WorldWideScience

Sample records for chemotaxis signalling complex

  1. Chemotaxis receptor complexes: from signaling to assembly.

    Directory of Open Access Journals (Sweden)

    Robert G Endres

    2007-07-01

    Full Text Available Complexes of chemoreceptors in the bacterial cytoplasmic membrane allow for the sensing of ligands with remarkable sensitivity. Despite the excellent characterization of the chemotaxis signaling network, very little is known about what controls receptor complex size. Here we use in vitro signaling data to model the distribution of complex sizes. In particular, we model Tar receptors in membranes as an ensemble of different sized oligomer complexes, i.e., receptor dimers, dimers of dimers, and trimers of dimers, where the relative free energies, including receptor modification, ligand binding, and interaction with the kinase CheA determine the size distribution. Our model compares favorably with a variety of signaling data, including dose-response curves of receptor activity and the dependence of activity on receptor density in the membrane. We propose that the kinetics of complex assembly can be measured in vitro from the temporal response to a perturbation of the complex free energies, e.g., by addition of ligand.

  2. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex.

    Directory of Open Access Journals (Sweden)

    Davi R Ortega

    2016-02-01

    Full Text Available Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.

  3. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex.

    Science.gov (United States)

    Ortega, Davi R; Zhulin, Igor B

    2016-02-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.

  4. Signaling mechanisms for regulation of chemotaxis

    Institute of Scientific and Technical Information of China (English)

    Dianqing WU

    2005-01-01

    Chemotaxis is a fascinating biological process, through which a cell migrates along a shallow chemoattractant gradient that is less than 5% difference between the anterior and posterior of the cell. Chemotaxis is composed of two independent,but interrelated processes-motility and directionality, both of which are regulated by extracellular stimuli, chemoattractants.In this mini-review, recent progresses in the understanding of the regulation of leukocyte chemotaxis by chemoattractant signaling are reviewed.

  5. Chemotaxis signaling systems in model beneficial plant-bacteria associations.

    Science.gov (United States)

    Scharf, Birgit E; Hynes, Michael F; Alexandre, Gladys M

    2016-04-01

    Beneficial plant-microbe associations play critical roles in plant health. Bacterial chemotaxis provides a competitive advantage to motile flagellated bacteria in colonization of plant root surfaces, which is a prerequisite for the establishment of beneficial associations. Chemotaxis signaling enables motile soil bacteria to sense and respond to gradients of chemical compounds released by plant roots. This process allows bacteria to actively swim towards plant roots and is thus critical for competitive root surface colonization. The complete genome sequences of several plant-associated bacterial species indicate the presence of multiple chemotaxis systems and a large number of chemoreceptors. Further, most soil bacteria are motile and capable of chemotaxis, and chemotaxis-encoding genes are enriched in the bacteria found in the rhizosphere compared to the bulk soil. This review compares the architecture and diversity of chemotaxis signaling systems in model beneficial plant-associated bacteria and discusses their relevance to the rhizosphere lifestyle. While it is unclear how controlling chemotaxis via multiple parallel chemotaxis systems provides a competitive advantage to certain bacterial species, the presence of a larger number of chemoreceptors is likely to contribute to the ability of motile bacteria to survive in the soil and to compete for root surface colonization.

  6. Protein Connectivity in Chemotaxis Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Stephan Eismann

    2015-12-01

    Full Text Available The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures.

  7. DMPD: Cellular signaling in macrophage migration and chemotaxis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11073096 Cellular signaling in macrophage migration and chemotaxis. Jones GE. J Leu...koc Biol. 2000 Nov;68(5):593-602. (.png) (.svg) (.html) (.csml) Show Cellular signaling in macrophage migration and chemotax...is. PubmedID 11073096 Title Cellular signaling in macrophage migration and chemotaxis. Autho

  8. Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function

    Directory of Open Access Journals (Sweden)

    Antommattei Frances M

    2008-10-01

    Full Text Available Abstract Background Geobacter species are δ-Proteobacteria and are often the predominant species in a variety of sedimentary environments where Fe(III reduction is important. Their ability to remediate contaminated environments and produce electricity makes them attractive for further study. Cell motility, biofilm formation, and type IV pili all appear important for the growth of Geobacter in changing environments and for electricity production. Recent studies in other bacteria have demonstrated that signaling pathways homologous to the paradigm established for Escherichia coli chemotaxis can regulate type IV pili-dependent motility, the synthesis of flagella and type IV pili, the production of extracellular matrix material, and biofilm formation. The classification of these pathways by comparative genomics improves the ability to understand how Geobacter thrives in natural environments and better their use in microbial fuel cells. Results The genomes of G. sulfurreducens, G. metallireducens, and G. uraniireducens contain multiple (~70 homologs of chemotaxis genes arranged in several major clusters (six, seven, and seven, respectively. Unlike the single gene cluster of E. coli, the Geobacter clusters are not all located near the flagellar genes. The probable functions of some Geobacter clusters are assignable by homology to known pathways; others appear to be unique to the Geobacter sp. and contain genes of unknown function. We identified large numbers of methyl-accepting chemotaxis protein (MCP homologs that have diverse sensing domain architectures and generate a potential for sensing a great variety of environmental signals. We discuss mechanisms for class-specific segregation of the MCPs in the cell membrane, which serve to maintain pathway specificity and diminish crosstalk. Finally, the regulation of gene expression in Geobacter differs from E. coli. The sequences of predicted promoter elements suggest that the alternative sigma factors

  9. Effects of receptor modification and temperature on dynamics of sensory complexes in Escherichia coli chemotaxis

    Directory of Open Access Journals (Sweden)

    Grosse Karin

    2011-10-01

    Full Text Available Abstract Background Extracellular stimuli in chemotaxis of Escherichia coli and other bacteria are processed by large clusters of sensory complexes. The stable core of these clusters is formed by transmembrane receptors, a kinase CheA, and an adaptor CheW, whereas adaptation enzymes CheR and CheB dynamically associate with the clusters via interactions with receptors and/or CheA. Several biochemical studies have indicated the dependence of the sensory complex stability on the adaptive modification state of receptors and/or on temperature, which may potentially allow environment-dependent tuning of its signalling properties. However, the extent of such regulation in vivo and its significance for chemotaxis remained unclear. Results Here we used fluorescence recovery after photobleaching (FRAP to confirm in vivo that the exchange of CheA and CheW shows a modest dependency on the level of receptor modification/activity. An even more dramatic effect was observed for the exchange kinetics of CheR and CheB, indicating that their association with clusters may depend on the ability to bind substrate sites on receptors and on the regulatory phosphorylation of CheB. In contrast, environmental temperature did not have a discernible effect on stability of the cluster core. Strain-specific loss of E. coli chemotaxis at high temperature could instead be explained by a heat-induced reduction in the chemotaxis protein levels. Nevertheless, high basal levels of chemotaxis and flagellar proteins in common wild type strains MG1655 and W3110 enabled these strains to maintain their chemotactic ability up to 42°C. Conclusions Our results confirmed that clusters formed by less modified receptors are more dynamic, which can explain the previously observed adjustment of the chemotaxis response sensitivity according to the level of background stimulation. We further propose that the dependency of CheR exchange on the availability of unmethylated sites on receptors is

  10. Dictyostelium Chemotaxis studied with fluorescence fluctuation spectroscopy

    NARCIS (Netherlands)

    Ruchira, A.

    2005-01-01

    The movement of cells in the direction of a chemical gradient, also known as chemotaxis, is a vital biological process. During chemotaxis, minute extracellular signals are translated into complex cellular responses such as change in morphology and motility. To understand the chemotaxis mechanism at

  11. Exponential signaling gain at the receptor level enhances signal-to-noise ratio in bacterial chemotaxis.

    Directory of Open Access Journals (Sweden)

    Silke Neumann

    Full Text Available Cellular signaling systems show astonishing precision in their response to external stimuli despite strong fluctuations in the molecular components that determine pathway activity. To control the effects of noise on signaling most efficiently, living cells employ compensatory mechanisms that reach from simple negative feedback loops to robustly designed signaling architectures. Here, we report on a novel control mechanism that allows living cells to keep precision in their signaling characteristics - stationary pathway output, response amplitude, and relaxation time - in the presence of strong intracellular perturbations. The concept relies on the surprising fact that for systems showing perfect adaptation an exponential signal amplification at the receptor level suffices to eliminate slowly varying multiplicative noise. To show this mechanism at work in living systems, we quantified the response dynamics of the E. coli chemotaxis network after genetically perturbing the information flux between upstream and downstream signaling components. We give strong evidence that this signaling system results in dynamic invariance of the activated response regulator against multiplicative intracellular noise. We further demonstrate that for environmental conditions, for which precision in chemosensing is crucial, the invariant response behavior results in highest chemotactic efficiency. Our results resolve several puzzling features of the chemotaxis pathway that are widely conserved across prokaryotes but so far could not be attributed any functional role.

  12. Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis.

    Directory of Open Access Journals (Sweden)

    Orion D Weiner

    2006-02-01

    Full Text Available Migrating cells need to make different actin assemblies at the cell's leading and trailing edges and to maintain physical separation of signals for these assemblies. This asymmetric control of activities represents one important form of cell polarity. There are significant gaps in our understanding of the components involved in generating and maintaining polarity during chemotaxis. Here we characterize a family of complexes (which we term leading edge complexes, scaffolded by hematopoietic protein 1 (Hem-1, that organize the neutrophil's leading edge. The Wiskott-Aldrich syndrome protein family Verprolin-homologous protein (WAVE2 complex, which mediates activation of actin polymerization by Rac, is only one member of this family. A subset of these leading edge complexes are biochemically separable from the WAVE2 complex and contain a diverse set of potential polarity-regulating proteins. RNA interference-mediated knockdown of Hem-1-containing complexes in neutrophil-like cells: (a dramatically impairs attractant-induced actin polymerization, polarity, and chemotaxis; (b substantially weakens Rac activation and phosphatidylinositol-(3,4,5-tris-phosphate production, disrupting the (phosphatidylinositol-(3,4,5-tris-phosphate/Rac/F-actin-mediated feedback circuit that organizes the leading edge; and (c prevents exclusion of activated myosin from the leading edge, perhaps by misregulating leading edge complexes that contain inhibitors of the Rho-actomyosin pathway. Taken together, these observations show that versatile Hem-1-containing complexes coordinate diverse regulatory signals at the leading edge of polarized neutrophils, including but not confined to those involving WAVE2-dependent actin polymerization.

  13. The photosensor protein Ppr of Rhodocista centenaria is linked to the chemotaxis signalling pathway

    Directory of Open Access Journals (Sweden)

    Kiefer Dorothee

    2010-11-01

    Full Text Available Abstract Background Rhodocista centenaria is a phototrophic α-proteobacterium exhibiting a phototactic behaviour visible as colony movement on agar plates directed to red light. As many phototrophic purple bacteria R. centenaria possesses a soluble photoactive yellow protein (Pyp. It exists as a long fusion protein, designated Ppr, consisting of three domains, the Pyp domain, a putative bilin binding domain (Bbd and a histidine kinase domain (Pph. The Ppr protein is involved in the regulation of polyketide synthesis but it is still unclear, how this is connected to phototaxis and chemotaxis. Results To elucidate the possible role of Ppr and Pph in the chemotactic network we studied the interaction with chemotactic proteins in vitro as well as in vivo. Matrix-assisted coelution experiments were performed to study the possible communication of the different putative binding partners. The kinase domain of the Ppr protein was found to interact with the chemotactic linker protein CheW. The formation of this complex was clearly ATP-dependent. Further results indicated that the Pph histidine kinase domain and CheW may form a complex with the chemotactic kinase CheAY suggesting a role of Ppr in the chemotaxis signalling pathway. In addition, when Ppr or Pph were expressed in Escherichia coli, the chemotactic response of the cells was dramatically affected. Conclusions The Ppr protein of Rhodocista centenaria directly interacts with the chemotactic protein CheW. This suggests a role of the Ppr protein in the regulation of the chemotactic response in addition to its role in chalcone synthesis.

  14. Moment-flux models for bacterial chemotaxis in large signal gradients.

    Science.gov (United States)

    Xue, Chuan; Yang, Xige

    2016-10-01

    Chemotaxis is a fundamental process in the life of many prokaryotic and eukaryotic cells. Chemotaxis of bacterial populations has been modeled by both individual-based stochastic models that take into account the biochemistry of intracellular signaling, and continuum PDE models that track the evolution of the cell density in space and time. Continuum models have been derived from individual-based models that describe intracellular signaling by a system of ODEs. The derivations rely on quasi-steady state approximations of the internal ODE system. While this assumption is valid if cell movement is subject to slowly changing signals, it is often violated if cells are exposed to rapidly changing signals. In the latter case current continuum models break down and do not match the underlying individual-based model quantitatively. In this paper, we derive new PDE models for bacterial chemotaxis in large signal gradients that involve not only the cell density and flux, but also moments of the intracellular signals as a measure of the deviation of cell's internal state from its steady state. The derivation is based on a new moment closure method without calling the quasi-steady state assumption of intracellular signaling. Numerical simulations suggest that the resulting model matches the population dynamics quantitatively for a much larger range of signals. PMID:26922437

  15. Direct sensing and signal transduction during bacterial chemotaxis toward aromatic compounds in Comamonas testosteroni.

    Science.gov (United States)

    Huang, Zhou; Ni, Bin; Jiang, Cheng-Ying; Wu, Yu-Fan; He, Yun-Zhe; Parales, Rebecca E; Liu, Shuang-Jiang

    2016-07-01

    Micro-organisms sense and chemotactically respond to aromatic compounds. Although the existence of chemoreceptors that bind to aromatic attractants and subsequently trigger chemotaxis have long been speculated, such a chemoreceptor has not been demonstrated. In this report, we demonstrated that the chemoreceptor MCP2901 from Comamonas testosteroni CNB-1 binds to aromatic compounds and initiates downstream chemotactic signaling in addition to its ability to trigger chemotaxis via citrate binding. The function of gene MCP2901 was investigated by genetic deletion from CNB-1 and genetic complementation of the methyl-accepting chemotaxis protein (MCP)-null mutant CNB-1Δ20. Results showed that the expression of MCP2901 in the MCP-null mutant restored chemotaxis toward nine tested aromatic compounds and nine carboxylic acids. Isothermal titration calorimetry (ITC) analyses demonstrated that the ligand-binding domain of MCP2901 (MCP2901LBD) bound to citrate, and weakly to gentisate and 4-hydroxybenzoate. Additionally, ITC assays indicated that MCP2901LBD bound strongly to 2,6-dihydroxybenzoate and 2-hydroxybenzoate, which are isomers of gentisate and 4-hydroxybenzoate respectively that are not metabolized by CNB-1. Agarose-in-plug and capillary assays showed that these two molecules serve as chemoattractants for CNB-1. Through constructing membrane-like MCP2901-inserted Nanodiscs and phosphorelay activity assays, we demonstrated that 2,6-dihydroxybenzoate and 2-hydroxybenzoate altered kinase activity of CheA. This is the first evidence of an MCP binding to an aromatic molecule and triggering signal transduction for bacterial chemotaxis.

  16. α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8.

    LENUS (Irish Health Repository)

    Bergin, David A

    2010-12-01

    Hereditary deficiency of the protein α-1 antitrypsin (AAT) causes a chronic lung disease in humans that is characterized by excessive mobilization of neutrophils into the lung. However, the reason for the increased neutrophil burden has not been fully elucidated. In this study we have demonstrated using human neutrophils that serum AAT coordinates both CXCR1- and soluble immune complex (sIC) receptor-mediated chemotaxis by divergent pathways. We demonstrated that glycosylated AAT can bind to IL-8 (a ligand for CXCR1) and that AAT-IL-8 complex formation prevented IL-8 interaction with CXCR1. Second, AAT modulated neutrophil chemotaxis in response to sIC by controlling membrane expression of the glycosylphosphatidylinositol-anchored (GPI-anchored) Fc receptor FcγRIIIb. This process was mediated through inhibition of ADAM-17 enzymatic activity. Neutrophils isolated from clinically stable AAT-deficient patients were characterized by low membrane expression of FcγRIIIb and increased chemotaxis in response to IL-8 and sIC. Treatment of AAT-deficient individuals with AAT augmentation therapy resulted in increased AAT binding to IL-8, increased AAT binding to the neutrophil membrane, decreased FcγRIIIb release from the neutrophil membrane, and normalization of chemotaxis. These results provide new insight into the mechanism underlying the effect of AAT augmentation therapy in the pulmonary disease associated with AAT deficiency.

  17. The Signaling Mechanisms Underlying Cell Polarity and Chemotaxis

    OpenAIRE

    Wang, Fei

    2009-01-01

    Chemotaxis—the directed movement of cells in a gradient of chemoattractant—is essential for neutrophils to crawl to sites of inflammation and infection and for Dictyostelium discoideum (D. discoideum) to aggregate during morphogenesis. Chemoattractant-induced activation of spatially localized cellular signals causes cells to polarize and move toward the highest concentration of the chemoattractant. Extensive studies have been devoted to achieving a better understanding of the mechanism(s) use...

  18. Imaging G Protein-coupled Receptor-mediated Chemotaxis and its Signaling Events in Neutrophil-like HL60 Cells.

    Science.gov (United States)

    Wen, Xi; Jin, Tian; Xu, Xuehua

    2016-01-01

    Eukaryotic cells sense and move towards a chemoattractant gradient, a cellular process referred as chemotaxis. Chemotaxis plays critical roles in many physiological processes, such as embryogenesis, neuron patterning, metastasis of cancer cells, recruitment of neutrophils to sites of inflammation, and the development of the model organism Dictyostelium discoideum. Eukaryotic cells sense chemo-attractants using G protein-coupled receptors. Visual chemotaxis assays are essential for a better understanding of how eukaryotic cells control chemoattractant-mediated directional cell migration. Here, we describe detailed methods for: 1) real-time, high-resolution monitoring of multiple chemotaxis assays, and 2) simultaneously visualizing the chemoattractant gradient and the spatiotemporal dynamics of signaling events in neutrophil-like HL60 cells. PMID:27684322

  19. Heterologous desensitization of T cell functions by CCR5 and CXCR4 ligands: inhibition of cellular signaling, adhesion and chemotaxis.

    Science.gov (United States)

    Hecht, Iris; Cahalon, Liora; Hershkoviz, Rami; Lahat, Adi; Franitza, Suzanne; Lider, Ofer

    2003-01-01

    T cells migrate into inflamed sites through the extracellular matrix (ECM) in response to chemotactic areas and are then simultaneously or sequentially exposed to multiple chemotactic ligands. We examined the responses of human peripheral blood T cells, present in an ECM-like context, to combinatorial signaling transduced by SDF-1alpha (CXCL12), and two CCR5 ligands, RANTES (CCL5) and MIP-1beta (CCL4). Separately, these chemokines, at G protein-coupled receptor (GPCR)-stimulating concentrations, induced T cell adhesion to fibronectin (FN) and T cell chemotaxis. However, the pro-adhesive and pro-migratory capacities of SDF-1alpha and RANTES or MIP-1beta were mutually suppressed by the simultaneous or sequential exposure of the cells to these CCR5 or CXCR4 ligands. This cross-talk did not involve the internalization of the SDF-1alpha receptor, CXCR4, but rather, a decrease in phosphorylation of ERK and Pyk-2, as well as inhibition of Ca(2+) mobilization. Strikingly, early CXCR4 signaling of phosphatidylinositol-3-kinase, detected by SDF-1alpha-induced AKT phosphorylation, was insensitive to RANTES-CCR5 signals. Accordingly, early chemotaxis to SDF-1alpha was not susceptible to CCR5 occupancy, whereas late stages of T cell chemotaxis were markedly down-regulated. This is an example of a specialized functional desensitization of heterologous chemokine receptors that induces GPCR interference with T cell adhesion to ECM ligands and chemotaxis within chemokine-rich extravascular contexts. PMID:12502723

  20. Peptide p277 of HSP60 signals T cells: inhibition of inflammatory chemotaxis.

    Science.gov (United States)

    Nussbaum, Gabriel; Zanin-Zhorov, Alexandra; Quintana, Francisco; Lider, Ofer; Cohen, Irun R

    2006-10-01

    Peptide p277 is a 24-amino acid fragment of the heat shock protein 60 molecule, first discovered to be an antigen for diabetogenic T-cell clones in non-obese diabetic (NOD) mice. Therapeutic vaccination with p277 can arrest the spontaneous diabetogenic process both in NOD mice and in humans associated with a T(h)1 to T(h)2 cytokine shift specific for the autoimmune T cells. We now report that p277 can directly signal human T cells via innate toll-like receptor (TLR)-2, leading to up-regulation of integrin-mediated adhesion to fibronectin, and inhibition of chemotaxis to the chemokine SDF-1alpha in vitro. Resting CD45RA(+) T cells responded to lower concentrations of p277 than resting CD45RO(+) T cells, but activation of CD45RO(+) T cells greatly increased their sensitivity to p277. Mouse T cells, but not macrophages, were also sensitive to the innate effects of peptide p277, and adoptive transfer of diabetes by splenic T cells from NOD mice could be inhibited by p277 treatment before transfer. Thus, T cells do respond innately to p277, and signaling by soluble p277 through TLR2 could contribute to the treatment of type 1 diabetes; p277 may stop the destruction of beta cells by signaling in concert both innate and adaptive receptors on T cells. PMID:16893923

  1. Chemotaxis of Caenorhabditis elegans in complex media: crawling, burrowing, 2D and 3D swimming, and controlled fluctuations hypothesis

    Science.gov (United States)

    Patel, Amar; Bilbao, Alejandro; Rahman, Mizanur; Vanapalli, Siva; Blawzdziewicz, Jerzy

    Caenorhabditis elegans is a powerful genetic model, essential for studies in diverse areas ranging from behavior to neuroscience to aging, and locomotion and chemotaxis are the two key observables used. We combine our recently developed theory of nematode locomotion and turning maneuvers [Phys. Fluids 25, 081902 (2013)] with simple models of chemosensation to analyze nematode chemotaxis strategies in 2D and 3D environments. We show that the sharp-turn (pirouette) chemotaxis mechanism is efficient in diverse media; in particular, the nematode does not need to adjust the sensing or motion-control parameters to efficiently chemotax in 2D crawling, 3D burrowing, and 2D or 3D swimming. In contrast, the graduate-turn mechanism becomes inefficient in swimming, unless a phase-shift is introduced between the sensing signal and modulation of body wave to generate the gradual turn. We hypothesize that there exists a new ``controlled fluctuations'' chemotaxis mechanism, in which the nematode changes the intensity of undulation fluctuations to adjust the persistence length of the trajectory in response to a variation in chemoattractant concentration. Supported by NSF Grant No. CBET 1059745.

  2. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy.

    Science.gov (United States)

    Edwards, Amanda Nicole; Siuti, Piro; Bible, Amber N; Alexandre, Gladys; Retterer, Scott T; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition.

  3. Characterization of Cell Surface and EPS Remodeling of Azospirillum brasilense Chemotaxis-like 1 Signal Transduction Pathway mutants by Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Billings, Amanda N [ORNL; Siuti, Piro [ORNL; Bible, Amber [University of Tennessee, Knoxville (UTK); Alexandre, Gladys [University of Tennessee, Knoxville (UTK); Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    To compete in complex microbial communities, bacteria must quickly sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the modulation of multiple cellular responses, including motility, EPS production, and cell-to-cell interactions. Recently, the Che1 chemotaxis-like pathway from Azospirillum brasilense was shown to modulate flocculation. In A. brasilense, cell surface properties, including EPS production, are thought to play a direct role in promoting flocculation. Using atomic force microscopy (AFM), we have detected distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains that are absent in the wild type strain. Whereas the wild type strain produces a smooth mucosal extracellular matrix, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition and lectin-binding assays suggest that the composition of EPS components in the extracellular matrix differs between the cheA1 and cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that mutations in the Che1 pathway that result in increased flocculation are correlated with distinctive changes in the extracellular matrix structure produced by the mutants, including likely changes in the EPS structure and/or composition.

  4. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition.

  5. Collective Signal Processing in Cluster Chemotaxis: Roles of Adaptation, Amplification, and Co-attraction in Collective Guidance

    Science.gov (United States)

    Camley, Brian A.; Zimmermann, Juliane; Levine, Herbert; Rappel, Wouter-Jan

    2016-01-01

    Single eukaryotic cells commonly sense and follow chemical gradients, performing chemotaxis. Recent experiments and theories, however, show that even when single cells do not chemotax, clusters of cells may, if their interactions are regulated by the chemoattractant. We study this general mechanism of “collective guidance” computationally with models that integrate stochastic dynamics for individual cells with biochemical reactions within the cells, and diffusion of chemical signals between the cells. We show that if clusters of cells use the well-known local excitation, global inhibition (LEGI) mechanism to sense chemoattractant gradients, the speed of the cell cluster becomes non-monotonic in the cluster’s size—clusters either larger or smaller than an optimal size will have lower speed. We argue that the cell cluster speed is a crucial readout of how the cluster processes chemotactic signals; both amplification and adaptation will alter the behavior of cluster speed as a function of size. We also show that, contrary to the assumptions of earlier theories, collective guidance does not require persistent cell-cell contacts and strong short range adhesion. If cell-cell adhesion is absent, and the cluster cohesion is instead provided by a co-attraction mechanism, e.g. chemotaxis toward a secreted molecule, collective guidance may still function. However, new behaviors, such as cluster rotation, may also appear in this case. Co-attraction and adaptation allow for collective guidance that is robust to varying chemoattractant concentrations while not requiring strong cell-cell adhesion. PMID:27367541

  6. Collective Signal Processing in Cluster Chemotaxis: Roles of Adaptation, Amplification, and Co-attraction in Collective Guidance.

    Science.gov (United States)

    Camley, Brian A; Zimmermann, Juliane; Levine, Herbert; Rappel, Wouter-Jan

    2016-07-01

    Single eukaryotic cells commonly sense and follow chemical gradients, performing chemotaxis. Recent experiments and theories, however, show that even when single cells do not chemotax, clusters of cells may, if their interactions are regulated by the chemoattractant. We study this general mechanism of "collective guidance" computationally with models that integrate stochastic dynamics for individual cells with biochemical reactions within the cells, and diffusion of chemical signals between the cells. We show that if clusters of cells use the well-known local excitation, global inhibition (LEGI) mechanism to sense chemoattractant gradients, the speed of the cell cluster becomes non-monotonic in the cluster's size-clusters either larger or smaller than an optimal size will have lower speed. We argue that the cell cluster speed is a crucial readout of how the cluster processes chemotactic signals; both amplification and adaptation will alter the behavior of cluster speed as a function of size. We also show that, contrary to the assumptions of earlier theories, collective guidance does not require persistent cell-cell contacts and strong short range adhesion. If cell-cell adhesion is absent, and the cluster cohesion is instead provided by a co-attraction mechanism, e.g. chemotaxis toward a secreted molecule, collective guidance may still function. However, new behaviors, such as cluster rotation, may also appear in this case. Co-attraction and adaptation allow for collective guidance that is robust to varying chemoattractant concentrations while not requiring strong cell-cell adhesion.

  7. Twitching motility and cAMP levels: signal transduction through a single methyl-accepting chemotaxis protein.

    Science.gov (United States)

    Jansari, Vibhuti H; Potharla, Vishwakanth Y; Riddell, Geoff T; Bardy, Sonia L

    2016-06-01

    The Pseudomonas aeruginosa Chp chemosensory system regulates twitching motility, intracellular adenosine 3('') 5(')-cyclic monophosphate (cAMP) levels and is postulated to be involved in directional twitching towards phosphatidylethanolamine (PE). Because PilJ is the only methyl-accepting chemotaxis protein (MCP) identified in the Chp system, we determined the role of PilJ in mediating signal transduction for the distinct outputs of this system. Mutants that lack the periplasmic domain of PilJ (pilJΔ74-273) showed lower levels of cAMP but retained directional twitching towards PE. While initial studies revealed reduced twitching motility by PilJΔ74-273, this was due to decreased cAMP levels. Our data illustrate the importance of the periplasmic domain of PilJ in regulating cAMP. This is the first time a defined domain within PilJ has been identified as having a distinct role in signal transduction. PMID:27190147

  8. Heat shock protein 60 activates cytokine-associated negative regulator suppressor of cytokine signaling 3 in T cells: effects on signaling, chemotaxis, and inflammation.

    Science.gov (United States)

    Zanin-Zhorov, Alexandra; Tal, Guy; Shivtiel, Shoham; Cohen, Michal; Lapidot, Tsvee; Nussbaum, Gabriel; Margalit, Raanan; Cohen, Irun R; Lider, Ofer

    2005-07-01

    Previously, we reported that treatment of T cells with the 60-kDa heat shock protein (HSP60) inhibits chemotaxis. We now report that treatment of purified human T cells with recombinant human HSP60 or its biologically active peptide p277 up-regulates suppressor of cytokine signaling (SOCS)3 expression via TLR2 and STAT3 activation. SOCS3, in turn, inhibits the downstream effects of stromal cell-derived-1alpha (CXCL12)-CXCR4 interaction in: 1) phosphorylation of ERK1/2, Pyk2, AKT, and myosin L chain, required for cell adhesion and migration; 2) formation of rear-front T cell polarity; and 3) migration into the bone marrow of NOD/SCID mice. HSP60 also activates SOCS3 in mouse lymphocytes and inhibits their chemotaxis toward stromal cell-derived factor-1alpha and their ability to adoptively transfer delayed-type hypersensitivity. These effects of HSP60 could not be attributed to LPS or LPS-associated lipoprotein contamination. Thus, HSP60 can regulate T cell-mediated inflammation via specific signal transduction and SOCS3 activation. PMID:15972659

  9. Fully human antagonistic antibodies against CCR4 potently inhibit cell signaling and chemotaxis.

    Directory of Open Access Journals (Sweden)

    Urs B Hagemann

    Full Text Available CC chemokine receptor 4 (CCR4 represents a potentially important target for cancer immunotherapy due to its expression on tumor infiltrating immune cells including regulatory T cells (Tregs and on tumor cells in several cancer types and its role in metastasis.Using phage display, human antibody library, affinity maturation and a cell-based antibody selection strategy, the antibody variants against human CCR4 were generated. These antibodies effectively competed with ligand binding, were able to block ligand-induced signaling and cell migration, and demonstrated efficient killing of CCR4-positive tumor cells via ADCC and phagocytosis. In a mouse model of human T-cell lymphoma, significant survival benefit was demonstrated for animals treated with the newly selected anti-CCR4 antibodies.For the first time, successful generation of anti- G-protein coupled chemokine receptor (GPCR antibodies using human non-immune library and phage display on GPCR-expressing cells was demonstrated. The generated anti-CCR4 antibodies possess a dual mode of action (inhibition of ligand-induced signaling and antibody-directed tumor cell killing. The data demonstrate that the anti-tumor activity in vivo is mediated, at least in part, through Fc-receptor dependent effector mechanisms, such as ADCC and phagocytosis. Anti-CC chemokine receptor 4 antibodies inhibiting receptor signaling have potential as immunomodulatory antibodies for cancer.

  10. Chemotaxis of crawling and swimming Caenorhabditis Elegans

    Science.gov (United States)

    Patel, Amar; Bilbao, Alejandro; Padmanabhan, Venkat; Khan, Zeina; Armstrong, Andrew; Rumbaugh, Kendra; Vanapalli, Siva; Blawzdziewicz, Jerzy

    2012-11-01

    A soil-dwelling nematode Caenorhabditis Elegans efficiently navigates through complex environments, responding to chemical signals to find food or avoid danger. According to previous studies, the nematode uses both gradual-turn and run-and-tumble strategies to move in the direction of the increasing concentration of chemical attractants. We show that both these chemotaxis strategies can be described using our kinematic model [PLoS ONE, 7: e40121 (2012)] in which harmonic-curvature modes represent elementary nematode movements. In our chemotaxis model, the statistics of mode changes is governed by the time history of the chemoattractant concentration at the position of the nematode head. We present results for both nematodes crawling without transverse slip and for swimming nematodes. This work was supported by NSF grant No. CBET 1059745.

  11. Fundamental constraints on the abundances of chemotaxis proteins

    CERN Document Server

    Bitbol, Anne-Florence

    2015-01-01

    Flagellated bacteria, such as Escherichia coli, perform directed motion in gradients of concentration of attractants and repellents in a process called chemotaxis. The E. coli chemotaxis signaling pathway is a model for signal transduction, but it has unique features. We demonstrate that the need for fast signaling necessitates high abundances of the proteins involved in this pathway. We show that further constraints on the abundances of chemotaxis proteins arise from the requirements of self-assembly, both of flagellar motors and of chemoreceptor arrays. All these constraints are specific to chemotaxis, and published data confirm that chemotaxis proteins tend to be more highly expressed than their homologs in other pathways. Employing a chemotaxis pathway model, we show that the gain of the pathway at the level of the response regulator CheY increases with overall chemotaxis protein abundances. This may explain why, at least in one E. coli strain, the abundance of all chemotaxis proteins is higher in media w...

  12. Feedback control architecture and the bacterial chemotaxis network.

    Directory of Open Access Journals (Sweden)

    Abdullah Hamadeh

    2011-05-01

    Full Text Available Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance.

  13. Passive Hindrances Suppression Using Complex Polyphase Signals

    OpenAIRE

    Sumyk, Markiyan; Yankevych, Roman

    2010-01-01

    Using complex signals we get possibility of indemnification of passive hindrances in the single-channel system of radio monitoring due to the use of correlation and spectral characteristics of certain class of complex signals.

  14. Engineering Hybrid Chemotaxis Receptors in Bacteria.

    Science.gov (United States)

    Bi, Shuangyu; Pollard, Abiola M; Yang, Yiling; Jin, Fan; Sourjik, Victor

    2016-09-16

    Most bacteria use transmembrane sensors to detect a wide range of environmental stimuli. A large class of such sensors are the chemotaxis receptors used by motile bacteria to follow environmental chemical gradients. In Escherichia coli, chemotaxis receptors are known to mediate highly sensitive responses to ligands, making them potentially useful for biosensory applications. However, with only four ligand-binding chemotaxis receptors, the natural ligand spectrum of E. coli is limited. The design of novel chemoreceptors to extend the sensing capabilities of E. coli is therefore a critical aspect of chemotaxis-based biosensor development. One path for novel sensor design is to harvest the large natural diversity of chemosensory functions found in bacteria by creating hybrids that have the signaling domain from E. coli chemotaxis receptors and sensory domains from other species. In this work, we demonstrate that the E. coli receptor Tar can be successfully combined with most typical sensory domains found in chemotaxis receptors and in evolutionary-related two-component histidine kinases. We show that such functional hybrids can be generated using several different fusion points. Our work further illustrates how hybrid receptors could be used to quantitatively characterize ligand specificity of chemotaxis receptors and histidine kinases using standardized assays in E. coli.

  15. Structures and solution properties of two novel periplasmic sensor domains with c-type heme from chemotaxis proteins of Geobacter sulfurreducens : implications for signal transduction.

    Energy Technology Data Exchange (ETDEWEB)

    Pokkuluri, P. R.; Pessanha, M.; Londer, Y. Y.; Wood, S. J.; Duke, N. E. C.; Wilton, R.; Catarino, T.; Salgueiro, C. A.; Schiffer, M.; Biosciences Division; Univ.Nova de Lisboa; Insti. de Tecnologia Quimica e Biologica

    2008-04-11

    Periplasmic sensor domains from two methyl-accepting chemotaxis proteins from Geobacter sulfurreducens (encoded by genes GSU0935 and GSU0582) were expressed in Escherichia coli. The sensor domains were isolated, purified, characterized in solution, and their crystal structures were determined. In the crystal, both sensor domains form swapped dimers and show a PAS-type fold. The swapped segment consists of two helices of about 45 residues at the N terminus with the hemes located between the two monomers. In the case of the GSU0582 sensor, the dimer contains a crystallographic 2-fold symmetry and the heme is coordinated by an axial His and a water molecule. In the case of the GSU0935 sensor, the crystals contain a non-crystallographic dimer, and surprisingly, the coordination of the heme in each monomer is different; monomer A heme has His-Met ligation and monomer B heme has His-water ligation as found in the GSU0582 sensor. The structures of these sensor domains are the first structures of PAS domains containing covalently bound heme. Optical absorption, electron paramagnetic resonance and NMR spectroscopy have revealed that the heme groups of both sensor domains are high-spin and low-spin in the oxidized and reduced forms, respectively, and that the spin-state interconversion involves a heme axial ligand replacement. Both sensor domains bind NO in their ferric and ferrous forms but bind CO only in the reduced form. The binding of both NO and CO occurs via an axial ligand exchange process, and is fully reversible. The reduction potentials of the sensor domains differ by 95 mV (-156 mV and -251 mV for sensors GSU0582 and GSU0935, respectively). The swapped dimerization of these sensor domains and redox-linked ligand switch might be related to the mechanism of signal transduction by these chemotaxis proteins.

  16. Increased brain size in mammals is associated with size variations in gene families with cell signalling, chemotaxis and immune-related functions.

    Science.gov (United States)

    Castillo-Morales, Atahualpa; Monzón-Sandoval, Jimena; Urrutia, Araxi O; Gutiérrez, Humberto

    2014-01-22

    Genomic determinants underlying increased encephalization across mammalian lineages are unknown. Whole genome comparisons have revealed large and frequent changes in the size of gene families, and it has been proposed that these variations could play a major role in shaping morphological and physiological differences among species. Using a genome-wide comparative approach, we examined changes in gene family size (GFS) and degree of encephalization in 39 fully sequenced mammalian species and found a significant over-representation of GFS variations in line with increased encephalization in mammals. We found that this relationship is not accounted for by known correlates of brain size such as maximum lifespan or body size and is not explained by phylogenetic relatedness. Genes involved in chemotaxis, immune regulation and cell signalling-related functions are significantly over-represented among those gene families most highly correlated with encephalization. Genes within these families are prominently expressed in the human brain, particularly the cortex, and organized in co-expression modules that display distinct temporal patterns of expression in the developing cortex. Our results suggest that changes in GFS associated with encephalization represent an evolutionary response to the specific functional requirements underlying increased brain size in mammals.

  17. Localization of chemical sources using e. coli chemotaxis

    Science.gov (United States)

    Davison, Timothy; Nguyen, Hoa; Nickels, Kevin; Frasch, Duncan; Basagaoglu, Hakan

    2016-04-01

    This paper furthers the application of chemotaxis to small-scale robots by simulating a system that localizes a chemical source in a dynamic fluid environment. This type of system responds to a chemical stimulus by mimicking, for example, the way that E. Coli bacteria move toward attractants (nutrients) and away from repellents. E. Coli use the intracellular signaling pathway to process the temporal change in the chemical concentration to determine if the cells should run or tumble. Previous work has shown that this process can be simulated with robots and used to localize chemical sources based upon a fixed nutrient gradient. Our work furthers this study by simulating the injection of an effluent of chemical at a specified location in an environment and uses computational fluid dynamics to model the interactions of the robot with the fluid while performing chemotaxis. The interactions between the chemical and fluid are also modelled with the advection diffusion equation to determine the concentration gradient. This method allows us to compute, over a lattice, the chemical concentration at all points and feed these results into an existing E. Coli controller for the robot, which results in the robot executing a tumble or a run according to a probabilistic formula. By simulating the robot in this complex environment, our work facilitates refinement of the chemotaxis controller while proving the ability of chemotactic robots to localize specific chemicals in environments that more closely resemble those encountered in the wide-ranging types of locations in which this robotic system might be deployed.

  18. Highlighting the role of Ras and Rap during Dictyostelium chemotaxis

    NARCIS (Netherlands)

    Kortholt, Arjan; van Haastert, Peter J. M.

    2008-01-01

    Chemotaxis, the directional movement towards a chemical compound, is an essential property of many cells and has been linked to the development and progression of many diseases. Eukaryotic chemotaxis is a complex process involving gradient sensing, cell polarity, remodelling of the cytoskeleton and

  19. Loss of C-terminal α-helix decreased SDF-1α-mediated signaling and chemotaxis without influencing CXCR4 internalization

    Institute of Scientific and Technical Information of China (English)

    Shao-hui CAI; Yi TAN; Xian-da REN; Xiao-hong LI; Shao-xi CAI; Jun DU

    2004-01-01

    AIM: To investigate the possibility that a novel α-helix-defective mutant of stromal cell-derived factor-1α (SDF-1α) (SDF-1/54R) acts as an antagonist of CXC chemokine receptor 4 (CXCR4). METHODS: According to the genetic sequence of natural SDF- 1 α, a recombinant α-helix-defective mutant of SDF- 1 α was designed and some biologic characteristics of this mutant were demonstrated. The migration of Jurkat cells was assessed with chemotactic assay. ERK phosphorylation was analyzed by Western blot with a specific anti-phospho-ERK 1/2 antibody.Intracellular calcium influx was examined by flow cytometer with a calcium indicator dye Fluo-3AM. The CXCR4 on the cell surface was detected by flow cytometer with a PE conjoined anti-human CXCR4 antibody. RESULTS:Compared with native SDF-1α, SDF-1/54R displayed apparent decrease in chemotactic ability, ERK 1/2 activation,and intracellular calcium influx in Jurkat cells. However, the binding to CXCR4 and inducing CXCR4 internalization of SDF-1/54R did not change outstandingly. Moreover, a competitive inhibitory effect of SDF-1/54R on the migration of Jurkat cells induced by native SDF-1 α was confirmed. CONCLUSION: α-helix-defective mutant of SDF-1 α, SDF-1/54R that remained both the N-terminus and the central β-sheet region, decreased SDF-1 α-mediated signaling and chemotaxis but did not influence CXCR4 internalization, which suggested that SDF-1/54R might be developed as an anti-CHIV inhibitor with high biological potency and low side-effect.

  20. QRS Complex Detection in Multilead ECG Signals

    OpenAIRE

    Šlancar, M.

    2015-01-01

    Automated analysis of HRV requires reliable detection of QRS complexes. We propose a detection method based on different combinations of three orthogonal (pseudoorthogonal) leads of human ECG signals. ECG signals were filtered by standard pass-band filter, Teager-Kaiser energy operator (TKEO) was applied on signal as envelope for detection. The most effective combination for QRS detection was a spatial velocity with sensitivity exceeds 99.9 % and positive predictive value near to 99.5 %. Det...

  1. Conformational coupling between receptor and kinase binding sites through a conserved salt bridge in a signaling complex scaffold protein.

    Directory of Open Access Journals (Sweden)

    Davi R Ortega

    Full Text Available Bacterial chemotaxis is one of the best studied signal transduction pathways. CheW is a scaffold protein that mediates the association of the chemoreceptors and the CheA kinase in a ternary signaling complex. The effects of replacing conserved Arg62 of CheW with other residues suggested that the scaffold protein plays a more complex role than simply binding its partner proteins. Although R62A CheW had essentially the same affinity for chemoreceptors and CheA, cells expressing the mutant protein are impaired in chemotaxis. Using a combination of molecular dynamics simulations (MD, NMR spectroscopy, and circular dichroism (CD, we addressed the role of Arg62. Here we show that Arg62 forms a salt bridge with another highly conserved residue, Glu38. Although this interaction is unimportant for overall protein stability, it is essential to maintain the correct alignment of the chemoreceptor and kinase binding sites of CheW. Computational and experimental data suggest that the role of the salt bridge in maintaining the alignment of the two partner binding sites is fundamental to the function of the signaling complex but not to its assembly. We conclude that a key feature of CheW is to maintain the specific geometry between the two interaction sites required for its function as a scaffold.

  2. Travelling Waves in Hybrid Chemotaxis Models

    KAUST Repository

    Franz, Benjamin

    2013-12-18

    Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations. © 2013 Society for Mathematical Biology.

  3. Fractional Chemotaxis Diffusion Equations

    CERN Document Server

    Langlands, T A M

    2010-01-01

    We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modelling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macro-molecular crowding. The mesoscopic models are formulated using Continuous Time Random Walk master equations and the macroscopic models are formulated with fractional order differential equations. Different models are proposed depending on the timing of the chemotactic forcing. Generalizations of the models to include linear reaction dynamics are also derived. Finally a Monte Carlo method for simulating anomalous subdiffusion with chemotaxis is introduced and simulation results are compared with numerical solutions of the model equations. The model equations developed here could be used to replace Keller-Segel type equations in biological systems with transport hindered by traps, macro-molecular crowding or other obstacles.

  4. Coupled Oscillators with Chemotaxis

    CERN Document Server

    Sawai, S; Sawai, Satoshi; Aizawa, Yoji

    1998-01-01

    A simple coupled oscillator system with chemotaxis is introduced to study morphogenesis of cellular slime molds. The model successfuly explains the migration of pseudoplasmodium which has been experimentally predicted to be lead by cells with higher intrinsic frequencies. Results obtained predict that its velocity attains its maximum value in the interface region between total locking and partial locking and also suggest possible roles played by partial synchrony during multicellular development.

  5. Travelling waves in hybrid chemotaxis models

    CERN Document Server

    Franz, Benjamin; Painter, Kevin J; Erban, Radek

    2013-01-01

    Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant) which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybr...

  6. Community detection by signaling on complex networks

    Science.gov (United States)

    Hu, Yanqing; Li, Menghui; Zhang, Peng; Fan, Ying; di, Zengru

    2008-07-01

    Based on a signaling process of complex networks, a method for identification of community structure is proposed. For a network with n nodes, every node is assumed to be a system which can send, receive, and record signals. Each node is taken as the initial signal source to excite the whole network one time. Then the source node is associated with an n -dimensional vector which records the effects of the signaling process. By this process, the topological relationship of nodes on the network could be transferred into a geometrical structure of vectors in n -dimensional Euclidean space. Then the best partition of groups is determined by F statistics and the final community structure is given by the K -means clustering method. This method can detect community structure both in unweighted and weighted networks. It has been applied to ad hoc networks and some real networks such as the Zachary karate club network and football team network. The results indicate that the algorithm based on the signaling process works well.

  7. Complex analytic signals applied on time delay estimation

    OpenAIRE

    Veličković Zoran S.; Pavlović Vlastimir D.

    2008-01-01

    In this paper, we present the concept of the time delay estimation based on the transformation of real sensor signals into analytic ones. We analyze the differential time delay values obtained using real seismic signals, simulated complex analytic signals and simulated complex analytic signals with real parts coming from real seismic signals. The simulation results indicate that the application of complex analytic signals leads to reliable computation of the differential time delay. The influ...

  8. iPLA2β: front and center in human monocyte chemotaxis to MCP-1

    OpenAIRE

    Mishra, Ravi S.; Carnevale, Kevin A.; Cathcart, Martha K.

    2008-01-01

    Monocyte chemoattractant protein-1 (MCP-1) directs migration of blood monocytes to inflamed tissues. Despite the central role of chemotaxis in immune responses, the regulation of chemotaxis by signal transduction pathways and their in vivo significance remain to be thoroughly deciphered. In this study, we examined the intracellular location and functions of two recently identified regulators of chemotaxis, Ca2+-independent phospholipase (iPLA2β) and cytosolic phospholipase (cPLA2α), and subst...

  9. Chemotaxis: new role for Ras revealed

    Institute of Scientific and Technical Information of China (English)

    Jianshe Yan; Dale Hereld; Tian Jin

    2010-01-01

    @@ A recent study of chemotaxis revealed a new role for the proto-oncogene Ras in the social ameba Dictyostelium discoideum.Chemotaxis,the directional movement of cells toward chemokines and other chemoattractants,plays critical roles in diverse physiological processes,such as mobilization of immune cells to fight invading microorganisms,targeting of metastatic cancer cells to specific tissues,and guidance of sperm cells to ova during fertilization.This work,published in the July 26 issue of The Journal of Cell Biology,was conducted in Dr.Devreotes' lab at John Hopkins University and Dr.Parent's lab at National Cancer Institute.This research team demonstrated that RasC functions as an upstream regulator of TORC2 and thereby governs the effects of TORC2-PKB signaling on the cytoskeleton and cell migration.

  10. Sphingosylphosphorylcholine stimulates human monocyte-derived dendritic cell chemotaxis

    Institute of Scientific and Technical Information of China (English)

    Ha-young LEE; Eun-ha SHIN; Yoe-sik BAE

    2006-01-01

    Aim: To investigate the effects of Sphingosylphosphorylcholine (SPC) on human monocyte-derived dendritic cell (DC) chemotaxis. Methods: Human DC were generated from peripheral blood monocytes by culturing them with granulocyte macrophage-colony stimulating factor and interleukin-4. The effect of SPC on the DC chemotactic migration was measured by chemotaxis assay. Intracellular signaling event involved in the SPC-induced DC chemotaxis was investigated with several inhibitors for specific kinase. The expression of the SPC receptors was examined by reverse transcription polymerase chain reaction. Results: We found that SPC induced chemotactic migration in immature DC (iDC) and mature DC (mDC). In terms of SPC-induced signaling events, mitogen activated protein kinase activation and Akt activation in iDC and mDC were stimulated. SPC-induced chemotaxis was mediated by extracellular signal-regulated protein kinase and phosphoino-sitide-3-kinase, but not by calcium in both iDC and mDC. Although mDC express ovarian cancer G protein-coupled receptor 1, but not G protein-coupled receptor 4, iDC do not express any of these receptors. To examine the involvement of sphin-gosine-1-phosphate (SIP) receptors, we checked the effect of an SIP receptor antagonist (VPC23019) on SPC-induced DC chemotaxis. VPC23019 did not affect SPC-induced DC chemotaxis. Conclusion: The results suggest that SPC may play a role in regulating DC trafficking during phagocytosis and the T cell-stimulating phase, and the unique SPC receptor, which is different from SIP receptors, is involved in SPC-induced chemotaxis.

  11. Normal chemotaxis in Dictyostelium discoideum cells with a depolarized plasma membrane potential

    NARCIS (Netherlands)

    Duijn, Bert van; Vogelzang, Sake A.; Ypey, Dirk L.; Molen, Loek G. van der; Haastert, Peter J.M. van

    1990-01-01

    We examined a possible role for the plasma membrane potential in signal transduction during cyclic AMP-induced chemotaxis in the cellular slime mold Dictyostelium discoideum. Chemotaxis, cyclic GMP and cyclic AMP responses in cells with a depolarized membrane potential were measured. Cells can be co

  12. COUPLED CHEMOTAXIS FLUID MODEL

    KAUST Repository

    LORZ, ALEXANDER

    2010-06-01

    We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic interaction between bacteria. The presented model consist of a parabolicparabolic chemotaxis system for the oxygen concentration and the bacteria density coupled to an incompressible Stokes equation for the fluid driven by a gravitational force of the heavier bacteria. We show local existence of weak solutions in a bounded domain in d, d = 2, 3 with no-flux boundary condition and in 2 in the case of inhomogeneous Dirichlet conditions for the oxygen. © 2010 World Scientific Publishing Company.

  13. Processing Motion Signals in Complex Environments

    Science.gov (United States)

    Verghese, Preeti

    2000-01-01

    Motion information is critical for human locomotion and scene segmentation. Currently we have excellent neurophysiological models that are able to predict human detection and discrimination of local signals. Local motion signals are insufficient by themselves to guide human locomotion and to provide information about depth, object boundaries and surface structure. My research is aimed at understanding the mechanisms underlying the combination of motion signals across space and time. A target moving on an extended trajectory amidst noise dots in Brownian motion is much more detectable than the sum of signals generated by independent motion energy units responding to the trajectory segments. This result suggests that facilitation occurs between motion units tuned to similar directions, lying along the trajectory path. We investigated whether the interaction between local motion units along the motion direction is mediated by contrast. One possibility is that contrast-driven signals from motion units early in the trajectory sequence are added to signals in subsequent units. If this were the case, then units later in the sequence would have a larger signal than those earlier in the sequence. To test this possibility, we compared contrast discrimination thresholds for the first and third patches of a triplet of sequentially presented Gabor patches, aligned along the motion direction. According to this simple additive model, contrast increment thresholds for the third patch should be higher than thresholds for the first patch.The lack of a measurable effect on contrast thresholds for these various manipulations suggests that the pooling of signals along a trajectory is not mediated by contrast-driven signals. Instead, these results are consistent with models that propose that the facilitation of trajectory signals is achieved by a second-level network that chooses the strongest local motion signals and combines them if they occur in a spatio-temporal sequence consistent

  14. T cell homeostasis requires G protein-coupled receptor-mediated access to trophic signals that promote growth and inhibit chemotaxis

    OpenAIRE

    Cinalli, Ryan M.; Herman, Catherine E.; Lew, Brian O.; Wieman, Heather L.; Thompson, Craig B.; Rathmell, Jeffrey C.

    2005-01-01

    Signals that regulate T cell homeostasis are not fully understood. G protein-coupled receptors (GPCR), such as the chemokine receptors, may affect homeostasis by direct signaling or by guiding T cell migration to distinct location-restricted signals. Here, we show that blockade of Gαi-associated GPCR signaling by treatment with pertussis toxin led to T cell atrophy and shortened life-span in T cell-replete hosts and prevented T cell homeostatic growth and proliferation in T cell-deficient hos...

  15. Complexity of Receptor Tyrosine Kinase Signal Processing

    Science.gov (United States)

    Volinsky, Natalia; Kholodenko, Boris N.

    2013-01-01

    Our knowledge of molecular mechanisms of receptor tyrosine kinase (RTK) signaling advances with ever-increasing pace. Yet our understanding of how the spatiotemporal dynamics of RTK signaling control specific cellular outcomes has lagged behind. Systems-centered experimental and computational approaches can help reveal how overlapping networks of signal transducers downstream of RTKs orchestrate specific cell-fate decisions. We discuss how RTK network regulatory structures, which involve the immediate posttranslational and delayed transcriptional controls by multiple feed forward and feedback loops together with pathway cross talk, adapt cells to the combinatorial variety of external cues and conditions. This intricate network circuitry endows cells with emerging capabilities for RTK signal processing and decoding. We illustrate how mathematical modeling facilitates our understanding of RTK network behaviors by unraveling specific systems properties, including bistability, oscillations, excitable responses, and generation of intricate landscapes of signaling activities. PMID:23906711

  16. Hierarchical nanostructure and synergy of multimolecular signalling complexes

    Science.gov (United States)

    Sherman, Eilon; Barr, Valarie A.; Merrill, Robert K.; Regan, Carole K.; Sommers, Connie L.; Samelson, Lawrence E.

    2016-07-01

    Signalling complexes are dynamic, multimolecular structures and sites for intracellular signal transduction. Although they play a crucial role in cellular activation, current research techniques fail to resolve their structure in intact cells. Here we present a multicolour, photoactivated localization microscopy approach for imaging multiple types of single molecules in fixed and live cells and statistical tools to determine the nanoscale organization, topology and synergy of molecular interactions in signalling complexes downstream of the T-cell antigen receptor. We observe that signalling complexes nucleated at the key adapter LAT show a hierarchical topology. The critical enzymes PLCγ1 and VAV1 localize to the centre of LAT-based complexes, and the adapter SLP-76 and actin molecules localize to the periphery. Conditional second-order statistics reveal a hierarchical network of synergic interactions between these molecules. Our results extend our understanding of the nanostructure of signalling complexes and are relevant to studying a wide range of multimolecular complexes.

  17. Precision and Kinetics of Adaptation in Bacterial Chemotaxis

    OpenAIRE

    Meir, Yigal; Jakovljevic, Vladimir; Oleksiuk, Olga; Sourjik, Victor; Wingreen, Ned S.

    2010-01-01

    The chemotaxis network of the bacterium Escherichia coli is perhaps the most studied model for adaptation of a signaling system to persistent stimuli. Although adaptation in this system is generally considered to be precise, there has been little effort to quantify this precision, or to understand how and when precision fails. Using a Förster resonance energy transfer-based reporter of signaling activity, we undertook a systematic study of adaptation kinetics and precision in E. coli cells ex...

  18. Complex analytic signals applied on time delay estimation

    Directory of Open Access Journals (Sweden)

    Veličković Zoran S.

    2008-01-01

    Full Text Available In this paper, we present the concept of the time delay estimation based on the transformation of real sensor signals into analytic ones. We analyze the differential time delay values obtained using real seismic signals, simulated complex analytic signals and simulated complex analytic signals with real parts coming from real seismic signals. The simulation results indicate that the application of complex analytic signals leads to reliable computation of the differential time delay. The influence of specific signal parameters on spectral coherence threshold in systems for passive localization and proposed methods for lowering the threshold is analyzed. The computation of all differential time delays with respect to the reference sensor (geophone is based on the application of Generalized Cross-Correlation (GCC applied on corresponding analytic signals. The difficulties to select a peak of cross-correlation function that corresponds to true differential time delay when dealing with real signals are significantly reduced if GCC is applied on analytic signals. The efficiency of the proposed technique on differential delay estimation is performed on deterministic and real-life signals.

  19. Comparative Analysis of EEG Signals Based on Complexity Measure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The aim of this study is to identify the functions and states of the brains according to the values of the complexity measure of the EEG signals. The EEG signals of 30 normal samples and 30 patient samples are collected. Based on the preprocessing for the raw data, a computational program for complexity measure is compiled and the complexity measures of all samples are calculated. The mean value and standard error of complexity measure of control group is as 0.33 and 0.10, and the normal group is as 0.53 an...

  20. Modulation of EEG Theta Band Signal Complexity by Music Therapy

    Science.gov (United States)

    Bhattacharya, Joydeep; Lee, Eun-Jeong

    The primary goal of this study was to investigate the impact of monochord (MC) sounds, a type of archaic sounds used in music therapy, on the neural complexity of EEG signals obtained from patients undergoing chemotherapy. The secondary goal was to compare the EEG signal complexity values for monochords with those for progressive muscle relaxation (PMR), an alternative therapy for relaxation. Forty cancer patients were randomly allocated to one of the two relaxation groups, MC and PMR, over a period of six months; continuous EEG signals were recorded during the first and last sessions. EEG signals were analyzed by applying signal mode complexity, a measure of complexity of neuronal oscillations. Across sessions, both groups showed a modulation of complexity of beta-2 band (20-29Hz) at midfrontal regions, but only MC group showed a modulation of complexity of theta band (3.5-7.5Hz) at posterior regions. Therefore, the neuronal complexity patterns showed different changes in EEG frequency band specific complexity resulting in two different types of interventions. Moreover, the different neural responses to listening to monochords and PMR were observed after regular relaxation interventions over a short time span.

  1. Application of Coarse Integration to Bacterial Chemotaxis

    CERN Document Server

    Setayeshgar, S; Othmer, H G; Kevrekidis, Yu G

    2003-01-01

    We have developed and implemented a numerical evolution scheme for a class of stochastic problems in which the temporal evolution occurs on widely-separated time scales, and for which the slow evolution can be described in terms of a small number of moments of an underlying probability distribution. We demonstrate this method via a numerical simulation of chemotaxis in a population of motile, independent bacteria swimming in a prescribed gradient of a chemoattractant. The microscopic stochastic model, which is simulated using a Monte Carlo method, uses a simplified deterministic model for excitation/adaptation in signal transduction, coupled to a realistic, stochastic description of the flagellar motor. We show that projective time integration of ``coarse'' variables can be carried out on time scales long compared to that of the microscopic dynamics. Our coarse description is based on the spatial cell density distribution. Thus we are assuming that the system ``closes'' on this variable so that it can be desc...

  2. Optimizing chemotaxis by measuring unbound-bound transitions

    Science.gov (United States)

    Mortimer, Duncan; Dayan, Peter; Burrage, Kevin; Goodhill, Geoffrey J.

    2010-05-01

    The development of the nervous system requires nerve fibres to be guided accurately over long distances in order to make correct connections between neurons. Molecular gradients help to direct these growing fibres, by a process known as chemotaxis. However, this requires the accurate measurement of concentration differences by chemoreceptors. Here, we ask how the signals from a set of chemoreceptors interacting with a concentration gradient can best be used to determine the direction of this gradient. Prior models of chemotaxis have typically assumed that the chemoreceptors produce signals reflecting just the time-averaged binding state of those receptors. In this article, we show that in fact the optimal chemotaxis performance can be achieved when, in addition, each receptor also signals the number of unbound-to-bound transitions it experiences within the observation period. Furthermore, we show that this leads to an effective halving of the observation period required for a given level of performance. We also demonstrate that the degradation in performance observed to occur at high concentrations experimentally is likely to result not from noise intrinsic to receptor binding, but rather from noise in subsequent downstream signalling.

  3. Neutrophil Chemotaxis Dysfunction in Human Periodontitis

    OpenAIRE

    Van Dyke, T. E.; Horoszewicz, H. U.; Cianciola, L. J.; Genco, R J

    1980-01-01

    Polymorphonuclear leukocyte (PMNL) chemotaxis studies of 32 patients with localized juvenile periodontitis (periodontosis or LJP), 10 adult patients with a history of LJP (post-LJP), 8 patients with generalized juvenile periodontitis (GJP), and 23 adults with moderate to severe periodontitis were performed: (i) to determine the prevalence of a PMNL chemotaxis defect in a large group of LJP patients; (ii) to study PMNL chemotaxis in patients with other forms of severe periodontal disease; and ...

  4. 基于模糊均值的细菌群体趋药性复杂网络社团结构发现%Identification of Community Structure in Complex Networks Using Bacterial Colony Chemotaxis with Fuzzy Means Algorithm

    Institute of Scientific and Technical Information of China (English)

    李艳灵; 刘先省

    2015-01-01

    复杂网络的社团发现问题是网络数据挖掘中的重要问题之一。利用基于模糊 C 均值的细菌群体趋药性算法最大化网络的模块度,算法中模糊 C 均值的初始值由群体细菌取药性算法获得。模糊 C 均值算法在此基础上发现复杂网络的社团结构。其创新点在于最佳模块度的寻找。实验结果表明:该算法具有对现实世界网络社团划分的可行性和有效性。%Identification of communities in a complex network is one of the important problems in data min‐ing of network data .The bacterial colony chemotaxis (BCC) strategy with fuzzy C‐means (FCM ) algorithm was used to maximize the modularity of a network .In the new algorithm ,the initial cluster center of FCM algorithm was obtained by BCC algorithm .Then ,the FCM algorithm was used for detecting communities in a complex network .The proposed algorithm outperformed most the existing methods in the literature as regards the opti‐mal modularity found .Experimental results for real‐word networks confirmed the feasibility and effectiveness of the proposed algorithm .

  5. Theory of optimal information transmission in E. coli chemotaxis pathway

    Science.gov (United States)

    Micali, Gabriele; Endres, Robert G.

    Bacteria live in complex microenvironments where they need to make critical decisions fast and reliably. These decisions are inherently affected by noise at all levels of the signaling pathway, and cells are often modeled as an input-output device that transmits extracellular stimuli (input) to internal proteins (channel), which determine the final behavior (output). Increasing the amount of transmitted information between input and output allows cells to better infer extracellular stimuli and respond accordingly. However, in contrast to electronic devices, the separation into input, channel, and output is not always clear in biological systems. Output might feed back into the input, and the channel, made by proteins, normally interacts with the input. Furthermore, a biological channel is affected by mutations and can change under evolutionary pressure. Here, we present a novel approach to maximize information transmission: given cell-external and internal noise, we analytically identify both input distributions and input-output relations that optimally transmit information. Using E. coli chemotaxis as an example, we conclude that its pathway is compatible with an optimal information transmission device despite the ultrasensitive rotary motors.

  6. Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases

    DEFF Research Database (Denmark)

    Kampen, G T; Stafford, S; Adachi, T;

    2000-01-01

    Eotaxin and other CC chemokines acting via CC chemokine receptor-3 (CCR3) are believed to play an integral role in the development of eosinophilic inflammation in asthma and allergic inflammatory diseases. However, little is known about the intracellular events following agonist binding to CCR3...... and the relationship of these events to the functional response of the cell. The objectives of this study were to investigate CCR3-mediated activation of the mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase-2 (ERK2), p38, and c-jun N-terminal kinase (JNK) in eosinophils and to assess...... the requirement for MAP kinases in eotaxin-induced eosinophil cationic protein (ECP) release and chemotaxis. MAP kinase activation was studied in eotaxin-stimulated eosinophils (more than 97% purity) by Western blotting and immune-complex kinase assays. ECP release was measured by radioimmunoassay. Chemotaxis...

  7. Differentiation-inducing factor-1 and -2 function also as modulators for Dictyostelium chemotaxis.

    Directory of Open Access Journals (Sweden)

    Hidekazu Kuwayama

    Full Text Available BACKGROUND: In the early stages of development of the cellular slime mold Dictyostelium discoideum, chemotaxis toward cAMP plays a pivotal role in organizing discrete cells into a multicellular structure. In this process, a series of signaling molecules, such as G-protein-coupled cell surface receptors for cAMP, phosphatidylinositol metabolites, and cyclic nucleotides, function as the signal transducers for controlling dynamics of cytoskeleton. Differentiation-inducing factor-1 and -2 (DIF-1 and DIF-2 were originally identified as the factors (chlorinated alkylphenones that induce Dictyostelium stalk cell differentiation, but it remained unknown whether the DIFs had any other physiologic functions. METHODOLOGY/PRINCIPAL FINDINGS: To further elucidate the functions of DIFs, in the present study we investigated their effects on chemotaxis under various conditions. Quite interestingly, in shallow cAMP gradients, DIF-1 suppressed chemotaxis whereas DIF-2 promoted it greatly. Analyses with various mutants revealed that DIF-1 may inhibit chemotaxis, at least in part, via GbpB (a phosphodiesterase and a decrease in the intracellular cGMP concentration ([cGMP](i. DIF-2, by contrast, may enhance chemotaxis, at least in part, via RegA (another phosphodiesterase and an increase in [cGMP](i. Using null mutants for DimA and DimB, the transcription factors that are required for DIF-dependent prestalk differentiation, we also showed that the mechanisms for the modulation of chemotaxis by DIFs differ from those for the induction of cell differentiation by DIFs, at least in part. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that DIF-1 and DIF-2 function as negative and positive modulators for Dictyostelium chemotaxis, respectively. To our knowledge, this is the first report in any organism of physiologic modulators (small molecules for chemotaxis having differentiation-inducing activity.

  8. Complex-wave retrieval based on blind signal separation

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Chai; Chengpeng Zhou; Zhaoyan Feng; Yinhua Wang; Yansheng Zuo

    2006-01-01

    In the process of the reconstruction of digital holography, the traditional methods of diffraction and filtration are commonly adopted to recover the original complex-wave signal. Influenced by twin-image and zero-order terms, the above-mentioned methods, however, either limit the field of vision or result in the loss of the amplitude and phase. A new method for complex-wave retrieval is presented, which is based on blind signal separation. Three frames of holograms are captured by a charge coupled device (CCD)camera to form an observation signal. The term containing only amplitude and phase of complex-wave is separated, by means of independent component analysis, from the observation signal, which effectively eliminates the zero-order term. Finally, the complex-wave retrieval of pure phase wavefront is achieved.Experimental results show that this method can better recover the amplitude and phase of the original complex-wave even when there is a frequency spectrum mixture in the hologram.

  9. Aliasing in the Complex Cepstrum of Linear-Phase Signals

    DEFF Research Database (Denmark)

    Bysted, Tommy Kristensen

    1997-01-01

    Assuming linear-phase of the associated time signal, this paper presents an approximated analytical description of the unavoidable aliasing in practical use of complex cepstrums. The linear-phase assumption covers two major applications of complex cepstrums which are linear- to minimum-phase FIR......-filter transformation and minimum-phase estimation from amplitude specifications. The description is made in the cepstrum domain, the Fourier transform of the complex cepstrum and in the frequency domain. Two examples are given, one for verification of the derived equations and one using the description to reduce...

  10. Complex-Valued Adaptive Signal Processing Using Nonlinear Functions

    Directory of Open Access Journals (Sweden)

    Tülay Adalı

    2008-04-01

    Full Text Available We describe a framework based on Wirtinger calculus for adaptive signal processing that enables efficient derivation of algorithms by directly working in the complex domain and taking full advantage of the power of complex-domain nonlinear processing. We establish the basic relationships for optimization in the complex domain and the real-domain equivalences for first- and second-order derivatives by extending the work of Brandwood and van den Bos. Examples in the derivation of first- and second-order update rules are given to demonstrate the versatility of the approach.

  11. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni.

    Science.gov (United States)

    Dwivedi, Ritika; Nothaft, Harald; Garber, Jolene; Xin Kin, Lin; Stahl, Martin; Flint, Annika; van Vliet, Arnoud H M; Stintzi, Alain; Szymanski, Christine M

    2016-08-01

    Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome-sequenced strains and is prevalent in livestock-associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild-type and the fucP mutant are chemotactic towards fucose. C. jejuni 81-176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81-176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc-). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development.

  12. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni.

    Science.gov (United States)

    Dwivedi, Ritika; Nothaft, Harald; Garber, Jolene; Xin Kin, Lin; Stahl, Martin; Flint, Annika; van Vliet, Arnoud H M; Stintzi, Alain; Szymanski, Christine M

    2016-08-01

    Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome-sequenced strains and is prevalent in livestock-associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild-type and the fucP mutant are chemotactic towards fucose. C. jejuni 81-176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81-176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc-). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development. PMID:27145048

  13. Strenuous physical exercise adversely affects monocyte chemotaxis

    DEFF Research Database (Denmark)

    Czepluch, Frauke S; Barres, Romain; Caidahl, Kenneth;

    2011-01-01

    Physical exercise is important for proper cardiovascular function and disease prevention, but it may influence the immune system. We evaluated the effect of strenuous exercise on monocyte chemotaxis. Monocytes were isolated from blood of 13 young, healthy, sedentary individuals participating...... in a three-week training program which consisted of repeated exercise bouts. Monocyte chemotaxis and serological biomarkers were investigated at baseline, after three weeks training and after four weeks recovery. Chemotaxis towards vascular endothelial growth factor-A (VEGF-A) and transforming growth factor...

  14. A Novel Approach for Detecting QRS Complex of ECG signal

    Directory of Open Access Journals (Sweden)

    Sameer K Salih

    2012-11-01

    Full Text Available In this study, an automatic approach for detecting QRS complexes and evaluating related R-R intervals of ECG signals (PNDM is proposed. It reliably recognizes QRS complexes based on the deflection occurred between R S waves as a large positive and negative interval with respect to other ECG signal waves. The proposed detection method follows new fast direct algorithm applied to the entire ECG record itself without additional transformation like discrete wavelet transform (DWT or any filtering sequence. Mostly used records in the online ECG database (MIT-BIH Arrhythmia have been used to evaluate the new technique. Moreover it was compared to seven existing techniques; the results show that PNDM has much detection performances according to 99.95% sensitivity and 99.97% specificity. It is also quickest than comparable methods.

  15. Assembly of Oligomeric Death Domain Complexes during Toll Receptor Signaling*

    OpenAIRE

    Moncrieffe, Martin C.; Grossmann, J. Günter; Gay, Nicholas J.

    2008-01-01

    The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show ...

  16. Design principles of nuclear receptor signaling: How complex networking improves signal transduction

    NARCIS (Netherlands)

    A.N. Kolodkin (Alexey); F.J. Bruggeman (Frank); N. Plant (Nick); M.J. Moné (Martijn); B.M. Bakker (Barbara); M.J. Campbell (Moray); J.P.T.M. van Leeuwen (Hans); C. Carlberg (Carsten); J.L. Snoep (Jacky); H.V. Westerhoff (Hans)

    2010-01-01

    textabstractThe topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of design aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic

  17. Design principles of nuclear receptor signaling : how complex networking improves signal transduction

    NARCIS (Netherlands)

    Kolodkin, Alexey N.; Bruggeman, Frank J.; Plant, Nick; Mone, Martijn J.; Bakker, Barbara M.; Campbell, Moray J.; van Leeuwen, Johannes P. T. M.; Carlberg, Carsten; Snoep, Jacky L.; Westerhoff, Hans V.

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of 'design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of

  18. PR65A phosphorylation regulates PP2A complex signaling.

    Directory of Open Access Journals (Sweden)

    Kumar Kotlo

    Full Text Available Serine-threonine Protein phosphatase 2 A (PP2A, a member of the PPP family of phosphatases, regulates a variety of essential cellular processes, including cell-cycling, DNA replication, transcription, translation, and secondary signaling pathways. In the heart, increased PP2A activity/signaling has been linked to cardiac remodeling, contractile dysfunction and, in failure, arrythmogenicity. The core PP2A complex is a hetero-trimeric holoenzyme consisting of a 36 kDa catalytic subunit (PP2Ac; a regulatory scaffold subunit of 65 kDa (PR65A or PP2Aa; and one of at least 18 associated variable regulatory proteins (B subunits classified into 3 families. In the present study, three in vivo sites of phosphorylation in cardiac PR65A are identified (S303, T268, S314. Using HEK cells transfected with recombinant forms of PR65A with phosphomimetic (P-PR65A and non-phosphorylated (N-PR65A amino acid substitutions at these sites, these phosphorylations were shown to inhibit the interaction of PR65A with PP2Ac and PP2A holoenzyme signaling. Forty-seven phospho-proteins were increased in abundance in HEK cells transfected with P-PR65A versus N-PR65A by phospho-protein profiling using 2D-DIGE analysis on phospho-enriched whole cell protein extracts. Among these proteins were elongation factor 1α (EF1A, elongation factor 2, heat shock protein 60 (HSP60, NADPH-dehydrogenase 1 alpha sub complex, annexin A, and PR65A. Compared to controls, failing hearts from the Dahl rat had less phosphorylated PR65A protein abundance and increased PP2A activity. Thus, PR65A phosphorylation is an in vivo mechanism for regulation of the PP2A signaling complex and increased PP2A activity in heart failure.

  19. Strain-specific chemotaxis of Azospirillum spp.

    OpenAIRE

    Reinhold, B; Hurek, T; Fendrik, I

    1985-01-01

    Chemotactic responses of three Azospirillum strains originating from different host plants were compared to examine the possible role of chemotaxis in the adaptation of these bacteria to their respective hosts. The chemotaxis to several sugars, amino acids, and organic acids was determined qualitatively by an agar plate assay and quantitatively by a channeled-chamber technique. High chemotactic ratios, up to 40, were obtained with the latter technique. The chemotactic response did not rely up...

  20. Levels of complexity in scale-invariant neural signals

    Science.gov (United States)

    Ivanov, Plamen Ch.; Ma, Qianli D. Y.; Bartsch, Ronny P.; Hausdorff, Jeffrey M.; Nunes Amaral, Luís A.; Schulte-Frohlinde, Verena; Stanley, H. Eugene; Yoneyama, Mitsuru

    2009-04-01

    Many physical and physiological signals exhibit complex scale-invariant features characterized by 1/f scaling and long-range power-law correlations, indicating a possibly common control mechanism. Specifically, it has been suggested that dynamical processes, influenced by inputs and feedback on multiple time scales, may be sufficient to give rise to 1/f scaling and scale invariance. Two examples of physiologic signals that are the output of hierarchical multiscale physiologic systems under neural control are the human heartbeat and human gait. Here we show that while both cardiac interbeat interval and gait interstride interval time series under healthy conditions have comparable 1/f scaling, they still may belong to different complexity classes. Our analysis of the multifractal scaling exponents of the fluctuations in these two signals demonstrates that in contrast to the multifractal behavior found in healthy heartbeat dynamics, gait time series exhibit less complex, close to monofractal behavior. Further, we find strong anticorrelations in the sign and close to random behavior for the magnitude of gait fluctuations at short and intermediate time scales, in contrast to weak anticorrelations in the sign and strong positive correlation for the magnitude of heartbeat interval fluctuations—suggesting that the neural mechanisms of cardiac and gait control exhibit different linear and nonlinear features. These findings are of interest because they underscore the limitations of traditional two-point correlation methods in fully characterizing physiological and physical dynamics. In addition, these results suggest that different mechanisms of control may be responsible for varying levels of complexity observed in physiological systems under neural regulation and in physical systems that possess similar 1/f scaling.

  1. The statistical mechanics of complex signaling networks: nerve growth factor signaling

    Science.gov (United States)

    Brown, K. S.; Hill, C. C.; Calero, G. A.; Myers, C. R.; Lee, K. H.; Sethna, J. P.; Cerione, R. A.

    2004-10-01

    The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'

  2. Chemotaxis of Dictyostelium discoideum: collective oscillation of cellular contacts.

    Directory of Open Access Journals (Sweden)

    Edith Schäfer

    Full Text Available Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells.

  3. Multilevel complexity of calcium signaling:Modeling angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Luca; Munaron; Marco; Scianna

    2012-01-01

    Intracellular calcium signaling is a universal,evolutionary conserved and versatile regulator of cell biochemistry.The complexity of calcium signaling and related cell machinery can be investigated by the use of experimental strategies,as well as by computational approaches.Vascular endothelium is a fascinating model to study the specific properties and roles of calcium signals at multiple biological levels.During the past 20 years,live cell imaging,patch clamp and other techniques have allowed us to detect and interfere with calcium signaling in endothelial cells(ECs),providing a huge amount of information on the regulation of vascularization(angiogenesis) in normal and tumoral tissues.These data range from the spatiotemporal dynamics of calcium within different cell microcompartments to those in entire multicellular and organized EC networks.Beside experimental strategies,in silico endothelial models,specifically designed for simulating calcium signaling,are contributing to our knowledge of vascular physiol-ogy and pathology.They help to investigate and predict the quantitative features of proangiogenic events moving through subcellular,cellular and supracellular levels.This review focuses on some recent developments of computational approaches for proangiogenic endothelial calcium signaling.In particular,we discuss the creation of hybrid simulation environments,which combine and integrate discrete Cellular Potts Models.They are able to capture the phenomenological mechanisms of cell morphological reorganization,migration,and intercellular adhesion,with single-cell spatiotemporal models,based on reaction-diffusion equations that describe the agonist-induced intracellular calcium events.

  4. Complex courtship displays facilitate male reproductive success and plasticity in signaling across variable environments

    OpenAIRE

    Dustin J. WILGERS, Eileen A. HEBETS

    2011-01-01

    Effective signal transmission is essential for communication. In environments where signal transmission is highly variable, signalers may utilize complex signals, which incorporate multiple components and modalities, to maintain effective communication. Male Rabidosa rabida wolf spiders produce complex courtship signals, consisting of both visual and seismic components. We test the hypothesis that the complex signaling of R. rabida contributes to male reproductive success in variable signalin...

  5. Role of extracellular cations in cell motility, polarity, and chemotaxis

    Directory of Open Access Journals (Sweden)

    Soll D

    2011-04-01

    Full Text Available David R Soll1, Deborah Wessels1, Daniel F Lusche1, Spencer Kuhl1, Amanda Scherer1, Shawna Grimm1,21Monoclonal Antibody Research Institute, Developmental Studies, Hybridoma Bank, Department of Biology, University of Iowa, Iowa City; 2Mercy Medical Center, Surgical Residency Program, Des Moines, Iowa, USAAbstract: The concentration of cations in the aqueous environment of free living organisms and cells within the human body influence motility, shape, and chemotaxis. The role of extracellular cations is usually perceived to be the source for intracellular cations in the process of homeostasis. The role of surface molecules that interact with extracellular cations is believed to be that of channels, transporters, and exchangers. However, the role of Ca2+ as a signal and chemoattractant and the discovery of the Ca2+ receptor have demonstrated that extracellular cations can function as signals at the cell surface, and the plasma membrane molecules they interact with can function as bona fide receptors that activate coupled signal transduction pathways, associated molecules in the plasma membrane, or the cytoskeleton. With this perspective in mind, we have reviewed the cationic composition of aqueous environments of free living cells and cells that move in multicellular organisms, most notably humans, the range of molecules interacting with cations at the cell surface, the concept of a cell surface cation receptor, and the roles extracellular cations and plasma membrane proteins that interact with them play in the regulation of motility, shape, and chemotaxis. Hopefully, the perspective of this review will increase awareness of the roles extracellular cations play and the possibility that many of the plasma membrane proteins that interact with them could also play roles as receptors.Keywords: extracellular cations, chemotaxis, transporters, calcium, receptors

  6. A role for TOR complex 2 signaling in promoting autophagy.

    Science.gov (United States)

    Vlahakis, Ariadne; Powers, Ted

    2014-01-01

    The conserved target of rapamycin (TOR) kinase is a central regulator of cell growth in response to nutrient availability. TOR forms 2 structurally and functionally distinct complexes, TORC1 and TORC2, and negatively regulates autophagy via TORC1. Here we demonstrate TOR also operates independently through the TORC2 signaling pathway to promote autophagy upon amino acid limitation. Under these conditions, TORC2, through its downstream target kinase Ypk1, inhibits the Ca(2+)- and Cmd1/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing EIF2S1/eIF2α kinase, Gcn2, and promote autophagy. Thus TORC2 signaling regulates autophagy in a pathway distinct from TORC1 to provide a tunable response to the cellular metabolic state.

  7. Information theoretical quantification of cooperativity in signalling complexes

    DEFF Research Database (Denmark)

    Lenaerts, Tom; Ferkinghoff-Borg, Jesper; Schymkowitz, Joost;

    2009-01-01

    Background: Intra-cellular information exchange, propelled by cascades of interacting signalling proteins, is essential for the proper functioning and survival of cells. Now that the interactome of several organisms is being mapped and several structural mechanisms of cooperativity at the molecular...... level in proteins have been elucidated, the formalization of this fundamental quantity, i.e. information, in these very diverse biological contexts becomes feasible. Results: We show here that Shannon's mutual information quantifies information in biological system and more specifically...... the cooperativity inherent to the assembly of macromolecular complexes. We show how protein complexes can be considered as particular instances of noisy communication channels. Further we show, using a portion of the p27 regulatory pathway, how classical equilibrium thermodynamic quantities such as binding...

  8. Noise-Induced Increase of Sensitivity in Bacterial Chemotaxis.

    Science.gov (United States)

    He, Rui; Zhang, Rongjing; Yuan, Junhua

    2016-07-26

    Flagellated bacteria, like Escherichia coli, can swim toward beneficial environments by modulating the rotational direction of their flagellar motors through a chemotaxis signal transduction network. The noise of this network, the random fluctuation of the intracellular concentration of the signal protein CheY-P with time, has been identified in studies of single cell behavioral variability, and found to be important in coordination of multiple motors in a bacterium and in enhancement of bacterial drift velocity in chemical gradients. Here, by comparing the behavioral difference between motors of wild-type E. coli and mutants without signal noise, we measured the magnitude of this noise in wild-type cells, and found that the noise increases the sensitivity of the bacterial chemotaxis network downstream at the level of the flagellar motor. This provided a simple mechanism for the noise-induced enhancement of chemotactic drift, which we confirmed by simulating the E. coli chemotactic motion in various spatial profiles of chemo-attractant concentration. PMID:27463144

  9. The polycystin complex mediates Wnt/Ca(2+) signalling.

    Science.gov (United States)

    Kim, Seokho; Nie, Hongguang; Nesin, Vasyl; Tran, Uyen; Outeda, Patricia; Bai, Chang-Xi; Keeling, Jacob; Maskey, Dipak; Watnick, Terry; Wessely, Oliver; Tsiokas, Leonidas

    2016-07-01

    WNT ligands induce Ca(2+) signalling on target cells. PKD1 (polycystin 1) is considered an orphan, atypical G-protein-coupled receptor complexed with TRPP2 (polycystin 2 or PKD2), a Ca(2+)-permeable ion channel. Inactivating mutations in their genes cause autosomal dominant polycystic kidney disease (ADPKD), one of the most common genetic diseases. Here, we show that WNTs bind to the extracellular domain of PKD1 and induce whole-cell currents and Ca(2+) influx dependent on TRPP2. Pathogenic PKD1 or PKD2 mutations that abrogate complex formation, compromise cell surface expression of PKD1, or reduce TRPP2 channel activity suppress activation by WNTs. Pkd2(-/-) fibroblasts lack WNT-induced Ca(2+) currents and are unable to polarize during directed cell migration. In Xenopus embryos, pkd1, Dishevelled 2 (dvl2) and wnt9a act within the same pathway to preserve normal tubulogenesis. These data define PKD1 as a WNT (co)receptor and implicate defective WNT/Ca(2+) signalling as one of the causes of ADPKD. PMID:27214281

  10. Information theoretical quantification of cooperativity in signalling complexes

    Directory of Open Access Journals (Sweden)

    Ferkinghoff-Borg Jesper

    2009-01-01

    Full Text Available Abstract Background Intra-cellular information exchange, propelled by cascades of interacting signalling proteins, is essential for the proper functioning and survival of cells. Now that the interactome of several organisms is being mapped and several structural mechanisms of cooperativity at the molecular level in proteins have been elucidated, the formalization of this fundamental quantity, i.e. information, in these very diverse biological contexts becomes feasible. Results We show here that Shannon's mutual information quantifies information in biological system and more specifically the cooperativity inherent to the assembly of macromolecular complexes. We show how protein complexes can be considered as particular instances of noisy communication channels. Further we show, using a portion of the p27 regulatory pathway, how classical equilibrium thermodynamic quantities such as binding affinities and chemical potentials can be used to quantify information exchange but also to determine engineering properties such as channel noise and channel capacity. As such, this information measure identifies and quantifies those protein concentrations that render the biochemical system most effective in switching between the active and inactive state of the intracellular process. Conclusion The proposed framework provides a new and original approach to analyse the effects of cooperativity in the assembly of macromolecular complexes. It shows the conditions, provided by the protein concentrations, for which a particular system acts most effectively, i.e. exchanges the most information. As such this framework opens the possibility of grasping biological qualities such as system sensitivity, robustness or plasticity directly in terms of their effect on information exchange. Although these parameters might also be derived using classical thermodynamic parameters, a recasting of biological signalling in terms of information exchange offers an alternative

  11. Structural permeability of complex networks to control signals

    Science.gov (United States)

    Lo Iudice, Francesco; Garofalo, Franco; Sorrentino, Francesco

    2015-09-01

    Many biological, social and technological systems can be described as complex networks. The goal of affecting their behaviour has motivated recent work focusing on the relationship between the network structure and its propensity to be controlled. While this work has provided insight into several relevant problems, a comprehensive approach to address partial and complete controllability of networks is still lacking. Here, we bridge this gap by developing a framework to maximize the diffusion of the control signals through a network, while taking into account physical and economic constraints that inevitably arise in applications. This approach allows us to introduce the network permeability, a unified metric of the propensity of a network to be controllable. The analysis of the permeability of several synthetic and real networks enables us to extract some structural features that deepen our quantitative understanding of the ease with which specific controllability requirements can be met.

  12. Dependence of bacterial chemotaxis on gradient shape and adaptation rate.

    Directory of Open Access Journals (Sweden)

    Nikita Vladimirov

    2008-12-01

    Full Text Available Simulation of cellular behavior on multiple scales requires models that are sufficiently detailed to capture central intracellular processes but at the same time enable the simulation of entire cell populations in a computationally cheap way. In this paper we present RapidCell, a hybrid model of chemotactic Escherichia coli that combines the Monod-Wyman-Changeux signal processing by mixed chemoreceptor clusters, the adaptation dynamics described by ordinary differential equations, and a detailed model of cell tumbling. Our model dramatically reduces computational costs and allows the highly efficient simulation of E. coli chemotaxis. We use the model to investigate chemotaxis in different gradients, and suggest a new, constant-activity type of gradient to systematically study chemotactic behavior of virtual bacteria. Using the unique properties of this gradient, we show that optimal chemotaxis is observed in a narrow range of CheA kinase activity, where concentration of the response regulator CheY-P falls into the operating range of flagellar motors. Our simulations also confirm that the CheB phosphorylation feedback improves chemotactic efficiency by shifting the average CheY-P concentration to fit the motor operating range. Our results suggest that in liquid media the variability in adaptation times among cells may be evolutionary favorable to ensure coexistence of subpopulations that will be optimally tactic in different gradients. However, in a porous medium (agar such variability appears to be less important, because agar structure poses mainly negative selection against subpopulations with low levels of adaptation enzymes. RapidCell is available from the authors upon request.

  13. Dangerous mating systems: signal complexity, signal content and neural capacity in spiders.

    Science.gov (United States)

    Herberstein, M E; Wignall, A E; Hebets, E A; Schneider, J M

    2014-10-01

    Spiders are highly efficient predators in possession of exquisite sensory capacities for ambushing prey, combined with machinery for launching rapid and determined attacks. As a consequence, any sexually motivated approach carries a risk of ending up as prey rather than as a mate. Sexual selection has shaped courtship to effectively communicate the presence, identity, motivation and/or quality of potential mates, which help ameliorate these risks. Spiders communicate this information via several sensory channels, including mechanical (e.g. vibrational), visual and/or chemical, with examples of multimodal signalling beginning to emerge in the literature. The diverse environments that spiders inhabit have further shaped courtship content and form. While our understanding of spider neurobiology remains in its infancy, recent studies are highlighting the unique and considerable capacities of spiders to process and respond to complex sexual signals. As a result, the dangerous mating systems of spiders are providing important insights into how ecology shapes the evolution of communication systems, with future work offering the potential to link this complex communication with its neural processes. PMID:25088579

  14. Imprecision of adaptation in Escherichia coli chemotaxis.

    Directory of Open Access Journals (Sweden)

    Silke Neumann

    Full Text Available Adaptability is an essential property of many sensory systems, enabling maintenance of a sensitive response over a range of background stimulus levels. In bacterial chemotaxis, adaptation to the preset level of pathway activity is achieved through an integral feedback mechanism based on activity-dependent methylation of chemoreceptors. It has been argued that this architecture ensures precise and robust adaptation regardless of the ambient ligand concentration, making perfect adaptation a celebrated property of the chemotaxis system. However, possible deviations from such ideal adaptive behavior and its consequences for chemotaxis have not been explored in detail. Here we show that the chemotaxis pathway in Escherichia coli shows increasingly imprecise adaptation to higher concentrations of attractants, with a clear correlation between the time of adaptation to a step-like stimulus and the extent of imprecision. Our analysis suggests that this imprecision results from a gradual saturation of receptor methylation sites at high levels of stimulation, which prevents full recovery of the pathway activity by violating the conditions required for precise adaptation. We further use computer simulations to show that limited imprecision of adaptation has little effect on the rate of chemotactic drift of a bacterial population in gradients, but hinders precise accumulation at the peak of the gradient. Finally, we show that for two major chemoeffectors, serine and cysteine, failure of adaptation at concentrations above 1 mM might prevent bacteria from accumulating at toxic concentrations of these amino acids.

  15. Precise Adaptation in Bacterial Chemotaxis through ``Assistance Neighborhoods''

    Science.gov (United States)

    Endres, Robert

    2007-03-01

    The chemotaxis network in Escherichia coli is remarkable for its sensitivity to small relative changes in the concentrations of multiple chemical signals over a broad range of ambient concentrations. Key to this sensitivity is an adaptation system that relies on methylation and demethylation (or deamidation) of specific modification sites of the chemoreceptors by the enzymes CheR and CheB, respectively. It was recently discovered that these enzymes can access five to seven receptors when tethered to a particular receptor. We show that these ``assistance neighborhoods'' (ANs) are necessary for precise and robust adaptation in a model for signaling by clusters of chemoreceptors: (1) ANs suppress fluctuations of the receptor methylation level; (2) ANs lead to robustness with respect to biochemical parameters. We predict two limits of precise adaptation at large attractant concentrations: either receptors reach full methylation and turn off, or receptors become saturated and cease to respond to attractant but retain their adapted activity.

  16. Biomixing by chemotaxis and enhancement of biological reactions

    CERN Document Server

    Kiselev, Alexander

    2011-01-01

    Many processes in biology involve both reactions and chemotaxis. However, to the best of our knowledge, the question of interaction between chemotaxis and reactions has not yet been addressed either analytically or numerically. We consider a model with a single density function involving diffusion, advection, chemotaxis, and absorbing reaction. The model is motivated, in particular, by studies of coral broadcast spawning, where experimental observations of the efficiency of fertilization rates significantly exceed the data obtained from numerical models that do not take chemotaxis (attraction of sperm gametes by a chemical secreted by egg gametes) into account. We prove that in the framework of our model, chemotaxis plays a crucial role. There is a rigid limit to how much the fertilization efficiency can be enhanced if there is no chemotaxis but only advection and diffusion. On the other hand, when chemotaxis is present, the fertilization rate can be arbitrarily close to being complete provided that the chemo...

  17. [Complexity analysis of gait signal based on Jensen-Shannon divergence].

    Science.gov (United States)

    Wang, Peicun; Wang, Jun

    2014-06-01

    When people are walking, they will produce gait signals and different people will produce different gait signals. The research of the gait signal complexity is really of great significance for medicine. By calculating people's gait signal complexity, we can assess a person's health status and thus timely detect and diagnose diseases. In this study, the Jensen-Shannon divergence (JSD), the method of complexity analysis, was used to calculate the complexity of gait signal in the healthy elderly, healthy young people and patients with Parkinson's disease. Then we detected the experimental data by variance detection. The results showed that the difference among the complexity of the three gait signals was great. Through this research, we have got gait signal complexity range of patients with Parkinson's disease, the healthy elderly and healthy young people, respectively, which would provide an important basis for clinical diagnosis.

  18. Nematode Chemotaxis: Gradual Turns, Sharp Turns, and Modulated Turn Angles

    Science.gov (United States)

    Patel, Amar; Padmanabhan, Venkat; Rumbaugh, Kendra; Vanapalli, Siva; Blawzdziewicz, Jerzy

    2013-03-01

    We examine strategies used by the soil-dwelling nematode Caenorhabditis Elegans for chemotaxis in complex environments. The proposed description is based on our recently developed piecewise-harmonic-curvature model of nematode locomotion [PLoS ONE, 7(7) e40121 (2012)], where random harmonic-curvature modes represent elementary locomotory movements. We show that the previously described gradual-turn and sharp-turn chemotaxis strategies can be unified in our model. The gradual-turn mechanism relies on crawling amplitude changes commensurate with the undulation frequency. The sharp-turn mechanism consists in modulation of the frequency of jumps to large-amplitude modes. We hypothesize that there exists a third strategy, where the nematode adjusts the variance of the amplitude distribution. Such adjustments result in a modulation of the magnitude of random turns, with smaller turns performed when the nematode moves toward the increasing chemoatractant concentration. Experiments are proposed to determine if the third strategy is present in the nematode behavior. This work was supported by NSF grant No. CBET 1059745.

  19. Complex courtship displays facilitate male reproductive success and plasticity in signaling across variable environments

    Institute of Scientific and Technical Information of China (English)

    Dustin J.WILGERS; Eileen A.HEBETS

    2011-01-01

    Effective signal transmission is essential for communication.In environments where signal transmission is highly variable,signalers may utilize complex signals,which incorporate multiple components and modalities,to maintain effective communication.Male Rabidosa rabida wolf spiders produce complex courtship signals,consisting of both visual and seismic components.We test the hypothesis that the complex signaling of R.rabida contributes to male reproductive success in variable signaling environments.We first examine the condition-dependence of foreleg ornamentation(a presumed visual signal)and seismic signal components and find that both may provide potentially redundant information on foraging history.Next,we assessed reproductive success across manipulated signaling environments that varied in the effectiveness of visual and/or seismic signal transmission.in environmenis where only one signal could be successfully transmitted(e.g.,visual or seismic),pairs were still able to successfully copulate.Additionally,we found that males altered their courtship display depending on the current signaling environment.Specifically,males reduced their use of a visual display component in signaling environments where visual signal transmission was ablated.Incorporating signals in multiple modalities not only enables R.rabida males to maintain copulation success across variable signaiing environments,but it also enables males to adjust their composite courtship display to current signaling conditions.

  20. Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation.

    Directory of Open Access Journals (Sweden)

    Clinton H Hansen

    2008-01-01

    Full Text Available The chemotaxis system in the bacterium Escherichia coli is remarkably sensitive to small relative changes in the concentrations of multiple chemical signals over a broad range of ambient concentrations. Interactions among receptors are crucial to this sensitivity as is precise adaptation, the return of chemoreceptor activity to prestimulus levels in a constant chemoeffector environment. Precise adaptation relies on methylation and demethylation of chemoreceptors by the enzymes CheR and CheB, respectively. Experiments indicate that when transiently bound to one receptor, these enzymes act on small assistance neighborhoods (AN of five to seven receptor homodimers. In this paper, we model a strongly coupled complex of receptors including dynamic CheR and CheB acting on ANs. The model yields sensitive response and precise adaptation over several orders of magnitude of attractant concentrations and accounts for different responses to aspartate and serine. Within the model, we explore how the precision of adaptation is limited by small AN size as well as by CheR and CheB kinetics (including dwell times, saturation, and kinetic differences among modification sites and how these kinetics contribute to noise in complex activity. The robustness of our dynamic model for precise adaptation is demonstrated by randomly varying biochemical parameters.

  1. Seismic signal analysis based on the dual-tree complex wavelet packet transform

    Institute of Scientific and Technical Information of China (English)

    谢周敏; 王恩福; 张国宏; 赵国存; 陈旭庚

    2004-01-01

    We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex waveletpacket transform (CWPT) combine the merits of real wavelet packet transform with that of complex continuouswavelet transform (CCWT). It can not only pick up the phase information of signal, but also produce better "focalizing" function if it matches the phase spectrum of signals analyzed. We here described the dual-tree CWPT algorithm, and gave the examples of simulation and actual seismic signals analysis. As shown by our results, thedual-tree CWPT is a very efecfive method in analyzing seismic signals with non-linear phase.

  2. Transient dynamic phenotypes as criteria for model discrimination: fold-change detection in Rhodobacter sphaeroides chemotaxis.

    Science.gov (United States)

    Hamadeh, Abdullah; Ingalls, Brian; Sontag, Eduardo

    2013-03-01

    The chemotaxis pathway of the bacterium Rhodobacter sphaeroides shares many similarities with that of Escherichia coli. It exhibits robust adaptation and has several homologues of the latter's chemotaxis proteins. Recent theoretical results have correctly predicted that the E. coli output behaviour is unchanged under scaling of its ligand input signal; this property is known as fold-change detection (FCD). In the light of recent experimental results suggesting that R. sphaeroides may also show FCD, we present theoretical assumptions on the R. sphaeroides chemosensory dynamics that can be shown to yield FCD behaviour. Furthermore, it is shown that these assumptions make FCD a property of this system that is robust to structural and parametric variations in the chemotaxis pathway, in agreement with experimental results. We construct and examine models of the full chemotaxis pathway that satisfy these assumptions and reproduce experimental time-series data from earlier studies. We then propose experiments in which models satisfying our theoretical assumptions predict robust FCD behaviour where earlier models do not. In this way, we illustrate how transient dynamic phenotypes such as FCD can be used for the purposes of discriminating between models that reproduce the same experimental time-series data.

  3. Transient dynamic phenotypes as criteria for model discrimination: fold-change detection in Rhodobacter sphaeroides chemotaxis.

    Science.gov (United States)

    Hamadeh, Abdullah; Ingalls, Brian; Sontag, Eduardo

    2013-03-01

    The chemotaxis pathway of the bacterium Rhodobacter sphaeroides shares many similarities with that of Escherichia coli. It exhibits robust adaptation and has several homologues of the latter's chemotaxis proteins. Recent theoretical results have correctly predicted that the E. coli output behaviour is unchanged under scaling of its ligand input signal; this property is known as fold-change detection (FCD). In the light of recent experimental results suggesting that R. sphaeroides may also show FCD, we present theoretical assumptions on the R. sphaeroides chemosensory dynamics that can be shown to yield FCD behaviour. Furthermore, it is shown that these assumptions make FCD a property of this system that is robust to structural and parametric variations in the chemotaxis pathway, in agreement with experimental results. We construct and examine models of the full chemotaxis pathway that satisfy these assumptions and reproduce experimental time-series data from earlier studies. We then propose experiments in which models satisfying our theoretical assumptions predict robust FCD behaviour where earlier models do not. In this way, we illustrate how transient dynamic phenotypes such as FCD can be used for the purposes of discriminating between models that reproduce the same experimental time-series data. PMID:23293140

  4. Transepithelial chemotaxis of rat peritoneal exudate cells.

    Science.gov (United States)

    Evans, C W; Taylor, J E; Walker, J D; Simmons, N L

    1983-12-01

    The migration of peritoneal exudate (PE) cells into plain Millipore filters mounted in Boyden chambers occurs under random, chemokinetic and chemotactic conditions. Significant migration of such cells in vivo, however, involves both transendothelial and transepithelial penetration and occurs predominantly under pathological conditions where chemotactic agents are presumed to be present in gradient form. When Madin-Darby canine kidney (MDCK) epithelial cells are grown as a confluent monolayer on the Millipore filter of a Boyden chamber, transepithelial migration is seen only under chemotactic conditions thus modelling in vivo behaviour more effectively. The MDCK cell line exists as 2 variant strains which model different regions of the mammalian nephron. Strain I MDCK cells share features of the distal and collecting tubules and have relatively high junctional resistance (greater than 1k omega cm2). Strain II MDCK cells model the proximal segment of the nephron and have relatively low junctional resistance (c. 70 omega cm2). We have found that PE cells penetrate the less resistant strain II MDCK monolayer at a faster rate (as assessed by leading front migration) than they penetrate the tighter strain I monolayer. We have also utilized the electrophysiological features of MDCK monolayers to monitor transepithelial penetration. Our electrophysiological data indicate that rat PE cells penetrate MDCK monolayers of either strain by a transjunctional route with consequent reversible dissolution of the junctional complex. This extracellular path of PE cell migration was confirmed by ultrastructural observations. The extent of junctional dissolution and the delay in re-establishment of monolayer integrity (as assessed by electrophysiological means) are related to the concentration of PE cells added to the MDCK monolayer. Brief treatment (10 min) of the MDCK monolayer with the cation chelating agent EDTA also disrupts monolayer integrity, although its re-establishment is

  5. Analysis on Design of Kohonen-network System Based on Classification of Complex Signals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The key methods of detection and classification of the electroencephalogram(EEG) used in recent years are introduced . Taking EEG for example, the design plan of Kohonen neural network system based on detection and classification of complex signals is proposed, and both the network design and signal processing are analyzed, including pre-processing of signals, extraction of signal features, classification of signal and network topology, etc.

  6. Toward Synthetic Spatial Patterns in Engineered Cell Populations with Chemotaxis.

    Science.gov (United States)

    Duran-Nebreda, Salva; Solé, Ricard V

    2016-07-15

    A major force shaping form and patterns in biology is based in the presence of amplification mechanisms able to generate ordered, large-scale spatial structures out of local interactions and random initial conditions. Turing patterns are one of the best known candidates for such ordering dynamics, and their existence has been proven in both chemical and physical systems. Their relevance in biology, although strongly supported by indirect evidence, is still under discussion. Extensive modeling approaches have stemmed from Turing's pioneering ideas, but further confirmation from experimental biology is required. An alternative possibility is to engineer cells so that self-organized patterns emerge from local communication. Here we propose a potential synthetic design based on the interaction between population density and a diffusing signal, including also directed motion in the form of chemotaxis. The feasibility of engineering such a system and its implications for developmental biology are also assessed. PMID:27009520

  7. Rho GTPases orient directional sensing in chemotaxis

    OpenAIRE

    Wang, Yu; Senoo, Hiroshi; Sesaki, Hiromi; Iijima, Miho

    2013-01-01

    During chemotaxis, cells recognize an extracellular chemical gradient and produce amplified intracellular responses independently of the actin cytoskeleton. This process is called directional sensing and observed as the activation of Ras GTPase and the production of phosphatidylinositol (3,4,5)-triphosphate (PIP3) toward higher concentrations of chemoattractants. How directional sensing is controlled is largely unknown. In our current study, we demonstrate that a Rho GTPase (RacE) and a Rho g...

  8. Imprecision of Adaptation in Escherichia coli Chemotaxis

    OpenAIRE

    Silke Neumann; Nikita Vladimirov; Krembel, Anna K.; Wingreen, Ned S.; Victor Sourjik

    2014-01-01

    Adaptability is an essential property of many sensory systems, enabling maintenance of a sensitive response over a range of background stimulus levels. In bacterial chemotaxis, adaptation to the preset level of pathway activity is achieved through an integral feedback mechanism based on activity-dependent methylation of chemoreceptors. It has been argued that this architecture ensures precise and robust adaptation regardless of the ambient ligand concentration, making perfect adaptation a cel...

  9. Signal transduction by the major histocompatibility complex class I molecule

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Skov, S; Bregenholt, S;

    1999-01-01

    Ligation of cell surface major histocompatibility class I (MHC-I) proteins by antibodies, or by their native counter receptor, the CD8 molecule, mediates transduction of signals into the cells. MHC-I-mediated signaling can lead to both increased and decreased activity of the MHC-I-expressing cell...

  10. The Pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling.

    Directory of Open Access Journals (Sweden)

    Juliane Schmidt

    Full Text Available The characterization of factors contributing to the formation and development of surface-associated bacterial communities known as biofilms has become an area of intense interest since biofilms have a major impact on human health, the environment and industry. Various studies have demonstrated that motility, including swimming, swarming and twitching, seems to play an important role in the surface colonization and establishment of structured biofilms. Thereby, the impact of chemotaxis on biofilm formation has been less intensively studied. Pseudomonas aeruginosa has a very complex chemosensory system with two Che systems implicated in flagella-mediated motility. In this study, we demonstrate that the chemotaxis protein CheR1 is a methyltransferase that binds S-adenosylmethionine and transfers a methyl group from this methyl donor to the chemoreceptor PctA, an activity which can be stimulated by the attractant serine but not by glutamine. We furthermore demonstrate that CheR1 does not only play a role in flagella-mediated chemotaxis but that its activity is essential for the formation and maintenance of bacterial biofilm structures. We propose a model in which motility and chemotaxis impact on initial attachment processes, dispersion and reattachment and increase the efficiency and frequency of surface sampling in P. aeruginosa.

  11. Cytokinin signal transduction: Known simplicity and unknown complexity

    Institute of Scientific and Technical Information of China (English)

    ZHENG Binglian; SUN Jiaqiang; ZHANG Suzhi; DENG Yan; ZUO Jianru

    2003-01-01

    Cytokinin plays a critical role in plant growth and development by regulating cell divisions and cell differentiation. Recent studies suggest that cytokinin signaling is presumably mediated by a two-component system analogous to those found in bacteria and fungi, which transduces an external signal via a phosphorelay from the plasma membrane-anchored receptors to downstream effectors andregulators. Moreover, cytokinin signaling is highly interactive with other pathways, and many components of the pathway appear to be functionally redundant. Proper address of these questions will be crucial for our further understanding onthis important network.

  12. Differential maturation of brain signal complexity in the human auditory and visual system

    Directory of Open Access Journals (Sweden)

    Sarah Lippe

    2009-11-01

    Full Text Available Brain development carries with it a large number of structural changes at the local level which impact on the functional interactions of distributed neuronal networks for perceptual processing. Such changes enhance information processing capacity, which can be indexed by estimation of neural signal complexity. Here, we show that during development, EEG signal complexity increases from one month to 5 years of age in response to auditory and visual stimulation. However, the rates of change in complexity were not equivalent for the two responses. Infants’ signal complexity for the visual condition was greater than auditory signal complexity, whereas adults showed the same level of complexity to both types of stimuli. The differential rates of complexity change may reflect a combination of innate and experiential factors on the structure and function of the two sensory systems.

  13. SIMULATING BIOCHEMICAL SIGNALING NETWORKS IN COMPLEX MOVING GEOMETRIES.

    Science.gov (United States)

    Strychalski, Wanda; Adalsteinsson, David; Elston, Timothy C

    2010-01-01

    Signaling networks regulate cellular responses to environmental stimuli through cascades of protein interactions. External signals can trigger cells to polarize and move in a specific direction. During migration, spatially localized activity of proteins is maintained. To investigate the effects of morphological changes on intracellular signaling, we developed a numerical scheme consisting of a cut cell finite volume spatial discretization coupled with level set methods to simulate the resulting advection-reaction-diffusion system. We then apply the method to several biochemical reaction networks in changing geometries. We found that a Turing instability can develop exclusively by cell deformations that maintain constant area. For a Turing system with a geometry-dependent single or double peak solution, simulations in a dynamically changing geometry suggest that a single peak solution is the only stable one, independent of the oscillation frequency. The method is also applied to a model of a signaling network in a migrating fibroblast. PMID:24086102

  14. Computational Chemotaxis in Ants and Bacteria over Dynamic Environments

    CERN Document Server

    Ramos, Vitorino; Rosa, A C; Abraham, A

    2007-01-01

    Chemotaxis can be defined as an innate behavioural response by an organism to a directional stimulus, in which bacteria, and other single-cell or multicellular organisms direct their movements according to certain chemicals in their environment. This is important for bacteria to find food (e.g., glucose) by swimming towards the highest concentration of food molecules, or to flee from poisons. Based on self-organized computational approaches and similar stigmergic concepts we derive a novel swarm intelligent algorithm. What strikes from these observations is that both eusocial insects as ant colonies and bacteria have similar natural mechanisms based on stigmergy in order to emerge coherent and sophisticated patterns of global collective behaviour. Keeping in mind the above characteristics we will present a simple model to tackle the collective adaptation of a social swarm based on real ant colony behaviors (SSA algorithm) for tracking extrema in dynamic environments and highly multimodal complex functions des...

  15. SELF-ADAPTIVE CONTROLS OF A COMPLEX CELLULAR SIGNALING TRANSDUCTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    LI Hong; ZHOU Zhiyuan; DAI Rongyang; LUO Bo; ZHENG Xiaoli; YANG Wenli; HE Tao; WU Minglu

    2004-01-01

    In cells, the interactions of distinct signaling transduction pathways originating from cross-talkings between signaling molecules give rise to the formation of signaling transduction networks, which contributes to the changes (emergency) of kinetic behaviors of signaling system compared with single molecule or pathway. Depending on the known experimental data, we have constructed a model for complex cellular signaling transduction system, which is derived from signaling transduction of epidermal growth factor receptor in neuron. By the computational simulating methods, the self-adaptive controls of this system have been investigated. We find that this model exhibits a relatively stable selfadaptive system, especially to over-stimulation of agonist, and the amplitude and duration of signaling intermediates in it could be controlled by multiple self-adaptive effects, such as "signal scattering", "positive feedback", "negative feedback" and "B-Raf shunt". Our results provide an approach to understanding the dynamic behaviors of complex biological systems.

  16. Polar Location of the Chemoreceptor Complex in the Escherichia coli Cell

    Science.gov (United States)

    Maddock, Janine R.; Shapiro, Lucille

    1993-03-01

    The eukaryotic cell exhibits compartmentalization of functions to various membrane-bound organelles and to specific domains within each membrane. The spatial distribution of the membrane chemoreceptors and associated cytoplasmic chemotaxis proteins in Escherichia coli were examined as a prototypic functional aggregate in bacterial cells. Bacterial chemotaxis involves a phospho-relay system brought about by ligand association with a membrane receptor, culminating in a switch in the direction of flagellar rotation. The transduction of the chemotaxis signal is initiated by a chemoreceptor-CheW-CheA ternary complex at the inner membrane. These ternary complexes aggregate predominantly at the cell poles. Polar localization of the cytoplasmic CheA and CheW proteins is dependent on membrane-bound chemoreceptor. Chemoreceptors are not confined to the cell poles in strains lacking both CheA and CheW. The chemoreceptor-CheW binary complex is polarly localized in the absence of CheA, whereas the chemoreceptor-CheA binary complex is not confined to the cell poles in strains lacking CheW. The subcellular localization of the chemotaxis proteins may reflect a general mechanism by which the bacterial cell sequesters different regions of the cell for specialized functions.

  17. Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis.

    Science.gov (United States)

    Sharff, A J; Rodseth, L E; Spurlino, J C; Quiocho, F A

    1992-11-10

    The periplasmic maltodextrin binding protein of Escherichia coli serves as an initial receptor for the active transport of and chemotaxis toward maltooligosaccharides. The three-dimensional structure of the binding protein complexed with maltose has been previously reported [Spurlino, J. C., Lu, G.-Y., & Quiocho, F. A. (1991) J. Biol. Chem. 266, 5202-5219]. Here we report the structure of the unliganded form of the binding protein refined to 1.8-A resolution. This structure, combined with that for the liganded form, provides the first crystallographic evidence that a major ligand-induced conformational change occurs in a periplasmic binding protein. The unliganded structure shows a rigid-body "hinge-bending" between the two globular domains by approximately 35 degrees, relative to the maltose-bound structure, opening the sugar binding site groove located between the two domains. In addition, there is an 8 degrees twist of one domain relative to the other domain. The conformational changes observed between this structure and the maltose-bound structure are consistent with current models of maltose/maltodextrin transport and maltose chemotaxis and solidify a mechanism for receptor differentiation between the ligand-free and ligand-bound forms in signal transduction.

  18. Mapping Complex Networks: Exploring Boolean Modeling of Signal Transduction Pathways

    OpenAIRE

    Bhardwaj, Gaurav; Wells, Christine P.; Albert, Reka; van Rossum, Damian B.; Patterson, Randen L

    2009-01-01

    In this study, we explored the utility of a descriptive and predictive bionetwork model for phospholipase C-coupled calcium signaling pathways, built with non-kinetic experimental information. Boolean models generated from these data yield oscillatory activity patterns for both the endoplasmic reticulum resident inositol-1,4,5-trisphosphate receptor (IP3R) and the plasma-membrane resident canonical transient receptor potential channel 3 (TRPC3). These results are specific as randomization of ...

  19. Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus

    Directory of Open Access Journals (Sweden)

    Müller Judith

    2009-03-01

    Full Text Available Abstract Background Archaea share with bacteria the ability to bias their movement towards more favorable locations, a process known as taxis. Two molecular systems drive this process: the motility apparatus and the chemotaxis signal transduction system. The first consists of the flagellum, the flagellar motor, and its switch, which allows cells to reverse the rotation of flagella. The second targets the flagellar motor switch in order to modulate the switching frequency in response to external stimuli. While the signal transduction system is conserved throughout archaea and bacteria, the archaeal flagellar apparatus is different from the bacterial one. The proteins constituting the flagellar motor and its switch in archaea have not yet been identified, and the connection between the bacterial-like chemotaxis signal transduction system and the archaeal motility apparatus is unknown. Results Using protein-protein interaction analysis, we have identified three proteins in Halobacterium salinarum that interact with the chemotaxis (Che proteins CheY, CheD, and CheC2, as well as the flagella accessory (Fla proteins FlaCE and FlaD. Two of the proteins belong to the protein family DUF439, the third is a HEAT_PBS family protein. In-frame deletion strains for all three proteins were generated and analyzed as follows: a photophobic responses were measured by a computer-based cell tracking system b flagellar rotational bias was determined by dark-field microscopy, and c chemotactic behavior was analyzed by a swarm plate assay. Strains deleted for the HEAT_PBS protein or one of the DUF439 proteins proved unable to switch the direction of flagellar rotation. In these mutants, flagella rotate only clockwise, resulting in exclusively forward swimming cells that are unable to respond to tactic signals. Deletion of the second DUF439 protein had only minimal effects. HEAT_PBS proteins could be identified in the chemotaxis gene regions of all motile haloarchaea

  20. Design and diversity in bacterial chemotaxis: a comparative study in Escherichia coli and Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Christopher V Rao

    2004-02-01

    Full Text Available Comparable processes in different species often involve homologous genes. One question is whether the network structure, in particular the feedback control structure, is also conserved. The bacterial chemotaxis pathways in E. coli and B. subtilis both regulate the same task, namely, excitation and adaptation to environmental signals. Both pathways employ many orthologous genes. Yet how these orthologs contribute to network function in each organism is different. To investigate this problem, we propose what is to our knowledge the first computational model for B. subtilis chemotaxis and compare it to previously published models for chemotaxis in E. coli. The models reveal that the core control strategy for signal processing is the same in both organisms, though in B. subtilis there are two additional feedback loops that provide an additional layer of regulation and robustness. Furthermore, the network structures are different despite the similarity of the proteins in each organism. These results demonstrate the limitations of pathway inferences based solely on homology and suggest that the control strategy is an evolutionarily conserved property.

  1. Global solution for a kinetic chemotaxis model with internal dynamics and its fast adaptation limit

    Science.gov (United States)

    Liao, Jie

    2015-12-01

    A nonlinear kinetic chemotaxis model with internal dynamics incorporating signal transduction and adaptation is considered. This paper is concerned with: (i) the global solution for this model, and, (ii) its fast adaptation limit to Othmer-Dunbar-Alt type model. This limit gives some insight to the molecular origin of the chemotaxis behaviour. First, by using the Schauder fixed point theorem, the global existence of weak solution is proved based on detailed a priori estimates, under quite general assumptions. However, the Schauder theorem does not provide uniqueness, so additional analysis is required to be developed for uniqueness. Next, the fast adaptation limit of this model is derived by extracting a weak convergence subsequence in measure space. For this limit, the first difficulty is to show the concentration effect on the internal state. Another difficulty is the strong compactness argument on the chemical potential, which is essential for passing the nonlinear kinetic equation to the weak limit.

  2. Method for analyzing signaling networks in complex cellular systems.

    Science.gov (United States)

    Plavec, Ivan; Sirenko, Oksana; Privat, Sylvie; Wang, Yuker; Dajee, Maya; Melrose, Jennifer; Nakao, Brian; Hytopoulos, Evangelos; Berg, Ellen L; Butcher, Eugene C

    2004-02-01

    Now that the human genome has been sequenced, the challenge of assigning function to human genes has become acute. Existing approaches using microarrays or proteomics frequently generate very large volumes of data not directly related to biological function, making interpretation difficult. Here, we describe a technique for integrative systems biology in which: (i) primary cells are cultured under biologically meaningful conditions; (ii) a limited number of biologically meaningful readouts are measured; and (iii) the results obtained under several different conditions are combined for analysis. Studies of human endothelial cells overexpressing different signaling molecules under multiple inflammatory conditions show that this system can capture a remarkable range of functions by a relatively small number of simple measurements. In particular, measurement of seven different protein levels by ELISA under four different conditions is capable of reconstructing pathway associations of 25 different proteins representing four known signaling pathways, implicating additional participants in the NF-kappaBorRAS/mitogen-activated protein kinase pathways and defining additional interactions between these pathways. PMID:14745015

  3. A low computational complexity algorithm for ECG signal compression.

    Science.gov (United States)

    Blanco-Velasco, Manuel; Cruz-Roldán, Fernando; López-Ferreras, Francisco; Bravo-Santos, Angel; Martínez-Muñoz, Damián

    2004-09-01

    In this work, a filter bank-based algorithm for electrocardiogram (ECG) signals compression is proposed. The new coder consists of three different stages. In the first one--the subband decomposition stage--we compare the performance of a nearly perfect reconstruction (N-PR) cosine-modulated filter bank with the wavelet packet (WP) technique. Both schemes use the same coding algorithm, thus permitting an effective comparison. The target of the comparison is the quality of the reconstructed signal, which must remain within predetermined accuracy limits. We employ the most widely used quality criterion for the compressed ECG: the percentage root-mean-square difference (PRD). It is complemented by means of the maximum amplitude error (MAX). The tests have been done for the 12 principal cardiac leads, and the amount of compression is evaluated by means of the mean number of bits per sample (MBPS) and the compression ratio (CR). The implementation cost for both the filter bank and the WP technique has also been studied. The results show that the N-PR cosine-modulated filter bank method outperforms the WP technique in both quality and efficiency. PMID:15271283

  4. A Complexity-Based Approach for the Detection of Weak Signals in Ocean Ambient Noise

    Directory of Open Access Journals (Sweden)

    Shashidhar Siddagangaiah

    2016-03-01

    Full Text Available There are numerous studies showing that there is a constant increase in the ocean ambient noise level and the ever-growing demand for developing algorithms for detecting weak signals in ambient noise. In this study, we utilize dynamical and statistical complexity to detect the presence of weak ship noise embedded in ambient noise. The ambient noise and ship noise were recorded in the South China Sea. The multiscale entropy (MSE method and the complexity-entropy causality plane (C-H plane were used to quantify the dynamical and statistical complexity of the measured time series, respectively. We generated signals with varying signal-to-noise ratio (SNR by varying the amplification of a ship signal. The simulation results indicate that the complexity is sensitive to change in the information in the ambient noise and the change in SNR, a finding that enables the detection of weak ship signals in strong background ambient noise. The simulation results also illustrate that complexity is better than the traditional spectrogram method, particularly effective for detecting low SNR signals in ambient noise. In addition, complexity-based MSE and C-H plane methods are simple, robust and do not assume any underlying dynamics in time series. Hence, complexity should be used in practical situations.

  5. A Model of Drosophila Larva Chemotaxis.

    Directory of Open Access Journals (Sweden)

    Alex Davies

    2015-11-01

    Full Text Available Detailed observations of larval Drosophila chemotaxis have characterised the relationship between the odour gradient and the runs, head casts and turns made by the animal. We use a computational model to test whether hypothesised sensorimotor control mechanisms are sufficient to account for larval behaviour. The model combines three mechanisms based on simple transformations of the recent history of odour intensity at the head location. The first is an increased probability of terminating runs in response to gradually decreasing concentration, the second an increased probability of terminating head casts in response to rapidly increasing concentration, and the third a biasing of run directions up concentration gradients through modulation of small head casts. We show that this model can be tuned to produce behavioural statistics comparable to those reported for the larva, and that this tuning results in similar chemotaxis performance to the larva. We demonstrate that each mechanism can enable odour approach but the combination of mechanisms is most effective, and investigate how these low-level control mechanisms relate to behavioural measures such as the preference indices used to investigate larval learning behaviour in group assays.

  6. Borrelia burgdorferi CheD Promotes Various Functions in Chemotaxis and the Pathogenic Life Cycle of the Spirochete.

    Science.gov (United States)

    Moon, Ki Hwan; Hobbs, Gerry; Motaleb, M A

    2016-06-01

    Borrelia burgdorferi possesses a sophisticated chemotaxis signaling system; however, the roles of the majority of the chemotaxis proteins in the infectious life cycle have not yet been demonstrated. Specifically, the role of CheD during host colonization has not been demonstrated in any bacterium. Here, we systematically characterized the B. burgdorferi CheD homolog using genetics and biochemical and mouse-tick-mouse infection cycle studies. Bacillus subtilis CheD plays an important role in chemotaxis by deamidation of methyl-accepting chemotaxis protein receptors (MCPs) and by increasing the receptor kinase activity or enhancing CheC phosphatase activity, thereby regulating the levels of the CheY response regulator. Our biochemical analysis indicates that B. burgdorferi CheD significantly enhances CheX phosphatase activity by specifically interacting with the phosphatase. Moreover, CheD specifically binds two of the six MCPs, indicating that CheD may also modulate the receptor proteins. Although the motility of the cheD mutant cells was indistinguishable from that of the wild-type cells, the mutant did exhibit reduced chemotaxis. Importantly, the mutant showed significantly reduced infectivity in C3H/HeN mice via needle inoculation. Mouse-tick-mouse infection assays indicated that CheD is dispensable for acquisition or transmission of spirochetes; however, the viability of cheD mutants in ticks is marginally reduced compared to that of the wild-type or complemented cheD spirochetes. These data suggest that CheD plays an important role in the chemotaxis and pathogenesis of B. burgdorferi We propose potential connections between CheD, CheX, and MCPs and discuss how these interactions play critical roles during the infectious life cycle of the spirochete. PMID:27021244

  7. Computational modeling reveals that a combination of chemotaxis and differential adhesion leads to robust cell sorting during tissue patterning.

    Directory of Open Access Journals (Sweden)

    Rui Zhen Tan

    Full Text Available Robust tissue patterning is crucial to many processes during development. The "French Flag" model of patterning, whereby naïve cells in a gradient of diffusible morphogen signal adopt different fates due to exposure to different amounts of morphogen concentration, has been the most widely proposed model for tissue patterning. However, recently, using time-lapse experiments, cell sorting has been found to be an alternative model for tissue patterning in the zebrafish neural tube. But it remains unclear what the sorting mechanism is. In this article, we used computational modeling to show that two mechanisms, chemotaxis and differential adhesion, are needed for robust cell sorting. We assessed the performance of each of the two mechanisms by quantifying the fraction of correct sorting, the fraction of stable clusters formed after correct sorting, the time needed to achieve correct sorting, and the size variations of the cells having different fates. We found that chemotaxis and differential adhesion confer different advantages to the sorting process. Chemotaxis leads to high fraction of correct sorting as individual cells will either migrate towards or away from the source depending on its cell type. However after the cells have sorted correctly, there is no interaction among cells of the same type to stabilize the sorted boundaries, leading to cell clusters that are unstable. On the other hand, differential adhesion results in low fraction of correct clusters that are more stable. In the absence of morphogen gradient noise, a combination of both chemotaxis and differential adhesion yields cell sorting that is both accurate and robust. However, in the presence of gradient noise, the simple combination of chemotaxis and differential adhesion is insufficient for cell sorting; instead, chemotaxis coupled with delayed differential adhesion is required to yield optimal sorting.

  8. Modulation of EEG Theta Band Signal Complexity by Music Therapy [Forthcoming

    OpenAIRE

    Bhattacharya, Joydeep; Lee, Eun-Jeong

    2012-01-01

    The primary goal of this study was to investigate the impact of monochord (MC) sounds, a type of archaic sounds used in music therapy, on the neural complexity of EEG signals obtained from patients undergoing chemotherapy. The secondary goal was to compare the EEG signal complexity values for monochords with those for progressive muscle relaxation (PMR), an alternative therapy for relaxation. Forty cancer patients were randomly allocated to one of the two relaxation groups, MC and PMR, over a...

  9. Unraveling the Complexities of Androgen Receptor Signaling in Prostate Cancer Cells

    OpenAIRE

    Heemers, Hannelore V.; Tindall, Donald J.

    2009-01-01

    Androgen signaling is critical for proliferation of prostate cancer cells but cannot be fully inhibited by current androgen deprivation therapies. A study by Xu et al. in this issue of Cancer Cell provides insights into the complexities of androgen signaling in prostate cancer and suggests avenues to target a subset of androgen-sensitive genes.

  10. Complex Signal Kurtosis and Independent Component Analysis for Wideband Radio Frequency Interference Detection

    Science.gov (United States)

    Schoenwald, Adam; Mohammed, Priscilla; Bradley, Damon; Piepmeier, Jeffrey; Wong, Englin; Gholian, Armen

    2016-01-01

    Radio-frequency interference (RFI) has negatively implicated scientific measurements across a wide variation passive remote sensing satellites. This has been observed in the L-band radiometers SMOS, Aquarius and more recently, SMAP [1, 2]. RFI has also been observed at higher frequencies such as K band [3]. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements [4]. This work explores the use of ICA (Independent Component Analysis) as a blind source separation technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.

  11. Two different mechanisms mediate chemotaxis to inorganic phosphate in Pseudomonas aeruginosa

    Science.gov (United States)

    Rico-Jiménez, Miriam; Reyes-Darias, Jose Antonio; Ortega, Álvaro; Díez Peña, Ana Isabel; Morel, Bertrand; Krell, Tino

    2016-01-01

    Inorganic phosphate (Pi) is a central signaling molecule that modulates virulence in various pathogens. In Pseudomonas aeruginosa, low Pi concentrations induce transcriptional alterations that increase virulence. Also, under low Pi levels, P. aeruginosa exhibits Pi chemotaxis—a process mediated by the two non-paralogous receptors CtpH and CtpL. Here we show that the two receptors operate via different mechanisms. We demonstrate that the ligand binding domain (LBD) of CtpH but not CtpL binds Pi directly. We identify the periplasmic ligand binding protein PstS as the protein that binds in its Pi loaded state to CtpL, resulting in receptor stimulation. PstS forms part of the Pi transporter and has thus a double function in Pi transport and chemotaxis. The affinity of Pi for CtpH was modest whereas that for PstS very high, which may explain why CtpH and CtpL mediate chemotaxis to high and low Pi concentrations, respectively. The pstS/ctpH double mutant was almost devoid of Pi taxis, indicating that PstS is the only CtpL Pi-shuttle. Chemotaxis mechanisms based on indirect ligand recognition were unambiguously identified in enterobacteria. The discovery of a similar mechanism in a different bacterial order, involving a different chemoreceptor type and chemoeffector suggests that such systems are widespread. PMID:27353565

  12. A Sensitive Chemotaxis Assay Using a Novel Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2013-01-01

    Full Text Available Existing chemotaxis assays do not generate stable chemotactic gradients and thus—over time—functionally measure only nonspecific random motion (chemokinesis. In comparison, microfluidic technology has the capacity to generate a tightly controlled microenvironment that can be stably maintained for extended periods of time and is, therefore, amenable to adaptation for assaying chemotaxis. We describe here a novel microfluidic device for sensitive assay of cellular migration and show its application for evaluating the chemotaxis of smooth muscle cells in a chemokine gradient.

  13. A coupled chemotaxis-fluid model: Global existence

    KAUST Repository

    Liu, Jian-Guo

    2011-09-01

    We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier- Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.© 2011 Elsevier Masson SAS. All rights reserved.

  14. Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector

    Science.gov (United States)

    Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark

    2016-01-01

    In the field of microwave radiometry, Radio Frequency Interference (RFI) consistently degrades the value of scientific results. Through the use of digital receivers and signal processing, the effects of RFI on scientific measurements can be reduced depending on certain circumstances. As technology allows us to implement wider band digital receivers for radiometry, the problem of RFI mitigation changes. Our work focuses on finding a detector that outperforms real kurtosis in wide band scenarios. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The performance of both complex and real signal kurtosis is evaluated for continuous wave, pulsed continuous wave, and wide band quadrature phase shift keying (QPSK) modulations. The use of complex signal kurtosis increased the detectability of interference.

  15. Structural reorganization of the interleukin-7 signaling complex

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, Craig A.; Holland, Paul J.; Zhao, Peng; Lim, Jae-Min; Wells, Lance; Eisenstein, Edward; Walsh, Scott T.R. (Maryland); (Battelle); (Georgia)

    2012-06-29

    We report here an unliganded receptor structure in the common gamma-chain ({gamma}{sub c}) family of receptors and cytokines. The crystal structure of the unliganded form of the interleukin-7 alpha receptor (IL-7R{alpha}) extracellular domain (ECD) at 2.15 {angstrom} resolution reveals a homodimer forming an 'X' geometry looking down onto the cell surface with the C termini of the two chains separated by 110 {angstrom} and the dimer interface comprising residues critical for IL-7 binding. Further biophysical studies indicate a weak association of the IL-7R{alpha} ECDs but a stronger association between the {gamma}{sub c}/IL-7R{alpha} ECDs, similar to previous studies of the full-length receptors on CD4{sup +} T cells. Based on these and previous results, we propose a molecular mechanism detailing the progression from the inactive IL-7R{alpha} homodimer and IL-7R{alpha}-{gamma}{sub c} heterodimer to the active IL-7-IL-7R{alpha}-{gamma}{sub c} ternary complex whereby the two receptors undergo at least a 90{sup o} rotation away from the cell surface, moving the C termini of IL-7R{alpha} and {gamma}{sub c} from a distance of 110 {angstrom} to less than 30 {angstrom} at the cell surface. This molecular mechanism can be used to explain recently discovered IL-7- and {gamma}{sub c}-independent gain-of-function mutations in IL-7R{alpha} from B- and T-cell acute lymphoblastic leukemia patients. The mechanism may also be applicable to other {gamma}{sub c} receptors that form inactive homodimers and heterodimers independent of their cytokines.

  16. A Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia.

    Science.gov (United States)

    Dorn, Karolin V; Hughes, Casey E; Rohatgi, Rajat

    2012-10-16

    Vertebrate Hedgehog (Hh) signaling is initiated at primary cilia by the ligand-triggered accumulation of Smoothened (Smo) in the ciliary membrane. The underlying biochemical mechanisms remain unknown. We find that Hh agonists promote the association between Smo and Evc2, a ciliary protein that is defective in two human ciliopathies. The formation of the Smo-Evc2 complex is under strict spatial control, being restricted to a distinct ciliary compartment, the EvC zone. Mutant Evc2 proteins that localize in cilia but are displaced from the EvC zone are dominant inhibitors of Hh signaling. Disabling Evc2 function blocks Hh signaling at a specific step between Smo and the downstream regulators protein kinase A and Suppressor of Fused, preventing activation of the Gli transcription factors. Our data suggest that the Smo-Evc2 signaling complex at the EvC zone is required for Hh signal transmission and elucidate the molecular basis of two human ciliopathies.

  17. Reiteration of Hankel singular value decomposition for modeling of complex-valued signal

    Science.gov (United States)

    Staniszewski, Michał; Skorupa, Agnieszka; Boguszewicz, Łukasz; Wicher, Magdalena; Konopka, Marek; Sokół, Maria; Polański, Andrzej

    2016-06-01

    Modeling signal which forms complex values is a common scientific problem, which is present in many applications, i.e. in medical signals, computer graphics and vision. One of the possible solution is utilization of Hankel Singular Value Decomposition. In the first step complex-valued signal is arranged in a special form called Hankel matrix, which is in the next step decomposed in operation of Singular Value Decomposition. Obtained matrices can be then reformulated in order to get parameters describing system. Basic method can be applied for fitting whole signal but it fails in modeling each particular component of signal. Modification of basic HSVD method, which relies on reiteration and is used for main components, and application of prior knowledge solves presented problem.

  18. A population-level model from the microscopic dynamics in Escherichia coli chemotaxis via Langevin approximation

    Institute of Scientific and Technical Information of China (English)

    He Zhuo-Ran; Wu Tai-Lin; Ouyang Qi; Tu Yu-Hai

    2012-01-01

    Recent extensive studies of Escherichia coli (E.coli) chemotaxis have achieved a deep understanding of its microscopic control dynamics.As a result,various quantitatively predictive models have been developed to describe the chemotactic behavior of E.coli motion.However,a population-level partial differential equation (PDE) that rationally incorporates such microscopic dynamics is still insufficient.Apart from the traditional Keller-Segel (K-S) equation,many existing population-level models developed from the microscopic dynamics are integro-PDEs.The difficulty comes mainly from cell tumbles which yield a velocity jumping process.Here,we propose a Langevin approximation method that avoids such a difficulty without appreciable loss of precision.The resulting model not only quantitatively reproduces the results of pathway-based single-cell simulators,but also provides new inside information on the mechanism of E.coli chemotaxis.Our study demonstrates a possible alternative in establishing a simple population-level model that allows for the complex microscopic mechanisms in bacterial chemotaxis.

  19. Observing Chemotaxis in Vibrio fischeri Using Soft Agar Assays in an Undergraduate Microbiology Laboratory

    Directory of Open Access Journals (Sweden)

    Cindy R. DeLoney-Marino

    2013-08-01

    Full Text Available Chemotaxis, the directed movement of cells towards or away from a chemical, is both an exciting and complicated behavior observed in many bacterial species. Attempting to adequately visualize or demonstrate the chemotaxic response of bacteria in the classroom is difficult at best, with good models to illustrate the concept lacking. The BSL-1 marine bacterium Vibrio fischeri (a.k.a. Aliivibrio fischeri is easy to culture, making it an ideal candidate for experiments in an undergraduate microbiology course. A number of chemoattractants for V. fischeri have been identified, including a variety of sugars, nucleosides, and amino acids (1, 2. Below presents how the soft agar-based chemotaxis assay can be implemented in the undergraduate laboratory. As bacterial cells migrate towards one or more attractants in soft agar, students can directly observe the chemotaxic behavior of V. fischeri without the need to learn complicated techniques or use specialized equipment. Once the bands of bacterial cells are observed, the migration can then be disrupted by the addition of excess attractant to the soft agar, thereby visualizing what happens once cells are no longer in a gradient of attractant. In addition, soft agar plates lacking attractants can be used to visualize the random movements of bacterial cells that are non-chemotaxing. These exercises can be used in the microbiology laboratory to help students understand the complex behavior of bacterial chemotaxis.

  20. Transport genes and chemotaxis in Laribacter hongkongensis: a genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Lau Susanna KP

    2011-08-01

    Full Text Available Abstract Background Laribacter hongkongensis is a Gram-negative, sea gull-shaped rod associated with community-acquired gastroenteritis. The bacterium has been found in diverse freshwater environments including fish, frogs and drinking water reservoirs. Using the complete genome sequence data of L. hongkongensis, we performed a comprehensive analysis of putative transport-related genes and genes related to chemotaxis, motility and quorum sensing, which may help the bacterium adapt to the changing environments and combat harmful substances. Results A genome-wide analysis using Transport Classification Database TCDB, similarity and keyword searches revealed the presence of a large diversity of transporters (n = 457 and genes related to chemotaxis (n = 52 and flagellar biosynthesis (n = 40 in the L. hongkongensis genome. The transporters included those from all seven major transporter categories, which may allow the uptake of essential nutrients or ions, and extrusion of metabolic end products and hazardous substances. L. hongkongensis is unique among closely related members of Neisseriaceae family in possessing higher number of proteins related to transport of ammonium, urea and dicarboxylate, which may reflect the importance of nitrogen and dicarboxylate metabolism in this assacharolytic bacterium. Structural modeling of two C4-dicarboxylate transporters showed that they possessed similar structures to the determined structures of other DctP-TRAP transporters, with one having an unusual disulfide bond. Diverse mechanisms for iron transport, including hemin transporters for iron acquisition from host proteins, were also identified. In addition to the chemotaxis and flagella-related genes, the L. hongkongensis genome also contained two copies of qseB/qseC homologues of the AI-3 quorum sensing system. Conclusions The large number of diverse transporters and genes involved in chemotaxis, motility and quorum sensing suggested that the bacterium may

  1. SPATA2 links CYLD to the TNF-α receptor signaling complex and modulates the receptor signaling outcomes.

    Science.gov (United States)

    Wagner, Sebastian A; Satpathy, Shankha; Beli, Petra; Choudhary, Chunaram

    2016-09-01

    TNF-α is a key regulator of innate immune and proinflammatory responses. However, the composition of the TNF-α receptor-associated signaling complexes (TNF-RSC) and the architecture of the downstream signaling networks are incompletely understood. We employed quantitative mass spectrometry to demonstrate that TNF-α stimulation induces widespread protein phosphorylation and that the scope of phosphorylation expands in a temporal manner. TNF-α stimulation also induces rapid ubiquitylation of components of the TNF-RSC Temporal analysis of the TNF-RSC composition identified SPATA2 as a novel component of the TNF-RSC The predicted PUB domain in the N-terminus of SPATA2 interacts with the USP domain of CYLD, whereas the C-terminus of SPATA2 interacts with HOIP SPATA2 is required for recruitment of CYLD to the TNF-RSC Downregulation of SPATA2 augments transcriptional activation of NF-κB and inhibits TNF-α-induced necroptosis, pointing to an important function of SPATA2 in modulating the outcomes of TNF-α signaling. Taken together, our study draws a detailed map of TNF-α signaling, identifies SPATA2 as a novel component of TNF-α signaling, and provides a rich resource for further functional investigations.

  2. The Anaphase-Promoting Complex (APC) ubiquitin ligase affects chemosensory behavior in C. elegans.

    Science.gov (United States)

    Wang, Julia; Jennings, Alexandra K; Kowalski, Jennifer R

    2016-01-01

    The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48 and ye143) of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in the emb-27 APC6 mutants suggests that the APC inhibits AWA-mediated chemosensation in C. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however, mat-2 APC1 mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human and C. elegans nervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and disease. PMID

  3. HYPERBOLIC-PARABOLIC CHEMOTAXIS SYSTEM WITH NONLINEAR PRODUCT TERMS

    Institute of Scientific and Technical Information of China (English)

    Chen Hua; Wu Shaohua

    2008-01-01

    We prove the local existence and uniqueness of week solution of the hyperbolic-parabolic Chemotaxis system with some nonlinear product terms. For one dimensional case, we prove also the global existence and uniqueness of the solution for the problem.

  4. Forget-me-not:Complex floral displays,inter-signal interactions,and pollinator cognition

    Institute of Scientific and Technical Information of China (English)

    Anne S.LEONARD; Anna DORNHAUS; Daniel R.PAPAJ

    2011-01-01

    Flowers are multisensory displays used by plants to influence the behavior of pollinators.Although we know a great deal about how individual signal components are preduced by plants and detected or learned by pollinators,very few experiments directly address the function of floral signal complexity,I.e.how the multicompenent nature of these signals benefits plant or pollinator.Yet,experimental psychology suggests that increasing complexity can enhance subjects'ability to deteCt,learn and remember stimuli,and the plant,sreproductive success depends upon ensuring that pollinators learn their signals and so transport pollen to other similar(conspecific)flowers.Here we explore functional hypotheses for why plants invest in complex floral displays focusing on hypotheses in which floral signals interact to promote pollinator learning and memory'Specifically,we discuss how an attention-altering or context-providing function of one signal may promote acquisition or recall of a second signal.Although we focus on communication between plants and poilinators,these process-based hypotheses should apply to any situation where a sender benefits from enhancing a receiver's acquisition or recall of informtion.

  5. Transient carbon isotope changes in complex systems: Finding the global signal, embracing the local signal

    Science.gov (United States)

    Bowen, G. J.; Schneider-Mor, A.; Filley, T. R.

    2008-12-01

    Global, transient carbon isotope excursions (CIEs) in the geological record are increasingly invoked as evidence of short-lived changes in carbon fluxes to/from the ocean-atmosphere-biosphere (exogenic) system. Reconstructing the dynamics of carbon cycle perturbation and response during such events requires that the global extent, magnitude, and temporal pattern of carbon isotope change are well understood. Unfortunately, no simple, globally integrated measure of exogenic δ13C change exists in the geological record: during major global perturbations even the best-case candidates such as deep-ocean carbonate δ13C values likely respond to a complex of factors including ocean carbonate chemistry and circulation. Here we consider the utility of organic carbon isotope records from two complex depositional systems common in the geological record, fossil soils and continental margin sediments, which are of interest in terms of their relationship to organic carbon cycling and records of past ecological change. Within both systems changes in ecology, climate, carbon source, residence time, and molecular composition have clear potential to modulate the preserved record of global exogenic δ13C change, compromising 1st-order interpretations of bulk or compound-specific isotopic records. Process-explicit eco- geochemical models, ideally combined with multi-substrate data, provide one approach to the isolation of global δ13C change and identification of local or regional processes reflected in such records. Examples from both systems drawn from ongoing work on the Paleocene-Eocene thermal maximum illustrate the potential pitfalls, as well as opportunities, afforded by coupled data/model assessment of transient δ13C changes in complex systems.

  6. Simulation study on effects of signaling network structure on the developmental increase in complexity

    Energy Technology Data Exchange (ETDEWEB)

    Keranen, Soile V.E.

    2003-04-02

    The developmental increase in structural complexity in multicellular life forms depends on local, often non-periodic differences in gene expression. These depend on a network of gene-gene interactions coded within the organismal genome. To better understand how genomic information generates complex expression patterns, I have modeled the pattern forming behavior of small artificial genomes in virtual blastoderm embryos. I varied several basic properties of these genomic signaling networks, such as the number of genes, the distributions of positive (inductive) and negative (repressive) interactions, and the strengths of gene-gene interactions, and analyzed their effects on developmental pattern formation. The results show how even simple genomes can generate complex non-periodic patterns under suitable conditions. They also show how the frequency of complex patterns depended on the numbers and relative arrangements of positive and negative interactions. For example, negative co-regulation of signaling pathway components increased the likelihood of (complex) patterns relative to differential negative regulation of the pathway components. Interestingly, neither quantitative differences either in strengths of signaling interactions nor multiple response thresholds to signal concentration (as in morphogen gradients) were essential for formation of multiple, spatially unique cell types. Thus, with combinatorial code of gene regulation and hierarchical signaling interactions, it is theoretically possible to organize metazoan embryogenesis with just a small fraction of the metazoan genome. Because even small networks can generate complex patterns when they contain a suitable set of connections, evolution of metazoan complexity may have depended more on selection for favourable configurations of signaling interactions than on the increase in numbers of regulatory genes.

  7. An Improved Chamber for Direct Visualisation of Chemotaxis

    OpenAIRE

    Andrew J Muinonen-Martin; Douwe M Veltman; Gabriela Kalna; Insall, Robert H.

    2010-01-01

    There has been a growing appreciation over the last decade that chemotaxis plays an important role in cancer migration, invasion and metastasis. Research into the field of cancer cell chemotaxis is still in its infancy and traditional investigative tools have been developed with other cell types and purposes in mind. Direct visualisation chambers are considered the gold standard for investigating the behaviour of cells migrating in a chemotactic gradient. We therefore drew up a list of key at...

  8. Neutrophil chemotaxis by Propionibacterium acnes lipase and its inhibition.

    OpenAIRE

    Lee, W. L.; Shalita, A R; Suntharalingam, K; Fikrig, S M

    1982-01-01

    The chemoattraction of Propionibacterium acnes lipase for neutrophils and the effect of lipase inhibitor and two antibiotic agents on the chemotaxis were evaluated. Of the various fractions tested, partially purified lipase (fraction 2c) was the most active cytotaxin produced by P. acnes. Serum mediators were not required for the generation of chemotaxis by lipase in vitro. Diisopropyl phosphofluoridate at low concentration (10(-4) mM) completely inhibited lipase activity as well as polymorph...

  9. A novel feature extracting method of QRS complex classification for mobile ECG signals

    Science.gov (United States)

    Zhu, Lingyun; Wang, Dong; Huang, Xianying; Wang, Yue

    2007-12-01

    The conventional classification parameters of QRS complex suffer from larger activity rang of patients and lower signal to noise ratio in mobile cardiac telemonitoring system and can not meet the identification needs of ECG signal. Based on individual sinus heart rhythm template built with mobile ECG signals in time window, we present semblance index to extract the classification features of QRS complex precisely and expeditiously. Relative approximation r2 and absolute error r3 are used as estimating parameters of semblance between testing QRS complex and template. The evaluate parameters corresponding to QRS width and types are demonstrated to choose the proper index. The results show that 99.99 percent of the QRS complex for sinus and superventricular ECG signals can be distinguished through r2 but its average accurate ratio is only 46.16%. More than 97.84 percent of QRS complexes are identified using r3 but its accurate ratio to the sinus and superventricular is not better than r2. By the feature parameter of width, only 42.65 percent of QRS complexes are classified correctly, but its accurate ratio to the ventricular is superior to r2. To combine the respective superiority of three parameters, a nonlinear weighing computation of QRS width, r2 and r3 is introduced and the total classification accuracy up to 99.48% by combing indexes.

  10. Synaptic signal streams generated by ex vivo neuronal networks contain non-random, complex patterns.

    Science.gov (United States)

    Lee, Sangmook; Zemianek, Jill M; Shultz, Abraham; Vo, Anh; Maron, Ben Y; Therrien, Mikaela; Courtright, Christina; Guaraldi, Mary; Yanco, Holly A; Shea, Thomas B

    2014-11-01

    Cultured embryonic neurons develop functional networks that transmit synaptic signals over multiple sequentially connected neurons as revealed by multi-electrode arrays (MEAs) embedded within the culture dish. Signal streams of ex vivo networks contain spikes and bursts of varying amplitude and duration. Despite the random interactions inherent in dissociated cultures, neurons are capable of establishing functional ex vivo networks that transmit signals among synaptically connected neurons, undergo developmental maturation, and respond to exogenous stimulation by alterations in signal patterns. These characteristics indicate that a considerable degree of organization is an inherent property of neurons. We demonstrate herein that (1) certain signal types occur more frequently than others, (2) the predominant signal types change during and following maturation, (3) signal predominance is dependent upon inhibitory activity, and (4) certain signals preferentially follow others in a non-reciprocal manner. These findings indicate that the elaboration of complex signal streams comprised of a non-random distribution of signal patterns is an emergent property of ex vivo neuronal networks.

  11. An improved chamber for direct visualisation of chemotaxis.

    Directory of Open Access Journals (Sweden)

    Andrew J Muinonen-Martin

    Full Text Available There has been a growing appreciation over the last decade that chemotaxis plays an important role in cancer migration, invasion and metastasis. Research into the field of cancer cell chemotaxis is still in its infancy and traditional investigative tools have been developed with other cell types and purposes in mind. Direct visualisation chambers are considered the gold standard for investigating the behaviour of cells migrating in a chemotactic gradient. We therefore drew up a list of key attributes that a chemotaxis chamber should have for investigating cancer cell chemotaxis. These include (1 compatibility with thin cover slips for optimal optical properties and to allow use of high numerical aperture (NA oil immersion objectives; (2 gradients that are relatively stable for at least 24 hours due to the slow migration of cancer cells; (3 gradients of different steepnesses in a single experiment, with defined, consistent directions to avoid the need for complicated analysis; and (4 simple handling and disposability for use with medical samples. Here we describe and characterise the Insall chamber, a novel direct visualisation chamber. We use it to show GFP-lifeact transfected MV3 melanoma cells chemotaxing using a 60x high NA oil immersion objective, which cannot usually be done with other chemotaxis chambers. Linear gradients gave very efficient chemotaxis, contradicting earlier results suggesting that only polynomial gradients were effective. In conclusion, the chamber satisfies our design criteria, most importantly allowing high NA oil immersion microscopy to track chemotaxing cancer cells in detail over 24 hours.

  12. Complexity of EEG-signal in Time Domain - Possible Biomedical Application

    Science.gov (United States)

    Klonowski, Wlodzimierz; Olejarczyk, Elzbieta; Stepien, Robert

    2002-07-01

    Human brain is a highly complex nonlinear system. So it is not surprising that in analysis of EEG-signal, which represents overall activity of the brain, the methods of Nonlinear Dynamics (or Chaos Theory as it is commonly called) can be used. Even if the signal is not chaotic these methods are a motivating tool to explore changes in brain activity due to different functional activation states, e.g. different sleep stages, or to applied therapy, e.g. exposure to chemical agents (drugs) and physical factors (light, magnetic field). The methods supplied by Nonlinear Dynamics reveal signal characteristics that are not revealed by linear methods like FFT. Better understanding of principles that govern dynamics and complexity of EEG-signal can help to find `the signatures' of different physiological and pathological states of human brain, quantitative characteristics that may find applications in medical diagnostics.

  13. Mislocalization of the MRN complex prevents ATR signaling during adenovirus infection

    DEFF Research Database (Denmark)

    Carson, Christian T; Orazio, Nicole I; Lee, Darwin V;

    2009-01-01

    replication centres, but there is minimal ATR activation. We show that the Mre11/Rad50/Nbs1 (MRN) complex is recruited to viral centres only during infection with adenoviruses lacking the early region E4 and ATR signaling is activated. This suggests a novel requirement for the MRN complex in ATR activation......The protein kinases ataxia-telangiectasia mutated (ATM) and ATM-Rad3 related (ATR) are activated in response to DNA damage, genotoxic stress and virus infections. Here we show that during infection with wild-type adenovirus, ATR and its cofactors RPA32, ATRIP and TopBP1 accumulate at viral...... for immobilization of the MRN complex and show that this prevents ATR signaling during adenovirus infection. We propose that immobilization of the MRN damage sensor by E4orf3 protein prevents recognition of viral genomes and blocks detrimental aspects of checkpoint signaling during virus infection....

  14. Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector

    Science.gov (United States)

    Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark

    2016-01-01

    Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC

  15. Processing of simple and complex acoustic signals in a tonotopically organized ear.

    Science.gov (United States)

    Hummel, Jennifer; Wolf, Konstantin; Kössl, Manfred; Nowotny, Manuela

    2014-12-01

    Processing of complex signals in the hearing organ remains poorly understood. This paper aims to contribute to this topic by presenting investigations on the mechanical and neuronal response of the hearing organ of the tropical bushcricket species Mecopoda elongata to simple pure tone signals as well as to the conspecific song as a complex acoustic signal. The high-frequency hearing organ of bushcrickets, the crista acustica (CA), is tonotopically tuned to frequencies between about 4 and 70 kHz. Laser Doppler vibrometer measurements revealed a strong and dominant low-frequency-induced motion of the CA when stimulated with either pure tone or complex stimuli. Consequently, the high-frequency distal area of the CA is more strongly deflected by low-frequency-induced waves than by high-frequency-induced waves. This low-frequency dominance will have strong effects on the processing of complex signals. Therefore, we additionally studied the neuronal response of the CA to native and frequency-manipulated chirps. Again, we found a dominant influence of low-frequency components within the conspecific song, indicating that the mechanical vibration pattern highly determines the neuronal response of the sensory cells. Thus, we conclude that the encoding of communication signals is modulated by ear mechanics. PMID:25339727

  16. Synthesis of high-complexity rhythmic signals for closed-loop electrical neuromodulation.

    Science.gov (United States)

    Zalay, Osbert C; Bardakjian, Berj L

    2013-06-01

    We propose an approach to synthesizing high-complexity rhythmic signals for closed-loop electrical neuromodulation using cognitive rhythm generator (CRG) networks, wherein the CRG is a hybrid oscillator comprised of (1) a bank of neuronal modes, (2) a ring device (clock), and (3) a static output nonlinearity (mapper). Networks of coupled CRGs have been previously implemented to simulate the electrical activity of biological neural networks, including in silico models of epilepsy, producing outputs of similar waveform and complexity to the biological system. This has enabled CRG network models to be used as platforms for testing seizure control strategies. Presently, we take the application one step further, envisioning therapeutic CRG networks as rhythmic signal generators creating neuromimetic signals for stimulation purposes, motivated by recent research indicating that stimulus complexity and waveform characteristics influence neuromodulation efficacy. To demonstrate this concept, an epileptiform CRG network generating spontaneous seizure-like events (SLEs) was coupled to a therapeutic CRG network, forming a closed-loop neuromodulation system. SLEs are associated with low-complexity dynamics and high phase coherence in the network. The tuned therapeutic network generated a high-complexity, multi-banded rhythmic stimulation signal with prominent theta and gamma-frequency power that suppressed SLEs and increased dynamic complexity in the epileptiform network, as measured by a relative increase in the maximum Lyapunov exponent and decrease in phase coherence. CRG-based neuromodulation outperformed both low and high-frequency periodic pulse stimulation, suggesting that neuromodulation using complex, biomimetic signals may provide an improvement over conventional electrical stimulation techniques for treating neurological disorders such as epilepsy. PMID:23501170

  17. Biomedical image and signal de-noising using dual tree complex wavelet transform

    Science.gov (United States)

    Rizi, F. Yousefi; Noubari, H. Ahmadi; Setarehdan, S. K.

    2011-10-01

    Dual tree complex wavelet transform(DTCWT) is a form of discrete wavelet transform, which generates complex coefficients by using a dual tree of wavelet filters to obtain their real and imaginary parts. The purposes of de-noising are reducing noise level and improving signal to noise ratio (SNR) without distorting the signal or image. This paper proposes a method for removing white Gaussian noise from ECG signals and biomedical images. The discrete wavelet transform (DWT) is very valuable in a large scope of de-noising problems. However, it has limitations such as oscillations of the coefficients at a singularity, lack of directional selectivity in higher dimensions, aliasing and consequent shift variance. The complex wavelet transform CWT strategy that we focus on in this paper is Kingsbury's and Selesnick's dual tree CWT (DTCWT) which outperforms the critically decimated DWT in a range of applications, such as de-noising. Each complex wavelet is oriented along one of six possible directions, and the magnitude of each complex wavelet has a smooth bell-shape. In the final part of this paper, we present biomedical image and signal de-noising by the means of thresholding magnitude of the wavelet coefficients.

  18. Use of multiple singular value decompositions to analyze complex intracellular calcium ion signals

    KAUST Repository

    Martinez, Josue G.

    2009-12-01

    We compare calcium ion signaling (Ca(2+)) between two exposures; the data are present as movies, or, more prosaically, time series of images. This paper describes novel uses of singular value decompositions (SVD) and weighted versions of them (WSVD) to extract the signals from such movies, in a way that is semi-automatic and tuned closely to the actual data and their many complexities. These complexities include the following. First, the images themselves are of no interest: all interest focuses on the behavior of individual cells across time, and thus, the cells need to be segmented in an automated manner. Second, the cells themselves have 100+ pixels, so that they form 100+ curves measured over time, so that data compression is required to extract the features of these curves. Third, some of the pixels in some of the cells are subject to image saturation due to bit depth limits, and this saturation needs to be accounted for if one is to normalize the images in a reasonably un-biased manner. Finally, the Ca(2+) signals have oscillations or waves that vary with time and these signals need to be extracted. Thus, our aim is to show how to use multiple weighted and standard singular value decompositions to detect, extract and clarify the Ca(2+) signals. Our signal extraction methods then lead to simple although finely focused statistical methods to compare Ca(2+) signals across experimental conditions.

  19. Overcoming the signaling defect of Lyn-sequestering, signal-curtailing FcepsilonRI dimers: aggregated dimers can dissociate from Lyn and form signaling complexes with Syk.

    Science.gov (United States)

    Lara, M; Ortega, E; Pecht, I; Pfeiffer, J R; Martinez, A M; Lee, R J; Surviladze, Z; Wilson, B S; Oliver, J M

    2001-10-15

    Clustering the tetrameric (alphabetagamma(2)) IgE receptor, FcepsilonRI, on basophils and mast cells activates the Src-family tyrosine kinase, Lyn, which phosphorylates FcepsilonRI beta and gamma subunit tyrosines, creating binding sites for the recruitment and activation of Syk. We reported previously that FcepsilonRI dimers formed by a particular anti-FcepsilonRI alpha mAb (H10) initiate signaling through Lyn activation and FcepsilonRI subunit phosphorylation, but cause only modest activation of Syk and little Ca(2+) mobilization and secretion. Curtailed signaling was linked to the formation of unusual, detergent-resistant complexes between Lyn and phosphorylated receptor subunits. Here, we show that H10-FcepsilonRI multimers, induced by adding F(ab')(2) of goat anti-mouse IgG to H10-treated cells, support strong Ca(2+) mobilization and secretion. Accompanying the recovery of signaling, H10-FcepsilonRI multimers do not form stable complexes with Lyn and do support the phosphorylation of Syk and phospholipase Cgamma2. Immunogold electron microscopy showed that H10-FcepsilonRI dimers colocalize preferentially with Lyn and are rarely within the osmiophilic "signaling domains" that accumulate FcepsilonRI and Syk in Ag-treated cells. In contrast, H10-FcepsilonRI multimers frequently colocalize with Syk within osmiophilic patches. In sucrose gradient centrifugation analyses of detergent-extracted cells, H10-treated cells show a more complete redistribution of FcepsilonRI beta from heavy (detergent-soluble) to light (Lyn-enriched, detergent-resistant) fractions than cells activated with FcepsilonRI multimers. We hypothesize that restraints imposed by the particular orientation of H10-FcepsilonRI dimers traps them in signal-initiating Lyn microdomains, and that converting the dimers to multimers permits receptors to dissociate from Lyn and redistribute to separate membrane domains that support Syk-dependent signal propagation. PMID:11591756

  20. Dataflow/Actor-Oriented language for the design of complex signal processing systems

    OpenAIRE

    Lucarz, Christophe; Mattavelli, Marco; Wipliez, Matthieu; Roquier, Ghislain; Raulet, Mickael; Janneck, Jörn W.; Miller, Ian D.; Parlour, David B.

    2008-01-01

    International audience Signal processing algorithms become more and more complex and the algorithm architecture adaptation and design processes cannot any longer rely only on the intuition of the designers to build efficient systems. Specific tools and methods are needed to cope with the increasing complexity of both algorithms and platforms. This paper presents a new framework which allows the specification, design, simulation and implementation of a system operating at a higher level of ...

  1. Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector

    Science.gov (United States)

    Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark

    2016-01-01

    Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC

  2. Bacterial Chemotaxis with a Moving Target

    Science.gov (United States)

    Dominick, Corey

    2015-03-01

    Most chemotaxis studies so far have been conducted in a quiescent fluid with a well-defined chemical gradient. Such experiments may be appropriate for studying enteric bacteria, such as Escherichia coli, but the environment it provides is very different from that typically encountered by marine bacteria. Herein we describe an experiment in which marine bacterium Vibrio alginolyticusis subject to stimulation by a small moving target. A micropipette of the tip size <1 ?m is used to slowly release a chemoattractant, serine, at different concentrations. The pipette is made to move with different patterns and speeds, ranging from 0 to 100 ?m/s; the latter is about twice the bacterial swimming speed. We found that if the pipette is moved slowly, with 1/4 of bacterial swimming speed, cells accumulate near the tip region but when it is moved with speed greater than 1/2 the bacterial swimming speed, cells trail behind the pipette over a large distance. The behaviors observed in V. alginolyticusare significantly different from E. coli, suggesting that the former is a better chemotaxer in a changing environment.

  3. External and internal constraints on eukaryotic chemotaxis.

    Science.gov (United States)

    Fuller, Danny; Chen, Wen; Adler, Micha; Groisman, Alex; Levine, Herbert; Rappel, Wouter-Jan; Loomis, William F

    2010-05-25

    Chemotaxis, the chemically guided movement of cells, plays an important role in several biological processes including cancer, wound healing, and embryogenesis. Chemotacting cells are able to sense shallow chemical gradients where the concentration of chemoattractant differs by only a few percent from one side of the cell to the other, over a wide range of local concentrations. Exactly what limits the chemotactic ability of these cells is presently unclear. Here we determine the chemotactic response of Dictyostelium cells to exponential gradients of varying steepness and local concentration of the chemoattractant cAMP. We find that the cells are sensitive to the steepness of the gradient as well as to the local concentration. Using information theory techniques, we derive a formula for the mutual information between the input gradient and the spatial distribution of bound receptors and also compute the mutual information between the input gradient and the motility direction in the experiments. A comparison between these quantities reveals that for shallow gradients, in which the concentration difference between the back and the front of a 10-mum-diameter cell is <5%, and for small local concentrations (<10 nM) the intracellular information loss is insignificant. Thus, external fluctuations due to the finite number of receptors dominate and limit the chemotactic response. For steeper gradients and higher local concentrations, the intracellular information processing is suboptimal and results in a smaller mutual information between the input gradient and the motility direction than would have been predicted from the ligand-receptor binding process. PMID:20457897

  4. N-WASP has the Ability to Compensate for the Loss of WASP in Macrophage Podosome Formation and Chemotaxis

    OpenAIRE

    Isaac, Beth M.; Ishihara, Dan; Nusblat, Leora M.; Gevrey, Jean-Claude; Dovas, Athanassios; Condeelis, John; Cox, Dianne

    2010-01-01

    Wiskott-Aldrich syndrome protein (WASP) and its homologue neural-WASP (N-WASP) are nucleation promoting factors that integrate receptor signaling with actin cytoskeleton rearrangement. While hematopoietic cells express both WASP and N-WASP, WASP deficiency results in altered cell morphology, loss of podosomes and defective chemotaxis. It was determined that cells from a mouse derived monocyte/macrophage cell line and primary cells of myeloid lineage expressed approximately 15-fold higher leve...

  5. Evolution of NMDA receptor cytoplasmic interaction domains: implications for organisation of synaptic signalling complexes

    Directory of Open Access Journals (Sweden)

    Emes Richard D

    2008-01-01

    Full Text Available Abstract Background Glutamate gated postsynaptic receptors in the central nervous system (CNS are essential for environmentally stimulated behaviours including learning and memory in both invertebrates and vertebrates. Though their genetics, biochemistry, physiology, and role in behaviour have been intensely studied in vitro and in vivo, their molecular evolution and structural aspects remain poorly understood. To understand how these receptors have evolved different physiological requirements we have investigated the molecular evolution of glutamate gated receptors and ion channels, in particular the N-methyl-D-aspartate (NMDA receptor, which is essential for higher cognitive function. Studies of rodent NMDA receptors show that the C-terminal intracellular domain forms a signalling complex with enzymes and scaffold proteins, which is important for neuronal and behavioural plasticity Results The vertebrate NMDA receptor was found to have subunits with C-terminal domains up to 500 amino acids longer than invertebrates. This extension was specific to the NR2 subunit and occurred before the duplication and subsequent divergence of NR2 in the vertebrate lineage. The shorter invertebrate C-terminus lacked vertebrate protein interaction motifs involved with forming a signaling complex although the terminal PDZ interaction domain was conserved. The vertebrate NR2 C-terminal domain was predicted to be intrinsically disordered but with a conserved secondary structure. Conclusion We highlight an evolutionary adaptation specific to vertebrate NMDA receptor NR2 subunits. Using in silico methods we find that evolution has shaped the NMDA receptor C-terminus into an unstructured but modular intracellular domain that parallels the expansion in complexity of an NMDA receptor signalling complex in the vertebrate lineage. We propose the NR2 C-terminus has evolved to be a natively unstructured yet flexible hub organising postsynaptic signalling. The evolution of

  6. Stochastic effects as a force to increase the complexity of signaling networks

    KAUST Repository

    Kuwahara, Hiroyuki

    2013-07-29

    Cellular signaling networks are complex and appear to include many nonfunctional elements. Recently, it was suggested that nonfunctional interactions of proteins cause signaling noise, which, perhaps, shapes the signal transduction mechanism. However, the conditions under which molecular noise influences cellular information processing remain unclear. Here, we explore a large number of simple biological models of varying network sizes to understand the architectural conditions under which the interactions of signaling proteins can exhibit specific stochastic effects - called deviant effects - in which the average behavior of a biological system is substantially altered in the presence of molecular noise. We find that a small fraction of these networks does exhibit deviant effects and shares a common architectural feature whereas most of the networks show only insignificant levels of deviations. Interestingly, addition of seemingly unimportant interactions into protein networks gives rise to deviant effects.

  7. Cutting the Gordian knot: Complex signaling in African cichlids is more than multimodal

    Directory of Open Access Journals (Sweden)

    Moira J. VAN STAADEN, Adam R. SMITH

    2011-04-01

    Full Text Available The active transmission of information from sender to receiver is a fundamental component of communication, and is therefore a primary facet in evolutionary models of sexual selection. Research in several systems has underlined the importance of multiple sensory modalities in courtship signals. However, we still tend to think of individuals as having a relatively static signal in consecutive communicative events. While this may be true for certain traits such as body size or coloration, behaviorally modulated signals can quickly violate this assumption. In this work, we explore how intraspecific variation may be an important component of interspecific signal divergence using cichlid fishes from Lake Malawi. Behavioral analyses were made using six species of Malawian cichlids from two divergent genera. While interspecific differences were found between congeners based on species-level analyses of both acoustic and audiovisual signals, intraspecific variation was of a similar magnitude. Specifically, individual fishes were found to possess highly plastic signal repertoires. This finding was ubiquitous across all species and resulted in a great deal of overlap between heterospecific individuals, despite statistically distinct species means. These results demonstrate that some aspects of courtship in Malawian cichlids are more plastic than previously proposed, and that studies must account for signal variability within individuals. We propose here that behavioral variability in signaling is important in determining the communication landscape on which signals are perceived. We review potential complexity deriving from multimodal signaling, discuss the sources for such lability, and suggest ways in which this issue may be approached experimentally [Current Zoology 57 (2: 237–252, 2011].

  8. ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-Complex Estimation

    Directory of Open Access Journals (Sweden)

    Ahmed Zakaria

    2010-07-01

    Full Text Available In this paper, an Electrocardiogram (ECG signal is compressed based on discrete wavelet transform (DWT and QRS-complex estimation. The ECG signal is preprocessed by normalization and mean removal. Then, an error signal is formed as the difference between the preprocessed ECG signal and the estimated QRS-complex waveform. This error signal is wavelet transformed and the resulting wavelet coefficients are thresholded by setting to zero all coefficients that are smaller than certain threshold levels. The threshold levels of all subbands are calculated based on Energy Packing Efficiency (EPE such that minimum percentage root mean square difference (PRD and maximum compression ratio (CR are obtained. The resulted thresholded DWT coefficients are coded using the coding technique given in [1], [20]. The compression algorithm was implemented and tested upon records selected from the MIT - BIH arrhythmia database [2]. Simulation results show that the proposed algorithm leads to high CR associated with low distortion level relative to previously reported compression algorithms [1], [14] and [18]. For example, the compression of record 100 using the proposed algorithm yields to CR = 25.15 associated with PRD = 0.7% and PSNR = 45 dB. This achieves compression rate of nearly 128 bit/sec. The main features of this compression algorithm are the high efficiency, high speed and simplicity in design.

  9. Single-cell twitching chemotaxis in developing biofilms.

    Science.gov (United States)

    Oliveira, Nuno M; Foster, Kevin R; Durham, William M

    2016-06-01

    Bacteria form surface-attached communities, known as biofilms, which are central to bacterial biology and how they affect us. Although surface-attached bacteria often experience strong chemical gradients, it remains unclear whether single cells can effectively perform chemotaxis on surfaces. Here we use microfluidic chemical gradients and massively parallel automated tracking to study the behavior of the pathogen Pseudomonas aeruginosa during early biofilm development. We show that individual cells can efficiently move toward chemoattractants using pili-based "twitching" motility and the Chp chemosensory system. Moreover, we discovered the behavioral mechanism underlying this surface chemotaxis: Cells reverse direction more frequently when moving away from chemoattractant sources. These corrective maneuvers are triggered rapidly, typically before a wayward cell has ventured a fraction of a micron. Our work shows that single bacteria can direct their motion with submicron precision and reveals the hidden potential for chemotaxis within bacterial biofilms. PMID:27222583

  10. An orphan chemotaxis sensor regulates virulence and antibiotic tolerance in the human pathogen Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Heather Pearl McLaughlin

    Full Text Available The synthesis of virulence factors by pathogenic bacteria is highly regulated and occurs in response to diverse environmental cues. An array of two component systems (TCSs serves to link perception of different cues to specific changes in gene expression and/or bacterial behaviour. Those TCSs that regulate functions associated with virulence represent attractive targets for interference in anti-infective strategies for disease control. We have previously identified PA2572 as a putative response regulator required for full virulence of Pseudomonas aeruginosa, the opportunistic human pathogen, to Galleria mellonella (Wax moth larvae. Here we have investigated the involvement of candidate sensors for signal transduction involving PA2572. Mutation of PA2573, encoding a probable methyl-accepting chemotaxis protein, gave rise to alterations in motility, virulence, and antibiotic resistance, functions which are also controlled by PA2572. Comparative transcriptome profiling of mutants revealed that PA2572 and PA2573 regulate expression of a common set of 49 genes that are involved in a range of biological functions including virulence and antibiotic resistance. Bacterial two-hybrid analysis indicated a REC-dependent interaction between PA2572 and PA2573 proteins. Finally expression of PA2572 in the PA2573 mutant background restored virulence to G. mellonella towards wild-type levels. The findings indicate a role for the orphan chemotaxis sensor PA2573 in the regulation of virulence and antibiotic tolerance in P. aeruginosa and indicate that these effects are exerted in part through signal transduction involving PA2572.

  11. Cutting the Gordian knot:Complex signaling in African cichlids is more than multimodal

    Institute of Scientific and Technical Information of China (English)

    Moira J.VAN STAADEN; Adam R.SMITH

    2011-01-01

    The active transmission of information from sender to recelver is a fundamental component of communication,and is therefore a primary facet in evolutionary models of sexual selection.Research in several systetms has underlined the importance of multiple sensory modalities in courtship signals.However,we still tend to think of individuals as having a relatively static signal in consecutive communicative events.While this may be true for certain traits such as body size or coloration,behaviorally modulated signals can quickly violate this assumption.In this work,we explore how intraspecific variation may be an important component of interspeclfic signal divergence using cichlid fishes from Lake Maiawi.Behavloral analyses were made using six species of Malawian cichlids from two divergent genera.while interspecific differences were found between congeners based on species-level analyses of both acoustic and audiovisual signais,intraspecific variation was of a similar magnitude.Specifically,individual fishes were found to possess highiy plastic signal repertoires.This finding was ubiquitous across all species and resulted in a great deal of overlap between heterospecific individuals,despite statistically distinct species means.These results demonstrate that some aspects of courtship in Malawian cichlids are more plastic than previously proposed,and that studies must account for signal variability within individuals.We propose here that bebavioral variability in signaling is important in determining the communication landscape on which signals are perceived.We review potential complexity deriving from multimodal signaling,discuss the sources for such lability,and suggest ways in which is issue may be approached experimentally.

  12. Slit2 regulates attractive eosinophil and repulsive neutrophil chemotaxis through differential srGAP1 expression during lung inflammation.

    Science.gov (United States)

    Ye, Bu-Qing; Geng, Zhen H; Ma, Li; Geng, Jian-Guo

    2010-11-15

    Directional migration of leukocytes is an essential step in leukocyte trafficking during inflammatory responses. However, the molecular mechanisms governing directional chemotaxis of leukocytes remain poorly understood. The Slit family of guidance cues has been implicated for inhibition of leuocyte migration. We report that Clara cells in the bronchial epithelium secreted Slit2, whereas eosinophils and neutrophils expressed its cell-surface receptor, Robo1. Compared to neutrophils, eosinophils exhibited a significantly lower level of Slit-Robo GTPase-activating protein 1 (srGAP1), leading to activation of Cdc42, recruitment of PI3K to Robo1, enhancment of eotaxin-induced eosinophil chemotaxis, and exaggeration of allergic airway inflammation. Notably, OVA sensitization elicited a Slit2 gradient at so-called bronchus-alveoli axis, with a higher level of Slit2 in the bronchial epithelium and a lower level in the alveolar tissue. Aerosol administration of rSlit2 accelerated eosinophil infiltration, whereas i.v. administered Slit2 reduced eosinophil deposition. In contrast, Slit2 inactivated Cdc42 and suppressed stromal cell-derived factor-1α-induced chemotaxis of neutrophils for inhibiting endotoxin-induced lung inflammation, which were reversed by blockade of srGAP1 binding to Robo1. These results indicate that the newly identified Slit2 gradient at the bronchus-alveoli axis induces attractive PI3K signaling in eosinophils and repulsive srGAP1 signaling in neutrophils through differential srGAP1 expression during lung inflammation.

  13. p38 MAPK is involved in human neutrophil chemotaxis induced by L-amino acid oxidase from Calloselasma rhodosthoma.

    Science.gov (United States)

    Pontes, Adriana S; Setúbal, Sulamita da S; Nery, Neriane Monteiro; da Silva, Francisquinha Souza; da Silva, Silvana D; Fernandes, Carla F C; Stábeli, Rodrigo G; Soares, Andreimar M; Zuliani, Juliana P

    2016-09-01

    The action of LAAO, an L-amino acid oxidase isolated from Calloselasma rhodosthoma snake venom, on isolated human neutrophil function was investigated. Cr-LAAO showed no toxicity on neutrophils. Cr-LAAO in its native form induced the neutrophil chemotaxis, suggesting that its primary structure is essential for stimulation the cell. p38 MAPK and PI3K have a role as signaling pathways of CR-LAAO induced chemotaxis. This toxin also induced the production of hydrogen peroxide and stimulated phagocytosis in neutrophils. Furthermore, Cr-LAAO was able to stimulate neutrophils to release IL-6, IL-8, MPO, LTB4 and PGE2. Together, the data showed that the Cr-LAAO triggers relevant proinflammatory events. PMID:27242041

  14. Chemotaxis plays multiple roles during Helicobacter pylori animal infection

    OpenAIRE

    Terry, K; S. M. Williams; Connolly, L.; Ottemann, K M

    2005-01-01

    Helicobacter pylori is a human gastric pathogen associated with gastric and duodenal ulcers as well as specific gastric cancers. H. pylori infects approximately 50% of the world's population, and infections can persist throughout the lifetime of the host. Motility and chemotaxis have been shown to be important in the infection process of H. pylori. We sought to address the specific roles of chemotaxis in infection of a mouse model system. We found that mutants lacking cheW, cheA, or cheY are ...

  15. Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis.

    Directory of Open Access Journals (Sweden)

    Philipp S Orekhov

    2015-10-01

    Full Text Available Motile bacteria and archaea respond to chemical and physical stimuli seeking optimal conditions for survival. To this end transmembrane chemo- and photoreceptors organized in large arrays initiate signaling cascades and ultimately regulate the rotation of flagellar motors. To unravel the molecular mechanism of signaling in an archaeal phototaxis complex we performed coarse-grained molecular dynamics simulations of a trimer of receptor/transducer dimers, namely NpSRII/NpHtrII from Natronomonas pharaonis. Signaling is regulated by a reversible methylation mechanism called adaptation, which also influences the level of basal receptor activation. Mimicking two extreme methylation states in our simulations we found conformational changes for the transmembrane region of NpSRII/NpHtrII which resemble experimentally observed light-induced changes. Further downstream in the cytoplasmic domain of the transducer the signal propagates via distinct changes in the dynamics of HAMP1, HAMP2, the adaptation domain and the binding region for the kinase CheA, where conformational rearrangements were found to be subtle. Overall these observations suggest a signaling mechanism based on dynamic allostery resembling models previously proposed for E. coli chemoreceptors, indicating similar properties of signal transduction for archaeal photoreceptors and bacterial chemoreceptors.

  16. A Lesion-Mimic Syntaxin Double Mutant in Arabidopsis Reveals Novel Complexity of Pathogen Defense Signaling

    Institute of Scientific and Technical Information of China (English)

    Ziguo Zhang; Hans Thordal-Christensen; Andrea Lenk; Mats X. Andersson; Torben Gjetting; Carsten Pedersen; Mads E. Nielsen; Marl-Anne Newman; Bi-Huei Hou; Shauna C. Somerville

    2008-01-01

    The lesion-mimicArabidopsis mutant, syp121 syp122, constitutively expresses the salicylic acid (SA) signaling pathway and has low penetration resistance to powdery mildew fungi. Genetic analyses of the lesion-mimic phenotype have expanded our understanding of programmed cell death (PCD) in plants. Inactivation of SA signaling genes in syp121 syp 122 only partially rescues the lesion-mimic phenotype, indicating that additional defenses contribute to the PCD. Whole genome transcriptome analysis confirmed that SA-induced transcripts, as well as numerous other known pathogenresponse transcripts, are up-regulated after inactivation of the syntaxin genes. A suppressor mutant analysis of syp121 syp122 revealed that FMO1, ALD1, and PAD4 are important for lesion development. Mutant alleles of EDS1, NDR1, RAR1, and SGT1b also partially rescued the lesion-mimic phenotype, suggesting that mutating syntaxin genes stimulates TIR-NB-LRR and CC-NB-LRR-type resistances. The syntaxin double knockout potentiated a powdery mildewinduced HR-like response. This required functional PAD4 but not functional SA signaling. However, SA signaling potentiated the PAD4-dependent HR-like response. Analyses of quadruple mutants suggest that EDS5 and SID2 confer separate SA-independent signaling functions, and that FMO1 and ALD1 mediate SA-independent signals that are NPRl-dependent.These studies highlight the contribution of multiple pathways to defense and point to the complexity of their interactions.

  17. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth.

    Directory of Open Access Journals (Sweden)

    Roeland M H Merks

    Full Text Available Blood vessels form either when dispersed endothelial cells (the cells lining the inner walls of fully formed blood vessels organize into a vessel network (vasculogenesis, or by sprouting or splitting of existing blood vessels (angiogenesis. Although they are closely related biologically, no current model explains both phenomena with a single biophysical mechanism. Most computational models describe sprouting at the level of the blood vessel, ignoring how cell behavior drives branch splitting during sprouting. We present a cell-based, Glazier-Graner-Hogeweg model (also called Cellular Potts Model simulation of the initial patterning before the vascular cords form lumens, based on plausible behaviors of endothelial cells. The endothelial cells secrete a chemoattractant, which attracts other endothelial cells. As in the classic Keller-Segel model, chemotaxis by itself causes cells to aggregate into isolated clusters. However, including experimentally observed VE-cadherin-mediated contact inhibition of chemotaxis in the simulation causes randomly distributed cells to organize into networks and cell aggregates to sprout, reproducing aspects of both de novo and sprouting blood-vessel growth. We discuss two branching instabilities responsible for our results. Cells at the surfaces of cell clusters attempting to migrate to the centers of the clusters produce a buckling instability. In a model variant that eliminates the surface-normal force, a dissipative mechanism drives sprouting, with the secreted chemical acting both as a chemoattractant and as an inhibitor of pseudopod extension. Both mechanisms would also apply if force transmission through the extracellular matrix rather than chemical signaling mediated cell-cell interactions. The branching instabilities responsible for our results, which result from contact inhibition of chemotaxis, are both generic developmental mechanisms and interesting examples of unusual patterning instabilities.

  18. Low complexity method for spreading sequence estimation of DSSS signal in non-cooperative communication systems*

    Institute of Scientific and Technical Information of China (English)

    Chang Liang; Wang Fuping; Wang Zanji

    2009-01-01

    It is a necessary step to estimate the spreading sequence of direct sequence spread spectrum (DSSS) signal for blind despreading and demodulation in non-cooperative communications. Two innovative and effective detection statistics axe proposed to implement the synchronization and spreading sequence estimation procedure. The proposed algorithm also has a low computational complexity with only linear additions and modifications. Theoretical analysis and simulation results show that the algorithm performs quite well in low SNR environment, and is much better than all the existing typical algorithms with a comprehensive consideration both in performance and computational complexity.

  19. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    Science.gov (United States)

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M

    2016-07-01

    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1. PMID:27235398

  20. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    Science.gov (United States)

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M

    2016-07-01

    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1.

  1. Multifractal analysis of sEMG signal of the complex muscle activity

    CERN Document Server

    Trybek, Paulina; Nowakowski, Michal; Machura, Lukasz

    2014-01-01

    The neuro--muscular activity while working on laparoscopic trainer is the example of the complex (and complicated) movement. This class of problems are still waiting for the proper theory which will be able to describe the actual properties of the muscle performance. Here we consider the signals obtained from three states of muscle activity: at maximum contraction, during complex movements (at actual work) and in the completely relaxed state. In addition the difference between a professional and an amateur is presented. The Multifractal Detrended Fluctuation Analysis was used in description of the properties the kinesiological surface electromyographic signals (sEMG). We demonstrate the dissimilarity between each state of work for the selected group of muscles as well as between trained and untrained individuals.

  2. The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery.

    Science.gov (United States)

    Reijntjes, Daniël O J; Pyott, Sonja J

    2016-06-01

    The spiral ganglion neurons (SGNs) are the first action potential generating neurons in the auditory pathway. The type I SGNs contact the sensory inner hair cells via their peripheral dendrites and relay auditory information to the brainstem via their central axon fibers. Individual afferent fibers show differences in response properties that are essential for normal hearing. The mechanisms that give rise to the heterogeneity of afferent responses are very poorly understood but are likely already in place at the peripheral dendrites where synapses are formed and action potentials are generated. To identify these molecular mechanisms, this review synthesizes a variety of literature and comprehensively outlines the cellular and molecular components positioned to regulate SGN afferent dendrite excitability, especially following glutamate release. These components include 1) proteins of the SGN postsynapses and neighboring supporting cells that together shape glutamatergic signaling, 2) the ion channels and transporters that determine the intrinsic excitability of the SGN afferent dendrites, and 3) the neurotransmitter receptors that extrinsically modify this excitability via synaptic input from the lateral olivocochlear efferents. This cellular and molecular machinery, together with presynaptic specializations of the inner hair cells, can be collectively referred to as the type I afferent signaling complex. As this review underscores, interactions of this signaling complex determine excitability of the SGN afferent dendrites and the afferent fiber responses. Moreover, this complex establishes the environmental milieu critical for the development and maintenance of the SGN afferent dendrites and synapses. Motivated by these important functions, this review also indicates areas of future research to elucidate the contributions of the afferent signaling complex to both normal hearing and also hearing loss. PMID:27018296

  3. Increased Signal Complexity Improves the Breadth of Generalization in Auditory Perceptual Learning

    OpenAIRE

    Brown, David J.; Proulx, Michael J.

    2013-01-01

    Perceptual learning can be specific to a trained stimulus or optimally generalized to novel stimuli with the breadth of generalization being imperative for how we structure perceptual training programs. Adapting an established auditory interval discrimination paradigm to utilise complex signals, we trained human adults on a standard interval for either 2, 4, or 10 days. We then tested the standard, alternate frequency, interval, and stereo input conditions to evaluate the rapidity of specifi...

  4. Correlations between the Signal Complexity of Cerebral and Cardiac Electrical Activity: A Multiscale Entropy Analysis

    OpenAIRE

    Pei-Feng Lin; Men-Tzung Lo; Jenho Tsao; Yi-Chung Chang; Chen Lin; Yi-Lwun Ho

    2014-01-01

    The heart begins to beat before the brain is formed. Whether conventional hierarchical central commands sent by the brain to the heart alone explain all the interplay between these two organs should be reconsidered. Here, we demonstrate correlations between the signal complexity of brain and cardiac activity. Eighty-seven geriatric outpatients with healthy hearts and varied cognitive abilities each provided a 24-hour electrocardiography (ECG) and a 19-channel eye-closed routine electroencepha...

  5. Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-β signaling and metastasis

    OpenAIRE

    Wendt, Michael K.; William P. Schiemann

    2009-01-01

    Introduction Mammary tumorigenesis is associated with the increased expression of several proteins in the focal adhesion complex, including focal adhesion kinase (FAK) and various integrins. Aberrant expression of these molecules occurs concomitant with the conversion of TGF-β function from a tumor suppressor to a tumor promoter. We previously showed that interaction between β3 integrin and TβR-II facilitates TGF-β-mediated oncogenic signaling, epithelial-mesenchymal transition (EMT), and met...

  6. Receiver discriminability drives the evolution of complex sexual signals by sexual selection.

    Science.gov (United States)

    Cui, Jianguo; Song, Xiaowei; Zhu, Bicheng; Fang, Guangzhan; Tang, Yezhong; Ryan, Michael J

    2016-04-01

    A hallmark of sexual selection by mate choice is the evolution of exaggerated traits, such as longer tails in birds and more acoustic components in the calls of birds and frogs. Trait elaboration can be opposed by costs such as increased metabolism and greater predation risk, but cognitive processes of the receiver can also put a brake on trait elaboration. For example, according to Weber's Law traits of a fixed absolute difference will be more difficult to discriminate as the absolute magnitude increases. Here, we show that in the Emei music frog (Babina daunchina) increases in the fundamental frequency between successive notes in the male advertisement call, which increases the spectral complexity of the call, facilitates the female's ability to compare the number of notes between calls. These results suggest that female's discriminability provides the impetus to switch from enhancement of signaling magnitude (i.e., adding more notes into calls) to employing a new signal feature (i.e., increasing frequency among notes) to increase complexity. We suggest that increasing the spectral complexity of notes ameliorates some of the effects of Weber's Law, and highlights how perceptual and cognitive biases of choosers can have important influences on the evolution of courtship signals. PMID:26920078

  7. TOR Complex 2-Ypk1 Signaling Maintains Sphingolipid Homeostasis by Sensing and Regulating ROS Accumulation

    Directory of Open Access Journals (Sweden)

    Brad J. Niles

    2014-02-01

    Full Text Available Reactive oxygen species (ROS are produced during normal metabolism and can function as signaling molecules. However, ROS at elevated levels can damage cells. Here, we identify the conserved target of rapamycin complex 2 (TORC2/Ypk1 signaling module as an important regulator of ROS in the model eukaryotic organism, S. cerevisiae. We show that TORC2/Ypk1 suppresses ROS produced both by mitochondria as well as by nonmitochondrial sources, including changes in acidification of the vacuole. Furthermore, we link vacuole-related ROS to sphingolipids, essential components of cellular membranes, whose synthesis is also controlled by TORC2/Ypk1 signaling. In total, our data reveal that TORC2/Ypk1 act within a homeostatic feedback loop to maintain sphingolipid levels and that ROS are a critical regulatory signal within this system. Thus, ROS sensing and signaling by TORC2/Ypk1 play a central physiological role in sphingolipid biosynthesis and in the maintenance of cell growth and viability.

  8. Nutrient export from catchments on forested landscapes reveals complex nonstationary and stationary climate signals

    Science.gov (United States)

    Mengistu, Samson G.; Quick, Christopher G.; Creed, Irena F.

    2013-06-01

    Headwater catchment hydrology and biogeochemistry are influenced by climate, including linear trends (nonstationary signals) and climate oscillations (stationary signals). We used an analytical framework to detect nonstationary and stationary signals in yearly time series of nutrient export [dissolved organic carbon (DOC), dissolved organic nitrogen (DON), nitrate (NO3--N), and total dissolved phosphorus (TDP)] in forested headwater catchments with differential water loading and water storage potential at the Turkey Lakes Watershed in Ontario, Canada. We tested the hypotheses that (1) climate has nonstationary and stationary effects on nutrient export, the combination of which explains most of the variation in nutrient export; (2) more metabolically active nutrients (e.g., DON, NO3--N, and TDP) are more sensitive to these signals; and (3) catchments with relatively low water loading and water storage capacity are more sensitive to these signals. Both nonstationary and stationary signals were identified, and the combination of both explained the majority of the variation in nutrient export data. More variation was explained in more labile nutrients (DON, NO3--N, and TDP), which were also more sensitive to climate signals. The catchment with low-water storage potential and low water loading was most sensitive to nonstationary and stationary climatic oscillations, suggesting that these hydrologic features are characteristic of the most effective sentinels of climate change. The observed complex links between climate change, climatic oscillations, and water nutrient fluxes in headwater catchments suggest that climate may have considerable influence on the productivity and biodiversity of surface waters, in addition to other drivers such as atmospheric pollution.

  9. Evidence for bacterial chemotaxis to cyanobacteria from a radioassay technique

    International Nuclear Information System (INIS)

    Lyngbya birgei and Aphanizomenon flos-aquae elicited a significant chemotactic attraction of Aeromonas hydrophila compared with controls lacking cyanobacteria. There was a positive exponential relationship between biomass (chlorophyll a) of L. birgei and A. flos-aquae and chemotactic attraction of A. hydrophila. The assay equipment was simple and reliable and could be used to study bacterial chemotaxis in other species in situ

  10. Approximate Inertial Manifolds for Chemotaxis-Growth System

    Institute of Scientific and Technical Information of China (English)

    Hong LUO; Zhilin PU

    2012-01-01

    The long-time behaviour of solution to chemotaxis-growth system with Neumann condition is considered in this paper.The approximate inertial manifolds of such equations are constructed based on the contraction principle,and the orders of approximations of the manifolds to the global attractor are derived.

  11. Quantitative analysis of Caenorhabditis elegans chemotaxis using a microfluidic device.

    Science.gov (United States)

    Hu, Liang; Ye, Jinjuan; Tan, Haowei; Ge, Anle; Tang, Lichun; Feng, Xiaojun; Du, Wei; Liu, Bi-Feng

    2015-08-01

    Caenorhabditis elegans, one of the widely studied model organisms, sense external chemical cues and perform relative chemotaxis behaviors through its simple chemosensory neuronal system. To study the mechanism underlying chemosensory behavior, a rapid and reliable method for quantitatively analyzing the worms' behaviors is essential. In this work, we demonstrated a microfluidic approach for investigating chemotaxis responses of worms to chemical gradients. The flow-based microfluidic chip was consisted of circular tree-like microchannels, which was able to generate eight flow streams containing stepwise chemical concentrations without the difference in flow velocity. Worms' upstream swimming into microchannels with various concentrations was monitored for quantitative analysis of the chemotaxis behavior. By using this microfluidic chip, the attractive and repellent responses of C. elegans to NaCl were successfully quantified within several minutes. The results demonstrated the wild type-like repellent responses and severely impaired attractive responses in grk-2 mutant animals with defects in calcium influx. In addition, the chemotaxis analysis of the third stage larvae revealed that its gustatory response was different from that in the adult stage. Thus, our microfluidic method provided a useful platform for studying the chemosensory behaviors of C. elegans and screening of chemosensation-related chemical drugs. PMID:26320797

  12. IPP Complex Reinforces Adhesion by Relaying Tension-Dependent Signals to Inhibit Integrin Turnover

    Directory of Open Access Journals (Sweden)

    Katerina M. Vakaloglou

    2016-03-01

    Full Text Available Cytoskeleton-mediated forces regulate the assembly and function of integrin adhesions; however, the underlying mechanisms remain unclear. The tripartite IPP complex, comprising ILK, Parvin, and PINCH, mediates the integrin-actin link at Drosophila embryo muscle attachment sites (MASs. Here, we demonstrate a developmentally earlier function for the IPP complex: to reinforce integrin-extracellular matrix (ECM adhesion in response to tension. In IPP-complex mutants, the integrin-ECM linkage at MASs breaks in response to intense muscle contractility. Mechanistically, the IPP complex is required to relay force-elicited signals that decelerate integrin turnover at the plasma membrane so that the integrin immobile fraction is adequate to withstand tension. Epistasis analysis shows that alleviation of muscle contractility, downregulation of endocytosis, and enhanced integrin binding to the ECM are sufficient to restore integrin-ECM adhesion and maintain integrin-adhesome organization in IPP-complex mutants. Our findings reveal a role for the IPP complex as an essential mechanosensitive regulatory switch of integrin turnover in vivo.

  13. Active site coupling in PDE:PKA complexes promotes resetting of mammalian cAMP signaling.

    Science.gov (United States)

    Krishnamurthy, Srinath; Moorthy, Balakrishnan Shenbaga; Xin Xiang, Lim; Xin Shan, Lim; Bharatham, Kavitha; Tulsian, Nikhil Kumar; Mihalek, Ivana; Anand, Ganesh S

    2014-09-16

    Cyclic 3'5' adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and

  14. GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling.

    Science.gov (United States)

    Thomsen, Alex R B; Plouffe, Bianca; Cahill, Thomas J; Shukla, Arun K; Tarrasch, Jeffrey T; Dosey, Annie M; Kahsai, Alem W; Strachan, Ryan T; Pani, Biswaranjan; Mahoney, Jacob P; Huang, Liyin; Breton, Billy; Heydenreich, Franziska M; Sunahara, Roger K; Skiniotis, Georgios; Bouvier, Michel; Lefkowitz, Robert J

    2016-08-11

    Classically, G protein-coupled receptor (GPCR) stimulation promotes G protein signaling at the plasma membrane, followed by rapid β-arrestin-mediated desensitization and receptor internalization into endosomes. However, it has been demonstrated that some GPCRs activate G proteins from within internalized cellular compartments, resulting in sustained signaling. We have used a variety of biochemical, biophysical, and cell-based methods to demonstrate the existence, functionality, and architecture of internalized receptor complexes composed of a single GPCR, β-arrestin, and G protein. These super-complexes or "megaplexes" more readily form at receptors that interact strongly with β-arrestins via a C-terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron microscopy analysis of negative-stained purified megaplexes reveals that a single receptor simultaneously binds through its core region with G protein and through its phosphorylated C-terminal tail with β-arrestin. The formation of such megaplexes provides a potential physical basis for the newly appreciated sustained G protein signaling from internalized GPCRs. PMID:27499021

  15. Transport of receptors, receptor signaling complexes and ion channels via neuropeptide-secretory vesicles

    Institute of Scientific and Technical Information of China (English)

    Bo Zhao; Hai-Bo Wang; Ying-Jin Lu; Jian-Wen Hu; Lan Bao; Xu Zhang

    2011-01-01

    Stimulus-induced exocytosis of large dense-core vesicles(LDCVs)leads to discharge of neuropeptides and fusion of LDCV membranes with the plasma membrane. However, the contribution of LDCVs to the properties of the neuronal membrane remains largely unclear. The present study found that LDCVs were associated with multiple receptors, channels and signaling molecules, suggesting that neuronal sensitivity is modulated by an LDCV-mediated mechanism. Liquid chromatography-mass spectrometry combined with immunoblotting of subcellular fractions identified 298 proteins in LDCV membranes purified from the dorsal spinal cord, including Gprotein-coupled receptors, Gproteins and other signaling molecules, ion channels and trafficking-related proteins. Morphological assays showed that δ-opioid receptor 1(DORI), β2 adrenergic receptor(AR), Gα12,voltage-gated calcium channel a2δ1subunit and P2X purinoceptor 2 were localized in substance P(SP)-positive LDCVs in small-diameter dorsal root ganglion neurons, whereas β1 AR, Wnt receptor frizzled 8 and dishevelled 1 were present in SP-negative LDCVs.Furthermore, DOR1/α12/Gβ1γ5/phospholipase C β2 complexes were associated with LDCVs. Blockade of the DOR1/Gαi2 interaction largely abolished the LDCV localization of Gαi2 and impaired stimulation-induced surface expression of Gαi2. Thus, LDCVs serve as carriers of receptors, ion channels and preassembled receptor signaling complexes, enabling a rapid, activity-dependent modulation of neuronal sensitivity.

  16. Analysis of the Influence of Complexity and Entropy of Odorant on Fractal Dynamics and Entropy of EEG Signal

    Science.gov (United States)

    Akrami, Amin; Nazeri, Sina

    2016-01-01

    An important challenge in brain research is to make out the relation between the features of olfactory stimuli and the electroencephalogram (EEG) signal. Yet, no one has discovered any relation between the structures of olfactory stimuli and the EEG signal. This study investigates the relation between the structures of EEG signal and the olfactory stimulus (odorant). We show that the complexity of the EEG signal is coupled with the molecular complexity of the odorant, where more structurally complex odorant causes less fractal EEG signal. Also, odorant having higher entropy causes the EEG signal to have lower approximate entropy. The method discussed here can be applied and investigated in case of patients with brain diseases as the rehabilitation purpose. PMID:27699169

  17. Mass exponent spectrum analysis of human ECG signals and its application to complexity detection

    Science.gov (United States)

    Yang, Xiaodong; Du, Sidan; Ning, Xinbao; Bian, Chunhua

    2008-06-01

    The complexity of electrocardiogram (ECG) signal may reflect the physiological function and healthy status of the heart. In this paper, we introduced two novel intermediate parameters of multifractality, the mass exponent spectrum curvature and area, to characterize the nonlinear complexity of ECG signal. These indicators express the nonlinear superposition of the discrepancies of singularity strengths from all the adjacent points of the spectrum curve and thus overall subsets of original fractal structure. The evaluation of binomial multifractal sets validated these two variables were entirely effective in exploring the complexity of this time series. We then studied the ECG mass exponent spectra taken from the cohorts of healthy, ischemia and myocardial infarction (MI) sufferer based on a large sets of 12 leads’ recordings, and took the statistical averages among each crowd. Experimental results suggest the two values from healthy ECG are apparently larger than those from the heart diseased. While the values from ECG of MI sufferer are much smaller than those from the other two groups. As for the ischemia sufferer, they are almost of moderate magnitude. Afterward, we compared these new indicators with the nonlinear parameters of singularity spectrum. The classification indexes and results of total separating ratios (TSR, defined in the paper) both indicated that our method could achieve a better effect. These conclusions may be of some values in early diagnoses and clinical applications.

  18. The Azospirillum brasilense Che1 chemotaxis pathway controls swimming velocity, which affects transient cell-to-cell clumping.

    Science.gov (United States)

    Bible, Amber; Russell, Matthew H; Alexandre, Gladys

    2012-07-01

    The Che1 chemotaxis-like pathway of Azospirillum brasilense contributes to chemotaxis and aerotaxis, and it has also been found to contribute to regulating changes in cell surface adhesive properties that affect the propensity of cells to clump and to flocculate. The exact contribution of Che1 to the control of chemotaxis and flocculation in A. brasilense remains poorly understood. Here, we show that Che1 affects reversible cell-to-cell clumping, a cellular behavior in which motile cells transiently interact by adhering to one another at their nonflagellated poles before swimming apart. Clumping precedes and is required for flocculation, and both processes appear to be independently regulated. The phenotypes of a ΔaerC receptor mutant and of mutant strains lacking cheA1, cheY1, cheB1, or cheR1 (alone or in combination) or with che1 deleted show that Che1 directly mediates changes in the flagellar swimming velocity and that this behavior directly modulates the transient nature of clumping. Our results also suggest that an additional receptor(s) and signaling pathway(s) are implicated in mediating other Che1-independent changes in clumping identified in the present study. Transient clumping precedes the transition to stable clump formation, which involves the production of specific extracellular polysaccharides (EPS); however, production of these clumping-specific EPS is not directly controlled by Che1 activity. Che1-dependent clumping may antagonize motility and prevent chemotaxis, thereby maintaining cells in a metabolically favorable niche.

  19. Modeling Transitions in Complex Systems by Multiplicative Effect of Temporal Patterns Extracted from Signal Flows

    Directory of Open Access Journals (Sweden)

    Ezzat G. Bakhoum

    2012-01-01

    for characterizing suddenly emerging phenomena as nonlinear transitions. Newly created temporal patterns extracted from internal signal flow (mathematically represented as oscillations with long period interact as new entities in a multiplicative manner with subsequent pulses from the external time series (already existing entities in order to generate nonlinear transitions within the system. Such effects are enhanced when the period of external pulses creating new patterns is similar to the settling time of the complex system (this being the condition for an efficient external action. For complex systems where both classical and quantum phenomena generated by external time series are involved, this mathematical model can correctly explain the transition from classical to quantum behaviour (corresponding to a more ordered structure avoiding typical contradictions generated by analysis performed on transient time intervals or by wave superposition.

  20. Chromogenic signaling of water traces by 1,8-naphthalohydrazone-anion complex in organic solvents

    Directory of Open Access Journals (Sweden)

    Veikko Uahengo

    2016-06-01

    Full Text Available A naphthalo-1, 8-bis[(2,4-dinitrophenylhydrazone] sensor (K was synthesized and characterized using UV–vis, 1H NMR and fluorescence spectroscopy. The sensor showed strong colorimetric and spectral response upon the molar addition of acetate or fluoride ion (AcO− or F− in acetonitrile. The complexed state (KF or KAcO of the system showed significant reversibility properties, both in color and spectra, upon the addition of small traces of water. Subsequently, in addition to sensing of fluoride or acetate ions, the complexed KF or KAcO adducts can be used in colorimetric signaling of water traces in different organic mediums. In order to have more understanding of the interaction between K and the anions, the study was supplemented using density functional theory computations.

  1. Measurement of the formation of complexes in tyrosine kinase-mediated signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Ladbury, John E., E-mail: j.ladbury@biochem.ucl.ac.uk [Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2007-01-01

    The use of isothermal titration calorimetry (ITC) provides a full thermodynamic characterization of an interaction in one experiment. The determination of the affinity is an important value; however, the additional layer of information provided by the change in enthalpy and entropy can help in understanding the biology. This is demonstrated with respect to tyrosine kinase-mediated signal transduction. Isothermal titration calorimetry (ITC) provides highly complementary data to high-resolution structural detail. An overview of the methodology of the technique is provided. Ultimately, the correlation of the thermodynamic parameters determined by ITC with structural perturbation observed on going from the free to the bound state should be possible at an atomic level. Currently, thermodynamic data provide some insight as to potential changes occurring on complex formation. Here, this is demonstrated in the context of in vitro quantification of intracellular tyrosine kinase-mediated signal transduction and the issue of specificity of the important interactions. The apparent lack of specificity in the interactions of domains of proteins involved in early signalling from membrane-bound receptors is demonstrated using data from ITC.

  2. Complex patterns of signalling to convey different social goals of sex in bonobos, Pan paniscus

    Science.gov (United States)

    Genty, Emilie; Neumann, Christof; Zuberbühler, Klaus

    2015-01-01

    Sexual behaviour in bonobos (Pan paniscus) functions beyond mere reproduction to mediate social interactions and relationships. In this study, we assessed the signalling behaviour in relation to four social goals of sex in this species: appeasement after conflict, tension reduction, social bonding and reproduction. Overall, sexual behaviour was strongly decoupled from its ancestral reproductive function with habitual use in the social domain, which was accompanied by a corresponding complexity in communication behaviour. We found that signalling behaviour varied systematically depending on the initiator’s goals and gender. Although all gestures and vocalisations were part of the species-typical communication repertoire, they were often combined and produced flexibly. Generally, gestures and multi-modal combinations were more flexibly used to communicate a goal than vocalisations. There was no clear relation between signalling behaviour and success of sexual initiations, suggesting that communication was primarily used to indicate the signaller’s intention, and not to influence a recipient’s willingness to interact sexually. We discuss these findings in light of the larger question of what may have caused, in humans, the evolutionary transition from primate-like communication to language. PMID:26538281

  3. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules.

    Science.gov (United States)

    Copple, Bryan L; Li, Tiangang

    2016-02-01

    For many years, bile acids were thought to only function as detergents which solubilize fats and facilitate the uptake of fat-soluble vitamins in the intestine. Many early observations; however, demonstrated that bile acids regulate more complex processes, such as bile acids synthesis and immune cell function through activation of signal transduction pathways. These studies were the first to suggest that receptors may exist for bile acids. Ultimately, seminal studies by many investigators led to the discovery of several bile acid-activated receptors including the farnesoid X receptor, the vitamin D receptor, the pregnane X receptor, TGR5, α5 β1 integrin, and sphingosine-1-phosphate receptor 2. Several of these receptors are expressed outside of the gastrointestinal system, indicating that bile acids may have diverse functions throughout the body. Characterization of the functions of these receptors over the last two decades has identified many important roles for these receptors in regulation of bile acid synthesis, transport, and detoxification; regulation of glucose utilization; regulation of fatty acid synthesis and oxidation; regulation of immune cell function; regulation of energy expenditure; and regulation of neural processes such as gastric motility. Through these many functions, bile acids regulate many aspects of digestion ranging from uptake of essential vitamins to proper utilization of nutrients. Accordingly, within a short time period, bile acids moved beyond simple detergents and into the realm of complex signaling molecules. Because of the important processes that bile acids regulate through activation of receptors, drugs that target these receptors are under development for the treatment of several diseases, including cholestatic liver disease and metabolic syndrome. In this review, we will describe the various bile acid receptors, the signal transduction pathways activated by these receptors, and briefly discuss the physiological processes that

  4. Feeding ducks, bacterial chemotaxis, and the Gini index

    CERN Document Server

    Peaudecerf, Francois J

    2015-01-01

    Classic experiments on the distribution of ducks around separated food sources found consistency with the `ideal free' distribution in which the local population is proportional to the local supply rate. Motivated by this experiment and others, we examine the analogous problem in the microbial world: the distribution of chemotactic bacteria around multiple nearby food sources. In contrast to the optimization of uptake rate that may hold at the level of a single cell in a spatially varying nutrient field, nutrient consumption by a population of chemotactic cells will modify the nutrient field, and the uptake rate will generally vary throughout the population. Through a simple model we study the distribution of resource uptake in the presence of chemotaxis, consumption, and diffusion of both bacteria and nutrients. Borrowing from the field of theoretical economics, we explore how the Gini index can be used as a means to quantify the inequalities of uptake. The redistributive effect of chemotaxis can lead to a p...

  5. Bacillus subtilis Hfq: A role in chemotaxis and motility

    Indian Academy of Sciences (India)

    CHANDRAKANT B JAGTAP; PRADEEP KUMAR; K KRISHNAMURTHY RAO

    2016-09-01

    Hfq is a global post-transcriptional regulator that modulates the translation and stability of target mRNAs and therebyregulates pleiotropic functions, such as growth, stress, virulence and motility, in many Gram-negative bacteria.However, comparatively little is known about the regulation and function(s) of Hfq in Gram-positive bacteria.Recently, in Bacillus subtilis, a role for Hfq in stationary phase survival has been suggested, although the possibilityof Hfq having an additional role(s) cannot be ruled out. In this study we show that an ortholog of Hfq in B. subtilis isregulated by the stress sigma factor, σB, in addition to the stationary phase sigma factor, σH. We further demonstratethat Hfq positively regulates the expression of flagellum and chemotaxis genes (fla/che) that control chemotaxis andmotility, thus assigning a new function for Hfq in B. subtilis.

  6. Emergent collective chemotaxis without single-cell gradient sensing

    CERN Document Server

    Camley, Brian A; Levine, Herbert; Rappel, Wouter-Jan

    2015-01-01

    Many eukaryotic cells chemotax, sensing and following chemical gradients. However, even if single cells do not chemotax significantly, small clusters may still follow a gradient; this behavior is observed in neural crest cells and during border cell migration in Drosophila, but its origin remains puzzling. Here, we study this "collective guidance" analytically and computationally. We show collective chemotaxis can exist without single-cell chemotaxis if contact inhibition of locomotion (CIL), where cells polarize away from cell-cell contact, is regulated by the chemoattractant. We present explicit formulas for how cluster velocity and chemotactic index depend on the number and organization of cells in the cluster. Pairs of cells will have velocities that are strongly dependent on the cell pair's orientation: this provides a simple test for the presence of collective guidance in neural crest cells and other systems. We also study cluster-level adaptation, amplification, and cohesion via co-attraction.

  7. Bacillus subtilis Hfq: A role in chemotaxis and motility.

    Science.gov (United States)

    Jagtap, Chandrakant B; Kumar, Pradeep; Rao, Krishnamurthy K

    2016-09-01

    Hfq is a global post-transcriptional regulator that modulates the translation and stability of target mRNAs and thereby regulates pleiotropic functions, such as growth, stress, virulence and motility, in many Gram-negative bacteria. However, comparatively little is known about the regulation and function(s) of Hfq in Gram-positive bacteria. Recently, in Bacillus subtilis, a role for Hfq in stationary phase survival has been suggested, although the possibility of Hfq having an additional role(s) cannot be ruled out. In this study we show that an ortholog of Hfq in B. subtilis is regulated by the stress sigma factor, sigma^B, in addition to the stationary phase sigma factor, sigma^H. We further demonstrate that Hfq positively regulates the expression of flagellum and chemotaxis genes (fla/che) that control chemotaxis and motility, thus assigning a new function for Hfq in B. subtilis. PMID:27581927

  8. Global Solutions to the Coupled Chemotaxis-Fluid Equations

    KAUST Repository

    Duan, Renjun

    2010-08-10

    In this paper, we are concerned with a model arising from biology, which is a coupled system of the chemotaxis equations and the viscous incompressible fluid equations through transport and external forcing. The global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the Chemotaxis-Navier-Stokes system over three space dimensions, we obtain global existence and rates of convergence on classical solutions near constant states. When the fluid motion is described by the simpler Stokes equations, we prove global existence of weak solutions in two space dimensions for cell density with finite mass, first-order spatial moment and entropy provided that the external forcing is weak or the substrate concentration is small. © Taylor & Francis Group, LLC.

  9. On-Chip Open Microfluidic Devices for Chemotaxis Studies

    OpenAIRE

    Wright, Gus A.; Costa, Lino; Terekhov, Alexander; Jowhar, Dawit; Hofmeister, William; Janetopoulos, Christopher

    2012-01-01

    Microfluidic devices can provide unique control over both the chemoattractant gradient and the migration environment of the cells. Our work incorporates laser-machined micro and nanofluidic channels into bulk fused silica and cover slip-sized silica wafers. We have designed “open” chemotaxis devices that produce passive chemoattractant gradients without an external micropipette system. Since the migration area is unobstructed, cells can be easily loaded and strategically placed into the devic...

  10. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships.

    Science.gov (United States)

    Zeke, András; Misheva, Mariya; Reményi, Attila; Bogoyevitch, Marie A

    2016-09-01

    The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  11. Gene expression analysis on small numbers of invasive cells collected by chemotaxis from primary mammary tumors of the mouse

    Directory of Open Access Journals (Sweden)

    Segall Jeffrey E

    2003-08-01

    Full Text Available Abstract Background cDNA microarrays have the potential to identify the genes involved in invasion and metastasis. However, when used with whole tumor tissue, the results average the expression patterns of different cell types. We have combined chemotaxis-based cell collection of the invasive subpopulation of cells within the primary tumor with array-based gene expression analysis to identify the genes necessary for the process of carcinoma cell invasion. Results Invasive cells were collected from live primary tumors using microneedles containing chemotactic growth factors to mimic chemotactic signals thought to be present in the primary tumor. When used with mammary tumors of rats and mice, carcinoma cells and macrophages constitute the invasive cell population. Microbeads conjugated with monoclonal anti-CD11b (Mac-1α antibodies were used to separate macrophages from carcinoma cells. We utilized PCR-based cDNA amplification from small number of cells and compared it to the quality and complexity of conventionally generated cDNA to determine if amplified cDNA could be used with fidelity for array analysis of this cell population. These techniques showed a very high level of correlation indicating that the PCR based amplification technique yields a cDNA population that resembles, with high fidelity, the original template population present in the small number of cells used to prepare the cDNA for use with the chip. Conclusions The specific collection of invasive cells from a primary tumor and the analysis of gene expression in these cells are is now possible. By further comparing the gene expression patterns of cells collected by invasion into microneedles with that of carcinoma cells obtained from the whole primary tumor, the blood, and whole metastatic tumors, genes that contribute to the invasive process in carcinoma cells may be identified.

  12. Travelling Waves in Hyperbolic Chemotaxis Equations

    KAUST Repository

    Xue, Chuan

    2010-10-16

    Mathematical models of bacterial populations are often written as systems of partial differential equations for the densities of bacteria and concentrations of extracellular (signal) chemicals. This approach has been employed since the seminal work of Keller and Segel in the 1970s (Keller and Segel, J. Theor. Biol. 30:235-248, 1971). The system has been shown to permit travelling wave solutions which correspond to travelling band formation in bacterial colonies, yet only under specific criteria, such as a singularity in the chemotactic sensitivity function as the signal approaches zero. Such a singularity generates infinite macroscopic velocities which are biologically unrealistic. In this paper, we formulate a model that takes into consideration relevant details of the intracellular processes while avoiding the singularity in the chemotactic sensitivity. We prove the global existence of solutions and then show the existence of travelling wave solutions both numerically and analytically. © 2010 Society for Mathematical Biology.

  13. Chemotaxis of bio-hybrid multiple bacteria-driven microswimmers

    Science.gov (United States)

    Zhuang, Jiang; Sitti, Metin

    2016-08-01

    In this study, in a bio-hybrid microswimmer system driven by multiple Serratia marcescens bacteria, we quantify the chemotactic drift of a large number of microswimmers towards L-serine and elucidate the associated collective chemotaxis behavior by statistical analysis of over a thousand swimming trajectories of the microswimmers. The results show that the microswimmers have a strong heading preference for moving up the L-serine gradient, while their speed does not change considerably when moving up and down the gradient; therefore, the heading bias constitutes the major factor that produces the chemotactic drift. The heading direction of a microswimmer is found to be significantly more persistent when it moves up the L-serine gradient than when it travels down the gradient; this effect causes the apparent heading preference of the microswimmers and is the crucial reason that enables the seemingly cooperative chemotaxis of multiple bacteria on a microswimmer. In addition, we find that their chemotactic drift velocity increases superquadratically with their mean swimming speed, suggesting that chemotaxis of bio-hybrid microsystems can be enhanced by designing and building faster microswimmers. Such bio-hybrid microswimmers with chemotactic steering capability may find future applications in targeted drug delivery, bioengineering, and lab-on-a-chip devices.

  14. Chemotaxis of bio-hybrid multiple bacteria-driven microswimmers

    Science.gov (United States)

    Zhuang, Jiang; Sitti, Metin

    2016-01-01

    In this study, in a bio-hybrid microswimmer system driven by multiple Serratia marcescens bacteria, we quantify the chemotactic drift of a large number of microswimmers towards L-serine and elucidate the associated collective chemotaxis behavior by statistical analysis of over a thousand swimming trajectories of the microswimmers. The results show that the microswimmers have a strong heading preference for moving up the L-serine gradient, while their speed does not change considerably when moving up and down the gradient; therefore, the heading bias constitutes the major factor that produces the chemotactic drift. The heading direction of a microswimmer is found to be significantly more persistent when it moves up the L-serine gradient than when it travels down the gradient; this effect causes the apparent heading preference of the microswimmers and is the crucial reason that enables the seemingly cooperative chemotaxis of multiple bacteria on a microswimmer. In addition, we find that their chemotactic drift velocity increases superquadratically with their mean swimming speed, suggesting that chemotaxis of bio-hybrid microsystems can be enhanced by designing and building faster microswimmers. Such bio-hybrid microswimmers with chemotactic steering capability may find future applications in targeted drug delivery, bioengineering, and lab-on-a-chip devices. PMID:27555465

  15. A Ribosome-Bound Quality Control Complex Triggers Degradation of Nascent Peptides and Signals Translation Stress

    Science.gov (United States)

    Brandman, Onn; Stewart-Ornstein, Jacob; Wong, Daisy; Larson, Adam; Williams, Christopher C.; Li, Gene-Wei; Zhou, Sharleen; King, David; Shen, Peter S.; Weibezahn, Jimena; Dunn, Joshua G.; Rouskin, Silvi; Inada, Toshifumi; Frost, Adam; Weissman, Jonathan S.

    2012-01-01

    Summary The conserved transcriptional regulator Heat Shock Factor 1 (Hsf1) is a key sensor of proteotoxic and other stress in the eukaryotic cytosol, yet its regulation is poorly understood. We surveyed Hsf1 activity in a genome-wide loss-of-function library in Saccaromyces cerevisiae as well as ~78,000 double mutants and found Hsf1 activity to be modulated by highly diverse stresses. These included disruption of a ribosome-bound complex we named the Ribosome Quality Control Complex (RQC) comprising the Ltn1 E3 ubiquitin ligase, two highly conserved but poorly characterized proteins (Tae2 and Rqc1), and Cdc48 and its cofactors. Electron microscopy and biochemical analyses revealed that the RQC forms a stable complex with 60S ribosomal subunits containing stalled polypeptides and triggers their degradation. A negative feedback loop regulates the RQC and Hsf1 senses an RQC-mediated translation stress signal distinctly from other stresses. Our work reveals the range of stresses Hsf1 monitors and elucidates a conserved cotranslational protein quality control mechanism. PMID:23178123

  16. Miniaturized Swimming Soft Robot with Complex Movement Actuated and Controlled by Remote Light Signals.

    Science.gov (United States)

    Huang, Chaolei; Lv, Jiu-an; Tian, Xiaojun; Wang, Yuechao; Yu, Yanlei; Liu, Jie

    2015-01-01

    Powering and communication with micro robots to enable complex functions is a long-standing challenge as the size of robots continues to shrink. Physical connection of wires or components needed for wireless communication are complex and limited by the size of electronic and energy storage devices, making miniaturization of robots difficult. To explore an alternative solution, we designed and fabricated a micro soft swimming robot with both powering and controlling functions provided by remote light, which does not carry any electronic devices and batteries. In this approach, a polymer film containing azobenzene chromophore which is sensitive to ultra-violet (UV) light works as "motor", and the UV light and visible light work as "power and signal lines". Periodically flashing UV light and white light drives the robot flagellum periodically to swing to eventually push forward the robot in the glass tube filled with liquid. The gripper on robot head can be opened or closed by lights to grab and carry the load. This kind of remotely light-driven approach realizes complex driving and controlling of micro robotic structures, making it possible to design and fabricate even smaller robots. It will have great potential among applications in the micro machine and robot fields. PMID:26633758

  17. Miniaturized Swimming Soft Robot with Complex Movement Actuated and Controlled by Remote Light Signals

    Science.gov (United States)

    Huang, Chaolei; Lv, Jiu-An; Tian, Xiaojun; Wang, Yuechao; Yu, Yanlei; Liu, Jie

    2015-12-01

    Powering and communication with micro robots to enable complex functions is a long-standing challenge as the size of robots continues to shrink. Physical connection of wires or components needed for wireless communication are complex and limited by the size of electronic and energy storage devices, making miniaturization of robots difficult. To explore an alternative solution, we designed and fabricated a micro soft swimming robot with both powering and controlling functions provided by remote light, which does not carry any electronic devices and batteries. In this approach, a polymer film containing azobenzene chromophore which is sensitive to ultra-violet (UV) light works as “motor”, and the UV light and visible light work as “power and signal lines”. Periodically flashing UV light and white light drives the robot flagellum periodically to swing to eventually push forward the robot in the glass tube filled with liquid. The gripper on robot head can be opened or closed by lights to grab and carry the load. This kind of remotely light-driven approach realizes complex driving and controlling of micro robotic structures, making it possible to design and fabricate even smaller robots. It will have great potential among applications in the micro machine and robot fields.

  18. The Hrs/Stam complex acts as a positive and negative regulator of RTK signaling during Drosophila development.

    Directory of Open Access Journals (Sweden)

    Hélène Chanut-Delalande

    Full Text Available BACKGROUND: Endocytosis is a key regulatory step of diverse signalling pathways, including receptor tyrosine kinase (RTK signalling. Hrs and Stam constitute the ESCRT-0 complex that controls the initial selection of ubiquitinated proteins, which will subsequently be degraded in lysosomes. It has been well established ex vivo and during Drosophila embryogenesis that Hrs promotes EGFR down regulation. We have recently isolated the first mutations of stam in flies and shown that Stam is required for air sac morphogenesis, a larval respiratory structure whose formation critically depends on finely tuned levels of FGFR activity. This suggest that Stam, putatively within the ESCRT-0 complex, modulates FGF signalling, a possibility that has not been examined in Drosophila yet. PRINCIPAL FINDINGS: Here, we assessed the role of the Hrs/Stam complex in the regulation of signalling activity during Drosophila development. We show that stam and hrs are required for efficient FGFR signalling in the tracheal system, both during cell migration in the air sac primordium and during the formation of fine cytoplasmic extensions in terminal cells. We find that stam and hrs mutant cells display altered FGFR/Btl localisation, likely contributing to impaired signalling levels. Electron microscopy analyses indicate that endosome maturation is impaired at distinct steps by hrs and stam mutations. These somewhat unexpected results prompted us to further explore the function of stam and hrs in EGFR signalling. We show that while stam and hrs together downregulate EGFR signalling in the embryo, they are required for full activation of EGFR signalling during wing development. CONCLUSIONS/SIGNIFICANCE: Our study shows that the ESCRT-0 complex differentially regulates RTK signalling, either positively or negatively depending on tissues and developmental stages, further highlighting the importance of endocytosis in modulating signalling pathways during development.

  19. The Study of Properties of n-D Analytic Signals and Their Spectra in Complex and Hypercomplex Domains

    Directory of Open Access Journals (Sweden)

    K. M. Snopek

    2012-04-01

    Full Text Available In the paper, two various representations of a n-dimensional (n-D real signal u(x1,x2,…,xn are investigated. The first one is the n-D complex analytic signal with a single-orthant spectrum defined by Hahn in 1992 as the extension of the 1-D Gabor’s analytic signal. It is compared with two hypercomplex approaches: the known n-D Clifford analytic signal and the Cayley-Dickson analytic signal defined by the Author in 2009. The signal-domain and frequency-domain definitions of these signals are presented and compared in 2-D and 3-D. Some new relations between the spectra in 2-D and 3-D hypercomplex domains are presented. The paper is illustrated with the example of a 2-D separable Cauchy pulse.

  20. Measurement of cellular chemotaxis with ECIS/Taxis.

    Science.gov (United States)

    Pietrosimone, Kathryn M; Yin, Xiuyin; Knecht, David A; Lynes, Michael A

    2012-01-01

    Cellular movement in response to external stimuli is fundamental to many cellular processes including wound healing, inflammation and the response to infection. A common method to measure chemotaxis is the Boyden chamber assay, in which cells and chemoattractant are separated by a porous membrane. As cells migrate through the membrane toward the chemoattractant, they adhere to the underside of the membrane, or fall into the underlying media, and are subsequently stained and visually counted (1). In this method, cells are exposed to a steep and transient chemoattractant gradient, which is thought to be a poor representation of gradients found in tissues (2). Another assay system, the under-agarose chemotaxis assay, (3, 4) measures cell movement across a solid substrate in a thin aqueous film that forms under the agarose layer. The gradient that develops in the agarose is shallow and is thought to be an appropriate representation of naturally occurring gradients. Chemotaxis can be evaluated by microscopic imaging of the distance traveled. Both the Boyden chamber assay and the under-agarose assay are usually configured as endpoint assays. The automated ECIS/Taxis system combines the under-agarose approach with Electric Cell-substrate Impedance Sensing (ECIS) (5, 6). In this assay, target electrodes are located in each of 8 chambers. A large counter-electrode runs through each of the 8 chambers (Figure 2). Each chamber is filled with agarose and two small wells are the cut in the agarose on either side of the target electrode. One well is filled with the test cell population, while the other holds the sources of diffusing chemoattractant (Figure 3). Current passed through the system can be used to determine the change in resistance that occurs as cells pass over the target electrode. Cells on the target electrode increase the resistance of the system (6). In addition, rapid fluctuations in the resistance represent changes in the interactions of cells with the electrode

  1. Oxygen Sensing by Arterial Chemoreceptors Depends on Mitochondrial Complex I Signaling.

    Science.gov (United States)

    Fernández-Agüera, M Carmen; Gao, Lin; González-Rodríguez, Patricia; Pintado, C Oscar; Arias-Mayenco, Ignacio; García-Flores, Paula; García-Pergañeda, Antonio; Pascual, Alberto; Ortega-Sáenz, Patricia; López-Barneo, José

    2015-11-01

    O2 sensing is essential for mammalian homeostasis. Peripheral chemoreceptors such as the carotid body (CB) contain cells with O2-sensitive K(+) channels, which are inhibited by hypoxia to trigger fast adaptive cardiorespiratory reflexes. How variations of O2 tension (PO2) are detected and the mechanisms whereby these changes are conveyed to membrane ion channels have remained elusive. We have studied acute O2 sensing in conditional knockout mice lacking mitochondrial complex I (MCI) genes. We inactivated Ndufs2, which encodes a protein that participates in ubiquinone binding. Ndufs2-null mice lose the hyperventilatory response to hypoxia, although they respond to hypercapnia. Ndufs2-deficient CB cells have normal functions and ATP content but are insensitive to changes in PO2. Our data suggest that chemoreceptor cells have a specialized succinate-dependent metabolism that induces an MCI state during hypoxia, characterized by the production of reactive oxygen species and accumulation of reduced pyridine nucleotides, which signal neighboring K(+) channels.

  2. On chip complex signal processing devices using coupled phononic crystal slab resonators and waveguides

    Directory of Open Access Journals (Sweden)

    Saeed Mohammadi

    2011-12-01

    Full Text Available In this paper, we report the evidence for the possibility of achieving complex signal processing functionalities such as multiplexing/demultiplexing at high frequencies using phononic crystal (PnC slabs. It is shown that such functionalities can be obtained by appropriate cross-coupling of PnC resonators and waveguides. PnC waveguides and waveguide-based resonators are realized and cross-coupled through two different methods of mechanical coupling (i.e., direct coupling and side coupling. Waveguide-based PnC resonators are employed because of their high-Q, compactness, large spurious-free spectral ranges, and the possibility of better control over coupling to PnC waveguides. It is shown that by modifying the defects in the formation of the resonators, the frequency of the resonance can be tuned.

  3. A low complexity, low spur digital IF conversion circuit for high-fidelity GNSS signal playback

    Science.gov (United States)

    Su, Fei; Ying, Rendong

    2016-01-01

    A low complexity high efficiency and low spur digital intermediate frequency (IF) conversion circuit is discussed in the paper. This circuit is key element in high-fidelity GNSS signal playback instrument. We analyze the spur performance of a finite state machine (FSM) based numerically controlled oscillators (NCO), by optimization of the control algorithm, a FSM based NCO with 3 quantization stage can achieves 65dB SFDR in the range of the seventh harmonic. Compare with traditional lookup table based NCO design with the same Spurious Free Dynamic Range (SFDR) performance, the logic resource require to implemented the NCO is reduced to 1/3. The proposed design method can be extended to the IF conversion system with good SFDR in the range of higher harmonic components by increasing the quantization stage.

  4. Analysis of periplasmic sensor domains from Anaeromyxobacter dehalogenans 2CP-C: Structure of one sensor domain from a histidine kinase and another from a chemotaxis protein

    OpenAIRE

    Pokkuluri, P. Raj; Dwulit-Smith, Jeff; Duke, Norma E; Wilton, Rosemarie; Mack, Jamey C; Bearden, Jessica; Rakowski, Ella; Babnigg, Gyorgy; Szurmant, Hendrik; Joachimiak, Andrzej; Schiffer, Marianne

    2013-01-01

    Anaeromyxobacter dehalogenans is a δ-proteobacterium found in diverse soils and sediments. It is of interest in bioremediation efforts due to its dechlorination and metal-reducing capabilities. To gain an understanding on A. dehalogenans' abilities to adapt to diverse environments we analyzed its signal transduction proteins. The A. dehalogenans genome codes for a large number of sensor histidine kinases (HK) and methyl-accepting chemotaxis proteins (MCP); among these 23 HK and 11 MCP protein...

  5. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    International Nuclear Information System (INIS)

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26th, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4th, 2011 and still continuously erupted until August 28th, 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination of the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region

  6. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    Energy Technology Data Exchange (ETDEWEB)

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Kristianto, E-mail: kris@vsi.esdm.go.id [Center for Volcanology and Geological Hazard Mitigation (CVGHM), Geological Agency, Bandung, 40122 (Indonesia)

    2015-04-24

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4{sup th}, 2011 and still continuously erupted until August 28{sup th}, 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination of the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region.

  7. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    Science.gov (United States)

    Firmansyah, Rizky; Nugraha, Andri Dian; Kristianto

    2015-04-01

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26th, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4th, 2011 and still continuously erupted until August 28th, 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination of the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S - P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region.

  8. Structure of PqsD, a Pseudomonas quinolone signal biosynthetic enzyme, in complex with anthranilate.

    Science.gov (United States)

    Bera, Asim K; Atanasova, Vesna; Robinson, Howard; Eisenstein, Edward; Coleman, James P; Pesci, Everett C; Parsons, James F

    2009-09-15

    Pseudomonas quinolone signal (PQS), 2-heptyl-3-hydroxy-4-quinolone, is an intercellular alkyl quinolone signaling molecule produced by the opportunistic pathogen Pseudomonas aeruginosa. Alkyl quinolone signaling is an atypical system that, in P. aeruginosa, controls the expression of numerous virulence factors. PQS is synthesized from the tryptophan pathway intermediate, anthranilate, which is derived either from the kynurenine pathway or from an alkyl quinolone specific anthranilate synthase encoded by phnAB. Anthranilate is converted to PQS by the enzymes encoded by the pqsABCDE operon and pqsH. PqsA forms an activated anthraniloyl-CoA thioester that shuttles anthranilate to the PqsD active site where it is transferred to Cys112 of PqsD. In the only biochemically characterized reaction, a condensation then occurs between anthraniloyl-PqsD and malonyl-CoA or malonyl-ACP, a second PqsD substrate, forming 2,4-dihydroxyquinoline (DHQ). The role PqsD plays in the biosynthesis of other alkyl quinolones, such as PQS, is unclear, though it has been reported to be required for their production. No evidence exists that DHQ is a PQS precursor, however. Here we present a structural and biophysical characterization of PqsD that includes several crystal structures of the enzyme, including that of the PqsD-anthranilate covalent intermediate and the inactive Cys112Ala active site mutant in complex with anthranilate. The structure reveals that PqsD is structurally similar to the FabH and chalcone synthase families of fatty acid and polyketide synthases. The crystallographic asymmetric unit contains a PqsD dimer. The PqsD monomer is composed of two nearly identical approximately 170-residue alphabetaalphabetaalpha domains. The structures show anthranilate-liganded Cys112 is positioned deep in the protein interior at the bottom of an approximately 15 A long channel while a second anthraniloyl-CoA molecule is waiting in the cleft leading to the protein surface. Cys112, His257, and

  9. Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli.

    OpenAIRE

    Lux, R.; Jahreis, K; Bettenbrock, K.; Parkinson, J S; Lengeler, J W

    1995-01-01

    Chemotactic responses in Escherichia coli are typically mediated by transmembrane receptors that monitor chemoeffector levels with periplasmic binding domains and communicate with the flagellar motors through two cytoplasmic proteins, CheA and CheY. CheA autophosphorylates and then donates its phosphate to CheY, which in turn controls flagellar rotation. E. coli also exhibits chemotactic responses to substrates that are transported by the phosphoenolpyruvate (PEP)-dependent carbohydrate phosp...

  10. Structural Basis for Conserved Regulation and Adaptation of the Signal Recognition Particle Targeting Complex.

    Science.gov (United States)

    Wild, Klemens; Bange, Gert; Motiejunas, Domantas; Kribelbauer, Judith; Hendricks, Astrid; Segnitz, Bernd; Wade, Rebecca C; Sinning, Irmgard

    2016-07-17

    The signal recognition particle (SRP) is a ribonucleoprotein complex with a key role in targeting and insertion of membrane proteins. The two SRP GTPases, SRP54 (Ffh in bacteria) and FtsY (SRα in eukaryotes), form the core of the targeting complex (TC) regulating the SRP cycle. The architecture of the TC and its stimulation by RNA has been described for the bacterial SRP system while this information is lacking for other domains of life. Here, we present the crystal structures of the GTPase heterodimers of archaeal (Sulfolobus solfataricus), eukaryotic (Homo sapiens), and chloroplast (Arabidopsis thaliana) SRP systems. The comprehensive structural comparison combined with Brownian dynamics simulations of TC formation allows for the description of the general blueprint and of specific adaptations of the quasi-symmetric heterodimer. Our work defines conserved external nucleotide-binding sites for SRP GTPase activation by RNA. Structural analyses of the GDP-bound, post-hydrolysis states reveal a conserved, magnesium-sensitive switch within the I-box. Overall, we provide a general model for SRP cycle regulation by RNA. PMID:27241309

  11. Efficient transmission of subthreshold signals in complex networks of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Joaquin J Torres

    Full Text Available We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances--that naturally balances the network with excitatory and inhibitory synapses--and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.

  12. Increased Signal Complexity Improves the Breadth of Generalization in Auditory Perceptual Learning

    Directory of Open Access Journals (Sweden)

    David J. Brown

    2013-01-01

    Full Text Available Perceptual learning can be specific to a trained stimulus or optimally generalized to novel stimuli with the breadth of generalization being imperative for how we structure perceptual training programs. Adapting an established auditory interval discrimination paradigm to utilise complex signals, we trained human adults on a standard interval for either 2, 4, or 10 days. We then tested the standard, alternate frequency, interval, and stereo input conditions to evaluate the rapidity of specific learning and breadth of generalization over the time course. In comparison with previous research using simple stimuli, the speed of perceptual learning and breadth of generalization were more rapid and greater in magnitude, including novel generalization to an alternate temporal interval within stimulus type. We also investigated the long term maintenance of learning and found that specific and generalized learning was maintained over 3 and 6 months. We discuss these findings regarding stimulus complexity in perceptual learning and how they can inform the development of effective training protocols.

  13. Design of complex-valued variable FIR digital filters and its application to the realization of arbitrary sampling rate conversion for complex signals

    OpenAIRE

    Tsui, KM; Chan, SC; Tse, KW

    2005-01-01

    This brief studies the design of complex-valued variable digital filters (CVDFs) and their applications to the efficient arbitrary sample rate conversion for complex signals. The design of CVDFs using either the minimax or least-squares criteria is formulated as a convex optimization problem and solved using the second-order cone programming (SOCP). In addition, linear and convex quadratic inequality constraints can be readily incorporated. Design examples are given to demonstrate the effecti...

  14. ETS-1-mediated transcriptional up-regulation of CD44 is required for sphingosine-1-phosphate receptor subtype 3-stimulated chemotaxis.

    Science.gov (United States)

    Zhang, Wenliang; Zhao, Jiawei; Lee, Jen-Fu; Gartung, Allison; Jawadi, Hiba; Lambiv, Wanyu Louis; Honn, Kenneth V; Lee, Menq-Jer

    2013-11-01

    Sphingosine-1-phosphate (S1P)-regulated chemotaxis plays critical roles in various physiological and pathophysiological conditions. S1P-regulated chemotaxis is mediated by the S1P family of G-protein-coupled receptors. However, molecular details of the S1P-regulated chemotaxis are incompletely understood. Cultured human lung adenocarcinoma cell lines abundantly express S1P receptor subtype 3 (S1P3), thus providing a tractable in vitro system to characterize molecular mechanism(s) underlying the S1P3 receptor-regulated chemotactic response. S1P treatment enhances CD44 expression and induces membrane localization of CD44 polypeptides via the S1P3/Rho kinase (ROCK) signaling pathway. Knockdown of CD44 completely diminishes the S1P-stimulated chemotaxis. Promoter analysis suggests that the CD44 promoter contains binding sites of the ETS-1 (v-ets erythroblastosis virus E26 oncogene homolog 1) transcriptional factor. ChIP assay confirms that S1P treatment stimulates the binding of ETS-1 to the CD44 promoter region. Moreover, S1P induces the expression and nuclear translocation of ETS-1. Knockdown of S1P3 or inhibition of ROCK abrogates the S1P-induced ETS-1 expression. Furthermore, knockdown of ETS-1 inhibits the S1P-induced CD44 expression and cell migration. In addition, we showed that S1P3/ROCK signaling up-regulates ETS-1 via the activity of JNK. Collectively, we characterized a novel signaling axis, i.e., ROCK-JNK-ETS-1-CD44 pathway, which plays an essential role in the S1P3-regulated chemotactic response.

  15. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    Science.gov (United States)

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins. PMID:24297163

  16. Signal Delay Reconstruction Metho d Based on Dynamic Index and Complex-Co efficient Lagrange Interp olation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yang,ZHENG Zhe; WU Siliang

    2015-01-01

    This paper presents a large-range, high-precision and continuously variable delay reconstruction method for wideband and arbitrary bandlimited signal, which combines dynamic index technique with complex-coefficient Lagrange interpolation technique. The method samples time-continuous bandlimited signal and stores samples in sequence. It manages to obtain the high-precision delay parameters of every sampling period from desired delay to compute the so-called index position variable and interpolator parameters. It dynamically in-dexes and chooses a set of samples to implement piecewise complex-coefficient Lagrange interpolation for reconstruct-ing the delayed sequences. The time-continuous delay re-construction signal can be simply accomplished through digital-to-analog conversion. The mathematical model of the method and its transformed form is given, and the arithmetic of dynamic index and complex-coefficient La-grange interpolation is derived. Simulation and test results show the validity and performance of the method.

  17. In vitro analysis of PDZ-dependent CFTR macromolecular signaling complexes.

    Science.gov (United States)

    Wu, Yanning; Wang, Shuo; Li, Chunying

    2012-08-13

    has been shown to be of functional significance, suggesting that PDZ scaffold proteins may facilitate formation of CFTR macromolecular signaling complexes for specific/selective and efficient signaling in cells(16-18). Multiple biochemical assays have been developed to study CFTR-involving protein interactions, such as co-immunoprecipitation, pull-down assay, pair-wise binding assay, colorimetric pair-wise binding assay, and macromolecular complex assembly assay(16-19,28,29). Here we focus on the detailed procedures of assembling a PDZ motif-dependent CFTR-containing macromolecular complex in vitro, which is used extensively by our laboratory to study protein-protein or domain-domain interactions involving CFTR(16-19,28,29).

  18. Th22 cells control colon tumorigenesis through STAT3 and Polycomb Repression complex 2 signaling.

    Science.gov (United States)

    Sun, Danfeng; Lin, Yanwei; Hong, Jie; Chen, Haoyan; Nagarsheth, Nisha; Peng, Dongjun; Wei, Shuang; Huang, Emina; Fang, Jingyuan; Kryczek, Ilona; Zou, Weiping

    2016-08-01

    Th22 cells traffic to and retain in the colon cancer microenvironment, and target core stem cell genes and promote colon cancer stemness via STAT3 and H3K79me2 signaling pathway and contribute to colon carcinogenesis. However, whether Th22 cells affect colon cancer cell proliferation and apoptosis remains unknown. We studied the interaction between Th22 cells and colon cancer cells in the colon cancer microenvironment. Colon cancer proliferation was examined by flow cytometry analysis and H(3) thymidine incorporation. Cell cycle related genes were quantified by real-time PCR and Western blotting. We transfected colon cancer cells with lentiviral vector encoding specific gene shRNAs and used chromatin immunoprecipitation (ChIP) assay to determine the genetic signaling involved in interleukin (IL)-22-mediated colon cancer cell proliferation. We showed that Th22 cells released IL-22 and stimulated colon cancer proliferation. Mechanistically, IL-22 activated STAT3, and subsequently STAT3 bound to the promoter areas of the Polycomb Repression complex 2 (PRC2) components SUZ12 and EED, and stimulated the expression of PRC2. Consequently, the activated PRC2 catalyzed the promoters of the cell cycle check-point genes p16 and p21, and inhibited their expression through H3K27me3-mediated histone methylation, and ultimately caused colon cancer cell proliferation. Bioinformatics analysis revealed that the levels of IL-22 expression positively correlated with the levels of genes controlling cancer proliferation and cell cycling in colon cancer. In addition to controlling colon cancer stemness, Th22 cells support colon carcinogenesis via affecting colon cancer cell proliferation through a distinct histone modification. PMID:27622053

  19. Gosha-jinki-gan (a Herbal Complex Corrects Abnormal Insulin Signaling

    Directory of Open Access Journals (Sweden)

    Bolin Qin

    2004-01-01

    Full Text Available Previous studies have shown that the traditional herbal complex Gosha-jinki-gan (GJG improves diabetic neuropathy and insulin resistance. The present study was undertaken to elucidate the molecular mechanisms related with the long-term effects of GJG administration on insulin action in vivo and the early steps of insulin signaling in skeletal muscle in streptozotocin (STZ diabetes. Rats were randomized into five subgroups: (1 saline treated control, (2 GJG treated control, (3 2-unit insulin + saline treated diabetic, (4 saline + GJG treated diabetic and (5 2-unit insulin + GJG treated diabetic groups. After seven days of treatment, euglycemic clamp experiment at an insulin infusion rate of 6 mU/kg/min was performed in overnight fasted rats. Despite the 2-unit insulin treatment, the metabolic clearance rates of glucose (MCR, ml/kg/min in diabetic rats were significantly lower compared with the controls (11.4 ± 1.0 vs 44.1 ± 1.5; P < 0.001, and were significantly improved by insulin combined with GJG or GJG alone (26 ± 3.2 and 24.6 ± 2.2, P < 0.01, respectively. The increased insulin receptor (IR-β protein content in skeletal muscle of diabetic rats was not affected by insulin combined with GJG administration. However, the decreased insulin receptor substrate-1 (IRS-1 protein content was significantly improved by treatment with GJG. Additionally, the increased tyrosine phosphorylation levels of IR-β and IRS-1 were significantly inhibited in insulin combined with GJG treated diabetes. The present results suggest that the improvement of the impaired insulin sensitivity in STZ-diabetic rats by administration of GJG may be due, at least in part, to correction in the abnormal early steps of insulin signaling in skeletal muscle.

  20. Regulatory Networks and Complex Interactions between the Insulin and Angiotensin II Signalling Systems: Models and Implications for Hypertension and Diabetes

    OpenAIRE

    Çizmeci, Deniz; Arkun, Yaman

    2013-01-01

    Regulatory Networks and Complex Interactions between the Insulin and Angiotensin II Signalling Systems: Models and Implications for Hypertension and Diabetes Deniz Cizmeci, Yaman Arkun* Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey Abstract The cross-talk between insulin and angiotensin II signalling pathways plays a significant role in the co-occurrence of diabetes and hypertension. We developed a mathematical model of the system of ...

  1. Confinement dependent chemotaxis in two-photon polymerized linear migration constructs with highly definable concentration gradients

    DEFF Research Database (Denmark)

    Hjortø, Gertrud Malene; Olsen, Mark Holm; Svane, Inge Marie;

    2015-01-01

    Dendritic cell chemotaxis is known to follow chemoattractant concentration gradients through tissue of heterogeneous pore sizes, but the dependence of migration velocity on pore size and gradient steepness is not fully understood. We enabled chemotaxis studies for at least 42 hours at confinement...

  2. Inhibition of Escherichia coli chemotaxis by omega-conotoxin, a calcium ion channel blocker.

    OpenAIRE

    Tisa, L S; Olivera, B M; Adler, J

    1993-01-01

    Escherichia coli chemotaxis was inhibited by omega-conotoxin, a calcium ion channel blocker. With Tris-EDTA-permeabilized cells, nanomolar levels of omega-conotoxin inhibited chemotaxis without loss of motility. Cells treated with omega-conotoxin swam with a smooth bias, i.e., tumbling was inhibited.

  3. Exact solutions of certain nonlinear chemotaxis diffusion reaction equations

    Indian Academy of Sciences (India)

    MISHRA AJAY; KAUSHAL R S; PRASAD AWADHESH

    2016-05-01

    Using the auxiliary equation method, we obtain exact solutions of certain nonlinear chemotaxis diffusion reaction equations in the presence of a stimulant. In particular, we account for the nonlinearities arising not only from the density-dependent source terms contributed by the particles and the stimulant but also from the coupling term of the stimulant. In addition to this, the diffusion of the stimulant and the effect of long-range interactions are also accounted for in theconstructed coupled differential equations. The results obtained here could be useful in the studies of several biological systems and processes, e.g., in bacterial infection, chemotherapy, etc.

  4. The chemotaxis-like Che1 pathway has an indirect role in adhesive cell properties of Azospirillum brasilense.

    Science.gov (United States)

    Siuti, Piro; Green, Calvin; Edwards, Amanda Nicole; Doktycz, Mitchel J; Alexandre, Gladys

    2011-10-01

    The Azospirillum brasilense chemotaxis-like Che1 signal transduction pathway was recently shown to modulate changes in adhesive cell surface properties that, in turn, affect cell-to-cell aggregation and flocculation behaviors rather than flagellar-mediated chemotaxis. Attachment to surfaces and root colonization may be functions related to flocculation. Here, the conditions under which A. brasilense wild-type Sp7 and che1 mutant strains attach to abiotic and biotic surfaces were examined using in vitro attachment and biofilm assays combined with atomic force microscopy and confocal microscopy. The nitrogen source available for growth is found to be a major modulator of surface attachment by A. brasilense and could be promoted in vitro by lectins, suggesting that it depends on interaction with surface-exposed residues within the extracellular matrix of cells. However, Che1-dependent signaling is shown to contribute indirectly to surface attachment, indicating that distinct mechanisms are likely underlying flocculation and attachment to surfaces in A. brasilense.

  5. Rheb may complex with RASSF1A to coordinate Hippo and TOR signaling.

    Science.gov (United States)

    Nelson, Nicholas; Clark, Geoffrey J

    2016-06-01

    The TOR pathway is a vital component of cellular homeostasis that controls the synthesis of proteins, nucleic acids and lipids. Its core is the TOR kinase. Activation of the TOR pathway suppresses autophagy, which plays a vital but complex role in tumorigenesis. The TOR pathway is regulated by activation of the Ras-related protein Rheb, which can bind mTOR. The Hippo pathway is a major growth control module that regulates cell growth, differentiation and apoptosis. Its core consists of an MST/LATS kinase cascade that can be activated by the RASSF1A tumor suppressor. The TOR and Hippo pathways may be coordinately regulated to promote cellular homeostasis. However, the links between the pathways remain only partially understood. We now demonstrate that in addition to mTOR regulation, Rheb also impacts the Hippo pathway by forming a complex with RASSF1A. Using stable clones of two human lung tumor cell lines (NCI-H1792 and NCI-H1299) with shRNA-mediated silencing or ectopic overexpression of RASSF1A, we show that activated Rheb stimulates the Hippo pathway, but is suppressed in its ability to stimulate the TOR pathway. Moreover, by selectively labeling autophagic vacuoles we show that RASSF1A inhibits the ability of Rheb to suppress autophagy and enhance cell growth. Thus, we identify a new connection that impacts coordination of Hippo and TOR signaling. As RASSF1A expression is frequently lost in human tumors, the RASSF1A status of a tumor may impact not just its Hippo pathway status, but also its TOR pathway status.

  6. Rheb may complex with RASSF1A to coordinate Hippo and TOR signaling

    Science.gov (United States)

    Nelson, Nicholas; Clark, Geoffrey J.

    2016-01-01

    The TOR pathway is a vital component of cellular homeostasis that controls the synthesis of proteins, nucleic acids and lipids. Its core is the TOR kinase. Activation of the TOR pathway suppresses autophagy, which plays a vital but complex role in tumorigenesis. The TOR pathway is regulated by activation of the Ras-related protein Rheb, which can bind mTOR. The Hippo pathway is a major growth control module that regulates cell growth, differentiation and apoptosis. Its core consists of an MST/LATS kinase cascade that can be activated by the RASSF1A tumor suppressor. The TOR and Hippo pathways may be coordinately regulated to promote cellular homeostasis. However, the links between the pathways remain only partially understood. We now demonstrate that in addition to mTOR regulation, Rheb also impacts the Hippo pathway by forming a complex with RASSF1A. Using stable clones of two human lung tumor cell lines (NCI-H1792 and NCI-H1299) with shRNA-mediated silencing or ectopic overexpression of RASSF1A, we show that activated Rheb stimulates the Hippo pathway, but is suppressed in its ability to stimulate the TOR pathway. Moreover, by selectively labeling autophagic vacuoles we show that RASSF1A inhibits the ability of Rheb to suppress autophagy and enhance cell growth. Thus, we identify a new connection that impacts coordination of Hippo and TOR signaling. As RASSF1A expression is frequently lost in human tumors, the RASSF1A status of a tumor may impact not just its Hippo pathway status, but also its TOR pathway status. PMID:27034171

  7. Radioassay of granulocyte chemotaxis. Studies of human granulocytes and chemotactic factors. [/sup 51/Cr tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Gallin, J.I.

    1974-01-01

    The above studies demonstrate that the /sup 51/Cr radiolabel chemotactic assay is a relatively simple and objective means for studying leukocyte chemotaxis in both normal and pathological conditions. Application of this method to studies of normal human chemotaxis revealed a relatively narrow range of normal and little day-to-day variability. Analysis of this variability revealed that there is more variability among the response of different granulocytes to a constant chemotactic stimulus than among the chemotactic activity of different sera to a single cell source. Utilizing the /sup 51/Cr radioassay, the abnormal granulocyte chemotactic behavior reported in Chediak-Higashi syndrome and a patient with recurrent pyogenic infections and mucocutaneous candidiasis has been confirmed. The /sup 51/Cr chemotactic assay has also been used to assess the generation of chemotactic activity from human serum and plasma. The in vitro generation of two distinct chemotactic factors were examined; the complement product (C5a) and kallikrein, an enzyme of the kinin-generating pathway. Kinetic analysis of complement-related chemotactic factor formation, utilizing immune complexes or endotoxin to activate normal sera in the presence or absence of EGTA as well as kinetic analysis of activation of C2-deficient human serum, provided an easy means of distinguishing the classical (antibody-mediated) complement pathway from the alternate pathway. Such kinetic analysis is necessary to detect clinically important abnormalities since, after 60 min of generation time, normal chemotactic activity may be present despite complete absence or inhibition of one complement pathway. The chemotactic factor generated by either pathway of complement activation appears to be predominately attributable to C5a.

  8. Complex linear minimum mean-squared-error equalization of spatially quadrature-amplitude-modulated signals in holographic data storage

    Science.gov (United States)

    Sato, Takanori; Kanno, Kazutaka; Bunsen, Masatoshi

    2016-09-01

    We applied complex linear minimum mean-squared-error equalization to spatially quadrature-amplitude-modulated signals in holographic data storage (HDS). The equalization technique can improve dispersion in constellation outputs due to intersymbol interference. We confirm the effectiveness of the equalization technique in numerical simulations and basic optical experiments. Our numerical results have shown that intersymbol interference of a retrieved signal in a HDS system can be improved by using the equalization technique. In our experiments, a mean squared error (MSE), which indicates the deviation from an ideal signal, has been used for quantitatively evaluating the dispersion of equalized signals. Our equalization technique has been able to improve the MSE. However, symbols in the equalized signal have remained inseparable. To further improve the MSE and make the symbols separable, reducing errors in repeated measurements is our future task.

  9. Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case

    CERN Document Server

    Kiselev, Alexander

    2012-01-01

    Many phenomena in biology involve both reactions and chemotaxis. These processes can clearly influence each other, and chemotaxis can play an important role in sustaining and speeding up the reaction. In continuation of our earlier work, we consider a model with a single density function involving diffusion, advection, chemotaxis, and absorbing reaction. The model is motivated, in particular, by the studies of coral broadcast spawning, where experimental observations of the efficiency of fertilization rates significantly exceed the data obtained from numerical models that do not take chemotaxis (attraction of sperm gametes by a chemical secreted by egg gametes) into account. We consider the case of the weakly coupled quadratic reaction term, which is the most natural from the biological point of view and was left open. The result is that similarly to higher power coupling, the chemotaxis plays a crucial role in ensuring efficiency of reaction. However, mathematically, the picture is quite different in the qua...

  10. A predictive computational model of the kinetic mechanism of stimulus-induced transducer methylation and feedback regulation through CheY in archaeal phototaxis and chemotaxis

    Directory of Open Access Journals (Sweden)

    Oesterhelt Dieter

    2010-03-01

    Full Text Available Abstract Background Photo- and chemotaxis of the archaeon Halobacterium salinarum is based on the control of flagellar motor switching through stimulus-specific methyl-accepting transducer proteins that relay the sensory input signal to a two-component system. Certain members of the transducer family function as receptor proteins by directly sensing specific chemical or physical stimuli. Others interact with specific receptor proteins like the phototaxis photoreceptors sensory rhodopsin I and II, or require specific binding proteins as for example some chemotaxis transducers. Receptor activation by light or a change in receptor occupancy by chemical stimuli results in reversible methylation of glutamate residues of the transducer proteins. Both, methylation and demethylation reactions are involved in sensory adaptation and are modulated by the response regulator CheY. Results By mathematical modeling we infer the kinetic mechanisms of stimulus-induced transducer methylation and adaptation. The model (deterministic and in the form of ordinary differential equations correctly predicts experimentally observed transducer demethylation (as detected by released methanol in response to attractant and repellent stimuli of wildtype cells, a cheY deletion mutant, and a mutant in which the stimulated transducer species is methylation-deficient. Conclusions We provide a kinetic model for signal processing in photo- and chemotaxis in the archaeon H. salinarum suggesting an essential role of receptor cooperativity, antagonistic reversible methylation, and a CheY-dependent feedback on transducer demethylation.

  11. Correction of complex nonlinear signal response from a pixel array detector

    DEFF Research Database (Denmark)

    Brandt van Driel, Tim; Herrmann, Sven; Carini, Gabriella;

    2015-01-01

    requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals....... The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics....

  12. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria.

    Science.gov (United States)

    Smriga, Steven; Fernandez, Vicente I; Mitchell, James G; Stocker, Roman

    2016-02-01

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These "phycospheres" may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean.

  13. Simulation of Paramecium Chemotaxis Exposed to Calcium Gradients.

    Science.gov (United States)

    Sarvestani, Ali N; Shamloo, Amir; Ahmadian, Mohammad Taghi

    2016-06-01

    Paramecium or other ciliates have the potential to be utilized for minimally invasive surgery systems, making internal body organs accessible. Paramecium shows interesting responses to changes in the concentration of specific ions such as K(+), Mg(2+), and Ca(2+) in the ambient fluid. Some specific responses are observed as, changes in beat pattern of cilia and swimming toward or apart from the ion source. Therefore developing a model for chemotactic motility of small organisms is necessary in order to control the directional movements of these microorganisms before testing them. In this article, we have developed a numerical model, investigating the effects of Ca(2+) on swimming trajectory of Paramecium. Results for Ca(2+)-dependent chemotactic motility show that calcium gradients are efficient actuators for controlling the Paramecium swimming trajectory. After applying a very low Ca(2+) gradient, a directional chemotaxis of swimming Paramecium is observable in this model. As a result, chemotaxis is shown to be an efficient method for controlling the propulsion of these small organisms. PMID:26983824

  14. Components of Intraflagellar Transport Complex A Function Independently of the Cilium to Regulate Canonical Wnt Signaling in Drosophila.

    Science.gov (United States)

    Balmer, Sophie; Dussert, Aurore; Collu, Giovanna M; Benitez, Elvira; Iomini, Carlo; Mlodzik, Marek

    2015-09-28

    The development of multicellular organisms requires the precisely coordinated regulation of an evolutionarily conserved group of signaling pathways. Temporal and spatial control of these signaling cascades is achieved through networks of regulatory proteins, segregation of pathway components in specific subcellular compartments, or both. In vertebrates, dysregulation of primary cilia function has been strongly linked to developmental signaling defects, yet it remains unclear whether cilia sequester pathway components to regulate their activation or cilia-associated proteins directly modulate developmental signaling events. To elucidate this question, we conducted an RNAi-based screen in Drosophila non-ciliated cells to test for cilium-independent loss-of-function phenotypes of ciliary proteins in developmental signaling pathways. Our results show no effect on Hedgehog signaling. In contrast, our screen identified several cilia-associated proteins as functioning in canonical Wnt signaling. Further characterization of specific components of Intraflagellar Transport complex A uncovered a cilia-independent function in potentiating Wnt signals by promoting β-catenin/Armadillo activity. PMID:26364750

  15. Comment on 'Interpretation of the Lempel-Ziv Complexity Measure in the context of Biomedical Signal Analysis'

    CERN Document Server

    Balasubramanian, Karthi

    2013-01-01

    In this Communication, we express our reservations on some aspects of the interpretation of the Lempel-Ziv Complexity measure (LZ) by Mateo et al. in "Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis," IEEE Trans. Biomed. Eng., vol. 53, no. 11, pp. 2282-2288, Nov. 2006. In particular, we comment on the dependence of the LZ complexity measure on number of harmonics, frequency content and amplitude modulation. We disagree with the following statements made by Mateo et al. 1. "LZ is not sensitive to the number of harmonics in periodic signals." 2. "LZ increases as the frequency of a sinusoid increases." 3. "Amplitude modulation of a signal doesnot result in an increase in LZ." We show the dependence of LZ complexity measure on harmonics and amplitude modulation by using a modified version of the synthetic signal that has been used in the original paper. Also, the second statement is a generic statement which is not entirely true. This is true only in the low freque...

  16. The effect of signal-temporal uncertainty on detection in bursts of noise or a random-frequency complex

    Science.gov (United States)

    Bonino, Angela Yarnell; Leibold, Lori J.

    2008-01-01

    This study examined the effect of signal-temporal uncertainty on detection of a 120-ms, 1-kHz tone in the presence of a continuous sequence of 120-ms bursts of either a broadband noise or a random-frequency, two-tone complex. Using the method of constant stimuli, signal-temporal uncertainty was defined as the difference in threshold across temporally uncertain and temporally defined listening conditions. Results indicted an average effect of signal-temporal uncertainty of 2 dB for the noise masker compared to 9 dB for the random-frequency, two-tone masker. These results suggest that signal-temporal uncertainty may be more detrimental for conditions in which informational masking dominates performance. PMID:19045685

  17. Chemical biology tools for regulating RAS signaling complexity in space and time.

    Science.gov (United States)

    van Hattum, Hilde; Waldmann, Herbert

    2014-09-18

    Rat sarcoma (RAS) family members are small GTPases that control a number of signaling pathways important for normal cellular proliferation. Therefore, it is no surprise that a significant portion of human tumors express constitutively active mutated RAS proteins, which leads to deregulation of RAS signaling pathways, resulting in pathological perturbations of cell growth and death. Although the molecular details of RAS signaling cascades are well understood, there is still a largely unmet need for small molecule probes to control RAS signaling in space and time. More broadly, given the prevalence of mutated RAS in cancer, the need to translate the insights obtained from using small molecule probes into clinically useful drugs is also significant. In this review, we introduce RAS proteins and the signaling pathways they are involved in, and discuss some of the innovative chemical biology approaches to regulate RAS signaling, which include the exploitation of newly identified binding pockets, covalent inhibitors for mutated RAS, and RAS localization impairment.

  18. From PII signaling to metabolite sensing: a novel 2-oxoglutarate sensor that details PII-NAGK complex formation.

    Directory of Open Access Journals (Sweden)

    Jan Lüddecke

    Full Text Available The widespread PII signal transduction proteins are known for integrating signals of nitrogen and energy supply and regulating cellular behavior by interacting with a multitude of target proteins. The PII protein of the cyanobacterium Synechococcus elongatus forms complexes with the controlling enzyme of arginine synthesis, N-acetyl-L-glutamate kinase (NAGK in a 2-oxoglutarate- and ATP/ADP-dependent manner. Fusing NAGK and PII proteins to either CFP or YFP yielded a FRET sensor that specifically responded to 2-oxoglutarate. The impact of the fluorescent tags on PII and NAGK was evaluated by enzyme assays, surface plasmon resonance spectroscopy and isothermal calorimetric experiments. The developed FRET sensor provides real-time data on PII - NAGK interaction and its modulation by the effector molecules ATP, ADP and 2-oxoglutarate in vitro. Additionally to its utility to monitor 2-oxoglutarate levels, the FRET assay provided novel insights into PII - NAGK complex formation: (i It revealed the formation of an encounter-complex between PII and NAGK, which holds the proteins in proximity even in the presence of inhibitors of complex formation; (ii It revealed that the PII T-loop residue Ser49 is neither essential for complex formation with NAGK nor for activation of the enzyme but necessary to form a stable complex and efficiently relieve NAGK from arginine inhibition; (iii It showed that arginine stabilizes the NAGK hexamer and stimulates PII - NAGK interaction.

  19. Netrin-1 Reduces Monocyte and Macrophage Chemotaxis towards the Complement Component C5a.

    Science.gov (United States)

    Taylor, Lewis; Brodermann, Maximillian Hugo; McCaffary, David; Iqbal, Asif Jilani; Greaves, David R

    2016-01-01

    Netrin-1, acting at its cognate receptor UNC5b, has been previously demonstrated to inhibit CC chemokine-induced immune cell migration. In line with this, we found that netrin-1 was able to inhibit CCL2-induced migration of bone marrow derived macrophages (BMDMs). However, whether netrin-1 is capable of inhibiting chemotaxis to a broader range of chemoattractants remains largely unexplored. As our initial experiments demonstrated that RAW264.7 and BMDMs expressed high levels of C5a receptor 1 (C5aR1) on their surface, we aimed to determine the effect of netrin-1 exposure on monocyte/macrophage cell migration induced by C5a, a complement peptide that plays a major role in multiple inflammatory pathologies. Treatment of RAW264.7 macrophages, BMDMs and human monocytes with netrin-1 inhibited their chemotaxis towards C5a, as measured using two different real-time methods. This inhibitory effect was found to be dependent on netrin-1 receptor signalling, as an UNC5b blocking antibody was able to reverse netrin-1 inhibition of C5a induced BMDM migration. Treatment of BMDMs with netrin-1 had no effect on C5aR1 proximal signalling events, as surface C5aR1 expression, internalisation and intracellular Ca2+ release following C5aR1 ligation remained unaffected after netrin-1 exposure. We next examined receptor distal events that occur following C5aR1 activation, but found that netrin-1 was unable to inhibit C5a induced phosphorylation of ERK1/2, Akt and p38, pathways important for cellular migration. Furthermore, netrin-1 treatment had no effect on BMDM cytoskeletal rearrangement following C5a stimulation as determined by microscopy and real-time electrical impedance sensing. Taken together these data highlight that netrin-1 inhibits monocyte and macrophage cell migration, but that the mechanism behind this effect remains unresolved. Nevertheless, netrin-1 and its cognate receptors warrant further investigation as they may represent a potential avenue for the development of

  20. The exon junction complex regulates the splicing of cell polarity gene dlg1 to control Wingless signaling in development

    Science.gov (United States)

    Liu, Min; Li, Yajuan; Liu, Aiguo; Li, Ruifeng; Su, Ying; Du, Juan; Li, Cheng; Zhu, Alan Jian

    2016-01-01

    Wingless (Wg)/Wnt signaling is conserved in all metazoan animals and plays critical roles in development. The Wg/Wnt morphogen reception is essential for signal activation, whose activity is mediated through the receptor complex and a scaffold protein Dishevelled (Dsh). We report here that the exon junction complex (EJC) activity is indispensable for Wg signaling by maintaining an appropriate level of Dsh protein for Wg ligand reception in Drosophila. Transcriptome analyses in Drosophila wing imaginal discs indicate that the EJC controls the splicing of the cell polarity gene discs large 1 (dlg1), whose coding protein directly interacts with Dsh. Genetic and biochemical experiments demonstrate that Dlg1 protein acts independently from its role in cell polarity to protect Dsh protein from lysosomal degradation. More importantly, human orthologous Dlg protein is sufficient to promote Dvl protein stabilization and Wnt signaling activity, thus revealing a conserved regulatory mechanism of Wg/Wnt signaling by Dlg and EJC. DOI: http://dx.doi.org/10.7554/eLife.17200.001 PMID:27536874

  1. RpoS and quorum sensing control expression and polar localization of Vibrio cholerae chemotaxis cluster III proteins in vitro and in vivo.

    Science.gov (United States)

    Ringgaard, Simon; Hubbard, Troy; Mandlik, Anjali; Davis, Brigid M; Waldor, Matthew K

    2015-08-01

    The diarrheal pathogen Vibrio cholerae contains three gene clusters that encode chemotaxis-related proteins, but only cluster II appears to be required for chemotaxis. Here, we present the first characterization of V. cholerae's 'cluster III' chemotaxis system. We found that cluster III proteins assemble into foci at bacterial poles, like those formed by cluster II proteins, but the two systems assemble independently and do not colocalize. Cluster III proteins are expressed in vitro during stationary phase and in conjunction with growth arrest linked to carbon starvation. This expression, as well as expression in vivo in suckling rabbits, is dependent upon RpoS. V. cholerae's CAI-1 quorum sensing (QS) system is also required for cluster III expression in stationary phase and modulates its expression in vivo, but is not required for cluster III expression in response to carbon starvation. Surprisingly, even though the CAI-1 and AI-2 QS systems are thought to feed into the same signaling pathway, the AI-2 system inhibited cluster III gene expression, revealing that the outputs of the two QS systems are not always the same. The distinctions between genetic determinants of cluster III expression in vitro and in vivo highlight the distinctive nature of the in vivo environment.

  2. Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling.

    Science.gov (United States)

    Xie, Keqiang; Masuho, Ikuo; Shih, Chien-Cheng; Cao, Yan; Sasaki, Keita; Lai, Chun Wan J; Han, Pyung-Lim; Ueda, Hiroshi; Dessauer, Carmen W; Ehrlich, Michelle E; Xu, Baoji; Willardson, Barry M; Martemyanov, Kirill A

    2015-01-01

    In the striatum, signaling via G protein-coupled neurotransmitter receptors is essential for motor control. Critical to this process is the effector enzyme adenylyl cyclase type 5 (AC5) that produces second messenger cAMP upon receptor-mediated activation by G protein Golf. However, the molecular organization of the Golf-AC5 signaling axis is not well understood. In this study, we report that in the striatum AC5 exists in a stable pre-coupled complex with subunits of Golf heterotrimer. We use genetic mouse models with disruption in individual components of the complex to reveal hierarchical order of interactions required for AC5-Golf stability. We further identify that the assembly of AC5-Golf complex is mediated by PhLP1 chaperone that plays central role in neurotransmitter receptor coupling to cAMP production motor learning. These findings provide evidence for the existence of stable G protein-effector signaling complexes and identify a new component essential for their assembly. PMID:26613416

  3. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Ian W.H., E-mail: Ian.Jarvis@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm (Sweden); Bergvall, Christoffer, E-mail: Christoffer.Bergvall@anchem.su.se [Department of Analytical Chemistry, Stockholm University, Svante Arrhenius väg 16, SE-106 91 Stockholm (Sweden); Bottai, Matteo, E-mail: Matteo.Bottai@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm (Sweden); Westerholm, Roger, E-mail: Roger.Westerholm@anchem.su.se [Department of Analytical Chemistry, Stockholm University, Svante Arrhenius väg 16, SE-106 91 Stockholm (Sweden); Stenius, Ulla, E-mail: Ulla.Stenius@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm (Sweden); Dreij, Kristian, E-mail: Kristian.Dreij@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm (Sweden)

    2013-02-01

    Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNA damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. -- Highlights: ► Benzo[a]pyrene (BP), dibenzo[a,l]pyrene (DBP) and air PM PAH extracts were compared. ► Binary mixture of BP and DBP induced a more than additive DNA damage response. ► Air PM PAH extracts were more potent than toxicity equivalency factor estimates. ► Larger PAHs (> 4 rings) contribute more to the genotoxicity of PAHs in air PM. ► Chk1 is a sensitive marker for persistent activation of DNA damage signaling from PAH mixtures.

  4. Chemokines in the corpus luteum: Implications of leukocyte chemotaxis

    Directory of Open Access Journals (Sweden)

    Liptak Amy R

    2003-11-01

    Full Text Available Abstract Chemokines are small molecular weight peptides responsible for adhesion, activation, and recruitment of leukocytes into tissues. Leukocytes are thought to influence follicular atresia, ovulation, and luteal function. Many studies in recent years have focused attention on the characterization of leukocyte populations within the ovary, the importance of leukocyte-ovarian cell interactions, and more recently, the mechanisms of ovarian leukocyte recruitment. Information about the role of chemokines and leukocyte trafficking (chemotaxis during ovarian function is important to understanding paracrine-autocrine relationships shared between reproductive and immune systems. Recent advances regarding chemokine expression and leukocyte accumulation within the ovulatory follicle and the corpus luteum are the subject of this mini-review.

  5. Boundedness in a three-dimensional chemotaxis-haptotaxis model

    Science.gov (United States)

    Cao, Xinru

    2016-03-01

    This paper studies the chemotaxis-haptotaxis system left\\{begin{array}{lll} u_t = Δ u - χnabla \\cdot (unabla v) - ξnabla \\cdot (unabla w) + μ u(1 - u - w), &quad(x, t)in Ω × (0, T),\\ v_t = Δ v - v + u, &quad(x, t) in Ω × (0, T),\\ w_t= - vw, &quad(x, t)in Ω × (0,T) right.quadquad(star) under Neumann boundary conditions. Here, {Ω subset {{R}}^3} is a bounded domain with smooth boundary and the parameters {ξ,χ,μ > 0}. We prove that for nonnegative and suitably smooth initial data {(u_0, v_0, w_0)}, if {χ/μ} is sufficiently small, ({star}) possesses a global classical solution, which is bounded in {Ω × (0, infty)}. We underline that the result fully parallels the corresponding parabolic-elliptic-ODE system.

  6. Correlations between the signal complexity of cerebral and cardiac electrical activity: a multiscale entropy analysis.

    Science.gov (United States)

    Lin, Pei-Feng; Lo, Men-Tzung; Tsao, Jenho; Chang, Yi-Chung; Lin, Chen; Ho, Yi-Lwun

    2014-01-01

    The heart begins to beat before the brain is formed. Whether conventional hierarchical central commands sent by the brain to the heart alone explain all the interplay between these two organs should be reconsidered. Here, we demonstrate correlations between the signal complexity of brain and cardiac activity. Eighty-seven geriatric outpatients with healthy hearts and varied cognitive abilities each provided a 24-hour electrocardiography (ECG) and a 19-channel eye-closed routine electroencephalography (EEG). Multiscale entropy (MSE) analysis was applied to three epochs (resting-awake state, photic stimulation of fast frequencies (fast-PS), and photic stimulation of slow frequencies (slow-PS)) of EEG in the 1-58 Hz frequency range, and three RR interval (RRI) time series (awake-state, sleep and that concomitant with the EEG) for each subject. The low-to-high frequency power (LF/HF) ratio of RRI was calculated to represent sympatho-vagal balance. With statistics after Bonferroni corrections, we found that: (a) the summed MSE value on coarse scales of the awake RRI (scales 11-20, RRI-MSE-coarse) were inversely correlated with the summed MSE value on coarse scales of the resting-awake EEG (scales 6-20, EEG-MSE-coarse) at Fp2, C4, T6 and T4; (b) the awake RRI-MSE-coarse was inversely correlated with the fast-PS EEG-MSE-coarse at O1, O2 and C4; (c) the sleep RRI-MSE-coarse was inversely correlated with the slow-PS EEG-MSE-coarse at Fp2; (d) the RRI-MSE-coarse and LF/HF ratio of the awake RRI were correlated positively to each other; (e) the EEG-MSE-coarse at F8 was proportional to the cognitive test score; (f) the results conform to the cholinergic hypothesis which states that cognitive impairment causes reduction in vagal cardiac modulation; (g) fast-PS significantly lowered the EEG-MSE-coarse globally. Whether these heart-brain correlations could be fully explained by the central autonomic network is unknown and needs further exploration. PMID:24498375

  7. Correlations between the signal complexity of cerebral and cardiac electrical activity: a multiscale entropy analysis.

    Directory of Open Access Journals (Sweden)

    Pei-Feng Lin

    Full Text Available The heart begins to beat before the brain is formed. Whether conventional hierarchical central commands sent by the brain to the heart alone explain all the interplay between these two organs should be reconsidered. Here, we demonstrate correlations between the signal complexity of brain and cardiac activity. Eighty-seven geriatric outpatients with healthy hearts and varied cognitive abilities each provided a 24-hour electrocardiography (ECG and a 19-channel eye-closed routine electroencephalography (EEG. Multiscale entropy (MSE analysis was applied to three epochs (resting-awake state, photic stimulation of fast frequencies (fast-PS, and photic stimulation of slow frequencies (slow-PS of EEG in the 1-58 Hz frequency range, and three RR interval (RRI time series (awake-state, sleep and that concomitant with the EEG for each subject. The low-to-high frequency power (LF/HF ratio of RRI was calculated to represent sympatho-vagal balance. With statistics after Bonferroni corrections, we found that: (a the summed MSE value on coarse scales of the awake RRI (scales 11-20, RRI-MSE-coarse were inversely correlated with the summed MSE value on coarse scales of the resting-awake EEG (scales 6-20, EEG-MSE-coarse at Fp2, C4, T6 and T4; (b the awake RRI-MSE-coarse was inversely correlated with the fast-PS EEG-MSE-coarse at O1, O2 and C4; (c the sleep RRI-MSE-coarse was inversely correlated with the slow-PS EEG-MSE-coarse at Fp2; (d the RRI-MSE-coarse and LF/HF ratio of the awake RRI were correlated positively to each other; (e the EEG-MSE-coarse at F8 was proportional to the cognitive test score; (f the results conform to the cholinergic hypothesis which states that cognitive impairment causes reduction in vagal cardiac modulation; (g fast-PS significantly lowered the EEG-MSE-coarse globally. Whether these heart-brain correlations could be fully explained by the central autonomic network is unknown and needs further exploration.

  8. Negative chemotaxis does not control quail neural crest cell dispersion.

    Science.gov (United States)

    Erickson, C A; Olivier, K R

    1983-04-01

    Negative chemotaxis has been proposed to direct dispersion of amphibian neural crest cells away from the neural tube (V. C. Twitty, 1949, Growth 13(Suppl. 9), 133-161). We have reexamined this hypothesis using quail neural crest and do not find evidence for it. When pigmented or freshly isolated neural crest cells are covered by glass shards to prevent diffusion of a "putative" chemotactic agent away from the cells and into the medium, we find a decrease in density of cells beneath the coverslip as did Twitty and Niu (1948, J. Exp. Zool. 108, 405-437). Unlike those investigators, however, we find the covered cells move slower than uncovered cells and that the decrease in density can be attributed to cessation of cell division and increased cell death in older cultures, rather than directed migration away from each other. In cell systems where negative chemotaxis has been demonstrated, a "no man's land" forms between two confronted explants (Oldfield, 1963, Exp. Cell Res. 30, 125-138). No such cell-free space forms between confronted neural crest explants, even if the explants are closely covered to prevent diffusion of the negative chemotactic material. If crest cell aggregates are drawn into capillary tubes to allow accumulation of the putative material, the cells disperse farther, the wider the capillary tube bore. This is contrary to what would be expected if dispersion depended on accumulation of this material. Also, no difference in dispersion is noted between cells in the center of the tubes versus cells near the mouth of the tubes where the tube medium is freely exchanging with external fresh medium. Alternative hypotheses for directionality of crest migration in vivo are discussed. PMID:6832483

  9. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    Science.gov (United States)

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  10. Investigating complex patterns of blocked intestinal artery blood pressure signals by empirical mode decomposition and linguistic analysis

    Science.gov (United States)

    Yeh, J.-R.; Lin, T.-Y.; Shieh, J.-S.; Chen, Y.; Huang, N. E.; Wu, Z.; Peng, C.-K.

    2008-02-01

    In this investigation, surgical operations of blocked intestinal artery have been conducted on pigs to simulate the condition of acute mesenteric arterial occlusion. The empirical mode decomposition method and the algorithm of linguistic analysis were applied to verify the blood pressure signals in simulated situation. We assumed that there was some information hidden in the high-frequency part of the blood pressure signal when an intestinal artery is blocked. The empirical mode decomposition method (EMD) has been applied to decompose the intrinsic mode functions (IMF) from a complex time series. But, the end effects and phenomenon of intermittence damage the consistence of each IMF. Thus, we proposed the complementary ensemble empirical mode decomposition method (CEEMD) to solve the problems of end effects and the phenomenon of intermittence. The main wave of blood pressure signals can be reconstructed by the main components, identified by Monte Carlo verification, and removed from the original signal to derive a riding wave. Furthermore, the concept of linguistic analysis was applied to design the blocking index to verify the pattern of riding wave of blood pressure using the measurements of dissimilarity. Blocking index works well to identify the situation in which the sampled time series of blood pressure signal was recorded. Here, these two totally different algorithms are successfully integrated and the existence of the existence of information hidden in high-frequency part of blood pressure signal has been proven.

  11. Maneuverability and chemotaxis of Caenorhabditis elegans in three-dimensional environments

    Science.gov (United States)

    Blawzdziewicz, Jerzy; Bilbao, Alejandro; Patel, Amar; Vanapalli, Siva

    2015-11-01

    Locomotion of the nematode C. elegans in water and complex fluids has recently been investigated to gain insight into neuromuscular control of locomotion and to shed light on nematode evolutionary adaptation to environments with varying mechanical properties. Previous studies focused mainly on locomotion efficiency and on adaptation of the nematode gait to the surrounding medium. Much less attention has been devoted to nematode maneuverability, in spite of its crucial role in the survival of the animal. Recently we have provided a quantitative analysis of turning maneuvers of crawling and swimming nematodes on flat surfaces and in 2D fluid layers. Based on this work, we follow with the first full 3D description of how C. elegans moves in complex 3D environments. We show that by superposing body twist and 2D undulations, a burrowing or swimming nematode can rotate the undulation plane and change the direction of motion within that plane by varying undulation-wave parameters. A combination of these corkscrew maneuvers and 2D turns allows the nematode to explore 3D space. We conclude by analyzing 3D chemotaxis of nematodes burrowing in gel and swimming in water, which demonstrates an important application of our maneuverability model. This work was supported by NSF grant CBET-1059745.

  12. Site-specific and synergistic stimulation of methylation on the bacterial chemotaxis receptor Tsr by serine and CheW

    Directory of Open Access Journals (Sweden)

    Weis Robert M

    2005-03-01

    Full Text Available Abstract Background Specific glutamates in the methyl-accepting chemotaxis proteins (MCPs of Escherichia coli are modified during sensory adaptation. Attractants that bind to MCPs are known to increase the rate of receptor modification, as with serine and the serine receptor (Tsr, which contributes to an increase in the steady-state (adapted methylation level. However, MCPs form ternary complexes with two cytoplasmic signaling proteins, the kinase (CheA and an adaptor protein (CheW, but their influences on receptor methylation are unknown. Here, the influence of CheW on the rate of Tsr methylation has been studied to identify contributions to the process of adaptation. Results Methyl group incorporation was measured in a series of membrane samples in which the Tsr molecules were engineered to have one available methyl-accepting glutamate residue (297, 304, 311 or 493. The relative rates at these sites (0.14, 0.05, 0.05 and 1, respectively differed from those found previously for the aspartate receptor (Tar, which was in part due to sequence differences between Tar and Tsr near site four. The addition of CheW generated unexpectedly large and site-specific rate increases, equal to or larger than the increases produced by serine. The increases produced by serine and CheW (added separately were the largest at site one, ~3 and 6-fold, respectively, and the least at site four, no change and ~2-fold, respectively. The rate increases were even larger when serine and CheW were added together, larger than the sums of the increases produced by serine and CheW added separately (except site four. This resulted in substantially larger serine-stimulated increases when CheW was present. Also, CheW enhanced methylation rates when either two or all four sites were available. Conclusion The increase in the rate of receptor methylation upon CheW binding contributes significantly to the ligand specificity and kinetics of sensory adaptation. The synergistic effect of

  13. Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization

    Science.gov (United States)

    Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang

    2015-08-01

    The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress.

  14. Effect of harmonicity on the detection of a signal in a complex masker and on spatial release from masking.

    Directory of Open Access Journals (Sweden)

    Astrid Klinge

    Full Text Available The amount of masking of sounds from one source (signals by sounds from a competing source (maskers heavily depends on the sound characteristics of the masker and the signal and on their relative spatial location. Numerous studies investigated the ability to detect a signal in a speech or a noise masker or the effect of spatial separation of signal and masker on the amount of masking, but there is a lack of studies investigating the combined effects of many cues on the masking as is typical for natural listening situations. The current study using free-field listening systematically evaluates the combined effects of harmonicity and inharmonicity cues in multi-tone maskers and cues resulting from spatial separation of target signal and masker on the detection of a pure tone in a multi-tone or a noise masker. A linear binaural processing model was implemented to predict the masked thresholds in order to estimate whether the observed thresholds can be accounted for by energetic masking in the auditory periphery or whether other effects are involved. Thresholds were determined for combinations of two target frequencies (1 and 8 kHz, two spatial configurations (masker and target either co-located or spatially separated by 90 degrees azimuth, and five different masker types (four complex multi-tone stimuli, one noise masker. A spatial separation of target and masker resulted in a release from masking for all masker types. The amount of masking significantly depended on the masker type and frequency range. The various harmonic and inharmonic relations between target and masker or between components of the masker resulted in a complex pattern of increased or decreased masked thresholds in comparison to the predicted energetic masking. The results indicate that harmonicity cues affect the detectability of a tonal target in a complex masker.

  15. Complex time dependence of the EPR signal of irradiated L-α-alanine

    International Nuclear Information System (INIS)

    Measurements of the EPR signal amplitude of γ-irradiated L-α-alanine with use of an adjacent reference sample have revealed variations in the signal intensity within hours and days after irradiation. The character of the time dependence of the amplitude varies with dose and the amplitude changes reach 1-1.5%. This observation favors the hypothesis that irradiated alanine contains several paramagnetic centers. Usefulness of adjacent reference samples in alanine dosimetry is also demonstrated. (Author)

  16. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    OpenAIRE

    Nicola Bernabò; Barbara Barboni; Mauro Maccarrone

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to ma...

  17. Numerical study of plume patterns in the chemotaxis-diffusion-convection coupling system

    CERN Document Server

    Deleuze, Yannick; Thiriet, Marc; Sheu, Tony W H

    2015-01-01

    A chemotaxis-diffusion-convection coupling system for describing a form of buoyant convection in which the fluid develops convection cells and plume patterns will be investigated numerically in this study. Based on the two-dimensional convective chemotaxis-fluid model proposed in the literature, we developed an upwind finite element method to investigate the pattern formation and the hydrodynamical stability of the system. The numerical simulations illustrate different predicted physical regimes in the system. In the convective regime, the predicted plumes resemble B\\'enard instabilities. Our numerical results show how structured layers of bacteria are formed before bacterium rich plumes fall in the fluid. The plumes have a well defined spectrum of wavelengths and have an exponential growth rate, yet their position can only be predicted in very simple examples. In the chemotactic and diffusive regimes, the effects of chemotaxis are investigated. Our results indicate that the chemotaxis can stabilize the overa...

  18. Qualitative analysis of stationary Keller-Segel chemotaxis models with logistic growth

    Science.gov (United States)

    Wang, Qi; Yan, Jingda; Gai, Chunyi

    2016-06-01

    We study the stationary Keller-Segel chemotaxis models with logistic cellular growth over a one-dimensional region subject to the Neumann boundary condition. We show that nonconstant solutions emerge in the sense of Turing's instability as the chemotaxis rate {χ} surpasses a threshold number. By taking the chemotaxis rate as the bifurcation parameter, we carry out bifurcation analysis on the system to obtain the explicit formulas of bifurcation values and small amplitude nonconstant positive solutions. Moreover, we show that solutions stay strictly positive in the continuum of each branch. The stabilities of these steady-state solutions are well studied when the creation and degradation rate of the chemical is assumed to be a linear function. Finally, we investigate the asymptotic behaviors of the monotone steady states. We construct solutions with interesting patterns such as a boundary spike when the chemotaxis rate is large enough and/or the cell motility is small.

  19. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    Science.gov (United States)

    Bernabò, Nicola; Barboni, Barbara; Maccarrone, Mauro

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to manage the information with a computational modeling-based approach. In particular, the use of biological networks has allowed the making of huge progress in this field. Here we discuss two possible application of the use of biological networks to explore cell signaling: the study of the architecture of signaling systems that cooperate in determining the acquisition of a complex cellular function (as it is the case of the process of activation of spermatozoa) and the organization of a single specific signaling systems expressed by different cells in different tissues (i.e. the endocannabinoid system). In both the cases we have found that the networks follow a scale free and small world topology, likely due to the evolutionary advantage of robustness against random damages, fastness and specific of information processing, and easy navigability. PMID:25379139

  20. Bivalent binding drives the formation of the Grb2-Gab1 signaling complex in a noncooperative manner.

    Science.gov (United States)

    McDonald, Caleb B; Bhat, Vikas; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Farooq, Amjad

    2012-06-01

    Although the growth factor receptor binder 2 (Grb2)-Grb2-associated binder (Gab)1 macromolecular complex mediates a multitude of cellular signaling cascades, the molecular basis of its assembly has hitherto remained largely elusive. Herein, using an array of biophysical techniques, we show that, whereas Grb2 exists in a monomer-dimer equilibrium, the proline-rich (PR) domain of Gab1 is a monomer in solution. Of particular interest is the observation that although the PR domain appears to be structurally disordered, it nonetheless adopts a more or less compact conformation reminiscent of natively folded globular proteins. Importantly, the structurally flexible conformation of the PR domain appears to facilitate the binding of Gab1 to Grb2 with a 1:2 stoichiometry. More specifically, the formation of the Grb2-Gab1 signaling complex is driven via a bivalent interaction through the binding of the C-terminal homology 3 (cSH3) domain within each monomer of Grb2 homodimer to two distinct RXXK motifs, herein designated G1 and G2, located within the PR domain of Gab1. Strikingly, in spite of the key role of bivalency in driving this macromolecular assembly, the cSH3 domains bind to the G1 and G2 motifs in an independent manner with zero cooperativity. Taken together, our findings shed new light on the physicochemical forces driving the assembly of a key macromolecular signaling complex that is relevant to cellular health and disease. PMID:22536782

  1. Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals

    OpenAIRE

    de Lacy Costello, Ben P.J.; Adamatzky, Andrew I.

    2013-01-01

    The chemotaxis behavior of the plasmodial stage of the true slime mold Physarum Polycephalum was assessed when given a binary choice between two volatile organic chemicals (VOCs) placed in its environment. All possible binary combinations were tested between 19 separate VOCs selected due to their prevalence and biological activity in common plant and insect species. The slime mold exhibited positive chemotaxis toward a number of VOCs with the following order of preference:   Farnesene > β-myr...

  2. Regulation by Light of Chemotaxis to Nitrite during the Sexual Life Cycle in Chlamydomonas reinhardtii

    OpenAIRE

    Elena Ermilova; Zhanneta Zalutskaya

    2014-01-01

    Nitrite plays an important role in the nitrogen metabolism of most cells, including Chlamydomonas reinhardtii. We have shown that vegetative cells of C. reinhardtii are attracted by nitrite. The Nia1nit2 mutant with defects in genes encoding the nitrate reductase and regulatory protein NIT2 respectively was found to exhibit normal chemotaxis to nitrite. The data suggest that chemotaxis events appear to be specific and independent of those involved in nitrate assimilation. Unlike vegetative ce...

  3. Helicobacter pylori Requires TlpD-Driven Chemotaxis To Proliferate in the Antrum

    OpenAIRE

    Rolig, Annah S.; Shanks, James; Carter, J. Elliot; Ottemann, Karen M.

    2012-01-01

    Different disease outcomes of Helicobacter pylori infection correlate with distinct inflammation patterns. These different inflammatory distributions may be initiated by differences in bacterial localization. One H. pylori property known to affect murine stomach localization is chemotaxis, the ability to move in response to chemical cues. In this report, we used nonchemotactic mutants (Che−) to analyze whether chemotaxis is required for initial colonization of particular stomach regions or fo...

  4. Acute exposure to apolipoprotein A1 inhibits macrophage chemotaxis in vitro and monocyte recruitment in vivo

    Science.gov (United States)

    Iqbal, Asif J; Barrett, Tessa J; Taylor, Lewis; McNeill, Eileen; Manmadhan, Arun; Recio, Carlota; Carmineri, Alfredo; Brodermann, Maximillian H; White, Gemma E; Cooper, Dianne; DiDonato, Joseph A; Zamanian-Daryoush, Maryam; Hazen, Stanley L; Channon, Keith M

    2016-01-01

    Apolipoprotein A1 (apoA1) is the major protein component of high-density lipoprotein (HDL) and has well documented anti-inflammatory properties. To better understand the cellular and molecular basis of the anti-inflammatory actions of apoA1, we explored the effect of acute human apoA1 exposure on the migratory capacity of monocyte-derived cells in vitro and in vivo. Acute (20–60 min) apoA1 treatment induced a substantial (50–90%) reduction in macrophage chemotaxis to a range of chemoattractants. This acute treatment was anti-inflammatory in vivo as shown by pre-treatment of monocytes prior to adoptive transfer into an on-going murine peritonitis model. We find that apoA1 rapidly disrupts membrane lipid rafts, and as a consequence, dampens the PI3K/Akt signalling pathway that coordinates reorganization of the actin cytoskeleton and cell migration. Our data strengthen the evidence base for therapeutic apoA1 infusions in situations where reduced monocyte recruitment to sites of inflammation could have beneficial outcomes. DOI: http://dx.doi.org/10.7554/eLife.15190.001 PMID:27572261

  5. Wing, tail, and vocal contributions to the complex acoustic signals of courting Calliope hummingbirds

    Directory of Open Access Journals (Sweden)

    Christopher James CLARK

    2011-04-01

    Full Text Available Multi-component signals contain multiple signal parts expressed in the same physical modality. One way to identify individual components is if they are produced by different physical mechanisms. Here, I studied the mechanisms generating acoustic signals in the courtship displays of the Calliope hummingbird Stellula calliope. Display dives consisted of three synchronized sound elements, a high-frequency tone (hft, a low frequency tone (lft, and atonal sound pulses (asp, which were then followed by a frequency-modulated fall. Manipulating any of the rectrices (tail-feathers of wild males impaired production of the lft and asp but not the hft or fall, which are apparently vocal. I tested the sound production capabilities of the rectrices in a wind tunnel. Single rectrices could generate the lft but not the asp, whereas multiple rectrices tested together produced sounds similar to the asp when they fluttered and collided with their neighbors percussively, representing a previously unknown mechanism of sound production. During the shuttle display, a trill is generated by the wings during pulses in which the wingbeat frequency is elevated to 95 Hz, 40% higher than the typical hovering wingbeat frequency. The Calliope hummingbird courtship displays include sounds produced by three independent mechanisms, and thus include a minimum of three acoustic signal components. These acoustic mechanisms have different constraints and thus potentially contain different messages. Producing multiple acoustic signals via multiple mechanisms may be a way to escape the constraints present in any single mechanism [Current Zoology 57 (2: 187–196, 2011].

  6. Real-Time Frequency Estimation of Complex GMSK Signal of Green Communications Devices

    Institute of Scientific and Technical Information of China (English)

    Umar Suleiman Dauda; NikNoordini NikAbdMalik; Mazlina Esa; Kamaludin Mohd Yusof; Mohd Fairus Mohd Yusoff; Mohamed Rijal Hamid

    2016-01-01

    Abstract-Parameter estimation of signals of universal software radio peripheral (USRP) devices is crucial to solve the problem of phase offsets of received signals in distributed beamforming. For systems that will utilize the closed loop feedback algorithm where the receiver needs to send the received signal strength (RSS) values periodically to the beamforming node so as to take advantage of energy conservation, the frequency and phase of these signals should be estimated before smoothening by nonlinear filters. This article presents the estimation of the frequency offsets of a Gaussian minimum shift keying (GMSK) signal from N210 USRP devices in real time by using the Radix-2 fast Fourier transform (FFT) algorithm in GNURadio. For these green communications devices, most of the needed hardware parts have been software defined, thereby reducing the supposed energy consumption. The frequency offsets from reference carrier frequencies of 900 MHz and 2.4GHz are less than 3 kHz each before the estimation, but the average offsets are 45 Hz and 100 Hz after the estimation, respectively. The high offset value experienced with the 2.4GHz carrier was due to consistent interference from devices on that same frequency.

  7. Different migration patterns of sea urchin and mouse sperm revealed by a microfluidic chemotaxis device.

    Directory of Open Access Journals (Sweden)

    Haixin Chang

    Full Text Available Chemotaxis refers to a process whereby cells move up or down a chemical gradient. Sperm chemotaxis is known to be a strategy exploited by marine invertebrates such as sea urchins to reach eggs efficiently in moving water. Less is understood about how or whether chemotaxis is used by mammalian sperm to reach eggs, where fertilization takes place within the confinement of a reproductive tract. In this report, we quantitatively assessed sea urchin and mouse sperm chemotaxis using a recently developed microfluidic model and high-speed imaging. Results demonstrated that sea urchin Arbacia punctulata sperm were chemotactic toward the peptide resact with high chemotactic sensitivity, with an average velocity Vx up the chemical gradient as high as 20% of its average speed (238 μm/s, while mouse sperm displayed no statistically significant chemotactic behavior in progesterone gradients, which had been proposed to guide mammalian sperm toward eggs. This work demonstrates the validity of a microfluidic model for quantitative sperm chemotaxis studies, and reveals a biological insight that chemotaxis up a progesterone gradient may not be a universal strategy for mammalian sperm to reach eggs.

  8. Stream computing for biomedical signal processing: A QRS complex detection case-study.

    Science.gov (United States)

    Murphy, B M; O'Driscoll, C; Boylan, G B; Lightbody, G; Marnane, W P

    2015-01-01

    Recent developments in "Big Data" have brought significant gains in the ability to process large amounts of data on commodity server hardware. Stream computing is a relatively new paradigm in this area, addressing the need to process data in real time with very low latency. While this approach has been developed for dealing with large scale data from the world of business, security and finance, there is a natural overlap with clinical needs for physiological signal processing. In this work we present a case study of streams processing applied to a typical physiological signal processing problem: QRS detection from ECG data.

  9. Stream computing for biomedical signal processing: A QRS complex detection case-study.

    Science.gov (United States)

    Murphy, B M; O'Driscoll, C; Boylan, G B; Lightbody, G; Marnane, W P

    2015-08-01

    Recent developments in "Big Data" have brought significant gains in the ability to process large amounts of data on commodity server hardware. Stream computing is a relatively new paradigm in this area, addressing the need to process data in real time with very low latency. While this approach has been developed for dealing with large scale data from the world of business, security and finance, there is a natural overlap with clinical needs for physiological signal processing. In this work we present a case study of streams processing applied to a typical physiological signal processing problem: QRS detection from ECG data. PMID:26737641

  10. Calculation of Computational Complexity for Radix-2 (p) Fast Fourier Transform Algorithms for Medical Signals.

    Science.gov (United States)

    Amirfattahi, Rassoul

    2013-10-01

    Owing to its simplicity radix-2 is a popular algorithm to implement fast fourier transform. Radix-2(p) algorithms have the same order of computational complexity as higher radices algorithms, but still retain the simplicity of radix-2. By defining a new concept, twiddle factor template, in this paper, we propose a method for exact calculation of multiplicative complexity for radix-2(p) algorithms. The methodology is described for radix-2, radix-2 (2) and radix-2 (3) algorithms. Results show that radix-2 (2) and radix-2 (3) have significantly less computational complexity compared with radix-2. Another interesting result is that while the number of complex multiplications in radix-2 (3) algorithm is slightly more than radix-2 (2), the number of real multiplications for radix-2 (3) is less than radix-2 (2). This is because of the twiddle factors in the form of which need less number of real multiplications and are more frequent in radix-2 (3) algorithm.

  11. Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2.

    Science.gov (United States)

    Yang, Cuiping; Chen, Wenlin; Chen, Yongbin; Jiang, Jin

    2012-11-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis in species ranging from Drosophila to mammals. The Hh signal is transduced by Smoothened (Smo), a seven-transmembrane protein related to G protein coupled receptors. Despite a conserved mechanism by which Hh activates Smo in Drosophila and mammals, how mammalian Hh signal is transduced from Smo to the Gli transcription factors is poorly understood. Here, we provide evidence that two ciliary proteins, Evc and Evc2, the products of human disease genes responsible for the Ellis-van Creveld syndrome, act downstream of Smo to transduce the Hh signal. We found that loss of Evc/Evc2 does not affect Sonic Hedgehog-induced Smo phosphorylation and ciliary localization but impedes Hh pathway activation mediated by constitutively active forms of Smo. Evc/Evc2 are dispensable for the constitutive Gli activity in Sufu(-/-) cells, suggesting that Evc/Evc2 act upstream of Sufu to promote Gli activation. Furthermore, we demonstrated that Hh stimulates binding of Evc/Evc2 to Smo depending on phosphorylation of the Smo C-terminal intracellular tail and that the binding is abolished in Kif3a(-/-) cilium-deficient cells. We propose that Hh activates Smo by inducing its phosphorylation, which recruits Evc/Evc2 to activate Gli proteins by antagonizing Sufu in the primary cilia.

  12. Quasi steady-state approximations in complex intracellular signal transduction networks - a word of caution

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Bersani, A.M.; Bersani, E.

    2008-01-01

    Enzyme reactions play a pivotal role in intracellular signal transduction. Many enzymes are known to possess Michaelis-Menten (MM) kinetics and the MM approximation is often used when modeling enzyme reactions. However, it is known that the MM approximation is only valid at low enzyme...

  13. Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2

    Institute of Scientific and Technical Information of China (English)

    Cuiping Yang; Wenlin Chen; Yongbin Chen; Jin Jiang

    2012-01-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis in species ranging from Drosophila to mammals.The Hh signal is transduced by Smoothened (Smo),a seven-transmembrane protein related to G protein coupled receptors.Despite a conserved mechanism by which Hh activates Smo in Drosophila and mammals,how mammalian Hh signal is transduced from Smo to the Gli transcription factors is poorly understood.Here,we provide evidence that two ciliary proteins,Evc and Evc2,the products of human disease genes responsible for the Ellis-van Creveld syndrome,act downstream of Smo to transduce the Hh signal.We found that loss of Evc/Evc2 does not affect Sonic Hedgehog-induced Smo phosphorylation and ciliary localization but impedes Hh pathway activation mediated by constitutively active forms of Smo.Evc/Evc2 are dispensable for the constitutive Gli activity in Sufu-/- cells,suggesting that Evc/Evc2 act upstream of Sufu to promote Gli activation.Furthermore,we demonstrated that Hh stimulates binding of Evc/Evc2 to Smo depending on phosphorylation of the Smo C-terminal intracellular tail and that the binding is abolished in Kif3a-/- cilium-deficient cells.We propose that Hh activates Smo by inducing its phosphorylation,which recruits Evc/Evc2 to activate Gli proteins by antagonizing Sufu in the primary cilia.

  14. Expedience of application of MIMO systems of digital communication for complex chaotic signal transmission

    OpenAIRE

    Vasyuta, K. S.; Zakharchenko, I. V.; Ozerov, S. V.

    2015-01-01

    The paper discusses the expediency of using MIMO digital systems for transmission of chaotic signals as a way of partial solution of electromagnetic compatibility of perspective broadband communication systems with an existing class of narrow-band radio-technical systems.

  15. Symmetric signaling by an asymmetric 1 erythropoietin: 2 erythropoietin receptor complex.

    Science.gov (United States)

    Zhang, Yingxin L; Radhakrishnan, Mala L; Lu, Xiaohui; Gross, Alec W; Tidor, Bruce; Lodish, Harvey F

    2009-01-30

    Via sites 1 and 2, erythropoietin binds asymmetrically to two identical receptor monomers, although it is unclear how asymmetry affects receptor activation and signaling. Here we report the design and validation of two mutant erythropoietin receptors that probe the role of individual members of the receptor dimer by selectively binding either site 1 or site 2 on erythropoietin. Ba/F3 cells expressing either mutant receptor do not respond to erythropoietin, but cells co-expressing both receptors respond to erythropoietin by proliferation and activation of the JAK2-Stat5 pathway. A truncated receptor with only one cytosolic tyrosine (Y343) is sufficient for signaling in response to erythropoietin, regardless of the monomer on which it is located. Similarly, only one receptor in the dimer needs a juxtamembrane hydrophobic L253 or W258 residue, essential for JAK2 activation. We conclude that despite asymmetry in the ligand-receptor interaction, both sides are competent for signaling, and appear to signal equally.

  16. Chemotactic Signaling by Single-Chain Chemoreceptors.

    Directory of Open Access Journals (Sweden)

    Patricia Mowery

    Full Text Available Bacterial chemoreceptors of the methyl-accepting chemotaxis protein (MCP family operate in commingled clusters that enable cells to detect and track environmental chemical gradients with high sensitivity and precision. MCP homodimers of different detection specificities form mixed trimers of dimers that facilitate inter-receptor communication in core signaling complexes, which in turn assemble into a large signaling network. The two subunits of each homodimeric receptor molecule occupy different locations in the core complexes. One subunit participates in trimer-stabilizing interactions at the trimer axis, the other lies on the periphery of the trimer, where it can interact with two cytoplasmic proteins: CheA, a signaling autokinase, and CheW, which couples CheA activity to receptor control. As a possible tool for independently manipulating receptor subunits in these two structural environments, we constructed and characterized fused genes for the E. coli serine chemoreceptor Tsr that encoded single-chain receptor molecules in which the C-terminus of the first Tsr subunit was covalently connected to the N-terminus of the second with a polypeptide linker. We showed with soft agar assays and with a FRET-based in vivo CheA kinase assay that single-chain Tsr~Tsr molecules could promote serine sensing and chemotaxis responses. The length of the connection between the joined subunits was critical. Linkers nine residues or shorter locked the receptor in a kinase-on state, most likely by distorting the native structure of the receptor HAMP domain. Linkers 22 or more residues in length permitted near-normal Tsr function. Few single-chain molecules were found as monomer-sized proteolytic fragments in cells, indicating that covalently joined receptor subunits were responsible for mediating the signaling responses we observed. However, cysteine-directed crosslinking, spoiling by dominant-negative Tsr subunits, and rearrangement of ligand-binding site

  17. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity.

    Science.gov (United States)

    Feys, Bart J; Wiermer, Marcel; Bhat, Riyaz A; Moisan, Lisa J; Medina-Escobar, Nieves; Neu, Christina; Cabral, Adriana; Parker, Jane E

    2005-09-01

    Plant innate immunity against invasive biotrophic pathogens depends on the intracellular defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). We show here that Arabidopsis thaliana EDS1 interacts in vivo with another protein, SENESCENCE-ASSOCIATED GENE101 (SAG101), discovered through a proteomic approach to identify new EDS1 pathway components. Together with PHYTOALEXIN-DEFICIENT4 (PAD4), a known EDS1 interactor, SAG101 contributes intrinsic and indispensable signaling activity to EDS1-dependent resistance. The combined activities of SAG101 and PAD4 are necessary for programmed cell death triggered by the Toll-Interleukin-1 Receptor type of nucleotide binding/leucine-rich repeat immune receptor in response to avirulent pathogen isolates and in restricting the growth of normally virulent pathogens. We further demonstrate by a combination of cell fractionation, coimmunoprecipitation, and fluorescence resonance energy transfer experiments the existence of an EDS1-SAG101 complex inside the nucleus that is molecularly and spatially distinct from EDS1-PAD4 associations in the nucleus and cytoplasm. By contrast, EDS1 homomeric interactions were detected in the cytoplasm but not inside the nucleus. These data, combined with evidence for coregulation between individual EDS1 complexes, suggest that dynamic interactions of EDS1 and its signaling partners in multiple cell compartments are important for plant defense signal relay.

  18. Characterization of stroke- and aging-related changes in the complexity of EMG signals during tracking tasks.

    Science.gov (United States)

    Ao, Di; Sun, Rui; Tong, Kai-Yu; Song, Rong

    2015-04-01

    To explore the stroke- and aging-induced neurological changes in paretic muscles from an entropy point of view, fuzzy approximate entropy (fApEn) was utilized to represent the complexity of EMG signals in elbow-tracking tasks. In the experiment, 11 patients after stroke and 20 healthy control subjects (10 young and 10 age-matched adults) were recruited and asked to perform elbow sinusoidal trajectory tracking tasks. During the tests, the elbow angle and electromyographic (EMG) signals of the biceps brachii and triceps brachii were recorded simultaneously. The results showed significant differences in fApEn values of both biceps and triceps EMG among four groups at six velocities (p stroke patients stroke patients age-matched controls aged-matched controls and in the aged individuals in comparison with young controls might be the reduction in the number and firing rate of active motor units. This method and index provide evidence of neurological changes after stroke and aging by complexity analysis of the surface EMG signals. Further studies are needed to validate and facilitate the application in clinic.

  19. Wing,tail,and vocal contributions to the complex acoustic signals of courting Calliope hummingbirds

    Institute of Scientific and Technical Information of China (English)

    Christopher James CLARK

    2011-01-01

    Multi-component signals contain multiple signal parts expressed in the same physical modality.One way to identify individual components is if they are produced by different physical mechanisms.Here,I studied the mechanisms generating acoustic signais in the courtship displays of the Calliope hummingbird Stellula calliope.Display dives consisted of three synchronized sound elements,a high-frequency tone(hft),a low frequency tone(lft),and atonal sound pulses(asp),which were then followed by a frequency-modulaled fall.Manipulating any of the rectrices(tail-feathers)of wild males impaired production of the lft and asp,but not the hft or fall,which are apparently vocal.I tested the sound production capabilities of the rectrices in a wind tuunel.Single rectrices could generate the lft but not the asp,whereas multiple rectrices tested together produced sounds similar to the asp when they fluttered and collided with their neighbors percussively,representing a previously unknown mechanism of sound production.During the shuttle display,a trill is generated by the wings during pulses in which the wingbeat frequency is elevated to 95 Hz,40% higher than the typical hovering wingbeat frequency.Tbe Caillope hummingbird courtship displays include sounds produced by three independent mechauisms,and thus include a minimum of three acoustic signal components.These acoustic mechanisms have different constraints and thus potentially contain different messages.Producing multiple acoustic signals via multiple mechanisms may be a way to escape the constraints present in any single mechanism.

  20. Cell–cell signaling drives the evolution of complex traits: introduction—lung evo-devo

    OpenAIRE

    Torday, John S.; Rehan, V.K.

    2009-01-01

    Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been “deconvoluted” (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, ho...

  1. Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome

    OpenAIRE

    Jung, Kwang-Mook; Sepers, Marja; Henstridge, Christopher M.; Lassalle, Olivier; Neuhofer, Daniela; Martin, Henry; Ginger, Melanie; Frick, Andreas; DiPatrizio, Nicholas V.; Mackie, Ken; Katona, Istvan; Piomelli, Daniele; Manzoni, Olivier J.

    2012-01-01

    Fragile X syndrome, the most commonly known genetic cause of autism, is due to loss of the fragile X mental retardation protein, which regulates signal transduction at metabotropic glutamate receptor-5 in the brain. Fragile X mental retardation protein deletion in mice enhances metabotropic glutamate receptor-5-dependent long-term depression in the hippocampus and cerebellum. Here we show that a distinct type of metabotropic glutamate receptor-5-dependent long-term depression at excitatory sy...

  2. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment.

    Science.gov (United States)

    Boutte, Cara C; Crosson, Sean

    2011-05-01

    Bacteria rapidly adapt to nutritional changes via the stringent response, which entails starvation-induced synthesis of the small molecule, ppGpp, by RelA/SpoT homologue (Rsh) enzymes. Binding of ppGpp to RNA polymerase modulates the transcription of hundreds of genes and remodels the physiology of the cell. Studies of the stringent response have primarily focused on copiotrophic bacteria such as Escherichia coli; little is known about how stringent signalling is regulated in species that live in consistently nutrient-limited (i.e. oligotrophic) environments. Here we define the input logic and transcriptional output of the stringent response in the oligotroph, Caulobacter crescentus. The sole Rsh protein, SpoT(CC), binds to and is regulated by the ribosome, and exhibits AND-type control logic in which amino acid starvation is a necessary but insufficient signal for activation of ppGpp synthesis. While both glucose and ammonium starvation upregulate the synthesis of ppGpp, SpoT(CC) detects these starvation signals by two independent mechanisms. Although the logic of stringent response control in C. crescentus differs from E. coli, the global transcriptional effects of elevated ppGpp are similar, with the exception of 16S rRNA transcription, which is controlled independently of spoT(CC). This study highlights how the regulatory logic controlling the stringent response may be adapted to the nutritional niche of a bacterial species.

  3. Wavelet packet-based identification of complex oscillation in biological signals

    Institute of Scientific and Technical Information of China (English)

    Zhang Shuqing; Sarah K. Spurgeon; Zhang Liguo; Jin Mei; John A. Twiddle; Fernando S. Schlindwein

    2008-01-01

    Owing to the intrinsic nonlinearities of the system, a contracting mechanism, such as myogenic response,may induce different oscillatory patterns. Many specialists discussed the relations of oscillatory patterns with intrinsic control system or some pathological condition, but there is no single, well-defined criterion to achieve the identifieation of regular, stochastic, and chaotic activities. In this paper, we focus on the Mallat algorithm of wavelet packet and use it in the identification of the regular periodic, stochastic, and chaotic fluctuations. According to the specificfrequency configuration of the chaos activity, we select proper layers of decomposition of wavelet packet and did fine segments to the frequency of signals. The frequency band of energy convergence could be recognized. The signal of periodic, stochastic, and chaotic could be distinguished depending on it. Numerical experiment is given to show its efficiency. Experiments on 12 babies' lung data have been done. This identification by means of wavelet packe tcould support the cardiologist or cerebral specialist to do more observation and deeper analysis to physic signals.

  4. Ant Queen Egg-Marking Signals: Matching Deceptive Laboratory Simplicity with Natural Complexity

    DEFF Research Database (Denmark)

    van Zweden, Jelle Stijn; Heinze, Jürgen; Boomsma, Jacobus Jan;

    2009-01-01

    /field comparison to investigate the identity of an egg-marking signal of ant queens. Our study was based on ant workers resolving conflict over male production by destroying each other's eggs, but leaving queen eggs unharmed. For this, the workers need a proximate cue to discriminate between the two egg types......-maintained colonies. We treated worker-laid eggs with synthetic 3,11-diMeC27 and found that they were significantly more accepted than sham-treated worker-laid eggs. However, we repeated the experiment with freshly collected field colonies and observed no effect of treating worker-laid eggs with 3,11-diMeC27, showing......, and have an excess of longer-chain hydrocarbons. Conclusions Our results suggest that queen egg-marking signals are significantly affected by transfer to the laboratory, and that this change is possibly connected to reduced queen fertility as predicted by honest signaling theory. This change is reflected...

  5. Effective Medium Equations for Chemotaxis in Porous Media

    Science.gov (United States)

    Valdes-Parada, F.; Porter, M.; Wood, B. D.; Narayanaswamy, K.; Ford, R.

    2008-12-01

    Biodegradation is an important mechanism for contaminant reduction in groundwater environments; in fact, in-situ bioremediation and bioaugmentation methods represent alternatives to traditional methods such as pump-and-treat. Chemotaxis has been shown to enhance bacterial transport toward or away from concentration gradients of chemical species in laboratory experiments and may signifficantly increase contaminant flux undergoing degradation at the interfaces of low- and high-permeability regions. In this work, the method of volume averaging is used to upscale the microscale description of chemotactic microbial transport in order to obtain the corresponding macroscale equations for bacteria and the chemoattractant. As a first apprach, cellular growth/death and consumption of the attractant by chemical reaction are assumed negligible with respect to convective and diffusive transport, in both levels of scale. For bacteria, two effective coefficients are introduced, namely a total motility tensor and an effective chemotactic sensitivity tensor. Both coefficients are computed by solving the associated closure problems in a capillary tube. Analysis of breakthrough curves resulting from numerical experiments is also presented.

  6. The hyperanalytic signal

    CERN Document Server

    Bihan, Nicolas Le

    2010-01-01

    The concept of the analytic signal is extended from the case of a real signal with a complex analytic signal to a complex signal with a hypercomplex analytic signal (which we call a hyperanalytic signal) The hyperanalytic signal may be interpreted as an ordered pair of complex signals or as a quaternion signal. The hyperanalytic signal contains a complex orthogonal signal and we show how to obtain this by three methods: a pair of classical Hilbert transforms; a complex Fourier transform; and a quaternion Fourier transform. It is shown how to derive from the hyperanalytic signal a complex envelope and phase using a polar quaternion representation previously introduced by the authors. The complex modulation of a real sinusoidal carrier is shown to generalize the modulation properties of the classical analytic signal. The paper extends the ideas of properness to deterministic complex signals using the hyperanalytic signal. A signal example is presented, with its orthogonal signal, and its complex envelope and ph...

  7. CD163: a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma

    DEFF Research Database (Denmark)

    Graversen, Jonas Heilskov; Madsen, Mette; Moestrup, Søren K

    2002-01-01

    hemolysis. Besides having a detoxificating effect by removing Hb from plasma, the CD163-mediated endocytosis of the Hp-Hb complex may represent a major pathway for uptake of iron in the tissue macrophages. The novel functional linkage of CD163 and Hp, which both are induced during inflammation, also reveal...

  8. Mutations in MAP3K7 that Alter the Activity of the TAK1 Signaling Complex Cause Frontometaphyseal Dysplasia.

    Science.gov (United States)

    Wade, Emma M; Daniel, Philip B; Jenkins, Zandra A; McInerney-Leo, Aideen; Leo, Paul; Morgan, Tim; Addor, Marie Claude; Adès, Lesley C; Bertola, Debora; Bohring, Axel; Carter, Erin; Cho, Tae-Joon; Duba, Hans-Christoph; Fletcher, Elaine; Kim, Chong A; Krakow, Deborah; Morava, Eva; Neuhann, Teresa; Superti-Furga, Andrea; Veenstra-Knol, Irma; Wieczorek, Dagmar; Wilson, Louise C; Hennekam, Raoul C M; Sutherland-Smith, Andrew J; Strom, Tim M; Wilkie, Andrew O M; Brown, Matthew A; Duncan, Emma L; Markie, David M; Robertson, Stephen P

    2016-08-01

    Frontometaphyseal dysplasia (FMD) is a progressive sclerosing skeletal dysplasia affecting the long bones and skull. The cause of FMD in some individuals is gain-of-function mutations in FLNA, although how these mutations result in a hyperostotic phenotype remains unknown. Approximately one half of individuals with FMD have no identified mutation in FLNA and are phenotypically very similar to individuals with FLNA mutations, except for an increased tendency to form keloid scars. Using whole-exome sequencing and targeted Sanger sequencing in 19 FMD-affected individuals with no identifiable FLNA mutation, we identified mutations in two genes-MAP3K7, encoding transforming growth factor β (TGF-β)-activated kinase (TAK1), and TAB2, encoding TAK1-associated binding protein 2 (TAB2). Four mutations were found in MAP3K7, including one highly recurrent (n = 15) de novo mutation (c.1454C>T [ p.Pro485Leu]) proximal to the coiled-coil domain of TAK1 and three missense mutations affecting the kinase domain (c.208G>C [p.Glu70Gln], c.299T>A [p.Val100Glu], and c.502G>C [p.Gly168Arg]). Notably, the subjects with the latter three mutations had a milder FMD phenotype. An additional de novo mutation was found in TAB2 (c.1705G>A, p.Glu569Lys). The recurrent mutation does not destabilize TAK1, or impair its ability to homodimerize or bind TAB2, but it does increase TAK1 autophosphorylation and alter the activity of more than one signaling pathway regulated by the TAK1 kinase complex. These findings show that dysregulation of the TAK1 complex produces a close phenocopy of FMD caused by FLNA mutations. Furthermore, they suggest that the pathogenesis of some of the filaminopathies caused by FLNA mutations might be mediated by misregulation of signaling coordinated through the TAK1 signaling complex. PMID:27426733

  9. Low-Complexity Iterative Receiver for Space-Time Coded Signals over Frequency Selective Channels

    Directory of Open Access Journals (Sweden)

    Mohamed Siala

    2002-05-01

    Full Text Available We propose a low-complexity turbo-detector scheme for frequency selective multiple-input multiple-output channels. The detection part of the receiver is based on a List-type MAP equalizer which is a state-reduction algorithm of the MAP algorithm using per-survivor technique. This alternative achieves a good tradeoff between performance and complexity provided a small amount of the channel is neglected. In order to induce the good performance of this equalizer, we propose to use a whitened matched filter (WMF which leads to a white-noise “minimum phase” channel model. Simulation results show that the use of the WMF yields significant improvement, particularly over severe channels. Thanks to the iterative turbo processing (detection and decoding are iterated several times, the performance loss due to the use of the suboptimum List-type equalizer is recovered.

  10. FAK Forms a Complex with MEF2 to Couple Biomechanical Signaling to Transcription in Cardiomyocytes.

    Science.gov (United States)

    Cardoso, Alisson Campos; Pereira, Ana Helena Macedo; Ambrosio, Andre Luis Berteli; Consonni, Silvio Roberto; Rocha de Oliveira, Renata; Bajgelman, Marcio Chain; Dias, Sandra Martha Gomes; Franchini, Kleber Gomes

    2016-08-01

    Focal adhesion kinase (FAK) has emerged as a mediator of mechanotransduction in cardiomyocytes, regulating gene expression during hypertrophic remodeling. However, how FAK signaling is relayed onward to the nucleus is unclear. Here, we show that FAK interacts with and regulates myocyte enhancer factor 2 (MEF2), a master cardiac transcriptional regulator. In cardiomyocytes exposed to biomechanical stimulation, FAK accumulates in the nucleus, binds to and upregulates the transcriptional activity of MEF2 through an interaction with the FAK focal adhesion targeting (FAT) domain. In the crystal structure (2.9 Å resolution), FAT binds to a stably folded groove in the MEF2 dimer, known to interact with regulatory cofactors. FAK cooperates with MEF2 to enhance the expression of Jun in cardiomyocytes, an important component of hypertrophic response to mechanical stress. These findings underscore a connection between the mechanotransduction involving FAK and transcriptional regulation by MEF2, with potential relevance to the pathogenesis of cardiac disease. PMID:27427476

  11. Efficient transmission of subthreshold signals in complex networks of spiking neurons

    CERN Document Server

    Torres, Joaquin J; Marro, J

    2014-01-01

    We investigate the efficient transmission and processing of weak signals (subthreshold) in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances - that naturally balances the network with excitatory and inhibitory synapses - and considering short-term synaptic plasticity affecting such conductances, we found different dynamical phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron and increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases and therefore for quite well defined and different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite ro...

  12. A potential neural substrate for processing functional classes of complex acoustic signals.

    Directory of Open Access Journals (Sweden)

    Isabelle George

    Full Text Available Categorization is essential to all cognitive processes, but identifying the neural substrates underlying categorization processes is a real challenge. Among animals that have been shown to be able of categorization, songbirds are particularly interesting because they provide researchers with clear examples of categories of acoustic signals allowing different levels of recognition, and they possess a system of specialized brain structures found only in birds that learn to sing: the song system. Moreover, an avian brain nucleus that is analogous to the mammalian secondary auditory cortex (the caudo-medial nidopallium, or NCM has recently emerged as a plausible site for sensory representation of birdsong, and appears as a well positioned brain region for categorization of songs. Hence, we tested responses in this non-primary, associative area to clear and distinct classes of songs with different functions and social values, and for a possible correspondence between these responses and the functional aspects of songs, in a highly social songbird species: the European starling. Our results clearly show differential neuronal responses to the ethologically defined classes of songs, both in the number of neurons responding, and in the response magnitude of these neurons. Most importantly, these differential responses corresponded to the functional classes of songs, with increasing activation from non-specific to species-specific and from species-specific to individual-specific sounds. These data therefore suggest a potential neural substrate for sorting natural communication signals into categories, and for individual vocal recognition of same-species members. Given the many parallels that exist between birdsong and speech, these results may contribute to a better understanding of the neural bases of speech.

  13. Vertebrate pheromones and other semiochemicals: the potential for accommodating complexity in signalling by volatile compounds for vertebrate management.

    Science.gov (United States)

    Pickett, John A; Barasa, Stephen; Birkett, Michael A

    2014-08-01

    The interaction between volatile and non-volatile, e.g. proteinaceous, components of pheromone and other semiochemical-based signalling systems presents a daunting set of problems for exploitation in the management of vertebrates, good or bad. Aggravating this is the complexity of the mixtures involved with pheromones, not only by definition associated with each species, but also with individual members of that species and their positions within their immediate communities. Nonetheless, already in some contexts, particularly where signals are perceived at other trophic levels from those of the vertebrates, e.g. by arthropods, reductionist approaches can be applied whereby the integrity of complex volatile mixtures is maintained, but perturbed by augmentation with individual components. In the present article, this is illustrated for cattle husbandry, fish farming and human health. So far, crude formulations have been used to imitate volatile semiochemical interactions with non-volatile components, but new approaches must be developed to accommodate more sophisticated interactions and not least the activities of the non-volatile, particularly proteinaceous components, currently being deduced.

  14. Vertebrate pheromones and other semiochemicals: the potential for accommodating complexity in signalling by volatile compounds for vertebrate management.

    Science.gov (United States)

    Pickett, John A; Barasa, Stephen; Birkett, Michael A

    2014-08-01

    The interaction between volatile and non-volatile, e.g. proteinaceous, components of pheromone and other semiochemical-based signalling systems presents a daunting set of problems for exploitation in the management of vertebrates, good or bad. Aggravating this is the complexity of the mixtures involved with pheromones, not only by definition associated with each species, but also with individual members of that species and their positions within their immediate communities. Nonetheless, already in some contexts, particularly where signals are perceived at other trophic levels from those of the vertebrates, e.g. by arthropods, reductionist approaches can be applied whereby the integrity of complex volatile mixtures is maintained, but perturbed by augmentation with individual components. In the present article, this is illustrated for cattle husbandry, fish farming and human health. So far, crude formulations have been used to imitate volatile semiochemical interactions with non-volatile components, but new approaches must be developed to accommodate more sophisticated interactions and not least the activities of the non-volatile, particularly proteinaceous components, currently being deduced. PMID:25109967

  15. Complexity analysis of EMG signals for patients after stroke during robot-aided rehabilitation training using fuzzy approximate entropy.

    Science.gov (United States)

    Sun, Rui; Song, Rong; Tong, Kai-yu

    2014-09-01

    The paper presents a novel viewpoint to monitor the motor function improvement during a robot-aided rehabilitation training. Eight chronic poststroke subjects were recruited to attend the 20-session training, and in each session, subjects were asked to perform voluntary movements of elbow flexion and extension together with the robotic system. The robotic system was continuously controlled by the electromyographic (EMG) signal from the affected triceps. Fuzzy approximate entropy (fApEn) was applied to investigate the complexity of the EMG segment, and maximum voluntary contraction (MVC) during elbow flexion and extension was applied to reflect force generating capacity of the affected muscles. The results showed that the group mean fApEn of EMG signals from triceps and biceps increased significantly after the robot-aided rehabilitation training . There was also significant increase in maximum voluntary flexion and extension torques after the robot-aided rehabilitation training . There was significant correlation between fApEn of agonist and MVC , which implied that the increase of motorneuron number is one of factors that may explain the increase in muscle strength. These findings based on fApEn of the EMG signals expand the existing interpretation of training-induced function improvement in patients after stroke, and help us to understand the neurological change induced by the robot-aided rehabilitation training.

  16. Diverse sensitivity thresholds in dynamic signaling responses by social amoebae.

    Science.gov (United States)

    Wang, C Joanne; Bergmann, Adriel; Lin, Benjamin; Kim, Kyuri; Levchenko, Andre

    2012-02-28

    The complex transition from a single-cell to a multicellular life form during the formation of a fruiting body by the amoeba Dictyostelium discoideum is accompanied by a pulsatile collective signaling process that instigates chemotaxis of the constituent cells. Although the cells used for the analysis of this phenomenon are normally genetically identical (isogenic), it is not clear whether they are equally responsive to the waves of the signaling stimulus, nor is it clear how responses across the population influence collective cell behavior. Here, we found that isogenic Dictyostelium cells displayed differing sensitivities to the chemoattractant cyclic adenosine monophosphate (cAMP). Furthermore, the resulting signaling responses could be explained by a model in which cells are refractory to further stimulation for 5 to 6 min after the initial input and the signaling output is amplified, with the amplification threshold varying across the cells in the population. This pathway structure could explain intracellular amplification of the chemoattractant gradient during cell migration. The new model predicts that diverse cell responsiveness can facilitate collective cell behavior, specifically due to the presence of a small number of cells in the population with increased responsiveness that aid in propagating the initial cAMP signaling wave across the cell population. PMID:22375055

  17. Structure of PqsD, a Pseudomonas Quinolone Signal Biosynthetic Enzyme, in Complex with Anthranilate

    Energy Technology Data Exchange (ETDEWEB)

    Bera, A.; Atanasova, V; Robinson, H; Eisenstein, E; Coleman, J; Pesci, E; Parsons, J

    2009-01-01

    Here we present a structural and biophysical characterization of PqsD that includes several crystal structures of the enzyme, including that of the PqsD-anthranilate covalent intermediate and the inactive Cys112Ala active site mutant in complex with anthranilate. The structure reveals that PqsD is structurally similar to the FabH and chalcone synthase families of fatty acid and polyketide synthases. The crystallographic asymmetric unit contains a PqsD dimer. The PqsD monomer is composed of two nearly identical 170-residue ????? domains. The structures show anthranilate-liganded Cys112 is positioned deep in the protein interior at the bottom of an 15 A long channel while a second anthraniloyl-CoA molecule is waiting in the cleft leading to the protein surface. Cys112, His257, and Asn287 form the FabH-like catalytic triad of PqsD. The C112A mutant is inactive, although it still reversibly binds anthraniloyl-CoA. The covalent complex between anthranilate and Cys112 clearly illuminates the orientation of key elements of the PqsD catalytic machinery and represents a snapshot of a key point in the catalytic cycle.

  18. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Risat A; Hammer, Daniel A [Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 (United States); Robbins, Gregory P; Ricart, Brendon G [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104 (United States); Dembo, Micah, E-mail: hammer@seas.upenn.ed [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States)

    2010-05-19

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K{sub D} of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against {beta}{sub 2}-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  19. Implementation of Complex Signal Processing Algorithms for Position-Sensitive Microcalorimeters

    Science.gov (United States)

    Smith, Stephen J.

    2008-01-01

    We have recently reported on a theoretical digital signal-processing algorithm for improved energy and position resolution in position-sensitive, transition-edge sensor (POST) X-ray detectors [Smith et al., Nucl, lnstr and Meth. A 556 (2006) 2371. PoST's consists of one or more transition-edge sensors (TES's) on a large continuous or pixellated X-ray absorber and are under development as an alternative to arrays of single pixel TES's. PoST's provide a means to increase the field-of-view for the fewest number of read-out channels. In this contribution we extend the theoretical correlated energy position optimal filter (CEPOF) algorithm (originally developed for 2-TES continuous absorber PoST's) to investigate the practical implementation on multi-pixel single TES PoST's or Hydras. We use numerically simulated data for a nine absorber device, which includes realistic detector noise, to demonstrate an iterative scheme that enables convergence on the correct photon absorption position and energy without any a priori assumptions. The position sensitivity of the CEPOF implemented on simulated data agrees very well with the theoretically predicted resolution. We discuss practical issues such as the impact of random arrival phase of the measured data on the performance of the CEPOF. The CEPOF algorithm demonstrates that full-width-at- half-maximum energy resolution of < 8 eV coupled with position-sensitivity down to a few 100 eV should be achievable for a fully optimized device.

  20. Complex Selection on Human Polyadenylation Signals Revealed by Polymorphism and Divergence Data

    Science.gov (United States)

    Kainov, Yaroslav A.; Aushev, Vasily N.; Naumenko, Sergey A.; Tchevkina, Elena M.; Bazykin, Georgii A.

    2016-01-01

    Polyadenylation is a step of mRNA processing which is crucial for its expression and stability. The major polyadenylation signal (PAS) represents a nucleotide hexamer that adheres to the AATAAA consensus sequence. Over a half of human genes have multiple cleavage and polyadenylation sites, resulting in a great diversity of transcripts differing in function, stability, and translational activity. Here, we use available whole-genome human polymorphism data together with data on interspecies divergence to study the patterns of selection acting on PAS hexamers. Common variants of PAS hexamers are depleted of single nucleotide polymorphisms (SNPs), and SNPs within PAS hexamers have a reduced derived allele frequency (DAF) and increased conservation, indicating prevalent negative selection; at the same time, the SNPs that “improve” the PAS (i.e., those leading to higher cleavage efficiency) have increased DAF, compared to those that “impair” it. SNPs are rarer at PAS of “unique” polyadenylation sites (one site per gene); among alternative polyadenylation sites, at the distal PAS and at exonic PAS. Similar trends were observed in DAFs and divergence between species of placental mammals. Thus, selection permits PAS mutations mainly at redundant and/or weakly functional PAS. Nevertheless, a fraction of the SNPs at PAS hexamers likely affect gene functions; in particular, some of the observed SNPs are associated with disease. PMID:27324920

  1. Subcellular localization of regulator of G protein signaling RGS7 complex in neurons and transfected cells.

    Science.gov (United States)

    Liapis, Evangelos; Sandiford, Simone; Wang, Qiang; Gaidosh, Gabriel; Motti, Dario; Levay, Konstantin; Slepak, Vladlen Z

    2012-08-01

    The R7 family of regulators of G protein signaling (RGS) is involved in many functions of the nervous system. This family includes RGS6, RGS7, RGS9, and RGS11 gene products and is defined by the presence of the characteristic first found in Disheveled, Egl-10, Pleckstrin (DEP), DEP helical extension (DHEX), Gγ-like, and RGS domains. Herein, we examined the subcellular localization of RGS7, the most broadly expressed R7 member. Our immunofluorescence studies of retinal and dorsal root ganglion neurons showed that RGS7 concentrated at the plasma membrane of cell bodies, in structures resembling lamellipodia or filopodia along the processes, and at the dendritic tips. At the plasma membrane of dorsal root ganglia neurons, RGS7 co-localized with its known binding partners R7 RGS binding protein (R7BP), Gαo, and Gαq. More than 50% of total RGS7-specific immunofluorescence was present in the cytoplasm, primarily within numerous small puncta that did not co-localize with R7BP. No specific RGS7 or R7BP immunoreactivity was detected in the nuclei. In transfected cell lines, ectopic RGS7 had both diffuse cytosolic and punctate localization patterns. RGS7 also localized in centrosomes. Structure-function analysis showed that the punctate localization was mediated by the DEP/DHEX domains, and centrosomal localization was dependent on the DHEX domain.

  2. N-Formylmethionyl Peptide Receptors on Equine Leukocytes Initiate Secretion but not Chemotaxis

    Science.gov (United States)

    Snyderman, Ralph; Pike, Marilyn C.

    1980-07-01

    The chemotaxis of leukocytes appears to be initiated by the binding of chemotactic factors to the surface of these cells. N-Formylated peptides induce chemotaxis and lysosomal enzyme secretion of leukocytes; because these peptides are available in a purified radiolabeled form, they have been useful in the characterization of receptors for chemotactic factors. Equine polymorphonuclear leukocytes secrete lysosomal enzymes but do not exhibit chemotaxis in response to the N-formylated peptides, even though they have a high-affinity cell surface receptor for these agents. The specificity of the equine receptor resembles the specificity of the receptor on chemotactically responsive leukocytes from other species. Equine polymorphonuclear leukocytes may thus be an excellent model for the study of the events that lead to a biological response following receptor occupancy.

  3. Metal Dependence of Signal Transmission through MolecularQuantum-Dot Cellular Automata (QCA: A Theoretical Studyon Fe, Ru, and Os Mixed-Valence Complexes

    Directory of Open Access Journals (Sweden)

    Ken Tokunaga

    2010-08-01

    Full Text Available Dynamic behavior of signal transmission through metal complexes [L5M-BL-ML5]5+ (M=Fe, Ru, Os, BL=pyrazine (py, 4,4’-bipyridine (bpy, L=NH3, which are simplified models of the molecular quantum-dot cellular automata (molecular QCA, is discussed from the viewpoint of one-electron theory, density functional theory. It is found that for py complexes, the signal transmission time (tst is Fe(0.6 fs < Os(0.7 fs < Ru(1.1 fs and the signal amplitude (A is Fe(0.05 e < Os(0.06 e < Ru(0.10 e. For bpy complexes, tst and A are Fe(1.4 fs < Os(1.7 fs < Ru(2.5 fs and Os(0.11 e < Ru(0.12 e complexes generally have stronger signal amplitude, but waste longer time for signal transmission than py complexes. Among all complexes, Fe complex with bpy BL shows the best result. These results are discussed from overlap integral and energy gap of molecular orbitals.

  4. COMMUNICATION: The effects of elevated body temperature on the complexity of the diaphragm EMG signals during maturation

    Science.gov (United States)

    Akkurt, David; Akay, Yasemin M.; Akay, Metin

    2009-04-01

    In this paper, we examine the effect of elevated body temperature on the complexity of the diaphragm electromyography (EMGdia), the output of the respiratory neural network--using the approximate entropy method. The diaphragm EMG, EEG, EOG as well as other physiological signals (tracheal pressure, blood pressure and respiratory volume) in chronically instrumented rats were recorded at two postnatal ages: 25-35 days age (juvenile, n = 5) and 36-44 days age (early adult, n = 6) groups during control (36-37 °C), mild elevated body temperature (38 °C) and severe elevated body temperature (39-40 °C). Three to five trials of the recordings were performed at normal body temperature before raising the animal's core temperature by 1-4 °C with an electric heating pad. At the elevated temperature, another 3-5 trials were performed. Finally, the animal was cooled to the original temperature, and trials were again repeated. Complexity values of the diaphragm EMG signal were estimated and evaluated using the approximate entropy method (ApEn) over the ten consecutive breaths. Our results suggested that the mean approximate entropy values for the juvenile age group were 1.01 ± 0.01 (standard error) during control, 0.91 ± 0.02 during mild elevated body temperature and 0.81 ± 0.02 during severe elevated body temperature. For the early adult age group, these values were 0.94 ± 0.01 during control, 0.93 ± 0.01 during mild elevated body temperature and 0.92 ± 0.01 during severe elevated body temperature. Our results show that the complexity values and the durations of the diaphragm EMG (EMGdia) were significantly decreased when the elevated body temperature was shifted from control or mild to severe body temperature (p < 0.05) for the juvenile age group. However, for the early adult age group, an increase in body temperature slightly reduced the complexity measures and the duration of the EMGdia. But, these changes were not statistically significant. These results furthermore

  5. Role of motility and chemotaxis in the pathogenesis of Dickeya dadantii 3937 (ex Erwinia chrysanthemi 3937).

    Science.gov (United States)

    Antúnez-Lamas, María; Cabrera-Ordóñez, Ezequiel; López-Solanilla, Emilia; Raposo, Rosa; Trelles-Salazar, Oswaldo; Rodríguez-Moreno, Andrés; Rodríguez-Palenzuela, Pablo

    2009-02-01

    Dickeya dadantii 3937 (ex Erwinia chrysanthemi), a member of the Enterobacteriaceae, causes soft rot in many economically important crops. A successful pathogen has to reach the interior of the plant in order to cause disease. To study the role of motility and chemotaxis in the pathogenicity of D. dadantii 3937, genes involved in the chemotactic signal transduction system (cheW, cheB, cheY and cheZ) and in the structure of the flagellar motor (motA) were mutagenized. All the mutant strains grew like the wild-type in culture media, and the production and secretion of pectolytic enzymes was not affected. As expected, the swimming ability of the mutant strains was reduced with respect to the wild-type: motA (94%), cheY (80%), cheW (74%), cheB (54%) and cheZ (48%). The virulence of the mutant strains was analysed in chicory, Saintpaulia and potato. The mutant strains were also tested for their capability to enter into Arabidopsis leaves. All the mutants showed a significant decrease of virulence in certain hosts; however, the degree of virulence reduction varied depending on the virulence assay. The ability to penetrate Arabidopsis leaves was impaired in all the mutants, whereas the capacity to colonize potato tubers after artificial inoculation was affected in only two mutant strains. In general, the virulence of the mutants could be ranked as motA

  6. Close relationship between fMRI signals and transient heart rate changes accompanying K-complex. Simultaneous EEG/fMRI study

    International Nuclear Information System (INIS)

    Combining functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) allows the investigation of spontaneous activities in the human brain. Recently, by using this technique, increases in fMRI signal accompanying transient EEG activities such as sleep spindles and slow waves were reported. Although these fMRI signal increases appear to arise as a result of the neural activities being reflected in the EEG, when the influence of physiological activities upon fMRI signals are taken into consideration, it is highly controversial that fMRI signal increases accompanying transient EEG activities reflect actual neural activities. In the present study, we conducted simultaneous fMRI and polysomnograph recording of 18 normal adults, to study the effect of transient heart rate changes after a K-complex on fMRI signals. Significant fMRI signal increase was observed in the cerebellum, the ventral thalamus, the dorsal part of the brainstem, the periventricular white matter and the ventricle (quadrigeminal cistern). On the other hand, significant fMRI signal decrease was observed only in the right insula. Moreover, intensities of fMRI signal increase that was accompanied by a K-complex correlated positively with the magnitude of heart rate changes after a K-complex. Previous studies have reported that K-complex is closely related with sympathetic nervous activity and that the attributes of perfusion regulation in the brain differ during wakefulness and sleep. By taking these findings into consideration, our present results indicate that a close relationship exists between a K-complex and the changes in cardio- and neurovascular regulations that are mediated by the autonomic nervous system during sleep; further, these results indicate that transient heart rate changes after a K-complex can affect the fMRI signal generated in certain brain regions. (author)

  7. TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy.

    Science.gov (United States)

    Vlahakis, Ariadne; Graef, Martin; Nunnari, Jodi; Powers, Ted

    2014-07-22

    The highly conserved Target of Rapamycin (TOR) kinase is a central regulator of cell growth and metabolism in response to nutrient availability. TOR functions in two structurally and functionally distinct complexes, TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2). Through TORC1, TOR negatively regulates autophagy, a conserved process that functions in quality control and cellular homeostasis and, in this capacity, is part of an adaptive nutrient deprivation response. Here we demonstrate that during amino acid starvation TOR also operates independently as a positive regulator of autophagy through the conserved TORC2 and its downstream target protein kinase, Ypk1. Under these conditions, TORC2-Ypk1 signaling negatively regulates the Ca(2+)/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing eIF2α kinase, Gcn2, and to promote autophagy. Our work reveals that the TORC2 pathway regulates autophagy in an opposing manner to TORC1 to provide a tunable response to cellular metabolic status.

  8. Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics.

    Science.gov (United States)

    Mora, Alberto Dalla; Martinenghi, Edoardo; Contini, Davide; Tosi, Alberto; Boso, Gianluca; Durduran, Turgut; Arridge, Simon; Martelli, Fabrizio; Farina, Andrea; Torricelli, Alessandro; Pifferi, Antonio

    2015-06-01

    We present a proof of concept prototype of a time-domain diffuse optics probe exploiting a fast Silicon PhotoMultiplier (SiPM), featuring a timing resolution better than 80 ps, a fast tail with just 90 ps decay time-constant and a wide active area of 1 mm2. The detector is hosted into the probe and used in direct contact with the sample under investigation, thus providing high harvesting efficiency by exploiting the whole SiPM numerical aperture and also reducing complexity by avoiding the use of cumbersome fiber bundles. Our tests also demonstrate high accuracy and linearity in retrieving the optical properties and suitable contrast and depth sensitivity for detecting localized inhomogeneities. In addition to a strong improvement in both instrumentation cost and size with respect to legacy solutions, the setup performances are comparable to those of state-of-the-art time-domain instrumentation, thus opening a new way to compact, low-cost and high-performance time-resolved devices for diffuse optical imaging and spectroscopy. PMID:26072763

  9. Generalized Keller-Segel models of chemotaxis. Analogy with nonlinear mean field Fokker-Planck equations

    CERN Document Server

    Chavanis, Pierre-Henri

    2008-01-01

    We consider a generalized class of Keller-Segel models describing the chemotaxis of biological populations (bacteria, amoebae, endothelial cells, social insects,...). We show the analogy with nonlinear mean field Fokker-Planck equations and generalized thermodynamics. As an illustration, we introduce a new model of chemotaxis incorporating both effects of anomalous diffusion and exclusion principle (volume filling). We also discuss the analogy between biological populations described by the Keller-Segel model and self-gravitating Brownian particles described by the Smoluchowski-Poisson system.

  10. Lauric acid in crown daisy root exudate potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection.

    Science.gov (United States)

    Dong, Linlin; Li, Xiaolin; Huang, Li; Gao, Ying; Zhong, Lina; Zheng, Yuanyuan; Zuo, Yuanmei

    2014-01-01

    Tomato (Solanum lycopersicum) crops can be severely damaged due to parasitism by the root-knot nematode (RKN) Meloidogyne incognita, but are protected when intercropped with crown daisy (Chrysanthemum coronarium L.). Root exudate may be the determining factor for this protection. An experiment using pots linked by a tube and Petri dish experiments were undertaken to confirm that tomato-crown daisy intercropping root exudate decreased the number of nematodes and alleviated nematode damage, and to determine crown daisy root exudate-regulated nematode chemotaxis. Following a gas chromatography-mass spectrometry assay, it was found that the intercropping protection was derived from the potent bioactivity of a specific root exudate component of crown daisy, namely lauric acid. The Mi-flp-18 gene, encoding an FMRFamide-like peptide neuromodulator, regulated nematode chemotaxis and infection by RNA interference. Moreover, it was shown that lauric acid acts as both a lethal trap and a repellent for M. incognita by specifically regulating Mi-flp-18 expression in a concentration-dependent manner. Low concentrations of lauric acid (0.5-2.0mM) attract M. incognita and consequently cause death, while high concentrations (4.0mM) repel M. incognita. This study elucidates how lauric acid in crown daisy root exudate regulates nematode chemotaxis and disrupts Mi-flp-18 expression to alleviate nematode damage, and presents a general methodology for studying signalling systems affected by plant root exudates in the rhizosphere. This could lead to the development of economical and feasible strategies for controlling plant-parasitic nematodes, and provide an alternative to the use of pesticides in farming systems. PMID:24170741

  11. Construction and Expression of Eukaryotic Expressing Vector pCH510 of Polypeptide CH50 and Its Chemotaxis and Antitumor Function by in vivo Transfection

    Institute of Scientific and Technical Information of China (English)

    李东; 冯作化; 叶仕桥; 张桂梅; 张慧; 黄波; 肖徽

    2001-01-01

    To construct an eukaryotic expressing vector that expresses CH50, a recombinant CellⅠ-HepⅡ bifunctional-domain polypeptide of human fibronectin, and to investigate the chemotaxis to immune cells and the inhibitory effect on the growth of tumor by the expression of the plasmid in vivo, the plasmid was constructed by DNA recombination. Gene transfection was performed in vitro and in vivo. The expressed product was identified by Western blot. The chemotaxis after gene transfection in vivo was observed by histotomy and staining of muscle tissues. The inhibition of gene transfection on solid tumor was observed in mice. The results showed that plasmid pCH510 was constructed by the recombination of the 5′-terminal noncoding region and signal peptide coding region of human fibronectin cDNA and cDNA fragment coding CH50 polypeptide with a 3′-terminal noncoding region of human FN cDNA, and the insertion of the recombinated fragment into plasmid pcDNA3.1. After transfection with plasmid pCH510, NIH3T3 cells could produce CH50 polypeptide. The transfection of plasmid pCH510 by the injection in muscle of mouse could produce the effects of chemotaxis on immune cells and the inhibition on the growth of solid tumor. It is concluded that plasmid pCH510 can express in cells and in vivo in mouse. The expression of the plasmid in vivo has a chemotactic effect on immune cells and can inhibit the growth of solid tumor.

  12. Protein folding modulates the swapped dimerization mechanism of methyl-accepting chemotaxis heme sensors.

    Directory of Open Access Journals (Sweden)

    Marta A Silva

    Full Text Available The periplasmic sensor domains GSU0582 and GSU0935 are part of methyl accepting chemotaxis proteins in the bacterium Geobacter sulfurreducens. Both contain one c-type heme group and their crystal structures revealed that these domains form swapped dimers with a PAS fold formed from the two protein chains. The swapped dimerization of these sensors is related to the mechanism of signal transduction and the formation of the swapped dimer involves significant folding changes and conformational rearrangements within each monomeric component. However, the structural changes occurring during this process are poorly understood and lack a mechanistic framework. To address this issue, we have studied the folding and stability properties of two distinct heme-sensor PAS domains, using biophysical spectroscopies. We observed substantial differences in the thermodynamic stability (ΔG = 14.6 kJ.mol(-1 for GSU0935 and ΔG = 26.3 kJ.mol(-1 for GSU0582, and demonstrated that the heme moiety undergoes conformational changes that match those occurring at the global protein structure. This indicates that sensing by the heme cofactor induces conformational changes that rapidly propagate to the protein structure, an effect which is directly linked to the signal transduction mechanism. Interestingly, the two analyzed proteins have distinct levels of intrinsic disorder (25% for GSU0935 and 13% for GSU0582, which correlate with conformational stability differences. This provides evidence that the sensing threshold and intensity of the propagated allosteric effect is linked to the stability of the PAS-fold, as this property modulates domain swapping and dimerization. Analysis of the PAS-domain shows that disorder segments are found either at the hinge region that controls helix motions or in connecting segments of the β-sheet interface. The latter is known to be widely involved in both intra- and intermolecular interactions, supporting the view that it's folding

  13. Protein kinase B (PKB/AKT1) formed signaling complexes with mitochondrial proteins and prevented glycolytic energy dysfunction in cultured cardiomyocytes during ischemia-reperfusion injury.

    Science.gov (United States)

    Deng, Wu; Leu, Hsin-Bang; Chen, Yumay; Chen, Yu-Han; Epperson, Christine M; Juang, Charity; Wang, Ping H

    2014-05-01

    Our previous studies showed that insulin stimulated AKT1 translocation into mitochondria and modulated oxidative phosphorylation complex V in cardiac muscle. This raised the possibility that mitochondrial AKT1 may regulate glycolytic oxidative phosphorylation and mitochondrial function in cardiac muscle cells. The aims of this project were to study the effects of mitochondrial AKT1 signaling on cell survival in stressed cardiomyocytes, to define the effect of mitochondrial AKT1 signaling on glycolytic bioenergetics, and to identify mitochondrial targets of AKT1 signaling in cardiomyocytes. Mitochondrial AKT1 signaling played a protective role against apoptosis and necrosis during ischemia-reperfusion stress, suppressed mitochondrial calcium overload, and alleviated mitochondrial membrane depolarization. Activation of AKT1 signaling in mitochondria increased glucose uptake, enhanced respiration efficiency, reduced superoxide generation, and increased ATP production in the cardiomyocytes. Inhibition of mitochondrial AKT attenuated insulin response, indicating that insulin regulation of ATP production required mitochondrial AKT1 signaling. A proteomic approach was used to reveal 15 novel targets of AKT1 signaling in mitochondria, including pyruvate dehydrogenase complex (PDC). We have confirmed and characterized the association of AKT1 and PDC subunits and verified a stimulatory effect of mitochondrial AKT1 on the enzymatic activity of PDC. These findings suggested that AKT1 formed protein complexes with multiple mitochondrial proteins and improved mitochondrial function in stressed cardiomyocytes. The novel AKT1 signaling targets in mitochondria may become a resource for future metabolism research.

  14. Complexity

    CERN Document Server

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  15. Toll-Like Receptor Signaling in Vertebrates: Testing the Integration of Protein, Complex, and Pathway Data in the Protein Ontology Framework

    OpenAIRE

    Cecilia Arighi; Veronica Shamovsky; Anna Maria Masci; Alan Ruttenberg; Barry Smith; Natale, Darren A.; Cathy Wu; Peter D'Eustachio

    2015-01-01

    The Protein Ontology (PRO) provides terms for and supports annotation of species-specific protein complexes in an ontology framework that relates them both to their components and to species-independent families of complexes. Comprehensive curation of experimentally known forms and annotations thereof is expected to expose discrepancies, differences, and gaps in our knowledge. We have annotated the early events of innate immune signaling mediated by Toll-Like Receptor 3 and 4 complexes in hum...

  16. A novel copper complex induces paraptosis in colon cancer cells via the activation of ER stress signalling.

    Science.gov (United States)

    Gandin, Valentina; Pellei, Maura; Tisato, Francesco; Porchia, Marina; Santini, Carlo; Marzano, Cristina

    2012-01-01

    Platinum anticancer drugs have been used for three decades despite their serious side effects and the emerging of resistance phenomena. Recently, a phosphine copper(I) complex, [Cu(thp)(4)][PF(6)] (CP), gained special attention because of its strong antiproliferative effects. CP killed human colon cancer cells more efficiently than cisplatin and oxaliplatin and it overcame platinum drug resistance. CP preferentially reduced cancer cell viability whereas non-tumour cells were poorly affected. Colon cancer cells died via a programmed cell death whose transduction pathways were characterized by the absence of hallmarks of apoptosis. The inhibition of 26S proteasome activities induced by CP caused intracellular accumulation of polyubiquitinated proteins and the functional suppression of the ubiquitin-proteasome pathway thus triggering endoplasmic reticulum stress. These data, providing a mechanistic characterization of CP-induced cancer cell death, shed light on the signaling pathways involved in paraptosis thus offering a new tool to overcome apoptosis-resistance in colon cancer cells.

  17. Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects

    Science.gov (United States)

    Gao, Zhong-Ke; Cai, Qing; Dong, Na; Zhang, Shan-Shan; Bo, Yun; Zhang, Jie

    2016-10-01

    Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.

  18. CDIP1-BAP31 Complex Transduces Apoptotic Signals from Endoplasmic Reticulum to Mitochondria under Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Takushi Namba

    2013-10-01

    Full Text Available Resolved endoplasmic reticulum (ER stress response is essential for intracellular homeostatic balance, but unsettled ER stress can lead to apoptosis. Here, we show that a proapoptotic p53 target, CDIP1, acts as a key signal transducer of ER-stress-mediated apoptosis. We identify B-cell-receptor-associated protein 31 (BAP31 as an interacting partner of CDIP1. Upon ER stress, CDIP1 is induced and enhances an association with BAP31 at the ER membrane. We also show that CDIP1 binding to BAP31 is required for BAP31 cleavage upon ER stress and for BAP31-Bcl-2 association. The recruitment of Bcl-2 to the BAP31-CDIP1 complex, as well as CDIP1-dependent truncated Bid (tBid and caspase-8 activation, contributes to BAX oligomerization. Genetic knockout of CDIP1 in mice leads to impaired response to ER-stress-mediated apoptosis. Altogether, our data demonstrate that the CDIP1/BAP31-mediated regulation of mitochondrial apoptosis pathway represents a mechanism for establishing an ER-mitochondrial crosstalk for ER-stress-mediated apoptosis signaling.

  19. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    Energy Technology Data Exchange (ETDEWEB)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  20. Klotho Regulates 14-3-3ζ Monomerization and Binding to the ASK1 Signaling Complex in Response to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Reynolds K Brobey

    Full Text Available The reactive oxygen species (ROS-sensitive apoptosis signal-regulating kinase 1 (ASK1 signaling complex is a key regulator of p38 MAPK activity, a major modulator of stress-associated with aging disorders. We recently reported that the ratio of free ASK1 to the complex-bound ASK1 is significantly decreased in Klotho-responsive manner and that Klotho-deficient tissues have elevated levels of free ASK1 which coincides with increased oxidative stress. Here, we tested the hypothesis that: 1 covalent interactions exist among three identified proteins constituting the ASK1 signaling complex; 2 in normal unstressed cells the ASK1, 14-3-3ζ and thioredoxin (Trx proteins simultaneously engage in a tripartite complex formation; 3 Klotho's stabilizing effect on the complex relied solely on 14-3-3ζ expression and its apparent phosphorylation and dimerization changes. To verify the hypothesis, we performed 14-3-3ζ siRNA knock-down experiments in conjunction with cell-based assays to measure ASK1-client protein interactions in the presence and absence of Klotho, and with or without an oxidant such as rotenone. Our results show that Klotho activity induces posttranslational modifications in the complex targeting 14-3-3ζ monomer/dimer changes to effectively protect against ASK1 oxidation and dissociation. This is the first observation implicating all three proteins constituting the ASK1 signaling complex in close proximity.

  1. Classifying acoustic signals into phoneme categories: average and dyslexic readers make use of complex dynamical patterns and multifractal scaling properties of the speech signal

    Directory of Open Access Journals (Sweden)

    Fred Hasselman

    2015-03-01

    Full Text Available Several competing aetiologies of developmental dyslexia suggest that the problems with acquiring literacy skills are causally entailed by low-level auditory and/or speech perception processes. The purpose of this study is to evaluate the diverging claims about the specific deficient peceptual processes under conditions of strong inference. Theoretically relevant acoustic features were extracted from a set of artificial speech stimuli that lie on a /bAk/-/dAk/ continuum. The features were tested on their ability to enable a simple classifier (Quadratic Discriminant Analysis to reproduce the observed classification performance of average and dyslexic readers in a speech perception experiment. The ‘classical’ features examined were based on component process accounts of developmental dyslexia such as the supposed deficit in Envelope Rise Time detection and the deficit in the detection of rapid changes in the distribution of energy in the frequency spectrum (formant transitions. Studies examining these temporal processing deficit hypotheses do not employ measures that quantify the temporal dynamics of stimuli. It is shown that measures based on quantification of the dynamics of complex, interaction-dominant systems (Recurrence Quantification Analysis and the multifractal spectrum enable QDA to classify the stimuli almost identically as observed in dyslexic and average reading participants. It seems unlikely that participants used any of the features that are traditionally associated with accounts of (impaired speech perception. The nature of the variables quantifying the temporal dynamics of the speech stimuli imply that the classification of speech stimuli cannot be regarded as a linear aggregate of component processes that each parse the acoustic signal independent of one another, as is assumed by the ‘classical’ aetiologies of developmental dyslexia. It is suggested that the results imply that the differences in speech perception

  2. Classifying acoustic signals into phoneme categories: average and dyslexic readers make use of complex dynamical patterns and multifractal scaling properties of the speech signal.

    Science.gov (United States)

    Hasselman, Fred

    2015-01-01

    Several competing aetiologies of developmental dyslexia suggest that the problems with acquiring literacy skills are causally entailed by low-level auditory and/or speech perception processes. The purpose of this study is to evaluate the diverging claims about the specific deficient peceptual processes under conditions of strong inference. Theoretically relevant acoustic features were extracted from a set of artificial speech stimuli that lie on a /bAk/-/dAk/ continuum. The features were tested on their ability to enable a simple classifier (Quadratic Discriminant Analysis) to reproduce the observed classification performance of average and dyslexic readers in a speech perception experiment. The 'classical' features examined were based on component process accounts of developmental dyslexia such as the supposed deficit in Envelope Rise Time detection and the deficit in the detection of rapid changes in the distribution of energy in the frequency spectrum (formant transitions). Studies examining these temporal processing deficit hypotheses do not employ measures that quantify the temporal dynamics of stimuli. It is shown that measures based on quantification of the dynamics of complex, interaction-dominant systems (Recurrence Quantification Analysis and the multifractal spectrum) enable QDA to classify the stimuli almost identically as observed in dyslexic and average reading participants. It seems unlikely that participants used any of the features that are traditionally associated with accounts of (impaired) speech perception. The nature of the variables quantifying the temporal dynamics of the speech stimuli imply that the classification of speech stimuli cannot be regarded as a linear aggregate of component processes that each parse the acoustic signal independent of one another, as is assumed by the 'classical' aetiologies of developmental dyslexia. It is suggested that the results imply that the differences in speech perception performance between average and

  3. A ternary complex comprising transportin1, Rab8 and the ciliary targeting signal directs proteins to ciliary membranes

    Science.gov (United States)

    Madugula, Viswanadh

    2016-01-01

    ABSTRACT The sensory functions of cilia are dependent on the enrichment of cilium-resident proteins. Although it is known that ciliary targeting signals (CTSs) specifically target ciliary proteins to cilia, it is still unclear how CTSs facilitate the entry and retention of cilium-resident proteins at the molecular level. We found that non-ciliary membrane reporters can passively diffuse into cilia through the lateral transport pathway, and the translocation of membrane reporters through the ciliary diffusion barrier is facilitated by importin binding motifs and domains. Screening known CTSs of ciliary membrane residents uncovered that fibrocystin, photoreceptor retinol dehydrogenase, rhodopsin and retinitis pigmentosa 2 interact with transportin1 (TNPO1) through previously identified CTSs. We further discovered that a new ternary complex, comprising TNPO1, Rab8 and a CTS, can assemble or disassemble under the guanine nucleotide exchange activity of Rab8. Our study suggests a new mechanism in which the TNPO1–Rab8–CTS complex mediates selective entry into and retention of cargos within cilia. PMID:27633000

  4. Structural Basis for Fc[gamma]RIIa Recognition of Human IgG and Formation of Inflammatory Signaling Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ramsland, Paul A.; Farrugia, William; Bradford, Tessa M.; Sardjono, Caroline Tan; Esparon, Sandra; Trist, Halina M.; Powell, Maree S.; Tan, Peck Szee; Cendron, Angela C.; Wines, Bruce D.; Scott, Andrew M.; Hogarth, P. Mark (Burnet); (Monash); (LICR); (Melbourne)

    2011-09-20

    The interaction of Abs with their specific FcRs is of primary importance in host immune effector systems involved in infection and inflammation, and are the target for immune evasion by pathogens. Fc{gamma}RIIa is a unique and the most widespread activating FcR in humans that through avid binding of immune complexes potently triggers inflammation. Polymorphisms of Fc{gamma}RIIa (high responder/low responder [HR/LR]) are linked to susceptibility to infections, autoimmune diseases, and the efficacy of therapeutic Abs. In this article, we define the three-dimensional structure of the complex between the HR (arginine, R134) allele of Fc{gamma}RIIa (Fc{gamma}RIIa-HR) and the Fc region of a humanized IgG1 Ab, hu3S193. The structure suggests how the HR/LR polymorphism may influence Fc{gamma}RIIa interactions with different IgG subclasses and glycoforms. In addition, mutagenesis defined the basis of the epitopes detected by FcR blocking mAbs specific for Fc{gamma}RIIa (IV.3), Fc{gamma}RIIb (X63-21), and a pan Fc{gamma}RII Ab (8.7). The epitopes detected by these Abs are distinct, but all overlap with residues defined by crystallography to contact IgG. Finally, crystal structures of LR (histidine, H134) allele of Fc{gamma}RIIa and Fc{gamma}RIIa-HR reveal two distinct receptor dimers that may represent quaternary states on the cell surface. A model is presented whereby a dimer of Fc{gamma}RIIa-HR binds Ag-Ab complexes in an arrangement that possibly occurs on the cell membrane as part of a larger signaling assembly.

  5. Chemotaxis to cyclic AMP and folic acid is mediated by different G proteins in Dictyostelium discoideum

    NARCIS (Netherlands)

    Kesbeke, Fanja; Haastert, Peter J.M. van; Wit, René J.W. de; Snaar-Jagalska, B. Ewa

    1990-01-01

    Mutant Frigid A (fgdA) of Dictyostelium discoideum is defective in a functional Gα2 subunit of a G protein and is characterized by a complete blockade of the cyclic AMP-mediated sensory transduction steps, including cyclic AMP relay, chemotaxis and the cyclic GMP response. Folic acid-mediated transm

  6. Fluid flow and particle dynamics inside an evaporating droplet containing live bacteria displaying chemotaxis.

    Science.gov (United States)

    Thokchom, Ashish Kumar; Swaminathan, Rajaram; Singh, Anugrah

    2014-10-21

    Evaporation-induced particle deposition patterns like coffee rings provide easy visual identification that is beneficial for developing inexpensive and simple diagnostic devices for detecting pathogens. In this study, the effect of chemotaxis on such pattern formation has been realized experimentally in drying droplets of bacterial suspensions. We have investigated the velocity field, concentration profile, and deposition pattern in the evaporating droplet of Escherichia coli suspension in the presence and absence of nutrients. Flow visualization experiments using particle image velocimetry (PIV) were carried out with E. coli bacteria as biological tracer particles. Experiments were conducted for suspensions of motile (live) as well as nonmotile (dead) bacteria. In the absence of any nutrient gradient like sugar on the substrate, both types of bacterial suspension showed two symmetric convection cells and a ring like deposition of particles after complete evaporation. Interestingly, the droplet containing live bacterial suspension showed a different velocity field when the sugar was placed at the base of the droplet. This can be attributed to the chemoattractant nature of the sugar, which induced chemotaxis among live bacteria targeted toward the nutrient site. Deposition of the suspended bacteria was also displaced toward the nutrient site as the evaporation proceeded. Our experiments demonstrate that both velocity fields and concentration patterns can be altered by chemotaxis to modify the pattern formation in evaporating droplet containing live bacteria. These results highlight the role of bacterial chemotaxis in modifying coffee ring patterns. PMID:25229613

  7. Chemotaxis Increases the Residence Time of Bacteria in Granular Media Containing Distributed Contaminant Sources.

    Science.gov (United States)

    Adadevoh, Joanna S T; Triolo, Sarah; Ramsburg, C Andrew; Ford, Roseanne M

    2016-01-01

    The use of chemotactic bacteria in bioremediation has the potential to increase access to, and the biotransformation of, contaminant mass within the subsurface. This laboratory-scale study aimed to understand and quantify the influence of chemotaxis on the residence times of pollutant-degrading bacteria within homogeneous treatment zones. Focus was placed on a continuous-flow sand-packed column in which a uniform distribution of naphthalene crystals created distributed sources of dissolved-phase contaminant. A 10 mL pulse of Pseudomonas putida G7, which is chemotactic to naphthalene, and Pseudomonas putida G7 Y1, a nonchemotactic mutant strain, were simultaneously introduced into the sand-packed column at equal concentrations. Breakthrough curves obtained from experiments conducted with and without naphthalene were used to quantify the effect of chemotaxis on transport parameters. In the presence of the chemoattractant, longitudinal dispersion of PpG7 increased by a factor of 3, and percent recovery decreased by 43%. In contrast, PpG7 Y1 transport was not influenced by the presence of naphthalene. The results imply that pore-scale chemotaxis responses are evident at an interstitial velocity of 1.8 m/day, which is within the range of typical groundwater flow. Within the context of bioremediation, chemotaxis may work to enhance bacterial residence times in zones of contamination, thereby improving treatment. PMID:26605857

  8. A novel antagonist of CRTH2 blocks eosinophil release from bone marrow, chemotaxis and respiratory burst

    DEFF Research Database (Denmark)

    Royer, J F; Schratl, P; Lorenz, S;

    2007-01-01

    developed small molecule antagonist of CRTH2, Cay10471, on eosinophil function with respect to recruitment, respiratory burst and degranulation. METHODS: Chemotaxis of guinea pig bone marrow eosinophils and human peripheral blood eosinophils were determined using microBoyden chambers. Eosinophil release...

  9. Chemotaxis in the cellular slime molds : I. The effect of temperature

    NARCIS (Netherlands)

    Konijn, Theo M.

    1965-01-01

    The effect of temperature on chemotaxis in the cellular slime mold Dictyostelium discoideum has been studied by incubating small populations of washed myxamoebae at different temperatures. Droplets containing a cell suspension of known density were deposited on a hydrophobic agar surface. The myxamo

  10. NemaCount: quantification of nematode chemotaxis behavior in a browser.

    Science.gov (United States)

    O'Halloran, Damien M

    2016-06-01

    Nematodes such as Caenorhabditis elegans offer a very effective and tractable system to probe the underlying mechanisms of diverse sensory behaviors. Numerous platforms exist for quantifying nematode behavior and often require separate dependencies or software. Here I describe a novel and simple tool called NemaCount that provides a versatile solution for the quantification of nematode chemotaxis behavior. The ease of installation and user-friendly interface makes NemaCount a practical tool for measuring diverse behaviors and image features of nematodes such as C. elegans. The main advantage of NemaCount is that it operates from within a modern browser such as Google Chrome or Apple Safari. Any features that change in total number, size, shape, or angular distance between control and experimental preparations are suited to NemaCount for image analysis, while commonly used chemotaxis assays can be quantified, and statistically analyzed using a suite of functions from within NemaCount. NemaCount also offers image filtering options that allow the user to improve object detection and measurements. NemaCount was validated by examining nematode chemotaxis behavior; angular distances of locomotory tracks in C. elegans; and body lengths of Heterorhabditis bacteriophora nematodes. Apart from a modern browser, no additional software is required to operate NemaCount, making NemaCount a cheap, simple option for the analysis of nematode images and chemotaxis behavior.

  11. Crystallization and crystallographic analysis of the ligand-binding domain of the Pseudomonas putida chemoreceptor McpS in complex with malate and succinate

    International Nuclear Information System (INIS)

    The crystallization of the ligand-binding domain of the methyl-accepting chemotaxis protein chemoreceptor McpS (McpS-LBD) is reported. Methyl-accepting chemotaxis proteins (MCPs) are transmembrane proteins that sense changes in environmental signals, generating a chemotactic response and regulating other cellular processes. MCPs are composed of two main domains: a ligand-binding domain (LBD) and a cytosolic signalling domain (CSD). Here, the crystallization of the LBD of the chemoreceptor McpS (McpS-LBD) is reported. McpS-LBD is responsible for sensing most of the TCA-cycle intermediates in the soil bacterium Pseudomonas putida KT2440. McpS-LBD was expressed, purified and crystallized in complex with two of its natural ligands (malate and succinate). Crystals were obtained by both the counter-diffusion and the hanging-drop vapour-diffusion techniques after pre-incubation of McpS-LBD with the ligands. The crystals were isomorphous and belonged to space group C2, with two molecules per asymmetric unit. Diffraction data were collected at the ESRF synchrotron X-ray source to resolutions of 1.8 and 1.9 Å for the malate and succinate complexes, respectively

  12. Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts

    DEFF Research Database (Denmark)

    Schneider, Linda; Cammer, Michael; Lehman, Jonathan;

    2010-01-01

    during embryonic development and a chemoattractant during postnatal migratory responses including wound healing. We previously showed that PDGFRalpha signaling is coordinated by the primary cilium in quiescent cells. However, little is known about the function of the primary cilium in cell migration....... Here we used micropipette analysis to show that a normal chemosensory response to PDGF-AA in fibroblasts requires the primary cilium. In vitro and in vivo wound healing assays revealed that in ORPK mouse (IFT88(Tg737Rpw)) fibroblasts, where ciliary assembly is defective, chemotaxis towards PDGF......-AA is absent, leading to unregulated high speed and uncontrolled directional cell displacement during wound closure, with subsequent defects in wound healing. These data suggest that in coordination with cytoskeletal reorganization, the fibroblast primary cilium functions via ciliary PDGFRalpha signaling...

  13. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids?

    Science.gov (United States)

    Guéguinou, Maxime; Gambade, Audrey; Félix, Romain; Chantôme, Aurélie; Fourbon, Yann; Bougnoux, Philippe; Weber, Günther; Potier-Cartereau, Marie; Vandier, Christophe

    2015-10-01

    Membrane lipid rafts are distinct plasma membrane nanodomains that are enriched with cholesterol, sphingolipids and gangliosides, with occasional presence of saturated fatty acids and phospholipids containing saturated acyl chains. It is well known that they organize receptors (such as Epithelial Growth Factor Receptor), ion channels and their downstream acting molecules to regulate intracellular signaling pathways. Among them are Ca2+ signaling pathways, which are modified in tumor cells and inhibited upon membrane raft disruption. In addition to protein components, lipids from rafts also contribute to the organization and function of Ca2+ signaling microdomains. This article aims to focus on the lipid raft KCa/ClCa/Ca2+ channel complexes that regulate Ca2+ and EGFR signaling in cancer cells, and discusses the potential modification of these complexes by lipids as a novel therapeutic approach in tumor development. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  14. A Complex Signal

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The removal of Taiwan from the common strategic objectives of the U.S.-Japan alliance could mean much more than a change of wording While U.S.and Japanese top diplomats and defense officials celebrated closer cooperation forged by their annual meeting in

  15. Sensitization of Dictyostelium chemotaxis by phosphoinositide-3-kinase-mediated self-organizing signalling patches.

    NARCIS (Netherlands)

    M. Postma; J. Roelofs; J. Goedhart; H.M. Loovers; A.J. Visser; P.J. van Haastert

    2004-01-01

    The leading edge of Dictyostelium cells in chemoattractant gradients can be visualized using green fluorescent protein (GFP) tagged to the pleckstrin-homology (PH) domain of cytosolic regulator of adenylyl cyclase (CRAC), which presumable binds phosphatidylinositol-(3,4,5)triphosphate [PtdIns(3,4,5)

  16. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes.

    Science.gov (United States)

    Lerner, E C; Qian, Y; Blaskovich, M A; Fossum, R D; Vogt, A; Sun, J; Cox, A D; Der, C J; Hamilton, A D; Sebti, S M

    1995-11-10

    Ras-induced malignant transformation requires Ras farnesylation, a lipid posttranslational modification catalyzed by farnesyltransferase (FTase). Inhibitors of this enzyme have been shown to block Ras-dependent transformation, but the mechanism by which this occurs remains largely unknown. We have designed FTI-276, a peptide mimetic of the COOH-terminal Cys-Val-Ile-Met of K-Ras4B that inhibited potently FTase in vitro (IC50 = 500 pM) and was highly selective for FTase over geranylgeranyltransferase I (GGTase I) (IC50 = 50 nM). FTI-277, the methyl ester derivative of FTI-276, was extremely potent (IC50 = 100 nM) at inhibiting H-Ras, but not the geranylgeranylated Rap1A processing in whole cells. Treatment of H-Ras oncogene-transformed NIH 3T3 cells with FTI-277 blocked recruitment to the plasma membrane and subsequent activation of the serine/threonine kinase c-Raf-1 in cells transformed by farnesylated Ras (H-RasF), but not geranylgeranylated, Ras (H-RasGG). FTI-277 induced accumulation of cytoplasmic non-farnesylated H-Ras that was able to bind Raf and form cytoplasmic Ras/Raf complexes in which Raf kinase was not activated. Furthermore, FTI-277 blocked constitutive activation of mitogen-activated protein kinase (MAPK) in H-RasF, but not H-RasGG, or Raf-transformed cells. FTI-277 also inhibited oncogenic K-Ras4B processing and constitutive activation of MAPK, but the concentrations required were 100-fold higher than those needed for H-Ras inhibition. The results demonstrate that FTI-277 blocks Ras oncogenic signaling by accumulating inactive Ras/Raf complexes in the cytoplasm, hence preventing constitutive activation of the MAPK cascade.

  17. Structural complexes of the agonist, inverse agonist and antagonist bound C5a receptor: insights into pharmacology and signaling.

    Science.gov (United States)

    Rana, Soumendra; Sahoo, Amita Rani; Majhi, Bharat Kumar

    2016-04-26

    The C5a receptor (C5aR) is a pharmacologically important G-protein coupled receptor (GPCR) that interacts with (h)C5a, by recruiting both the "orthosteric" sites (site1 at the N-terminus and site2 at the ECS, extra cellular surface) on C5aR in a two site-binding model. However, the complex pharmacological landscape and the distinguishing chemistry operating either at the "orthosteric" site1 or at the functionally important "orthosteric" site2 of C5aR are still not clear, which greatly limits the understanding of C5aR pharmacology. One of the major bottlenecks is the lack of an experimental structure or a refined model structure of C5aR with appropriately defined active sites. The study attempts to understand the pharmacology at the "orthosteric" site2 of C5aR rationally by generating a highly refined full-blown model structure of C5aR through advanced molecular modeling techniques, and further subjecting it to automated docking and molecular dynamics (MD) studies in the POPC bilayer. The first series of structural complexes of C5aR respectively bound to a linear native peptide agonist ((h)C5a-CT), a small molecule inverse agonist (NDT) and a cyclic peptide antagonist (PMX53) are reported, apparently establishing the unique pharmacological landscape of the "orthosteric" site2, which also illustrates an energetically distinct but coherent competitive chemistry ("cation-π" vs. "π-π" interactions) involved in distinguishing the established ligands known for targeting the "orthosteric" site2 of C5aR. Over a total of 1 μs molecular dynamics (MD) simulation in the POPC bilayer, it is evidenced that while the agonist prefers a "cation-π" interaction, the inverse agonist prefers a "cogwheel/L-shaped" interaction in contrast to the "edge-to-face/T-shaped" type π-π interactions demonstrated by the antagonist by engaging the F275(7.28) of the C5aR. In the absence of a NMR or crystallographically guided model structure of C5aR, the computational model complexes not only

  18. The anaphase-promoting complex protein 5 (AnapC5 associates with A20 and inhibits IL-17-mediated signal transduction.

    Directory of Open Access Journals (Sweden)

    Allen W Ho

    Full Text Available IL-17 is the founding member of a family of cytokines and receptors with unique structures and signaling properties. IL-17 is the signature cytokine of Th17 cells, a relatively new T cell population that promotes inflammation in settings of infection and autoimmunity. Despite advances in understanding Th17 cells, mechanisms of IL-17-mediated signal transduction are less well defined. IL-17 signaling requires contributions from two receptor subunits, IL-17RA and IL-17RC. Mutants of IL-17RC lacking the cytoplasmic domain are nonfunctional, indicating that IL-17RC provides essential but poorly understood signaling contributions to IL-17-mediated signaling. To better understand the role of IL-17RC in signaling, we performed a yeast 2-hybrid screen to identify novel proteins associated with the IL-17RC cytoplasmic tail. One of the most frequent candidates was the anaphase promoting complex protein 7 (APC7 or AnapC7, which interacted with both IL-17RC and IL-17RA. Knockdown of AnapC7 by siRNA silencing exerted no detectable impact on IL-17 signaling. However, AnapC5, which associates with AnapC7, was also able to bind IL-17RA and IL-17RC. Moreover, AnapC5 silencing enhanced IL-17-induced gene expression, suggesting an inhibitory activity. Strikingly, AnapC5 also associated with A20 (TNFAIP3, a recently-identified negative feedback regulator of IL-17 signal transduction. IL-17 signaling was not impacted by knockdown of Itch or TAXBP1, scaffolding proteins that mediate A20 inhibition in the TNFα and IL-1 signaling pathways. These data suggest a model in which AnapC5, rather than TAX1BP1 and Itch, is a novel adaptor and negative regulator of IL-17 signaling pathways.

  19. Ammonia differentially suppresses the cAMP chemotaxis of anterior-like cells and prestalk cells in Dictyostelium discoideum

    Indian Academy of Sciences (India)

    Ira N Feit; Erika J Medynski; Michael J Rothrock

    2001-06-01

    A drop assay for chemotaxis to cAMP confirms that both anterior-like cells (ALC) and prestalk cells (pst cells) respond to cAMP gradients. We present evidence that the chemotactic response of both ALC and pst cells is suppressed by ammonia, but a higher concentration of ammonia is required to suppress the response in pst cells. ALC show a chemotactic response to cAMP when moving on a substratum of prespore cells in isolated slug posteriors incubated under oxygen. ALC chemotaxis on a prespore cell substratum is suppressed by the same concentration of ammonia that suppresses ALC chemotaxis on the agar substratum in drop assays. Chemotaxis suppression is mediated by the unprotonated (NH3) species of ammonia. The observed suppression, by ammonia, of ALC chemotaxis to cAMP supports our earlier hypothesis that ammonia is the tip-produced suppressor of such chemotaxis. We discuss implications of ammonia sensitivity of pst cells and ALC with regard to the movement and localization of ALC and pst cells in the slug and to the roles played by ALC in fruiting body formation. In addition, we suggest that a progressive decrease in sensitivity to ammonia is an important part of the maturation of ALC into pst cells.

  20. The Vi capsular polysaccharide enables Salmonella enterica serovar typhi to evade microbe-guided neutrophil chemotaxis.

    Directory of Open Access Journals (Sweden)

    Tamding Wangdi

    2014-08-01

    Full Text Available Salmonella enterica serovar Typhi (S. Typhi causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a and C5a receptor (C5aR. Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis.

  1. The Vi capsular polysaccharide enables Salmonella enterica serovar typhi to evade microbe-guided neutrophil chemotaxis.

    Science.gov (United States)

    Wangdi, Tamding; Lee, Cheng-Yuk; Spees, Alanna M; Yu, Chenzhou; Kingsbury, Dawn D; Winter, Sebastian E; Hastey, Christine J; Wilson, R Paul; Heinrich, Volkmar; Bäumler, Andreas J

    2014-08-01

    Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium) is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a) and C5a receptor (C5aR). Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi) capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis.

  2. Metabolism-independent chemotaxis of Pseudomonas sp.strain WBC-3 toward aromatic compounds

    Institute of Scientific and Technical Information of China (English)

    ZHANG Junjie; XIN Yufeng; LIU Hong; WANG Shujun; ZHOU Ningyi

    2008-01-01

    Pseudomonas sp. Strain WBC-3 utilized methyl parathion or para-nitrophenol (PNP) as the sole source of carbon, nitrogen, andenergy, and methyl parathion hydrolase had been previously characterized. Its chemotactic behaviors to aromatics were investigated.The results indicated that strain WBC-3 was attracted to multiple aromatic compounds, including metabolizable or transformablesubstrates PNP, 4-nitrocatehol, and hydroquinone. Disruption of PNP catabolic genes had no effect on its chemotactic behaviors with the same substrates, indicating that the chemotactic response in this swain was metabolism-independent. Furthermore, it was shownthat strain WBC-3 had a constitutive β-ketoadipate chemotaxis system that responded to a broad range of aromatic compounds, whichwas different from the inducible β-ketoadipate chemotaxis described in other Pseudomonas signs.

  3. Effects of antimicrobial agents on growth and chemotaxis of Trichomonas vaginalis.

    OpenAIRE

    Sugarman, B; Mummaw, N

    1988-01-01

    The motility of viable Trichomonas vaginalis organisms is readily demonstrable in a clinical wet mount or cultured specimens. We attempted to determine whether migration is a dynamic process such that the organisms move to avoid exposure to toxic antimicrobial agents. With the use of axenic cultures of T. vaginalis that were radiolabeled and assayed for chemotaxis in plastic multiwelled plates with a membrane filter inserted to trap organisms, the response of clinical isolates to various anti...

  4. The Singular Limit of a Chemotaxis-Growth System with General Initial Data

    CERN Document Server

    Alfaro, Matthieu

    2009-01-01

    We study the singular limit of a system of partial differential equations which is a model for an aggregation of amoebae subjected to three effects: diffusion, growth and chemotaxis. The limit problem involves motion by mean curvature together with a nonlocal drift term. We consider rather general initial data. We prove a generation of interface property and study the motion of interfaces. We also obtain an optimal estimate of the thickness and the location of the transition layer that develops.

  5. On blowup dynamics in the Keller-Segel model of chemotaxis

    CERN Document Server

    Dejak, S I; Lushnikov, P M; Sigal, I M

    2013-01-01

    We investigate the (reduced) Keller-Segel equations modeling chemotaxis of bio-organisms. We present a formal derivation and partial rigorous results of the blowup dynamics of solution of these equations describing the chemotactic aggregation of the organisms. Our results are confirmed by numerical simulations and the formula we derive coincides with the formula of Herrero and Vel\\'{a}zquez for specially constructed solutions.

  6. Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals.

    Science.gov (United States)

    de Lacy Costello, Ben P J; Adamatzky, Andrew I

    2013-09-01

    The chemotaxis behavior of the plasmodial stage of the true slime mold Physarum Polycephalum was assessed when given a binary choice between two volatile organic chemicals (VOCs) placed in its environment. All possible binary combinations were tested between 19 separate VOCs selected due to their prevalence and biological activity in common plant and insect species. The slime mold exhibited positive chemotaxis toward a number of VOCs with the following order of preference:   Farnesene > β-myrcene > tridecane > limonene > p-cymene > 3-octanone > β-pinene > m-cresol > benzylacetate > cis-3-hexenylacetate. For the remaining compounds, no positive chemotaxis was observed in any of the experiments, and for most compounds there was an inhibitory effect on the growth of the slime mold. By assessing this lack of growth or failure to propagate, it was possible to produce a list of compounds ranked in terms of their inhibitory effect: nonanal > benzaldehyde > methylbenzoate > linalool > methyl-p-benzoquinone > eugenol > benzyl alcohol > geraniol > 2-phenylethanol. This analysis shows a distinct preference of the slime mold for non-oxygenated terpene and terpene-like compounds (farnesene, β-myrcene, limonene, p-cymene and β-pinene). In contrast, terpene-based alcohols such as geraniol and linalool were found to have a strong inhibitory effect on the slime mold. Both the aldehydes utilized in this study had the strongest inhibitory effect on the slime mold of all the 19 VOCs tested. Interestingly, 3-octanone, which has a strong association with a "fungal odor," was the only compound with an oxygenated functionality where Physarum Polycephalum exhibits distinct positive chemotaxis. PMID:24265848

  7. Bacterial Chemotaxis Toward A NAPL Source Within A Pore-Scale Model Subject to A Range of Groundwater Flow Velocities

    Science.gov (United States)

    Wang, X.; Ford, R. M.

    2010-12-01

    Organic solvents such as toluene are the most widely distributed pollutants in groundwater. Biodegradation of these industrial pollutants requires that microorganisms in the aqueous phase are brought in contact with sources of contamination, which may be dispersed as pore-size organic-phase droplets within the saturated soil matrix. Chemotaxis toward chemical pollutants provides a mechanism for bacteria to migrate to locations of high contamination, which may not normally be accessible to bacteria carried along by groundwater flow, and thus it may improve the efficiency of bioremediation. A microfluidic device was designed to mimic the dissolution of an organic-phase contaminant from a single pore into a larger macropore representing a preferred pathway for microorganisms that are carried along by groundwater flow. The glass windows of the µ-chip allowed image analysis of bacterial distributions within the vicinity of the organic contaminant. Concentrations of chemotactic bacteria P. putida F1 near the organic/aqueous interface were 25% greater than those of a nonchemotactic mutant in the vicinity of toluene for a fluid velocity of 0.5 m/d. For E. coli responding to phenol, the bacterial concentrations were 60% greater than the controls, also at a velocity of 0.5 m/d. Velocities in the macropore were varied over a range that is typical of groundwater velocities from 0.5 to 10 m/d. The accumulation of chemotactic bacteria near the NAPL (nonaqueous phase liquid) chemoattractant source decreased as the fluid velocity increased. At the higher velocities, accumulation of chemotactic bacteria was comparable to the non-chemotactic control experiments. Computer-based simulation using finite element analysis software (COMSOL) was also performed to understand the effects of various model parameters on bacterial chemotaxis to NAPL. There was good agreement between the simulations (generated using reasonable values of the model parameters) and the experimental data for P

  8. Physical limits to biochemical signaling

    CERN Document Server

    Bialek, W

    2003-01-01

    Many crucial biological processes operate with surprisingly small numbers of molecules, and there is renewed interest in analyzing the impact of noise associated with these small numbers. Twenty--five years ago, Berg and Purcell showed that bacterial chemotaxis, where a single celled organism must respond to small changes in concentration of chemicals outside the cell, is limited directly by molecule counting noise, and that aspects of the bacteria's behavioral and computational strategies must be chosen to minimize the effects of this noise. Here we revisit and generalize their arguments to estimate the physical limits to signaling processes within the cell, and argue that recent experiments are consistent with performance approaching these limits.

  9. Nox2 Is Required for Macrophage Chemotaxis towards CSF-1

    OpenAIRE

    Sanjay Chaubey; Jones, Gareth E.; Shah, Ajay M.; Cave, Alison C.; Wells, Claire M.

    2013-01-01

    Macrophage migration and infiltration is an important first step in many pathophysiological processes, in particular inflammatory diseases. Redox modulation of the migratory signalling processes has been reported in endothelial cells, vascular smooth muscle cells and fibroblasts. However the redox modulation of the migratory process in macrophages and in particular that from the NADPH oxidase-2 (Nox2) dependent ROS has not been established. To investigate the potential role of Nox2 in the mig...

  10. Chemotaxis study using optical tweezers to observe the strength and directionality of forces of Leishmania amazonensis

    Science.gov (United States)

    Pozzo, Liliana d. Y.; Fontes, Adriana; de Thomaz, André A.; Barbosa, Luiz C.; Ayres, Diana C.; Giorgio, Selma; Cesar, Carlos L.

    2006-08-01

    The displacements of a dielectric microspheres trapped by an optical tweezers (OT) can be used as a force transducer for mechanical measurements in life sciences. This system can measure forces on the 50 femto Newtons to 200 pico Newtons range, of the same order of magnitude of a typical forces induced by flagellar motion. The process in which living microorganisms search for food and run away from poison chemicals is known is chemotaxy. Optical tweezers can be used to obtain a better understanding of chemotaxy by observing the force response of the microorganism when placed in a gradient of attractors and or repelling chemicals. This report shows such observations for the protozoa Leishmania amazomenzis, responsible for the leishmaniasis, a serious tropical disease. We used a quadrant detector to monitor the movement of the protozoa for different chemicals gradient. This way we have been able to observe both the force strength and its directionality. The characterization of the chemotaxis of these parasites can help to understand the infection mechanics and improve the diagnosis and the treatments employed for this disease.

  11. GPR158/179 regulate G protein signaling by controlling localization and activity of the RGS7 complexes

    OpenAIRE

    Orlandi, Cesare; Posokhova, Ekaterina; Masuho, Ikuo; Ray, Thomas A; Hasan, Nazarul; Gregg, Ronald G; Martemyanov, Kirill A.

    2012-01-01

    The extent and temporal characteristics of G protein–coupled receptor (GPCR) signaling are shaped by the regulator of G protein signaling (RGS) proteins, which promote G protein deactivation. With hundreds of GPCRs and dozens of RGS proteins, compartmentalization plays a key role in establishing signaling specificity. However, the molecular details and mechanisms of this process are poorly understood. In this paper, we report that the R7 group of RGS regulators is controlled by interaction wi...

  12. Reaction Diffusion and Chemotaxis for Decentralized Gathering on FPGAs

    Directory of Open Access Journals (Sweden)

    Bernard Girau

    2009-01-01

    and rapid simulations of the complex dynamics of this reaction-diffusion model. Then we describe the FPGA implementation of the environment together with the agents, to study the major challenges that must be solved when designing a fast embedded implementation of the decentralized gathering model. We analyze the results according to the different goals of these hardware implementations.

  13. Parameterization of the harmonic content of the complex MPI signal of magnetic tracers using a set of polynomial coefficients

    International Nuclear Information System (INIS)

    In our work, we investigate the possibility of a polynomial interpolation of the Magnetic Particle Imaging (MPI) signal to parameterize the harmonic content of the signal to analyze the imaging quality at a limited number of harmonics. The traditional Taylor expansion of the magnetization curve is limited by a radius of convergence which is exceeded by the physical properties of real nanoparticle ensembles and MPI setups. This led us to the derivation of an alternative method using polynomial interpolation. Our method enabled us to express MPI signals based on the analytical Langevin function as well as numerical simulated data using other magnetization functions and a phase shift in relation to the excitation signal. The argument range of the interpolation function is wide enough to cover real cases. We conclude that the polynomial interpolation method represents a versatile tool to describe the relation between the magnetization curve and the MPI signals. - Highlights: • Ways to parameterize the MPI signal using polynomials were investigated. • The Taylor series diverges at ξ=±π when applied to the Langevin function. • The parameterization using a numerical model was successful. • The Langevin function and simulated time shifted signals could be parameterized

  14. Exosomes Mediate LTB4 Release during Neutrophil Chemotaxis.

    Science.gov (United States)

    Majumdar, Ritankar; Tavakoli Tameh, Aidin; Parent, Carole A

    2016-01-01

    Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments. PMID:26741884

  15. Exosomes Mediate LTB4 Release during Neutrophil Chemotaxis.

    Directory of Open Access Journals (Sweden)

    Ritankar Majumdar

    2016-01-01

    Full Text Available Leukotriene B4 (LTB4 is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments.

  16. Exosomes Mediate LTB4 Release during Neutrophil Chemotaxis

    Science.gov (United States)

    Majumdar, Ritankar; Tavakoli Tameh, Aidin; Parent, Carole A.

    2016-01-01

    Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments. PMID:26741884

  17. A possible role of chemotaxis in germinal center formation

    CERN Document Server

    Beyer, T; Soff, G; Beyer, Tilo; Meyer-Hermann, Michael; Soff, Gerhard

    2002-01-01

    During the germinal center reaction a characteristic morphology is developed. In the framework of a recently developed space-time-model for the germinal center a mechanism for the formation of dark and light zones has been proposed. The mechanism is based on a diffusing differentiation signal which is secerned by follicular dendritic cells. Here, we investigate a possible influence of recently found chemokines for the germinal center formation in the framework of a single-cell-based stochastic and discrete three-dimensional model. We will also consider alternative possible chemotactic pathways that may play a role for the development of both zones. Our results suggest that the centrocyte motility resulting from a follicular dendritic cell-derived chemokine has to exceed a lower limit to allow the separation of centroblasts and centrocytes. In contrast to light microscopy the dark zone is ring shaped. This suggests that FDC-derived chemoattractants alone cannot explain the typical germinal center morphology.

  18. Sub-picomolar relaxin signalling by a pre-assembled RXFP1, AKAP79, AC2, β-arrestin 2, PDE4D3 complex

    OpenAIRE

    Halls, Michelle L.; Cooper, Dermot M.F

    2010-01-01

    Biochemical studies suggest that G-protein-coupled receptors (GPCRs) achieve exquisite signalling specificity by forming selective complexes, termed signalosomes. Here, using cAMP biosensors in single cells, we uncover a pre-assembled, constitutively active GPCR signalosome, that couples the relaxin receptor, relaxin family peptide receptor 1 (RXFP1), to cAMP following receptor stimulation with sub-picomolar concentrations of peptide. The physiological effects of relaxin, a pleiotropic hormon...

  19. Complex Morlet Wavelet Analysis of the DNA Frequency Chaos Game Signal and Revealing Specific Motifs of Introns in C.elegans

    OpenAIRE

    Messaoudi, Imen; Oueslati, Afef Elloumi; Lachiri, Zied

    2013-01-01

    Nowadays, studying introns is becoming a very promising field in the genomics. Even though they play a role in the dynamic regulation of gene and in the organism's evolution, introns have not attracted enough attention like exons did; especially of digital signal processing researchers. Thus, we focus on analysis of the C.elegans introns. In this paper, we propose the complex Morlet wavelet analysis to investigate introns' characterization in the C.elegans genes. However, catching the change ...

  20. 3D-dynamic visualization of complex molecular cell biology processes : 1-year university students' understanding of visualizations of signal transduction

    OpenAIRE

    Jacobsson, Johan Lars Henrik

    2008-01-01

    This study deals with the use of 3D-dynamic visualizations for teaching complex molecular cell biology concepts. The focus is on signal transduction, which is a concept that constitutes an important part of biological systems. 3D-dynamic visualizations (animations) were produced and shown for a total of 24 students attending a course in molecular cell biology at Karlstad University, Sweden. Data were collected by questionnaires and interviews which were structured around the understandability...

  1. Chemotaxis for enhanced immobilization of Escherichia coli and Legionella pneumophila on biofunctionalized surfaces of GaAs.

    Science.gov (United States)

    Hassen, Walid M; Sanyal, Hashimita; Hammood, Manar; Moumanis, Khalid; Frost, Eric H; Dubowski, Jan J

    2016-06-01

    The authors have investigated the effect of chemotaxis on immobilization of bacteria on the surface of biofunctionalized GaAs (001) samples. Escherichia coli K12 bacteria were employed to provide a proof-of-concept of chemotaxis-enhanced bacterial immobilization, and then, these results were confirmed using Legionella pneumophila. The recognition layer was based on a self-assembled monolayer of thiol functionalized with specific antibodies directed toward E. coli or L. pneumophila, together with the enzyme beta-galactosidase (β-gal). The authors hypothesized that this enzyme together with its substrate lactose would produce a gradient of glucose which would attract bacteria toward the biochip surface. The chemotaxis effect was monitored by comparing the number of bacteria bound to the biochip surface with and without attractant. The authors have observed that β-gal plus lactose enhanced the immobilization of bacteria on our biochips with a higher effect at low bacterial concentrations. At 100 and 10 bacteria/ml, respectively, for E. coli and L. pneumophila, the authors observed up to 11 and 8 times more bacteria bound to biochip surfaces assisted with the chemotaxis effect in comparison to biochips without chemotaxis. At 10(4) bacteria/ml, the immobilization enhancement rate did not exceed two times. PMID:27098616

  2. 精子趋化运动的研究近况%Current Advances in Sperm Chemotaxis Research

    Institute of Scientific and Technical Information of China (English)

    雷涛

    2012-01-01

    精子趋化作用具有重要的生理功能,体现在这种趋化过程促使大量的精子到达受精部位,从而实现精子与卵子的相遇、顶体反应的发生及精卵融合.近年,人们研究发现精子在趋化运动存在一种新的运动模式 (turn-and-straight 模式).同时,在信号转导方面认为 CatSper 就是孕酮在精子膜上的受体,并参与信号的跨膜转导.%Sperm chemotaxis plays an important physiological role and guides a large number of spermatozoa in their journey towards the egg , further achieving sperm-egg meet, acrosome reaction and sperm-egg fusion. Recently, scientists have found a new movement pattern , turn-and-straight model, guiding the sperm chemotaxis. Meanwhile, it has been believed that CatSper is the membrane receptor for progesterone on the sperm. This review introduces the recent studies on sperm chemotaxis, including the discovery of sperm chemotaxis , and the chemoattractants, movement patterns and molecular mechanisms that are relevant to sperm chemotaxis .

  3. D1R/GluN1 complexes in the striatum integrate dopamine and glutamate signalling to control synaptic plasticity and cocaine-induced responses.

    Science.gov (United States)

    Cahill, E; Pascoli, V; Trifilieff, P; Savoldi, D; Kappès, V; Lüscher, C; Caboche, J; Vanhoutte, P

    2014-12-01

    Convergent dopamine and glutamate signalling onto the extracellular signal-regulated kinase (ERK) pathway in medium spiny neurons (MSNs) of the striatum controls psychostimulant-initiated adaptive processes underlying long-lasting behavioural changes. We hypothesised that the physical proximity of dopamine D1 (D1R) and glutamate NMDA (NMDAR) receptors, achieved through the formation of D1R/NMDAR complexes, may act as a molecular bridge that controls the synergistic action of dopamine and glutamate on striatal plasticity and behavioural responses to drugs of abuse. We found that concomitant stimulation of D1R and NMDAR drove complex formation between endogenous D1R and the GluN1 subunit of NMDAR. Conversely, preventing D1R/GluN1 association with a cell-permeable peptide (TAT-GluN1C1) left individual D1R and NMDAR-dependent signalling intact, but prevented D1R-mediated facilitation of NMDAR-calcium influx and subsequent ERK activation. Electrophysiological recordings in striatal slices from mice revealed that D1R/GluN1 complexes control the D1R-dependent enhancement of NMDAR currents and long-term potentiation in D1R-MSN. Finally, intra-striatal delivery of TAT-GluN1C1 did not affect acute responses to cocaine but reduced behavioural sensitization. Our findings uncover D1R/GluN1 complexes as a major substrate for the dopamine-glutamate interaction in MSN that is usurped by addictive drugs to elicit persistent behavioural alterations. They also identify D1R/GluN1 complexes as molecular targets with a therapeutic potential for the vast spectrum of psychiatric diseases associated with an imbalance between dopamine and glutamate transmission. PMID:25070539

  4. Chemotaxis of artificial microswimmers in active density waves

    Science.gov (United States)

    Geiseler, Alexander; Hänggi, Peter; Marchesoni, Fabio; Mulhern, Colm; Savel'ev, Sergey

    2016-07-01

    Living microorganisms are capable of a tactic response to external stimuli by swimming toward or away from the stimulus source; they do so by adapting their tactic signal transduction pathways to the environment. Their self-motility thus allows them to swim against a traveling tactic wave, whereas a simple fore-rear asymmetry argument would suggest the opposite. Their biomimetic counterpart, the artificial microswimmers, also propel themselves by harvesting kinetic energy from an active medium, but, in contrast, lack the adaptive capacity. Here we investigate the transport of artificial swimmers subject to traveling active waves and show, by means of analytical and numerical methods, that self-propelled particles can actually diffuse in either direction with respect to the wave, depending on its speed and waveform. Moreover, chiral swimmers, which move along spiraling trajectories, may diffuse preferably in a direction perpendicular to the active wave. Such a variety of tactic responses is explained by the modulation of the swimmer's diffusion inside traveling active pulses.

  5. Chemotaxis of artificial microswimmers in active density waves.

    Science.gov (United States)

    Geiseler, Alexander; Hänggi, Peter; Marchesoni, Fabio; Mulhern, Colm; Savel'ev, Sergey

    2016-07-01

    Living microorganisms are capable of a tactic response to external stimuli by swimming toward or away from the stimulus source; they do so by adapting their tactic signal transduction pathways to the environment. Their self-motility thus allows them to swim against a traveling tactic wave, whereas a simple fore-rear asymmetry argument would suggest the opposite. Their biomimetic counterpart, the artificial microswimmers, also propel themselves by harvesting kinetic energy from an active medium, but, in contrast, lack the adaptive capacity. Here we investigate the transport of artificial swimmers subject to traveling active waves and show, by means of analytical and numerical methods, that self-propelled particles can actually diffuse in either direction with respect to the wave, depending on its speed and waveform. Moreover, chiral swimmers, which move along spiraling trajectories, may diffuse preferably in a direction perpendicular to the active wave. Such a variety of tactic responses is explained by the modulation of the swimmer's diffusion inside traveling active pulses. PMID:27575185

  6. Sphingosine-1-Phosphate Induces Dose-Dependent Chemotaxis or Fugetaxis of T-ALL Blasts through S1P1 Activation.

    Directory of Open Access Journals (Sweden)

    Carolina V Messias

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive sphingolipid involved in several physiological processes including cell migration and differentiation. S1P signaling is mediated through five G protein-coupled receptors (S1P1-S1P5. S1P1 is crucial to the exit of T-lymphocytes from the thymus and peripheral lymphoid organs through a gradient of S1P. We have previously observed that T-ALL and T-LBL blasts express S1P1. Herein we analyzed the role of S1P receptors in the migratory pattern of human T-cell neoplastic blasts. S1P-triggered cell migration was directly related to S1P1 expression. T-ALL blasts expressing low levels of S1P1 mRNA (HPB-ALL did not migrate toward S1P, whereas those expressing higher levels of S1P1 (MOLT-4, JURKAT and CEM did migrate. The S1P ligand induced T-ALL cells chemotaxis in concentrations up to 500 nM and induced fugetaxis in higher concentrations (1000-10000 nM through interactions with S1P1. When S1P1 was specifically blocked by the W146 compound, S1P-induced migration at lower concentrations was reduced, whereas higher concentrations induced cell migration. Furthermore, we observed that S1P/S1P1 interactions induced ERK and AKT phosphorylation, and modulation of Rac1 activity. Responding T-ALL blasts also expressed S1P3 mRNA but blockage of this receptor did not modify migratory responses. Our results indicate that S1P is involved in the migration of T-ALL/LBL blasts, which is dependent on S1P1 expression. Moreover, S1P concentrations in the given microenvironment might induce dose-dependent chemotaxis or fugetaxis of T-ALL blasts.

  7. Toll-like receptor signaling in vertebrates: testing the integration of protein, complex, and pathway data in the protein ontology framework.

    Directory of Open Access Journals (Sweden)

    Cecilia Arighi

    Full Text Available The Protein Ontology (PRO provides terms for and supports annotation of species-specific protein complexes in an ontology framework that relates them both to their components and to species-independent families of complexes. Comprehensive curation of experimentally known forms and annotations thereof is expected to expose discrepancies, differences, and gaps in our knowledge. We have annotated the early events of innate immune signaling mediated by Toll-Like Receptor 3 and 4 complexes in human, mouse, and chicken. The resulting ontology and annotation data set has allowed us to identify species-specific gaps in experimental data and possible functional differences between species, and to employ inferred structural and functional relationships to suggest plausible resolutions of these discrepancies and gaps.

  8. Genetic Circuits and Chemotaxis Induced Bacterial Cloning on Media Plate

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2016-03-01

    Full Text Available Objective: Synthetic biology demonstrates its broad application perspective in the fields of medicine, chemical synthesis, and the production of energy. Methods: The character that E. coli responding to the stimulus is named as chemo taxis which has widely applications such as measurement efficiency of RBS and promoter, suicide mechanism, oscillation timer etc. Results: A circuit to control the motility of E. coli (run or tumble and form the patterns such as conic curves was constructed. The strength of the promoter and the efficiency of RBS were successfully characterized by using the circuit and chemo taxis that can be used to characterize most of the promoters, the RBS efficiency, terminator efficiency and expression strength of target genes etc. A new suicide mechanism, utilizing the hyperosmotic pressure, was built to induce the growth of E. coli Pattern model is the fundamental force in the coordination of multicellular behavior in the bacterial community or a large complex system. Conclusion: The sources of stress (such as sodium chloride and sucrose be to generate hypertonic very cheap, convenient and environmentally friendly while antibiotics are expensive and have a bad effect on the environment because of drug-resistant microorganisms.

  9. Response coefficient analysis of E. coli chemotaxis to parametric perturbations under the influence of noise

    Directory of Open Access Journals (Sweden)

    Pratap R Patnaik

    2012-08-01

    Full Text Available Escherichia coli and other bacteria navigating through ‘open’ environments are under the impact of noise from the environment and from within the cells. This generates fluctuations in the kinetic parameters that characterize the intra-cellular reactions of the chemosensory network, thus affecting the chemotaxis of the cells. This aspect has been studied here for E. coli synthesizing recombinant glucoamylase in a continuous-flow microreactor. Response coefficient analysis (RCA was applied to a new four-parameter model of the chemotaxis of E. coli. The model considered two types of responses of the cells – linear and adaptive – and two rates of movement of the chemoattractant – slow and fast. Some cells at each position in the microreactor were considered to be moving to the left, some to the right and others in a tumbling state. Striking similarities and differences were observed between the different types of cells, between linear and adaptive responses, and between the kinetic responses to a slow-moving and a fast-moving chemoattractant distribution. One salient observation was that the response coefficients of the left-moving and right-moving sub-populations were mirror images of each other. Tumbling cells either had intermediate characteristics in some situations, as might be expected, or, in other circumstances, resembled the left-moving cells more than they corresponded to the right-moving bacteria. Under certain conditions, cells with normal linear responses exhibited pseudo-adaptive kinetic behavior. Such unexpected observations have been explained. The results offer new insights into possible quantitative effects of environmental noise on the chemotaxis of E. coli and other bacteria.

  10. TGF-{beta} signals the formation of a unique NF1/Smad4-dependent transcription repressor-complex in human diploid fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Luciakova, Katarina, E-mail: katarina.luciakova@savba.sk [Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Vlarska 7, 833 91 Bratislava (Slovakia); Kollarovic, Gabriel; Kretova, Miroslava; Sabova, Ludmila [Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Vlarska 7, 833 91 Bratislava (Slovakia); Nelson, B. Dean [Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, S-106 91 Stockholm (Sweden)

    2011-08-05

    Highlights: {yields} TGF-{beta} induces the formation of unique nuclear NF1/Smad4 complexes that repress expression of the ANT-2 gene. {yields} Repression is mediated through an NF1-dependent repressor element in the promoter. {yields} The formation of NF1/Smad4 complexes and the repression of ANT2 are prevented by inhibitors of p38 kinase and TGF-{beta} RI. {yields} NF1/Smad complexes implicate novel role for NF1 and Smad proteins in the regulation of growth. -- Abstract: We earlier reported the formation of a unique nuclear NF1/Smad complex in serum-restricted fibroblasts that acts as an NF1-dependent repressor of the human adenine nucleotide translocase-2 gene (ANT2) [K. Luciakova, G. Kollarovic, P. Barath, B.D. Nelson, Growth-dependent repression of human adenine nucleotide translocator-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex, Biochem. J. 412 (2008) 123-130]. In the present study, we show that TGF-{beta}, like serum-restriction: (a) induces the formation of NF1/Smad repressor complexes, (b) increases binding of the complexes to the repressor elements (Go elements) in the ANT2 promoter, and (c) inhibits ANT2 expression. Repression of ANT2 by TGF-{beta} is eliminated by mutating the NF1 binding sites in the Go repressor elements. All of the above responses to TGF-{beta} are prevented by inhibitors of TGF-{beta} RI and MAPK p38. These inhibitors also prevent NF1/Smad4 repressor complex formation and repression of ANT2 expression in serum-restricted cells, suggesting that similar signaling pathways are initiated by TGF-{beta} and serum-restriction. The present finding that NF1/Smad4 repressor complexes are formed through TGF-{beta} signaling pathways suggests a new, but much broader, role for these complexes in the initiation or maintenance of the growth-inhibited state.

  11. Multivalent binding and facilitated diffusion account for the formation of the Grb2-Sos1 signaling complex in a cooperative manner.

    Science.gov (United States)

    McDonald, Caleb B; Balke, Jordan E; Bhat, Vikas; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Farooq, Amjad

    2012-03-13

    Despite its key role in driving cellular growth and proliferation through receptor tyrosine kinase (RTK) signaling, the Grb2-Sos1 macromolecular interaction remains poorly understood in mechanistic terms. Herein, using an array of biophysical methods, we provide evidence that although the Grb2 adaptor can potentially bind to all four PXψPXR motifs (designated herein S1-S4) located within the Sos1 guanine nucleotide exchange factor, the formation of the Grb2-Sos1 signaling complex occurs with a 2:1 stoichiometry. Strikingly, such bivalent binding appears to be driven by the association of the Grb2 homodimer to only two of four potential PXψPXR motifs within Sos1 at any one time. Of particular interest is the observation that of a possible six pairwise combinations in which S1-S4 motifs may act in concert for the docking of the Grb2 homodimer through bivalent binding, only S1 and S3, S1 and S4, S2 and S4, and S3 and S4 do so, while pairwise combinations of sites S1 and S2 and sites S2 and S3 appear to afford only monovalent binding. This salient observation implicates the role of local physical constraints in fine-tuning the conformational heterogeneity of the Grb2-Sos1 signaling complex. Importantly, the presence of multiple binding sites within Sos1 appears to provide a physical route for Grb2 to hop in a flip-flop manner from one site to the next through facilitated diffusion, and such rapid exchange forms the basis of positive cooperativity driving the bivalent binding of Grb2 to Sos1 with high affinity. Collectively, our study sheds new light on the assembly of a key macromolecular signaling complex central to cellular machinery in health and disease. PMID:22360309

  12. HLA-DR molecules enhance signal transduction through the CD3/Ti complex in activated T cells

    DEFF Research Database (Denmark)

    Odum, Niels; Martin, P J; Schieven, G L;

    1991-01-01

    Crosslinking HLA-DR molecules by monoclonal antibodies (mAb) induces protein tyrosine phosphorylation and results in a secondary elevation of free cytoplasmic Ca2+ concentration ([Ca2+]i) in activated human T cells. Here we have studied the effect of DR on CD3-induced signal transduction...

  13. Transducer Like Proteins of Campylobacter jejuni 81-176: Role in chemotaxis and colonization of the chicken gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Gireesh eRajashekara

    2015-05-01

    Full Text Available Transducer Like Proteins (Tlps, also known as Methyl accepting chemotaxis proteins (MCP, enable enteric pathogens to respond to changing nutrient levels in the environment by mediating taxis towards or away from specific chemoeffector molecules such as nutrients. Despite recent advances in the characterization of chemotaxis responses in Campylobacter jejuni, the impact of Tlps on the adaptation of this pathogen to disparate niches and hosts is not fully characterized. The latter is particularly evident in the case of C. jejuni 81-176, a strain that is known to be highly invasive. Furthermore, the cytoplasmic group C Tlps (Tlp5, 6, and 8 was not extensively evaluated. Here, we investigated the role of C. jejuni 81-176 Tlps in chemotaxis towards various substrates, biofilm formation, in vitro interaction with human intestinal cells, and chicken colonization. We found that the ∆tlp6 and ∆tlp10 mutants exhibited decreased chemotaxis towards aspartate whereas the ∆tlp6 mutant displayed a decreased chemotaxis towards Tri-Carboxylic Acid (TCA cycle intermediates such as pyruvate, isocitrate, and succinate. Our findings also corroborated that more than one Tlp is involved in mediating chemotaxis towards the same nutrient. The deletion of tlps affected important phenotypes such as motility, biofilm formation, and invasion of human intestinal epithelial cells (INT-407. The ∆tlp8 mutant displayed increased motility in soft agar and showed decreased biofilm formation. The ∆tlp8 and ∆tlp9 mutants were significantly defective in invasion in INT-407 cells. The ∆tlp10 mutant was defective in colonization of the chicken proximal and distal gastrointestinal tract, while the ∆tlp6 and ∆tlp8 mutants showed reduced colonization of the duodenum and jejunum. Our results highlight the importance of Tlps in C. jejuni’s adaptation and pathobiology.

  14. Quantitative Phosphoproteome Analysis of Lysophosphatidic Acid Induced Chemotaxis applying Dual-step ¹⁸O Labeling Coupled with Immobilized Metal-ion Affinity Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shi-Jian; Wang, Yingchun; Jacobs, Jon M.; Qian, Weijun; Yang, Feng; Tolmachev, Aleksey V.; Du, Xiuxia; Wang, Wei; Moore, Ronald J.; Monroe, Matthew E.; Purvine, Samuel O.; Waters, Katrina M.; Heibeck, Tyler H.; Adkins, Joshua N.; Camp, David G.; Klemke, Richard L.; Smith, Richard D.

    2008-10-01

    Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in a variety of different cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its applications for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed 16O/18O labeling plus 16O/18O-methanol esterification labeling for quantitation, a macro- Immobilized Metal-ion Affinity Chromatography trap for phosphopeptide enrichment, and a monolithic capillary column with integrated electrospray emitter. LC separation and MS/MS is followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer and complementary searching algorithms for interpreting MS/MS spectra. Protein phosphorylation involved in various signaling pathways of cell migration were identified and quantified, such as mitogen-activated protein kinase 1, dual-specificity mitogen-activated protein kinase kinase 2, and dual-specificity tyrosine-phosphorylation regulated kinase 1b, and a number of Rho GTPase-activating proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with gradient sensing and cell chemotaxis.

  15. A photoelectrochemical biosensor using ruthenium complex-reduced graphene oxide hybrid as the photocurrent signal reporter assembled on rhombic TiO2 nanocrystals driven by visible light.

    Science.gov (United States)

    Ge, Lei; Wang, Yanhu; Yang, Hongmei; Yang, Ping; Cheng, Xin; Yan, Mei; Yu, Jinghua

    2014-05-30

    An ultrasensitive photoelectrochemical (PEC) immunoassay of cancer biomarker carcinoembryonie antigen (CEA) is proposed that uses rhombic titanium dioxide nanocrystals (TiO2 NCs) coupled with Ab2-RGO-Ru bioconjugate, which featured CEA signal antibody (Ab2) and ruthenium tris(bipyridine) (Ru complex) labels linked to reduced graphene oxide (RGO) for signal amplification. Herein, the Ru complex acts as an electron donor, while RGO serves as an electron acceptor which facilitates charge separation and suppresses recombination of photoexcited electron-hole pairs in the hybridized species. The rhombic TiO2 NCs were fabricated through a solvothermal technique in anhydrous ethanol, followed by spin-coating process and calcination, an ITO/TiO2 electrode was obtained. Chitosan (CS) and glutaraldehyde (GLD) were used to modify the prepared ITO/TiO2 electrode to covalently immobilize antibodies. With a sandwich-type immunoreaction, CEA and Ab2-RGO-Ru were conjugated successively to form a sandwich-type immunocomplex. Thus, a sandwich-type PEC immunosensor was fabricated for the detection of CEA was developed by monitoring the changes in the photocurrent signals of the electrode resulting from the immunoreaction. The proposed PEC immunosensor showed high sensitivity, selectivity, excellent stability, and good reproducibility, and thus has great potential to be used for other biological assays. PMID:24845812

  16. Monocyte function in intravenous drug abusers with lymphadenopathy syndrome and in patients with acquired immunodeficiency syndrome: selective impairment of chemotaxis.

    Science.gov (United States)

    Poli, G; Bottazzi, B; Acero, R; Bersani, L; Rossi, V; Introna, M; Lazzarin, A; Galli, M; Mantovani, A

    1985-01-01

    We have investigated monocyte function in 17 intravenous drug abusers with the clinical and laboratory features of lymphadenopathy syndrome (LAS). LAS patients had normal numbers of circulating monocytes. Monocytes from LAS patients were comparable to cells from normal donors in terms of phagocytosis of latex beads, interleukin-1 secretion, O2- release and killing of antibody-sensitized lymphoma cells or actinomycin D pretreated WEHI 164 cells. In contrast 13 out of 17 LAS subjects tested in this respect as well as six out of nine AIDS patients showed a marked defect of monocyte chemotaxis. Thus monocytes from patients with LAS or AIDS have a selective defect of monocyte chemotaxis. PMID:2998656

  17. Algorithmic complexity. A new approach of non-linear algorithms for the analysis of atrial signals from multipolar basket catheter.

    Science.gov (United States)

    Pitschner, H F; Berkowitsch, A

    2001-01-01

    Symbolic dynamics as a non linear method and computation of the normalized algorithmic complexity (C alpha) was applied to basket-catheter mapping of atrial fibrillation (AF) in the right human atrium. The resulting different degrees of organisation of AF have been compared to conventional classification of Wells. Short time temporal and spatial distribution of the C alpha during AF and effects of propafenone on this distribution have been investigated in 30 patients. C alpha was calculated for a moving window. Generated C alpha was analyzed within 10 minutes before and after administration of propafenone. The inter-regional C alpha distribution was statistically analyzed. Inter-regional C alpha differences were found in all patients (p complexity areas according to individual patterns. A significant C alpha increase in cranio-caudal direction was confirmed inter-individually (p complexity.

  18. Contributions and complexities from the use of in vivo animal models to improve understanding of human neuroimaging signals

    OpenAIRE

    ChrisMartin

    2014-01-01

    Many of the major advances in our understanding of how functional brain imaging signals relate to neuronal activity over the previous two decades have arisen from physiological research studies involving experimental animal models. This approach has been successful partly because it provides opportunities to measure both the hemodynamic changes that underpin many human functional brain imaging techniques and the neuronal activity about which we wish to make inferences. Although research into ...

  19. The bHLH factors Dpn and members of the E(spl complex mediate the function of Notch signalling regulating cell proliferation during wing disc development

    Directory of Open Access Journals (Sweden)

    Beatriz P. San Juan

    2012-05-01

    The Notch signalling pathway plays an essential role in the intricate control of cell proliferation and pattern formation in many organs during animal development. In addition, mutations in most members of this pathway are well characterized and frequently lead to tumour formation. The Drosophila imaginal wing discs have provided a suitable model system for the genetic and molecular analysis of the different pathway functions. During disc development, Notch signalling at the presumptive wing margin is necessary for the restricted activation of genes required for pattern formation control and disc proliferation. Interestingly, in different cellular contexts within the wing disc, Notch can either promote cell proliferation or can block the G1-S transition by negatively regulating the expression of dmyc and bantam micro RNA. The target genes of Notch signalling that are required for these functions have not been identified. Here, we show that the Hes vertebrate homolog, deadpan (dpn, and the Enhancer-of-split complex (E(splC genes act redundantly and cooperatively to mediate the Notch signalling function regulating cell proliferation during wing disc development.

  20. CD54/intercellular adhesion molecule 1 and major histocompatibility complex II signaling induces B cells to express interleukin 2 receptors and complements help provided through CD40 ligation

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    We have examined signaling roles for CD54 intercellular adhesion molecule 1 and major histocompatibility complex (MHC) II as contact ligands during T help for B cell activation. We used a T helper 1 (Th1)-dependent helper system that was previously shown to be contact as well as interleukin 2 (IL-2......) dependent to demonstrate the relative roles of CD54, MHC II, and CD40 signaling in the events leading to the induction of B cell proliferation and responsiveness to IL-2. Paraformaldehyde-fixed activated Th1-induced expression of IL-2R alpha, IL-2R beta, and B7, and upregulated MHC II and CD54 on B cells...

  1. A hybrid two-component system protein from Azospirillum brasilense Sp7 was involved in chemotaxis.

    Science.gov (United States)

    Cui, Yanhua; Tu, Ran; Wu, Lixian; Hong, Yuanyuan; Chen, Sanfeng

    2011-09-20

    We here report the sequence and functional analysis of org35 of Azospirillum brasilense Sp7, which was originally identified to be able to interact with NifA in yeast-two-hybrid system. The org35 encodes a hybrid two-component system protein, including N-terminal PAS domains, a histidine kinase (HPK) domain and a response regulator (RR) domain in C-terminal. To determine the function of the Org35, a deletion-insertion mutant in PAS domain [named Sp7353] and a complemental strain Sp7353C were constructed. The mutant had reduced chemotaxis ability compared to that of wild-type, and the complemental strain was similar to the wild-type strain. These data suggested that the A. brasilense org35 played a key role in chemotaxis. Variants containing different domains of the org35 were expressed, and the functions of these domains were studied in vitro. Phosphorylation assays in vitro demonstrated that the HPK domain of Org35 possessed the autokinase activity and that the phosphorylated HPK was able to transfer phosphate groups to the RR domain. The result indicated Org35 was a phosphorylation-communicating protein.

  2. Chemoreceptors of Escherichia coli CFT073 play redundant roles in chemotaxis toward urine.

    Directory of Open Access Journals (Sweden)

    Erica L Raterman

    Full Text Available Community-acquired urinary tract infections (UTIs are commonly caused by uropathogenic Escherichia coli (UPEC. We hypothesize that chemotaxis toward ligands present in urine could direct UPEC into and up the urinary tract. Wild-type E. coli CFT073 and chemoreceptor mutants with tsr, tar, or aer deletions were tested for chemotaxis toward human urine in the capillary tube assay. Wild-type CFT073 was attracted toward urine, and Tsr and Tar were the chemoreceptors mainly responsible for mediating this response. The individual components of urine including L-amino acids, D-amino acids and various organic compounds were also tested in the capillary assay with wild-type CFT073. Our results indicate that CFT073 is attracted toward some L- amino acids and possibly toward some D-amino acids but not other common compounds found in urine such as urea, creatinine and glucuronic acid. In the murine model of UTI, the loss of any two chemoreceptors did not affect the ability of the bacteria to compete with the wild-type strain. Our data suggest that the presence of any strong attractant and its associated chemoreceptor might be sufficient for colonization of the urinary tract and that amino acids are the main chemoattractants for E. coli strain CFT073 in this niche.

  3. Chemoreceptors of Escherichia coli CFT073 play redundant roles in chemotaxis toward urine.

    Science.gov (United States)

    Raterman, Erica L; Welch, Rodney A

    2013-01-01

    Community-acquired urinary tract infections (UTIs) are commonly caused by uropathogenic Escherichia coli (UPEC). We hypothesize that chemotaxis toward ligands present in urine could direct UPEC into and up the urinary tract. Wild-type E. coli CFT073 and chemoreceptor mutants with tsr, tar, or aer deletions were tested for chemotaxis toward human urine in the capillary tube assay. Wild-type CFT073 was attracted toward urine, and Tsr and Tar were the chemoreceptors mainly responsible for mediating this response. The individual components of urine including L-amino acids, D-amino acids and various organic compounds were also tested in the capillary assay with wild-type CFT073. Our results indicate that CFT073 is attracted toward some L- amino acids and possibly toward some D-amino acids but not other common compounds found in urine such as urea, creatinine and glucuronic acid. In the murine model of UTI, the loss of any two chemoreceptors did not affect the ability of the bacteria to compete with the wild-type strain. Our data suggest that the presence of any strong attractant and its associated chemoreceptor might be sufficient for colonization of the urinary tract and that amino acids are the main chemoattractants for E. coli strain CFT073 in this niche.

  4. The Mechanism and Usage for Enhanced Oil Recovery by Chemotaxis of Bacterium BS2

    Institute of Scientific and Technical Information of China (English)

    LiYiqian; JingGuicheng; GaoShusheng; XungWei

    2005-01-01

    Due to its chemotaxis, the motion ability of bacterium BS2 is very strong, and under the microscope, the distribution grads of bacterium concentration can be seen at the oil-water interface. During the experiments in glass box, it can be observed, with eyes, because of the chemotaxis, that muddy gets thicker and thicker at the interface gradually, and it is measured there, from sampling, that the bacterium concentration is 109 cells/mL, pH value 4.4 and the concentration of bio-surfactant 2.87%; The microbial oil-displacement experiments are carried out in emulational network models, and the oil-displacement mechanism by the bacterium and its metabolizing production is studied. And, during oil-displacement experiments in the gravel-input glass models, because of the profile control of thalli and the production, the sweep area of subsequent waterflood becomes wider, which can be seen with eyes and the recovery is enhanced by 13.6%. Finally, the successful field test is introduced in brief: the ratio of response producers is 85.7%, and the water-cut degrades by 6.4%, while 20038t oil has increased in accumulative total in 2 years.

  5. ProBDNF inhibits collective migration and chemotaxis of rat Schwann cells.

    Science.gov (United States)

    Ding, You-Quan; Li, Xuan-Yang; Xia, Guan-Nan; Ren, Hong-Yi; Zhou, Xin-Fu; Su, Bing-Yin; Qi, Jian-Guo

    2016-10-01

    Schwann cell migration, including collective migration and chemotaxis, is essential for the formation of coordinate interactions between Schwann cells and axons during peripheral nerve development and regeneration. Moreover, limited migration of Schwann cells imposed a serious obstacle on Schwann cell-astrocytes intermingling and spinal cord repair after Schwann cell transplantation into injured spinal cords. Recent studies have shown that mature brain-derived neurotrophic factor, a member of the neurotrophin family, inhibits Schwann cell migration. The precursor form of brain-derived neurotrophic factor, proBDNF, was expressed in the developing or degenerating peripheral nerves and the injured spinal cords. Since "the yin and yang of neurotrophin action" has been established as a common sense, proBDNF would be expected to promote Schwann cell migration. However, we found, in the present study, that exogenous proBDNF also inhibited in vitro collective migration and chemotaxis of RSC 96 cells, a spontaneously immortalized rat Schwann cell line. Moreover, proBDNF suppressed adhesion and spreading of those cells. At molecular level, proBDNF inhibits F-actin polymerization and focal adhesion dynamics in cultured RSC 96 cells. Therefore, our results suggested a special case against the classical opinion of "the yin and yang of neurotrophin action" and implied that proBDNF might modulate peripheral nerve development or regeneration and spinal cord repair through perturbing native or transplanted Schwann cell migration.

  6. Marangoni-driven chemotaxis, chemotactic collapse, and the Keller-Segel equation

    Science.gov (United States)

    Shelley, Michael; Masoud, Hassan

    2013-11-01

    Almost by definition, chemotaxis involves the biased motion of motile particles along gradients of a chemical concentration field. Perhaps the most famous model for collective chemotaxis in mathematical biology is the Keller-Segel model, conceived to describe collective aggregation of slime mold colonies in response to an intrinsically produced, and diffusing, chemo-attractant. Heavily studied, particularly in 2D where the system is ``super-critical'', it has been proved that the KS model can develop finite-time singularities - so-called chemotactic collapse - of delta-function type. Here, we study the collective dynamics of immotile particles bound to a 2D interface above a 3D fluid. These particles are chemically active and produce a diffusing field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. Remarkably, we show that this system involving 3D diffusion and fluid dynamics, exactly yields the 2D Keller-Segel model for the surface-flow of active particles. We discuss the consequences of collapse on the 3D fluid dynamics, and generalizations of the fluid-dynamical model.

  7. CYP4F18-Deficient Neutrophils Exhibit Increased Chemotaxis to Complement Component C5a

    Directory of Open Access Journals (Sweden)

    Rachel Vaivoda

    2015-01-01

    Full Text Available CYP4Fs were first identified as enzymes that catalyze hydroxylation of leukotriene B4 (LTB4. CYP4F18 has an unusual expression in neutrophils and was predicted to play a role in regulating LTB4-dependent inflammation. We compared chemotaxis of wild-type and Cyp4f18 knockout neutrophils using an in vitro assay. There was no significant difference in the chemotactic response to LTB4, but the response to complement component C5a increased 1.9–2.25-fold in knockout cells compared to wild-type (P < 0.01. This increase was still observed when neutrophils were treated with inhibitors of eicosanoid synthesis. There were no changes in expression of other CYP4 enzymes in knockout neutrophils that might compensate for loss of CYP4F18 or lead to differences in activity. A mouse model of dextran sodium sulfate colitis was used to investigate the consequences of increased C5a-dependent chemotaxis in vivo, but there was no significant difference in weight loss, disease activity, or colonic tissue myeloperoxidase between wild-type and Cyp4f18 knockout mice. This study demonstrates the limitations of inferring CYP4F function based on an ability to use LTB4 as a substrate, points to expanding roles for CYP4F enzymes in immune regulation, and underscores the in vivo challenges of CYP knockout studies.

  8. Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape.

    Science.gov (United States)

    Sahari, Ali; Traore, Mahama A; Scharf, Birgit E; Behkam, Bahareh

    2014-10-01

    Several attenuated and non-pathogenic bacterial species have been demonstrated to actively target diseased sites and successfully deliver plasmid DNA, proteins and other therapeutic agents into mammalian cells. These disease-targeting bacteria can be employed for targeted delivery of therapeutic and imaging cargos in the form of a bio-hybrid system. The bio-hybrid drug delivery system constructed here is comprised of motile Escherichia coli MG1655 bacteria and elliptical disk-shaped polymeric microparticles. The transport direction for these vehicles can be controlled through biased random walk of the attached bacteria in presence of chemoattractant gradients in a process known as chemotaxis. In this work, we utilize a diffusion-based microfluidic platform to establish steady linear concentration gradients of a chemoattractant and investigate the roles of chemotaxis and geometry in transport of bio-hybrid drug delivery vehicles. Our experimental results demonstrate for the first time that bacterial chemotactic response dominates the effect of body shape in extravascular transport; thus, the non-spherical system could be more favorable for drug delivery applications owing to the known benefits of using non-spherical particles for vascular transport (e.g. relatively long circulation time).

  9. The role of amino acid-induced mammalian target of rapamycin complex 1(mTORC1) signaling in insulin resistance.

    Science.gov (United States)

    Yoon, Mee-Sup; Choi, Cheol Soo

    2016-01-01

    Mammalian target of rapamycin (mTOR) controls cell growth and metabolism in response to nutrients, energy, and growth factors. Recent findings have placed the lysosome at the core of mTOR complex 1 (mTORC1) regulation by amino acids. Two parallel pathways, Rag GTPase-Ragulator and Vps34-phospholipase D1 (PLD1), regulate mTOR activation on the lysosome. This review describes the recent advances in understanding amino acid-induced mTOR signaling with a particular focus on the role of mTOR in insulin resistance. PMID:27534530

  10. Metabotropic Glutamate Receptor-dependent Long-term Depression is Impaired Due to Elevated ERK Signaling in the ΔRG Mouse Model of Tuberous Sclerosis Complex

    OpenAIRE

    Chévere-Torres, Itzamarie; Kaphzan, Hanoch; Bhattacharya, Aditi; Kang, Areum; Maki, Jordan M.; Michael J Gambello; Arbiser, Jack L.; Santini, Emanuela; Klann, Eric

    2011-01-01

    Tuberous sclerosis complex (TSC) and fragile X syndrome (FXS) are caused by mutations in negative regulators of translation. FXS model mice exhibit enhanced metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD). Therefore, we hypothesized that a mouse model of TSC, ΔRG transgenic mice, also would exhibit enhanced mGluR-LTD. We measured the impact of TSC2-GAP mutations on the mTORC1 and ERK signaling pathways and protein synthesis-dependent hippocampal synaptic plasticity ...

  11. A Mixed-Signal Demodulator for a Low-Complexity IR-UWB Receiver: Methodology, Simulation and Design

    OpenAIRE

    Zamboni, Maurizio; Casu, Mario Roberto; Graziano, Mariagrazia; Crepaldi, Marco

    2009-01-01

    This works presents an integrated 0.18μm CMOS 2-PPM demodulator based on a switched capacitor network for an Energy Detection Impulse-Radio UWB receiver. The circuit has been designed using a top-down methodology that allows to discover the impact of low-level non-idealities on system-level performance. Through the use of a mixed signal simulation environment, performance figures have been obtained which helped evaluate the influence at system-level of the non-idealities of the most critical ...

  12. Evaluation of phosphopeptide enrichment strategies for quantitative TMT analysis of complex network dynamics in cancer-associated cell signalling

    Directory of Open Access Journals (Sweden)

    Benedetta Lombardi

    2015-03-01

    Full Text Available Defining alterations in signalling pathways in normal and malignant cells is becoming a major field in proteomics. A number of different approaches have been established to isolate, identify and quantify phosphorylated proteins and peptides. In the current report, a comparison between SCX prefractionation versus an antibody based approach, both coupled to TiO2 enrichment and applied to TMT labelled cellular lysates, is described. The antibody strategy was more complete for enriching phosphopeptides and allowed the identification of a large set of proteins known to be phosphorylated (715 protein groups with a minimum number of not previously known phosphorylated proteins (2.

  13. FOXO3–NF-κB RelA Protein Complexes Reduce Proinflammatory Cell Signaling and Function

    OpenAIRE

    Thompson, Matthew G.; Larson, Michelle; Vidrine, Amy; Barrios, Kelly; Navarro, Flor; Meyers, Kaitlyn; Simms, Patricia; Prajapati, Kushal; Chitsike, Lennox; Hellman, Lance M.; Baker, Brian M.; Watkins, Stephanie K.

    2015-01-01

    Tumor-associated myeloid cells, including dendritic cells (DCs) and macrophages, are immune suppressive. This study demonstrates a novel mechanism involving FOXO3 and NF-κB RelA that controls myeloid cell signaling and impacts their immune-suppressive nature. We find that FOXO3 binds NF-κB RelA in the cytosol, impacting both proteins by preventing FOXO3 degradation and preventing NF-κB RelA nuclear translocation. The location of protein–protein interaction was determined to be near the FOXO3 ...

  14. Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis.

    Science.gov (United States)

    Kim, Tae-Houn; Kunz, Hans-Henning; Bhattacharjee, Saikat; Hauser, Felix; Park, Jiyoung; Engineer, Cawas; Liu, Amy; Ha, Tracy; Parker, Jane E; Gassmann, Walter; Schroeder, Julian I

    2012-12-01

    In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor-nucleotide binding-Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid-induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest. PMID:23275581

  15. Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis.

    Science.gov (United States)

    Kim, Tae-Houn; Kunz, Hans-Henning; Bhattacharjee, Saikat; Hauser, Felix; Park, Jiyoung; Engineer, Cawas; Liu, Amy; Ha, Tracy; Parker, Jane E; Gassmann, Walter; Schroeder, Julian I

    2012-12-01

    In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor-nucleotide binding-Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid-induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest.

  16. Signal peptidase complex subunit 1 participates in the assembly of hepatitis C virus through an interaction with E2 and NS2.

    Directory of Open Access Journals (Sweden)

    Ryosuke Suzuki

    Full Text Available Hepatitis C virus (HCV nonstructural protein 2 (NS2 is a hydrophobic, transmembrane protein that is required not only for NS2-NS3 cleavage, but also for infectious virus production. To identify cellular factors that interact with NS2 and are important for HCV propagation, we screened a human liver cDNA library by split-ubiquitin membrane yeast two-hybrid assay using full-length NS2 as a bait, and identified signal peptidase complex subunit 1 (SPCS1, which is a component of the microsomal signal peptidase complex. Silencing of endogenous SPCS1 resulted in markedly reduced production of infectious HCV, whereas neither processing of structural proteins, cell entry, RNA replication, nor release of virus from the cells was impaired. Propagation of Japanese encephalitis virus was not affected by knockdown of SPCS1, suggesting that SPCS1 does not widely modulate the viral lifecycles of the Flaviviridae family. SPCS1 was found to interact with both NS2 and E2. A complex of NS2, E2, and SPCS1 was formed in cells as demonstrated by co-immunoprecipitation assays. Knockdown of SPCS1 impaired interaction of NS2 with E2. Our findings suggest that SPCS1 plays a key role in the formation of the membrane-associated NS2-E2 complex via its interaction with NS2 and E2, which leads to a coordinating interaction between the structural and non-structural proteins and facilitates the early step of assembly of infectious particles.

  17. Efficient and low complexity analysis of Bio-signals using continuous Haar wavelet transforms for removing noise

    Directory of Open Access Journals (Sweden)

    S.GANESAN

    2010-11-01

    Full Text Available This work has been inspired by the need to find an efficient method for ECG Signal Analysis which is simple and has good accuracy and less computation time. The initial task for efficient analysis is the removal of noise. It actually involves the extraction of the required cardiac components by rejecting the background noise. Enhancementof signal is achieved by the use of Empirical Mode Decomposition (EMD method. The use of EMD was inspired by its adaptive nature. The second task is that of R peak detection which is achieved by the use of Continuous Wavelet Transform (CWT.Efficiency of the method is measured in terms of detection error rate. Various other methods of R peak detection like Hilbert Transform and Difference Operation Method are implemented and the results when compared with the Continuous Wavelet Transform prove that CWT is a better method. The simulationis done in MATLAB environment. The experiments are carried out on MIT-BIH database. The results show that our proposed method is very effective and an efficient method for fast computation of R peak detection.

  18. Sentra, a database of signal transduction proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, N.; Marland, E.; Yu, G. X.; Bhatnagar, S.; Lusk, R.; Mathematics and Computer Science

    2002-01-01

    Sentra (http://www-wit.mcs.anl.gov/sentra) is a database of signal transduction proteins with the emphasis on microbial signal transduction. The database was updated to include classes of signal transduction systems modulated by either phosphorylation or methylation reactions such as PAS proteins and serine/threonine kinases, as well as the classical two-component histidine kinases and methyl-accepting chemotaxis proteins. Currently, Sentra contains signal transduction proteins from 43 completely sequenced prokaryotic genomes as well as sequences from SWISS-PROT and TrEMBL. Signal transduction proteins are annotated with information describing conserved domains, paralogous and orthologous sequences, and conserved chromosomal gene clusters. The newly developed user interface supports flexible search capabilities and extensive visualization of the data.

  19. SENTRA, a database of signal transduction proteins.

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, M.; Romine, M. F.; Maltsev, N.; Mathematics and Computer Science; PNNL

    2000-01-01

    SENTRA, available via URL http://wit.mcs.anl.gov/WIT2/Sentra/, is a database of proteins associated with microbial signal transduction. The database currently includes the classical two-component signal transduction pathway proteins and methyl-accepting chemotaxis proteins, but will be expanded to also include other classes of signal transduction systems that are modulated by phosphorylation or methylation reactions. Although the majority of database entries are from prokaryotic systems, eukaroytic proteins with bacterial-like signal transduction domains are also included. Currently SENTRA contains signal transduction proteins in 34 complete and almost completely sequenced prokaryotic genomes, as well as sequences from 243 organisms available in public databases (SWISS-PROT and EMBL). The analysis was carried out within the framework of the WIT2 system, which is designed and implemented to support genetic sequence analysis and comparative analysis of sequenced genomes.

  20. Induction of chemotaxis to sodium chloride and diacetyl and thermotaxis defects by microcystin-LR exposure in nematode Caenorhabditis elegans

    Institute of Scientific and Technical Information of China (English)

    LI Yunhui; YE Huayue; DU Min; ZHANG Yanfen; YE Boping; PU Yuepu; WANG Dayong

    2009-01-01

    Apart from the liver disruption, embryotoxicity and genotoxicity, microcystin (MC)-LR also could cause neurotoxicity. Nematode Caenorhabditis elegans was explored as a model to study the neurotoxicity. In the present study, we provided evidence to indicate the neurotoxicity on chemotaxis to NaCl and diacetyl, and thermotaxis from MC-LR exposure to C. elegans. As a result, higher concentrations of MC-LR caused significantly severe defects of chemotaxis to NaC1 and diacetyl, and thermotaxis. The neurotoxicity on chemotaxis to NaCl and diacetyl, and thennotaxis from MC-LR exposure might be largely mediated by the damage on the corresponding sensory neurons (ASE, AWA, and AFD) and interneuron AIY. The expression levels of che-1 and odr-7 were significantly decreased (P<0.01) in animals exposed to MC-LR at concentrations lower than 10 μg/L, whereas the expression levels of ttx-1 and ttx-3 could be significantly (P<0.01) lowered in animals even exposed to 1 μg/L of MC-LR. Moreover, both the chemotaxis to NaCl and diacetyl and the thermotaxis were more significantly reduced m MC-LR exposed mutants of che-1(p674), odr-7(ky4), ttx-1(p767), and ttx-3(ks5) than those in exposed wild-type N2 animals at the same concentrations.

  1. Cell cycle-dependent adaptor complex for ClpXP-mediated proteolysis directly integrates phosphorylation and second messenger signals.

    Science.gov (United States)

    Smith, Stephen C; Joshi, Kamal K; Zik, Justin J; Trinh, Katherine; Kamajaya, Aron; Chien, Peter; Ryan, Kathleen R

    2014-09-30

    The cell-division cycle of Caulobacter crescentus depends on periodic activation and deactivation of the essential response regulator CtrA. Although CtrA is critical for transcription during some parts of the cell cycle, its activity must be eliminated before chromosome replication because CtrA also blocks the initiation of DNA replication. CtrA activity is down-regulated both by dephosphorylation and by proteolysis, mediated by the ubiquitous ATP-dependent protease ClpXP. Here we demonstrate that proteins needed for rapid CtrA proteolysis in vivo form a phosphorylation-dependent and cyclic diguanylate (cdG)-dependent adaptor complex that accelerates CtrA degradation in vitro by ClpXP. The adaptor complex includes CpdR, a single-domain response regulator; PopA, a cdG-binding protein; and RcdA, a protein whose activity cannot be predicted. When CpdR is unphosphorylated and when PopA is bound to cdG, they work together with RcdA in an all-or-none manner to reduce the Km of CtrA proteolysis 10-fold. We further identified a set of amino acids in the receiver domain of CtrA that modulate its adaptor-mediated degradation in vitro and in vivo. Complex formation between PopA and CtrA depends on these amino acids, which reside on alpha-helix 1 of the CtrA receiver domain, and on cdG binding by PopA. These results reveal that each accessory factor plays an essential biochemical role in the regulated proteolysis of CtrA and demonstrate, to our knowledge, the first example of a multiprotein, cdG-dependent proteolytic adaptor.

  2. Structure of Importin-α from a Filamentous Fungus in Complex with a Classical Nuclear Localization Signal.

    Directory of Open Access Journals (Sweden)

    Natalia E Bernardes

    Full Text Available Neurospora crassa is a filamentous fungus that has been extensively studied as a model organism for eukaryotic biology, providing fundamental insights into cellular processes such as cell signaling, growth and differentiation. To advance in the study of this multicellular organism, an understanding of the specific mechanisms for protein transport into the cell nucleus is essential. Importin-α (Imp-α is the receptor for cargo proteins that contain specific nuclear localization signals (NLSs that play a key role in the classical nuclear import pathway. Structures of Imp-α from different organisms (yeast, rice, mouse, and human have been determined, revealing that this receptor possesses a conserved structural scaffold. However, recent studies have demonstrated that the Impα mechanism of action may vary significantly for different organisms or for different isoforms from the same organism. Therefore, structural, functional, and biophysical characterization of different Impα proteins is necessary to understand the selectivity of nuclear transport. Here, we determined the first crystal structure of an Impα from a filamentous fungus which is also the highest resolution Impα structure already solved to date (1.75 Å. In addition, we performed calorimetric analysis to determine the affinity and thermodynamic parameters of the interaction between Imp-α and the classical SV40 NLS peptide. The comparison of these data with previous studies on Impα proteins led us to demonstrate that N. crassa Imp-α possess specific features that are distinct from mammalian Imp-α but exhibit important similarities to rice Imp-α, particularly at the minor NLS binding site.

  3. Integrative Tissue-Specific Functional Annotations in the Human Genome Provide Novel Insights on Many Complex Traits and Improve Signal Prioritization in Genome Wide Association Studies

    Science.gov (United States)

    Wang, Qian; He, Beixin Julie; Zhao, Hongyu

    2016-01-01

    Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies. Integrative analysis of GenoSkyline annotations and results from genome-wide association studies (GWAS) led to novel biological insights on the etiologies of a number of human complex traits. We also explored using tissue-specific functional annotations to prioritize GWAS signals and predict relevant tissue types for each risk locus. Brain and blood-specific annotations led to better prioritization performance for schizophrenia than standard GWAS p-values and non-tissue-specific annotations. As for coronary artery disease, heart-specific functional regions was highly enriched of GWAS signals, but previously identified risk loci were found to be most functional in other tissues, suggesting a substantial proportion of still undetected heart-related loci. In summary, GenoSkyline annotations can guide genetic studies at multiple resolutions and provide valuable insights in understanding complex diseases. GenoSkyline is available at http://genocanyon.med.yale.edu/GenoSkyline. PMID:27058395

  4. Electrochemical biosensor based on enzyme substrate as a linker: Application for aldolase activity with pectin-thionine complex as recognization element and signal amplification probe.

    Science.gov (United States)

    Wang, Xiaonan; Wang, Meiwen; Zhang, Yuanyuan; Miao, Xiaocao; Huang, Yuanyuan; Zhang, Juan; Sun, Lizhou

    2016-09-15

    A new strategy to fabricate electrochemical biosensor is reported based on the linkage of enzyme substrate, thereby an electrochemical method to detect aldolase activity is established using pectin-thionine complex (PTC) as recognization element and signal probe. The linkage effect of fructose-1,6-bisphosphate (FBP), the substrate of aldolase, can be achieved via its strong binding to magnetic nanoparticles (MNPs)/aminophenylboronic acid (APBA) and the formation of phosphoramidate bond derived from its reaction with p-phenylenediamine (PDA) on the surface of electrode. Aldolase can reversibly catalyze the substrates into the products which have no binding capacity with MNPs/APBA, resulting in the exposure of the corresponding binding sites and its subsequent recognization on signal probe. Meanwhile, signal amplification can be accomplished by using the firstly prepared PTC which can bind with MNPs/APBA, and accuracy can be strengthened through magnetic separation. With good precision and accuracy, the established sensor may be extended to other proteins with reversible catalyzed ability. PMID:27107145

  5. Motility and chemotaxis mediate the preferential colonization of gastric injury sites by Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Eitaro Aihara

    2014-07-01

    Full Text Available Helicobacter pylori (H. pylori is a pathogen contributing to peptic inflammation, ulceration, and cancer. A crucial step in the pathogenic sequence is when the bacterium first interacts with gastric tissue, an event that is poorly understood in vivo. We have shown that the luminal space adjacent to gastric epithelial damage is a microenvironment, and we hypothesized that this microenvironment might enhance H. pylori colonization. Inoculation with 106 H. pylori (wild-type Sydney Strain 1, SS1 significantly delayed healing of acetic-acid induced ulcers at Day 1, 7 and 30 post-inoculation, and wild-type SS1 preferentially colonized the ulcerated area compared to uninjured gastric tissue in the same animal at all time points. Gastric resident Lactobacillus spp. did not preferentially colonize ulcerated tissue. To determine whether bacterial motility and chemotaxis are important to ulcer healing and colonization, we analyzed isogenic H. pylori mutants defective in motility (ΔmotB or chemotaxis (ΔcheY. ΔmotB (10(6 failed to colonize ulcerated or healthy stomach tissue. ΔcheY (10(6 colonized both tissues, but without preferential colonization of ulcerated tissue. However, ΔcheY did modestly delay ulcer healing, suggesting that chemotaxis is not required for this process. We used two-photon microscopy to induce microscopic epithelial lesions in vivo, and evaluated accumulation of fluorescently labeled H. pylori at gastric damage sites in the time frame of minutes instead of days. By 5 min after inducing damage, H. pylori SS1 preferentially accumulated at the site of damage and inhibited gastric epithelial restitution. H. pylori ΔcheY modestly accumulated at the gastric surface and inhibited restitution, but did not preferentially accumulate at the injury site. H. pylori ΔmotB neither accumulated at the surface nor inhibited restitution. We conclude that bacterial chemosensing and motility rapidly promote H. pylori colonization of injury sites

  6. A diffusion based long-range and steady chemical gradient generator on a microfluidic device for studying bacterial chemotaxis

    Science.gov (United States)

    Murugesan, Nithya; Singha, Siddhartha; Panda, Tapobrata; Das, Sarit K.

    2016-03-01

    Studies on chemotaxis in microfluidics device have become a major area of research to generate physiologically similar environment in vitro. In this work, a novel micro-fluidic device has been developed to study chemo-taxis of cells in near physiological condition which can create controllable, steady and long-range chemical gradients using various chemo-effectors in a micro-channel. Hydrogels like agarose, collagen, etc, can be used in the device to maintain exclusive diffusive flux of various chemical species into the micro-channel under study. Variations of concentrations and flow rates of Texas Red dextran in the device revealed that an increase in the concentration of the dye in the feed from 6 to 18 μg ml-1, causes a steeper chemical gradient in the device, whereas the flow rate of the dye has practically no effect on the chemical gradient in the device. This observation confirms that a diffusion controlled chemical gradient is generated in the micro-channel. Chemo-taxis of E. coli cells were studied under the steady gradient of a chemo-attractant and a chemo-repellent separately in the same chemical gradient generator. For sorbitol and NiSO4·6H2O, the bacterial cells exhibit a steady distribution in the micro channel after 1 h and 30 min, respectively. From the distribution of bacterial population chemo-tactic strength of the chemo-effectors was estimated for E. coli. In a long microfluidic channel, migration behavior of bacterial cells under diffusion controlled chemical gradient showed chemotaxis, random movement, aggregation, and concentration dependent reverse chemotaxis.

  7. Novel One-Tube-One-Step Real-Time Methodology for Rapid Transcriptomic Biomarker Detection: Signal Amplification by Ternary Initiation Complexes.

    Science.gov (United States)

    Fujita, Hiroto; Kataoka, Yuka; Tobita, Seiji; Kuwahara, Masayasu; Sugimoto, Naoki

    2016-07-19

    We have developed a novel RNA detection method, termed signal amplification by ternary initiation complexes (SATIC), in which an analyte sample is simply mixed with the relevant reagents and allowed to stand for a short time under isothermal conditions (37 °C). The advantage of the technique is that there is no requirement for (i) heat annealing, (ii) thermal cycling during the reaction, (iii) a reverse transcription step, or (iv) enzymatic or mechanical fragmentation of the target RNA. SATIC involves the formation of a ternary initiation complex between the target RNA, a circular DNA template, and a DNA primer, followed by rolling circle amplification (RCA) to generate multiple copies of G-quadruplex (G4) on a long DNA strand like beads on a string. The G4s can be specifically fluorescence-stained with N(3)-hydroxyethyl thioflavin T (ThT-HE), which emits weakly with single- and double-stranded RNA/DNA but strongly with parallel G4s. An improved dual SATIC system, which involves the formation of two different ternary initiation complexes in the RCA process, exhibited a wide quantitative detection range of 1-5000 pM. Furthermore, this enabled visual observation-based RNA detection, which is more rapid and convenient than conventional isothermal methods, such as reverse transcription-loop-mediated isothermal amplification, signal mediated amplification of RNA technology, and RNA-primed rolling circle amplification. Thus, SATIC methodology may serve as an on-site and real-time measurement technique for transcriptomic biomarkers for various diseases.

  8. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response.

    Science.gov (United States)

    Guillonneau, Maëva; Paris, François; Dutoit, Soizic; Estephan, Hala; Bénéteau, Elise; Huot, Jacques; Corre, Isabelle

    2016-08-01

    Oxidative stress is a leading cause of endothelial dysfunction. The p38 MAPK pathway plays a determinant role in allowing cells to cope with oxidative stress and is tightly regulated by a balanced interaction between p38 protein and its interacting partners. By using a proteomic approach, we identified nucleophosmin (NPM) as a new partner of p38 in HUVECs. Coimmunoprecipitation and microscopic analyses confirmed the existence of a cytosolic nucleophosmin (NPM)/p38 interaction in basal condition. Oxidative stress, which was generated by exposure to 500 µM H2O2, induces a rapid dephosphorylation of NPM at T199 that depends on phosphatase PP2A, another partner of the NPM/p38 complex. Blocking PP2A activity leads to accumulation of NPM-pT199 and to an increased association of NPM with p38. Concomitantly to its dephosphorylation, oxidative stress promotes translocation of NPM to the nucleus to affect the DNA damage response. Dephosphorylated NPM impairs the signaling of oxidative stress-induced DNA damage via inhibition of the phosphorylation of ataxia-telangiectasia mutated and DNA-dependent protein kinase catalytic subunit. Overall, these results suggest that the p38/NPM/PP2A complex acts as a dynamic sensor, allowing endothelial cells to react rapidly to acute oxidative stress.-Guillonneau, M., Paris, F., Dutoit, S., Estephan, H., Bénéteau, E., Huot, J., Corre, I. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response.

  9. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures

    Science.gov (United States)

    Knierim, Ellen; Hirata, Hiromi; Wolf, Nicole I.; Morales-Gonzalez, Susanne; Schottmann, Gudrun; Tanaka, Yu; Rudnik-Schöneborn, Sabine; Orgeur, Mickael; Zerres, Klaus; Vogt, Stefanie; van Riesen, Anne; Gill, Esther; Seifert, Franziska; Zwirner, Angelika; Kirschner, Janbernd; Goebel, Hans Hilmar; Hübner, Christoph; Stricker, Sigmar; Meierhofer, David; Stenzel, Werner; Schuelke, Markus

    2016-01-01

    Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system. PMID:26924529

  10. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response.

    Science.gov (United States)

    Guillonneau, Maëva; Paris, François; Dutoit, Soizic; Estephan, Hala; Bénéteau, Elise; Huot, Jacques; Corre, Isabelle

    2016-08-01

    Oxidative stress is a leading cause of endothelial dysfunction. The p38 MAPK pathway plays a determinant role in allowing cells to cope with oxidative stress and is tightly regulated by a balanced interaction between p38 protein and its interacting partners. By using a proteomic approach, we identified nucleophosmin (NPM) as a new partner of p38 in HUVECs. Coimmunoprecipitation and microscopic analyses confirmed the existence of a cytosolic nucleophosmin (NPM)/p38 interaction in basal condition. Oxidative stress, which was generated by exposure to 500 µM H2O2, induces a rapid dephosphorylation of NPM at T199 that depends on phosphatase PP2A, another partner of the NPM/p38 complex. Blocking PP2A activity leads to accumulation of NPM-pT199 and to an increased association of NPM with p38. Concomitantly to its dephosphorylation, oxidative stress promotes translocation of NPM to the nucleus to affect the DNA damage response. Dephosphorylated NPM impairs the signaling of oxidative stress-induced DNA damage via inhibition of the phosphorylation of ataxia-telangiectasia mutated and DNA-dependent protein kinase catalytic subunit. Overall, these results suggest that the p38/NPM/PP2A complex acts as a dynamic sensor, allowing endothelial cells to react rapidly to acute oxidative stress.-Guillonneau, M., Paris, F., Dutoit, S., Estephan, H., Bénéteau, E., Huot, J., Corre, I. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response. PMID:27142525

  11. Protease-activated Receptor-4 Signaling and Trafficking Is Regulated by the Clathrin Adaptor Protein Complex-2 Independent of β-Arrestins.

    Science.gov (United States)

    Smith, Thomas H; Coronel, Luisa J; Li, Julia G; Dores, Michael R; Nieman, Marvin T; Trejo, JoAnn

    2016-08-26

    Protease-activated receptor-4 (PAR4) is a G protein-coupled receptor (GPCR) for thrombin and is proteolytically activated, similar to the prototypical PAR1. Due to the irreversible activation of PAR1, receptor trafficking is intimately linked to signal regulation. However, unlike PAR1, the mechanisms that control PAR4 trafficking are not known. Here, we sought to define the mechanisms that control PAR4 trafficking and signaling. In HeLa cells depleted of clathrin by siRNA, activated PAR4 failed to internalize. Consistent with clathrin-mediated endocytosis, expression of a dynamin dominant-negative K44A mutant also blocked activated PAR4 internalization. However, unlike most GPCRs, PAR4 internalization occurred independently of β-arrestins and the receptor's C-tail domain. Rather, we discovered a highly conserved tyrosine-based motif in the third intracellular loop of PAR4 and found that the clathrin adaptor protein complex-2 (AP-2) is important for internalization. Depletion of AP-2 inhibited PAR4 internalization induced by agonist. In addition, mutation of the critical residues of the tyrosine-based motif disrupted agonist-induced PAR4 internalization. Using Dami megakaryocytic cells, we confirmed that AP-2 is required for agonist-induced internalization of endogenous PAR4. Moreover, inhibition of activated PAR4 internalization enhanced ERK1/2 signaling, whereas Akt signaling was markedly diminished. These findings indicate that activated PAR4 internalization requires AP-2 and a tyrosine-based motif and occurs independent of β-arrestins, unlike most classical GPCRs. Moreover, these findings are the first to show that internalization of activated PAR4 is linked to proper ERK1/2 and Akt activation. PMID:27402844

  12. Role of modulators of small GTPases in chemotaxis, cytokinesis and development in Dictyostelium Discoideum

    OpenAIRE

    Mondal, Subhanjan

    2008-01-01

    The work described here shows the complexity of GTPase signalling in an apparently simple organism Dictyostelium discoideum. Ras Guanine nucleotide exchange factor RasGEF Q is one out of at least 25 RasGEFs in D. discoideum. Here we show that it specifically regulates myosin II functions by regulating myosin phosphorylation. RasGEF Q activates the Ras isoform RasB upon stimulation with cAMP. Activated RasB can directly or indirectly activate Myosin Heavy chain kinase A (MHCK A) which then pho...

  13. Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity.

    Science.gov (United States)

    Wagner, Stephan; Stuttmann, Johannes; Rietz, Steffen; Guerois, Raphael; Brunstein, Elena; Bautor, Jaqueline; Niefind, Karsten; Parker, Jane E

    2013-12-11

    Biotrophic plant pathogens encounter a postinfection basal resistance layer controlled by the lipase-like protein enhanced disease susceptibility 1 (EDS1) and its sequence-related interaction partners, senescence-associated gene 101 (SAG101) and phytoalexin deficient 4 (PAD4). Maintainance of separate EDS1 family member clades through angiosperm evolution suggests distinct functional attributes. We report the Arabidopsis EDS1-SAG101 heterodimer crystal structure with juxtaposed N-terminal α/β hydrolase and C-terminal α-helical EP domains aligned via a large conserved interface. Mutational analysis of the EDS1-SAG101 heterodimer and a derived EDS1-PAD4 structural model shows that EDS1 signals within mutually exclusive heterocomplexes. Although there is evolutionary conservation of α/β hydrolase topology in all three proteins, a noncatalytic resistance mechanism is indicated. Instead, the respective N-terminal domains appear to facilitate binding of the essential EP domains to create novel interaction surfaces on the heterodimer. Transitions between distinct functional EDS1 heterodimers might explain the central importance and versatility of this regulatory node in plant immunity.

  14. Temporal selectivity for complex signals by single neurons in the torus semicircularis of Pleurodema thaul (Amphibia:Leptodactylidae).

    Science.gov (United States)

    Penna, M; Lin, W Y; Feng, A S

    1997-04-01

    Responses of auditory neurons in the torus semicircularis (TS) of Pleurodema thaul, a leptodactylid from Chile, to synthetic stimuli having diverse temporal patterns and to digitized advertisement calls of P. thaul and three sympatric species, were recorded to investigate their temporal response selectivities. The advertisement call of this species consists of a long sequence of sound pulses (a pulse-amplitude-modulated, or PAM, signal) having a dominant frequency of about 2000 Hz. Each of the sound pulses contains intra-pulse sinusoidal-amplitude-modulations (SAMs). Synthetic stimuli consisted of six series in which the following acoustic parameters were systematically modified, one at a time: PAM rate, pulse duration, number of pulses, and intra-pulse SAM rate. The carrier frequency of these stimuli was set at the characteristic frequency (CF) of the isolated units (n = 47). Response patterns of TS units to synthetic call variants reveal different degrees of selectivities for each of the temporal variables, with populations of neurons responding maximally to specific values found in the advertisement call of this species. These selectivities are mainly shaped by neuronal responsiveness to the overall sound energy of the stimulus and by the inability of neurons to discharge to short inter-pulse gaps.

  15. Intra-amoeba multiplication induces chemotaxis and biofilm colonization and formation for Legionella.

    Science.gov (United States)

    Bigot, Renaud; Bertaux, Joanne; Frere, Jacques; Berjeaud, Jean-Marc

    2013-01-01

    Legionella pneumophila, a facultative intracellular bacterium, is the causative agent of legionellosis. In the environment this pathogenic bacterium colonizes the biofilms as well as amoebae, which provide a rich environment for the replication of Legionella. When seeded on pre-formed biofilms, L. pneumophila was able to establish and survive and was only found at the surface of the biofilms. Different phenotypes were observed when the L. pneumophila, used to implement pre-formed biofilms or to form mono-species biofilms, were cultivated in a laboratory culture broth or had grown intracellulary within the amoeba. Indeed, the bacteria, which developed within the amoeba, formed clusters when deposited on a solid surface. Moreover, our results demonstrate that multiplication inside the amoeba increased the capacity of L. pneumophila to produce polysaccharides and therefore enhanced its capacity to establish biofilms. Finally, it was shown that the clusters formed by L. pneumophila were probably related to the secretion of a chemotaxis molecular agent.

  16. Impairment of chemotaxis of polymorphonuclear leukocytes from lead acid battery workers.

    Science.gov (United States)

    Governa, M; Valentino, M; Visona, I; Scielso, R

    1988-06-01

    Since lead impairs in vitro the functions of macrophagic cells, we have studied the chemotactic activity of polymorphonuclear leukocytes (PMNs) obtained from lead acid battery workers who were removed from exposure one month before, because they had an abnormal lead absorption. Controls were 18 age matched subjects without any history of occupational lead exposure. Both lead acid battery workers and controls had no alterations of the blood haematological and metabolic parameters. Chemotaxis was carried on in Boyden chambers using zymosan activated serum as chemotactic stimulus. The chemotactic indexes are 56.4 +/- 8.7 in acid battery workers and 75.6 +/- in controls. The difference, which is statistically significant, shows that lead workers have an impairment of PMNs chemotactic activity.

  17. The stochastic dance of circling sperm cells: sperm chemotaxis in the plane

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, B M; Juelicher, F [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany)], E-mail: ben@pks.mpg.de, E-mail: julicher@pks.mpg.de

    2008-12-15

    Biological systems such as single cells must function in the presence of fluctuations. It has been shown in a two-dimensional experimental setup that sea urchin sperm cells move toward a source of chemoattractant along planar trochoidal swimming paths, i.e. drifting circles. In these experiments, a pronounced variability of the swimming paths is observed. We present a theoretical description of sperm chemotaxis in two dimensions which takes fluctuations into account. We derive a coarse-grained theory of stochastic sperm swimming paths in a concentration field of chemoattractant. Fluctuations enter as multiplicative noise in the equations for the sperm swimming path. We discuss the stochastic properties of sperm swimming and predict a concentration-dependence of the effective diffusion constant of sperm swimming which could be tested in experiments.

  18. The stochastic dance of circling sperm cells: sperm chemotaxis in the plane

    International Nuclear Information System (INIS)

    Biological systems such as single cells must function in the presence of fluctuations. It has been shown in a two-dimensional experimental setup that sea urchin sperm cells move toward a source of chemoattractant along planar trochoidal swimming paths, i.e. drifting circles. In these experiments, a pronounced variability of the swimming paths is observed. We present a theoretical description of sperm chemotaxis in two dimensions which takes fluctuations into account. We derive a coarse-grained theory of stochastic sperm swimming paths in a concentration field of chemoattractant. Fluctuations enter as multiplicative noise in the equations for the sperm swimming path. We discuss the stochastic properties of sperm swimming and predict a concentration-dependence of the effective diffusion constant of sperm swimming which could be tested in experiments.

  19. Intra-amoeba multiplication induces chemotaxis and biofilm colonization and formation for Legionella.

    Directory of Open Access Journals (Sweden)

    Renaud Bigot

    Full Text Available Legionella pneumophila, a facultative intracellular bacterium, is the causative agent of legionellosis. In the environment this pathogenic bacterium colonizes the biofilms as well as amoebae, which provide a rich environment for the replication of Legionella. When seeded on pre-formed biofilms, L. pneumophila was able to establish and survive and was only found at the surface of the biofilms. Different phenotypes were observed when the L. pneumophila, used to implement pre-formed biofilms or to form mono-species biofilms, were cultivated in a laboratory culture broth or had grown intracellulary within the amoeba. Indeed, the bacteria, which developed within the amoeba, formed clusters when deposited on a solid surface. Moreover, our results demonstrate that multiplication inside the amoeba increased the capacity of L. pneumophila to produce polysaccharides and therefore enhanced its capacity to establish biofilms. Finally, it was shown that the clusters formed by L. pneumophila were probably related to the secretion of a chemotaxis molecular agent.

  20. Intra-amoeba multiplication induces chemotaxis and biofilm colonization and formation for Legionella.

    Science.gov (United States)

    Bigot, Renaud; Bertaux, Joanne; Frere, Jacques; Berjeaud, Jean-Marc

    2013-01-01

    Legionella pneumophila, a facultative intracellular bacterium, is the causative agent of legionellosis. In the environment this pathogenic bacterium colonizes the biofilms as well as amoebae, which provide a rich environment for the replication of Legionella. When seeded on pre-formed biofilms, L. pneumophila was able to establish and survive and was only found at the surface of the biofilms. Different phenotypes were observed when the L. pneumophila, used to implement pre-formed biofilms or to form mono-species biofilms, were cultivated in a laboratory culture broth or had grown intracellulary within the amoeba. Indeed, the bacteria, which developed within the amoeba, formed clusters when deposited on a solid surface. Moreover, our results demonstrate that multiplication inside the amoeba increased the capacity of L. pneumophila to produce polysaccharides and therefore enhanced its capacity to establish biofilms. Finally, it was shown that the clusters formed by L. pneumophila were probably related to the secretion of a chemotaxis molecular agent. PMID:24205008

  1. Lotka-Volterra equations with chemotaxis: walls, barriers and travelling waves.

    Science.gov (United States)

    Pettet, G J; McElwain, D L; Norbury, J

    2000-12-01

    In this paper we consider a simple two species model for the growth of new blood vessels. The model is based upon the Lotka-Volterra system of predator and prey interaction, where we identify newly developed capillary tips as the predator species and a chemoattractant which directs their motion as the prey. We extend the Lotka-Volterra system to include a one-dimensional spatial dependence, by allowing the predators to migrate in a manner modelled on the phenomenon of chemotaxis. A feature of this model is its potential to support travelling wave solutions. We emphasize that in order to determine the existence of such travelling waves it is essential that the global relationships of a number of phase plane features other than the equilibria be investigated.

  2. Mixture Theory Study of Role of Growth Factor Gradients on Breast Cancer Chemotaxis

    Science.gov (United States)

    Chakraborty, Sreyashi; Schuff, Mary; Voigt, Elizabeth; Nauman, Eric; Rylander, Marissa; Vlachos, Pavlos

    2014-11-01

    The transport of chemotactic agents is strongly influenced by variation in interstitial flows in different types of tissue. The mixture theory model of the fluid and solute transport in the microvasculature of tissues accounts for transport in the vessel lumen, vessel wall and the interstitial space separately. In the present study we use this model to develop a three dimensional geometry of the tumor microenvironment platform incorporating a physiological concentration of growth factor protein through blood flow in an extracellular collagen matrix. We quantify chemotaxis in response to solute gradients of varying magnitude formed by diffusion of proteins into the surrounding collagen. The numerical analysis delineates the dependence of hydraulic permeability coefficient on solute concentration. The preliminary results show the existence of a linear concentration gradient in the central plane between the micro-channels and a strong nonlinear gradient at the remaining parts of the system.

  3. Chemotaxis of horse polymorphonuclear leukocytes to N-formyl-L-methionyl-L-leucyl-L-phenylalanine.

    Science.gov (United States)

    Zinkl, J G; Brown, P D

    1982-04-01

    Horse polymorphonuclear leukocytes (PMN) isolated from horse blood by sedimentation and isotonic lysis and having about 25% accompanying lymphocytes were as effective at chemotaxis as nearly pure PMN isolated by density gradient techniques. N-Formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP), used as a representative of the formylmethionyl peptides (produced by prokaryocytic organisms), was effective as a chemoattractant only at the high concentration of 10(-4) M. When serum was preincubated with FMLP at concentrations as low as 10(-8) M, the serum attracted horse PMN. This activity was not generated when heat-inactivated (56 to 60 C for 30 minutes) serum was used. A combination of FMLP and zymosan was no more effective than zymosan alone in generating serum chemoattractants. The results of this study indicate that the FMLP is a weak chemoattractant for horse PMN, but that FMLP has the capability similar to that of zymosan to activate complement to produce PMN chemoattractants. PMID:7073083

  4. Extracellular calmodulin regulates growth and cAMP-mediated chemotaxis in Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    O' Day, Danton H., E-mail: danton.oday@utoronto.ca [Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario, Canada M5S 3G5 (Canada); Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, Ontario, Canada L5L 1C6 (Canada); Huber, Robert J. [Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario, Canada M5S 3G5 (Canada); Suarez, Andres [Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, Ontario, Canada L5L 1C6 (Canada)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Extracellular calmodulin is present throughout growth and development in Dictyostelium. Black-Right-Pointing-Pointer Extracellular calmodulin localizes within the ECM during development. Black-Right-Pointing-Pointer Extracellular calmodulin inhibits cell proliferation and increases chemotaxis. Black-Right-Pointing-Pointer Extracellular calmodulin exists in eukaryotic microbes. Black-Right-Pointing-Pointer Extracellular calmodulin may be functionally as important as intracellular calmodulin. -- Abstract: The existence of extracellular calmodulin (CaM) has had a long and controversial history. CaM is a ubiquitous calcium-binding protein that has been found in every eukaryotic cell system. Calcium-free apo-CaM and Ca{sup 2+}/CaM exert their effects by binding to and regulating the activity of CaM-binding proteins (CaMBPs). Most of the research done to date on CaM and its CaMBPs has focused on their intracellular functions. The presence of extracellular CaM is well established in a number of plants where it functions in proliferation, cell wall regeneration, gene regulation and germination. While CaM has been detected extracellularly in several animal species, including frog, rat, rabbit and human, its extracellular localization and functions are less well established. In contrast the study of extracellular CaM in eukaryotic microbes remains to be done. Here we show that CaM is constitutively expressed and secreted throughout asexual development in Dictyostelium where the presence of extracellular CaM dose-dependently inhibits cell proliferation but increases cAMP mediated chemotaxis. During development, extracellular CaM localizes within the slime sheath where it coexists with at least one CaMBP, the matricellular CaM-binding protein CyrA. Coupled with previous research, this work provides direct evidence for the existence of extracellular CaM in the Dictyostelium and provides insight into its functions in this model amoebozoan.

  5. Inhibitory effects of cryptoporus polysaccharide on airway constriction, eosinophil release, and chemotaxis in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    Xiao-yan ZHAO; Qiang-min XIE; Ji-qiang CHEN; Chuan-kui KE

    2004-01-01

    AIM: To study effects of cryptoporus polysaccharide (CP) on antigen-induced bronchoconstriction, eosinophil peroxidase (EPO) release in vivo, and on platelet activating factor (PAF)-induced eosinophil chemotaxis in vitro in guinea pig. METHODS: The asthma model of guinea pig was formed with ovalbumin (OVA). The changes of lung resistance (RL) and dynamic lung compliance (Cdyn), EPO level in bronchoalveolar lavage fluids (BALF) and eosinophil migration were determined. RESULTS: Pretreatment of CP at doses of 3, 9, and 27 mg/kg by intragastric gavage (ig), qd for 10 d, inhibited early asthma response in a dose-dependent manner. Inhibitory rates of mean increase value from 1 to 30 min of RL were 34.8 %, 74.4 % (P<0.05), and 79.6 % (P<0.05), respectively. Inhibitory rate of mean reduction value of Cdyn were 22.9 %, 40.5 % (P<0.01), and 66.5 % (P<0.01), respectively.Pretreatment of CP at doses of 3, 9, and 27 mg/kg also inhibited late asthma response, and the reduction of EPO level in BALF were 3.1%, 16.9 % (P<0.01), and 20.1% (P<0.01), respectively. The inhibitory rates of CP at concentrations of 0.13, 1.3, 13, 130 nmol/L to eosinophil migration induced by PAF were 6.8 %, 17.2 % (P<0.05),29.6 % (P<0.01), and 35.9 % (P<0.01). CONCLUSION: CP protects lung against increase of RL and reduction of Cdyn, decreases EPO level in the asthma model, and inhibits eosinophil chemotaxis induced by PAF. The results suggest that CP may be a novel antiinflammatory agent for the treatment of asthma and allergic diseases.

  6. LPS responsiveness and neutrophil chemotaxis in vivo require PMN MMP-8 activity.

    Directory of Open Access Journals (Sweden)

    Angus M Tester

    Full Text Available We identify matrix metalloproteinase (MMP-8, the polymorphonuclear (PMN leukocyte collagenase, as a critical mediator initiating lipopolysaccharide (LPS-responsiveness in vivo. PMN infiltration towards LPS is abrogated in Mmp8-null mice. MMP-8 cleaves LPS-induced CXC chemokine (LIX at Ser(4-Val(5 and Lys(79-Arg(80. LIX bioactivity is increased upon N-terminal cleavage, enhancing intracellular calcium mobilization and chemotaxis upon binding its cognate receptor, CXCR2. As there is no difference in PMN chemotaxis in Mmp8-null mice compared with wild-type mice towards synthetic analogues of MMP-8-cleaved LIX, MMP-8 is not essential for extravasation or cell migration in collagenous matrices in vivo. However, with biochemical redundancy between MMPs 1, 2, 9, and 13, which also cleave LIX at position 4 approximately 5, it was surprising to observe such a markedly reduced PMN infiltration towards LPS and LIX in Mmp8-/- mice. This lack of physiological redundancy in vivo identifies MMP-8 as a key mediator in the regulation of innate immunity. Comparable results were found with CXCL8/IL-8 and CXCL5/ENA-78, the human orthologues of LIX. MMP-8 cleaves CXCL8 at Arg(5-Ser(6 and at Val(7-Leu(8 in CXCL5 to activate respective chemokines. Hence, rather than collagen, these PMN chemoattractants are important MMP-8 substrates in vivo; PMN-derived MMP-8 cleaves and activates LIX to execute an in cis PMN-controlled feed-forward mechanism to orchestrate the initial inflammatory response and promote LPS responsiveness in tissue.

  7. A Role for the Chemokine Receptor CCR6 in Mammalian Sperm Motility and Chemotaxis

    Science.gov (United States)

    Caballero-Campo, Pedro; Buffone, Mariano G.; Benencia, Fabian; Conejo-García, José R.; Rinaudo, Paolo F.; Gerton, George L.

    2013-01-01

    Although recent evidence indicates that several chemokines and defensins, well-known as inflammatory mediators, are expressed in the male and female reproductive tracts, the location and functional significance of chemokine networks in sperm physiology and sperm reproductive tract interactions are poorly understood. To address this deficiency in our knowledge, we examined the expression and function in sperm of CCR6, a receptor common to several chemoattractant peptides, and screened several reproductive tract fluids for the presence of specific ligands. CCR6 protein is present in mouse and human sperm and mainly localized in the sperm tail with other minor patterns in sperm from mice (neck and acrosomal region) and men (neck and midpiece regions). As expected from the protein immunoblotting and immunofluorescence results, mouse Ccr6 mRNA is expressed in the testis. Furthermore, the Defb29 mRNA encoding the CCR6 ligand, β-defensin DEFB29, is expressed at high levels in the epididymis. As determined by protein chip analysis, several chemokines (including some that act through CCR6, such as CCL20/MIP-3α (formerly Macrophage Inflammatory Protein 3α) and protein hormones were present in human follicular fluid, endometrial secretions, and seminal plasma. In functional chemotaxis assays, capacitated human sperm exhibited a directional movement towards CCL20, and displayed modifications in motility parameters. Our data indicate that chemokine ligand/receptor interactions in the male and female genital tracts promote sperm motility and chemotaxis under non-inflammatory conditions. Therefore, some of the physiological reactions mediated by CCR6 ligands in male reproduction extend beyond a pro-inflammatory response and might find application in clinical reproduction and/or contraception. PMID:23765988

  8. 巴克码在复合声呐信号中的应用%Simulation on application of Barker code in complex sonar signals

    Institute of Scientific and Technical Information of China (English)

    冯奇; 王英民

    2014-01-01

    The-transmitted-waveform-directly-affects-the-performance-of-sonar-at-range-resolution,-velocity-resolution,-low-interception-ability-and-anti-reverberation-ability.-Therefore,-the-design-and-proper-selection-of-waveform-show-an-important-significance-to-sonar-system.-Barker-code,-whose-ambiguity-function-is-close-to-ideal-thumbtack-shape,-bears-high-time-frequency-resolution.-Resolution-and-anti-reverberation-performance-of-the-complex-sonar-signals-based-on-Barker-code-are-analyzed-by-ambiguity-function-and-Q-function,and-are-compared-with-those-of-Continuous-Waveform(CW)-signal-and-Linear-Frequency-Modulation(LFM)-signal.-Simulations-indicate-that-complex-sonar-signals-based-on-Barker-code-are-featured-with-a-relatively-high-resolution-in-range,and-a-relatively-high-reverberation-suppression,which-make-them-the-prioritized-waveforms-for-active-sonar-operating-in-shallow-water.%信号波形直接影响着声呐对目标的时延分辨力、频移分辨力、低截获能力及抗混响能力。因此,设计和选择合适的波形对声呐系统有着极其重要的影响。巴克(Barker)码的模糊函数呈理想的“图钉型”,具有良好的时频分辨力。本文利用模糊函数和 Q 函数,对基于巴克码的复合声呐信号的分辨力、抗混响等性能进行了仿真分析,并和传统的单频矩形脉冲(CW)信号、线性调频脉冲(LFM)信号进行了比较,得出基于巴克码的复合声呐信号能够实现较高的测量精确度,而且在一定的多普勒频移范围内具有较好的抗混响能力,是浅海中主动声呐的优先选择信号。

  9. Tectonic stratigraphy near a metamorphic core complex: Lessons from the Castaneda-signal area of west-central Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Lucchitta, I. (Geological Survey, Flagstaff, AZ (United States)); Suneson, N.H. (Oklahoma Geological Survey, Norman, OK (United States))

    1993-04-01

    A sequence of latest Oligocene through Quaternary sedimentary and volcanic rocks, when analyzed tectonically and combined with lithologically distinctive source terranes, clarifies the character and timing of Neogene extension just north of the Buckskin-Rawhide metamorphic core complex (BRMCC) in west-central Arizona. The oldest strata (basal arkose of Lucchitta and Suneson) reflect regional stability and a southwesterly paleoslope. In latest Oligocene time, this drainage was ponded by an upwarp (now exposed as the BRMCC) rising to the southwest. The resulting lake beds contain a thin 26.6 MA airfall tuff that marks the beginning of volcanic activity in the region. A widespread breccia records the progressive unroofing of the still-rising CC. Mantle-driven crustal heating probably caused the upwarp and allowed the eruption of voluminous mantle-derived basalt and basaltic andesite about 19 MA (early basalts, Artillery Basalt). The overlying syntectonic conglomerate (arkose of Keenan Camp) was deposited during a period of extreme extension, low-angle detachment faulting, and block rotation, typical of highly extended terranes. The conglomerate is interlayered with widespread silicic volcanic rocks (15--10 MA) derived from the lower crust and large gravity-glide sheets lithologically identical to the breccia and similarly derived from the CC to the south. Unconformably overlying the conglomerate are locally derived fanglomerate and 13--8.5 MA (mesa-forming) basalt that accumulated in present-day basins of classic basin-range type. Untilted and nearly unfaulted 7.7--5.4 MA mantle-derived megacryst-bearing basalt marks the cessation of tectonic activity.

  10. Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors

    Science.gov (United States)

    Li, Zhixiong; Yan, Xinping; Wang, Xuping; Peng, Zhongxiao

    2016-06-01

    In the complex gear transmission systems, in wind turbines a crack is one of the most common failure modes and can be fatal to the wind turbine power systems. A single sensor may suffer with issues relating to its installation position and direction, resulting in the collection of weak dynamic responses of the cracked gear. A multi-channel sensor system is hence applied in the signal acquisition and the blind source separation (BSS) technologies are employed to optimally process the information collected from multiple sensors. However, literature review finds that most of the BSS based fault detectors did not address the dependence/correlation between different moving components in the gear systems; particularly, the popular used independent component analysis (ICA) assumes mutual independence of different vibration sources. The fault detection performance may be significantly influenced by the dependence/correlation between vibration sources. In order to address this issue, this paper presents a new method based on the supervised order tracking bounded component analysis (SOTBCA) for gear crack detection in wind turbines. The bounded component analysis (BCA) is a state of art technology for dependent source separation and is applied limitedly to communication signals. To make it applicable for vibration analysis, in this work, the order tracking has been appropriately incorporated into the BCA framework to eliminate the noise and disturbance signal components. Then an autoregressive (AR) model built with prior knowledge about the crack fault is employed to supervise the reconstruction of the crack vibration source signature. The SOTBCA only outputs one source signal that has the closest distance with the AR model. Owing to the dependence tolerance ability of the BCA framework, interfering vibration sources that are dependent/correlated with the crack vibration source could be recognized by the SOTBCA, and hence, only useful fault information could be preserved in

  11. Cooperation of Secondary Transporters and Sensor Kinases in Transmembrane Signalling: The DctA/DcuS and DcuB/DcuS Sensor Complexes of Escherichia coli.

    Science.gov (United States)

    Unden, G; Wörner, S; Monzel, C

    2016-01-01

    Many membrane-bound sensor kinases require accessory proteins for function. The review describes functional control of membrane-bound sensors by transporters. The C4-dicarboxylate sensor kinase DcuS requires the aerobic or anaerobic C4-dicarboxylate transporters DctA or DcuB, respectively, for function and forms DctA/DcuS or DcuB/DcuS sensor complexes. Free DcuS is in the permanent (ligand independent) ON state. The DctA/DcuS and DcuB/DcuS complexes, on the other hand, control expression in response to C4-dicarboxylates. In DctA/DcuS, helix 8b of DctA and the PASC domain of DcuS are involved in interaction. The stimulus is perceived by the extracytoplasmic sensor domain (PASP) of DcuS. The signal is transmitted across the membrane by a piston-type movement of TM2 of DcuS which appears to be pulled (by analogy to the homologous citrate sensor CitA) by compaction of PASP after C4-dicarboxylate binding. In the cytoplasm, the signal is perceived by the PASC domain of DcuS. PASC inhibits together with DctA the kinase domain of DcuS which is released after C4-dicarboxylate binding. DcuS exhibits two modes for regulating expression of target genes. At higher C4-dicarboxylate levels, DcuS is part of the DctA/DcuS complex and in the C4-dicarboxylate-responsive form which stimulates expression of target genes in response to the concentration of the C4-dicarboxylates (catabolic use of C4-dicarboxylates, mode I regulation). At limiting C4-dicarboxylate concentrations (≤0.05mM), expression of DctA drops and free DcuS appears. Free DcuS is in the permanent ON state (mode II regulation) and stimulates low level (C4-dicarboxylate independent) DctA synthesis for DctA/DcuS complex formation and anabolic C4-dicarboxylate uptake.

  12. Behavior of the Solutions for the Chemotaxis Equations with Saturation Growth%具饱和增长的Chemotaxis方程组解的性质

    Institute of Scientific and Technical Information of China (English)

    杨茵; 刘伟安

    2003-01-01

    @@ In this paper, we study the behavior of the solutions to a kind of chemotaxis equations that describe the mechanism of communication between cells or organisms in some biology systems, which is introduced by [1] and [2].

  13. Electrogenerated chemiluminescence biosensing for the detection of prostate PC-3 cancer cells incorporating antibody as capture probe and ruthenium complex-labelled wheat germ agglutinin as signal probe

    International Nuclear Information System (INIS)

    Highlights: • A novel biosensor was developed for the detection of prostate cancer cells. • The selectivity of the biosensor was improved using antibody as capture probe. • The biosensor showed the low extremely detection limit of 2.6 × 102 cells mL−1. • The ruthenium complex-labelled WGA can be transported in the cell vesicles. - Abstract: A highly selective and sensitive electrogenerated chemiluminescence (ECL) biosensor for the detection of prostate PC-3 cancer cells was designed using a prostate specific antibody as a capture probe and ruthenium complex-labelled wheat germ agglutinin as a signal probe. The ECL biosensor was fabricated by covalently immobilising the capture probe on a graphene oxide-coated glassy carbon electrode. Target PC-3 cells were selectively captured on the surface of the biosensor, and then, the signal probe was bound with the captured PC-3 cells to form a sandwich. In the presence of tripropylamine, the ECL intensity of the sandwich biosensor was logarithmically directly proportion to the concentration of PC-3 cells over a range from 7.0 × 102 to 3.0 × 104 cells mL−1, with a detection limit of 2.6 × 102 cells mL−1. The ECL biosensor was also applied to detect prostate specific antigen with a detection limit of 0.1 ng mL−1. The high selectivity of the biosensor was demonstrated in comparison with that of a lectin-based biosensor. The strategy developed in this study may be a promising approach and could be extended to the design of ECL biosensors for highly sensitive and selective detection of other cancer-related cells or cancer biomarkers using different probes

  14. Electrogenerated chemiluminescence biosensing for the detection of prostate PC-3 cancer cells incorporating antibody as capture probe and ruthenium complex-labelled wheat germ agglutinin as signal probe

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haiying [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 (China); Department of Chemistry, Yuncheng University, Yuncheng 044300 (China); Li, Zhejian; Shan, Meng; Li, Congcong; Qi, Honglan; Gao, Qiang [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 (China); Wang, Jinyi [College of Science and College of Veterinary Medicine, Northwest A& F University, Yangling 712100 (China); Zhang, Chengxiao, E-mail: cxzhang@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 (China)

    2015-03-10

    Highlights: • A novel biosensor was developed for the detection of prostate cancer cells. • The selectivity of the biosensor was improved using antibody as capture probe. • The biosensor showed the low extremely detection limit of 2.6 × 10{sup 2} cells mL{sup −1}. • The ruthenium complex-labelled WGA can be transported in the cell vesicles. - Abstract: A highly selective and sensitive electrogenerated chemiluminescence (ECL) biosensor for the detection of prostate PC-3 cancer cells was designed using a prostate specific antibody as a capture probe and ruthenium complex-labelled wheat germ agglutinin as a signal probe. The ECL biosensor was fabricated by covalently immobilising the capture probe on a graphene oxide-coated glassy carbon electrode. Target PC-3 cells were selectively captured on the surface of the biosensor, and then, the signal probe was bound with the captured PC-3 cells to form a sandwich. In the presence of tripropylamine, the ECL intensity of the sandwich biosensor was logarithmically directly proportion to the concentration of PC-3 cells over a range from 7.0 × 10{sup 2} to 3.0 × 10{sup 4} cells mL{sup −1}, with a detection limit of 2.6 × 10{sup 2} cells mL{sup −1}. The ECL biosensor was also applied to detect prostate specific antigen with a detection limit of 0.1 ng mL{sup −1}. The high selectivity of the biosensor was demonstrated in comparison with that of a lectin-based biosensor. The strategy developed in this study may be a promising approach and could be extended to the design of ECL biosensors for highly sensitive and selective detection of other cancer-related cells or cancer biomarkers using different probes.

  15. The J-protein AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling.

    Science.gov (United States)

    Jia, Ning; Lv, Ting-Ting; Li, Mi-Xin; Wei, Shan-Shan; Li, Yan-Yi; Zhao, Chun-Lan; Li, Bing

    2016-05-01

    AtDjB1 is a mitochondria-located J-protein in Arabidopsis thaliana It is involved in the regulation of plant growth and development; however, the exact mechanisms remain to be determined. We performed comparison analyses of phenotypes, auxin signalling, redox status, mitochondrial structure and function using wild-type plants, AtDjB1 mutants, rescued AtDjB1 mutants by AtDjB1 or YUCCA2 (an auxin synthesis gene), and AtDjB1 overexpression plants. AtDjB1 mutants (atj1-1 or atj1-4) exhibited inhibition of growth and development and reductions in the level of IAA and the expression of YUCCA genes compared to wild-type plants. The introduction of AtDjB1 or YUCCA2 into atj1-1 largely rescued phenotypic defects and the IAA level, indicating that AtDjB1 probably regulates growth and development via auxin. Furthermore, atj1-1 plants displayed a significant reduction in amount/activity of mitochondrial complex I compared to wild-type plants; this resulted in the accumulation of reactive oxygen species (ROS). Moreover, exogenous H2O2 markedly inhibited the expression of YUCCA genes in wild-type plants. In contrast, the reducing agent ascorbate increased the expression of YUCCA genes and IAA level in atj1-1 plants, indicating that the low auxin level observed in atj1-1 was probably due to the high oxidation status. Overall, the data presented here suggest that AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling in Arabidopsis. PMID:27117341

  16. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways.

    Science.gov (United States)

    Li, Chun; Hisamoto, Naoki; Matsumoto, Kunihiro

    2015-10-01

    The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+-p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration.

  17. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Chun Li

    2015-10-01

    Full Text Available The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+-p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration.

  18. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    Science.gov (United States)

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  19. A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN

    Directory of Open Access Journals (Sweden)

    María Josefina Poupin

    2016-04-01

    Full Text Available Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR. However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1 or auxin (axr1-5 signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2, indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control.

  20. A Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN.

    Science.gov (United States)

    Poupin, María J; Greve, Macarena; Carmona, Vicente; Pinedo, Ignacio

    2016-01-01

    Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR). However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1) or auxin (axr1-5) signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2), indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control. PMID:27148317

  1. HIV-1 infected lymphoid organs upregulate expression and release of the cleaved form of uPAR that modulates chemotaxis and virus expression.

    Directory of Open Access Journals (Sweden)

    Manuela Nebuloni

    Full Text Available Cell-associated receptor for urokinase plasminogen activator (uPAR is released as both full-length soluble uPAR (suPAR and cleaved (c-suPAR form that maintain ability to bind to integrins and other receptors, thus triggering and modulating cell signaling responses. Concerning HIV-1 infection, plasma levels of suPAR have been correlated with the severity of disease, levels of immune activation and ineffective immune recovery also in individuals receiving combination anti-retroviral therapy (cART. However, it is unknown whether and which suPAR forms might contribute to HIV-1 induced pathogenesis and to the related state of immune activation. In this regard, lymphoid organs represent an import site of chronic immune activation and virus persistence even in individuals receiving cART. Lymphoid organs of HIV-1(+ individuals showed an enhanced number of follicular dendritic cells, macrophages and endothelial cells expressing the cell-associated uPAR in comparison to those of uninfected individuals. In order to investigate the potential role of suPAR forms in HIV-1 infection of secondary lymphoid organs, tonsil histocultures were established from HIV-1 seronegative individuals and infected ex vivo with CCR5- and CXCR4-dependent HIV-1 strains. The levels of suPAR and c-suPAR were significantly increased in HIV-infected tonsil histocultures supernatants in comparison to autologous uninfected histocultures. Supernatants from infected and uninfected cultures before and after immunodepletion of suPAR forms were incubated with the chronically infected promonocytic U1 cell line characterized by a state of proviral latency in unstimulated conditions. In the contest of HIV-conditioned supernatants we established that c-suPAR, but not suPAR, inhibited chemotaxis and induced virus expression in U1 cells. In conclusion, lymphoid organs are an important site of production and release of both suPAR and c-suPAR, this latter form being endowed with the capacity of

  2. Attenuation of rodent neuropathic pain by an orally active peptide, RAP-103, which potently blocks CCR2- and CCR5-mediated monocyte chemotaxis and inflammation.

    Science.gov (United States)

    Padi, Satyanarayana S V; Shi, Xiang Q; Zhao, Yuan Q; Ruff, Michael R; Baichoo, Noel; Pert, Candace B; Zhang, Ji

    2012-01-01

    Chemokine signaling is important in neuropathic pain, with microglial cells expressing CCR2 playing a well-established key role. DAPTA, a HIV gp120-derived CCR5 entry inhibitor, has been shown to inhibit CCR5-mediated monocyte migration and to attenuate neuroinflammation. We report here that as a stabilized analog of DAPTA, the short peptide RAP-103 exhibits potent antagonism for both CCR2 (half maximal inhibitory concentration [IC50] 4.2 pM) and CCR5 (IC50 0.18 pM) in monocyte chemotaxis. Oral administration of RAP-103 (0.05-1 mg/kg) for 7 days fully prevents mechanical allodynia and inhibits the development of thermal hyperalgesia after partial ligation of the sciatic nerve in rats. Administered from days 8 to 12, RAP-103 (0.2-1 mg/kg) reverses already established hypersensitivity. RAP-103 relieves behavioral hypersensitivity, probably through either or both CCR2 and CCR5 blockade, because by using genetically deficient animals, we demonstrated that in addition to CCR2, CCR5 is also required for the development of neuropathic pain. Moreover, RAP-103 is able to reduce spinal microglial activation and monocyte infiltration, and to inhibit inflammatory responses evoked by peripheral nerve injury that cause chronic pain. Our findings suggest that targeting CCR2/CCR5 should provide greater efficacy than targeting CCR2 or CCR5 alone, and that dual CCR2/CCR5 antagonist RAP-103 has the potential for broad clinical use in neuropathic pain treatment.

  3. Analysis of periplasmic sensor domains from Anaeromyxobacter dehalogenans 2CP-C: structure of one sensor domain from a histidine kinase and another from a chemotaxis protein.

    Science.gov (United States)

    Pokkuluri, P Raj; Dwulit-Smith, Jeff; Duke, Norma E; Wilton, Rosemarie; Mack, Jamey C; Bearden, Jessica; Rakowski, Ella; Babnigg, Gyorgy; Szurmant, Hendrik; Joachimiak, Andrzej; Schiffer, Marianne

    2013-10-01

    Anaeromyxobacter dehalogenans is a δ-proteobacterium found in diverse soils and sediments. It is of interest in bioremediation efforts due to its dechlorination and metal-reducing capabilities. To gain an understanding on A. dehalogenans' abilities to adapt to diverse environments we analyzed its signal transduction proteins. The A. dehalogenans genome codes for a large number of sensor histidine kinases (HK) and methyl-accepting chemotaxis proteins (MCP); among these 23 HK and 11 MCP proteins have a sensor domain in the periplasm. These proteins most likely contribute to adaptation to the organism's surroundings. We predicted their three-dimensional folds and determined the structures of two of the periplasmic sensor domains by X-ray diffraction. Most of the domains are predicted to have either PAS-like or helical bundle structures, with two predicted to have solute-binding protein fold, and another predicted to have a 6-phosphogluconolactonase like fold. Atomic structures of two sensor domains confirmed the respective fold predictions. The Adeh_2942 sensor (HK) was found to have a helical bundle structure, and the Adeh_3718 sensor (MCP) has a PAS-like structure. Interestingly, the Adeh_3718 sensor has an acetate moiety bound in a binding site typical for PAS-like domains. Future work is needed to determine whether Adeh_3718 is involved in acetate sensing by A. dehalogenans. PMID:23897711

  4. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction.

    Science.gov (United States)

    Vomastek, Tomás; Iwanicki, Marcin P; Burack, W Richard; Tiwari, Divya; Kumar, Devanand; Parsons, J Thomas; Weber, Michael J; Nandicoori, Vinay Kumar

    2008-11-01

    Identifying direct substrates of mitogen-activated protein kinases (MAPKs) and understanding how those substrates are selected is central to understanding how these ubiquitously activated enzymes generate diverse biological responses. In previous work, we identified several new candidate substrates for the MAPK ERK2 (extracellular signal-regulated kinase 2), including the nuclear pore complex protein Tpr (translocated promoter region). In this report, we identify sites on Tpr for ERK2 phosphorylation and binding and demonstrate their functional interaction. ERK2 phosphorylation and dimerization are necessary for ERK2-Tpr binding, and this occurs through a DEF (docking site for ERK2, FXF) domain on Tpr. Surprisingly, the DEF domain and the phosphorylation sites displayed positive cooperativity to promote ERK2 binding to Tpr, in contrast to substrates where phosphorylation reduces binding. Ectopic expression or depletion of Tpr resulted in decreased movement of activated ERK2 from the cytoplasm to the nucleus, implying a role for Tpr in ERK2 translocation. Collectively, the data provide direct evidence that a component of the nuclear pore complex is a bona fide substrate of ERK2 in vivo and that activated ERK2 stably associates with this substrate after phosphorylation, where it could play a continuing role in nuclear pore function. We propose that Tpr is both a substrate and a scaffold for activated ERKs.

  5. Crystallization and preliminary crystallographic analysis of Arabidopsis thaliana EDS1, a key component of plant immunity, in complex with its signalling partner SAG101.

    Science.gov (United States)

    Wagner, Stephan; Rietz, Steffen; Parker, Jane E; Niefind, Karsten

    2011-02-01

    In plants, the nucleocytoplasmic protein EDS1 (Enhanced disease susceptibility1) is an important regulator of innate immunity, coordinating host-cell defence and cell-death programs in response to pathogen attack. Arabidopsis thaliana EDS1 stabilizes and signals together with its partners PAD4 (Phytoalexin deficient4) and SAG101 (Senescence-associated gene101). Characterization of EDS1 molecular configurations in vitro and in vivo points to the formation of structurally and spatially distinct EDS1 homomeric dimers and EDS1 heteromeric complexes with either PAD4 or SAG101 as necessary components of the immune response. EDS1, PAD4 and SAG101 constitute a plant-specific protein family with a unique `EP' (EDS1-PAD4-specific) domain at their C-termini and an N-terminal domain resembling enzymes with an α/β-hydrolase fold. Here, the expression, purification and crystallization of a functional EDS1 complex formed by EDS1 and SAG101 from Arabidopsis thaliana are reported. The crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 101.8, b = 115.9, c = 122.8 Å, and diffracted to 3.5 Å resolution.

  6. Ruthenium Polypyridyl Complex Inhibits Growth and Metastasis of Breast Cancer Cells by Suppressing FAK signaling with Enhancement of TRAIL-induced Apoptosis

    Science.gov (United States)

    Cao, Wenqiang; Zheng, Wenjie; Chen, Tianfeng

    2015-03-01

    Ruthenium-based complexes have emerged as promising antitumor and antimetastatic agents during the past decades. However, the limited understanding of the antimetastatic mechanisms of these agents is a roadblock to their clinical application. Herein, we reported that, RuPOP, a ruthenium polypyridyl complex with potent antitumor activity, was able to effectively inhibit growth and metastasis of MDA-MB-231 cells and synergistically enhance TRAIL-induced apoptosis. The selective intracellular uptake and cytotoxic effect of RuPOP was found associated with transferring receptor (TfR)-mediated endocytosis. Further investigation on intracellular mechanisms reveled that RuPOP notably suppressed FAK-mediated ERK and Akt activation. Pretreatment of cells with ERK inhibitor (U0126) and PI3K inhibitor (LY294002) significantly potentiated the inhibitory effect of RuPOP on cell growth, migration and invasion. Moreover, the alternation in the expression levels of metastatic regulatory proteins, including uPA, MMP-2/-9, and inhibition of VEGF secretion were also observed after RuPOP treatment. These results demonstrate the inhibitory effect of RuPOP on the growth and metastasis of cancer cells and the enhancement of TRAIL-induced apoptosis though suppression of FAK-mediated signaling. Furthermore, RuPOP exhibits the potential to be developed as a metal-based antimetastatic agent and chemosensitizer of TRAIL for the treatment of human metastatic cancers.

  7. Paxillin, a novel controller in the signaling of estrogen to FAK/N-WASP/Arp2/3 complex in breast cancer cells.

    Science.gov (United States)

    Shortrede, Jorge Eduardo; Uzair, Ivonne Denise; Neira, Flavia Judith; Flamini, Marina Inés; Sanchez, Angel Matías

    2016-07-15

    Breast cancer is the major cause of cancer-related death in women. Its treatment is particularly difficult when metastasis occurs. The ability of cancer cells to move and invade the surrounding environment is the basis of local and distant metastasis. Cancer cells are able to remodel the actin cytoskeleton, which requires the recruitment of numerous structural and regulatory proteins that modulate actin filaments dynamics, including Paxillin or the Neural Wiskott-Aldrich Syndrome Protein (N-WASP). We show that 17-β estradiol (E2) induces phosphorylation of Paxillin and its translocation toward membrane sites where focal adhesion complexes are assembled. This cascade is triggered by a Gαi1/Gβ protein-dependent signaling of estrogen receptor α (ERα) to c-Src, focal adhesion kinase (FAK) and Paxillin. Within this complex, activated Paxillin recruits the small GTPase Cdc42, which triggers N-WASP phosphorylation. This results in the redistribution of Arp2/3 complexes at sites where membrane structures related to cell movement are formed. Recruitment of Paxillin, Cdc42 and N-WASP is necessary for cell adhesion, migration and invasion induced by E2 in breast cancer cells. In parallel, we investigated whether Raloxifene (RAL), a selective estrogen receptor modulator (SERMs), could inhibit or revert the effects of E2 in breast cancer cell movement. We found that, in the presence of E2, RAL acts as an ER antagonist and displays an inhibitory effect on estrogen-promoted cell adhesion and migration via FAK/Paxillin/N-WASP. Our findings identify an original mechanism through which estrogen regulates breast cancer cell motility and invasion via Paxillin. These results may have clinical relevance for the development of new therapeutic strategies for cancer treatment. PMID:27095481

  8. Molecular organization of the complex between the muscarinic M3 receptor and the regulator of G protein signaling, Gbeta(5)-RGS7.

    Science.gov (United States)

    Sandiford, Simone L; Wang, Qiang; Levay, Konstantin; Buchwald, Peter; Slepak, Vladlen Z

    2010-06-22

    The complex of the regulator of G protein signaling (RGS), Gbeta(5)-RGS7, can inhibit signal transduction via the M3 muscarinic acetylcholine receptor (M3R). RGS7 consists of three distinct structural entities: the DEP domain and its extension DHEX, the Ggamma-like (GGL) domain, which is permanently bound to Gbeta subunit Gbeta(5), and the RGS domain responsible for the interaction with Galpha subunits. Inhibition of the M3R by Gbeta(5)-RGS7 is independent of the RGS domain but requires binding of the DEP domain to the third intracellular loop of the receptor. Recent studies identified the dynamic intramolecular interaction between the Gbeta(5) and DEP domains, which suggested that the Gbeta(5)-RGS7 dimer could alternate between the "open" and "closed" conformations. Here, we identified point mutations that weaken DEP-Gbeta(5) binding, presumably stabilizing the open state, and tested their effects on the interaction of Gbeta(5)-RGS7 with the M3R. We found that these mutations facilitated binding of Gbeta(5)-RGS7 to the recombinant third intracellular loop of the M3R but did not enhance its ability to inhibit M3R-mediated Ca(2+) mobilization. This led us to the idea that the M3R can effectively induce the Gbeta(5)-RGS7 dimer to open; such a mechanism would require a region of the receptor distinct from the third loop. Indeed, we found that the C-terminus of M3R interacts with Gbeta(5)-RGS7. Truncation of the C-terminus rendered the M3R insensitive to inhibition by wild-type Gbeta(5)-RGS7; however, the open mutant of Gbeta(5)-RGS7 was able to inhibit signaling by the truncated M3R. The GST fusion of the M3R C-tail could not bind to wild-type Gbeta(5)-RGS7 but could associate with its open mutant as well as with the separated recombinant DEP domain or Gbeta(5). Taken together, our data are consistent with the following model: interaction of the M3R with Gbeta(5)-RGS7 causes the DEP domain and Gbeta(5) to dissociate from each other and bind to the C-tail, and the DEP

  9. Innate positive chemotaxis to pollen from crops and banker plants in predaceous biological control agents: towards new field lures?

    OpenAIRE

    Shu Li; Xiaoling Tan; Nicolas Desneux; Giovanni Benelli; Jing Zhao; Xinhai Li; Fan Zhang; Xiwu Gao; Su Wang

    2015-01-01

    Predator-prey interactions form the core of biological control of arthropod pests. Which tools can be used to monitor and collect carnivorous arthropods in natural habitats and targeted crops? Eco-friendly and effective field lures are urgently needed. In this research, we carried out olfactometer experiments assess innate positive chemotaxis to pollen of seven crop and banker plant by two important predatory biological control agents: the coccinellid Propylea japonica (Thunberg) and the anth...

  10. Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach

    KAUST Repository

    Chertock, A.

    2012-02-02

    Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh-Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis-fluid system has been proposed as a model for bio-convection in modestly diluted cell suspensions. It couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier-Stokes equations subject to a gravitational force proportional to the relative surplus of the cell density compared to the water density. In this paper, we derive a high-resolution vorticity-based hybrid finite-volume finite-difference scheme, which allows us to investigate the nonlinear dynamics of a two-dimensional chemotaxis-fluid system with boundary conditions matching an experiment of Hillesdon et al. (Bull. Math. Biol., vol. 57, 1995, pp. 299-344). We present selected numerical examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface-directed oxytaxis continuously feeds cells into a high-concentration layer near the surface, from where the fluid flow (recurring upwards in the space between the plumes) transports the cells into the plumes, where then gravity makes the cells sink and constitutes the driving force in maintaining the fluid convection and, thus, in shaping the plumes into (numerically) stable stationary states. Our numerical method is fully capable of solving the coupled chemotaxis-fluid system and enabling a full exploration of its dynamics, which cannot be done in a linearised framework. © 2012 Cambridge University Press.

  11. BAFF enhances chemotaxis of primary human B cells: a particular synergy between BAFF and CXCL13 on memory B cells.

    Science.gov (United States)

    Badr, Gamal; Borhis, Gwenoline; Lefevre, Eric A; Chaoul, Nada; Deshayes, Frederique; Dessirier, Valérie; Lapree, Genevieve; Tsapis, Andreas; Richard, Yolande

    2008-03-01

    B-cell-activating factor of the TNF family, (BAFF), and a proliferation-inducing ligand (APRIL) regulate B-lymphocyte survival and activation. We report that BAFF, but not APRIL, increased the chemotactic response of primary human B cells to CCL21, CXCL12, and CXCL13. The BAFF-induced increase in B-cell chemotaxis was totally abolished by blockade of BAFF-R and was strongly dependent on the activation of PI3K/AKT, NF-kappaB, and p38MAPK pathways. BAFF had similar effects on the chemotaxis of naive and memory B cells in response to CCL21 but increased more strongly that of memory B cells to CXCL13 than that of naive B cells. Our findings indicate a previously unreported role for the BAFF/BAFF-R pair in mature B-cell chemotaxis. The synergy between CXCL13 and BAFF produced by stromal cells and follicular dendritic cells may have important implications for B-cell homeostasis, the development of normal B-cell areas, and for the formation of germinal center-like follicles that may be observed in various autoimmune diseases.

  12. Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2.

    Science.gov (United States)

    Bhushan, Bharat; Halasz, Annamaria; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal

    2004-04-01

    Cyclic nitramine explosives, RDX, HMX, and CL-20 are hydrophobic pollutants with very little aqueous solubility. In sediment and soil environments, they are often attached to solid surfaces and/or trapped in pores and distribute heterogeneously in aqueous environments. For efficient bioremediation of these explosives, the microorganism(s) must access them by chemotaxis ability. In the present study, we isolated an obligate anaerobic bacterium Clostridium sp. strain EDB2 from a marine sediment. Strain EDB2, motile with numerous peritrichous flagella, demonstrated chemotactic response towards RDX, HMX, CL-20, and NO(2)(-). The three explosives were biotransformed by strain EDB2 via N-denitration with concomitant release of NO(2)(-). Biotransformation rates of RDX, HMX, and CL-20 by the resting cells of strain EDB2 were 1.8+/-0.2, 1.1+/-0.1, and 2.6+/-0.2nmol h(-1)mgwet biomass(-1) (mean+/-SD; n=3), respectively. We found that commonly seen RDX metabolites such as TNX, methylenedinitramine, and 4-nitro-2,4-diazabutanal neither produced NO(2)(-) during reaction with strain EDB2 nor they elicited chemotaxis response in strain EDB2. The above data suggested that NO(2)(-) released from explosives during their biotransformation might have elicited chemotaxis response in the bacterium. Biodegradation and chemotactic ability of strain EDB2 renders it useful in accelerating the bioremediation of explosives under in situ conditions. PMID:15033473

  13. Combined phytochemistry and chemotaxis assays for identification and mechanistic analysis of anti-inflammatory phytochemicals in Fallopia japonica.

    Directory of Open Access Journals (Sweden)

    Ming-Yi Shen

    Full Text Available Plants provide a rich source of lead compounds for a variety of diseases. A novel approach combining phytochemistry and chemotaxis assays was developed and used to identify and study the mechanisms of action of the active compounds in F. japonica, a medicinal herb traditionally used to treat inflammation. Based on a bioactivity-guided purification strategy, two anthranoids, emodin and physcion, were identified from F. japonica. Spectroscopic techniques were used to characterize its crude extract, fractions and phytochemicals. The crude extract, chloroform fraction, and anthranoids of F. japonica significantly inhibited CXCR4-mediated chemotaxis. Mechanistic studies showed that emodin and physcion inhibited chemotaxis via inactivating the MEK/ERK pathway. Moreover, the crude extract and emodin could prevent or treat type 1 diabetes in non-obese diabetic (NOD mice. This study illustrates the applicability of a combinational approach for the study of anti-inflammatory medicine and shows the potential of F. japonica and its anthranoids for anti-inflammatory therapy.

  14. Contribution of Individual Chemoreceptors to Sinorhizobium meliloti Chemotaxis Towards Amino Acids of Host and Nonhost Seed Exudates.

    Science.gov (United States)

    Webb, Benjamin A; Helm, Richard F; Scharf, Birgit E

    2016-03-01

    Plant seeds and roots exude a spectrum of molecules into the soil that attract bacteria to the spermosphere and rhizosphere, respectively. The alfalfa symbiont Sinorhizobium meliloti utilizes eight chemoreceptors (McpT to McpZ and IcpA) to mediate chemotaxis. Using a modified hydrogel capillary chemotaxis assay that allows data quantification and larger throughput screening, we defined the role of S. meliloti chemoreceptors in sensing its host, Medicago sativa, and a closely related nonhost, Medicago arabica. S. meliloti wild type and most single-deletion strains displayed comparable chemotaxis responses to host or nonhost seed exudate. However, while the mcpZ mutant responded like wild type to M. sativa exudate, its reaction to M. arabica exudate was reduced by 80%. Even though the amino acid (AA) amounts released by both plant species were similar, synthetic AA mixtures that matched exudate profiles contributed differentially to the S. meliloti wild-type response to M. sativa (23%) and M. arabica (37%) exudates, with McpU identified as the most important chemoreceptor for AA. Our results show that S. meliloti is equally attracted to host and nonhost legumes; however, AA play a greater role in attraction to M. arabica than to M. sativa, with McpZ being specifically important in sensing M. arabica. PMID:26713349

  15. Chemotaxis and Binding of Pseudomonas aeruginosa to Scratch-Wounded Human Cystic Fibrosis Airway Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Christian Schwarzer

    Full Text Available Confocal imaging was used to characterize interactions of Pseudomonas aeruginosa (PA, expressing GFP or labeled with Syto 11 with CF airway epithelial cells (CFBE41o-, grown as confluent monolayers with unknown polarity on coverglasses in control conditions and following scratch wounding. Epithelia and PAO1-GFP or PAK-GFP (2 MOI were incubated with Ringer containing typical extracellular salts, pH and glucose and propidium iodide (PI, to identify dead cells. PAO1 and PAK swam randomly over and did not bind to nonwounded CFBE41o- cells. PA migrated rapidly (began within 20 sec, maximum by 5 mins and massively (10-80 fold increase, termed "swarming", but transiently (random swimming after 15 mins, to wounds, particularly near cells that took up PI. Some PA remained immobilized on cells near the wound. PA swam randomly over intact CFBE41o- monolayers and wounded monolayers that had been incubated with medium for 1 hr. Expression of CFTR and altered pH of the media did not affect PA interactions with CFBE41o- wounds. In contrast, PAO1 swarming and immobilization along wounds was abolished in PAO1 (PAO1ΔcheYZABW, no expression of chemotaxis regulatory components cheY, cheZ, cheA, cheB and cheW and greatly reduced in PAO1 that did not express amino acid receptors pctA, B and C (PAO1ΔpctABC and in PAO1 incubated in Ringer containing a high concentration of mixed amino acids. Non-piliated PAKΔpilA swarmed normally towards wounded areas but bound infrequently to CFBE41o- cells. In contrast, both swarming and binding of PA to CFBE41o- cells near wounds were prevented in non-flagellated PAKΔfliC. Data are consistent with the idea that (i PA use amino acid sensor-driven chemotaxis and flagella-driven swimming to swarm to CF airway epithelial cells near wounds and (ii PA use pili to bind to epithelial cells near wounds.

  16. A Circuit for Gradient Climbing in C. elegans Chemotaxis

    Directory of Open Access Journals (Sweden)

    Johannes Larsch

    2015-09-01

    Full Text Available Animals have a remarkable ability to track dynamic sensory information. For example, the nematode Caenorhabditis elegans can locate a diacetyl odor source across a 100,000-fold concentration range. Here, we relate neuronal properties, circuit implementation, and behavioral strategies underlying this robust navigation. Diacetyl responses in AWA olfactory neurons are concentration and history dependent; AWA integrates over time at low odor concentrations, but as concentrations rise, it desensitizes rapidly through a process requiring cilia transport. After desensitization, AWA retains sensitivity to small odor increases. The downstream AIA interneuron amplifies weak odor inputs and desensitizes further, resulting in a stereotyped response to odor increases over three orders of magnitude. The AWA-AIA circuit drives asymmetric behavioral responses to odor increases that facilitate gradient climbing. The adaptation-based circuit motif embodied by AWA and AIA shares computational properties with bacterial chemotaxis and the vertebrate retina, each providing a solution for maintaining sensitivity across a dynamic range.

  17. Biomimetic control based on a model of chemotaxis in Escherichia coli.

    Science.gov (United States)

    Tsuji, Toshio; Suzuki, Michiyo; Takiguchi, Noboru; Ohtake, Hisao

    2010-01-01

    In the field of molecular biology, extending now to the more comprehensive area of systems biology, the development of computer models for synthetic cell simulation has accelerated extensively and has begun to be used for various purposes, such as biochemical analysis. These models, describing the highly efficient environmental searching mechanisms and adaptability of living organisms, can be used as machine-control algorithms in the field of systems engineering. To realize this biomimetic intelligent control, we require a stripped-down model that expresses a series of information-processing tasks from stimulation input to movement. Here we selected the bacterium Escherichia coli as a target organism because it has a relatively simple molecular and organizational structure, which can be characterized using biochemical and genetic analyses. We particularly focused on a motility response known as chemotaxis and developed a computer model that includes not only intracellular information processing but also motor control. After confirming the effectiveness and validity of the proposed model by a series of computer simulations, we applied it to a mobile robot control problem. This is probably the first study showing that a bacterial model can be used as an autonomous control algorithm. Our results suggest that many excellent models proposed thus far for biochemical purposes can be applied to problems in other fields.

  18. Acinetobacter baumannii phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis.

    Science.gov (United States)

    Bhuiyan, Md Saruar; Ellett, Felix; Murray, Gerald L; Kostoulias, Xenia; Cerqueira, Gustavo M; Schulze, Keith E; Mahamad Maifiah, Mohd Hafidz; Li, Jian; Creek, Darren J; Lieschke, Graham J; Peleg, Anton Y

    2016-08-23

    Innate cellular immune responses are a critical first-line defense against invading bacterial pathogens. Leukocyte migration from the bloodstream to a site of infection is mediated by chemotactic factors that are often host-derived. More recently, there has been a greater appreciation of the importance of bacterial factors driving neutrophil movement during infection. Here, we describe the development of a zebrafish infection model to study Acinetobacter baumannii pathogenesis. By using isogenic A. baumannii mutants lacking expression of virulence effector proteins, we demonstrated that bacterial drivers of disease severity are conserved between zebrafish and mammals. By using transgenic zebrafish with fluorescent phagocytes, we showed that a mutation of an established A. baumannii global virulence regulator led to marked changes in neutrophil behavior involving rapid neutrophil influx to a localized site of infection, followed by prolonged neutrophil dwelling. This neutrophilic response augmented bacterial clearance and was secondary to an impaired A. baumannii phenylacetic acid catabolism pathway, which led to accumulation of phenylacetate. Purified phenylacetate was confirmed to be a neutrophil chemoattractant. These data identify a previously unknown mechanism of bacterial-guided neutrophil chemotaxis in vivo, providing insight into the role of bacterial metabolism in host innate immune evasion. Furthermore, the work provides a potentially new therapeutic paradigm of targeting a bacterial metabolic pathway to augment host innate immune responses and attenuate disease. PMID:27506797

  19. Chemotaxis can provide biological organisms with good solutions to the travelling salesman problem

    Science.gov (United States)

    Reynolds, A. M.

    2011-05-01

    The ability to find good solutions to the traveling salesman problem can benefit some biological organisms. Bacterial infection would, for instance, be eradicated most promptly if cells of the immune system minimized the total distance they traveled when moving between bacteria. Similarly, foragers would maximize their net energy gain if the distance that they traveled between multiple dispersed prey items was minimized. The traveling salesman problem is one of the most intensively studied problems in combinatorial optimization. There are no efficient algorithms for even solving the problem approximately (within a guaranteed constant factor from the optimum) because the problem is nondeterministic polynomial time complete. The best approximate algorithms can typically find solutions within 1%-2% of the optimal, but these are computationally intensive and can not be implemented by biological organisms. Biological organisms could, in principle, implement the less efficient greedy nearest-neighbor algorithm, i.e., always move to the nearest surviving target. Implementation of this strategy does, however, require quite sophisticated cognitive abilities and prior knowledge of the target locations. Here, with the aid of numerical simulations, it is shown that biological organisms can simply use chemotaxis to solve, or at worst provide good solutions (comparable to those found by the greedy algorithm) to, the traveling salesman problem when the targets are sources of a chemoattractant and are modest in number (n < 10). This applies to neutrophils and macrophages in microbial defense and to some predators.

  20. Fractional Adams-Bashforth/Moulton methods: An application to the fractional Keller-Segel chemotaxis system

    Science.gov (United States)

    Zayernouri, Mohsen; Matzavinos, Anastasios

    2016-07-01

    We first formulate a fractional class of explicit Adams-Bashforth (A-B) and implicit Adams-Moulton (A-M) methods of first- and second-order accuracy for the time-integration of 0 CD t τ u (x , t) = g (t ; u), τ ∈ (0 , 1 ], where 0 CD t τ denotes the fractional derivative in the Caputo sense. In this fractional setting and in contrast to the standard Adams methods, an extra history load term emerges and the associated weight coefficients are τ-dependent. However when τ = 1, the developed schemes reduce to the well-known A-B and A-M methods with standard coefficients. Hence, in terms of scientific computing, our approach constitutes a minimal modification of the existing Adams libraries. Next, we develop an implicit-explicit (IMEX) splitting scheme for linear and nonlinear fractional PDEs of a general advection-reaction-diffusion type, and we apply our scheme to the time-space fractional Keller-Segel chemotaxis system. In this context, we evaluate the nonlinear advection term explicitly, employing the fractional A-B method in the prediction step, and we treat the corresponding diffusion term implicitly in the correction step using the fractional A-M scheme. Moreover, we perform the corresponding spatial discretization by employing an efficient and spectrally-accurate fractional spectral collocation method. Our numerical experiments exhibit the efficiency of the proposed IMEX scheme in solving nonlinear fractional PDEs.

  1. SLAMF1 regulation of chemotaxis and autophagy determines CLL patient response

    Science.gov (United States)

    Bologna, Cinzia; Buonincontri, Roberta; Serra, Sara; Vaisitti, Tiziana; Audrito, Valentina; Brusa, Davide; Pagnani, Andrea; Coscia, Marta; D’Arena, Giovanni; Mereu, Elisabetta; Piva, Roberto; Furman, Richard R.; Rossi, Davide; Gaidano, Gianluca; Terhorst, Cox; Deaglio, Silvia

    2015-01-01

    Chronic lymphocytic leukemia (CLL) is a variable disease; therefore, markers to identify aggressive forms are essential for patient management. Here, we have shown that expression of the costimulatory molecule and microbial sensor SLAMF1 (also known as CD150) is lost in a subset of patients with an aggressive CLL that associates with a shorter time to first treatment and reduced overall survival. SLAMF1 silencing in CLL-like Mec-1 cells, which constitutively express SLAMF1, modulated pathways related to cell migration, cytoskeletal organization, and intracellular vesicle formation and recirculation. SLAMF1 deficiency associated with increased expression of CXCR4, CD38, and CD44, thereby positively affecting chemotactic responses to CXCL12. SLAMF1 ligation with an agonistic monoclonal antibody increased ROS accumulation and induced phosphorylation of p38, JNK1/2, and BCL2, thereby promoting the autophagic flux. Beclin1 dissociated from BCL2 in response to SLAMF1 ligation, resulting in formation of the autophagy macrocomplex, which contains SLAMF1, beclin1, and the enzyme VPS34. Accordingly, SLAMF1-silenced cells or SLAMF1lo primary CLL cells were resistant to autophagy-activating therapeutic agents, such as fludarabine and the BCL2 homology domain 3 mimetic ABT-737. Together, these results indicate that loss of SLAMF1 expression in CLL modulates genetic pathways that regulate chemotaxis and autophagy and that potentially affect drug responses, and suggest that these effects underlie unfavorable clinical outcome experienced by SLAMF1lo patients. PMID:26619119

  2. Polarization of cells and soft objects driven by mechanical interactions: Consequences for migration and chemotaxis

    Science.gov (United States)

    Leoni, M.; Sens, P.

    2015-02-01

    We study a generic model for the polarization and motility of self-propelled soft objects, biological cells, or biomimetic systems, interacting with a viscous substrate. The active forces generated by the cell on the substrate are modeled by means of oscillating force multipoles at the cell-substrate interface. Symmetry breaking and cell polarization for a range of cell sizes naturally "emerge" from long range mechanical interactions between oscillating units, mediated both by the intracellular medium and the substrate. However, the harnessing of cell polarization for motility requires substrate-mediated interactions. Motility can be optimized by adapting the oscillation frequency to the relaxation time of the system or when the substrate and cell viscosities match. Cellular noise can destroy mechanical coordination between force-generating elements within the cell, resulting in sudden changes of polarization. The persistence of the cell's motion is found to depend on the cell size and the substrate viscosity. Within such a model, chemotactic guidance of cell motion is obtained by directionally modulating the persistence of motion, rather than by modulating the instantaneous cell velocity, in a way that resembles the run and tumble chemotaxis of bacteria.

  3. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    Science.gov (United States)

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-01

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists.

  4. The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules.

    Science.gov (United States)

    Bradbury, L E; Kansas, G S; Levy, S; Evans, R L; Tedder, T F

    1992-11-01

    CD19 is a member of the Ig superfamily expressed on the surface of B lymphocytes that may be involved in the regulation of B cell function. Immunoprecipitation studies with B cell lines solubilized by digitonin have shown CD19 to be part of a multimolecular complex that includes CD21 (CR2) and other unidentified proteins. In this study, two of the CD19-associated proteins were identified as TAPA-1, which is expressed on most cell types, and Leu-13, which is expressed on subsets of lymphoid cells. TAPA-1 and Leu-13 are physically associated in many cell lineages. CD19 and CD21 mAb each specifically coprecipitated proteins of the same size as those precipitated by TAPA-1 and Leu-13 mAb from B cell lines and cDNA-transfected K562 cell lines. Western blot analysis with a TAPA-1 mAb verified the identity of TAPA-1 in CD19 and CD21 immunoprecipitated materials. In addition, when TAPA-1 or Leu-13 were crosslinked and patched on the cell surface, all of the CD19 comigrated with TAPA-1 and some of the CD19 comigrated with Leu-13. Furthermore, mAb binding to CD19, CD21, TAPA-1, and Leu-13 on B cell lines induced similar biologic responses, including the induction of homotypic adhesion, inhibition of proliferation, and an augmentation of the increase in intracellular [Ca2+] induced by suboptimal cross-linking of surface Ig on B cell lines. Together, these data suggest that TAPA-1 and Leu-13 are broadly expressed members of a signal transduction complex in which lineage-specific proteins, such as CD19 and CD21, provide cell-specific functions. PMID:1383329

  5. Application of a Modified Entropy Computational Method in Assessing the Complexity of Pulse Wave Velocity Signals in Healthy and Diabetic Subjects

    Directory of Open Access Journals (Sweden)

    Yi-Chung Chang

    2014-07-01

    Full Text Available Using 1000 successive points of a pulse wave velocity (PWV series, we previously distinguished healthy from diabetic subjects with multi-scale entropy (MSE using a scale factor of 10. One major limitation is the long time for data acquisition (i.e., 20 min. This study aimed at validating the sensitivity of a novel method, short time MSE (sMSE that utilized a substantially smaller sample size (i.e., 600 consecutive points, in differentiating the complexity of PWV signals both in simulation and in human subjects that were divided into four groups: healthy young (Group 1; n = 24 and middle-aged (Group 2; n = 30 subjects without known cardiovascular disease and middle-aged individuals with well-controlled (Group 3; n = 18 and poorly-controlled (Group 4; n = 22 diabetes mellitus type 2. The results demonstrated that although conventional MSE could differentiate the subjects using 1000 consecutive PWV series points, sensitivity was lost using only 600 points. Simulation study revealed consistent results. By contrast, the novel sMSE method produced significant differences in entropy in both simulation and testing subjects. In conclusion, this study demonstrated that using a novel sMSE approach for PWV analysis, the time for data acquisition can be substantially reduced to that required for 600 cardiac cycles (~10 min with remarkable preservation of sensitivity in differentiating among healthy, aged, and diabetic populations.

  6. Huntingtin regulates Ca(2+) chemotaxis and K(+)-facilitated cAMP chemotaxis, in conjunction with the monovalent cation/H(+) exchanger Nhe1, in a model developmental system: insights into its possible role in Huntington׳s disease.

    Science.gov (United States)

    Wessels, Deborah; Lusche, Daniel F; Scherer, Amanda; Kuhl, Spencer; Myre, Michael A; Soll, David R

    2014-10-01

    Huntington׳s disease is a neurodegenerative disorder, attributable to an expanded trinucleotide repeat in the coding region of the human HTT gene, which encodes the protein huntingtin. These mutations lead to huntingtin fragment inclusions in the striatum of the brain. However, the exact function of normal huntingtin and the defect causing the disease remain obscure. Because there are indications that huntingtin plays a role in Ca(2+) homeostasis, we studied the deletion mutant of the HTT ortholog in the model developmental system Dictyostelium discoideum, in which Ca(2+) plays a role in receptor-regulated behavior related to the aggregation process that leads to multicellular morphogenesis. The D. discoideum htt(-)-mutant failed to undergo both K(+)-facilitated chemotaxis in spatial gradients of the major chemoattractant cAMP, and chemotaxis up a spatial gradient of Ca(2+), but behaved normally in Ca(2+)-facilitated cAMP chemotaxis and Ca(2+)-dependent flow-directed motility. This was the same phenotypic profile of the null mutant of Nhel, a monovalent cation/H(+)exchanger. The htt(-)-mutant also failed to orient correctly during natural aggregation, as was the case for the Nhel mutant. Moreover, in a K(+)-based buffer the normal localization of actin was similarly defective in both htt(-) and nhe1(-) cells in a K(+)-based buffer, and the normal localization of Nhe1 was disrupted in the htt(-) mutant. These observations demonstrate that Htt and Nhel play roles in the same specific cation-facilitated behaviors and that Nhel localization is directly or indirectly regulated by Htt. Similar cation-dependent behaviors and a similar relationship between Htt and Nhe1 have not been reported for mammalian neurons and deserves investigation, especially as it may relate to Huntington׳s disease. PMID:25149514

  7. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1

    Science.gov (United States)

    Ellegård, Rada; Crisci, Elisa; Andersson, Jonas; Shankar, Esaki M.; Nyström, Sofia; Hinkula, Jorma

    2015-01-01

    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection. PMID:26157174

  8. Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source

    Science.gov (United States)

    Xiang, Tian

    2015-06-01

    In this paper, we are concerned with a general class of quasilinear parabolic-parabolic chemotaxis systems with/without growth source, under homogeneous Neumann boundary conditions in a smooth bounded domain Ω ⊂Rn with n ≥ 2. It is recently known that blowup is possible even in the presence of superlinear growth restrictions. Here, we derive new and interesting characterizations on the growth versus the boundedness. We show that the hard task of proving the L∞-boundedness of the cell density can be reduced to proving its Lr-boundedness. In other words, we show that the Lr-boundedness of the cell density can successfully guarantee its L∞-boundedness and hence its global boundedness, where r = n + ɛ or n/2 + ɛ depending on whether the growth restriction is essentially linear (including no growth) or superlinear. Hence, a blowup solution also blows up in Lp-norm for any suitably large p. More detailed information on how the growth source affects the boundedness of the solution is derived. These results reveal deep understandings of blowup mechanism for chemotaxis models. Then we use these criteria to establish uniform boundedness and hence global existence of the underlying models: logistic source in 2-D, cubic source as initially proposed by Mimura and Tsujikawa in 3-D, [ (n - 1) + ɛ ]st source in n-D with n ≥ 4. As a consequence, in a chemotaxis-growth model, blowup is impossible if the growth effect is suitably strong. Finally, we underline that our results remove the commonly assumed convexity on the domain Ω.

  9. Human Neutrophil’S Chemotaxis and Intracellular Killing in Response to Type 1 Piliated Uropathogenic Escherichia Coli

    Directory of Open Access Journals (Sweden)

    N Nooritalab

    2007-06-01

    Full Text Available Introduction: Uropathogenic Escherichia coli (UPEC, the commonest cause of urinary tract infections, bind to target cells and phagocytes via several distinct pairs of adhesins and receptors. In some cases bacterial binding to phagocytes ends to bacterial elimination. The survival and spread of bacteria in infected tissues are determined by the resistance of bacteria to elimination by phagocytic cells like neutrophils. The aim of this study was to determine the role of type 1 pili in interaction of UPEC with human neutrophils and its effect on bacterial killing. Methods: We used 3 clinical and 1 standard strains of type 1 piliated and 1 unpiliated standard strain of UPEC. Type 1 piliated and unpiliated strains (obtained by growth at a pilus-restrictive temperature of UPEC were used for determining the effect of this pili on migration of neutrophils towards bacteria in Boyden chamber. Also intracellular killing of bacteria by human neutrophils was estimated by counting of the number of viable bacteria in 45 minutes after incubation of piliated and unpiliated strains with purified neutrophils.The results were analyzed with t-test. Results: In chemotaxis assay, PMN migration towards piliated strains was 46-73% of that observed with FMLP, but it was 34-41% in unpiliated strains.The results obtained showed that type 1 piliated UPEC stimulated significantly greater chemotaxis than did unpiliated ones(P<0.05.In phagocytic killing assay, 40-70% of piliated strains were killed in 30 min after incubation with PMN, but the number of viable unpiliated strains was increased in this period of time .There was a significant difference between the intracellular killing of piliated and unpiliated strains with neutrophils (P<0.05. Discusion: Human granulocytes recognize type 1 piliated UPEC via α-mannose-containing structures. So the existence of this adhesin on UPEC strains can leads to increase of neutrophil chemotaxis towards bacteria, phagocytosis and

  10. The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants

    Directory of Open Access Journals (Sweden)

    Madlen eNietzsche

    2014-02-01

    Full Text Available In plants, SNF1-related kinase (SnRK1 responds to the availability of carbohydrates as well as to environmental stresses by down-regulating ATP consuming biosynthetic processes, while stimulating energy-generating catabolic reactions through gene expression and post-transcriptional regulation. The functional SnRK1 complex is a heterotrimer where the catalytic alpha subunit associates with a regulatory beta subunit and an activating gamma subunit. Several different metabolites as well as the hormone abscisic acid (ABA have been shown to modulate SnRK1 activity in a cell- and stimulus-type specific manner. It has been proposed that tissue- or stimulus-specific expression of adapter proteins mediating SnRK1 regulation can at least partly explain the differences observed in SnRK1 signaling. By using yeast two-hybrid and in planta bi-molecular fluorescence complementation assays we were able to demonstrate that proteins containing the domain of unknown function (DUF 581 could interact with both isoforms of the SnRK1 alpha subunit (AKIN10/11 of Arabidopsis. A structure/function analysis suggests that the DUF581 is a generic SnRK1 interaction module and co-expression with DUF581 proteins in plant cells leads to reallocation of the kinase to specific regions within the nucleus. Yeast two-hybrid analyses suggest that SnRK1 and DUF581 proteins can share common interaction partners inside the nucleus. The analysis of available microarray data implies that expression of the 19 members of the DUF581 encoding gene family in Arabidopsis is differentially regulated by hormones and environmental cues, indicating specialized functions of individual family members. We hypothesize that DUF581 proteins could act as mediators conferring tissue- and stimulus-type specific differences in SnRK1 regulation.

  11. Chemotaxis of Ralstonia eutropha JMP134(pJP4) to the Herbicide 2,4-Dichlorophenoxyacetate

    OpenAIRE

    Hawkins, Andrew C.; Harwood, Caroline S.

    2002-01-01

    Ralstonia eutropha JMP134(pJP4) and several other species of motile bacteria can degrade the herbicide 2,4-dichlorophenoxyacetate (2,4-D), but it was not known if bacteria could sense and swim towards 2,4-D by the process of chemotaxis. Wild-type R. eutropha cells were chemotactically attracted to 2,4-D in swarm plate assays and qualitative capillary assays. The chemotactic response was induced by growth with 2,4-D and depended on the presence of the catabolic plasmid pJP4, which harbors the ...

  12. Microfluidic study of the chemotactic response of Escherichia coli to amino acids, signaling molecules and secondary metabolites.

    Science.gov (United States)

    Nagy, Krisztina; Sipos, Orsolya; Valkai, Sándor; Gombai, Éva; Hodula, Orsolya; Kerényi, Ádám; Ormos, Pál; Galajda, Péter

    2015-07-01

    Quorum sensing and chemotaxis both affect bacterial behavior on the population level. Chemotaxis shapes the spatial distribution of cells, while quorum sensing realizes a cell-density dependent gene regulation. An interesting question is if these mechanisms interact on some level: Does quorum sensing, a density dependent process, affect cell density itself via chemotaxis? Since quorum sensing often spans across species, such a feedback mechanism may also exist between multiple species. We constructed a microfluidic platform to study these questions. A flow-free, stable linear chemical gradient is formed in our device within a few minutes that makes it suitable for sensitive testing of chemoeffectors: we showed that the amino acid lysine is a weak chemoattractant for Escherichia coli, while arginine is neutral. We studied the effect of quorum sensing signal molecules of Pseudomonas aeruginosa on E. coli chemotaxis. Our results show that N-(3-oxododecanoyl)-homoserine lactone (oxo-C12-HSL) and N-(butryl)-homoserine lactone (C4-HSL) are attractants. Furthermore, we tested the chemoeffector potential of pyocyanin and pyoverdine, secondary metabolites under a quorum sensing control. Pyocyanin is proved to be a weak attractant while pyoverdine are repellent. We demonstrated the usability of the device in co-culturing experiments, where we showed that various factors released by P. aeruginosa affect the dynamic spatial rearrangement of a neighboring E. coli population, while surface adhesion of the cells is also modulated. PMID:26339306

  13. Intestinal invasion of Salmonella enterica serovar Typhimurium in the avian host is dose dependent and does not depend on motility and chemotaxis

    DEFF Research Database (Denmark)

    Olsen, John Elmerdahl; Hoegh-Andersen, Kirsten Hobolt; Rosenkrantz, Jesper Tjørnholt;

    2013-01-01

    Salmonella enterica serotype Typhimurium (S. Typhimurium) can invade in the intestine of the avian host, and knowledge on the mechanisms that govern this is potentially important for prevention of disease. This study investigated the invasion of S. Typhimurium in the avian host and to which extent...... functional flagella or chemotaxis genes. In support of the results from intestinal loop experiments, flagella and chemotaxis genes were not significantly important to the outcome of an oral infection. The results showed that S. Typhimurium invasion in the avian host was dose dependent and was not affected...

  14. 基于贝叶斯压缩感知的复数稀疏信号恢复方法%Sparse Signal Recovery Based on Complex Bayesian Compressive Sensing

    Institute of Scientific and Technical Information of China (English)

    王伟; 唐伟民; 王犇; 雷舒杰

    2016-01-01

    An effective Sparse Bayesian Learning algorithm exploiting Complex sparse Temporal correlation (CTSBL) is proposed in this paper, which is used to recover sparse complex signal. By exploiting the fact that the real and imaginary components of a complex value share the same sparsity pattern, it can improve the sparsity of the estimated signal. A multitask sparse signal recovery issue is transformed to a block sparse signal recovery issue of a single measurement by taking full advantage of the internal structure information among the multiple measurement vector signals. The experiments show that the proposed algorithm CTSBL achieves better recovery performance compared with the existing Complex MultiTask Bayesian Compressive Sensing (CMTBCS) algorithm and BOMP algorithm.%该文利用复数稀疏信号的时域相互关系提出一种新的稀疏贝叶斯算法(CTSBL)。该算法利用复数信号的实部与虚部分量具有相同的稀疏结构的特点,提升估计信号的稀疏程度。同时将多个测量信号间的内部结构信息引入到了信号恢复中,使原始的多测量稀疏信号恢复问题转变为单测量块稀疏信号恢复问题,使恢复性能得到了提升。理论分析和仿真结果证明,提出的 CTSBL 算法相较于目前的针对复数信号的多测量矢量贝叶斯压缩感知(CMTBCS)算法和块正交匹配追踪算法(BOMP)在估计精度上具有更好的性能。

  15. A photoelectrochemical biosensor using ruthenium complex-reduced graphene oxide hybrid as the photocurrent signal reporter assembled on rhombic TiO{sub 2} nanocrystals driven by visible light

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Lei; Wang, Yanhu; Yang, Hongmei [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Yang, Ping [School of Material Science and Engineering, University of Jinan, 250022, Jinan (China); State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Cheng, Xin [School of Material Science and Engineering, University of Jinan, 250022, Jinan (China); Yan, Mei [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Yu, Jinghua, E-mail: ujn.yujh@gmail.com [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2014-05-01

    Highlights: • A sandwich-type photoelectrochemical immunosensor was fabricated. • Highly crystalline rhombic TiO{sub 2} NCs was prepared through solvothermal method. • Ru complex was used as the photoelectrochemical signal-generating molecule. • Ru complex hybridized RGO was prepared and used as signal amplification label. - Abstract: An ultrasensitive photoelectrochemical (PEC) immunoassay of cancer biomarker carcinoembryonie antigen (CEA) is proposed that uses rhombic titanium dioxide nanocrystals (TiO{sub 2} NCs) coupled with Ab2–RGO-Ru bioconjugate, which featured CEA signal antibody (Ab2) and ruthenium tris(bipyridine) (Ru complex) labels linked to reduced graphene oxide (RGO) for signal amplification. Herein, the Ru complex acts as an electron donor, while RGO serves as an electron acceptor which facilitates charge separation and suppresses recombination of photoexcited electron–hole pairs in the hybridized species. The rhombic TiO{sub 2} NCs were fabricated through a solvothermal technique in anhydrous ethanol, followed by spin-coating process and calcination, an ITO/TiO{sub 2} electrode was obtained. Chitosan (CS) and glutaraldehyde (GLD) were used to modify the prepared ITO/TiO{sub 2} electrode to covalently immobilize antibodies. With a sandwich-type immunoreaction, CEA and Ab2–RGO-Ru were conjugated successively to form a sandwich-type immunocomplex. Thus, a sandwich-type PEC immunosensor was fabricated for the detection of CEA was developed by monitoring the changes in the photocurrent signals of the electrode resulting from the immunoreaction. The proposed PEC immunosensor showed high sensitivity, selectivity, excellent stability, and good reproducibility, and thus has great potential to be used for other biological assays.

  16. A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts

    Directory of Open Access Journals (Sweden)

    Galperin Michael Y

    2005-06-01

    Full Text Available Abstract Background Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. Results This paper presents results of a comprehensive census of signal transduction proteins – histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases – encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. Conclusion The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the

  17. Cluster–cluster aggregation with particle replication and chemotaxy: a simple model for the growth of animal cells in culture

    International Nuclear Information System (INIS)

    Aggregation of animal cells in culture comprises a series of motility, collision and adhesion processes of basic relevance for tissue engineering, bioseparations, oncology research and in vitro drug testing. In the present paper, a cluster–cluster aggregation model with stochastic particle replication and chemotactically driven motility is investigated as a model for the growth of animal cells in culture. The focus is on the scaling laws governing the aggregation kinetics. Our simulations reveal that in the absence of chemotaxy the mean cluster size and the total number of clusters scale in time as stretched exponentials dependent on the particle replication rate. Also, the dynamical cluster size distribution functions are represented by a scaling relation in which the scaling function involves a stretched exponential of the time. The introduction of chemoattraction among the particles leads to distribution functions decaying as power laws with exponents that decrease in time. The fractal dimensions and size distributions of the simulated clusters are qualitatively discussed in terms of those determined experimentally for several normal and tumoral cell lines growing in culture. It is shown that particle replication and chemotaxy account for the simplest cluster size distributions of cellular aggregates observed in culture

  18. Neutrophils lacking platelet-endothelial cell adhesion molecule-1 exhibit loss of directionality and motility in CXCR2-mediated chemotaxis.

    Science.gov (United States)

    Wu, Yue; Stabach, Paul; Michaud, Michael; Madri, Joseph A

    2005-09-15

    Time-lapsed videomicroscopy was used to study the migration of platelet-endothelial cell adhesion molecule-1-deficient (PECAM-1(-/-)) murine neutrophils undergoing chemotaxis in Zigmond chambers containing IL-8, KC, or fMLP gradients. PECAM-1(-/-) neutrophils failed to translocate up the IL-8, KC, and fMLP gradients. Significant reductions in cell motility and cell spreading were also observed in IL-8 or KC gradients. In wild-type neutrophils, PECAM-1 and F-actin were colocalized at the leading fronts of polarized cells toward the gradient. In contrast, in PECAM-1(-/-) neutrophils, although F-actin also localized to the leading front of migrating cells, F-actin polymerization was unstable, and cycling was remarkably increased compared with that of wild-type neutrophils. This may be due to the decreased cytokine-induced mobilization of the actin-binding protein, moesin, into the cytoskeleton of PECAM-1(-/-) neutrophils. PECAM-1(-/-) neutrophils also exhibited intracellularly dislocalized Src homology 2 domain containing phosphatase 1 (SHP-1) and had less IL-8-induced SHP-1 phosphatase activity. These results suggest that PECAM-1 regulates neutrophil chemotaxis by modulating cell motility and directionality, in part through its effects on SHP-1 localization and activation. PMID:16148090

  19. CSF biomarkers of monocyte activation and chemotaxis correlate with magnetic resonance spectroscopy metabolites during chronic HIV disease.

    Science.gov (United States)

    Anderson, Albert M; Fennema-Notestine, Christine; Umlauf, Anya; Taylor, Michael J; Clifford, David B; Marra, Christina M; Collier, Ann C; Gelman, Benjamin B; McArthur, Justin C; McCutchan, J Allen; Simpson, David M; Morgello, Susan; Grant, Igor; Letendre, Scott L

    2015-10-01

    Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) persist despite combination antiretroviral therapy (cART), supporting the need to better understand HIV neuropathogenesis. Magnetic resonance spectroscopy (MRS) of the brain has demonstrated abnormalities in HIV-infected individuals despite cART. We examined the associations between MRS metabolites and selected cerebrospinal fluid (CSF) biomarkers reflecting monocyte/macrophage activation and chemotaxis. A multicenter cross-sectional study involving five sites in the USA was conducted. The following CSF biomarkers were measured: soluble CD14 (sCD14), monocyte chemotactic protein-1 (MCP-1), interferon inducible protein 10 (IP-10), and stromal cell-derived growth factor 1 alpha (SDF-1α). The following MRS metabolites were measured from basal ganglia (BG), frontal white matter (FWM), and frontal gray matter (FGM): N-acetylaspartate (NAA), myo-inositol (MI), choline (Cho), and creatine (Cr). CSF biomarkers were compared to absolute MRS metabolites as well as metabolite/Cr ratios using linear regression. Eighty-three HIV-infected individuals were included, 78 % on cART and 37 % with HAND. The most robust positive correlations were between MCP-1 and Cho in BG (R (2) 0.179, p FGM (R (2) 0.224, p < 0.001), although higher MCP-1 levels remained associated with Cho/Cr in BG. These findings provide evidence that monocyte activation and chemotaxis continue to contribute to HIV-associated brain abnormalities in cART-treated individuals. PMID:26069183

  20. In Entamoeba histolytica, a BspA family protein is required for chemotaxis toward tumour necrosis factor

    Directory of Open Access Journals (Sweden)

    Anne Silvestre

    2015-07-01

    Full Text Available Background: Entamoeba histolytica cell migration is essential for the development of human amoebiasis (an infectious disease characterized by tissue invasion and destruction. The tissue inflammation associated with tumour necrosis factor (TNF secretion by host cells is a well-documented feature of amoebiasis. Tumour necrosis factor is a chemoattractant for E. histolytica, and the parasite may have a TNF receptor at its cell surface. Methods: confocal microscopy, RNA Sequencing, bioinformatics, RNA antisense techniques and histological analysis of human colon explants were used to characterize the interplay between TNF and E. histolytica. Results: an antibody against human TNF receptor 1 (TNFR1 stained the E. histolytica trophozoite surface and (on immunoblots binds to a 150-kDa protein. Proteome screening with the TNFR1 sequence revealed a BspA family protein in E. histolytica that carries a TNFR signature domain and six leucine-rich repeats (named here as "cell surface protein", CSP, in view of its cellular location. Cell surface protein shares structural homologies with Toll-Like receptors, colocalizes with TNF and is internalized in TNF-containing vesicles. Reduction of cellular CSP levels abolished chemotaxis toward TNF and blocked parasite invasion of human colon. Conclusions: there is a clear link between TNF chemotaxis, CSP and pathogenesis.