; Yoh, Kiyotaka; Kim, Y.H.; Ohmatsu, Hironobu; Kubota, Kaoru; Saijo, Nagahiro; Nishiwaki, Yutaka

    2006-01-01

    Pretreatment computerized tomography (CT) films of the chest was studied to clarify the influence of interstitial shadow on developing interstitial lung disease (ILD). Eligible patients were those lung cancer patients who started to receive first-line chemotherapy between October 2001 and March 2004. Patients who received thoracic radiotherapy to the primary lesion, mediastinum, spinal or rib metastases were excluded. We reviewed pretreatment conventional CT and plain X-ray films of the chest. Ground-glass opacity, consolidation or reticular shadow without segmental distribution was defined as interstitial shadow, with this event being graded as mild, moderate or severe. If interstitial shadow was detected on CT films of the chest, but not via plain chest X-ray, it was graded as mild. Patients developing ILD were identified from medial records. A total of 502 patients were eligible. Mild, moderate and severe interstitial shadow was identified in 7, 8 and 5% of patients, respectively. A total of 188 patients (37%) received tyrosine kinase inhibitor (TKI) treatment, namely gefitinib or erlotinib. Twenty-six patients (5.2%) developed ILD either during or after chemotherapy. Multivariate analyses revealed that interstitial shadow on CT films of the chest and treatment history with TKI were associated with the onset of ILD. It is recommended that patients with interstitial shadow on chest CT are excluded from future clinical trials until this issue is further clarified, as it is anticipated that use of chemotherapeutic agents frequently mediate onset of ILD in this context. (author)

  1. Development of novel hydrogels by modification of sterculia gum through radiation cross-linking polymerization for use in drug delivery

    International Nuclear Information System (INIS)

    Singh, Baljit; Vashishtha, Manu

    2008-01-01

    In order to modify the sterculia gum polysaccharide, to develop the hydrogels meant for the drug delivery, we have prepared sterculia gum, 2-hydroxyethylmethacrylate (HEMA) and acrylic acid (AAc) based hydrogels by radiation-induced crosslinking polymerization. Polymeric networks (hydrogels) thus formed were characterized with SEMs, FTIR,TGA and swelling studies which were carried out as a function monomers concentration, radiation dose, amount of sterculia contents in the polymer matrix and nature of the swelling medium. This paper discusses the swelling kinetics of the hydrogels and release dynamics of anti-diarrhea model drug ornidazole from the hydrogels to evaluation of swelling and drug release mechanism. Diffusion exponent 'n' have 0.73, 0.56 and 0.61 values and gel characteristic constant 'k' have 1.28 x 10 -2 , 2.95 x 10 -2 and 2.14 x 10 -2 values in distilled water, pH 2.2 buffer and pH 7.4 buffer. The release of drug from the polymer matrix occurred through non-Fickian diffusion mechanism. The values for the late time diffusion coefficients have been lower than the values of initial and average diffusion coefficients. It reflects that in the initial stages rate of release of drug from polymer matrix was higher as compared to the late stages, it means after certain time the drug release occurred in controlled manner

  2. Prediction of clinical response to drugs in ovarian cancer using the chemotherapy resistance test (CTR-test).

    Science.gov (United States)

    Kischkel, Frank Christian; Meyer, Carina; Eich, Julia; Nassir, Mani; Mentze, Monika; Braicu, Ioana; Kopp-Schneider, Annette; Sehouli, Jalid

    2017-10-27

    In order to validate if the test result of the Chemotherapy Resistance Test (CTR-Test) is able to predict the resistances or sensitivities of tumors in ovarian cancer patients to drugs, the CTR-Test result and the corresponding clinical response of individual patients were correlated retrospectively. Results were compared to previous recorded correlations. The CTR-Test was performed on tumor samples from 52 ovarian cancer patients for specific chemotherapeutic drugs. Patients were treated with monotherapies or drug combinations. Resistances were classified as extreme (ER), medium (MR) or slight (SR) resistance in the CTR-Test. Combination treatment resistances were transformed by a scoring system into these classifications. Accurate sensitivity prediction was accomplished in 79% of the cases and accurate prediction of resistance in 100% of the cases in the total data set. The data set of single agent treatment and drug combination treatment were analyzed individually. Single agent treatment lead to an accurate sensitivity in 44% of the cases and the drug combination to 95% accuracy. The detection of resistances was in both cases to 100% correct. ROC curve analysis indicates that the CTR-Test result correlates with the clinical response, at least for the combination chemotherapy. Those values are similar or better than the values from a publication from 1990. Chemotherapy resistance testing in vitro via the CTR-Test is able to accurately detect resistances in ovarian cancer patients. These numbers confirm and even exceed results published in 1990. Better sensitivity detection might be caused by a higher percentage of drug combinations tested in 2012 compared to 1990. Our study confirms the functionality of the CTR-Test to plan an efficient chemotherapeutic treatment for ovarian cancer patients.

  3. Prevention of radiation emesis in dogs by combinations of drugs

    International Nuclear Information System (INIS)

    Mattsson, J.L.; Cordts, R.E.; Yochmowitz, M.G.; Hardy, K.A.

    1984-01-01

    Male mixed-breed dogs were used to evaluate the effectiveness of cimetidine (Cim), promethazine (Pro), and thiethylperazine (Thi), singly and in combination, to raise the threshold for radiation-induced emesis. Cim was chosen as an H 2 antihistamine, Pro as an H 1 antihistamine, and Thi as a phenothiazine derivative dopamine blocker. Doses were calculated to approximate doses for an average human. Exposure was to 60 Co at 60 rad (midline) per min. The dogs were fed 0.4 kg canned dog food 1 hour before exposure, and injected with the appropriate drugs 30 minutes prior to exposure. Emesis onset times, number of episodes, and time to last episode were recorded. The radiation dose (midline tissue rad) to cause a 50% incidence of emesis (ED 50 ) was calculated using an up-and-down procedure. The ED 50 were: 258 (212-315) for controls; 240 (151-380) for Cim; 313 (256-384) for Pro; 405 (319-514) for Thi; 334 (284-394) for Cim + Pro; 446 (365-546) for Cim + Thi; 347 (306-399) for Pro + Thi; and 478 (428-539) for Cim + Pro + Thi

  4. Radioprotective efficacy of dipyridamole and AMP combination in fractionated radiation regimen, and its dependence on the time of administration of the drugs prior to irradiation

    International Nuclear Information System (INIS)

    Hofer, M.; Pospisil, M.; Netikova, J.; Hola, J.; Znojil, V.; Vacha, J.

    1995-01-01

    The authors have recently demonstrated that a combined administration of dipyridamole and adenosine monophosphate to mice induces radioprotective effects in terms of postirradiation hematopoietic recovery in animals irradiated with a single dose. The aim of the present experiments was to investigate the radioprotective ability of the drug combination under conditions of fractionated radiation. It was shown that administration of the drugs either 15 or 60 min before each of the five daily 3-Gy doses of gamma radiation enhances hematopoietic recovery and survival of mice exposed to an additional 'top-up' dose of 3.5 Gy. Furthermore, it was ascertained that administration of the drugs 60 min prior to irradiation is more effective than administration of the drugs 15 min prior to irradiation. Due to the evidence that administration of the drugs 15 min prior to irradiation protects the organism mainly via mechanisms of systemic hypoxia while the pretreatment 60 min before irradiation avoids the role of hypoxia and mainly induces cell proliferation effects, the present results suggest a more protective role of mechanisms stimulating hematopoiesis under conditions of fractionated radiation. The data may provide a basis for more rational use of radioprotection in fractionated radiation techniques. (author) 1 tab., 1 fig., 25 refs

  5. Radiation syntheses of Pectin/acrylamide (PEC/PAM) and Pectin/Diethylaminoethylmethacrylate (PEC/DEAMA) hydrogels as drug delivery systems

    International Nuclear Information System (INIS)

    Abou El Fadl, F.I.; Maziad, N.A.

    2015-01-01

    Different pH responsive copolymer hydrogels based on pectin were prepared by the effect of radiation. The physical and chemical properties of prepared hydrogels were studied by FTIR, and TGA. Also, the prepared hydrogels were evaluated for the possible use as drug delivery system for chlortetracycline HCL as model drug. The results revealed that the swelling ratios and the release behavior of hydrogels depend mainly on the pH of the medium and the hydrogel composition. (author)

  6. Okadaic acid for radiation dose estimation using drug-induced premature chromosome condensation

    International Nuclear Information System (INIS)

    Wang Chunyan; Zhang Wei; Su Xu

    2005-01-01

    Objective: To establish simple biological method for high irradiation dose estimation using drug-induced prematurely condensed chromosomes (PCC) aberrations. Methods: Peripheral blood was taken from healthy adults and irradiated by 0, 1, 2, 5, 10, 15, 20 and 25 Gy 60 Co γ-rays. Then the blood samples were cultured for 48 hrs. One hr before the end of culture , okadaic acid was added into culture medium to induce PCC rings, which were counted for each dose point. Results: The yield of PCC rings was increased with the dose of radiation until 20 Gy. Within the range of 1 to 20 Gy, there was a good dose-response relationship between the yield of PCC rings and radiation dose. Conclusion: Compared with the analysis of frequency of dicentrics, the yield of PCC rings could be a good biodosimetry indicator for estimation of high dose irradiation. (authors)

  7. On the MTD paradigm and optimal control for multi-drug cancer chemotherapy.

    Science.gov (United States)

    Ledzewicz, Urszula; Schättler, Heinz; Gahrooi, Mostafa Reisi; Dehkordi, Siamak Mahmoudian

    2013-06-01

    In standard chemotherapy protocols, drugs are given at maximum tolerated doses (MTD) with rest periods in between. In this paper, we briey discuss the rationale behind this therapy approach and, using as example multidrug cancer chemotherapy with a cytotoxic and cytostatic agent, show that these types of protocols are optimal in the sense of minimizing a weighted average of the number of tumor cells (taken both at the end of therapy and at intermediate times) and the total dose given if it is assumed that the tumor consists of a homogeneous population of chemotherapeutically sensitive cells. A 2-compartment linear model is used to model the pharmacokinetic equations for the drugs.

  8. Ex vivo cultures of glioblastoma in three-dimensional hydrogel maintain the original tumor growth behavior and are suitable for preclinical drug and radiation sensitivity screening

    Energy Technology Data Exchange (ETDEWEB)

    Jiguet Jiglaire, Carine, E-mail: carine.jiguet-jiglaire@univ-amu.fr [Aix Marseille Université, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille (France); CRO2, UMR 911, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille Cedex (France); INSERM, U911, 13005 Marseille (France); Baeza-Kallee, Nathalie; Denicolaï, Emilie; Barets, Doriane [Aix Marseille Université, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille (France); CRO2, UMR 911, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille Cedex (France); INSERM, U911, 13005 Marseille (France); Metellus, Philippe [Aix Marseille Université, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille (France); CRO2, UMR 911, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille Cedex (France); INSERM, U911, 13005 Marseille (France); APHM, Timone Hospital, Department of Neurosurgery, 13005 Marseille (France); Timone Hospital, 264 Rue Saint Pierre, 13385 Marseille Cedex 5 (France); and others

    2014-02-15

    Identification of new drugs and predicting drug response are major challenges in oncology, especially for brain tumors, because total surgical resection is difficult and radiation therapy or chemotherapy is often ineffective. With the aim of developing a culture system close to in vivo conditions for testing new drugs, we characterized an ex vivo three-dimensional culture system based on a hyaluronic acid-rich hydrogel and compared it with classical two-dimensional culture conditions. U87-MG glioblastoma cells and seven primary cell cultures of human glioblastomas were subjected to radiation therapy and chemotherapy drugs. It appears that 3D hydrogel preserves the original cancer growth behavior and enables assessment of the sensitivity of malignant gliomas to radiation and drugs with regard to inter-tumoral heterogeneity of therapeutic response. It could be used for preclinical assessment of new therapies. - Highlights: • We have compared primary glioblastoma cell culture in a 2D versus 3D-matrix system. • In 3D morphology, organization and markers better recapitulate the original tumor. • 3D-matrix culture might represent a relevant system for more accurate drug screening.

  9. Ex vivo cultures of glioblastoma in three-dimensional hydrogel maintain the original tumor growth behavior and are suitable for preclinical drug and radiation sensitivity screening

    International Nuclear Information System (INIS)

    Jiguet Jiglaire, Carine; Baeza-Kallee, Nathalie; Denicolaï, Emilie; Barets, Doriane; Metellus, Philippe

    2014-01-01

    Identification of new drugs and predicting drug response are major challenges in oncology, especially for brain tumors, because total surgical resection is difficult and radiation therapy or chemotherapy is often ineffective. With the aim of developing a culture system close to in vivo conditions for testing new drugs, we characterized an ex vivo three-dimensional culture system based on a hyaluronic acid-rich hydrogel and compared it with classical two-dimensional culture conditions. U87-MG glioblastoma cells and seven primary cell cultures of human glioblastomas were subjected to radiation therapy and chemotherapy drugs. It appears that 3D hydrogel preserves the original cancer growth behavior and enables assessment of the sensitivity of malignant gliomas to radiation and drugs with regard to inter-tumoral heterogeneity of therapeutic response. It could be used for preclinical assessment of new therapies. - Highlights: • We have compared primary glioblastoma cell culture in a 2D versus 3D-matrix system. • In 3D morphology, organization and markers better recapitulate the original tumor. • 3D-matrix culture might represent a relevant system for more accurate drug screening

  10. Benefit and harms of new anti-cancer drugs.

    Science.gov (United States)

    Vera-Badillo, Francisco E; Al-Mubarak, Mustafa; Templeton, Arnoud J; Amir, Eitan

    2013-06-01

    Phase III randomized controlled trials (RCTs) assess clinically important differences in endpoints that reflect benefit to and harm of patients. Defining benefit of cancer drugs can be difficult. Overall survival and quality of life are the most relevant primary endpoints, but difficulty in measuring these mean that other endpoints are often used, although their surrogacy or clinical relevance has not always been established. In general, advances in drug development have led to numerous new drugs to enter the market. Pivotal RCT of several new drugs have shown that benefit appeared greater for targeted anticancer agents than for chemotherapeutic agents. This effect seems particularly evident with targeted agents evaluated in biomarker-driven studies. Unfortunately, new therapies have also shown an increase in toxicity. Such toxicity is not always evident in the initial reports of RCTs. This may be a result of a statistical inability to detect differences between arms of RCTs, or occasionally due to biased reporting. There are several examples where reports of new toxicities could only be found in drug labels. In some cases, the small improvement in survival has come at a cost of substantial excess toxicity, leading some to consider such therapy as having equipoise.

  11. Radiation preparation of drug carriers based on poly(N-isopropylacrylamide) hydrogels, their loading capacities and controlled release rates for dexamethasone and tegafur

    International Nuclear Information System (INIS)

    Hoang Dang Sang; Nguyen Van Binh; Tran Bang Diep; Nguyen Thi Thom; Hoang Phuong Thao; Pham Duy Duong; Tran Minh Quynh

    2015-01-01

    Thermo-sensitive hydrogels have great potential in some applications. In order to use as the drug delivery systems, the hydrogels should be biocompatibility. New polymers with more biocompatibility and better biodegradability, and environmental friendly crosslinking agents would be necessary for the successful drug carriers. Poly (N-isopropylacrylamide-co-dimethylacrylamide) based hydrogels have been prepared from the admixture solutions of N-isopropylacrylamide (NIPA) and N,N’-dimethyl acrylamide (DMA) by radiation copolymerization and crosslinking at radiation dose of 20 kGy as reported in our previous study. Water swelling behaviour of the resulting hydrogels were much depended on their nature such as initial ratio of NIPA and DMA. The drug-loaded hydrogels were prepared by merging hydrogel in the solutions containing corresponding drugs. Loading capacity of the hydrogels were about 48.6 and 95.7 mg per g dried hydrogel for dexamethasone and tegafur. The release studies showed that the presence of ions in simulated body fluid and temperature of the solution much affecting to in vitro release behaviors of hydrogels for dexamethasone and tegafur. The release rates were fast for both drug models. The result also revealed that these drug carriers were biocompatibility without skin irritation, suggested the drug-loaded hydrogels may be used as controlled release drug delivery systems. (author)

  12. Radiation-induced free radical reactions in polymer/drug systems for controlled release: an EPR investigation

    Energy Technology Data Exchange (ETDEWEB)

    Faucitano, A. E-mail: chemrad@unipv.it; Buttafava, A.; Montanari, L.; Cilurzo, F.; Conti, B.; Genta, I.; Valvo, L

    2003-05-01

    The primary and secondary free radical intermediates in the gamma radiolysis of poly(D,L-lactide-co-glycolide) (PLGA) and clonazepam loaded PLGA microspheres were investigated by matrix EPR spectroscopy in the temperature range 77-298 K. Drug-polymer interactions were found to be important leading to significant deviations of the G(radicals) from the additivity law. In particular, in the mixed system a stabilization of the polymer matrix with respect to the radiation damage was detected, witnessed by a decrease of the overall polymer radicals yield which is accompanied by an increase of the drug radicals yield. These effects have been attributed to the scavenging properties of the nitro group with respect to electrons and polymer radicals. It is conceivable that such conclusions be of general application for all pharmaceutical formulations containing drugs bearing nitro groups in their chemical structure.

  13. Strategies for Discovery of Small Molecule Radiation Protectors and Radiation Mitigators

    Energy Technology Data Exchange (ETDEWEB)

    Greenberger, Joel S.; Clump, David [Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, PA (United States); Kagan, Valerian [Environmental and Occupational Health Department, University of Pittsburgh, Pittsburgh, PA (United States); Bayir, Hülya [Critical Care Medicine Department, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Lazo, John S. [Pharmacology Department, University of Virginia, Charlottesville, VA (United States); Wipf, Peter [Department of Chemistry, Accelerated Chemical Discovery Center, University of Pittsburgh, Pittsburgh, PA (United States); Li, Song; Gao, Xiang [Pharmaceutical Science Department, University of Pittsburgh, Pittsburgh, PA (United States); Epperly, Michael W., E-mail: greenbergerjs@upmc.edu [Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, PA (United States)

    2012-01-13

    Mitochondrial targeted radiation damage protectors (delivered prior to irradiation) and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome) have been a recent focus in drug discovery for (1) normal tissue radiation protection during fractionated radiotherapy, and (2) radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new radiation dose modifying molecules to protect normal tissue includes: clonogenic radiation survival curves, assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development.

  14. Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancer-Associated Fibroblast Activation.

    Science.gov (United States)

    Ji, Tianjiao; Zhao, Ying; Ding, Yanping; Wang, Jing; Zhao, Ruifang; Lang, Jiayan; Qin, Hao; Liu, Xiaoman; Shi, Jian; Tao, Ning; Qin, Zhihai; Nie, Guangjun; Zhao, Yuliang

    2016-01-18

    A novel cleavable amphiphilic peptide (CAP) was designed to be specifically responsive to fibroblast activation protein-α (FAP-α), a protease specifically expressed on the surface of cancer-associated fibroblasts. The CAP self-assembled into fiber-like nanostructures in solution, while the presence of hydrophobic chemotherapeutic drugs readily transformed the assemblies into drug-loaded spherical nanoparticles. The disassembly of these nanoparticles (CAP-NPs) upon FAP-α cleavage resulted in rapid and efficient release of the encapsulated drugs specifically at tumor sites. This Transformers-like drug delivery strategy could allow them to disrupt the stromal barrier and enhance local drug accumulation. Therapeutic results suggested that drug-loaded CAP-NPs hold promising tumor specificity and therapeutic efficacy for various solid tumor models, confirming its potential utility and versatility in antitumor therapy. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Polymeric Micelles with Ionic Cores Containing Biodegradable Crosslinks for Delivery of Chemotherapeutic Agents

    OpenAIRE

    Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V.; Bronich, Tatiana K.

    2010-01-01

    Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca2+) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like n...

  16. Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges

    Directory of Open Access Journals (Sweden)

    Wing-Hin Lee

    2015-12-01

    Full Text Available Ever since the success of developing inhalable insulin, drug delivery via pulmonary administration has become an attractive route to treat chronic diseases. Pulmonary delivery system for nanotechnology is a relatively new concept especially when applicable to lung cancer therapy. Nano-based systems such as liposome, polymeric nanoparticles or micelles are strategically designed to enhance the therapeutic index of anti-cancer drugs through improvement of their bioavailability, stability and residency at targeted lung regions. Along with these benefits, nano-based systems also provide additional diagnostic advantages during lung cancer treatment, including imaging, screening and drug tracking. Nevertheless, delivery of nano-based drugs via pulmonary administration for lung cancer therapy is still in its infancy and numerous challenges are expected. Pharmacology, immunology, toxicology and large-scale manufacturing (stability and activity of drugs are some aspects in nanotechnology that should be taken into consideration for the development of inhalable nano-based chemotherapeutic drugs. This review will focus on the current inhalable nano-based drugs for lung cancer treatment.

  17. The chemotherapeutic agent paclitaxel selectively impairs learning while sparing source memory and spatial memory.

    Science.gov (United States)

    Smith, Alexandra E; Slivicki, Richard A; Hohmann, Andrea G; Crystal, Jonathon D

    2017-03-01

    Chemotherapeutic agents are widely used to treat patients with systemic cancer. The efficacy of these therapies is undermined by their adverse side-effect profiles such as cognitive deficits that have a negative impact on the quality of life of cancer survivors. Cognitive side effects occur across a variety of domains, including memory, executive function, and processing speed. Such impairments are exacerbated under cognitive challenges and a subgroup of patients experience long-term impairments. Episodic memory in rats can be examined using a source memory task. In the current study, rats received paclitaxel, a taxane-derived chemotherapeutic agent, and learning and memory functioning was examined using the source memory task. Treatment with paclitaxel did not impair spatial and episodic memory, and paclitaxel treated rats were not more susceptible to cognitive challenges. Under conditions in which memory was not impaired, paclitaxel treatment impaired learning of new rules, documenting a decreased sensitivity to changes in experimental contingencies. These findings provide new information on the nature of cancer chemotherapy-induced cognitive impairments, particularly regarding the incongruent vulnerability of episodic memory and new learning following treatment with paclitaxel. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Neratinib reverses ATP-binding cassette B1-mediated chemotherapeutic drug resistance in vitro, in vivo, and ex vivo.

    Science.gov (United States)

    Zhao, Xiao-qin; Xie, Jing-dun; Chen, Xing-gui; Sim, Hong May; Zhang, Xu; Liang, Yong-ju; Singh, Satyakam; Talele, Tanaji T; Sun, Yueli; Ambudkar, Suresh V; Chen, Zhe-Sheng; Fu, Li-wu

    2012-07-01

    Neratinib, an irreversible inhibitor of epidermal growth factor receptor and human epidermal receptor 2, is in phase III clinical trials for patients with human epidermal receptor 2-positive, locally advanced or metastatic breast cancer. The objective of this study was to explore the ability of neratinib to reverse tumor multidrug resistance attributable to overexpression of ATP-binding cassette (ABC) transporters. Our results showed that neratinib remarkably enhanced the sensitivity of ABCB1-overexpressing cells to ABCB1 substrates. It is noteworthy that neratinib augmented the effect of chemotherapeutic agents in inhibiting the growth of ABCB1-overexpressing primary leukemia blasts and KBv200 cell xenografts in nude mice. Furthermore, neratinib increased doxorubicin accumulation in ABCB1-overexpressing cell lines and Rhodamine 123 accumulation in ABCB1-overexpressing cell lines and primary leukemia blasts. Neratinib stimulated the ATPase activity of ABCB1 at low concentrations but inhibited it at high concentrations. Likewise, neratinib inhibited the photolabeling of ABCB1 with [(125)I]iodoarylazidoprazosin in a concentration-dependent manner (IC(50) = 0.24 μM). Neither the expression of ABCB1 at the mRNA and protein levels nor the phosphorylation of Akt was affected by neratinib at reversal concentrations. Docking simulation results were consistent with the binding conformation of neratinib within the large cavity of the transmembrane region of ABCB1, which provides computational support for the cross-reactivity of tyrosine kinase inhibitors with human ABCB1. In conclusion, neratinib can reverse ABCB1-mediated multidrug resistance in vitro, ex vivo, and in vivo by inhibiting its transport function.

  19. Bioprotective carnitinoids: lipoic acid, butyrate, and mitochondria-targeting to treat radiation injury: mitochondrial drugs come of age.

    Science.gov (United States)

    Steliou, Kosta; Faller, Douglas V; Pinkert, Carl A; Irwin, Michael H; Moos, Walter H

    2015-06-01

    Preclinical Research Given nuclear-power-plant incidents such as the 2011 Japanese Fukushima-Daiichi disaster, an urgent need for effective medicines to protect against and treat the harmful biological effects of radiation is evident. To address such a challenge, we describe potential strategies herein including mitochondrial and epigenetic-driven methods using lipoic and butyric acid ester conjugates of carnitine. The antioxidant and other therapeutically beneficial properties of this class of agents may protect against ionizing radiation and resultant mitochondrial dysfunction. Recent studies of the compounds described herein reveal the potential-although further research and development is required to prove the effectiveness of this approach-to provide field-ready radiation-protective drugs. © 2015 Wiley Periodicals, Inc.

  20. Preparation of microspheres for slow release drug by radiation-induced suspension polymerization and their properties

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Asano, Masaharu; Kaetsu, Isao

    1982-01-01

    The polymer microspheres containing drugs as drug delivery system were made by means of suspension-polymerization by radiation at low temperature by using glass-forming monomers which have stable supercooling properties and large polymerizability at low temperature. The particle distribution depended on the kind of monomer. It was found that the entrapping yield of drug in polymer microspheres increased with increasing viscosity of monomer and that the maximum value on the particle size distribution curve was also shifted to large particle diameter side. In the case of trimethylolpropane trimethacrylate monomer (43 cps), TMPT, the entrapping yield of drug reached 74% and the maximum value in particle size distribution curve appeared in the neighborhood of 105 to 210 mu m ranges. On the other hand, those values in neopentyl glycol dimethacrylate monomer (4 cps) were 12% in former and 44 -- 105 mu m in the latter. The release phenomenon of drugs from polymer microspheres was investigated. for example, the cumulative amount of mitomycin C (water soluble drug) released from TMPT polymer microsphere was about 90% after 30-day dissolution, while in the case of water-insoluble drug such as testosterone the amount of release was about 49% after 40-day dissolution. In all cases, the release rate is constant during the experimental period. Therefore, it was concluded that the release of drugs from polymer microspheres obtained in this study is possible over the long periods. (author)

  1. Glycoprotein Mucin Molecular Brush on Cancer Cells and its Correlation with Resistance Against Drug Delivery

    Science.gov (United States)

    Wang, Xin; Shah, Aalok; Campbell, Robert; Wan, Kai-Tak

    2012-02-01

    Uptake of cytotoxic drugs by typical tumor cells is limited by the dense dendritic network of oligosaccharide mucin chains that forms a mechanical barrier. Atomic force microscopy is used to directly measure the force needed to pierce the mucin layer to reach the cell surface. Measurements are analyzed by deGennes' steric reputation theory. Multi-drug resistant ovarian tumor cells shows significantly larger penetration load compared to the wide type. A pool of pancreatic, lung, colorectal, and breast cells are also characterized. The chemotherapeutic agent, benzyl-α-GalNac, for inhibiting glycosylation is shown to be effective in reducing the mechanical barrier.

  2. Effect of ''pasteurizing'' doses of ionizing radiations on drug sensitivity of microbes isolated at pharmacentical factory

    International Nuclear Information System (INIS)

    Pavlov, E.P.; Shcheglova, S.G.; Sedov, V.V.

    1978-01-01

    The effect of ionizing radiations on drug sensitivity of microorganisms has been investigated, particularly, the influence of pasteurizing'' doses of ionizing radia''ons on the drug sensitivity of microorganisms isolated at a Moscow pharmaceutical factory to a number of widely used antibiotics. 250 krad single irradiation of dry microbial culture resulted in a change of the antibiotic sensitivity in 0.5% of 686 strains studied. All changes were toward the appearance of sensitivity to one or several antibiotics. When cultures were irradiated 3 times, this value increased up to 9%. In no case the appearance of resistance to antibiotics was observed

  3. Bovine milk-derived exosomes for drug delivery

    Science.gov (United States)

    Gupta, Ramesh C.

    2015-01-01

    Exosomes are biological nanovesicles that are involved in cell-cell communication via the functionally-active cargo (such as miRNA, mRNA, DNA and proteins). Because of their nanosize, exosomes are explored as nanodevices for the development of new therapeutic applications. However, bulk, safe and cost-effective production of exosomes is not available. Here, we show that bovine milk can serve as a scalable source of exosomes that can act as a carrier for chemotherapeutic/chemopreventive agents. Drug-loaded exosomes showed significantly higher efficacy compared to free drug in cell culture studies and against lung tumor xenografts in vivo. Moreover, tumor targeting ligands such as folate increased cancer-cell targeting of the exosomes resulting in enhanced tumor reduction. Milk exosomes exhibited cross-species tolerance with no adverse immune and inflammatory response. Thus, we show the versatility of milk exosomes with respect to the cargo it can carry and ability to achieve tumor targetability. This is the first report to identify a biocompatible and cost-effective means of exosomes to enhance oral bioavailability, improve efficacy and safety of drugs. PMID:26604130

  4. Aggressive chemotherapy and the selection of drug resistant pathogens.

    Directory of Open Access Journals (Sweden)

    Silvie Huijben

    2013-09-01

    Full Text Available Drug resistant pathogens are one of the key public health challenges of the 21st century. There is a widespread belief that resistance is best managed by using drugs to rapidly eliminate target pathogens from patients so as to minimize the probability that pathogens acquire resistance de novo. Yet strong drug pressure imposes intense selection in favor of resistance through alleviation of competition with wild-type populations. Aggressive chemotherapy thus generates opposing evolutionary forces which together determine the rate of drug resistance emergence. Identifying treatment regimens which best retard resistance evolution while maximizing health gains and minimizing disease transmission requires empirical analysis of resistance evolution in vivo in conjunction with measures of clinical outcomes and infectiousness. Using rodent malaria in laboratory mice, we found that less aggressive chemotherapeutic regimens substantially reduced the probability of onward transmission of resistance (by >150-fold, without compromising health outcomes. Our experiments suggest that there may be cases where resistance evolution can be managed more effectively with treatment regimens other than those which reduce pathogen burdens as fast as possible.

  5. In vitro pyrogen test for toxic or immunomodulatory drugs.

    Science.gov (United States)

    Daneshian, Mardas; Guenther, Armin; Wendel, Albrecht; Hartung, Thomas; von Aulock, Sonja

    2006-06-30

    Pyrogenic contaminations of some classes of injectable drugs, e.g. toxic or immunomodulatory as well as false-positive drugs, represent a major risk which cannot yet be excluded due to the limitations of current tests. Here we describe a modification of the In vitro Pyrogen Test termed AWIPT (Adsorb, Wash, In vitro Pyrogen Test), which addresses this problem by introducing a pre-incubation step in which pyrogenic contaminations in the test sample are adsorbed to albumin-coated beads. After rinsing, the beads are incubated with human whole blood and the release of the endogenous pyrogen interleukin-1beta is measured as a marker of pyrogenic activity. Intentional contaminations with lipopolysaccharide were retrieved from the chemotherapeutic agents paclitaxel, cisplatin and liposomal daunorubicin, the antibiotic gentamicin, the antifungal agent liposomal amphotericin B, and the corticosteroid prednisolone at lower dilutions than in the standard in vitro pyrogen test. This represents a promising new approach for the detection of pyrogenic contamination in drugs or in drugs containing interfering additives and should lead to improved safety levels.

  6. Organelle targeting: third level of drug targeting

    Directory of Open Access Journals (Sweden)

    Sakhrani NM

    2013-07-01

    Full Text Available Niraj M Sakhrani, Harish PadhDepartment of Cell and Molecular Biology, BV Patel Pharmaceutical Education and Research Development (PERD Centre, Gujarat, IndiaAbstract: Drug discovery and drug delivery are two main aspects for treatment of a variety of disorders. However, the real bottleneck associated with systemic drug administration is the lack of target-specific affinity toward a pathological site, resulting in systemic toxicity and innumerable other side effects as well as higher dosage requirement for efficacy. An attractive strategy to increase the therapeutic index of a drug is to specifically deliver the therapeutic molecule in its active form, not only into target tissue, nor even to target cells, but more importantly, into the targeted organelle, ie, to its intracellular therapeutic active site. This would ensure improved efficacy and minimize toxicity. Cancer chemotherapy today faces the major challenge of delivering chemotherapeutic drugs exclusively to tumor cells, while sparing normal proliferating cells. Nanoparticles play a crucial role by acting as a vehicle for delivery of drugs to target sites inside tumor cells. In this review, we spotlight active and passive targeting, followed by discussion of the importance of targeting to specific cell organelles and the potential role of cell-penetrating peptides. Finally, the discussion will address the strategies for drug/DNA targeting to lysosomes, mitochondria, nuclei and Golgi/endoplasmic reticulum.Keywords: intracellular drug delivery, cancer chemotherapy, therapeutic index, cell penetrating peptides

  7. Electrocardiographic Changes After Granisetron Administration for Chemotherapy Induced Nausea and Vomiting

    Directory of Open Access Journals (Sweden)

    Alidoosti Asadolah

    2009-10-01

    Full Text Available Cancer patient receive various cytotoxic drugs in association with antiemetic drugs such as 5HT3 receptor antagonists as their chemotherapy regimen. 5HT3 receptor antagonists have been reported to produce changes in ECG parameter. There are only a few studies about cardiovascular events of these drugs in patient receiving potentially cardiotoxic chemotherapies. The subject of this study is to evaluate ECG changes after administration of chemotherapeutic agents and granisetron (the most commonly used 5HT3 antagonist in Iran in adults with cancer. For this clinical trial study, all cancer patients referred to department of radiation oncology of Imam Hossein Hospital since August 2005 to March 2006 were evaluated if they had inclusion criteria. Granisetron (3 mg was infused intravenously over 30 seconds just a few minutes before chemotherapeutic agent administration. The 12-lead ECG recording was obtained before and 90 minutes after infusion of granisetron. One cardiologist determined PR, QRS, QTc intervals and heart rate of all ECGs. During the study period 54 patients fulfilled our criteria. With paired t-test, the PR and QTc intervals, but not QRS interval showed statistically significant prolongation after drug infusion (P < 0.0001, and heart rate showed statistically significant decrease (P < 0.0001. The ECG findings of chemotherapeutic agents and granisetron administration were prolongation of PR and QTc intervals and decrease of heart rate (P < 0.0001. Although these changes did not cause clinical signs, with keeping in mind that there may be possible drug-drug interactions and preexisting cardiac comorbidities in cancer patient, it seems reasonable and necessary to consider physical condition specifically cardiac condition and drug usage of each patient, while designing chemotherapy regimen and supportive drugs.

  8. Study on security of sterile and non-pyrogenic disposable wares for medical use. Inactivation of endotoxins by γ-ray radiation in the presence of various drugs

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari; Tanamoto, Kenichi; Haijima, Yuji

    1997-01-01

    To efficiently inactivate endotoxins, γ-ray radiation to disposable wares for medical use was conducted using 185TBq 60 Co-radiation system in a medium added with various drugs. Endotoxin derived from E. coli R3F653 was used as the subject. Hydrogen peroxide solution, ethyl alcohol, or sodium hydrochloride were added to the basal medium. The activity of endotoxin was determined by limulus test with toxicolor system. The activity was markedly decreased by standing in 0.03% sodium hydrochloride solution for several days, whereas it was little affected in solutions of other two drugs at any concentration. However, γ-ray radiation in the medium added with either of those drugs caused to reduce the endotoxin activity dose-dependently. Such reducing effects by γ-ray radiation were most marked in the medium containing Na-hydrochloride at 0.03 or 0.3%, suggesting that there might be interaction of γ-ray and Na-hydrochloride. (M.N.)

  9. [Studies on chemical protectors against radiation. XXXII. Protective effects of methanol extracts of various Taiwan crude drugs on radiation injuries].

    Science.gov (United States)

    Wang, C M; Ohta, S; Shinoda, M

    1990-11-01

    This study is to investigate radioprotective effects of 23 Taiwan crude drugs on X-ray induced bone marrow death and skin injury in mice. Each methanol extract of these Taiwan crude drugs was injected intraperitoneally into ICR male mice at 6 weeks of age before irradiation. Mice were whole-body irradiated with a soft X-ray generator. Radiation factors of the two screening tests used were as follows: 70 kVp, 10 mA, 10 mm acrylate filter, 70R/min, 2100R for survival test, and 30 kVp, 10 mA, 190R/min, 1100R for protective test on skin injury. As a result of these studies, the survival effect was recognized in Solani Incani Herba and Orthosiphi Aristati Herba. On the other hand, Mimosae Herba, Canarii Radix, Bombacis Radix, Arecae Fructus, Hedyotidis Diffusae Herba and Cynomorii Caulis were shown to have significant protective potency on skin injury.

  10. Base excision repair of chemotherapeutically-induced alkylated DNA damage predominantly causes contractions of expanded GAA repeats associated with Friedreich's ataxia.

    Directory of Open Access Journals (Sweden)

    Yanhao Lai

    Full Text Available Expansion of GAA·TTC repeats within the first intron of the frataxin gene is the cause of Friedreich's ataxia (FRDA, an autosomal recessive neurodegenerative disorder. However, no effective treatment for the disease has been developed as yet. In this study, we explored a possibility of shortening expanded GAA repeats associated with FRDA through chemotherapeutically-induced DNA base lesions and subsequent base excision repair (BER. We provide the first evidence that alkylated DNA damage induced by temozolomide, a chemotherapeutic DNA damaging agent can induce massive GAA repeat contractions/deletions, but only limited expansions in FRDA patient lymphoblasts. We showed that temozolomide-induced GAA repeat instability was mediated by BER. Further characterization of BER of an abasic site in the context of (GAA20 repeats indicates that the lesion mainly resulted in a large deletion of 8 repeats along with small expansions. This was because temozolomide-induced single-stranded breaks initially led to DNA slippage and the formation of a small GAA repeat loop in the upstream region of the damaged strand and a small TTC loop on the template strand. This allowed limited pol β DNA synthesis and the formation of a short 5'-GAA repeat flap that was cleaved by FEN1, thereby leading to small repeat expansions. At a later stage of BER, the small template loop expanded into a large template loop that resulted in the formation of a long 5'-GAA repeat flap. Pol β then performed limited DNA synthesis to bypass the loop, and FEN1 removed the long repeat flap ultimately causing a large repeat deletion. Our study indicates that chemotherapeutically-induced alkylated DNA damage can induce large contractions/deletions of expanded GAA repeats through BER in FRDA patient cells. This further suggests the potential of developing chemotherapeutic alkylating agents to shorten expanded GAA repeats for treatment of FRDA.

  11. Radiation- and drug-induced DNA repair in mammalian oocytes and embryos

    International Nuclear Information System (INIS)

    Pedersen, R.A.; Brandriff, B.

    1979-01-01

    A review of studies showing ultraviolet- or drug-induced unscheduled DNA synthesis in mammalian oocytes and embryos suggests that the female gamete has an excision repair capacity from the earliest stages of oocyte growth. The oocyte's demonstrable excision repair capacity decreases at the time of meiotic maturation for unknown reasons, but the fully mature oocyte maintans a repair capacity, in contrast to the mature sperm, and contributes this to the zygote. Early embryo cells maintain relatively constant levels of excision repair until late fetal stages, when they lose their capacity for excision repair. These apparent changes in excision repair capacity do not have a simple relationship to known differences in radiation sensitivity of germ cells and embryos

  12. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Kayal, S.; Ramanujan, R.V.

    2010-01-01

    Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe 3 O 4 ), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

  13. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma.

    Science.gov (United States)

    Tsen, Andrew R; Long, Patrick M; Driscoll, Heather E; Davies, Matthew T; Teasdale, Benjamin A; Penar, Paul L; Pendlebury, William W; Spees, Jeffrey L; Lawler, Sean E; Viapiano, Mariano S; Jaworski, Diane M

    2014-03-15

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA-induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic and hypoacetylated mesenchymal glioma tumors. © 2013 UICC.

  14. Strategies for Discovery of Small Molecule Radiation Protectors and Radiation Mitigators

    Directory of Open Access Journals (Sweden)

    Joel S Greenberger

    2012-01-01

    Full Text Available Mitochondrial targeted radiation damage protectors (delivered prior to irradiation and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome have been a recent focus in drug discovery for 1 normal tissue radiation protection during fractionated radiotherapy, and 2 radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new irradiation dose modifying molecules to protect normal tissue includes: clonagenic radiation survival curves; assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development.

  15. Correlation between radioactivity and chemotherapeutics of the 111In-VNB-liposome in pharmacokinetics and biodistribution in rats

    Directory of Open Access Journals (Sweden)

    Tsai TH

    2012-02-01

    Full Text Available Wen-Chuan Lee1,*, Chih-Hsien Chang2,3,*, Chih-Min Huang1, Yu-Tse Wu1, Liang-Cheng Chen2, Chung-Li Ho2, Tsui-Jung Chang2, Te-Wei Lee2, Tung-Hu Tsai1,41Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, 2Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan, 3Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, 4Department of Education and Research, Taipei City Hospital, Taipei, Taiwan*These authors contributed equally to this workBackground: The combination of a radioisotope with a chemotherapeutic agent in a liposomal carrier (ie, Indium-111-labeled polyethylene glycol pegylated liposomal vinorelbine, [111In-VNB-liposome] has been reported to show better therapeutic efficiency in tumor growth suppression. Nevertheless, the challenge remains as to whether this therapeutic effect is attributable to the combination of a radioisotope with chemotherapeutics. The goal of this study was to investigate the pharmacokinetics, biodistribution, and correlation of Indium-111 radioactivity and vinorelbine concentration in the 111In-VNB-liposome.Methods: The VNB-liposome and 111In-VNB-liposome were administered to rats. Blood, liver, and spleen tissue were collected to determine the distribution profile of the 111In-VNB-liposome. A liquid chromatography tandem mass spectrometry system and gamma counter were used to analyze the concentration of vinorelbine and radioactivity of Indium-111.Results: High uptake of the 111In-VNB-liposome in the liver and spleen demonstrated the properties of a nanosized drug delivery system. Linear regression showed a good correlation (r = 0.97 between Indium-111 radioactivity and vinorelbine concentration in the plasma of rats administered the 111In-VNB-liposome.Conclusion: A significant positive correlation between the pharmacokinetics and biodistribution of 111Indium radioactivity and vinorelbine in blood, spleen

  16. Therapeutic applications of histone deacetylase inhibitors in sarcoma.

    Science.gov (United States)

    Tang, Fan; Choy, Edwin; Tu, Chongqi; Hornicek, Francis; Duan, Zhenfeng

    2017-09-01

    Sarcomas are a rare group of malignant tumors originating from mesenchymal stem cells. Surgery, radiation and chemotherapy are currently the only standard treatments for sarcoma. However, their response rates to chemotherapy are quite low. Toxic side effects and multi-drug chemoresistance make treatment even more challenging. Therefore, better drugs to treat sarcomas are needed. Histone deacetylase inhibitors (HDAC inhibitors, HDACi, HDIs) are epigenetic modifying agents that can inhibit sarcoma growth in vitro and in vivo through a variety of pathways, including inducing tumor cell apoptosis, causing cell cycle arrest, impairing tumor invasion and preventing metastasis. Importantly, preclinical studies have revealed that HDIs can not only sensitize sarcomas to chemotherapy and radiotherapy, but also increase treatment responses when combined with other chemotherapeutic drugs. Several phase I and II clinical trials have been conducted to assess the efficacy of HDIs either as monotherapy or in combination with standard chemotherapeutic agents or targeted therapeutic drugs for sarcomas. Combination regimen for sarcomas appear to be more promising than monotherapy when using HDIs. This review summarizes our current understanding and therapeutic applications of HDIs in sarcomas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Epigenetics of oropharyngeal squamous cell carcinoma: opportunities for novel chemotherapeutic targets.

    Science.gov (United States)

    Lindsay, Cameron; Seikaly, Hadi; Biron, Vincent L

    2017-01-31

    Epigenetic modifications are heritable changes in gene expression that do not directly alter DNA sequence. These modifications include DNA methylation, histone post-translational modifications, small and non-coding RNAs. Alterations in epigenetic profiles cause deregulation of fundamental gene expression pathways associated with carcinogenesis. The role of epigenetics in oropharyngeal squamous cell carcinoma (OPSCC) has recently been recognized, with implications for novel biomarkers, molecular diagnostics and chemotherapeutics. In this review, important epigenetic pathways in human papillomavirus (HPV) positive and negative OPSCC are summarized, as well as the potential clinical utility of this knowledge.This material has never been published and is not currently under evaluation in any other peer-reviewed publication.

  18. The Outcome of Postoperative Radiation Therapy for Patients with Stage II Pancreatic Cancer (T3 or N1 Disease)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Won; Chun, Misun; Kim, Myung Wook; Kim, Wook Hwan; Kang, Seok Yun; Kang, Seung Hee; Oh, Young Taek; Lee, Sunyoung; Yang, Juno [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2007-12-15

    Purpose: To analyze retrospectively the outcome of postoperative radiation therapy with or without concurrent chemotherapy for curatively resected stage II pancreatic cancer with T3 or N1 disease. Materials and Methods: Between January 1996 and December 2005, twenty-eight patients completed adjuvant radiation therapy at Ajou University Hospital. The patients had either pathologic T3 stage or N1 stage. The radiation target volume encompassed the initial tumor bed identified preoperatively, resection margin area and celiac nodal area. In the case of N1 patients, the radiation field extended to the lower margin of the L3 vertebra for covering both para-aortic lymph nodes bearing area. The median total radiation dose was 50 Gy. Ten patients received concurrent chemotherapy. Results: Thirteen patients (46%) showed loco-regional recurrences. The celiac axis nodal area was the most frequent site (4 patients). Five patients showed both loco-regional recurrence and a distant metastasis. Patients with positive lymph nodes had a relatively high probability of a distant metastasis (57.1%). Patients that had a positive resection margin showed a relatively high local failure rate (57.1%). The median disease-free survival period of all patients was 6 months and the 1- and 2-year disease free survival rates were 27.4% and 8.2%, respectively. The median overall survival period was 9 months. The 2- and 3-year overall survival rates were 31.6% and 15.8%, respectively. Conclusion: The pancreatic cancer patients with stage II had a high risk of local failure and a high risk of a distant metastasis. We suggest the concurrent use of an effective radiation-sensitizing chemotherapeutic drug and adjuvant chemotherapy after postoperative radiation therapy for the treatment of patients with stage II pancreatic cancer.

  19. The Outcome of Postoperative Radiation Therapy for Patients with Stage II Pancreatic Cancer (T3 or N1 Disease)

    International Nuclear Information System (INIS)

    Kim, Sang Won; Chun, Misun; Kim, Myung Wook; Kim, Wook Hwan; Kang, Seok Yun; Kang, Seung Hee; Oh, Young Taek; Lee, Sunyoung; Yang, Juno

    2007-01-01

    Purpose: To analyze retrospectively the outcome of postoperative radiation therapy with or without concurrent chemotherapy for curatively resected stage II pancreatic cancer with T3 or N1 disease. Materials and Methods: Between January 1996 and December 2005, twenty-eight patients completed adjuvant radiation therapy at Ajou University Hospital. The patients had either pathologic T3 stage or N1 stage. The radiation target volume encompassed the initial tumor bed identified preoperatively, resection margin area and celiac nodal area. In the case of N1 patients, the radiation field extended to the lower margin of the L3 vertebra for covering both para-aortic lymph nodes bearing area. The median total radiation dose was 50 Gy. Ten patients received concurrent chemotherapy. Results: Thirteen patients (46%) showed loco-regional recurrences. The celiac axis nodal area was the most frequent site (4 patients). Five patients showed both loco-regional recurrence and a distant metastasis. Patients with positive lymph nodes had a relatively high probability of a distant metastasis (57.1%). Patients that had a positive resection margin showed a relatively high local failure rate (57.1%). The median disease-free survival period of all patients was 6 months and the 1- and 2-year disease free survival rates were 27.4% and 8.2%, respectively. The median overall survival period was 9 months. The 2- and 3-year overall survival rates were 31.6% and 15.8%, respectively. Conclusion: The pancreatic cancer patients with stage II had a high risk of local failure and a high risk of a distant metastasis. We suggest the concurrent use of an effective radiation-sensitizing chemotherapeutic drug and adjuvant chemotherapy after postoperative radiation therapy for the treatment of patients with stage II pancreatic cancer

  20. Design of a nanoplatform for treating pancreatic cancer

    Science.gov (United States)

    Manawadu, Harshi Chathurangi

    Pancreatic cancer is the fourth leading cause of cancer-related deaths in the USA. Asymptomatic early cancer stages and late diagnosis leads to very low survival rates of pancreatic cancers, compared to other cancers. Treatment options for advanced pancreatic cancer are limited to chemotherapy and/or radiation therapy, as surgical removal of the cancerous tissue becomes impossible at later stages. Therefore, there's a critical need for innovative and improved chemotherapeutic treatment of (late) pancreatic cancers. It is mandatory for successful treatment strategies to overcome the drug resistance associated with pancreatic cancers. Nanotechnology based drug formulations have been providing promising alternatives in cancer treatment due to their selective targeting and accumulation in tumor vasculature, which can be used for efficient delivery of chemotherapeutic agents to tumors and metastases. The research of my thesis is following the principle approach to high therapeutic efficacy that has been first described by Dr. Helmut Ringsdorf in 1975. However, I have extended the use of the Ringsdorf model from polymeric to nanoparticle-based drug carriers by exploring an iron / iron oxide nanoparticle based drug delivery system. A series of drug delivery systems have been synthesized by varying the total numbers and the ratio of the tumor homing peptide sequence CGKRK and the chemotherapeutic drug doxorubicin at the surfaces of Fe/Fe3O 4-nanoparticles. The cytotoxicity of these nanoformulations was tested against murine pancreatic cancer cell lines (Pan02) to assess their therapeutic capabilities for effective treatments of pancreatic cancers. Healthy mouse fibroblast cells (STO) were also tested for comparison, because an effective chemotherapeutic drug has to be selective towards cancer cells. Optimal Experimental Design methodology was applied to identify the nanoformulation with the highest therapeutic activity. A statistical analysis method known as response

  1. Preparation of slow release anticancer drug by means of radiation technique and IT's therapeutic effect on sold tumor of mice

    International Nuclear Information System (INIS)

    Li Ximing; Shen Weiming; Liu Chengjie; Hu Xu

    1991-01-01

    In order to minimize the toxic effect of chemotherapy of malignant tumors, the authors use a method of radiation induced cast polymerization of hydrophilic monomer at low temperature for immobilization the anticancer drug, 5-Fluorouracil, into the polymer matrix. The anticancer drug-polymer composite called slow release anticancer drug was used for treatment the transplantable squamous cell carcinoma in mice 615 and the transplantable sarcoma (S180) in Kunming mice. There were marked difference between the treated group and the control group. That is the higher inhibition ratio and lower toxic effect were reported

  2. Two drugs are better than one. A short history of combined therapy of ovarian cancer.

    Science.gov (United States)

    Bukowska, Barbara; Gajek, Arkadiusz; Marczak, Agnieszka

    2015-01-01

    Combined therapy of ovarian cancer has a long history. It has been applied for many years. The first drug which was commonly combined with other chemotherapeutics was cisplatin. It turned out to be effective given together with alkylating agents as well as with taxanes. Another drug which is often the basis of first-line therapy is doxorubicin. The use of traditional chemotherapy is often limited due to side effects. This is why new drugs, targeted specifically at cancer cells (e.g. monoclonal antibodies or epidermal growth factor receptor inhibitors), offer a welcome addition when used in combination with conventional anticancer agents. Drugs applied in combination should be synergistic or at least additive. To evaluate the type of interaction between drugs in a plausible sequence, isobolographic analysis is used. This method allows one to assess whether the two agents could make an efficient combination, which might improve the therapy of ovarian cancer.

  3. A multilayer microdevice for cell-based high-throughput drug screening

    International Nuclear Information System (INIS)

    Liu, Chong; Wang, Lei; Li, Jingmin; Ding, Xiping; Chunyu, Li; Xu, Zheng; Wang, Qi

    2012-01-01

    A multilayer polydimethylsiloxane microdevice for cell-based high-throughput drug screening is described in this paper. This established microdevice was based on a modularization method and it integrated a drug/medium concentration gradient generator (CGG), pneumatic microvalves and a cell culture microchamber array. The CGG was able to generate five steps of linear concentrations with the same outlet flow rate. The medium/drug flowed through CGG and then into the pear-shaped cell culture microchambers vertically. This vertical perfusion mode was used to reduce the impact of the shear stress on the physiology of cells induced by the fluid flow in the microchambers. Pear-shaped microchambers with two arrays of miropillars at each outlet were adopted in this microdevice, which were beneficial to cell distribution. The chemotherapeutics Cisplatin (DDP)-induced Cisplatin-resistant cell line A549/DDP apoptotic experiments were performed well on this platform. The results showed that this novel microdevice could not only provide well-defined and stable conditions for cell culture, but was also useful for cell-based high-throughput drug screening with less reagents and time consumption. (paper)

  4. Interferon-β lipofection I. Increased efficacy of chemotherapeutic drugs on human tumor cells derived monolayers and spheroids.

    Science.gov (United States)

    Villaverde, M S; Gil-Cardeza, M L; Glikin, G C; Finocchiaro, L M E

    2012-07-01

    We evaluated the effect of hIFNβ gene transfer alone or in combination with different antineoplastic drugs commonly used in cancer treatment. Five human tumor-derived cell lines were cultured as monolayers and spheroids. Four cell lines (Ewing sarcomas EW7 and COH, melanoma M8 and mammary carcinoma MCF-7) were sensitive to hIFNβ gene lipofection. Although this effect appeared in both culture configurations, spheroids showed a relative multicellular resistance (insensitive colon carcinoma HT-29 excluded). EW7 and M8 hIFNβ-expressing cells were exposed to different concentrations of bleomycin, bortezomib, carboplatin, doxorubicin, etoposide, methotrexate, paclitaxel and vincristine in both configuration models. In chemotherapy-sensitive EW7 monolayers, the combination of hIFNβ gene and antineoplastic drugs displayed only additive or counteractive (methotrexate) effects, suggesting that cytotoxic mechanisms triggered by hIFNβ gene lipofection could be saturating the signaling pathways. Conversely, in chemotherapy-resistant EW7 spheroids or M8 cells, the combination of hIFNβ with drugs that mainly operate at the genotoxic level (doxorubicin, methotrexate and paclitaxel) presented only additive effects. However, drugs that also increase pro-oxidant species can complement the antitumor efficacy of the hIFNβ gene and clearly caused potentiated effects (bleomycin, bortezomib, carboplatin, etoposide and vincristine). The great bystander effect induced by hIFNβ gene lipofection could be among the main causes of its effectiveness, because only 1 or 2% of EW7 or M8 hIFNβ-expressing cells killed more than 60 or 80% of cell population, respectively.

  5. miR-133b down-regulates ABCC1 and enhances the sensitivity of CRC to anti-tumor drugs.

    Science.gov (United States)

    Chen, Miao; Li, Daojiang; Gong, Ni; Wu, Hao; Su, Chen; Xie, Canbin; Xiang, Hong; Lin, Changwei; Li, Xiaorong

    2017-08-08

    Multidrug resistance (MDR) is the main cause of failed chemotherapy treatments. Therefore, preventing MDR is pivotal in treating colorectal cancer (CRC). In a previous study miR-133b was shown to be a tumor suppressor. Additionally, in CRC cells transfected with miR-133b, ATP-binding cassette (ABC) subfamily C member 1(ABCC1) was shown to be significantly down regulated. Whether miR-133b also enhances the chemosensitivity of drugs used to treat CRC by targeting ABCC1 is still unclear. Here, we utilized flow cytometry and high-performance liquid chromatography (HPLC) analysis to identify the ability of miR-133b to reserve MDR in CRC. We then used a dual-luciferase reporter assay to validate that miR-133b targets ABCC1. Further in vivo experiments were designed to validate the method in which miR-133b reversed MDR in CRC cells. The results demonstrated that the level of miR-133b was down-regulated and the expression of ABCC1 was up-regulated in drug-resistant CRC cells compared to non-drug-resistant CRC cells. The restoration of miR-133b expression in CRC drug-resistant cells in vitro resulted in reduced IC50s to chemotherapeutic drugs, significantly induced G1 accumulation, inhibited growth and promoted necrosis in combination with either 5-fluorouracil (5-FU) or vincristine (VCR), and decreased the expression of ABCC1. The dual-luciferase assay demonstrated that miR-133b directly targets ABCC1. The combination of agomiRNA-133b with chemotherapeutic drugs in vivo inhibited tumor growth induced by CRC drug-resistant cells. A xenograft from the in vivo model resulted in up-regulated levels of miR-133b and down-regulated levels of ABCC1. Therefore, miR-133b enhances the chemosensitivity of CRC cells to anti-tumor drugs by directly down-regulating ABCC1. This discovery provides a therapeutic strategy in which miR-133b is used as a potential sensitizer for drug-resistant CRC.

  6. Molecular cloning and characterization of taurocyamine kinase from Clonorchis sinensis: a candidate chemotherapeutic target.

    Directory of Open Access Journals (Sweden)

    Jing-Ying Xiao

    2013-11-01

    Full Text Available BACKGROUND: Adult Clonorchis sinensis lives in the bile duct and causes endemic clonorchiasis in East Asian countries. Phosphagen kinases (PK constitute a highly conserved family of enzymes, which play a role in ATP buffering in cells, and are potential targets for chemotherapeutic agents, since variants of PK are found only in invertebrate animals, including helminthic parasites. This work is conducted to characterize a PK from C. sinensis and to address further investigation for future drug development. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] A cDNA clone encoding a putative polypeptide of 717 amino acids was retrieved from a C. sinensis transcriptome. This polypeptide was homologous to taurocyamine kinase (TK of the invertebrate animals and consisted of two contiguous domains. C. sinensis TK (CsTK gene was reported and found consist of 13 exons intercalated with 12 introns. This suggested an evolutionary pathway originating from an arginine kinase gene group, and distinguished annelid TK from the general CK phylogenetic group. CsTK was found not to have a homologous counterpart in sequences analysis of its mammalian hosts from public databases. Individual domains of CsTK, as well as the whole two-domain enzyme, showed enzymatic activity and specificity toward taurocyamine substrate. Of the CsTK residues, R58, I60 and Y84 of domain 1, and H60, I63 and Y87 of domain 2 were found to participate in binding taurocyamine. CsTK expression was distributed in locomotive and reproductive organs of adult C. sinensis. Developmentally, CsTK was stably expressed in both the adult and metacercariae stages. Recombinant CsTK protein was found to have low sensitivity and specificity toward C. sinensis and platyhelminth-infected human sera on ELISA. CONCLUSION: CsTK is a promising anti-C. sinensis drug target since the enzyme is found only in the C. sinensis and has a substrate specificity for taurocyamine, which is different from its mammalian counterpart

  7. Overcoming Multidrug Resistance via Photodestruction of ABCG2-Rich Extracellular Vesicles Sequestering Photosensitive Chemotherapeutics

    Science.gov (United States)

    Goler-Baron, Vicky; Assaraf, Yehuda G.

    2012-01-01

    Multidrug resistance (MDR) remains a dominant impediment to curative cancer chemotherapy. Efflux transporters of the ATP-binding cassette (ABC) superfamily including ABCG2, ABCB1 and ABCC1 mediate MDR to multiple structurally and functionally distinct antitumor agents. Recently we identified a novel mechanism of MDR in which ABCG2-rich extracellular vesicles (EVs) form in between attached neighbor breast cancer cells and highly concentrate various chemotherapeutics in an ABCG2-dependent manner, thereby sequestering them away from their intracellular targets. Hence, development of novel strategies to overcome MDR modalities is a major goal of cancer research. Towards this end, we here developed a novel approach to selectively target and kill MDR cancer cells. We show that illumination of EVs that accumulated photosensitive cytotoxic drugs including imidazoacridinones (IAs) and topotecan resulted in intravesicular formation of reactive oxygen species (ROS) and severe damage to the EVs membrane that is shared by EVs-forming cells, thereby leading to tumor cell lysis and the overcoming of MDR. Furthermore, consistent with the weak base nature of IAs, MDR cells that are devoid of EVs but contained an increased number of lysosomes, highly accumulated IAs in lysosomes and upon photosensitization were efficiently killed via ROS-dependent lysosomal rupture. Combining targeted lysis of IAs-loaded EVs and lysosomes elicited a synergistic cytotoxic effect resulting in MDR reversal. In contrast, topotecan, a bona fide transport substrate of ABCG2, accumulated exclusively in EVs of MDR cells but was neither detected in lysosomes of normal breast epithelial cells nor in non-MDR breast cancer cells. This exclusive accumulation in EVs enhanced the selectivity of the cytotoxic effect exerted by photodynamic therapy to MDR cells without harming normal cells. Moreover, lysosomal alkalinization with bafilomycin A1 abrogated lysosomal accumulation of IAs, consequently preventing

  8. Molecular Cloning and Characterization of Taurocyamine Kinase from Clonorchis sinensis: A Candidate Chemotherapeutic Target

    Science.gov (United States)

    Tokuhiro, Shinji; Nagataki, Mitsuru; Jarilla, Blanca R.; Nomura, Haruka; Kim, Tae Im; Hong, Sung-Jong; Agatsuma, Takeshi

    2013-01-01

    Background Adult Clonorchis sinensis lives in the bile duct and causes endemic clonorchiasis in East Asian countries. Phosphagen kinases (PK) constitute a highly conserved family of enzymes, which play a role in ATP buffering in cells, and are potential targets for chemotherapeutic agents, since variants of PK are found only in invertebrate animals, including helminthic parasites. This work is conducted to characterize a PK from C. sinensis and to address further investigation for future drug development. Methology/Principal findings A cDNA clone encoding a putative polypeptide of 717 amino acids was retrieved from a C. sinensis transcriptome. This polypeptide was homologous to taurocyamine kinase (TK) of the invertebrate animals and consisted of two contiguous domains. C. sinensis TK (CsTK) gene was reported and found consist of 13 exons intercalated with 12 introns. This suggested an evolutionary pathway originating from an arginine kinase gene group, and distinguished annelid TK from the general CK phylogenetic group. CsTK was found not to have a homologous counterpart in sequences analysis of its mammalian hosts from public databases. Individual domains of CsTK, as well as the whole two-domain enzyme, showed enzymatic activity and specificity toward taurocyamine substrate. Of the CsTK residues, R58, I60 and Y84 of domain 1, and H60, I63 and Y87 of domain 2 were found to participate in binding taurocyamine. CsTK expression was distributed in locomotive and reproductive organs of adult C. sinensis. Developmentally, CsTK was stably expressed in both the adult and metacercariae stages. Recombinant CsTK protein was found to have low sensitivity and specificity toward C. sinensis and platyhelminth-infected human sera on ELISA. Conclusion CsTK is a promising anti-C. sinensis drug target since the enzyme is found only in the C. sinensis and has a substrate specificity for taurocyamine, which is different from its mammalian counterpart, creatine. PMID:24278491

  9. Gamma irradiation of radioprotectant drugs. 1. Levamisole

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, C R; Elhardt, C E; May, L [Armed Forces Radiobiology Research Inst., Bethesda, MD (USA)

    1980-09-01

    Levamisole ((S)-(-)-2,3,5,6-tetrahydro-6-phenyl-imidazo-(2, 1-b) thiazole), an immunomodulating drug and veterinary antihelminthic, is converted by tissues to a sulfhydryl derivative. The drug and its metabolite have mediating effects on lipid peroxidation in microsomal preparations. Because levamisole, as an inhibitor of lipid peroxidation, is a radioprotectant drug, it was of interest to study the response of the drug itself to ionizing radiation. Experiments were directed toward an examination of the effects of gamma radiation on aqueous solutions of levamisole. Chromatographic analysis (TLC) revealed two distinct groups of radiation products. Further separation and analysis of these groups by gas chromatography-mass spectrometry (GC-MS) demonstrated that each group of radiation products consists of several components, indicating that the gamma irradiation of non-deaerated solutions of levamisole gives rise to varying amounts of a multiproduct mixture, no constituent of which corresponds to the natural metabolite. Dose effect curves for the levamisole irradiation indicate that the drug is markedly resistant to molecular alteration under the experimental radiation conditions.

  10. Peptide drugs to target G protein-coupled receptors.

    Science.gov (United States)

    Bellmann-Sickert, Kathrin; Beck-Sickinger, Annette G

    2010-09-01

    Major indications for use of peptide-based therapeutics include endocrine functions (especially diabetes mellitus and obesity), infectious diseases, and cancer. Whereas some peptide pharmaceuticals are drugs, acting as agonists or antagonists to directly treat cancer, others (including peptide diagnostics and tumour-targeting pharmaceuticals) use peptides to 'shuttle' a chemotherapeutic agent or a tracer to the tumour and allow sensitive imaging or targeted therapy. Significant progress has been made in the last few years to overcome disadvantages in peptide design such as short half-life, fast proteolytic cleavage, and low oral bioavailability. These advances include peptide PEGylation, lipidisation or multimerisation; the introduction of peptidomimetic elements into the sequences; and innovative uptake strategies such as liposomal, capsule or subcutaneous formulations. This review focuses on peptides targeting G protein-coupled receptors that are promising drug candidates or that have recently entered the pharmaceutical market. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Formulation development of smart gel periodontal drug delivery system for local delivery of chemotherapeutic agents with application of experimental design.

    Science.gov (United States)

    Dabhi, Mahesh R; Nagori, Stavan A; Gohel, Mukesh C; Parikh, Rajesh K; Sheth, Navin R

    2010-01-01

    Smart gel periodontal drug delivery systems (SGPDDS) containing gellan gum (0.1-0.8% w/v), lutrol F127 (14, 16, and 18% w/v), and ornidazole (1% w/v) were designed for the treatment of periodontal diseases. Each formulation was characterized in terms of in vitro gelling capacity, viscosity, rheology, content uniformity, in vitro drug release, and syringeability. In vitro gelation time and the nature of the gel formed in simulated saliva for prepared formulations showed polymeric concentration dependency. Drug release data from all formulations was fitted to different kinetic models and the Korsemeyer-Peppas model was the best fit model. Drug release was significantly decreased as the concentration of each polymer component was increased. Increasing the concentration of each polymeric component significantly increased viscosity, syringeability, and time for 50%, 70%, and 90% drug release. In conclusion, the formulations described offer a wide range of physical and drug release characteristics. The formulation containing 0.8% w/v of gellan gum and 16% w/v of lutrol F127 exhibited superior physical characteristics.

  12. [Trends in drug-induced liver injury based on reports of adverse reactions to PMDA in Japan].

    Science.gov (United States)

    Sudo, Chie; Maekawa, Keiko; Segawa, Katsunori; Hanatani, Tadaaki; Sai, Kimie; Saito, Yoshiro

    2012-01-01

    Reports on drug-related adverse reactions from manufacturing/distributing pharmaceutical companies or medical institutions/pharmacies are regulated under the Pharmaceutical Affairs Law of Japan, and this system is important for post-marketing safety measures. Although association between the medicine and the adverse event has not been clearly evaluated, and an incidence may be redundantly reported, this information would be useful to roughly grasp the current status of drug-related adverse reactions. In the present study, we analyzed the incidence of drug-induced liver injury by screening the open-source data publicized by the homepage of Pharmaceutical and Medical Devices Agency from 2005 to 2011 fiscal years. Major drug-classes suspected to cause general drug-induced liver injury were antineoplastics, anti-inflammatory agents/common cold drugs, chemotherapeutics including antituberculous drugs, antidiabetics, antiulcers and antiepileptics. In addition, reported cases for fulminant hepatitis were also summarized. We found that antituberculous isoniazid and antineoplastic tegafur-uracil were the top two suspected drugs. These results might deepen understanding of current situations for the drug-induced liver injury in Japan.

  13. SMIFH2-mediated mDia formin functional inhibition potentiates chemotherapeutic targeting of human ovarian cancer spheroids.

    Science.gov (United States)

    Ziske, Megan A; Pettee, Krista M; Khaing, MaNada; Rubinic, Kaitlin; Eisenmann, Kathryn M

    2016-03-25

    Due to a lack of effective screening or prevention protocol for epithelial ovarian cancer (EOC), there is a critical unmet need to develop therapeutic interventions for EOC treatment. EOC metastasis is unique. Initial dissemination is not primarily hematogenous, yet is facilitated through shedding of primary tumor cells into the peritoneal fluid and accumulating ascites. Increasingly, isolated patient spheroids point to a clinical role for spheroids in EOC metastasis. EOC spheroids are highly invasive structures that disseminate upon peritoneal mesothelium, and visceral tissues including liver and omentum. Selection for this subset of chemoresistant EOC cells could influence disease progression and/or recurrence. Thus, targeting spheroid integrity/structure may improve the chemotherapeutic responsiveness of EOC. We discovered a critical role for mammalian Diaphanous (mDia)-related formin-2 in maintaining EOC spheroid structure. Both mDia2 and the related mDia1 regulate F-actin networks critical to maintain cell-cell contacts and the integrity of multi-cellular epithelial sheets. We investigated if mDia2 functional inhibition via a small molecule inhibitor SMIFH2 combined with chemotherapeutics, such as taxol and cisplatin, inhibits the viability of EOC monolayers and clinically relevant spheroids. SMIFH2-mediated mDia formin inhibition significantly reduced both ES2 and Skov3 EOC monolayer viability while spheroid viability was minimally impacted only at the highest concentrations. Combining either cisplatin or taxol with SMIFH2 did not significantly enhance the effects of either drug alone in ES2 monolayers, while Skov3 monolayers treated with taxol or cisplatin and SMIFH2 showed significant additive inhibition of viability. ES2 spheroids were highly responsive with clear additive anti-viability effects with dual taxol or cisplatin when combined with SMIFH2 treatments. While combined taxol with SMIFH2 in spheroids showed an additive effect relative to single

  14. Effect of dihydroxyanthraquinone (DHAQ) and radiation on the survival of cultured Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Kimler, B.F.

    1983-01-01

    Dihydroxyanthraquinone (DHAQ) is currently being tested as a cancer chemotherapeutic agent because of its structural similarity to Adriamycin (ADR) and other DNA-intercalating antibiotics. The interaction of DHAQ and ionizing radiation on the induction of cell lethality was investigated in Chinese hamster ovary cells in culture. In asynchronous populations of cells, DHAQ produced a slight enhancement of radiation-induced cell lethality as evidenced by changes in both shoulder and slope of the radiation dose-survival curves. However, DHAQ had no effect on either the extent or time course of recovery from sublethal radiation damage. In synchronous populations of cells treated at various times before or after selection in mitosis, the combination of DHAQ and radiation produced greater cell killing than that predicted based on simple additivity of effect, with a decided enhancement for cells treated during S phase. These results indicate that DHAQ is similar to other DNA-intercalating antibiotics in regard to the interaction with ionizing radiation to produce cell lethality

  15. In Vitro Polyvinylformaldehyde Particle Compatibility with Chemotherapeutic Drugs Used for Chemoembolization Therapy

    International Nuclear Information System (INIS)

    Vallee, Jean-Noel; Guillevin, Remy; Lo, Daouda; Adem, Carmen; Benois, Florence; Chiras, Jacques

    2003-01-01

    Purpose: Because the effects of pirarubicin and carboplatin on the physical structure of particles made from polyvinylformaldehyde are not well known, we describe an experiment to test the in vitro polyvinylformaldehyde particle compatibility with these drugs used for chemoembolization of bone metastases. Materials and Methods: Polyvinylformaldehydeparticles (Ultra-Drivalon) were mixed in vitro with either pirarubicinor carboplatin as experimental samples, and with distilled water as control samples, and left for 24 h at 37 o C. The particles used measured 150-250 μm and 600-1000 μm in diameter. Particle morphology, including appearance, overall shape, and surface characteristics were examined using a microscope equipped with a videocamera. Particle size was measured by granulometry. Qualitative and quantitative variables were analyzed using, respectively, the two-sided Fisher's exact test and the Wilcoxon signed-rank rank test for paired values, with a significance level of 0.05. Results: No broken particles or microscopic degradations in the appearance, overall shape, or surface characteristics of any particles were observed. The particle size distribution was not significantly different between the experimental samples containing pirarubicin or carboplatin and the control sample of particles with diameters in the same range. Conclusion: Particles made from polyvinylformaldehyde can be mixed with pirarubicin or carboplatin without any risk of damaging their physical properties

  16. The effects of artificially induced hyperglycaemia on the response of the Lewis lung carcinoma to radiation and cyclophosphamide

    International Nuclear Information System (INIS)

    Chaplin, D.J.

    1984-01-01

    In the treatment of any malignancy it is essential to utilize all known physiological differences that exist between tumour and normal tissue. One well established difference is that tumours, in both rodents and man, have a lower pH than normal tissue. Further reduction in tumour pH occurs in non-vascularised necrotic regions. It is now widely believed that cells, close to necrotic regions, distant from blood vessels are protected from the effects of radiation and chemotherapeutic agents by their hypoxia and reduced rate of proliferation, thus providing the foci for tumour regrowth. Yet, since these cells are situated in an acidic environment they should be the ones most susceptible to exploitation or modification of the tumour's acid:base status. Hyperglycaemia is known to increase tumour acidosis. The effect of such treatment on the tumour response to radiation or to chemotherapeutic agents is being assessed. Initial results indicate that hyperglycaemia can increase or reduce the response of the Lewis lung carcinoma to cyclophosphamide. The type of response obtained is dependent on the duration, level and timing of glucose treatments. Further work is now in progress

  17. A rapid method for testing in vivo the susceptibility of different strains of Trypanosoma cruzi to active chemotherapeutic agents

    Directory of Open Access Journals (Sweden)

    Leny S. Filardi

    1984-06-01

    Full Text Available A method is described which permits to determine in vivo an in a short period of time (4-6 hours the sensitivity of T. cruzo strains to known active chemotherapeutic agents. By using resistant- and sensitive T. cruzi stains a fairly good correlation was observed between the results obtained with this rapid method (which detects activity against the circulating blood forms and those obtained with long-term schedules which involve drug adminstration for at least 20 consecutive days and a prolonged period of assessment. This method may be used to characterize susceptibility to active drugs used clinically, provide infomation on the specific action against circulating trypomastigotes and screen active compounds. Differences in the natural susceptibility of Trypanosoma cruzi strains to active drugs have been already reported using different criteria, mostly demanding long-term study of the animal (Hauschka, 1949; Bock, Gonnert & Haberkorn, 1969; Brener, Costa & Chiari, 1976; Andrade & Figueira, 1977; Schlemper, 1982. In this paper we report a method which detects in 4-6 hours the effect of drugs on bloodstream forms in mice with established T. cruzi infections. The results obtained with this method show a fairly good correlation with those obtained by prolonged treatment schedules used to assess the action of drugs in experimental Chagas' disease and may be used to study the sensitivity of T. cruzi strains to active drugs.No presente trabalho descreve-se um metodo que permite determinar in vivo e em curto espaço de tempo (4-6 horas a sensibilidade de cepas de T. cruzi a agentes terapeuticos ativos na doença de Chagas. Usando-se cepas sensíveis e resistentes aos medicamentos foi possível observar uma boa correlação entre os resultados obtidos com o método rápido (que detecta atividade contra as formas circulantes do parasita e aqueles obtidos com esquema de acao prolongada que envolve a administração da droga por 20 dias e posterior avalia

  18. 5-FU Metabolism in Cancer and Orally-Administrable 5-FU Drugs

    Directory of Open Access Journals (Sweden)

    Iwao Sasaki

    2010-09-01

    Full Text Available 5-Fluorouracil (5-FU is a key anticancer drug that for its broad antitumor activity, as well as for its synergism with other anticancer drugs, has been used to treat various types of malignancies. In chemotherapeutic regimens, 5-FU has been combined with oxaliplatin, irinotecan and other drugs as a continuous intravenous infusion. Recent clinical chemotherapy studies have shown that several of the regimens with oral 5-FU drugs are not inferior compared to those involving continuous 5-FU infusion chemotherapy, and it is probable that in some regimens continuous 5-FU infusion can be replaced by oral 5-FU drugs. Historically, both the pharmaceutical industry and academia in Japan have been involved in the development of oral 5-FU drugs, and this review will focus on the current knowledge of 5-FU anabolism and catabolism, and the available information about the various orally-administrable 5-FU drugs, including UFT, S-1 and capecitabine. Clinical studies comparing the efficacy and adverse events of S-1 and capecitabine have been reported, and the accumulated results should be utilized to optimize the treatment of cancer patients. On the other hand, it is essential to elucidate the pharmacokinetic mechanism of each of the newly-developed drugs, to correctly select the drugs for each patient in the clinical setting, and to further develop optimized drug derivatives.

  19. Radiation recall dermatitis induced by Amol during tamoxifen therapy - case report

    International Nuclear Information System (INIS)

    Obtulowicz, A.; Pirowska, M.; Kosiniak-Kamysz, A.

    2011-01-01

    In the course of radiation therapy different types of adverse reactions of the skin are observed in approximately 95% of patients. Among the various complications encountered after radiotherapy, radiation recall dermatitis (RRD) deserves special attention. Radiation dermatitis is a form of delayed hypersensitivity of irradiated skin, and the direct trigger factors are medicines - most chemotherapeutics. The reaction is an inflammatory dermatosis. It is limited to previously irradiated skin and appears a number of months after radiotherapy. The aetiology of RRD is still unclear. Its clinical presentation may vary from mild erythema to necrosis and ulceration. The article presents the case of a 50-year-old patient, who after radiotherapy for breast cancer, during the hormonal therapy (tamoxifen), developed RRD type skin reactions after skin application of Amol. The article presents a detailed differential diagnosis of skin changes of RRD type, and discusses the principles of treatment and prevention. (authors)

  20. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy.

    Science.gov (United States)

    Dilnawaz, Fahima; Singh, Abhalaxmi; Mohanty, Chandana; Sahoo, Sanjeeb K

    2010-05-01

    The primary inadequacy of chemotherapeutic drugs is their relative non-specificity and potential side effects to the healthy tissues. To overcome this, drug loaded multifunctional magnetic nanoparticles are conceptualized. We report here an aqueous based formulation of glycerol monooleate coated magnetic nanoparticles (GMO-MNPs) devoid of any surfactant capable of carrying high payload hydrophobic anticancer drugs. The biocompatibility was confirmed by tumor necrosis factor alpha assay, confocal microscopy. High entrapment efficiency approximately 95% and sustained release of encapsulated drugs for more than two weeks under in vitro conditions was achieved for different anticancer drugs (paclitaxel, rapamycin, alone or combination). Drug loaded GMO-MNPs did not affect the magnetization properties of the iron oxide core as confirmed by magnetization study. Additionally the MNPs were functionalized with carboxylic groups by coating with DMSA (Dimercaptosuccinic acid) for the supplementary conjugation of amines. For targeted therapy, HER2 antibody was conjugated to GMO-MNPs and showed enhanced uptake in human breast carcinoma cell line (MCF-7). The IC(50) doses revealed potential antiproliferative effect in MCF-7. Therefore, antibody conjugated GMO-MNPs could be used as potential drug carrier for the active therapeutic aspects in cancer therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Telomerase – future drug target enzyme?

    Directory of Open Access Journals (Sweden)

    Tomaž Langerholc

    2012-06-01

    Full Text Available Eucaryotic chromosome endings (telomeres replication problem was solved in the 1980’s by discovery of the telomerase enzyme. The Nobel Prize in Physiology or Medicine was awarded in 2009 for the discovery of telomerase. Altered telomerase expression in cancer, and human dream of eternal youth have accelerated the development of pharmacological telomerase inhibitors and activators. However, after 15 years of development they are still not available on the market. In the present article we reviewed pharmacological agents that target telomerase activity, which have entered clinical trials. Current drugs in development are mostly not intended to be used alone, as telomerase inhibitors under clinical trials are used in combination with the existing chemotherapeutics and anti-telomerase vaccines in combination with immuno-stimulants. Apart from cancer and aging, there are other diseases linked to deregulated activity of telomerase/telomeres and we also discuss technical and legal problems that researchers encounter in developing anti-telomerase therapy. Given the pace of development, first anti-telomerase drugs might appear on the market in the next 5 years.

  2. Effect of acyclovir on radiation- and chemotherapy-induced mouth lesions

    International Nuclear Information System (INIS)

    Bubley, G.J.; Chapman, B.; Chapman, S.K.; Crumpacker, C.S.; Schnipper, L.E.

    1989-01-01

    Several chemotherapeutic regimens and radiation therapy, if delivered to the oral mucosa, are associated with a high frequency of mouth lesions. The cause of this side effect is not known for certain, but in past studies it has sometimes been associated with the ability to culture herpes simplex virus type 1 from the mouth. In a double-blind prospective trial, patients with head and neck tumors treated with chemotherapy or radiation therapy were treated with either acyclovir or placebo. Although the frequency of culture-positive herpes simplex virus was low in the untreated group, it was significantly lower, zero, in the acyclovir-treated group. However, there were no differences in the frequency or type of mouth lesions experienced by patients receiving either radiation or chemotherapy who were taking acyclovir or placebo. These results suggest that herpes simplex virus is not a frequent cause or complication of oral lesions afflicting this patient population

  3. Killing cancer cells by targeted drug-carrying phage nanomedicines

    Directory of Open Access Journals (Sweden)

    Yacoby Iftach

    2008-04-01

    Full Text Available Abstract Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates.

  4. Killing cancer cells by targeted drug-carrying phage nanomedicines

    Science.gov (United States)

    Bar, Hagit; Yacoby, Iftach; Benhar, Itai

    2008-01-01

    Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates. PMID:18387177

  5. From actually toxic to highly specific – novel drugs against poxviruses

    Directory of Open Access Journals (Sweden)

    Schnierle Barbara

    2007-01-01

    Full Text Available Abstract The potential use of variola virus, the causative agent of smallpox, as a bioweapon and the endemic presence of monkeypox virus in Africa demonstrate the need for better therapies for orthopoxvirus infections. Chemotherapeutic approaches to control viral infections have been less successful than those targeting bacterial infections. While bacteria commonly reproduce themselves outside of cells and have metabolic functions against which antibiotics can be directed, viruses replicate in the host cells using the cells' metabolic pathways. This makes it very difficult to selectively target the virus without damaging the host. Therefore, the development of antiviral drugs against poxviruses has initially focused on unique properties of the viral replication cycle or of viral proteins that can be selectively targeted. However, recent advances in molecular biology have provided insights into host factors that represent novel drug targets. The latest anti-poxvirus drugs are kinase inhibitors, which were originally developed to treat cancer progression but in addition block egress of poxviruses from infected cells. This review will summarize the current understanding of anti-poxvirus drugs and will give an overview of the development of the latest second generation poxvirus drugs.

  6. Synergistic anti-glioma effect of a coloaded nano-drug delivery system

    Directory of Open Access Journals (Sweden)

    Xu H

    2016-12-01

    Full Text Available Huae Xu,1,* Feng Jia,2,* Pankaj Kumar Singh,3 Shu Ruan,4 Hao Zhang,5,* Xiaolin Li5 1Department of Pharmacy, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 2Department of Neurosurgery, Yancheng City No 1 People’s Hospital, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng, People’s Republic of China; 3Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 4Department of Endocrinology, Yancheng Third Hospital, The Affiliated Hospital of Southeast University Medical College, Yancheng, 5Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: The anti-glioma effect of temozolomide (Tem is sometimes undermined by the emerging resistance. Recently, resveratrol (Res, herbal medicine extracted from grape seeds, has been demonstrated for its potential use in chemosensitization. In the current study, both these drugs were loaded simultaneously into nanoparticles with methoxy poly(ethylene glycol-poly epsilon caprolactone (mPEG-PCL as drug carriers in order to achieve better antitumor efficiency. Tem/Res-coloaded mPEG-PCL nanoparticles were constructed, characterized, and tested for antitumor effect on glioma cells by using in vitro and xenograft model system. The nanoparticle constructs were satisfactory with drug loading content (Res =~12.4%; Tem =~9.3% and encapsulation capacity of >85% for both the drugs. In addition, the coencapsulation led to better in vitro stability of the nanoparticles than Tem-loaded nanoparticles. An in vitro uptake study demonstrated a high uptake efficiency of the nanoparticles by glioma cells. The synergistic antitumor effect against glioma cells was observed in the combinational treatment of Res and Tem. Tem/Res-coloaded nanoparticles induced higher apoptosis in U87 glioma cells as

  7. Kinetics of radiation-induced apoptosis in neonatal urogenital tissues with and without protein synthesis inhibition

    International Nuclear Information System (INIS)

    Gobe, G.C.; Harmon, B.; Schoch, E.; Allan, D.J.

    1996-01-01

    The difference in incidence of radiation-induced apoptosis between two neonatal urogenital tissues, kidney and testis, was analysed over a 24h period. Concurrent administration of cycloheximide (10mg/kg body weight), a protein synthesis inhibitor, with radiation treatment was used to determine whether new protein synthesis had a role in induction of apoptosis in this in vivo model. Many chemotherapeutic drugs act via protein synthesis inhibition, and we believe that the results of this latter analysis may provide information for the planning of concurrent radio and chemotherapy. Apoptosis was quantified using morphological parameters, and verified by DNA gel electrophoresis for the typical banding pattern, and by electron microscopy. The proliferative index in tissues was studied, using [6- 3 H]-thymidine uptake ( 1h prior to euthanasia and collection of tissues) and autoradiography as indicators of cell proliferation (S-phase). Tissue was collected 2, 4, 6, 8, and 24h after radiation treatment. Expression of one of the apoptosis-associated genes, Bcl-2 (an apoptosis inhibitor/cell survival gene), was studied using immunohistochemistry. Apoptosis peaked at 4h in the testis and 6h in the kidney, emphasising the necessity of knowing tissue differences in radiation response if comparing changes at a particular time. A higher proportion (almost five fold) of the apoptotic cells died in S-phase in the kidney than the testis, over the 24h. Protein synthesis inhibition completely negated induction of apoptosis in both tissues. Necrosis was not identified at any time. Cycloheximide treatment greatly diminished Bcl-2 expression. The differences in response of the two tissues to irradiation relates to their innate cell (genetic) controls, which may be determined by their state of differentiation at time of treatment, or the tissue type. This in vivo study also suggests the model may be useful for analysis of other cancer therapies for example polychemotherapies or chemo

  8. Recent advances in the design of drug-loaded polymeric implants for the treatment of solid tumors.

    Science.gov (United States)

    Wadee, Ameena; Pillay, Viness; Choonara, Yahya E; du Toit, Lisa C; Penny, Clement; Ndesendo, Valence M K; Kumar, Pradeep; Murphy, Caragh S

    2011-10-01

    The effective treatment of solid tumors continues to be a great challenge to clinicians, despite the development of novel drugs. In order to improve the clinical efficacy of existing chemotherapeutic agents, researchers have considered the possibility of site-specific solid tumor treatment. The greatest advantage of localized delivery is the significantly fewer side effects experienced by patients. Recently, in situ forming implants have attracted considerable interest. These polymeric systems are injected as solutions into tumor sites and the injected solution forms an implant as a result of local environmental stimuli and hence removes the need for surgical implantation. This review summarizes the attempts that have been made to date in the development of polymeric implants for the treatment of solid tumors. Both in situ forming implants and preformed implants, fabricated using natural and synthetic polymers, are described. In addition, the peri- or intra-tumoral delivery of chemotherapeutic agents based on implants inserted surgically into the affected region is also discussed along with a short coverage of implants having an undesirable initial burst release effect. Although these implants have been shown to improve the treatment of various solid tumors, the ideal implant that is able to deliver high doses of chemotherapeutics to the tumor site, over prolonged periods with relatively few side effects on normal tissue, is yet to be formulated.

  9. Anticancer chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    This document examines chemotherapeutic agents for use in veterinary oncology. It lists some of the most common categories of chemotherapeutic drugs, such as alkylating agents and corticosteroids. For each category, the paper lists some example drugs, gives their mode of action, tumors usually susceptible to the drug, and common side effects. A brief discussion of mechanisms of drug resistance is also provided. (MHB)

  10. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery.

    Science.gov (United States)

    Smitha, K T; Anitha, A; Furuike, T; Tamura, H; Nair, Shantikumar V; Jayakumar, R

    2013-04-01

    Chitin and its derivatives have been widely used in drug delivery applications due to its biocompatible, biodegradable and non-toxic nature. In this study, we have developed amorphous chitin nanoparticles (150±50 nm) and evaluated its potential as a drug delivery system. Paclitaxel (PTX), a major chemotherapeutic agent was loaded into amorphous chitin nanoparticles (AC NPs) through ionic cross-linking reaction using TPP. The prepared PTX loaded AC NPs had an average diameter of 200±50 nm. Physico-chemical characterization of the prepared nanoparticles was carried out. These nanoparticles were proven to be hemocompatible and in vitro drug release studies showed a sustained release of PTX. Cellular internalization of the NPs was confirmed by fluorescent microscopy as well as by flow cytometry. Anticancer activity studies proved the toxicity of PTX-AC NPs toward colon cancer cells. These preliminary results indicate the potential of PTX-AC NPs in colon cancer drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Contrasted study on the opening degree of blood-brain barriier after radiation therapy with SPECT and MRI

    International Nuclear Information System (INIS)

    Zhang Qing; Sun Aihua; Hu Yun; Zhang Li; Ye Hengguang

    2004-01-01

    The blood-brain barrier(BBB) is the largest barrier responsible for preventing direct contact between chemotherapeutic drugs in blood and tumors in brain, the permeability of BBB incease at different degree after brain irradiation in clinical brain tumors radiotherapy. Methods: In our study, 26 patients with metastatic brain tumors(21 cases in pr/mary lung carcinoma, 5 cases in breast carcinoma) were accepted the full brain irradiation. The detructive effects of radiation on the BBB were determined by the 99mTc-DTPA SPECT and the concentration ratio of methotrexate(MTX) in cerebrospinal fluid(CSF) and blood, the brain MRI before and after radiotherapy were retrospective contrasted study with SPECT. Results: the degree of destructive effect on the BBB was directly proportional to radiation doses. After a dose of 20Gy radiation to brain, the permeability of BBB inceased markedly(P<0.01). But in cases the dexamethasone(DXM) was administrated to decease the brain edema during radiotherapy, the permeability inceased less than that in patients without DXM(P<0.05). Conclutions: After 20Gy irradiation, the BBB would gradually open. At this time, chemotherapy is the best choice to improving the therapeutic effect. Dexamethasone was found to cause the decease in BBB permeability but no significant remission of brain edema. So, if the combination of radiotherapy and chemotherapy in treatment of metastatic brain tumors will be plan, the dexamethasone may be not used in expecting to deceasing the side effect and that no affecting the therapeutic effect. (authors)

  12. A combination therapy of selective intraarterial anti-cancer drug infusion and radiation therapy for muscle-invasive bladder cancer

    International Nuclear Information System (INIS)

    Okuno, Yumiko; Zaitsu, Masayoshi; Mikami, Koji; Takeuchi, Takumi; Matsuda, Izuru; Arahira, Satoko

    2017-01-01

    The gold standard for the treatment of muscle-invasive bladder cancer Without metastasis is radical cystectomy. However, there increase patients very elderly and with serious complications. They are not good candidates for invasive surgical operation. Intraarterial infusion of 70 mg/m"2 of cisplatin and 30 mg/m"2 of pirarubicin into bilateral bladder arteries was conducted for 5 patients diagnosed with muscle invasive bladder cancers without distant metastasis. Right and left distribution of anti-cancer drugs was determined based on the location of bladder tumor(s). External beam radiation therapy was commenced immediately following intraarterial infusion. The patients were followed up with clinical and radiographic investigations and bladderbiopsy was performed as needed. Patients were all males who are smoking or with smoking history ranging from 73 to 85 years of age (median 82). The duration between transurethral resection of bladder tumors (TUR-Bt) and intraarterial infusion of anti-cancer drugs was 47.4 days (range 26-68), the median follow-up period after intraarterial infusion was 21.5 months (range 87-547) without death. Total radiation dose was 59.2 ±3.0 Gy. Complete remission was accomplished in all cases. One patient showed intravesical recurrence of non muscle-invasive tumors 45.8 months following intraarterial infusion and underwent TUR-Bt. Two cases underwent bladder biopsies showing no tumors. All patients but one case with bladder recurrence were free of tumor recurrence with radiographic investigation. For adverse events, acute renal failure was in one case and leukocytopenia was in all 5 cases, Grade 2 for one and Grade 3 for 4 cases. Follow-up periods are not long enough, but early results of a combination therapy of selective intraarterial anti-cancer drug infusion and radiation therapy for muscle-invasive bladder cancer were good. (author)

  13. Potential applications for halloysite nanotubes based drug delivery systems

    Science.gov (United States)

    Sun, Lin

    Drug delivery refers to approaches, formulations, technologies, and systems for transporting a drug in the body. The purpose is to enhance the drug efficacy and to reduce side reactions, which can significantly improve treatment outcomes. Halloysite is a naturally occurred alumino-silicate clay with a tubular structure. It is a biocompatible material with a big surface area which can be used for attachment of targeted molecules. Besides, loaded molecules can present a sustained release manner in solution. These properties make halloysite nanotubes (HNTs) a good option for drug delivery. In this study, a drug delivery system was built based on halloysite via three different fabrication methods: physical adsorption, vacuum loading and layer-by-layer coating. Methotrexate was used as the model drug. Factors that may affect performance in both drug loading and release were tested. Results showed that methotrexate could be incorporated within the HNTs system and released in a sustained manner. Layer-by-layer coating showed a better potential than the other two methods in both MTX loading and release. Besides, lower pH could greatly improve MTX loading and release while the increased number of polyelectrolytes bilayers had a limited impact. Osteosarcoma is the most common primary bone malignancy in children and adolescents. Postoperative recurrence and metastasis has become one of the leading causes for patient death after surgical remove of the tumor mass. A strategy could be a sustained release of chemotherapeutics directly at the primary tumor sites where recurrence would mostly occur. Then, this HNTs based system was tested with osteosarcoma cells in vitro to show the potential of delivering chemotherapeutics in the treatment of osteosarcoma. Methotrexate was incorporated within HNTs with a layer-bylayer coating technique, and drug coated HNTs were filled into nylon-6 which is a common material for surgical sutures in industry. Results showed that (1) methotrexate

  14. Constructing aptamer anchored nanovesicles for enhanced tumor penetration and cellular uptake of water soluble chemotherapeutics.

    Science.gov (United States)

    Li, Xin; Zhu, Xiumei; Qiu, Liyan

    2016-04-15

    Polymersomes represent a promising pharmaceutical vehicle for the delivery of hydrophilic therapeutic agents. However, modification of polymersomes with molecules that confer targeting functions remains challenging because of the strict requirements regarding the weight fractions of the hydrophilic and hydrophobic block polymers. In this study, based on the compatibility between cholesterol and polymeric carriers, polymersomes self-assembled by amphiphilic graft polyphosphazenes were endowed with a targeting function by incorporating the cholesterol-linked aptamer through a simple dialysis method. The aqueous interior of the polymersomes was employed to encapsulate water-soluble doxorubicin hydrochloride. In vivo experiments in tumor-bearing mice showed that the aptamer-anchored vesicle targeted accumulation at the tumor site, favorable penetration through tumor tissue, and incremental endocytosis into tumor cells. Correspondingly, the aptamer-anchored vesicle decreased systemic toxicity and effectively suppressed the growth of subcutaneous MCF-7 xenografts. These findings suggested that vesicles modified with targeted groups via hydrophobic supermolecular interactions could provide a platform for selective delivery of hydrophilic drug. Polymersomes have represented a promising type of pharmaceutical vehicles due to their predominant physical properties. However, it is still a challenge to endow polymersomes with active target function because of strict requirements of the weight fractions of hydrophilic polymer block to hydrophobic one. In this research, by taking advantage of the supermolecular interactions between amphiphilic graft polyphosphazene and cholesterol which was linked to aptamer AS1411, we prepared a targeted functional polymersome (PEP-DOX·HCl-Ap) through a simple method with high loading of water soluble anti-cancer drug doxorubicin hydrochloride. The in vivo experiments in MCF-7 tumor-bearing mice demonstrated several advantages of PEP

  15. Stem cells as anticancer drug carrier to reduce the chemotherapy side effect

    Science.gov (United States)

    Salehi, Hamideh; Al-Arag, Siham; Middendorp, Elodie; Gergley, Csilla; Cuisinier, Frederic

    2017-02-01

    Chemotherapy used for cancer treatment, due to the lack of specificity of drugs, is associated to various damaging side effects that have severe impact on patients' quality of life. Over the past 30 years, increasing efforts have been placed on optimizing chemotherapy dosing with the main goal of increasing antitumor efficacy while reducing drug-associated toxicity. A novel research shows that stem cells may act as a reservoir for the anticancer agent, which will subsequently release some of the drug's metabolites, or even the drug in its original form, in vicinity of the cancer cells. These cells may play a dual role in controlling drug toxicity depending on their capacity to uptake and release the chemotherapeutic drug. In our study, we show that Dental Pulp Stem Cells DPSCs are able to rapidly uptake Paclitaxel PTX, and to release it in the culture medium in a time-dependent manner. This resulting conditioned culture medium is to be transferred to breast cancer cells, the MCF-7. By applying Confocal Raman Microscopy, the anticancer drug uptake by the MCF-7 was measured. Surprisingly, the cancer cells -without any direct contact with PTX- showed a drug uptake. This proves that the stem cells carried and delivered the anticancer drug without its modification. It could be a revolution in chemotherapy to avoid the drug's side effects and increase its efficacy.

  16. Radiation Synthesis and Characterization of Polyvinyl alcohol/Acrylic acid Hydrogel and its Amoxicillin drug Delivery application

    International Nuclear Information System (INIS)

    El kelesh, N.A.; Ismail, S.A.; Abd El Wahab, S.Y.

    2012-01-01

    Polyvinyl alcohol /Acrylic acid based hydrogels can be synthesized by Gamma radiation technique using 60 Co irradiation cell at irradiation dose rate 1.8 Gray/second. The optimum conditions of hydrogel preparation takes place at different factors such as composition ratios of PVA/AAc, different comonomer concentration and different irradiation doses resulting in hydrogel with maximum gel percent as it obtained 98%. The structures of hydrogels were characterized by FTIR analysis. The results can be confirmed the expected structures as well as free radical copolymerization. According to the swelling studies, hydrogels with high content of AAc gave relatively high swelling percent. The hydrogel showed a super adsorbent with swelling capacity 10320 %. Water diffusion into such prepared hydrogel showed a non-Fickian type where a Fickian number was 0.77. This hydrogel was used for the adsorption of amoxicillin drug from their aqueous solutions. The factors affected on the uptake conditions such as ph, time and initial feed concentration on the amoxicillin adsorption capacity of hydrogel was studied depending on Freundlish model of adsorption isotherm.. It was observed that the interaction between drug and ionic comonomers was enhanced in alkaline medium and high initial feed concentration of the drug. The ability of the hydrogel and the affinity of the drug to be adsorbed can be cleared by determining the empirical constants n and k respectively from the logarithmic form of Freundlish equation. The recovery of drug was also investigated in different ph values to study the suitable condition of drug release as drug delivery system.

  17. Optimization of a Fluorescence-Based Assay for Large-Scale Drug Screening against Babesia and Theileria Parasites

    OpenAIRE

    Rizk, Mohamed Abdo; El-Sayed, Shimaa Abd El-Salam; Terkawi, Mohamed Alaa; Youssef, Mohamed Ahmed; El Said, El Said El Shirbini; Elsayed, Gehad; El-Khodery, Sabry; El-Ashker, Maged; Elsify, Ahmed; Omar, Mosaab; Salama, Akram; Yokoyama, Naoaki; Igarashi, Ikuo

    2015-01-01

    A rapid and accurate assay for evaluating antibabesial drugs on a large scale is required for the discovery of novel chemotherapeutic agents against Babesia parasites. In the current study, we evaluated the usefulness of a fluorescence-based assay for determining the efficacies of antibabesial compounds against bovine and equine hemoparasites in in vitro cultures. Three different hematocrits (HCTs; 2.5%, 5%, and 10%) were used without daily replacement of the medium. The results of a high-thr...

  18. Cell biological effects of hyperthermia alone or combined with radiation or drugs : A short introduction to newcomers in the field

    NARCIS (Netherlands)

    Kampinga, HH

    Hyperthermia results in protein unfolding that, if not properly chaperoned by Heat Shock Proteins (HSP), can lead to irreversible and toxic protein aggregates. Elevating HSP prior to heating makes cells thermotolerant. Hyperthermia also can enhance the sensitivity of cells to radiation and drugs.

  19. Hierarchical pulmonary target nanoparticles via inhaled administration for anticancer drug delivery.

    Science.gov (United States)

    Chen, Rui; Xu, Liu; Fan, Qin; Li, Man; Wang, Jingjing; Wu, Li; Li, Weidong; Duan, Jinao; Chen, Zhipeng

    2017-11-01

    Inhalation administration, compared with intravenous administration, significantly enhances chemotherapeutic drug exposure to the lung tissue and may increase the therapeutic effect for pulmonary anticancer. However, further identification of cancer cells after lung deposition of inhaled drugs is necessary to avoid side effects on normal lung tissue and to maximize drug efficacy. Moreover, as the action site of the major drug was intracellular organelles, drug target to the specific organelle is the final key for accurate drug delivery. Here, we designed a novel multifunctional nanoparticles (MNPs) for pulmonary antitumor and the material was well-designed for hierarchical target involved lung tissue target, cancer cell target, and mitochondrial target. The biodistribution in vivo determined by UHPLC-MS/MS method was employed to verify the drug concentration overwhelmingly increasing in lung tissue through inhaled administration compared with intravenous administration. Cellular uptake assay using A549 cells proved the efficient receptor-mediated cell endocytosis. Confocal laser scanning microscopy observation showed the location of MNPs in cells was mitochondria. All results confirmed the intelligent material can progressively play hierarchical target functions, which could induce more cell apoptosis related to mitochondrial damage. It provides a smart and efficient nanocarrier platform for hierarchical targeting of pulmonary anticancer drug. So far, this kind of material for pulmonary mitochondrial-target has not been seen in other reports.

  20. The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir.

    Science.gov (United States)

    Kast, Richard E

    2015-04-09

    Based on reporting in the last several years, an impressive but dismal list of cytotoxic chemotherapies that fail to prolong the median overall survival of patients with glioblastoma has prompted the development of treatment protocols designed to interfere with growth-facilitating signaling systems by using non-cytotoxic, non-oncology drugs. Recent recognition of the pro-mobility stimulus, interleukin-18, as a driver of centrifugal glioblastoma cell migration allows potential treatment adjuncts with disulfiram and ritonavir. Disulfiram and ritonavir are well-tolerated, non-cytotoxic, non-oncology chemotherapeutic drugs that are marketed for the treatment of alcoholism and human immunodeficiency virus (HIV) infection, respectively. Both drugs exhibit an interleukin-18-inhibiting function. Given the favorable tolerability profile of disulfiram and ritonavir, the unlikely drug-drug interaction with temozolomide, and the poor prognosis of glioblastoma, trials of addition of disulfiram and ritonavir to current standard initial treatment of glioblastoma would be warranted.

  1. Herbal medicine Guan Chang Fu Fang enhances 5-fluorouracil cytotoxicity and affects drug-associated genes in human colorectal carcinoma cells.

    Science.gov (United States)

    Yu, Chen; Liu, Shen-Lin; Qi, Ming-Hao; Zou, Xi; Wu, Jian; Zhang, Jing

    2015-02-01

    Guan Chang Fu Fang (GCFF) is a natural compound, which is extracted from three medicinal plants, Agrimonia pilosa Ledeb ., Patrinia scabiosaefolia and Solanum nigrum L . GCFF has demonstrated clinical efficacy in the treatment of colon cancer. At present, 5-fluorouracil (5-FU) is the primary active chemotherapeutic agent used for treating colon cancer. Using median-effect and apoptosis analyses, fluorescence microscopy and western blotting, the present study analyzed the association between GCFF and 5-FU in the human colon adenocarcinoma LoVo cell line. The effect of GCFF on the expression of chemotherapeutic agent-associated genes was also investigated. The results of the synergistic analysis revealed that GCFF exhibited a significant effect upon 5-FU-associated cytotoxicity within the LoVo cell line. This effect was observed over a broad dose-inhibition range (5-95%), but was particularly significant in the lower concentrations. The flow cytometry results revealed that low doses of GCFF or 5-FU induced S-phase arrest, as did a low-dose combination of the two drugs. After 48 h, GCFF significantly suppressed the expression levels of the chemotherapeutic agent resistance-associated genes within the colon cancer cells. The western blot analysis revealed that the combined effects of 5-FU and GCFF were due to a regulation of the B-cell lymphoma-2 family of proteins. The findings of the present study suggested that GCFF, when combined with 5-FU, has the potential to be a novel, chemotherapeutic compound for the treatment of colon cancer.

  2. Synthesis of drug loaded magnetic nanoparticles and their uptake into immune cells

    International Nuclear Information System (INIS)

    Prinz, Eva-Marie; Hempelmann, Rolf; Eggers, Ruth; Lee, Hyeck-Hee; Steinfeld, Ute

    2010-01-01

    Ferrite nanoparticles (Mn 0,8 Zn 0,2 Fe 2 O 4 ) are synthesized by the co-precipitation method and characterized by X-ray diffraction, transmission electron microscopy and dynamic light scattering. The particles are functionalized with dextran which is activated via amino or carboxymethyl groups. The chemotherapeutic drug doxorubicin (DOX) is attached to these dextran derivates in different ways. One method is based on the attachment of DOX to amino dextran by its keto group; the other is a bond to the primary amino group of DOX. The characterization of drug loaded dextran derivates is performed by Raman, FT-IR-, UV/VIS-and fluorescence spectroscopy. The biofunctionalized particles are intended for use in adoptive cancer immunotherapy as a new approach, where immune cells (T lymphocytes) will be used as new autonomous highly target specific drug delivery systems. The uptake efficiency of these particles into T lymphocytes is investigated by fluorescence and convocal microscopy.

  3. Fractionated irradiation of H69 small-cell lung cancer cells causes stable radiation and drug resistance with increased MRP1, MRP2, and topoisomerase IIα expression

    International Nuclear Information System (INIS)

    Henness, Sheridan; Davey, Mary W.; Harvie, Rozelle M.; Davey, Ross A.

    2002-01-01

    Purpose: After standard treatment with chemotherapy and radiotherapy, small-cell lung cancer (SCLC) often develops resistance to both treatments. Our aims were to establish if fractionated radiation treatment alone would induce radiation and drug resistance in the H69 SCLC cell line, and to determine the mechanisms of resistance. Methods and Materials: H69 SCLC cells were treated with fractionated X-rays to an accumulated dose of 37.5 Gy over 8 months to produce the H69/R38 subline. Drug and radiation resistance was determined using the MTT (3,-4,5 dimethylthiazol-2,5 diphenyltetrazolium bromide) cell viability assay. Protein expression was analyzed by Western blot. Results: The H69/R38 subline was resistant to radiation (2.0 ± 0.2-fold, p<0.0001), cisplatin (14 ± 7-fold, p < 0.001), daunorubicin (6 ± 3-fold, p<0.05), and navelbine (1.7 ± 0.15-fold, p<0.02). This was associated with increased expression of the multidrug resistance-associated proteins, MRP1 and MRP2, and topoisomerase IIα and decreased expression of glutathione-S-transferase π (GSTπ) and bcl-2 and decreased cisplatin accumulation. Treatment with 4 Gy of X-rays produced a 66% decrease in MRP2 in the H69 cells with no change in the H69/R38 cells. This treatment also caused a 5-fold increase in topoisomerase IIα in the H69/R38 cells compared with a 1.5-fold increase in the H69 cells. Conclusions: Fractionated radiation alone can lead to the development of stable radiation and drug resistance and an altered response to radiation in SCLC cells

  4. Manufacture and Drug Delivery Applications of Silk Nanoparticles.

    Science.gov (United States)

    Wongpinyochit, Thidarat; Johnston, Blair F; Seib, F Philipp

    2016-10-08

    Silk is a promising biopolymer for biomedical and pharmaceutical applications due to its outstanding mechanical properties, biocompatibility and biodegradability, as well its ability to protect and subsequently release its payload in response to a trigger. While silk can be formulated into various material formats, silk nanoparticles are emerging as promising drug delivery systems. Therefore, this article covers the procedures for reverse engineering silk cocoons to yield a regenerated silk solution that can be used to generate stable silk nanoparticles. These nanoparticles are subsequently characterized, drug loaded and explored as a potential anticancer drug delivery system. Briefly, silk cocoons are reverse engineered first by degumming the cocoons, followed by silk dissolution and clean up, to yield an aqueous silk solution. Next, the regenerated silk solution is subjected to nanoprecipitation to yield silk nanoparticles - a simple but powerful method that generates uniform nanoparticles. The silk nanoparticles are characterized according to their size, zeta potential, morphology and stability in aqueous media, as well as their ability to entrap a chemotherapeutic payload and kill human breast cancer cells. Overall, the described methodology yields uniform silk nanoparticles that can be readily explored for a myriad of applications, including their use as a potential nanomedicine.

  5. Drug resistance following irradiation of RIF-1 tumors: Influence of the interval between irradiation and drug treatment

    International Nuclear Information System (INIS)

    Hopwood, L.E.; Davies, B.M.; Moulder, J.E.

    1990-01-01

    RIF-1 tumors contain a small number of cells (1 to 100 per 10(6) cells) that are resistant to 5-fluorouracil, methotrexate, or adriamycin. The frequency of drug-resistant cells among individual untreated tumors is highly variable. Radiation, delivered in vivo at doses of 3 to 12 Gy, increases the frequency of methotrexate- and 5-fluorouracil-resistant cells, but not the frequency of adriamycin-resistant cells. The magnitude of induction of 5-fluorouracil and methotrexate resistance shows a complex dependence on the radiation dose and on the interval between irradiation and assessment of drug resistance. For a dose of 3 Gy, induced 5-fluorouracil and methotrexate resistance is seen only after an interval of 5 to 7 days, whereas for a dose of 12 Gy, high levels of induced resistance are observed 1 to 3 days after irradiation. The maximum absolute risk for induction of resistance is 4 per 10(4) cells per Gy for methotrexate, and 3 per 10(6) cells per Gy for 5-fluorouracil. These results indicate that tumor hypoxia may play a role in the increased levels of drug resistance seen after irradiation, and that both genetic and environmental factors may influence radiation-induction of drug resistance. These studies provide essential data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be caused by radiation-induced drug resistance

  6. Doxorubicin-loaded micelles of reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers as efficient "active" chemotherapeutic agents.

    Science.gov (United States)

    Cambón, A; Rey-Rico, A; Mistry, D; Brea, J; Loza, M I; Attwood, D; Barbosa, S; Alvarez-Lorenzo, C; Concheiro, A; Taboada, P; Mosquera, V

    2013-03-10

    Five reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers, BOnEOmBOn, with BO ranging from 8 to 21 units and EO from 90 to 411 were synthesized and evaluated as efficient chemotherapeutic drug delivery nanocarriers and inhibitors of the P-glycoprotein (P-gp) efflux pump in a multidrug resistant (MDR) cell line. The copolymers were obtained by reverse polymerization of poly(butylene oxide), which avoids transfer reaction and widening of the EO block distribution, commonly found in commercial poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamers). BOnEOmBOn copolymers formed spherical micelles of 10-40 nm diameter at lower concentrations (one order of magnitude) than those of equivalent poloxamers. The influence of copolymer block lengths and BO/EO ratios on the solubilization capacity and protective environment for doxorubicin (DOXO) was investigated. Micelles showed drug loading capacity ranging from ca. 0.04% to 1.5%, more than 150 times the aqueous solubility of DOXO, and protected the cargo from hydrolysis for more than a month due to their greater colloidal stability in solution. Drug release profiles at various pHs, and the cytocompatibility and cytotoxicity of the DOXO-loaded micelles were assessed in vitro. DOXO loaded in the polymeric micelles accumulated more slowly inside the cells than free DOXO due to its sustained release. All copolymers were found to be cytocompatible, with viability extents larger than 95%. In addition, the cytotoxicity of DOXO-loaded micelles was higher than that observed for free drug solutions in a MDR ovarian NCI-ADR-RES cell line which overexpressed P-gp. The inhibition of the P-gp efflux pump by some BOnEOmBOn copolymers, similar to that measured for the common P-gp inhibitor verapamil, favored the retention of DOXO inside the cell increasing its cytotoxic activity. Therefore, poly(butylene oxide)-poly(ethylene oxide) block copolymers offer interesting features as cell

  7. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system.

    Science.gov (United States)

    Kibria, Golam; Hatakeyama, Hiroto; Harashima, Hideyoshi

    2014-01-01

    Multidrug resistance (MDR), the principal mechanism by which many cancers develop resistance to chemotherapy, is one of the major obstacles to the successful clinical treatment of various types of cancer. Several key regulators are responsible for mediating MDR, a process that renders chemotherapeutic drugs ineffective in the internal organelles of target cells. A nanoparticulate drug delivery system (DDS) is a potentially promising tool for circumventing such MDR, which can be achieved by targeting tumor cells themselves or tumor endothelial cells that support the survival of MDR cancer cells. The present article discusses key factors that are responsible for MDR in cancer cells, with a specific focus on the application of DDS to overcome MDR via the use of chemotherapy or macromolecules.

  8. Suppression of NRF2–ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells

    International Nuclear Information System (INIS)

    Peng, Hui; Wang, Huihui; Xue, Peng; Hou, Yongyong; Dong, Jian; Zhou, Tong; Qu, Weidong; Peng, Shuangqing; Li, Jin; Carmichael, Paul L.; Nelson, Bud; Clewell, Rebecca; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2016-01-01

    Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the antioxidant response element (ARE)-dependent transcription, plays a pivotal role in chemical detoxification in normal and tumor cells. Consistent with previous findings that NRF2–ARE contributes to chemotherapeutic resistance of cancer cells, we found that stable knockdown of NRF2 by lentiviral shRNA in human acute monocytic leukemia (AML) THP-1 cells enhanced the cytotoxicity of several chemotherapeutic agents, including arsenic trioxide (As 2 O 3 ), etoposide and doxorubicin. Using an ARE-luciferase reporter expressed in several human and mouse cells, we identified a set of compounds, including isonicotinic acid amides, isoniazid and ethionamide, that inhibited NRF2–ARE activity. Treatment of THP-1 cells with ethionamide, for instance, significantly reduced mRNA expression of multiple ARE-driven genes under either basal or As 2 O 3 -challenged conditions. As determined by cell viability and cell cycle, suppression of NRF2–ARE by ethionamide also significantly enhanced susceptibility of THP-1 and U937 cells to As 2 O 3 -induced cytotoxicity. In THP-1 cells, the sensitizing effect of ethionamide on As 2 O 3 -induced cytotoxicity was highly dependent on NRF2. To our knowledge, the present study is the first to demonstrate that ethionamide suppresses NRF2–ARE signaling and disrupts the transcriptional network of the antioxidant response in AML cells, leading to sensitization to chemotherapeutic agents. - Highlights: • Identification of novel inhibitors of ARE-dependent transcription • Suppression of NRF2–ARE sensitizes THP-1 cells to chemotherapy. • Ethionamide suppresses ARE-dependent transcriptional activity. • Ethionamide and isoniazid increase the cytotoxicity of As 2 O 3 in AML cells. • Sensitization of THP-1 cells to As 2 O 3 toxicity by ethionamide is NRF2-dependent.

  9. Chemotherapeutic action between Khaya grandifoliola (WELW ...

    African Journals Online (AJOL)

    In malarial endemic countries especially in the tropics, conventional antimalarial drugs are used with herbal remedies either concurrently or successively. Khaya grandifoliola is one of ... conventional drugs alone. The mean survival period of parasitized animals was also enhanced by the extract/halofantrine combination.

  10. Radiation techniques in the formulation of synthetic biomaterials

    International Nuclear Information System (INIS)

    Kaetsu, Isao

    1992-01-01

    This chapter reviews the uses of various radiation techniques, such as radiation polymerization, grafting, and crosslinking, for the formulation of synthetic biomaterials. The biomaterials are divided into four categories: Biocompatible polymers, immobilized proteins, immobilized cells, and drug delivery systems. The recent achievements in each category are described, and the contributions of novel radiation techniques to this field are discussed. Work on drug delivery systemsis also reviewed, and the status of the practical applications of drug delivery systems for therapy is summarized. Future trends in the field of radiation-synthesized biomaterials are indicated. (orig.)

  11. Optimal Classes of Chemotherapeutic Agents Sensitized by Specific Small-Molecule Inhibitors of Akt In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2005-11-01

    Full Text Available Akt is a serine/threonine kinase that transduces survival signals from survival/growth factors. Deregulation and signal imbalance in cancer cells make them prone to apoptosis. Upregulation or activation of Akt to aid the survival of cancer cells is a common theme in human malignancies. We have developed small-molecule Akt inhibitors that are potent and specific. These Akt inhibitors can inhibit Akt activity and block phosphorylation by Akt on multiple downstream targets in cells. Synergy in apoptosis induction was observed when Akt inhibitors were combined with doxorubicin or camptothecin. Akt inhibitor-induced enhancement of topoisomerase inhibitor cytotoxicity was also evident in long-term cell survival assay. Synergy with paclitaxel in apoptosis induction was evident in cells pretreated with paclitaxel, and enhancement of tumor delay by paclitaxel was demonstrated through cotreatment with Akt inhibitor Compound A (A-443654. Combination with other classes of chemotherapeutic agents did not yield any enhancement of cytotoxicity. These findings provide important guidance in selecting appropriate classes of chemotherapeutic agents for combination with Akt inhibitors in cancer treatment.

  12. Mitoxantrone Loaded Superparamagnetic Nanoparticles for Drug Targeting: A Versatile and Sensitive Method for Quantification of Drug Enrichment in Rabbit Tissues Using HPLC-UV

    Directory of Open Access Journals (Sweden)

    Rainer Tietze

    2010-01-01

    Full Text Available In medicine, superparamagnetic nanoparticles bound to chemotherapeutics are currently investigated for their feasibility in local tumor therapy. After intraarterial application, these particles can be accumulated in the targeted area by an external magnetic field to increase the drug concentration in the region of interest (Magnetic-Drug-Targeting. We here present an analytical method (HPLC-UV, to detect pure or ferrofluid-bound mitoxantrone in a complex matrix even in trace amounts in order to perform biodistribution studies. Mitoxantrone could be extracted in high yields from different tissues. Recovery of mitoxantrone in liver tissue (5000 ng/g was 76±2%. The limit of quantification of mitoxantrone standard was 10 ng/mL ±12%. Validation criteria such as linearity, precision, and stability were evaluated in ranges achieving the FDA requirements. As shown for pilot samples, biodistribution studies can easily be performed after application of pure or ferrofluid-bound mitoxantrone.

  13. A molecular targeting against nuclear factor-κB, as a chemotherapeutic approach for human malignant mesothelioma

    International Nuclear Information System (INIS)

    Nishikawa, Sho; Tanaka, Akane; Matsuda, Akira; Oida, Kumiko; Jang, Hyosun; Jung, Kyungsook; Amagai, Yosuke; Ahn, Ginae; Okamoto, Noriko; Ishizaka, Saori; Matsuda, Hiroshi

    2014-01-01

    Chronic inflammation due to the absorption of asbestos is an important cause of mesothelioma. Although the increased prevalence of mesothelioma is a serious problem, the development of effective chemotherapeutic agents remains incomplete. As the nuclear factor-κB (NF-κB) pathway contributes to malignant transformation of various types of cells, we explored NF-κB activity in three different pathological types of malignant mesothelioma cells, and evaluated the therapeutic potential of a recently reported NF-κB inhibitor, IMD-0354. NF-κB was constantly activated in MSTO-211H, NCI-H28, and NCI-H2052 cells, and the proliferation of these cell lines was inhibited by IMD-0354. D-type cyclins were effectively suppressed in mixed tissue type MSTO-211H, leading to cell cycle arrest at sub G 1 /G 1 phase. IMD-0354 reduced cyclin D3 in both epithelial tissue type NCI-H28 and sarcomatoid tissue type NCI-H2052. In a sphere formation assay, IMD-0354 effectively decreased the number and diameter of MSTO-211H spheres. Preincubation of MSTO-211H cells with IMD-0354 delayed tumor formation in transplanted immunodeficient mice. Furthermore, administration of IMD-0354 markedly rescued the survival rate of mice that received intrathoracic injections of MSTO-211H cells. These results indicate that a targeted drug against NF-κB might have therapeutic efficacy in the treatment of human malignant mesothelioma

  14. Alterations of nutritional status: impact of chemotherapy and radiation therapy

    International Nuclear Information System (INIS)

    Donaldson, S.S.; Lenon, R.A.

    1979-01-01

    The nutritional status of a cancer patient may be affected by the tumor, the chemotherapy and/or radiation therapy directed against the tumor, and by complications associated with that therapy. Chemotherpay-radiotherapy is not confined exclusively to malignant cell populations; thus, normal tissues may also be affected by the therapy and may contribute to specific nutritional problems. Impaired nutrition due to anorexia, mucositis, nausea, vomiting, and diarrhea may be dependent upon the specific chemotherapeutic agent, dose, or schedule utilized. Similar side effects from radiation therapy depend upon the dose, fractionation, and volume irradiated. When combined modality treatment is given the nutritional consequences may be magnified. Prospective, randomized clinical trials are underway to investigate the efficacy of nutritional support during chemotherapy-radiotherapy on tolerance to treatment, complications from treatment, and response rates to treatment. Preliminary results demonstrate that the administration of total parenteral nutrition is successful in maintaining weight during radiation therapy and chemotherapy, but that weight loss occurs after discontinuation of nutritional support. Thus, longterm evaluation is mandatory to learn the impact of nutritional support on survival, diease-free survival, and complication rates, as well as on the possible prevention of morbidity associated with aggressive chemotherapy-radiation therapy

  15. Pharmacogenetic characterization of naturally occurring germline NT5C1A variants to chemotherapeutic nucleoside analogs

    Science.gov (United States)

    Saliba, Jason; Zabriskie, Ryan; Ghosh, Rajarshi; Powell, Bradford C; Hicks, Stephanie; Kimmel, Marek; Meng, Qingchang; Ritter, Deborah I; Wheeler, David A; Gibbs, Richard A; Tsai, Francis T F; Plon, Sharon E

    2016-01-01

    Background Mutations or alteration in expression of the 5’ nucleotidase gene family can confer altered responses to treatment with nucleoside analogs. While investigating leukemia susceptibility genes, we discovered a very rare p.L254P NT5C1A missense variant in the substrate recognition motif. Given the paucity of cellular drug response data from NT5C1A germline variation, we characterized p.L254P and eight rare variants of NT5C1A from genomic databases. Methods Through lentiviral infection, we created HEK293 cell lines that stably overexpress wildtype NT5C1A, p.L254P, or eight NT5C1A variants reported in the NHLBI Exome Variant server (one truncating and seven missense). IC50 values were determined by cytotoxicity assays after exposure to chemotherapeutic nucleoside analogs (Cladribine, Gemcitabine, 5-Fluorouracil). In addition, we used structure-based homology modeling to generate a 3D model for the C-terminal region of NT5C1A. Results The p.R180X (truncating), p.A214T, and p.L254P missense changes were the only variants that significantly impaired protein function across all nucleotide analogs tested (>5-fold difference versus WT; p<.05). Several of the remaining variants individually displayed differential effects (both more and less resistant) across the analogs tested. The homology model provided a structural framework to understand the impact of NT5C1A mutants on catalysis and drug processing. The model predicted active site residues within NT5C1A motif III and we experimentally confirmed that p.K314 (not p.K320) is required for NT5C1A activity. Conclusion We characterized germline variation and predicted protein structures of NT5C1A. Individual missense changes showed substantial variation in response to the different nucleoside analogs tested, which may impact patients’ responses to treatment. PMID:26906009

  16. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs.

    Science.gov (United States)

    Huang, Wei; Chen, Liqing; Kang, Lin; Jin, Mingji; Sun, Ping; Xin, Xin; Gao, Zhonggao; Bae, You Han

    2017-06-01

    Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of radiation on microbiologic characteristics of M. tuberculosis

    International Nuclear Information System (INIS)

    Zack, M.B.; Stottmeier, K.; Berg, G.; Kazemi, H.

    1974-01-01

    The effect of irradiation on mutation (expressing itself as drug resistance) and on viability of Mycobacterium tuberculosis was studied in vitro. Forty-two identical cultures of H37-Rv (M. tuberculosis) were exposed to different levels of cobalt radiation (10, 100, 1,000, 2,500, 5,000, 10,000, and 20,000 rads) with six samples used for each of the seven radiation levels. Equivalent samples exposed to zero rads and samples handled and stored identically formed the controls. Coded cultures were read in a double-blind fashion to determine the number of surviving organisms and sensitivities to nine different antituberculosis drugs. Organism viability began to decrease at radiation levels of 1,000 rads and decreased linearly with higher levels of radiation. Three of the 42 radiated cultures developed drug-resistant organisms (one to INH, one to PAS, a third to SM). This drug resistance occurred at levels of clinical significance (greater than 1 percent control) as well as in amounts exceeding probability values for chance resistance mutation. High radiation levels such as occur in radiotherapeutic doses decrease the viability of M. tuberculosis. Radiation may also induce genetic mutation expressed as primary drug resistance. (U.S.)

  18. Fascaplysin Sensitizes Anti-Cancer Effects of Drugs Targeting AKT and AMPK

    Directory of Open Access Journals (Sweden)

    Taek-In Oh

    2017-12-01

    Full Text Available Fascaplysin, a natural product isolated from marine sponges, is a potential candidate for the development of anti-cancer drugs. However, the mechanism underlying its therapeutic effect of strengthening anti-cancer efficacy of other drugs is poorly understood. Here, we found that fascaplysin increases phosphorylation of protein kinase B (PKB, also known as AKT, and adenosine monophosphate-activated protein kinase (AMPK, which are considered therapeutic targets for cancer treatment due to their anti-apoptotic or pro-survival functions in cancer. A cell viability assay revealed that pharmacological suppression of AKT using LY294002 enhanced the anti-cancer effect of fascaplysin in various cancer cells. Similarly, fascaplysin was observed to have improved anti-cancer effects in combination with compound C, a selective AMPK inhibitor. Another challenge showed that fascaplysin increased the efficacy of methotrexate (MTX-mediated cancer therapy by suppressing genes related to folate and purine metabolism. Overall, these results suggest that fascaplysin may be useful for improving the anti-cancer efficacy of targeted anti-cancer drugs, such as inhibitors of phosphoinositide 3-kinase AKT signaling, and chemotherapeutic agents, such as MTX.

  19. Radiation sterilization of hydrocortisone acetate

    International Nuclear Information System (INIS)

    Charef, A.; Boussaha, A.

    1989-09-01

    The feasibility of using high energy ionizing radiation for the sterilization of hydrocortisone acetate was investigated. Hydrocortisone acetate in the form of powder was exposed to different dose levels of gamma radiation using a Cobalt-60 source. The irradiated samples were examined by various physico-chemical techniques in order to detect possible radiolysis products. It was of interest to know if one could insure sterility and retain biological properties of the drug by suitable choice of radiation dose. The results showed that a 10 KGy radiation dose causes no change in the physico-chemical properties of the drug and is sufficient to obtain contaminant-free product

  20. Radiation: behavioral implications in space

    International Nuclear Information System (INIS)

    Bogo, V.

    1988-01-01

    Since future space missions are likely to be beyond Earth's protective atmosphere, a potentially significant hazard is radiation. The following behavioural situations are addressed in this paper: (1) space radiations are more effective at disrupting behaviour; (2) task demands can aggravate the radiation-disruption; (3) efforts to mitigate disruption with drugs or shielding are not satisfactory and the drugs can be behaviourally toxic; and (4) space- and radiation-induced emesis combined may be synergistic. Thus future space travel will be a demanding, exciting time for behavioral toxicologists, and while the circumstances may seem insurmountable at first, creative application of scientific expertise should illicit solutions, similar to demanding situations confronted before. (author)

  1. Emerging drugs for sickle cell anemia.

    Science.gov (United States)

    Singh, Priya C; Ballas, Samir K

    2015-03-01

    The search for effective therapeutic interventions for sickle cell disease (SCD) has been an ongoing endeavor for over 50 years. During this period, only hydroxyurea (HU), which received US FDA approval in February 1998, was identified as an effective therapeutic agent in preventing or ameliorating the frequency of vaso-occlusive crises, acute chest syndrome and the need for blood transfusion. Approximately 25% of patients with sickle cell anemia (SCA), however, do not respond to HU and some patients experiencing serious side effects of this chemotherapeutic agent. Nevertheless, the success of HU opened the sluice gates to identify other effective drug therapies. The objective of this review is to describe the emerging drug therapies for SCA. In this review, we describe the pathophysiology of SCD and provide an in-depth analysis of the current and new pharmacologic therapies in the field. Literature searches involved multiple databases including Medline In-Process & Other Non-Indexed Citations, MEDLINE, Embase, Cochrane Database of Systematic Reviews, and Scopus. SCA is a heterogeneous disease that has caused tremendous global morbidity and early mortality. More effective, individualized and inexpensive therapies are needed. New therapies targeting multiple pathways in its complex pathophysiology are under investigation.

  2. Antineoplastic drugs and radiation: comparison of the phenomena determining the effectiveness of fractionated treatments

    International Nuclear Information System (INIS)

    Mauro, F.; Briganti, G.; Nervi, C.

    1983-01-01

    In the last ten years the criteria for effective radiotherapy regimens have been rediscussed by analyzing the dependence of radiation response upon the radiobiological phenomena affecting the results of fractionated treatments. In the original definition of H.R. Withers, these phenomena have been referred to as the four R's of radiotherapy, and today we suspect that their number may be higher than that. By analogy, and in spite of the fact that chemical cytotoxic agents are seldom radiomimetic in the strict sense of the word, a similar general analysis could be used to discuss the effectiveness of fractionated administrations of anti-neoplastic drugs. However, information is only available for the cell-cycle age-dependence of lethal and kinetic effects and the repair from potentially lethal damage induced by these agents. In the present work, an attempt is made to discuss some of the neglected R's of chemotherapy, with the aim of establishing (not exclusively empirical) criteria for drug scheduling and of clarifying some of the observations on interaction between agents. In particular, with regard to antineoplastic drugs, published and unpublished information is available not only for the well-known phenomenon of reassortment, but also for the shape of the survival curve, recovery (or potentiation) between dose fraction, and recruitment. Some advantages (and pitfalls) can be evidenced when applying this kind of radiobiological approach to chemotherapy

  3. Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy

    International Nuclear Information System (INIS)

    Cho, Sungkoo; Jeong, Jonghwi; Kim, Chanhyeong; Yoon, Myonggeun

    2010-01-01

    Radiation dose enhancement by injection of a high atomic number (Z) material into tumor volumes has been studied for various radiation sources and different concentrations of gold nanoparticles. Brachytherapy employs low energy photons of less than ∼0.5 MeV, which indeed is the optimal energy range for radiation dose enhancement by introduction of high-Z material. The present study uses the MCNPX TM code to estimate the dose enhancement by gold nanoparticles for the four common brachytherapy sources ( 137 Cs, 192 Ir, 125 I, and 103 Pd). Additionally, cisplatin (H 6 Cl 2 N 2 Pt), a platinum-based chemotherapeutic drug, was used to evaluate the dose enhancement. The simulated source models were evaluated with reference to the calculated TG-43 parameter values. The dose enhancement in the tumor region due to the gold nanoparticles and cisplatin was evaluated according to the dose enhancement factor (DEF). The maximum values of the average DEFs were found to be 1.03, 1.11, 3.43, and 2.17 for the 137 Cs, 192 Ir, 125 I, and 103 Pd sources, respectively. The dose enhancement values for the low-energy sources were significantly higher than those for the high-energy sources. The dose enhancement due to cisplatin was calculated by using the same approach and was found to be comparable to that of the gold nanoparticles. The maximum value of the average DEF for cisplatin was 1.12 for the 5% concentration level in water and a 192 Ir source. We confirmed that cisplatin could be applied to cancer therapy that combines chemotherapeutic drugs with radiation therapy. The results presented herein will be used to study dose enhancement in tumor regions using various radiation modalities with high atomic number materials.

  4. Cancer nanomedicine: from drug delivery to imaging.

    Science.gov (United States)

    Chow, Edward Kai-Hua; Ho, Dean

    2013-12-18

    Nanotechnology-based chemotherapeutics and imaging agents represent a new era of "cancer nanomedicine" working to deliver versatile payloads with favorable pharmacokinetics and capitalize on molecular and cellular targeting for enhanced specificity, efficacy, and safety. Despite the versatility of many nanomedicine-based platforms, translating new drug or imaging agents to the clinic is costly and often hampered by regulatory hurdles. Therefore, translating cancer nanomedicine may largely be application-defined, where materials are adapted only toward specific indications where their properties confer unique advantages. This strategy may also realize therapies that can optimize clinical impact through combinatorial nanomedicine. In this review, we discuss how particular materials lend themselves to specific applications, the progress to date in clinical translation of nanomedicine, and promising approaches that may catalyze clinical acceptance of nano.

  5. Anticancer properties and enhancement of therapeutic potential of cisplatin by leaf extract of Zanthoxylum armatum DC

    Directory of Open Access Journals (Sweden)

    Thangjam Davis Singh

    2015-01-01

    Full Text Available BACKGROUND: Clinical use of chemotherapeutic drug, cisplatin is limited by its toxicity and drug resistance. Therefore, efforts continue for the discovery of novel combination therapies with cisplatin, to increase efficacy and reduce its toxicity. Here, we screened 16 medicinal plant extracts from Northeast part of India and found that leaf extract of Zanthoxylum armatum DC. (ZALE induced cytotoxicity as well as an effect on the increasing of the efficiency of chemotherapeutic drugs (cisplatin, mitomycin C and camptothecin. This work shows detail molecular mechanism of anti-cancer activity of ZALE and its potential for combined treatment regimens to enhance the apoptotic response of chemotherapeutic drugs. RESULTS: ZALE induced cytotoxicity, nuclear blebbing and DNA fragmentation in HeLA cells suggesting apoptosis induction in human cervical cell line. However, the apoptosis induced was independent of caspase 3 activation and poly ADP ribose polymerase (PARP cleavage. Further, ZALE activated Mitogen-activated protein kinases (MAPK pathway as revealed by increased phosphorylation of extracellular-signal-regulated kinases (ERK, p38 and c-Jun N-ter-minal kinase (JNK. Inhibition of ERK activation but not p38 or JNK completely blocked the ZALE induced apoptosis suggesting an ERK dependent apoptosis. Moreover, ZALE generated DNA double strand breaks as suggested by the induction γH2AX foci formation. Interestingly, pretreatment of certain cancer cell lines with ZALE, sensitized the cancer cells to cisplatin and other chemotherapeutic drugs. Enhanced caspase activation was observed in the synergistic interaction among chemotherapeutic drugs and ZALE. CONCLUSION: Purification and identification of the bio-active molecules from the ZALE or as a complementary treatment for a sequential treatment of ZALE with chemotherapeutic drugs might be a new challenger to open a new therapeutic window for the novel anti-cancer treatment.

  6. Molecularly targeted drugs for metastatic colorectal cancer

    Directory of Open Access Journals (Sweden)

    Cheng YD

    2013-11-01

    Full Text Available Ying-dong Cheng, Hua Yang, Guo-qing Chen, Zhi-cao Zhang Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China Abstract: The survival rate of patients with metastatic colorectal cancer (mCRC has significantly improved with applications of molecularly targeted drugs, such as bevacizumab, and led to a substantial improvement in the overall survival rate. These drugs are capable of specifically targeting the inherent abnormal pathways in cancer cells, which are potentially less toxic than traditional nonselective chemotherapeutics. In this review, the recent clinical information about molecularly targeted therapy for mCRC is summarized, with specific focus on several of the US Food and Drug Administration-approved molecularly targeted drugs for the treatment of mCRC in the clinic. Progression-free and overall survival in patients with mCRC was improved greatly by the addition of bevacizumab and/or cetuximab to standard chemotherapy, in either first- or second-line treatment. Aflibercept has been used in combination with folinic acid (leucovorin–fluorouracil–irinotecan (FOLFIRI chemotherapy in mCRC patients and among patients with mCRC with wild-type KRAS, the outcomes were significantly improved by panitumumab in combination with folinic acid (leucovorin–fluorouracil–oxaliplatin (FOLFOX or FOLFIRI. Because of the new preliminary studies, it has been recommended that regorafenib be used with FOLFOX or FOLFIRI as first- or second-line treatment of mCRC chemotherapy. In summary, an era of new opportunities has been opened for treatment of mCRC and/or other malignancies, resulting from the discovery of new selective targeting drugs. Keywords: metastatic colorectal cancer (mCRC, antiangiogenic drug, bevacizumab, aflibercept, regorafenib, cetuximab, panitumumab, clinical trial, molecularly targeted therapy

  7. Radiation treatment of brain tumors: Concepts and strategies

    International Nuclear Information System (INIS)

    Marks, J.E.

    1989-01-01

    Ionizing radiation has demonstrated clinical value for a multitude of CNS tumors. Application of the different physical modalities available has made it possible for the radiotherapist to concentrate the radiation in the region of the tumor with relative sparing of the surrounding normal tissues. Correlation of radiation dose with effect on cranial soft tissues, normal brain, and tumor has shown increasing effect with increasing dose. By using different physical modalities to alter the distribution of radiation dose, it is possible to increase the dose to the tumor and reduce the dose to the normal tissues. Alteration of the volume irradiated and the dose delivered to cranial soft tissues, normal brain, and tumor are strategies that have been effective in improving survival and decreasing complications. The quest for therapeutic gain using hyperbaric oxygen, neutrons, radiation sensitizers, chemotherapeutic agents, and BNCT has met with limited success. Both neoplastic and normal cells are affected simultaneously by all modalities of treatment, including ionizing radiation. Consequently, one is unable to totally depopulate a tumor without irreversibly damaging the normal tissues. In the case of radiation, it is the brain that limits delivery of curative doses, and in the case of chemical additives, it is other organ systems, such as bone marrow, liver, lung, kidneys, and peripheral nerves. Thus, the major obstacle in the treatment of malignant gliomas is our inability to preferentially affect the tumor with the modalities available. Until it is possible to directly target the neoplastic cell without affecting so many of the adjacent normal cells, the quest for therapeutic gain will go unrealized.72 references

  8. Drugs related to the etiology of molar incisor hypomineralization: A systematic review.

    Science.gov (United States)

    Serna, Clara; Vicente, Ascensión; Finke, Christian; Ortiz, Antonio J

    2016-02-01

    Molar incisor hypomineralization (MIH) is an idiopathic syndrome that has been associated with several etiologic factors. The authors' objective was to systematically review studies in which the investigators had studied how the etiology of MIH was related to medication intake. The search covered a period from January 1, 1965, to September 29, 2014. The search revealed 1,042 articles, to which the authors applied eligibility criteria and selected 20 studies for review. The authors considered 9 of the 20 studies to be high quality. The drugs used in these studies were chemotherapeutic drugs, antibiotics, asthma drugs, antiepileptic drugs, antiviral drugs, antifungal drugs, and antiparasitic drugs. Two reviewers independently performed risk-of-bias assessment and data extraction. The investigators of all of the studies had reported enamel defects, but only 2 sets of investigators had used the term "molar incisor hypomineralization." Owing to the different methodologies used by the investigators of the selected studies, the authors could not perform a meta-analysis of the study results. More well-designed prospective studies are needed to clarify the relationship between MIH and medication. It would be convenient to establish a preventive protocol in patients with a potential risk of developing MIH to avoid the complications that are characteristic of this disease. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  9. Drug-to-antibody determination for an antibody-drug-conjugate utilizing cathepsin B digestion coupled with reversed-phase high-pressure liquid chromatography analysis.

    Science.gov (United States)

    Adamo, Michael; Sun, Guoyong; Qiu, Difei; Valente, Joseph; Lan, Wenkui; Song, Hangtian; Bolgar, Mark; Katiyar, Amit; Krishnamurthy, Girija

    2017-01-20

    Antibody drug conjugates or ADCs are currently being evaluated for their effectiveness as targeted chemotherapeutic agents across the pharmaceutical industry. Due to the complexity arising from the choice of antibody, drug and linker; analytical methods for release and stability testing are required to provide a detailed understanding of both the antibody and the drug during manufacturing and storage. The ADC analyzed in this work consists of a tubulysin drug analogue that is randomly conjugated to lysine residues in a human IgG1 antibody. The drug is attached to the lysine residue through a peptidic, hydrolytically stable, cathepsin B cleavable linker. The random lysine conjugation produces a heterogeneous mixture of conjugated species with a variable drug-to-antibody ratio (DAR), therefore, the average amount of drug attached to the antibody is a critical parameter that needs to be monitored. In this work we have developed a universal method for determining DAR in ADCs that employ a cathepsin B cleavable linker. The ADC is first cleaved at the hinge region and then mildly reduced prior to treatment with the cathepsin B enzyme to release the drug from the antibody fragments. This pre-treatment allows the cathepsin B enzyme unrestricted access to the cleavage sites and ensures optimal conditions for the cathepsin B to cleave all the drug from the ADC molecule. The cleaved drug is then separated from the protein components by reversed phase high performance liquid chromatography (RP-HPLC) and quantitated using UV absorbance. This method affords superior cleavage efficiency to other methods that only employ a cathepsin digestion step as confirmed by mass spectrometry analysis. This method was shown to be accurate and precise for the quantitation of the DAR for two different random lysine conjugated ADC molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Historical Spice as a Future Drug: Therapeutic Potential of Piperlongumine.

    Science.gov (United States)

    Prasad, Sahdeo; Tyagi, Amit K

    2016-01-01

    Spice and spice-derived compounds have been identified and explored for their health benefits since centuries. One of the spice long pepper has been traditionally used to treat chronic bronchitis, asthma, constipation, gonorrhea, paralysis of the tongue, diarrhea, cholera, malaria, viral hepatitis, respiratory infections, stomach ache, diseases of the spleen, cough, and tumors. In this review, the evidences for the chemopreventive and chemotherapeutic potential of piperlongumine have been described. The active component piperlonguime has shown effective against various ailments including cancer, neurogenerative disease, arthritis, melanogenesis, lupus nephritis, and hyperlipidemic. These beneficial effects of piperlongumine is attributed to its ability to modulate several signaling molecules like reactive oxygen species, kinases, proteasome, proto-oncogenes, transcription factors, cell cycle, inflammatory molecules and cell growth and survival molecules. Piperlongumine also chemosensitizes to drugs resistant cancer cells. Overall the consumption of long peppers is therefore recommended for the prevention and treatment of various diseases including cancer, and thus piperlongumine may be a promising future candidate drug against cancer.

  11. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature

    Directory of Open Access Journals (Sweden)

    Alexander Patronis

    2018-04-01

    Full Text Available Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.. We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

  12. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature.

    Science.gov (United States)

    Patronis, Alexander; Richardson, Robin A; Schmieschek, Sebastian; Wylie, Brian J N; Nash, Rupert W; Coveney, Peter V

    2018-01-01

    Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.). We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

  13. Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer.

    Science.gov (United States)

    Kangaspeska, Sara; Hultsch, Susanne; Jaiswal, Alok; Edgren, Henrik; Mpindi, John-Patrick; Eldfors, Samuli; Brück, Oscar; Aittokallio, Tero; Kallioniemi, Olli

    2016-07-04

    The estrogen receptor (ER) inhibitor tamoxifen reduces breast cancer mortality by 31 % and has served as the standard treatment for ER-positive breast cancers for decades. However, 50 % of advanced ER-positive cancers display de novo resistance to tamoxifen, and acquired resistance evolves in 40 % of patients who initially respond. Mechanisms underlying resistance development remain poorly understood and new therapeutic opportunities are urgently needed. Here, we report the generation and characterization of seven tamoxifen-resistant breast cancer cell lines from four parental strains. Using high throughput drug sensitivity and resistance testing (DSRT) with 279 approved and investigational oncology drugs, exome-sequencing and network analysis, we for the first time, systematically determine the drug response profiles specific to tamoxifen resistance. We discovered emerging vulnerabilities towards specific drugs, such as ERK1/2-, proteasome- and BCL-family inhibitors as the cells became tamoxifen-resistant. Co-resistance to other drugs such as the survivin inhibitor YM155 and the chemotherapeutic agent paclitaxel also occurred. This study indicates that multiple molecular mechanisms dictate endocrine resistance, resulting in unexpected vulnerabilities to initially ineffective drugs, as well as in emerging co-resistances. Thus, combatting drug-resistant tumors will require patient-tailored strategies in order to identify new drug vulnerabilities, and to understand the associated co-resistance patterns.

  14. Drug delivery system prepared by ionizing radiation of the N,N-dimethyl acrylamide with acryloyloxy-acetanilide copolymerization

    International Nuclear Information System (INIS)

    Martellini, Flavia; Higa, Olga Z.; Queiroz, Alvaro A.A. de; Rodighiero, Paolo

    1995-01-01

    Radiation induced polymerization has been used in biomaterials used in systems which such as drug delivery (DDS). This work describes the copolymerization of the monomers by gamma rays N,N-dimethyl acrylamide (DMAA) and acryloyloxy-acetanilide (AOA) for the immobilization of paracetamol, an analgesic and anti thermic drug. Dimethylformamide solutions were used in two concentrations of DMAA and AOA (F DMAA/AOA = 0,85/015 and 0,70/0,30, where F = molar fraction in the monomer feed). The samples were irradiated in the dose range of 30-800 Gy. The copolymer poly(DMAA-co-AOA) characterization was carried out by FTIR and 1 HRMN. The hydrolysis was studied considering the formation of sodium salts of 4-hydroxy acetanilide at different times of treatment using colorimetric assay. (author). 6 refs., 5 figs

  15. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy.

    Science.gov (United States)

    Yuan, Youyong; Liu, Bin

    2014-09-10

    A drug delivery system based on poly(ethylene glycol) (PEG) grafted conjugated polyelectrolyte (CPE) has been developed to serve as a polymeric photosensitizer and drug carrier for combined photodynamic and chemotherapy. The amphiphilic brush copolymer can self-assemble into micellar nanopaticles (NPs) in aqueous media with hydrophobic conjugated polyelectrolyte backbone as the core and hydrophilic PEG as the shell. The NPs have an average diameter of about 100 nm, with the absorption and emission maxima at 502 and 598 nm, respectively, making them suitable for bioimaging applications. Moreover, the CPE itself can serve as a photosensitizer, which makes the NPs not only a carrier for drug but also a photosensitizing unit for photodynamic therapy, resulting in the combination of chemo- and photodynamic therapy for cancer. The half-maximal inhibitory concentration (IC50) value for the combination therapy to U87-MG cells is 12.7 μg mL(-1), which is much lower than that for the solely photodynamic therapy (25.5 μg mL(-1)) or chemotherapy (132.8 μg mL(-1)). To improve the tumor specificity of the system, cyclic arginine-glycine-aspartic acid (cRGD) tripeptide as the receptor to integrin αvβ3 overexpressed cancer cells was further incorporated to the surface of the NPs. The delivery system based on PEGylated CPE is easy to fabricate, which integrates the merits of targeted cancer cell image, chemotherapeutic drug delivery, and photodynamic therapy, making it promising for cancer treatment.

  16. Experimental study of the preventional effects of drugs to lung radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, N [Kurume Univ., Fukuoka (Japan). School of Medicine

    1977-01-01

    The author experimented on effects of Cepharanthin (CR) and Urokinase (UK) on the lung of rabbits to which /sup 60/Co was irradiated by dividing a total dose of 10,000R into 500R a day. The rabbits irradiated were divided into 3 groups: a group administered ''CR'' (Group A), a group administered ''UK'' (Group B) and a control group (Group C). Body weight, leukocytes and chest x-ray findings were examined, and macroscopic and microscopic findings were discussed immediately and 3 months after irradiation. CR was effective in preventing the decrease of leukocytes and body weight. In the case of 5000R irradiation, an abnormal shadow was not recognized, but in the case of 10,000R irradiation, radiation pneumonitis began to appear immediately after the irradiation, and heart dilation and the shift of mediastinum on the side of irradiation were observed 3 months after that. In Group C, adhesion, hydropericardium and bleeding lesion were observed. In Groups A and B, the preventive effects were noted macroscopically. Group A seemed to show more significant results. In this group, the infiltration of the cells, and the appearance of foamy cells and eosinophyl cells which are characteristic of lung radiation disease were less observed than those in the other groups, and therefore, Group A showed more preventive effect upon inflammation than the other groups. In Group B, the thickness of the wall of the blood vessel tended to be improved 3 months after irradiation. Microthrombosis was not recognized, either. From these results, CR was effective in decreasing the infiltration of the cells, and UK was effective in decreasing the thickness of the wall of the blood vessel and in forming thromboses. Thus, these drugs should be used simultaneously because they had different reaction to the prevention of lung radiation disease.

  17. A multifunctional β-CD-modified Fe3O4@ZnO:Er3+,Yb3+ nanocarrier for antitumor drug delivery and microwave-triggered drug release

    International Nuclear Information System (INIS)

    Peng, Hongxia; Cui, Bin; Li, Guangming; Wang, Yingsai; Li, Nini; Chang, Zhuguo; Wang, Yaoyu

    2015-01-01

    We constructed a novel core–shell structured Fe 3 O 4 @ZnO:Er 3+ ,Yb 3+ @(β-CD) nanoparticles used as drug carrier to investigate the loading and controllable release properties of the chemotherapeutic drug etoposide (VP-16). The cavity of β-cyclodextrin is chemically inert, it can store etoposide molecules by means of hydrophobic interactions. The Fe 3 O 4 core and ZnO:Er 3+ ,Yb 3+ shell functioned successfully for magnetic targeting and up-conversion fluorescence imaging, respectively. In addition, the ZnO:Er 3+ ,Yb 3+ shell acts as a good microwave absorber with excellent microwave thermal response property for microwave triggered drug release (the VP-16 release of 18% under microwave irradiation for 15 min outclass the 2% within 6 h without microwave irradiation release). The release profile could be controlled by the duration and number of cycles of microwave application. This material therefore promises to be a useful noninvasive, externally controlled drug-delivery system in cancer therapy. - Graphical abstract: We functionalized a multifunctional core–shell Fe 3 O 4 @ZnO:Er 3+ ,Yb 3+ nanocarriers by adding β-cyclodextrin, which is capable of carrying drug molecules and triggered release of the drug by microwave treatment. - Highlights: • We constructed Fe 3 O 4 @ZnO:Er 3+ ,Yb 3+ @(β-CD) nanoparticles used as a drug carrier. • The nanoparticles have magnetic and up-conversion fluorescence properties. • The nanoparticles have excellent microwave thermal response property. • The nanocomposite could be a controllable drug release triggered by microwave

  18. Study on the Chinese traditional drugs' sterilization and disinfestation by radiation and their biological effects

    International Nuclear Information System (INIS)

    Ma Shouxiang; Yang Ruikun; Liu Desheng

    1987-01-01

    The study of the sterilization and disinfestation by 60 Co γ-radiation and their biological effects on tuber of elevated gastrodia, Chinese angelica and Dangshen have been carried out. The experimental results show that optimal dose was 2 x 10 5 - 4 x 10 5 rad to kill insect in the three Chinese traditional drugs. The results also show that the content of the chemical composition of irradiated group is similar to control group under 6 x 10 5 rad. The thin-layer chromatography colour-maculae are almost the same. They have the same Rf exponent

  19. Changes of pharmacodynamics and pharmacokinetics of psycholeptic drugs in radiation sickness. Part 3. Changes of pharmacodynamics of thioridazine

    International Nuclear Information System (INIS)

    Kazaryn, I.; Wojciakowa, Z.; Chodera, A.; Szczawinska, K.

    1977-01-01

    The cataleptic actions of thioridazine, its effect on the exploring mobility of rats and the hexobarbital-induced sleep in radiation sickness were studied. Irradiation of animals causes deepening and prolongation of catatonic state after thioridazine (20 mg/kg), and considerably reduces the mobility of rats after the drug (7 mg/kg). Irradiation increases also the influence of thioridazine (10 mg/kg) on prolongation of sleep after hexobarbital (150 mg/kg). (author)

  20. Microencapsulation of chemotherapeutics into monodisperse and tunable biodegradable polymers via electrified liquid jets: control of size, shape, and drug release.

    Science.gov (United States)

    Fattahi, Pouria; Borhan, Ali; Abidian, Mohammad Reza

    2013-09-06

    This paper describes microencapsulation of antitumor agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, Carmustine) into biodegradable polymer poly(lactic-co-glycolic) acid (PLGA) using an electrojetting technique. The resulting BCNU-loaded PLGA microcapsules have significantly higher drug encapsulation efficiency, more tunable drug loading capacity, and (3) narrower size distribution than those generated using other encapsulation methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Zosuquidar restores drug sensitivity in P-glycoprotein expressing acute myeloid leukemia (AML)

    International Nuclear Information System (INIS)

    Tang, Ruoping; Faussat, Anne-Marie; Perrot, Jean-Yves; Marjanovic, Zora; Cohen, Simy; Storme, Thomas; Morjani, Hamid; Legrand, Ollivier; Marie, Jean-Pierre

    2008-01-01

    Chemotherapeutic drug efflux via the P-glycoprotein (P-gp) transporter encoded by the MDR1/ABCB1 gene is a significant cause of drug resistance in numerous malignancies, including acute leukemias, especially in older patients with acute myeloid leukemia (AML). Therefore, the P-gp modulators that block P-gp-mediated drug efflux have been developed, and used in combination with standard chemotherapy. In this paper, the capacity of zosuquidar, a specific P-gp modulator, to reverse chemoresistance was examined in both leukemia cell lines and primary AML blasts. The transporter protein expressions were analyzed by flow cytometry using their specific antibodies. The protein functionalities were assessed by the uptake of their fluorescence substrates in presence or absence their specific modulators. The drug cytotoxicity was evaluated by MTT test. Zosuquidar completely or partially restored drug sensitivity in all P-gp-expressing leukemia cell lines tested and enhanced the cytotoxicity of anthracyclines (daunorubicin, idarubicin, mitoxantrone) and gemtuzumab ozogamicin (Mylotarg) in primary AML blasts with active P-gp. In addition, P-gp inhibition by zosuquidar was found to be more potent than cyclosporine A in cells with highly active P-gp. These in vitro studies suggest that zosuquidar may be an effective adjunct to cytotoxic chemotherapy for AML patients whose blasts express P-gp, especially for older patients

  2. Modification of radiation effects on E. coli B/r and a radiosensitive mutant Bsub(s-1) by membrane-binding drugs

    International Nuclear Information System (INIS)

    Yonei, S.

    1979-01-01

    In this study, the effects of chlorpromazine, procaine and quinidine on the X-radiation effects on Escherichia coli B/r and its radiosensitive mutant Bsub(s-1) (which is genetically unable to repair radiation damage to DNA) were examined. At chlorpromazine concentrations > = 25 mM, there was loss of colony-forming ability in both strains. Chlorpromazine (0.1 mM) markedly sensitized E. coli B/r under hypoxic conditions of irradiation but not under oxic conditions. There was no significant radiosensitization by chlorpromazine (0.1-1.0mM) in E. coli Bsub(s-1) under either oxic or hypoxic conditions. Similar results were obtained when procaine and quinidine were used as 'membrane-binding radiosensitizers'. Thus these results suggested that radiosensitization by such drugs in E. coli B/r was the result of inhibition of post-irradiation DNA repair in cells. It was concluded that the inhibition of DNA repair could be a secondary consequence of cell membrane alterations or damage caused by the membrane-binding of these drugs. (UK)

  3. A controlled clinical trial testing two potentially non-cross-resistant chemotherapeutic regimens in small-cell carcinoma of the lung.

    Science.gov (United States)

    Broder, L E; Selawry, O S; Charyulu, K N; Ng, A; Bagwell, S

    1981-03-01

    With the objectives of improving response rate, duration of response, and survival in small-cell carcinoma of the lung, 39 patients were randomized to remission-induction with either one of two potentially non-cross-resistant drug combinations: APE (consisting of adriamycin, 35 mg/m2 IV, D1 Q 3 weeks; procarbazine, 60 mg/m2 PO, D1-10 Q 3 weeks; and the epipodophyllotoxin (VP16-213), 130 mg/m2 IV, D8, 15 Q 3 weeks) or MOCC (composed of methotrexate, 15 mg/m2 IV (with [vincristine] Oncovin) or PO twice weekly D8-21 Q 3 weeks; Oncovin, 1.5 mg/m2 IV, D8, 15 Q 3 weeks; cyclophosphamide, 600 mg/m2 IV, D1 Q 3 weeks, and CCNU, 60 mg/m2 PO Q 6 weeks). A fixed crossover to the alternate regimen occurred at three months. Radiotherapy was delivered to the primary tumor (locoregional disease only) by a split course technique (1,750 rads for five days with a three-week split, followed by 3,400 rads over 17 days). The median survival including both arms was 11 months for regional and nine months for extensive disease. The chemotherapeutic activity of both regimens was comparable, with 15/17 (88 percent) of the patients responding to APE (including six complete) and 14/17 (82 percent) responding to MOCC (including five complete). The median survival for the complete responders was 11.7 months, while the partial responders survived for a median of 9.7 months. There were 2/9 (22 percent) responders to the alternate regimen at progressive disease. The overall incidence of CNS progression was 17 percent. The toxicity of the regimens was moderate, except for one instance of granulocytopenic death. This study establishes two equipotent drug combinations for the treatment of small-cell carcinoma of the lung.

  4. BSA nanoparticle loaded atorvastatin calcium--a new facet for an old drug.

    Science.gov (United States)

    Sripriyalakshmi, S; Anjali, C H; George, Priya Doss C; Rajith, B; Ravindran, Aswathy

    2014-01-01

    Currently, the discovery of effective chemotherapeutic agents poses a major challenge to the field of cancer biology. The present study focuses on enhancing the therapeutic and anti cancer properties of atorvastatin calcium loaded BSA (ATV-BSA) nanoparticles in vitro. BSA-ATV nanoparticles were prepared using desolvation technique. The process parameters were optimized based on the amount of desolvating agent, stabilization conditions as well as the concentration of the cross linker. The anti cancer properties of the protein coated ATV nanoparticles were tested on MiaPaCa-2 cell lines. In vitro release behavior of the drug from the carrier suggests that about 85% of the drug gets released after 72 hrs. Our studies show that ATV-BSA nanoparticles showed specific targeting and enhanced cytotoxicity to MiaPaCa-2 cells when compared to the bare ATV. We hereby propose that the possible mechanism of cellular uptake of albumin bound ATV could be through caveolin mediated endocytosis. Hence our studies open up new facet for an existing cholesterol drug as a potent anti-cancer agent.

  5. Suppression of NRF2–ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hui [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States); Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing (China); Wang, Huihui [School of Public Health, China Medical University, 77 Puhe Road, Shenyang North New Area, Shenyang (China); Xue, Peng [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States); Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Hou, Yongyong [School of Public Health, China Medical University, 77 Puhe Road, Shenyang North New Area, Shenyang (China); Dong, Jian [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States); Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan (China); Zhou, Tong [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States); Qu, Weidong [Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Peng, Shuangqing [Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing (China); Li, Jin; Carmichael, Paul L. [Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom); Nelson, Bud; Clewell, Rebecca; Zhang, Qiang; Andersen, Melvin E. [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States); Pi, Jingbo, E-mail: jpi@mail.cmu.edu.cn [School of Public Health, China Medical University, 77 Puhe Road, Shenyang North New Area, Shenyang (China); The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States)

    2016-02-01

    Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the antioxidant response element (ARE)-dependent transcription, plays a pivotal role in chemical detoxification in normal and tumor cells. Consistent with previous findings that NRF2–ARE contributes to chemotherapeutic resistance of cancer cells, we found that stable knockdown of NRF2 by lentiviral shRNA in human acute monocytic leukemia (AML) THP-1 cells enhanced the cytotoxicity of several chemotherapeutic agents, including arsenic trioxide (As{sub 2}O{sub 3}), etoposide and doxorubicin. Using an ARE-luciferase reporter expressed in several human and mouse cells, we identified a set of compounds, including isonicotinic acid amides, isoniazid and ethionamide, that inhibited NRF2–ARE activity. Treatment of THP-1 cells with ethionamide, for instance, significantly reduced mRNA expression of multiple ARE-driven genes under either basal or As{sub 2}O{sub 3}-challenged conditions. As determined by cell viability and cell cycle, suppression of NRF2–ARE by ethionamide also significantly enhanced susceptibility of THP-1 and U937 cells to As{sub 2}O{sub 3}-induced cytotoxicity. In THP-1 cells, the sensitizing effect of ethionamide on As{sub 2}O{sub 3}-induced cytotoxicity was highly dependent on NRF2. To our knowledge, the present study is the first to demonstrate that ethionamide suppresses NRF2–ARE signaling and disrupts the transcriptional network of the antioxidant response in AML cells, leading to sensitization to chemotherapeutic agents. - Highlights: • Identification of novel inhibitors of ARE-dependent transcription • Suppression of NRF2–ARE sensitizes THP-1 cells to chemotherapy. • Ethionamide suppresses ARE-dependent transcriptional activity. • Ethionamide and isoniazid increase the cytotoxicity of As{sub 2}O{sub 3} in AML cells. • Sensitization of THP-1 cells to As{sub 2}O{sub 3} toxicity by ethionamide is NRF2-dependent.

  6. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy beam-shaping block. 892.5710 Section 892.5710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... block. (a) Identification. A radiation therapy beam-shaping block is a device made of a highly...

  7. Disintegration of chemotherapy tablets for oral administration in patients with swallowing difficulties.

    Science.gov (United States)

    Siden, Rivka; Wolf, Matthew

    2013-06-01

    The administration of oral chemotherapeutic drugs can be problematic in patients with swallowing difficulties. Inability to swallow solid dosage forms can compromise compliance and may lead to poor clinical outcome. The current technique of tablet crushing to aid in administration is considered an unsafe practice. By developing a technique to disintegrate tablets in an oral syringe, the risk associated with tablet crushing can be avoided. The purpose of this study was to determine the feasibility of using disintegration in an oral syringe for the administration of oral chemotherapeutic tablets. Eight commonly used oral chemotherapeutic drugs were tested. Tablets were placed in an oral syringe and allowed to disintegrate in tap water. Various volumes and temperatures were tested to identify which combination allows for complete disintegration of the tablet in the shortest amount of time. The oral syringe disintegration method was considered feasible if disintegration occurred in ≤15 min and in ≤20 mL of water and the dispersion passed through an oral syringe tip. The following tablets were shown to disintegrate within 15 min and in disintegration test. Disintegrating oral chemotherapeutic tablets in a syringe provides a closed system to administer hazardous drugs and allows for the safe administration of oral chemotherapeutic drugs in a tablet form to patients with swallowing difficulties.

  8. Hyperthermia and chemotherapy agent

    International Nuclear Information System (INIS)

    Roizin-Towle, L.; Hall, E.J.

    1981-01-01

    The use of chemotherapeutic agents for the treatment of cancer dates back to the late 19th century, but the modern era of chemotherapy drugs was ushered in during the 1940's with the development of the polyfunctional alkylating agent. Since then, numerous classes of drugs have evolved and the combined use of antineoplastic agents with other treatment modalities such as radiation or heat, remains a large relatively unexplored area. This approach, combining local hyperthermia with chemotherapy agents affords a measure of targeting and selective toxicity not previously available for drugs. In this paper, the effects of adriamycin, bleomycin and cis-platinum are examined. The adjuvant use of heat may also reverse the resistance of hypoxic cells noted for some chemotherapy agents

  9. Investigation of the possibility of the reduction of chemotherapeutics by activation of PBMCs in tumor cell

    International Nuclear Information System (INIS)

    Schwanninger, M.

    2009-01-01

    The three big columns in the treatment of malignant tumour are chemotherapeutics, radiotherapy and surgical interventions. However, beside these three types of therapies the hormone therapy plays an extremely important role as well. In modern medicine chemotherapeutics are the main therapy for most malignant tumour diseases. This fact mainly follows from the absence of other, just as well working alternatives. Administration of these substances sometimes leads to strong undesirable side effects or to insufficient response. The mentioned lack of alternatives, neither in the form of chemotherapeutics nor in the form of other possibilities of treatment, can heavily endanger the desired therapy success. Today it is clear that there is a complicated teamwork between immune defence, inflammation and carcinoma. Up to twenty times more Macrophages are located in tumour surroundings than in healthy fabric. These so called tumour associated or M2 Macrophages (TAMs) differ from other Macrophages, the M1 Macrophages, by their non-inflammatory effects. They do not necessarily lead to immune defence. In 2008, Hunder et al described in a study that cloned CD4+ T cells injected in Melanoma lead to a remission of the tumour. An activation of PBMCs and subsequent administration could be helpful with the fight against malignant tumours. Using the Δ;NS virus PBMCs will be stimulated - more exactly, monocytes and as a result PBMCs - and initiate an immunological reaction against tumour cells. Furthermore it will be shown that PBMCs immunosuppressed earlier - as they appear in tumour surroundings - can be activated by means of Δ;NS virus again. The 'tumour friendly' environment may be altered in a 'tumour-unfriendly' environment, and, as a direct consequence, the growth of the tumour cells will decrease. It is clear that this activation of the immune system cannot substitute a chemotherapy as a whole, but an improved killing or reduction of the dose should lead to the reduction of the

  10. Hypoxia-activated chemotherapeutic TH-302 enhances the effects of VEGF-A inhibition and radiation on sarcomas.

    Science.gov (United States)

    Yoon, C; Lee, H-J; Park, D J; Lee, Y-J; Tap, W D; Eisinger-Mathason, T S K; Hart, C P; Choy, E; Simon, M C; Yoon, S S

    2015-06-30

    Human sarcomas with a poor response to vascular endothelial growth factor-A (VEGF-A) inhibition and radiation therapy (RT) have upregulation of hypoxia-inducible factor 1α (HIF-1α) and HIF-1α target genes. This study examines the addition of the hypoxia-activated chemotherapy TH-302 to VEGF-A inhibition and RT (a.k.a. trimodality therapy). Trimodality therapy was examined in two xenograft models and in vitro in tumour endothelial cells and sarcoma cell lines. In both mouse models, VEGF-A inhibition and radiation showed greater efficacy than either therapy alone in slowing sarcoma growth. When TH-302 was added, this trimodality therapy completely blocked tumour growth with tumours remaining dormant for over 3 months after cessation of therapy. Trimodality therapy caused 2.6- to 6.2-fold more endothelial cell-specific apoptosis than bimodality therapies, and microvessel density and HIF-1α activity were reduced to 11-13% and 13-20% of control, respectively. When trimodality therapy was examined in vitro, increases in DNA damage and apoptosis were much more pronounced in tumour endothelial cells compared with that in sarcoma cells, especially under hypoxia. The combination of TH-302, VEGF-A inhibition, and RT is highly effective in preclinical models of sarcoma and is associated with increased DNA damage and apoptosis in endothelial cells and decreased HIF-1α activity.

  11. Gut microbiota modulation of chemotherapy efficacy and toxicity

    OpenAIRE

    Alexander, James L.; Wilson, Ian D.; Teare, Julian; Marchesi, Julian Roberto; Nicholson, Jeremy K.; Kinross, James M.

    2017-01-01

    Evidence is growing that the gut microbiota modulates the host response to chemotherapeutic drugs, with three main clinical outcomes: facilitation of drug efficacy; abrogation and compromise of anticancer effects; and mediation of toxicity. The implication is that gut microbiota are critical to the development of personalized cancer treatment strategies and, therefore, a greater insight into prokaryotic co-metabolism of chemotherapeutic drugs is now required. This thinking is based on evidenc...

  12. Synthesis and characterization of Cu(II)-based anticancer chemotherapeutic agent targeting topoisomerase Iα: in vitro DNA binding, pBR322 cleavage, molecular docking studies and cytotoxicity against human cancer cell lines.

    Science.gov (United States)

    Tabassum, Sartaj; Zaki, Mehvash; Afzal, Mohd; Arjmand, Farukh

    2014-03-03

    New metal-based anticancer chemotherapeutic drug candidates [Cu(phen)L](NO₃)₂ (1) and [Zn(phen)L](NO₃)₂ (2) were synthesized from ligand L (derived from pharmacophore scaffold barbituric acid and pyrazole). In vitro DNA binding studies of the L, 1 and 2 were carried out by various biophysical techniques revealing electrostatic mode. Complex 1 cleaves pBR322 DNA via oxidative pathway and recognizes major groove of DNA double helix. The molecular docking study was carried out to ascertain the mode of action towards the molecular target DNA and enzymes. The complex 1 exhibited remarkably good anticancer activity on a panel of human cancer cell lines (GI₅₀ values < 10 μg/ml), and to elucidate the mechanism of cancer inhibition, Topo-I enzymatic activity was carried out. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Ultraviolet radiation and immunosuppression.

    LENUS (Irish Health Repository)

    Murphy, G M

    2009-11-01

    Ultraviolet (UV) radiation is a complete carcinogen. The effects of UV radiation are mediated via direct damage to cellular DNA in the skin and suppression of image surveillance mechanisms. In the context of organ transplantation, addiction of drugs which suppress the immune system add greatly to the carcinogenicity of UV radiation. This review considers the mechanisms of such effects.

  14. Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery.

    Science.gov (United States)

    Muddineti, Omkara Swami; Ghosh, Balaram; Biswas, Swati

    2017-06-01

    Owing to the complexity of cancer pathogenesis, conventional chemotherapy can be an inadequate method of killing cancer cells effectively. Nanoparticle-based drug delivery systems have been widely exploited pre-clinically in recent years. Areas covered: Incorporation of vitamin-E in nanocarriers have the advantage of (1) improving the hydrophobicity of the drug delivery system, thereby improving the solubility of the loaded poorly soluble anticancer drugs, (2) enhancing the biocompatibility of the polymeric drug carriers, and (3) improving the anticancer potential of the chemotherapeutic agents by reversing the cellular drug resistance via simultaneous administration. In addition to being a powerful antioxidant, vitamin E demonstrated its anticancer potential by inducing apoptosis in various cancer cell lines. Various vitamin E analogs have proven their ability to cause marked inhibition of drug efflux transporters. Expert opinion: The review discusses the potential of incorporating vitamin E in the polymeric micelles which are designed to carry poorly water-soluble anticancer drugs. Current applications of various vitamin E-based polymeric micelles with emphasis on the use of α-tocopherol, D-α-tocopheryl succinate (α-TOS) and its conjugates such as D-α-tocopheryl polyethylene glycol-succinate (TPGS) in micellar system is delineated. Advantages of utilizing polymeric micelles for drug delivery and the challenges to treat cancer, including multiple drug resistance have been discussed.

  15. Thermoresponsive Supramolecular Chemotherapy by "V"-Shaped Armed β-Cyclodextrin Star Polymer to Overcome Drug Resistance.

    Science.gov (United States)

    Fan, Xiaoshan; Cheng, Hongwei; Wang, Xiaoyuan; Ye, Enyi; Loh, Xian Jun; Wu, Yun-Long; Li, Zibiao

    2018-04-01

    Pump mediated drug efflux is the key reason to result in the failure of chemotherapy. Herein, a novel star polymer β-CD-v-(PEG-β-PNIPAAm) 7 consisting of a β-CD core, grafted with thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible poly(ethylene glycol) (PEG) in the multiple "V"-shaped arms is designed and further fabricated into supramolecular nanocarriers for drug resistant cancer therapy. The star polymer could encapsulate chemotherapeutics between β-cyclodextrin and anti-cancer drug via inclusion complex (IC). Furthermore, the temperature induced chain association of PNIPAAm segments facilitated the IC to form supramolecular nanoparticles at 37 °C, whereas the presence of PEG impart great stability to the self-assemblies. When incubated with MDR-1 membrane pump regulated drug resistant tumor cells, much higher and faster cellular uptake of the supramolecular nanoparticles were detected, and the enhanced intracellular retention of drugs could lead to significant inhibition of cell growth. Further in vivo evaluation showed high therapeutic efficacy in suppressing drug resistant tumor growth without a significant impact on the normal functions of main organs. This work signifies thermo-responsive supramolecular chemotherapy is promising in combating pump mediated drug resistance in both in vitro and in vivo models, which may be encouraging for the advanced drug delivery platform design to overcome drug resistant cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Sensitivity to radiation and cycle-active drugs as a function of stem cell compartment repletion

    International Nuclear Information System (INIS)

    Degowin, R.L.; Gibson, D.P.

    1976-01-01

    We have studied the sensitivity of normal mouse hemopoietic tissue to radiation and cycle-active drugs in relation to stem cell compartment repletion. Recovery of erythropoiesis in endogenous spleen colonies, blood reticulocytes, and 30-day survivals were determined in mice after an initial large dose of partial-body irradiation. We found that the normal stem cell compartment is more sensitive to cycle-independent modes of therapy, like radiation and cyclophosphamide, than it is to cycle-active agents like cytosine arabinoside and methotrexate. The depleted stem cell compartment exhibits marked sensitivity to cycle-independent agents but less to cycle-active agents, which, however, suppress its recovery more than they do the normal. The overshoot phase of recovery is relatively resistant to either cycle-independent or cycle-active agents. A reticulocytosis following a reticulocytopenia signals the overshoot phase of stem cell compartment recovery and relatively increased resistance. These findings may prove useful in designing chemotherapy regimens and in anticipating marrow recovery in planning for supportive care in patients with neoplastic disease

  17. Maximum standard uptake value on pre-chemotherapeutic FDG-PET is a significant parameter for disease progression of newly diagnosed lymphoma

    International Nuclear Information System (INIS)

    Eo, Jae Seon; Lee, Won Woo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun

    2005-01-01

    F-18 FDG-PET is useful for detection and staging of lymphoma. We investigated the prognostic significance of maximum standard uptake (maxSUV) value of FDG-PET for newly diagnosed lymphoma patients before chemotherapy. Twenty-seven patients (male: female = 17: 10: age: 49±19 years) with newly diagnosed lymphoma were enrolled. Nine-teen patients suffered from B cell lymphoma, 6 Hodgkins disease and 2 T cell lymphoma. One patient was stage I, 9 stage II, 3 stage III, 1 stage IV and 13 others. All patients underwent FDG-PET before initiation of chemotherapy. MaxSUV values using lean body weight were obtained for main and largest lesion to represent maxSUV of the patients. The disease progression was defined as total change of the chemotherapeutic regimen or addition of new chemotherapeutic agent during follow up period. The observed period was 389±224 days. The value of maxSUV ranged from 3 to 18 (mean±SD = 10.6±4.4). The disease progressions occurred in 6 patients. Using Cox proportional-hazard regression analysis, maxSUV was identified as a significant parameter for the disease progression free survival (p=0.044). Kaplan-Meier survival curve analysis revealed that the group with higher maxSUV (=10.6, n=5) suffered from shorter disease progression free survival (median 299 days) than the group with lower maxSUV (<10.6, n = 22) (median 378 days, p=0.0146). We found that maxSUV on pre-chemotherapeutic F-18 FDG-PET for newly diagnosed lymphoma patients is a significant parameter for disease progression. Lymphoma patients can be stratified before initiation of chemotherapy in terms of disease progression by the value of maxSUV 10.6

  18. Mesoporous Fe3O4/hydroxyapatite composite for targeted drug delivery

    International Nuclear Information System (INIS)

    Gu, Lina; He, Xiaomei; Wu, Zhenyu

    2014-01-01

    Highlights: • Mesoporous Fe 3 O 4 /hydroxyapatite composite was synthesized by a simple, efficient and environmental friendly method. • The prepared material had a large surface area, high pore volume, and good magnetic separability. • DOX-loaded Fe 3 O 4 /hydroxyapatite composite exhibited surprising slow drug release behavior and pH-dependent behavior. - Abstract: In this contribution, we introduced a simple, efficient, and green method of preparing a mesoporous Fe 3 O 4 /hydroxyapatite (HA) composite. The as-prepared material had a large surface area, high pore volume, and good magnetic separability, which made it suitable for targeted drug delivery systems. The chemotherapeutic agent doxorubicin (DOX) was used to investigate the drug release behavior of Fe 3 O 4 /HA composite. The drug release profiles displayed a little burst effect and pH-dependent behavior. The release rate of DOX at pH 5.8 was larger than that at pH 7.4, which could be attributed to DOX protonation in acid medium. In addition, the released DOX concentrations remained at 0.83 and 1.39 μg/ml at pH 7.4 and 5.8, respectively, which indicated slow, steady, and safe release rates. Therefore, the as-prepared Fe 3 O 4 /hydroxyapatite composite could be an efficient platform for targeted anticancer drug delivery

  19. Biodistribution and radiation dosimetry of {sup 11}C-labelled docetaxel in cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Veldt, Astrid A.M. van der; Mooijer, Martien P.J.; Rijnders, Anneloes Y.; Windhorst, Albert D.; Lammertsma, Adriaan A.; Lubberink, Mark [VU University Medical Center, Department of Nuclear Medicine and PET Research, P.O. Box 7057, Amsterdam (Netherlands); Hendrikse, N.H. [VU University Medical Center, Department of Nuclear Medicine and PET Research, P.O. Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Clinical Pharmacology and Pharmacy, Amsterdam (Netherlands); Smit, Egbert F. [VU University Medical Center, Department of Pulmonology, Amsterdam (Netherlands); Gerritsen, Winald R. [VU University Medical Center, Department of Medical Oncology, Amsterdam (Netherlands); Hoeven, Jacobus J.M. van der [Medical Center Alkmaar, Department of Internal Medicine, Alkmaar (Netherlands)

    2010-10-15

    Docetaxel is an important chemotherapeutic agent used for the treatment of several cancer types. As radiolabelled anticancer agents provide a potential means for personalized treatment planning, docetaxel was labelled with the positron emitter {sup 11}C. Non-invasive measurements of [{sup 11}C]docetaxel uptake in organs and tumours may provide additional information on pharmacokinetics and pharmacodynamics of the drug docetaxel. The purpose of the present study was to determine the biodistribution and radiation absorbed dose of [{sup 11}C]docetaxel in humans. Biodistribution of [{sup 11}C]docetaxel was measured in seven patients (five men and two women) with solid tumours using PET/CT. Venous blood samples were collected to measure activity in blood and plasma. Regions of interest (ROI) for various source organs were defined on PET (high [{sup 11}C]docetaxel uptake) or CT (low [{sup 11}C]docetaxel uptake). ROI data were used to generate time-activity curves and to calculate percentage injected dose and residence times. Radiation absorbed doses were calculated according to the MIRD method using OLINDA/EXM 1.0 software. Gall bladder and liver demonstrated high [{sup 11}C]docetaxel uptake, whilst uptake in brain and normal lung was low. The percentage injected dose at 1 h in the liver was 47 {+-} 9%. [{sup 11}C]docetaxel was rapidly cleared from plasma and no radiolabelled metabolites were detected. [{sup 11}C]docetaxel uptake in tumours was moderate and highly variable between tumours. The effective dose of [{sup 11}C]docetaxel was 4.7 {mu}Sv/MBq. As uptake in normal lung is low, [{sup 11}C]docetaxel may be a promising tracer for tumours in the thoracic region. (orig.)

  20. Kinetics of radiation-induced apoptosis in neonatal urogenital tissues with and without protein synthesis inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Gobe, G.C.; Harmon, B.; Schoch, E.; Allan, D.J. [Queensland Univ., St. Lucia, QLD (Australia). Dept. of Chemistry

    1996-12-31

    The difference in incidence of radiation-induced apoptosis between two neonatal urogenital tissues, kidney and testis, was analysed over a 24h period. Concurrent administration of cycloheximide (10mg/kg body weight), a protein synthesis inhibitor, with radiation treatment was used to determine whether new protein synthesis had a role in induction of apoptosis in this in vivo model. Many chemotherapeutic drugs act via protein synthesis inhibition, and we believe that the results of this latter analysis may provide information for the planning of concurrent radio and chemotherapy. Apoptosis was quantified using morphological parameters, and verified by DNA gel electrophoresis for the typical banding pattern, and by electron microscopy. The proliferative index in tissues was studied, using [6-{sup 3}H]-thymidine uptake ( 1h prior to euthanasia and collection of tissues) and autoradiography as indicators of cell proliferation (S-phase). Tissue was collected 2, 4, 6, 8, and 24h after radiation treatment. Expression of one of the apoptosis-associated genes, Bcl-2 (an apoptosis inhibitor/cell survival gene), was studied using immunohistochemistry. Apoptosis peaked at 4h in the testis and 6h in the kidney, emphasising the necessity of knowing tissue differences in radiation response if comparing changes at a particular time. A higher proportion (almost five fold) of the apoptotic cells died in S-phase in the kidney than the testis, over the 24h. Protein synthesis inhibition completely negated induction of apoptosis in both tissues. Necrosis was not identified at any time. Cycloheximide treatment greatly diminished Bcl-2 expression. The differences in response of the two tissues to irradiation relates to their innate cell (genetic) controls, which may be determined by their state of differentiation at time of treatment, or the tissue type. This in vivo study also suggests the model may be useful for analysis of other cancer therapies for example polychemotherapies or chemo

  1. Microwave Assisted Drug Delivery

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    In this work, the microwave radiation is adopted for remote activation of pharmaceutical drug capsules inside the human body in order to release drugs at a pre-determined time and location. An array of controllable transmitting sources is used to produce a constructive interference at a certain...... focus point inside the body, where the drugs are then released from the specially designed capsules. An experimental setup for microwave activation has been developed and tested on a body phantom that emulates the human torso. A design of sensitive receiving structures for integration with a drug...

  2. Characterization of Taurine Transporting Systems During Acquirement of Resistance to Platinum(II)-based, Chemotherapeutic Drugs

    DEFF Research Database (Denmark)

    Sørensen, Belinda Halling

    Although, cisplatin is one of the most effective broad-spectrum anticancer drugs, prolonged cisplatin treatment often results in development of chemoresistance and subsequent therapeutic failure. Dysregulation of the taurine transporting systems i.e., the taurine transporter (TauT) and volume....... Cisplatin resistance correlates with a reduction in the volume regulated anion current and taurine release mediated by VRACs, as well as an improved cellular accumulation of taurine through TauT. In human ovarian A2780 cancer cells, for instance, cisplatin resistance is associated with an absent swelling......-induced taurine release and inability to volume regulate. The dismissed taurine release was due to an almost absent leucin-rich-repeat containing 8A (LRRC8A) total protein expression. LRRC8A is an important component of VRACs. Cellular taurine contributes to the intracellular pool of organic osmolytes. Moreover...

  3. Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors.

    Science.gov (United States)

    Lorz, Alexander; Lorenzi, Tommaso; Clairambault, Jean; Escargueil, Alexandre; Perthame, Benoît

    2015-01-01

    Histopathological evidence supports the idea that the emergence of phenotypic heterogeneity and resistance to cytotoxic drugs can be considered as a process of selection in tumor cell populations. In this framework, can we explain intra-tumor heterogeneity in terms of selection driven by the local cell environment? Can we overcome the emergence of resistance and favor the eradication of cancer cells by using combination therapies? Bearing these questions in mind, we develop a model describing cell dynamics inside a tumor spheroid under the effects of cytotoxic and cytostatic drugs. Cancer cells are assumed to be structured as a population by two real variables standing for space position and the expression level of a phenotype of resistance to cytotoxic drugs. The model takes explicitly into account the dynamics of resources and anticancer drugs as well as their interactions with the cell population under treatment. We analyze the effects of space structure and combination therapies on phenotypic heterogeneity and chemotherapeutic resistance. Furthermore, we study the efficacy of combined therapy protocols based on constant infusion and bang-bang delivery of cytotoxic and cytostatic drugs.

  4. Drug Development Process

    Science.gov (United States)

    ... Preclinical Research Preclinical Research Drugs undergo laboratory and animal testing to answer basic questions about safety. More Information ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products

  5. The Treatment of Breast Cancer Using Liposome Technology

    Directory of Open Access Journals (Sweden)

    Sarah Brown

    2012-01-01

    Full Text Available Liposome-based chemotherapeutics used in the treatment of breast cancer can in principle enhance the therapeutic index of otherwise unencapsulated anticancer drugs. This is partially attributed to the fact that encapsulation of cytotoxic agents within liposomes allows for increased concentrations of the drug to be delivered to the tumor site. In addition, the presence of the phospholipid bilayer prevents the encapsulated active form of the drug from being broken down in the body prior to reaching tumor tissue and also serves to minimize exposure of the drug to healthy sensitive tissue. While clinically approved liposome-based chemotherapeutics such as Doxil have proven to be quite effective in the treatment of breast cancer, significant challenges remain involving poor drug transfer between the liposome and cancerous cells. In this review, we discuss the recent advancements made in the development of liposome-based chemotherapeutics with respect to improved drug transfer for use in breast cancer therapy.

  6. Effect of intravenous drug administration mode on drug distribution in a tumor slab: a finite Fourier transform analysis.

    Science.gov (United States)

    Subramaniam, B; Claudius, J S

    1990-03-08

    Cancer therapy using chemotherapeutic drugs frequently involves injection of the drug into the body through some intravenous mode of administration, viz, continuous (drip) infusion or single/multiple bolus injection(s). An understanding of the effect of the various modes of administration upon tumor penetration of drug is essential to rational design of drug therapy. This paper investigates drug penetration into a model tumor of slab geometry (between two capillaries) in which the overall transport rate of drug is limited by intra-tumor transport characterized by an effective diffusion coefficient. Employing the method of Finite Fourier Transforms (FFT), analytical solutions have been obtained for transient drug distribution in both the plasma and the tumor following three modes of administration, viz, continuous infusion, single bolus injection and equally-spaced equal-dose multiple bolus injections, of a given amount of drug. The qualitative trends exhibited by the plasma drug distribution profiles are consistent with reported experimental studies. Two concepts, viz, the dimensionless decay constant and the plasma/tumor drug concentration trajectories, are found to be particularly useful in the rational design of drug therapy. The dimensionless decay constant provides a measure of the rate of drug decay in the plasma relative to the rate of drug diffusion into the tumor and is thus characteristic of the tumor/drug system. The magnitude of this parameter dictates the choice of drug administration mode for minimizing drug decay in the plasma while simultaneously maximizing drug transport into the tumor. The concentration trajectories provide a measure of the plasma drug concentration relative to the tumor drug concentration at various times following injection. When the tumor drug concentration exceeds the plasma drug concentration, the drug will begin to diffuse out of the tumor. Knowledge of the time at which this diffusion reversal occurs is especially useful

  7. Treatment Efficiency of Free and Nanoparticle-Loaded Mitoxantrone for Magnetic Drug Targeting in Multicellular Tumor Spheroids

    Directory of Open Access Journals (Sweden)

    Annkathrin Hornung

    2015-09-01

    Full Text Available Major problems of cancer treatment using systemic chemotherapy are severe side effects. Magnetic drug targeting (MDT employing superparamagnetic iron oxide nanoparticles (SPION loaded with chemotherapeutic agents may overcome this dilemma by increasing drug accumulation in the tumor and reducing toxic side effects in the healthy tissue. For translation of nanomedicine from bench to bedside, nanoparticle-mediated effects have to be studied carefully. In this study, we compare the effect of SPION, unloaded or loaded with the cytotoxic drug mitoxantrone (MTO with the effect of free MTO, on the viability and proliferation of HT-29 cells within three-dimensional multicellular tumor spheroids. Fluorescence microscopy and flow cytometry showed that both free MTO, as well as SPION-loaded MTO (SPIONMTO are able to penetrate into tumor spheroids and thereby kill tumor cells, whereas unloaded SPION did not affect cellular viability. Since SPIONMTO has herewith proven its effectivity also in complex multicellular tumor structures with its surrounding microenvironment, we conclude that it is a promising candidate for further use in magnetic drug targeting in vivo.

  8. Peptide-Mediated Liposomal Drug Delivery System Targeting Tumor Blood Vessels in Anticancer Therapy

    Directory of Open Access Journals (Sweden)

    Han-Chung Wu

    2010-01-01

    Full Text Available Solid tumors are known to recruit new blood vessels to support their growth. Therefore, unique molecules expressed on tumor endothelial cells can function as targets for the antiangiogenic therapy of cancer. Current efforts are focusing on developing therapeutic agents capable of specifically targeting cancer cells and tumor-associated microenvironments including tumor blood vessels. These therapies hold the promise of high efficacy and low toxicity. One recognized strategy for improving the therapeutic effectiveness of conventional chemotherapeutics is to encapsulate anticancer drugs into targeting liposomes that bind to the cell surface receptors expressed on tumor-associated endothelial cells. These anti-angiogenic drug delivery systems could be used to target both tumor blood vessels as well as the tumor cells, themselves. This article reviews the mechanisms and advantages of various present and potential methods using peptide-conjugated liposomes to specifically destroy tumor blood vessels in anticancer therapy.

  9. Present studies on the radiosterilized drugs

    International Nuclear Information System (INIS)

    Marciniec, B.; Dettlaff, K.

    2007-01-01

    Lecture presents present status of radiosterilization of drugs and medical materials as compared to other sterilization methods. Literature review is shown on degradation of different kinds of drugs sterilized upon action of the sterilising doses of radiation

  10. Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound

    Science.gov (United States)

    Cao, Yang; Chen, Yuli; Yu, Tao; Guo, Yuan; Liu, Fengqiu; Yao, Yuanzhi; Li, Pan; Wang, Dong; Wang, Zhigang; Chen, Yu; Ran, Haitao

    2018-01-01

    Background: As one of the most effective triggers with high tissue-penetrating capability and non-invasive feature, ultrasound shows great potential for controlling the drug release and enhancing the chemotherapeutic efficacy. In this study, we report, for the first time, construction of a phase-changeable drug-delivery nanosystem with programmable low-intensity focused ultrasound (LIFU) that could trigger drug-release and significantly enhance anticancer drug delivery. Methods: Liquid-gas phase-changeable perfluorocarbon (perfluoropentane) and an anticancer drug (doxorubicin) were simultaneously encapsulated in two kinds of nanodroplets. By triggering LIFU, the nanodroplets could be converted into microbubbles locally in tumor tissues for acoustic imaging and the loaded anticancer drug (doxorubicin) was released after the microbubble collapse. Based on the acoustic property of shell materials, such as shell stiffness, two types of nanodroplets (lipid-based nanodroplets and PLGA-based nanodroplets) were activated by different acoustic pressure levels. Ultrasound irradiation duration and power of LIFU were tested and selected to monitor and control the drug release from nanodroplets. Various ultrasound energies were introduced to induce the phase transition and microbubble collapse of nanodroplets in vitro (3 W/3 min for lipid nanodroplets; 8 W/3 min for PLGA nanodroplets). Results: We detected three steps in the drug-releasing profiles exhibiting the programmable patterns. Importantly, the intratumoral accumulation and distribution of the drug with LIFU exposure were significantly enhanced, and tumor proliferation was substantially inhibited. Co-delivery of two drug-loaded nanodroplets could overcome the physical barriers of tumor tissues during chemotherapy. Conclusion: Our study provides a new strategy for the efficient ultrasound-triggered chemotherapy by nanocarriers with programmable LIFU capable of achieving the on-demand drug release. PMID:29507623

  11. Oncogenic targets, magnitude of benefit, and market pricing of antineoplastic drugs.

    Science.gov (United States)

    Amir, Eitan; Seruga, Bostjan; Martinez-Lopez, Joaquin; Kwong, Ryan; Pandiella, Atanasio; Tannock, Ian F; Ocaña, Alberto

    2011-06-20

    The relationship between market pricing of new anticancer drugs and the magnitude of clinical benefit caused by them has not been reported. Randomized clinical trials (RCTs) that evaluated approved new agents for solid tumors by the U.S. Food and Drug administration since the year 2000 were assessed. Hazard ratios (HRs) and 95% CIs were extracted for time-to-event end points described for each RCT. HRs were pooled for three groups: agents directed against a specific molecular target, for which the target population is selected by a biomarker (group A); less specific biologic targeted agents (group B); and chemotherapeutic agents (group C). Monthly market prices of these different drugs were compared. For overall survival (OS), the pooled HR was 0.69 (95% CI, 0.59 to 0.81) for group A (six drugs, six trials); it was 0.78 (95% CI, 0.74 to 0.83) for group B (seven drugs, 14 trials); and it was 0.84 (95% CI, 0.79 to 0.90) for group C (eight drugs, 12 trials). For progression-free survival (PFS), the pooled HR was 0.42 (95% CI, 0.36 to 0.49) for group A (six drugs, seven trials); it was 0.57 (95% CI, 0.51 to 0.64) for group B (seven drugs, 14 trials); and it was 0.75 (95% CI, 0.66 to 0.85) for group C (six drugs, 10 trials). Tests for heterogeneity between subgroups were highly significant for PFS (P targets are clinically the most beneficial, but their monthly market prices are not significantly different from those of other anticancer agents.

  12. PET studies of potential chemotherapeutic agents: Pt. 10; Synthesis of ''no-carrier-added'' ( sup 11 C)-HECNU: the hydroxyethyl analog of the chemotherapeutic agent BCNU

    Energy Technology Data Exchange (ETDEWEB)

    Conway, T.; Diksic, M. (Montreal Neurological Inst. and Hospital, PQ (Canada). McConnell Brain Imaging Centre McGill Univ., Montreal, PQ (Canada). Dept. of Neurology and Neurosurgery)

    1991-01-01

    Carbon-11-labeled HECNU (1-(2-chloroethyl)-1-nitroso-3-(2-hydroxyethyl) urea) a potential chemotherapeutic agent, has been prepared by the nitrosation of the corresponding carbon-11-labeled urea, HECU, (1-(2-chloroethyl)-3-(2-hydroxyethyl) urea). The isomeric byproduct of nitrosation, 1-(2-chloroethyl)-3-nitroso-3-(2-hydroxyethyl) urea can be efficiently removed by preparative scale HPLC on a Partisil column. ({sup 11}C)-HECU was prepared by reacting ethanolamine with ({sup 11}C)-2-chloroethyl-isocyanate which was itself prepared by reacting ({sup 11}C)-phosgene with 2-chloroethylamine hydrochloride suspended in dioxane at 60-65{sup o}C. This synthesis yielded ({sup 11}C)-HECNU with an average radiochemical purity of 98% in an average radiochemical yield of 18% relative to the radioactivity measured at the end of the {sup 11}C-phosgene introduction. (author).

  13. Morphologic categorization of cell death induced by mild hyperthermia and comparison with death induced by ionizing radiation and cytotoxic drugs

    International Nuclear Information System (INIS)

    Allan, D.J.; Harmon, B.V.

    1986-01-01

    This paper presents a summary of the morphological categorization of cell death, results of two in vivo studies on the cell death induced by mild hyperthermia in rat small intestine and mouse mastocytoma, and a comparison of the cell death induced by hyperthermia, radiation and cytotoxic drugs. Two distinct forms of cell death, apoptosis and necrosis, can be recognized on morphologic grounds. Apoptosis appears to be a process of active cellular self-destruction to which a biologically meaningful role can usually be attributed, whereas necrosis is a passive degenerative phenomenon that results from irreversible cellular injury. Light and transmission electron microscopic studies showed that lower body hyperthermia (43 degrees C for 30 min) induced only apoptosis of intestinal epithelial cells, and of lymphocytes, plasma cells, and eosinophils. In the mastocytoma, hyperthermia (43 degrees C for 15 min) produced widespread tumor necrosis and also enhanced apoptosis of tumor cells. Ionizing radiation and cytotoxic drugs are also known to induce apoptosis in a variety of tissues. It is attractive to speculate that DNA damage by each agent is the common event which triggers the same process of active cellular self-destruction that characteristically effects selective cell deletion in normal tissue homeostasis

  14. Guanidino-containing drugs in cancer chemotherapy: biochemical and clinical pharmacology.

    Science.gov (United States)

    Ekelund, S; Nygren, P; Larsson, R

    2001-05-15

    The pharmacology and clinical application of three guanidino-containing compounds are reviewed in this commentary with special focus on a new member of this group of drugs, CHS 828 [N-(6-(4-chlorophenoxy)hexyl)-N'-cyano-N"-4-pyridylguanidine]. m-Iodobenzylguanidine (MIBG) and methylglyoxal bis(guanylhydrazone) (MGBG) have been extensively studied, preclinically as well as clinically, and have established use as anticancer agents. MIBG has structural similarities to the neurotransmitter, norepinephrine, and MGBG is a structural analog of the natural polyamine spermidine. CHS 828 is a pyridyl cyanoguanidine newly recognized as having cytotoxic effects when screening antihypertensive compounds. Apart from having the guanidino groups in common, there are many differences between these drugs in both structure and their mechanisms of action. However, they all inhibit mitochondrial function, a seemingly unique feature among chemotherapeutic drugs. In vitro in various cell lines and primary cultures of patient tumor cells and in vivo in various tumor models, CHS 828 has cytotoxic properties unlike any of the standard cytotoxic drugs with which it has been compared. Among these are non-cross-resistance to standard drugs and pronounced activity in tumor models acknowledged to be highly drug-resistant. Similar to MIBG, CHS 828 induces an early increase in extracellular acidification, due to stimulation of the glycolytic flux. Furthermore, ATP levels decrease, and the syntheses of DNA and protein are shut off after approximately 30 hr of exposure, indicating active cell death. CHS 828 is now in early clinical trials, the results of which are eagerly awaited.

  15. Combined use of Dexa-Scheroson and Primobolan-Depot in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, J [Shizuoka Rosai Hospital (Japan)

    1976-05-01

    Dexa-Scheroson and Primobolan-Depot were used together with radiation therapy (Linac therapy) required in 13 cases. The following results were obtained. The decrease in white cell counts, which often occurs in radiation therapy, was inhibited by the drugs. There was no case in which radiation therapy should necessarily withdraw because the number of leuckocytes was decreased to less than 3,000. The patients whose liver function was poor should be treated with both drugs at the beginning of radiation therapy. It was found that the combined use of the drugs is effective in the prevention and the treatment of cerebral edema in radiation therapy of intracranial lesion.

  16. The experimental study of the preventional effects of drugs to lung radiation damage

    International Nuclear Information System (INIS)

    Tomita, Naoaki

    1977-01-01

    The author experimented on effects of Cepharanthin (CR) and Urokinase (UK) on the lung of rabbits to which 60 Co was irradiated by dividing a total dose of 10,000R into 500R a day. The rabbits irradiated were divided into 3 groups: a group administered ''CR'' (Group A), a group administered ''UK'' (Group B) and a control group (Group C). Body weight, leukocytes and chest x-ray findings were examined, and macroscopic and microscopic findings were discussed immediately and 3 months after irradiation. CR was effective in preventing the decrease of leukocytes and body weight. In the case of 5000R irradiation, an abnormal shadow was not recognized, but in the case of 10,000R irradiation, radiation pneumonitis began to appear immediately after the irradiation, and heart dilation and the shift of mediastinum on the side of irradiation were observed 3 months after that. In Group C, adhesion, hydropericardium and bleeding lesion were observed. In Groups A and B, the preventive effects were noted macroscopically. Group A seemed to show more significant results. In this group, the infiltration of the cells, and the appearance of foamy cells and eosinophyl cells which are characteristic of lung radiation disease were less observed than those in the other groups, and therefore, Group A showed more preventive effect upon inflammation than the other groups. In Group B, the thickness of the wall of the blood vessel tended to be improved 3 months after irradiation. Microthrombosis was not recognized, either. From these results, CR was effective in decreasing the infiltration of the cells, and UK was effective in decreasing the thickness of the wall of the blood vessel and in forming thromboses. Thus, these drugs should be used simultaneously because they had different reaction to the prevention of lung radiation disease. (J.P.N.)

  17. A co-delivery nanosystem of chemotherapeutics and DNAzyme overcomes cancer drug resistance and metastasis

    Science.gov (United States)

    Sun, Shu-Pin; Liu, Ching-Ping; Huang, I.-Ping; Chu, Chia-Hui; Chung, Ming-Fang; Cheng, Shih-Hsun; Lin, Shu-Yi; Lo, Leu-Wei

    2017-12-01

    Multidrug resistance (MDR) constitutes a major problem in the management of cancer and cancer metastasized from primary-source tumor causes cancer-related deaths. Our new approach is the co-delivery of chemotherapy drugs with a transcription-factor-targeting genetic agent to simultaneously inhibit the growth and metastasis of cancer cells. C-Jun is a transcription factor that regulates multidrug resistance-associated protein 1 (MRP1) pump efflux transcription and tumor metastasis. In this work, we reported that mesoporous silica nanoparticles (MSNs) can be functionalized to co-deliver doxorubicin (Dox) and DNAzyme (Dz) to increase cancer cell killing in an additive fashion. The MSNs were sequentially conjugated with Dox into the MSNs’ nanochannels and Dz onto the MSNs’ outermost surface to target c-Jun as the Dox@MSN-Dz co-delivery system. The Dox-resistant PC-3 cells treated with Dox@MSN-Dz efficiently enhanced the intracellular Dox concentration due to the abrogation of Dox-induced MRP1 expression through the downregulation of c-Jun expression by Dz. Additionally, significant reductions in invasion and migration related to metastasis were also observed in cells treated with Dox@MSN-Dz. Therefore, our results contribute new insight to the treatment of MDR combined metastatic cancer cells, worthwhile for studying its potential for development in clinical translation.

  18. Extraction and encapsulation of prodigiosin in chitosan microspheres for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Dozie-Nwachukwu, S.O. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), P.M.B 186, Garki, Abuja, Federal Capital Territory (Nigeria); Danyuo, Y. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Materials Science and Engineering, Kwara State University, Malete (Nigeria); Obayemi, J.D. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Odusanya, O.S. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), P.M.B 186, Garki, Abuja, Federal Capital Territory (Nigeria); Malatesta, K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Soboyejo, W.O., E-mail: soboyejo@princeton.edu [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Princeton Institute of Science and Technology of Materials (PRISM), Bowen Hall, 70 Prospect Street, Princeton, NJ 08544 (United States)

    2017-02-01

    The encapsulation of drugs in polymeric materials has brought opportunities to the targeted delivery of chemotherapeutic agents. These polymeric delivery systems are capable of maximizing the therapeutic activity, as well as reducing the side effects of anti-cancer agents. Prodigiosin, a secondary metabolite extracted from the bacteria, Serratia marcescens, exhibits anti-cancer properties. Prodigiosin-loaded chitosan microspheres were prepared via water-in-oil (w/o) emulsion technique, using glutaraldehyde as a cross-linker. The morphologies of the microspheres were studied using scanning electron microscopy. The average sizes of the microspheres were between 40 μm and 60 μm, while the percentage yields ranged from 42 ± 2% to 55.5 ± 3%. The resulting encapsulation efficiencies were between 66.7 ± 3% and 90 ± 4%. The in-vitro drug release from the microspheres was characterized by zeroth order, first order and Higuchi and Korsmeyer-Peppas models. - Highlights: • Prodigiosin of ~ 92.8% purity was extracted from locally isolated Serratia marcescens. • This approach reduces the cost and ensure availability of drugs for cancer treatment. • High encapsulation efficiency which increased with increasing drug:polymer ratio • The percentage yield was generally poor due to the recovery process. • Prodigiosin greatly reduced the viability of the breast cancer cell line (MDA-MB-231).

  19. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems.

    Science.gov (United States)

    Kaur, Randeep; Badea, Ildiko

    2013-01-01

    Detonation nanodiamonds (NDs) are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.

  20. Extraction and encapsulation of prodigiosin in chitosan microspheres for targeted drug delivery

    International Nuclear Information System (INIS)

    Dozie-Nwachukwu, S.O.; Danyuo, Y.; Obayemi, J.D.; Odusanya, O.S.; Malatesta, K.; Soboyejo, W.O.

    2017-01-01

    The encapsulation of drugs in polymeric materials has brought opportunities to the targeted delivery of chemotherapeutic agents. These polymeric delivery systems are capable of maximizing the therapeutic activity, as well as reducing the side effects of anti-cancer agents. Prodigiosin, a secondary metabolite extracted from the bacteria, Serratia marcescens, exhibits anti-cancer properties. Prodigiosin-loaded chitosan microspheres were prepared via water-in-oil (w/o) emulsion technique, using glutaraldehyde as a cross-linker. The morphologies of the microspheres were studied using scanning electron microscopy. The average sizes of the microspheres were between 40 μm and 60 μm, while the percentage yields ranged from 42 ± 2% to 55.5 ± 3%. The resulting encapsulation efficiencies were between 66.7 ± 3% and 90 ± 4%. The in-vitro drug release from the microspheres was characterized by zeroth order, first order and Higuchi and Korsmeyer-Peppas models. - Highlights: • Prodigiosin of ~ 92.8% purity was extracted from locally isolated Serratia marcescens. • This approach reduces the cost and ensure availability of drugs for cancer treatment. • High encapsulation efficiency which increased with increasing drug:polymer ratio • The percentage yield was generally poor due to the recovery process. • Prodigiosin greatly reduced the viability of the breast cancer cell line (MDA-MB-231).

  1. Targeting DNA repair systems in antitubercular drug development.

    Science.gov (United States)

    Minias, Alina; Brzostek, Anna; Dziadek, Jaroslaw

    2018-01-28

    Infections with Mycobacterium tuberculosis, the causative agent of tuberculosis, are difficult to treat using currently available chemotherapeutics. Clinicians agree on the urgent need for novel drugs to treat tuberculosis. In this mini review, we summarize data that prompts the consideration of DNA repair-associated proteins as targets for the development of new antitubercular compounds. We discuss data, including gene expression data, that highlight the importance of DNA repair genes during the pathogenic cycle as well as after exposure to antimicrobials currently in use. Specifically, we report experiments on determining the essentiality of DNA repair-related genes. We report the availability of protein crystal structures and summarize discovered protein inhibitors. Further, we describe phenotypes of available gene mutants of M. tuberculosis and model organisms Mycobacterium bovis and Mycobacterium smegmatis. We summarize experiments regarding the role of DNA repair-related proteins in pathogenesis and virulence performed both in vitro and in vivo during the infection of macrophages and animals. We detail the role of DNA repair genes in acquiring mutations, which influence the rate of drug resistance acquisition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Effect of irradiation of drugs and aiding substances

    International Nuclear Information System (INIS)

    Schnell, R.; Boegl, W.

    1982-01-01

    In this bibliographic study (Part I - VI), the results of more than 300 radiation tested pharmaceuticals are discussed and evaluated. The substances were treated with ionizing radiation in their pure form (solid substance or liquid), as aqueous or alcohol solution, as emulsion or in compound form, almost exclusively with gamma radiation from cobaldt-60 sources. The radiation doses applied amounted from some krd to about 100 Mrd. The results of the original papers analyzed in this Part VI are not summarized separately since the final Part VII of the study on the effects of irradiation of drugs and drug additives will contain a survey for all essential data discussed in Parts I to VI. (orig./MG) [de

  3. Impact of radiation research on clinical trials in radiation oncology

    International Nuclear Information System (INIS)

    Rubin, P.; Van Ess, J.D.

    1989-01-01

    The authors present an outline review of the history of the formation of the cooperative group called International Clinical Trials in Radiation Oncology (ICTRO), and the following areas are briefly discussed together with some projections for the direction of clinical trials in radiation oncology into the 1990s:- radiosensitizers, radioprotectors, and their combination, drug-radiation interactions, dose/time/fractionation, hyperthermia, biological response modifiers and radiolabelled antibodies, high LET, particularly neutron therapy, large field irradiation and interoperative irradiation, research studies on specific sites. (U.K.)

  4. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation.

    Directory of Open Access Journals (Sweden)

    Xiao-Na Pan

    Full Text Available Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA. Meanwhile, inhibition of c-Myc by shRNA or specific c-Myc inhibitor 10058-F4 rescued the sensitivity to cytotoxic drugs, restrained the colony formation ability and promoted differentiation. RT-PCR and western blotting analysis showed that down-regulation of C/EBPβ contributed to the poor differentiation state of leukemic cells induced by c-Myc over-expression. Importantly, over-expression of C/EBPβ could reverse c-Myc induced drug resistance. In primary AML cells, the c-Myc expression was negatively correlated with C/EBPβ. 10058-F4, displayed anti-proliferative activity and increased cellular differentiation with up-regulation of C/EBPβ in primary AML cells. Thus, our study indicated that c-Myc could be a novel target to overcome drug resistance, providing a new approach in AML therapy.

  5. Instruments for radiation measurement in life sciences (4). VI. Use of Accelerator mass spectrometry in studies on drug metabolism and pharmacokinetics

    International Nuclear Information System (INIS)

    Ikeda, Toshihiko

    2005-01-01

    Non-clinical and clinical uses of accelerator mass spectrometry (AMS) are described mainly on studies of drug metabolism and pharmacokinetics from a view of new drug development. AMS is applicable as a highly sensitive method to measure plasma drug concentrations. Measurement of 14 C-labeled compounds less than 1 dpm/sample or of parathyroid hormone-related protein (PTHrP), in combination of AMS and radioimmunoassay without radioactive waste release is described as an example. Cases of measuring DNA-adduct are also described involving human studies using 14 C-mutagen (a quinoxaline derivative derived from burned amino acid, given in a microdose of 304 ng/kg, 4.3 μCi/body). Plasma concentration measurement, mass balance study and metabolite identification of 14 C-GI1817771 (a drug candidate) are a typical AMS application for a pharmacokinetic study in human in a microdose (121 Bq/body). Metabolites of 14 C-compound A in rat platelet are identified by the author. As above, AMS makes it possible to conduct the pharmacokinetic study in human at a microdose with no significant radiation exposure, which will promote the efficient new drug development. (N.I.)

  6. PHYTOTHERAPEUTIC EFFECT OF AVOCADOS AND SOYA AS DRUG ON HEART OF RATS EXPOSED TO GAMMA RADIATION

    International Nuclear Information System (INIS)

    OMRAN, M.F.; IBRAHIM, N.K.; ABU-ZIED, N.M.

    2008-01-01

    This study was planed to determine the role of single oral dose of avocados and soya in irradiated rats exposed to gamma radiation. the experimental animals were randomly divided into four groups; 12 rats for each. Group 1: kept as control. Group 2: rats received piascledine for 14 consecutive days. Group 3: rats submitted to whole body gamma rays (4 Gy). Group 4: rats received the same piascledine 14 days post-exposure to 4 Gy gamma radiation. The animals were weighed then dissected after one and fourteen days post-administration and the cardiac tissue and plasma were stored at 12 oC till used for biochemical analysis and kept in ice. The following parameters were determined: plasma total cholesterol, triacylglycerol, high density lipoprotein-cholesterol, low density lipoprotein-cholesterol, LDH, phospholipids, ALT, CPK and TBARS. In cardiac tissue, determinations of total cholesterol, triacylglycerol, phospholipids and TBARS were conducted.It can be concluded that administration of avocados and soy as natural drug (piascledine) post-irradiation in rats is a favorable modificator against the impaired physiological processes in animal body due to gamma irradiation

  7. Radiation injuries of plasmatic membrane and lethal action of radiation on cells

    Energy Technology Data Exchange (ETDEWEB)

    Fomenko, B S; Akoev, I G [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki

    1984-01-01

    Data on modification of procaryotes and eukaryotes cell injuries using preparations not penetrating into cells and also membrane-specific drugs localized in cells in a lipid phase are generalized. A conclusion is drawn that radiation injuries of plasmatic membrane of prokaryotes and eukaryotes contribute considerably to lethal action of radiation on cells.

  8. Radiation injuries of plasmatic membrane and lethal action of radiation on cells

    International Nuclear Information System (INIS)

    Fomenko, B.S.; Akoev, I.G.

    1984-01-01

    Data on modification of procaryotes and eukaryotes cell injuries using preparations not penetrating into cells and also membrane-specific drugs localized in cells in a lipid phase are generalized. A conclusion is drawn that radiation injuries of plasmatic membrane of prokaryotes and eukaryotes contribute considerably to lethal action of radiation on cells

  9. About novelty of radiation drug 'Storm in cells'

    International Nuclear Information System (INIS)

    Korchubekov, B.

    2005-01-01

    Drugs 'Storm in cells' is intended for treatment of infection wounds and burns in medical practice. The preparation represents the electro- activated mixture consisting uranium and thorium masses in the mumie base, table salt, activated carbon and water. Advantage of the drug 'Storm in cells' in comparison with prototype is increase of wound and burns repair effectiveness in 10-11 %

  10. Chemotherapeutic potential of diazeniumdiolate-based aspirin prodrugs in breast cancer.

    Science.gov (United States)

    Basudhar, Debashree; Cheng, Robert C; Bharadwaj, Gaurav; Ridnour, Lisa A; Wink, David A; Miranda, Katrina M

    2015-06-01

    Diazeniumdiolate-based aspirin prodrugs have previously been shown to retain the anti-inflammatory properties of aspirin while protecting against the common side effect of stomach ulceration. Initial analysis of two new prodrugs of aspirin that also release either nitroxyl (HNO) or nitric oxide (NO) demonstrated increased cytotoxicity toward human lung carcinoma cells compared to either aspirin or the parent nitrogen oxide donor. In addition, cytotoxicity was significantly lower in endothelial cells, suggesting cancer-specific sensitivity. To assess the chemotherapeutic potential of these new prodrugs in treatment of breast cancer, we studied their effect both in cultured cells and in a nude mouse model. Both prodrugs reduced growth of breast adenocarcinoma cells more effectively than the parent compounds while not being appreciably cytotoxic in a related nontumorigenic cell line (MCF-10A). The HNO donor also was more cytotoxic than the related NO donor. The basis for the observed specificity was investigated in terms of impact on metabolism, DNA damage and repair, apoptosis, angiogenesis and metastasis. The results suggest a significant pharmacological potential for treatment of breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Cell cycle kinetics and radiation therapy

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1975-01-01

    Radiation therapy as currently practiced involves the subtle largely empirical art of balancing the recurrence of cancer due to undertreatment against severe damage to local tissues due to overtreatment. Therapeutic results too often fall short of desired success rates; yet, the therapist is continually tantalized to the likelihood that a slight shift of therapeutic ratio favoring normal tissue over cancer would have a profoundly beneficial effect. The application of cell cycle kinetics to radiation therapy is one hope for improving the therapeutic ratio; but, as I will try to show, kinetic approaches are complex, poorly understood, and presently too elusive to elicit confidence or to be used clinically. Their promise lies in their diversity and in the magnitude of our ignorance about how they work and how they should be used. Potentially useful kinetic approaches to therapy can be grouped into three classes. The first class takes advantage of intracyclic differential sensitivity, an effect involving the metabolism and biology of the cell cycle; its strategies are based on synchronization of cells over intervals of hours to days. The second class involves the distinction between cycling and noncycling cells; its strategies are based on the resistance of noncycling cells to cycle-linked radiation sensitizers and chemotherapeutic agents. The third class uses cell repopulation between fractions; its strategies are based on the relative growth rates of tumor and relevant normal tissue before and after perturbation

  12. Plasmonic nanocarrier grid-enhanced Raman sensor for studies of anticancer drug delivery.

    Science.gov (United States)

    Kurzątkowska, Katarzyna; Santiago, Ty; Hepel, Maria

    2017-05-15

    Targeted drug delivery systems using nanoparticle nanocarriers offer remarkable promise for cancer therapy by discriminating against devastating cytotoxicity of chemotherapeutic drugs to healthy cells. To aid in the development of new drug nanocarriers, we propose a novel plasmonic nanocarrier grid-enhanced Raman sensor which can be applied for studies and testing of drug loading onto the nanocarriers, attachment of targeting ligands, dynamics of drug release, assessment of nanocarrier stability in biological environment, and general capabilities of the nanocarrier. The plasmonic nanogrid sensor offers strong Raman enhancement due to the overlapping plasmonic fields emanating from the nearest-neighbor gold nanoparticle nanocarriers and creating the enhancement "hot spots". The sensor has been tested for immobilization of an anticancer drug gemcitabine (2',2'-difluoro-2'-deoxycytidine, GEM) which is used in treatment of pancreatic tumors. The drawbacks of currently applied treatment include high systemic toxicity, rapid drug decay, and low efficacy (ca. 20%). Therefore, the development of a targeted GEM delivery system is highly desired. We have demonstrated that the proposed nanocarrier SERS sensor can be utilized to investigate attachment of targeting ligands to nanocarriers (attachment of folic acid ligand recognized by folate receptors of cancer cells is described). Further testing of the nanocarrier SERS sensor involved drug release induced by lowering pH and increasing GSH levels, both occurring in cancer cells. The proposed sensor can be utilized for a variety of drugs and targeting ligands, including those which are Raman inactive, since the linkers can act as the Raman markers, as illustrated with mercaptobenzoic acid and para-aminothiophenol. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. MicroRNA-101 regulates T-cell acute lymphoblastic leukemia progression and chemotherapeutic sensitivity by targeting Notch1.

    Science.gov (United States)

    Qian, Lu; Zhang, Wanggang; Lei, Bo; He, Aili; Ye, Lianhong; Li, Xingzhou; Dong, Xin

    2016-11-01

    The present study aimed to investigate the role of microRNA (miR)-101 in acute lymphoblastic leukemia progression and chemoresistance. Furthermore, a novel target gene of miR-101 was identified. Here, we confirmed that miR-101 was significantly downregulated in the blood samples of patients with T-cell acute lymphoblastic leukemia (T-ALL) compared with the healthy controls, as determined by reverse transcription quantitative polymerase chain reaction (RTqPCR) analysis. The in vitro experiments demonstrated that miR-101 significantly repressed the proliferation and invasion, and induced potent apoptosis in Jurkat cells, as determined by CCK-8, flow cytometer and cell invasion assays. Luciferase assay confirmed that Notch1 was a target gene of miR-101, and western blotting showed that miR-101 suppressed the expression of Notch1 at the protein level. Moreover, functional restoration assays revealed that Notch1 mediates the effects of miR-101 on Jurkat cell proliferation, apoptosis and invasion. miR-101 enhanced the sensitivity of Jurkat cells to the chemotherapeutic agent adriamycin. Taken together, our results show for the first time that miR-101 acts as a tumor suppressor in T-cell acute lymphoblastic leukaemia and it could enhance chemotherapeutic sensitivity. Furthermore, Notch1 was identified to be a novel target of miR-101. This study indicates that miR-101 may represent a potential therapeutic target for T-cell acute lymphoblastic leukemia intervention.

  14. Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Qiu J

    2015-10-01

    Full Text Available Jichuan Qiu,1 Ruibin Zhang,2 Jianhua Li,1 Yuanhua Sang,1 Wei Tang,3 Pilar Rivera Gil,4 Hong Liu1,51Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, 2Blood Purification Center, Jinan Central Hospital, 3Department of Pathogenic Biology, Shandong University School of Medicine, Jinan, People’s Republic of China; 4Institute of Chemistry, Rovira i Virgili University, Tarragona, Spain; 5Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People’s Republic of ChinaAbstract: Graphene quantum dots (GQDs were rationally fabricated as a traceable drug delivery system for the targeted, pH-sensitive delivery of a chemotherapeutic drug into cancer cells. The GQDs served as fluorescent carriers for a well-known anticancer drug, doxorubicin (Dox. The whole system has the capacity for simultaneous tracking of the carrier and of drug release. Dox release is triggered upon acidification of the intracellular vesicles, where the carriers are located after their uptake by cancer cells. Further functionalization of the loaded carriers with targeting moieties such as arginine-glycine-aspartic acid (RGD peptides enhanced their uptake by cancer cells. DU-145 and PC-3 human prostate cancer cell lines were used to evaluate the anticancer ability of Dox-loaded RGD-modified GQDs (Dox-RGD-GQDs. The results demonstrated the feasibility of using GQDs as traceable drug delivery systems with the ability for the pH-triggered delivery of drugs into target cells.Keywords: graphene quantum dots, drug delivery, pH-sensitive, controlled release, traceable

  15. Effects of chemotherapeutics on organotypic corticostriatal slice cultures identified by a panel of fluorescent and immunohistochemical markers

    DEFF Research Database (Denmark)

    Nørregaard, Annette; Jensen, Stine Skov; Kolenda, Jesper

    2012-01-01

    no toxicity was observed. Corresponding immunostaining showed loss of MAP2 and increased expression of GFAP and p25α for cultures exposed to 1,000 nM VCR. Cultures exposed to high concentrations of ACNU and IM disintegrated, leaving no tissue for histology. In conclusion, corticostriatal slice cultures...... specific neuronal and glial degeneration induced by chemotherapeutics in organotypic rat corticostriatal slice cultures. The slice cultures were exposed to the alkylating agents temozolomide (TMZ) and nimustine (ACNU), the tyrosine kinase inhibitor imatinib mesylate (IM) and the microtubule...

  16. Present studies on the radio-sterilized drugs

    International Nuclear Information System (INIS)

    Marciniec, B.; Dettlaff, K.

    2007-01-01

    Lecture presents present status of radiosterilization of drugs and medical materials as compared to other sterilization methods. Literature review is shown on degradation of different kinds of drugs sterilized upon action of the sterilising doses of radiation

  17. Mesoporous Fe{sub 3}O{sub 4}/hydroxyapatite composite for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lina; He, Xiaomei; Wu, Zhenyu, E-mail: zhenyuwuhn@sina.com

    2014-11-15

    Highlights: • Mesoporous Fe{sub 3}O{sub 4}/hydroxyapatite composite was synthesized by a simple, efficient and environmental friendly method. • The prepared material had a large surface area, high pore volume, and good magnetic separability. • DOX-loaded Fe{sub 3}O{sub 4}/hydroxyapatite composite exhibited surprising slow drug release behavior and pH-dependent behavior. - Abstract: In this contribution, we introduced a simple, efficient, and green method of preparing a mesoporous Fe{sub 3}O{sub 4}/hydroxyapatite (HA) composite. The as-prepared material had a large surface area, high pore volume, and good magnetic separability, which made it suitable for targeted drug delivery systems. The chemotherapeutic agent doxorubicin (DOX) was used to investigate the drug release behavior of Fe{sub 3}O{sub 4}/HA composite. The drug release profiles displayed a little burst effect and pH-dependent behavior. The release rate of DOX at pH 5.8 was larger than that at pH 7.4, which could be attributed to DOX protonation in acid medium. In addition, the released DOX concentrations remained at 0.83 and 1.39 μg/ml at pH 7.4 and 5.8, respectively, which indicated slow, steady, and safe release rates. Therefore, the as-prepared Fe{sub 3}O{sub 4}/hydroxyapatite composite could be an efficient platform for targeted anticancer drug delivery.

  18. Designed Synthesis of Nanostructured Magnetic Hydroxyapatite Based Drug Nanocarrier for Anti-Cancer Drug Delivery toward the Treatment of Human Epidermoid Carcinoma

    Directory of Open Access Journals (Sweden)

    Bharath Govindan

    2017-06-01

    Full Text Available Superparamagnetic Fe3O4 nanoparticles on hydroxyapatite nanorod based nanostructures (Fe3O4/HAp were synthesized using hydrothermal techniques at 180 °C for 12 h and were used as drug delivery nanocarriers for cancer cell therapeutic applications. The synthesized Fe3O4/HAp nanocomposites were characterized by X-ray diffraction analysis (XRD, Field emission scanning electron microscopy (FESEM, Fourier transform infrared spectroscopy (FTIR, Brunauer-Emmett-Teller (BET-analysis, and vibrating sample magnetometry (VSM. The morphologies of the Fe3O4/HAp nanocomposites show 15 nm Fe3O4 nanoparticles dispersed in the form of rods. The BET result shows that the synthesized samples have a high specific surface area of 80 m2 g−1 with mesoporous structures. Magnetic measurements revealed that the sample has high saturation magnetization of 18 emu/g with low coercivity. The Fe3O4/HAp nanocomposites had a large specific surface area (SSA, high mesoporous volume, and good magnetic property, which made it a suitable nanocarrier for targeted drug delivery systems. The chemotherapeutic agent, andrographolide, was used to investigate the drug delivery behavior of the Fe3O4/HAp nanocomposites. The human epidermoid skin cancer cells (A431 were used as the model targeting cell lines by treating with andrographolide loaded Fe3O4/HAp nanosystems and were further evaluated for their antiproliferative activities and the induction of apoptosis. Also, the present nanocomposite shows better biocompatibility, therefore it can be used as suitable drug vehicle for cancer therapy applications.

  19. Mathematical modeling of antibody drug conjugates with the target and tubulin dynamics to predict AUC.

    Science.gov (United States)

    Byun, Jong Hyuk; Jung, Il Hyo

    2018-04-14

    Antibody drug conjugates (ADCs)are one of the most recently developed chemotherapeutics to treat some types of tumor cells. They consist of monoclonal antibodies (mAbs), linkers, and potent cytotoxic drugs. Unlike common chemotherapies, ADCs combine selectively with a target at the surface of the tumor cell, and a potent cytotoxic drug (payload) effectively prevents microtubule polymerization. In this work, we construct an ADC model that considers both the target of antibodies and the receptor (tubulin) of the cytotoxic payloads. The model is simulated with brentuximab vedotin, one of ADCs, and used to investigate the pharmacokinetic (PK) characteristics of ADCs in vivo. It also predicts area under the curve (AUC) of ADCs and the payloads by identifying the half-life. The results show that dynamical behaviors fairly coincide with the observed data and half-life and capture AUC. Thus, the model can be used for estimating some parameters, fitting experimental observations, predicting AUC, and exploring various dynamical behaviors of the target and the receptor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Hydrogel-based 3D model of patient-derived prostate xenograft tumors suitable for drug screening.

    Science.gov (United States)

    Fong, Eliza L S; Martinez, Mariane; Yang, Jun; Mikos, Antonios G; Navone, Nora M; Harrington, Daniel A; Farach-Carson, Mary C

    2014-07-07

    The lack of effective therapies for bone metastatic prostate cancer (PCa) underscores the need for accurate models of the disease to enable the discovery of new therapeutic targets and to test drug sensitivities of individual tumors. To this end, the patient-derived xenograft (PDX) PCa model using immunocompromised mice was established to model the disease with greater fidelity than is possible with currently employed cell lines grown on tissue culture plastic. However, poorly adherent PDX tumor cells exhibit low viability in standard culture, making it difficult to manipulate these cells for subsequent controlled mechanistic studies. To overcome this challenge, we encapsulated PDX tumor cells within a three-dimensional hyaluronan-based hydrogel and demonstrated that the hydrogel maintains PDX cell viability with continued native androgen receptor expression. Furthermore, a differential sensitivity to docetaxel, a chemotherapeutic drug, was observed as compared to a traditional PCa cell line. These findings underscore the potential impact of this novel 3D PDX PCa model as a diagnostic platform for rapid drug evaluation and ultimately push personalized medicine toward clinical reality.

  1. Theoretical approach to the destruction or sterilization of drugs in aqueous solution

    International Nuclear Information System (INIS)

    Slegers, Catherine; Tilquin, Bernard

    2005-01-01

    Two novel applications in the radiation processing of aqueous solutions of drugs are the sterilization of injectable drugs and the decontamination of hospital wastewaters by ionizing radiation. The parameters influencing the destruction of the drug in aqueous solutions are studied with a computer simulation program. This theoretical approach has revealed that the dose rate is the most important parameter that can be easily varied in order to optimize the destruction or the protection of the drug

  2. DOT1L inhibitor EPZ-5676 displays synergistic antiproliferative activity in combination with standard of care drugs and hypomethylating agents in MLL-rearranged leukemia cells.

    Science.gov (United States)

    Klaus, Christine R; Iwanowicz, Dorothy; Johnston, Danielle; Campbell, Carly A; Smith, Jesse J; Moyer, Mikel P; Copeland, Robert A; Olhava, Edward J; Scott, Margaret Porter; Pollock, Roy M; Daigle, Scott R; Raimondi, Alejandra

    2014-09-01

    EPZ-5676 [(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-((((1r,3S)-3-(2-(5-(tert-butyl)-1H-benzo[d]imidazol-2-yl)ethyl)cyclobutyl)(isopropyl)amino)methyl)tetrahydrofuran-3,4-diol], a small-molecule inhibitor of the protein methyltransferase DOT1L, is currently under clinical investigation for acute leukemias bearing MLL-rearrangements (MLL-r). In this study, we evaluated EPZ-5676 in combination with standard of care (SOC) agents for acute leukemias as well as other chromatin-modifying drugs in cellular assays with three human acute leukemia cell lines: MOLM-13 (MLL-AF9), MV4-11 (MLL-AF4), and SKM-1 (non-MLL-r). Studies were performed to evaluate the antiproliferative effects of EPZ-5676 combinations in a cotreatment model in which the second agent was added simultaneously with EPZ-5676 at the beginning of the assay, or in a pretreatment model in which cells were incubated for several days in the presence of EPZ-5676 prior to the addition of the second agent. EPZ-5676 was found to act synergistically with the acute myeloid leukemia (AML) SOC agents cytarabine or daunorubicin in MOLM-13 and MV4-11 MLL-r cell lines. EPZ-5676 is selective for MLL-r cell lines as demonstrated by its lack of effect either alone or in combination in the nonrearranged SKM-1 cell line. In MLL-r cells, the combination benefit was observed even when EPZ-5676 was washed out prior to the addition of the chemotherapeutic agents, suggesting that EPZ-5676 sets up a durable, altered chromatin state that enhances the chemotherapeutic effects. Our evaluation of EPZ-5676 in conjunction with other chromatin-modifying drugs also revealed a consistent combination benefit, including synergy with DNA hypomethylating agents. These results indicate that EPZ-5676 is highly efficacious as a single agent and synergistically acts with other chemotherapeutics, including AML SOC drugs and DNA hypomethylating agents in MLL-r cells. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer

    International Nuclear Information System (INIS)

    Kangaspeska, Sara; Hultsch, Susanne; Jaiswal, Alok; Edgren, Henrik; Mpindi, John-Patrick; Eldfors, Samuli; Brück, Oscar; Aittokallio, Tero; Kallioniemi, Olli

    2016-01-01

    The estrogen receptor (ER) inhibitor tamoxifen reduces breast cancer mortality by 31 % and has served as the standard treatment for ER-positive breast cancers for decades. However, 50 % of advanced ER-positive cancers display de novo resistance to tamoxifen, and acquired resistance evolves in 40 % of patients who initially respond. Mechanisms underlying resistance development remain poorly understood and new therapeutic opportunities are urgently needed. Here, we report the generation and characterization of seven tamoxifen-resistant breast cancer cell lines from four parental strains. Using high throughput drug sensitivity and resistance testing (DSRT) with 279 approved and investigational oncology drugs, exome-sequencing and network analysis, we for the first time, systematically determine the drug response profiles specific to tamoxifen resistance. We discovered emerging vulnerabilities towards specific drugs, such as ERK1/2-, proteasome- and BCL-family inhibitors as the cells became tamoxifen-resistant. Co-resistance to other drugs such as the survivin inhibitor YM155 and the chemotherapeutic agent paclitaxel also occurred. This study indicates that multiple molecular mechanisms dictate endocrine resistance, resulting in unexpected vulnerabilities to initially ineffective drugs, as well as in emerging co-resistances. Thus, combatting drug-resistant tumors will require patient-tailored strategies in order to identify new drug vulnerabilities, and to understand the associated co-resistance patterns. The online version of this article (doi:10.1186/s12885-016-2452-5) contains supplementary material, which is available to authorized users

  4. Snail-induced epithelial-to-mesenchymal transition of MCF-7 breast cancer cells: systems analysis of molecular changes and their effect on radiation and drug sensitivity

    International Nuclear Information System (INIS)

    Mezencev, Roman; Matyunina, Lilya V.; Jabbari, Neda; McDonald, John F.

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) has been associated with the acquisition of metastatic potential and the resistance of cancer cells to therapeutic treatments. MCF-7 breast cancer cells engineered to constitutively express the zinc-finger transcriptional repressor gene Snail (MCF-7-Snail cells) have been previously shown to display morphological and molecular changes characteristic of EMT. We report here the results of a comprehensive systems level molecular analysis of changes in global patterns of gene expression and levels of glutathione and reactive oxygen species (ROS) in MCF-7-Snail cells and the consequence of these changes on the sensitivity of cells to radiation treatment and therapeutic drugs. Snail-induced changes in global patterns of gene expression were identified by microarray profiling using the Affymetrix platform (U133 Plus 2.0). The resulting data were processed and analyzed by a variety of system level analytical methods. Levels of ROS and glutathione (GSH) were determined by fluorescent and luminescence assays, and nuclear levels of NF-κB protein were determined by an ELISA based method. The sensitivity of cells to ionizing radiation and anticancer drugs was determined using a resazurin-based cell cytotoxicity assay. Constitutive ectopic expression of Snail in epithelial-like, luminal A-type MCF-7 cells induced significant changes in the expression of >7600 genes including gene and miRNA regulators of EMT. Mesenchymal-like MCF-7-Snail cells acquired molecular profiles characteristic of triple-negative, claudin-low breast cancer cells, and displayed increased sensitivity to radiation treatment, and increased, decreased or no change in sensitivity to a variety of anticancer drugs. Elevated ROS levels in MCF-7-Snail cells were unexpectedly not positively correlated with NF-κB activity. Ectopic expression of Snail in MCF-7 cells resulted in morphological and molecular changes previously associated with EMT. The results underscore the

  5. Mechanisms of radio-resistance and its modification by chemicals. Coordinated programme on improvement in radiotherapy of cancer using modifiers of radiosensitivity of cells

    International Nuclear Information System (INIS)

    Singh, B.B.; Shenoy, M.

    1982-01-01

    Several membrane specific drugs have been tested for their radiosensitizing effects under hypoxia/anoxia using E.Coli cells. Among these chlorpromazine (CPZ) proved most effective. Investigations on its mechanism of action revealed partial involvement of radiolytic transients and its inhibitory effect on DNA repair and synthesis. A ''coctail'' consisting of CPZ and other drugs like procaine lignocaine, or telsacaine sensitized hypoxic bacteria beyond ''oxygen effect''. CPZ also showed preferential cytotoxicity to anoxic/hypoxic bacteria. Prolonged treatment of cells with CPZ under hypoxia at elevated temperatures (up to 39 0 C) proved more lethal and the surviving cells showed extreme radiosensitivity (DMF=0.11). These results therefore wave situ extension of investigations to tumours. Two animal tumours viz a fibrosarcoma and sarcoma 180 were grown on Swiss mice. CPZ enhanced the radiation induced regression of these solid tumours. CPZ on its own showed chemotherapeutic effect and controlled the growth of these tumours. The chemotherapeutic effect was further enhanced at hyperthermic temperatures (41 and 42 0 C). Pharmokinetic investigations on distribution and retention of CPZ in plasma, tumours and other organs have been completed using S-35 labelled CPZ. Clinical trials with human patients are being initiated. Attempts are also being made to target such drugs to tumour sites by encapsulating them in artificial liposomes and blood cells

  6. Effects of repeated administration of chemotherapeutic agents tamoxifen, methotrexate, and 5-fluorouracil on the acquisition and retention of a learned response in mice

    Science.gov (United States)

    Foley, John J.; Clark-Vetri, Rachel; Raffa, Robert B.

    2011-01-01

    Rationale A number of cancer chemotherapeutic agents have been associated with a loss of memory in breast cancer patients although little is known of the causality of this effect. Objectives To assess the potential cognitive effects of repeated exposure to chemotherapeutic agents, we administered the selective estrogen receptor modulator tamoxifen or the antimetabolite chemotherapy, methotrexate, and 5-fluorouracil, alone and in combination to mice and tested them in a learning and memory assay. Methods Swiss-Webster male mice were injected with saline, 32 mg/kg tamoxifen, 3.2 or 32 mg/kg methotrexate, 75 mg/kg 5-fluorouracil, 3.2 or 32 mg/kg methotrexate in combination with 75 mg/kg 5-fluorouracil once per week for 3 weeks. On days 23 and 24, mice were tested for acquisition and retention of a nose-poke response in a learning procedure called autoshaping. In addition, the acute effects of tamoxifen were assessed in additional mice in a similar procedure. Results The chemotherapeutic agents alone and in combination reduced body weight relative to saline treatment over the course of 4 weeks. Repeated treatment with tamoxifen produced both acquisition and retention effects relative to the saline-treated group although acute tamoxifen was without effect except at a behaviorally toxic dose. Repeated treatment with methotrexate in combination with 5-fluorouracil produced effects on retention, but the magnitude of these changes depended on the methotrexate dose. Conclusions These data demonstrate that repeated administration of tamoxifen or certain combination of methotrexate and 5-fluorouracil may produce deficits in the acquisition or retention of learned responses which suggest potential strategies for prevention or remediation might be considered in vulnerable patient populations. PMID:21537942

  7. Studies on implantation of 198Au-grain as a radiation therapy to cancer tissue

    International Nuclear Information System (INIS)

    Machida, Seiro

    1975-01-01

    The most effective dose of 198 Au-grain to be implanted and the clinicopathological findings after treatment are discussed. A safe dose of 198 Au-grain which could be implanted subcutaneously in rats, was under 2 mCi migration of 198 Au-grain was not recognized. In Yoshida sarcoma, transplanted subcutaneously into the backs of rats the most effective dose of 198 Au-grain was 2mCi/g of tumour tissue. However, about half of the rats implanted with this dosage died from the growing tumour. Histological examination of the implanted tumour tissue, revealed necrosis within a distance of only 0.4 mm from 198 Au-grain particles. In small metastatic tumours after 198 Au-grain implantation, there was necrosis i.e. pyknosis and karyolysis of the tumour cells, fibrosis and hyaline degeneration of the stroma. However, hardly any change in tumour size was detectable because of swelling and induration around the tumour. In some of the cases treated with 198 Au-grain combined with 60 Co or with chemotherapeutics, the tumour size was evidently reduced and became non-palable. Side effects were minimal except in one case which was afflicted temporarily with radiation sickness after an implantation of 200 mCi 198 Au-grain. In conclusion, the implantation of 198 Au-grain into the tumour was found to be very safe for the patients with surgically incurable cancer. Because of the short range of 198 Au-grain radioactivity, homogeneous density of 198 Au-grain into the whole tumour tissue is required. A combination with other radiations and/or with chemotherapeutics is also recommended. (author)

  8. Chemotherapeutic Drugs: DNA Damage and Repair in Glioblastoma.

    Science.gov (United States)

    Annovazzi, Laura; Mellai, Marta; Schiffer, Davide

    2017-05-26

    Despite improvements in therapeutic strategies, glioblastoma (GB) remains one of the most lethal cancers. The presence of the blood-brain barrier, the infiltrative nature of the tumor and several resistance mechanisms account for the failure of current treatments. Distinct DNA repair pathways can neutralize the cytotoxicity of chemo- and radio-therapeutic agents, driving resistance and tumor relapse. It seems that a subpopulation of stem-like cells, indicated as glioma stem cells (GSCs), is responsible for tumor initiation, maintenance and recurrence and they appear to be more resistant owing to their enhanced DNA repair capacity. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis and in the modulation of therapeutic treatment effects. In this review, we try to summarize the knowledge concerning the main molecular mechanisms involved in the removal of genotoxic lesions caused by alkylating agents, emphasizing the role of GSCs. Beside their increased DNA repair capacity in comparison with non-stem tumor cells, GSCs show a constitutive checkpoint expression that enables them to survive to treatments in a quiescent, non-proliferative state. The targeted inhibition of checkpoint/repair factors of DDR can contribute to eradicate the GSC population and can have a great potential therapeutic impact aiming at sensitizing malignant gliomas to treatments, improving the overall survival of patients.

  9. Role of 14-3-3σ in poor prognosis and in radiation and drug resistance of human pancreatic cancers

    International Nuclear Information System (INIS)

    Li, Zhaomin; Dong, Zizheng; Myer, David; Yip-Schneider, Michele; Liu, Jianguo; Cui, Ping; Schmidt, C Max; Zhang, Jian-Ting

    2010-01-01

    Pancreatic cancer is the fourth leading cause of death in the US. Unlike other solid tumors such as testicular cancer which are now curable, more than 90% of pancreatic cancer patients die due to lack of response to therapy. Recently, the level of 14-3-3σ mRNA was found to be increased in pancreatic cancers and this increased expression may contribute to the failure in treatment of pancreatic cancers. In the present study, we tested this hypothesis. Western blot analysis was used to determine 14-3-3σ protein level in fresh frozen tissues and was correlated to clinical outcome. A stable cell line expressing 14-3-3σ was established and the effect of 14-3-3σ over-expression on cellular response to radiation and anticancer drugs were tested using SRB assay and clonogenic assays. Cell cycle distribution and apoptosis analyses were performed using propidium iodide staining and PARP cleavage assays. We found that 14-3-3σ protein level was increased significantly in about 71% (17 of 24) of human pancreatic cancer tissues and that the 14-3-3σ protein level in cancers correlated with lymph node metastasis and poor prognosis. Furthermore, we demonstrated that over-expression of 14-3-3σ in a pancreatic cancer cell line caused resistance to γ-irradiation as well as anticancer drugs by causing resistance to treatment-induced apoptosis and G2/M arrest. The increased level of 14-3-3σ protein likely contributes to the poor clinical outcome of human pancreatic cancers by causing resistance to radiation and anticancer drugs. Thus, 14-3-3σ may serve as a prognosis marker predicting survival of pancreatic cancer patients and guide the clinical treatment of these patients

  10. Overview of drug-resistant tuberculosis worldwide

    Directory of Open Access Journals (Sweden)

    Ali A Velayati

    2016-01-01

    Full Text Available Even in the 21st century, we are losing the battle against eradication of tuberculosis (TB. In 2015, 9.6 million people were estimated to have fallen ill with TB, of which 1.5 million people died. This is the real situation despite the well-structured treatment programs and availability of effective treatment options since the 1950s. The high mortality rate has been associated with other risk factors, such as the HIV epidemic, underlying diseases, and decline of socioeconomic standards. Furthermore, the problem of drug resistance that was recognized in the early days of the chemotherapeutic era raises serious concerns. Although resistance to a single agent is the most common type, resistance to multiple agents is less frequent but of greater concern. The World Health Organization estimated approximately 5% of all new TB cases involved multidrug-resistant (MDR-TB. The estimation for MDR-TB is 3.3% for new cases, and 20.5% for previously treated cases. Failure to identify and appropriately treat MDR-TB patients has led to more dangerous forms of resistant TB. Based on World Health Organization reports, 5% of global TB cases are now considered to be extensively drug resistant (XDR, defined as MDR with additional resistance to both fluoroquinolones and at least one second-line injectable drug. XDR-TB had been reported by 105 countries by 2015. An estimated 9.7% of people with MDR-TB have XDR-TB. More recently, another dangerous form of TB bacillus was identified, which was named totally drug resistant (TDR-TB or extremely drug resistant TB. These strains were resistant to all first- and second-line anti-TB drugs. Collectively, it is accepted that 2% of MDR-TB strains turn to be TDR-TB. This number, however, may not reflect the real situation, as many laboratories in endemic TB countries do not have proper facilities and updated protocols to detect the XDR or TDR-TB strains. Nevertheless, existing data emphasize the need for additional control

  11. Medical Device Recalls in Radiation Oncology: Analysis of US Food and Drug Administration Data, 2002-2015.

    Science.gov (United States)

    Connor, Michael J; Tringale, Kathryn; Moiseenko, Vitali; Marshall, Deborah C; Moore, Kevin; Cervino, Laura; Atwood, Todd; Brown, Derek; Mundt, Arno J; Pawlicki, Todd; Recht, Abram; Hattangadi-Gluth, Jona A

    2017-06-01

    To analyze all recalls involving radiation oncology devices (RODs) from the US Food and Drug Administration (FDA)'s recall database, comparing these with non-radiation oncology device recalls to identify discipline-specific trends that may inform improvements in device safety. Recall data on RODs from 2002 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems). Outcomes included determined cause of recall, recall class (severity), quantity in commerce, time until recall termination (date FDA determines recall is complete), and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by Pearson χ 2 test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. There were 502 ROD recalls and 9534 other class II device recalls during 2002 to 2015. Most recalls were for external beam devices (66.7%) and planning systems (22.9%), and recall events peaked in 2011. Radiation oncology devices differed significantly from other devices in all recall outcomes (P≤.04). Recall cause was commonly software related (49% vs 10% for other devices). Recall severity was more often moderate among RODs (97.6% vs 87.2%) instead of severe (0.2% vs 4.4%; Panalysis of recall data can identify areas for device improvement, such as better system design among RODs. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The Development of Countermeasures for Space Radiation Induced Adverse Health Effects

    Science.gov (United States)

    Kennedy, Ann

    The Development of Countermeasures for Space Radiation Induced Adverse Health Effects Ann R. Kennedy Department of Radiation Oncology, University of Pennsylvania School of Medicine, 195 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA, United States 19104-6072 The development of countermeasures for radiation induced adverse health effects is a lengthy process, particularly when the countermeasure/drug has not yet been evaluated in human trials. One example of a drug developed from the bench to the clinic is the soybean-derived Bowman-Birk inhibitor (BBI), which has been developed as a countermeasure for radiation induced cancer. It was originally identified as a compound/drug that could prevent the radiation induced carcinogenic process in an in vitro assay system in 1975. The first observation that BBI could inhibit carcinogenesis in animals was in 1985. BBI received Investigational New Drug (IND) Status with the U.S. Food and Drug Administration (FDA) in 1992 (after several years of negotiation with the FDA about the potential IND status of the drug), and human trials began at that time. Phase I, II and III human trials utilizing BBI have been performed under several INDs with the FDA, and an ongoing Phase III trial will be ending in the very near future. Thus, the drug has been in development for 35 years at this point, and it is still not a prescription drug on the market which is available for human use. A somewhat less time-consuming process is to evaluate compounds that are on the GRAS (Generally Recognized as Safe) list. These compounds would include some over-the-counter medications, such as antioxidant vitamins utilized in human trials at the levels for which Recommended Dietary Allowances (RDAs) have been established. To determine whether GRAS substances are able to have beneficial effects on radiation induced adverse health effects, it is still likely to be a lengthy process involving many years to potentially decades of human trial work. The

  13. Cyanobacteria: photosynthetic factories combining biodiversity, radiation resistance, and genetics to facilitate drug discovery.

    Science.gov (United States)

    Cassier-Chauvat, Corinne; Dive, Vincent; Chauvat, Franck

    2017-02-01

    Cyanobacteria are ancient, abundant, and widely diverse photosynthetic prokaryotes, which are viewed as promising cell factories for the ecologically responsible production of chemicals. Natural cyanobacteria synthesize a vast array of biologically active (secondary) metabolites with great potential for human health, while a few genetic models can be engineered for the (low level) production of biofuels. Recently, genome sequencing and mining has revealed that natural cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The corresponding panoply of enzymes (polyketide synthases and non-ribosomal peptide synthases) of interest for synthetic biology can still be increased through gene manipulations with the tools available for the few genetically manipulable strains. In this review, we propose to exploit the metabolic diversity and radiation resistance of cyanobacteria, and when required the genetics of model strains, for the production and radioactive ( 14 C) labeling of bioactive products, in order to facilitate the screening for new drugs.

  14. Digesting a Path Forward: The Utility of Collagenase Tumor Treatment for Improved Drug Delivery.

    Science.gov (United States)

    Dolor, Aaron; Szoka, Francis C

    2018-06-04

    Collagen and hyaluronan are the most abundant components of the extracellular matrix (ECM) and their overexpression in tumors is linked to increased tumor growth and metastasis. These ECM components contribute to a protective tumor microenvironment by supporting a high interstitial fluid pressure and creating a tortuous setting for the convection and diffusion of chemotherapeutic small molecules, antibodies, and nanoparticles in the tumor interstitial space. This review focuses on the research efforts to deplete extracellular collagen with collagenases to normalize the tumor microenvironment. Although collagen synthesis inhibitors are in clinical development, the use of collagenases is contentious and clinically untested in cancer patients. Pretreatment of murine tumors with collagenases increased drug uptake and diffusion 2-10-fold. This modest improvement resulted in decreased tumor growth, but the benefits of collagenase treatment are confounded by risks of toxicity from collagen breakdown in healthy tissues. In this review, we evaluate the published in vitro and in vivo benefits and limitations of collagenase treatment to improve drug delivery.

  15. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems

    Directory of Open Access Journals (Sweden)

    Kaur R

    2013-01-01

    Full Text Available Randeep Kaur, Ildiko BadeaDrug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaAbstract: Detonation nanodiamonds (NDs are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.Keywords: dispersion, surface functionalization, toxicity, carriers, fluorescence, light scattering

  16. Oxygen carrying perfluorochemical emulsion as an adjuvant to radiation therapy

    International Nuclear Information System (INIS)

    Teicher, B.A.; Rose, C.M.

    1984-01-01

    The potential of a perfluorochemical emulsion which as an excellent carrying capacity for oxygen to enhance the ability of radiation therapy to delay the growth of Lewis lung tumor was examined. There was a highly significant effect produced by the addition of perfluorochemical emulsion and carbogen breathing in combination with irradiation. With single dose x-ray treatment the dose of perfluorochemical emulsion was varied from 0.05-0.6 ml addition to the blood volume of the animals. The dose response effect was very broad peaking at 0.3-0.4 ml which gave a dose modifying effect of 2.8 +- 0.6 with 1000 rad of x-rays. The addition of 0.3 ml of perfluorochemical free annex solution with carbogen breathing produced a small enhancement in tumor growth delay addition of the same volume of the complete emulsion increased the tumor growth delay time about 3-fold compared to the annex solution. When the perfluorochemical emulsion was added to a fractionated course of radiation therapy a dose modifying effect of 1.8 +- 0.3 was obtained. Oxygen carrying perfluorochemical emulsions may provide a nontoxic clinically useful means of increasing the effectiveness of radiation therapy and of certain chemotherapeutic agents

  17. Orgotein in radiation treatment of bladder cancer

    International Nuclear Information System (INIS)

    Nielsen, O.S.; Overgaard, J.; Overgaard, M.; Steenholdt, S.; Jakobsen, A.; Sell, A.; Kommunehospitalet, Aarhus

    1987-01-01

    The possible protective effect of orgotein (a superoxide dismutase) an radiation cystitis and proctitis was studied in patients with carcinoma of the urinary bladder. A double-blind study in 60 patients was planned but due to unacceptable side effects only 30 patients were included. Radiation treatment was given with curative intent at a dose of 63 Gy in 30 fractions. Orgotein was injected 15 min after each daily radiation treatment at a dose of 4 or 8 mg. No effect of orgotein on tumour radiation response or on the acute radiation reactions in the bladder and rectum was detected. Marked subcutaneous infiltration and redness was seen at the local injection site in 5 patients. No general symptoms were observed. Intradermal tests and antibody titration tests showed that the local reactions were due to allergic reactions to the drug itself. The lack of radioprotective effect and the high frequency of unaccaptable side effects makes orgotein an unsuitable drug in climical radiation therapy. (orig.)

  18. Protective effects of cistanches herba aqueous extract on cisplatin ...

    African Journals Online (AJOL)

    Background: Chemotherapeutic treatment of premenopausal women has been linked to premature ovarian failure (POF). Cistanches Herba (CH) is a commonly used male impotence and female infertility treatment in China; however, whether CH protects ovaries from chemotherapeutic drug-induced POF remains unclear.

  19. Perspectives on the role of bystander effect and genomic instability on therapy-induced secondary malignancy

    International Nuclear Information System (INIS)

    Perumal, Venkatachalam; Raavi, Venkateswarlu; Kanagaraj, Karthik; Shangamithra, V.; Paul, Solomon F.D.; Chinnadurai, M.

    2017-01-01

    Deviation from the orchestra of regulated cell division into unregulated and then result into the formation of tumor, is known as carcinogenesis. While causes and hallmarks of many cancer types are well established, newer concepts on tumor cell response to treatment, challenges established therapeutic regime and drives into alternative toward the better management. The phenomena of therapeutics induced bystander response, and genomic instability on late effects of cancer therapy is emerging as a newer challenge. Bystander response is defined as the manifestation of radiation/chemotherapy drug signatures on the unexposed cells which are in the closer vicinity of the directly exposed; on the other hand, genomic instability is defined as the expression of radiation/chemotherapy drug signatures in the progeny of exposed cells. Unequivocally, existence of those phenomena has been demonstrated with many cell types (both in vitro and in vivo) followed by radiation and widely used chemotherapeutic drugs. Nevertheless, it is also revealed that the effects are variable and depend on dose, type of radiation/chemicals agents, experimental model, type of donor and recipient cells, and biomarkers adopted; moreover, to observe those effects, reactive oxygen species has been reported as leading mediators of those responses when compared to other molecules such as interleukins, cytokines, and inflammatory markers. Available data on those phenomena and our findings suggest that a role of therapeutic drugs induced bystander effects, and genomic instability on the development of secondary malignancy cannot be ruled out completely. (author)

  20. Organic-Inorganic Hybrid Hollow Mesoporous Organosilica Nanoparticles for Efficient Ultrasound-Based Imaging and Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Xiaoqin Qian

    2014-01-01

    Full Text Available A novel anticancer drug delivery system with contrast-enhanced ultrasound-imaging performance was synthesized by a typical hard-templating method using monodispersed silica nanoparticles as the templates, which was based on unique molecularly organic/inorganic hybrid hollow periodic mesoporous organosilicas (HPMOs. The highly dispersed HPMOs show the uniform spherical morphology, large hollow interior, and well-defined mesoporous structures, which are very beneficial for ultrasound-based theranostics. The obtained HPMOs exhibit excellent performances in contrast-enhanced ultrasonography both in vitro and in vivo and can be used for the real-time determination of the progress of lesion tissues during the chemotherapeutic process. Importantly, hydrophobic paclitaxel- (PTX- loaded HPMOs combined with ultrasound irradiation show fast ultrasound responsiveness for controlled drug release and higher in vitro and in vivo tumor inhibition rates compared with free PTX and PTX-loaded HPMOs, which is due to the enhanced ultrasound-triggered drug release and ultrasound-induced cavitation effect. Therefore, the achieved novel HPMOs-based nanoparticle systems will find broad application potentials in clinically ultrasound-based imaging and auxiliary tumor chemotherapy.