WorldWideScience

Sample records for chemotactic protein-1 expression

  1. Acyclic nucleoside phosphonate antivirals activate gene expression of monocyte chemotactic protein 1 and 3.

    Czech Academy of Sciences Publication Activity Database

    Potměšil, Petr; Holý, Antonín; Kmoníčková, Eva; Křížková, Jana; Zídek, Zdeněk

    2007-01-01

    Roč. 14, č. 1 (2007), s. 59-66 ISSN 1021-7770 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z40550506 Keywords : Acyclic nucleoside phosponate * HIV * Monocyte chemotactic protein Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.024, year: 2007

  2. Local Delivery Is Critical for Monocyte Chemotactic Protein-1 Mediated Site-Specific Murine Aneurysm Healing.

    Science.gov (United States)

    Hourani, Siham; Motwani, Kartik; Wajima, Daisuke; Fazal, Hanain; Jones, Chad H; Doré, Sylvain; Hosaka, Koji; Hoh, Brian L

    2018-01-01

    Local delivery of monocyte chemotactic protein-1 (MCP-1/CCL2) via our drug-eluting coil has been shown to promote intrasaccular aneurysm healing via an inflammatory pathway. In this study, we validate the importance of local MCP-1 in murine aneurysm healing. Whether systemic, rather than local, delivery of MCP-1 can direct site-specific aneurysm healing has significant translational implications. If systemic MCP-1 is effective, then MCP-1 could be administered as a pill rather than by endovascular procedure. Furthermore, we confirm that MCP-1 is the primary effector in our MCP-1 eluting coil-mediated murine aneurysm healing model. We compare aneurysm healing with repeated intraperitoneal MCP-1 versus vehicle injection, in animals with control poly(lactic-co-glycolic) acid (PLGA)-coated coils. We demonstrate elimination of the MCP-1-associated tissue-healing response by knockout of MCP-1 or CCR2 (MCP-1 receptor) and by selectively inhibiting MCP-1 or CCR2. Using immunofluorescent probing, we explore the cell populations found in healed aneurysm tissue following each intervention. Systemically administered MCP-1 with PLGA coil control does not produce comparable aneurysm healing, as seen with MCP-1 eluting coils. MCP-1-directed aneurysm healing is eliminated by selective inhibition of MCP-1 or CCR2 and in MCP-1-deficient or CCR2-deficient mice. No difference was detected in M2 macrophage and myofibroblast/smooth muscle cell staining with systemic MCP-1 versus vehicle in aneurysm wall, but a significant increase in these cell types was observed with MCP-1 eluting coil implant and attenuated by MCP-1/CCR2 blockade or deficiency. We show that systemic MCP-1 concurrent with PLGA-coated platinum coil implant is not sufficient to produce site-specific aneurysm healing. MCP-1 is a critical, not merely complementary, actor in the aneurysm healing pathway.

  3. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    Science.gov (United States)

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  4. Temporal cascade of inflammatory cytokines and cell-type populations in monocyte chemotactic protein-1 (MCP-1)-mediated aneurysm healing.

    Science.gov (United States)

    Hoh, Brian L; Fazal, Hanain Z; Hourani, Siham; Li, Mengchen; Lin, Li; Hosaka, Koji

    2018-03-01

    We have previously shown that monocyte chemotactic protein-1 (MCP-1) promotes aneurysm healing. To determine the temporal cascade and durability of aneurysm healing. Murine carotid aneurysms were treated with MCP-1-releasing or poly(lactic-co-glycolic) acid (PLGA)-only coils. Aneurysm healing was assessed by quantitative measurements of intraluminal tissue ingrowth on 5 μm sections by blinded observers. Aneurysm healing occurred in stages characteristic of normal wound healing. The 1st stage (day 3) was characterized by a spike in neutrophils and T cells. The 2nd stage (week 1) was characterized by an influx of macrophages and CD45+ cells significantly greater with MCP-1 than with PLGA (p<0.05). The third stage (week 2-3) was characterized by proliferation of smooth muscle cells and fibroblasts (greater with MCP-1 than with PLGA, p<0.05). The fourth stage (3-6 months) was characterized by leveling off of smooth muscle cells and fibroblasts. M1 macrophages were greater at week 1, whereas M2 macrophages were greater at weeks 2 and 3 with MCP-1 than with PLGA. Interleukin 6 was present early and increased through week 2 (p<0.05 compared with PLGA) then decreased and leveled off through 6 months. Tumour necrosis factor α was present early and remained constant through 6 months. MCP-1 and PLGA treatment had similar rates of tissue ingrowth at early time points, but MCP-1 had a significantly greater tissue ingrowth at week 3 (p<0.05), which persisted for 6 months. The sequential cascade is consistent with an inflammatory model of injury, repair, and remodeling. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Monocyte Chemotactic Protein 1 in Plasma from Soluble Leishmania Antigen-Stimulated Whole Blood as a Potential Biomarker of the Cellular Immune Response to Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Ana V. Ibarra-Meneses

    2017-09-01

    Full Text Available New biomarkers are needed to identify asymptomatic Leishmania infection as well as immunity following vaccination or treatment. With the aim of finding a robust biomarker to assess an effective cellular immune response, monocyte chemotactic protein 1 (MCP-1 was examined in plasma from soluble Leishmania antigen (SLA-stimulated whole blood collected from subjects living in a Leishmania infantum-endemic area. MCP-1, expressed 110 times more strongly than IL-2, identified 87.5% of asymptomatic subjects and verified some asymptomatic subjects close to the cutoff. MCP-1 was also significantly elevated in all patients cured of visceral leishmaniasis (VL, unlike IL-2, indicating the specific memory response generated against Leishmania. These results show MCP-1 to be a robust candidate biomarker of immunity that could be used as a marker of cure and to both select and follow the population in vaccine phase I–III human clinical trials with developed rapid, easy-to-use field tools.

  6. Monocyte chemotactic protein-1, RANTES and macrophage migration inhibitory factor levels in gingival crevicular fluid of metabolic syndrome patients with gingivitis.

    Science.gov (United States)

    Gürkan, Ali; Eren, Gülnihal; Çetinkalp, Şevki; Akçay, Yasemin Delen; Emingil, Gülnur; Atilla, Gül

    2016-09-01

    The aim of the present study was to determine gingival crevicular fluid (GCF) levels of monocyte chemotactic protein-1 (MCP-1), regulated on activation, normal T-cell expressed and secreted protein (RANTES) and macrophage migration inhibitory factor (MIF) in metabolic syndrome patients with gingivitis. Twenty metabolic syndrome patients with gingivitis (MSG), 20 MetS patients with clinically healthy periodontium (MSH), 20 systemically healthy subjects with gingivitis and 20 subjects who were both systemically and periodontally healthy were included. Periodontal and systemical parameters were recorded. GCF MCP-1, RANTES and MIF levels were assayed by enzyme-linked immunosorbent assay method. MSG and MSH groups had elevated blood pressure, triglyceride, waist circumference and fasting glucose values in comparison to gingivitis and healthy groups (Pgingivitis groups when compared to those of the MSH and healthy groups (Pgingivitis group had higher MCP-1, RANTES and MIF levels compared to the healthy group (P=0.011, P=0.0001, P=0.011 respectively). The RANTES level of MSG group was significantly higher than those of the gingivitis group (P=0.01), but MCP-1 and MIF levels were similar in the MSG and gingivitis groups (P>0.05). Elevated levels of GCF RANTES in MetS patients with gingivitis might associate with the presence of increased gingival inflammation by MetS. Low-grade systemic inflammation associated with MetS and adipose tissue-derived RANTES might lead to altered GCF RANTES levels in the presence of gingival inflammation. Copyright © 2016. Published by Elsevier Ltd.

  7. Expression and divalent cation binding properties of the novel chemotactic inflammatory protein psoriasin

    DEFF Research Database (Denmark)

    Vorum, H; Madsen, Peder; Rasmussen, H H

    1996-01-01

    Psoriasin is a novel chemotactic inflammatory protein that possesses weak similarity to the S100 family members of Ca(2+)-binding proteins, and that is highly up-regulated in hyperproliferative psoriatic keratinocytes. Here we have used the psoriasin cDNA to express recombinant human (rh) psorias...

  8. Immunohistochemical expression of latent membrane protein 1 ...

    African Journals Online (AJOL)

    Methods: Archival formalin-fixed, paraffin-embedded NPC biopsies were evaluated in 23 Moroccan patients for the presence of LMP1 and p53 using immunohistochemistry (IHC). Results: No LMP1 expression was observed whereas 8 of 23 cases (34. 7%) had detectable p53 protein in the nuclei of tumor cells.

  9. Clinical value of detection on ser um monocyte chemotactant protein-1 and vascular endothelial cadher in levels in patients with acute cerebral infarction

    Directory of Open Access Journals (Sweden)

    Xia Zhou

    2016-11-01

    Full Text Available Objective: To study the correlation of serum monocyte chemotactant protein-1 (MCP-1 and vascular endothelia cadherin (VE-cadherin levels in patients with acute cerebral infarction, and nerve injury molecules, interleukins and matrix metalloproteinases. Methods: A total of 86 patients with acute cerebral infarction treated in our hospital from April 2012 to October 2015 were selected as the observation group and 50 healthy subjects in the same period treated in our hospital were selected as the control group. The serums were collected and the contents of MCP-1, VE-cadherin, heart-type fatty acid binding protein (H-FABP, S100 calcium binding protein B (S100B, neuron-specific enolase (NSE, interleukin-lb (IL-1b, IL-6, IL-17, IL-18, matrix metalloproteinase-2 (MMP2, MMP3 and MMP9 were measured. Results: The serum contents of MCP-1, VE-cadherin, H-FABP, S100B, NSE, IL-1b, IL- 6, IL-17, IL-18, MMP2, MMP3 and MMP9 in observation group were significantly higher than those of control group. Carotid artery plaque formation and unstable plaque properties will increase the serum contents of MCP-1, VE-cadherin, H-FABP, S100B, NSE, IL-1b, IL-6, IL-17, IL-18, MMP2, MMP3 and MMP9 in patients with cerebral infarction. The serum levels of MCP-1, VE-cadherin and the contents of H-FABP, S100B, NSE, IL-1b, IL-6, IL-17, IL-18, MMP2, MMP3 and MMP9 were positively correlated. Conclusions: The serum levels of VE-cadherin and MCP-1 were significantly increased in patients with acute cerebral infarction. MCP-1 and VE-cadherin can increase the secretion of interleukins and matrix metalloproteinases, which can result in the carotid artery plaque formation, unstable plaque properties and the injury of nerve function.

  10. Effects of 17β-estradiol on the release of monocyte chemotactic protein-1 and MAPK activity in monocytes stimulated with peritoneal fluid from endometriosis patients.

    Science.gov (United States)

    Lee, Dong-Hyung; Kim, Seung-Chul; Joo, Jong-Kil; Kim, Hwi-Gon; Na, Young-Jin; Kwak, Jong-Young; Lee, Kyu-Sup

    2012-03-01

    Hormones and inflammation have been implicated in the pathological process of endometriosis; therefore, we investigated the combined effects of 17β-estradiol (E2) and peritoneal fluid obtained from patients with endometriosis (ePF) or a control peritoneal fluid (cPF) obtained from patients without endometriosis on the release of monocyte chemotactic protein-1 (MCP-1) by monocytes and the role of signaling pathways. Monocytes were cultured with ePF and cPF in the presence of E2; the MCP-1 levels in the supernatants were then measured by ELISA. In addition, mitogen activated protein kinase (MAPK) activation was measured by Western blotting of phosphorylated proteins. E2 down-regulated MCP-1 release by lipopolysaccharide- or cPF-treated monocytes, but failed to suppress its release by ePF-treated monocytes. The release of MCP-1 by ePF- and cPF-treated monocytes was efficiently abrogated by p38 mitogen activated protein kinase (MAPK) inhibitors; however, the MCP-1 release by cPF-treated monocytes, but not by ePF-treated monocytes, was blocked by a MAPK kinase inhibitor. In addition, ePF and cPF induced the phosphorylation of extracellular stress regulated kinase (ERK)1/2, p38 MAPK and c-Jun N-terminal kinase (JNK). E2 decreased the phosphorylation of p38 MAPK, but not ERK1/2 in ePF-treated monocytes; however, E2 decreased the phosphorylation of p38 MAPK, ERK1/2 and JNK in cPF-treated monocytes. The ability of E2 to modulate MCP-1 production is impaired in ePF-treated monocytes, which may be related to regulation of MAPK activity. These findings suggest that the failure of E2 to suppress ePF-treated production of MCP-1 may be involved in the pathogenesis of endometriosis. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  11. Oxidized low-density lipoproteins may induce expression of monocyte chemotactic protein-3 in atherosclerotic plaques

    International Nuclear Information System (INIS)

    Jang, Moon Kyoo; Kim, Ji Young; Jeoung, Nam Ho; Kang, Mi Ae; Choi, Myung-Sook; Oh, Goo Taeg; Nam, Kyung Tak; Lee, Won-Ha; Park, Yong Bok

    2004-01-01

    Genes induced or suppressed by oxidized low-density lipoproteins (oxLDL) in human monocytic THP-1 cells were searched using the differential display reverse transcriptase polymerase chain reaction. One of the differentially expressed (up-regulated) cDNA fragments was found to contain sequences corresponding to monocyte chemotactic protein-3 (MCP-3). The stimulatory effect of the oxLDL on the expression of MCP-3 mRNA was both time- and dose-dependent. Treatment with GF109203X and genistein, inhibitors of protein kinase C and tyrosine kinase, respectively, had no effect on the induction of MCP-3 mRNA by oxLDL, while treatment with cycloheximide inhibited the induction. The induction was reproduced by the lipid components in oxLDL such as 9-HODE and 13-HODE, which are known to activate the peroxisome proliferator-activated receptor γ (PPARγ). Introduction of an endogenous PPARγ ligand, 15d-PGJ2, in the culture of THP-1 cells resulted in the induction of MCP-3 gene expression. Furthermore, analyses of human atherosclerotic plaques revealed that the expressional pattern of MCP-3 in the regions of neointimal and necrotic core overlapped with that of PPARγ. These results suggest that oxLDL delivers its signal for MCP-3 expression via PPARγ, which may be further related to the atherogenesis

  12. Expression of uncoupling protein 1 in bovine muscle cells.

    Science.gov (United States)

    Abd Eldaim, M A; Hashimoto, O; Ohtsuki, H; Yamada, T; Murakami, M; Onda, K; Sato, R; Kanamori, Y; Qiao, Y; Tomonaga, S; Matsui, T; Funaba, M

    2016-12-01

    Uncoupling protein 1 (Ucp1) is predominantly expressed in brown/beige adipocytes in mammals. Although myogenic cells have been suggested to commit to a brown adipocyte lineage through the induction of Prdm16 expression, Prdm16 is also expressed in skeletal muscle. Thus, we examined expression of Ucp1 in bovine myogenic cells. Considering that Ucp1 is a principle molecule that induces energy expenditure in brown/beige adipocytes, expression of Ucp1 is not preferable in beef cattle because of potential decrease in energy (fattening) efficiency. The RT-PCR analyses revealed the expression of Ucp1 in the skeletal muscle of cattle; expression levels were markedly lower than those in the brown fat of calves. Immunohistochemical analyses showed that Ucp1 surrounded muscle fibers, but not adipocytes residing in skeletal muscle. Myosatellite cells cultured in myogenic medium showed an increase in the expression levels of myogenic regulatory factors ( levels were greater in cells after myogenic culture for 12 d than in those after myogenic culture for 6 d ( bovine skeletal muscle, which suggests the necessity for further studies on Ucp1-mediated energy expenditure in bovine skeletal muscle.

  13. The expression of selenium-binding protein 1 is decreased in uterine leiomyoma

    Directory of Open Access Journals (Sweden)

    Quddus M Ruhul

    2010-12-01

    Full Text Available Abstract Background Selenium has been shown to inhibit cancer development and growth through the mediation of selenium-binding proteins. Decreased expression of selenium-binding protein 1 has been reported in cancers of the prostate, stomach, colon, and lungs. No information, however, is available concerning the roles of selenium-binding protein 1 in uterine leiomyoma. Methods Using Western Blot analysis and immunohistochemistry, we examined the expression of selenium-binding protein 1 in uterine leiomyoma and normal myometrium in 20 patients who had undergone hysterectomy for uterine leiomyoma. Results and Discussion The patient age ranged from 34 to 58 years with a mean of 44.3 years. Proliferative endometrium was seen in 8 patients, secretory endometrium in 7 patients, and atrophic endometrium in 5 patients. Two patients showed solitary leiomyoma, and eighteen patients revealed 2 to 5 tumors. Tumor size ranged from 1 to 15.5 cm with a mean of 4.3 cm. Both Western Blot analysis and immunohistochemistry showed a significant lower level of selenium-binding protein 1 in leiomyoma than in normal myometrium. Larger tumors had a tendency to show a lower level of selenium-binding protein 1 than smaller ones, but the difference did not reach a statistical significance. The expression of selenium-binding protein 1 was the same among patients with proliferative, secretory, and atrophic endometrium in either leiomyoma or normal myometrium. Also, we did not find a difference of selenium-binding protein 1 level between patients younger than 45 years and older patients in either leiomyoma or normal myometrium. Conclusions Decreased expression of selenium-binding protein 1 in uterine leiomyoma may indicate a role of the protein in tumorigenesis. Our findings may provide a basis for future studies concerning the molecular mechanisms of selenium-binding protein 1 in tumorigenesis as well as the possible use of selenium in prevention and treatment of uterine

  14. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a.

    OpenAIRE

    Alexander, D; Goodman, R M; Gut-Rella, M; Glascock, C; Weymann, K; Friedrich, L; Maddox, D; Ahl-Goy, P; Luntz, T; Ward, E

    1993-01-01

    Expression of pathogenesis-related protein 1a (PR-1a), a protein of unknown biochemical function, is induced to high levels in tobacco in response to pathogen infection. The induction of PR-1a expression is tightly correlated with the onset of systemic acquired resistance (SAR), a defense response effective against a variety of fungal, viral, and bacterial pathogens. While PR-1a has been postulated to be involved in SAR, and is the most highly expressed of the PR proteins, evidence for its ro...

  15. Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans

    DEFF Research Database (Denmark)

    Lavstsen, Thomas; Magistrado, Pamela; Hermsen, Cornelus C

    2005-01-01

    -encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which is expressed on the surface of infected erythrocytes where it mediates binding to endothelial receptors. Thus, severe malaria may be caused by parasites expressing PfEMP1 variants that afford parasites optimal sequestration...... in immunologically naive individuals and high effective multiplication rates. METHODS: var gene transcription was analysed using real time PCR and PfEMP1 expression by western blots as well as immune plasma recognition of parasite cultures established from non-immune volunteers shortly after infection with NF54...... compared to parasites expressing other var genes. The differential expression of PfEMP1 was confirmed at the protein level by immunoblot analysis. In addition, serological typing showed that immune sera more often recognized second and third generation parasites than first generation parasites. CONCLUSION...

  16. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana

    Science.gov (United States)

    Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia

    2015-01-01

    Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700

  17. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas

    DEFF Research Database (Denmark)

    Jensen, Stine S; Aaberg-Jessen, Charlotte; Christensen, Karina G

    2013-01-01

    Targeting of lysosomes is a novel therapeutic anti-cancer strategy for killing the otherwise apoptosis-resistant cancer cells. Such strategies are urgently needed for treatment of brain tumors, especially the glioblastoma, which is the most frequent and most malignant type. The aim of the present...... study was to investigate the presence of lysosomes in astrocytic brain tumors focussing also on the therapy resistant tumor stem cells. Expression of the lysosomal marker LAMP-1 (lysosomal-associated membrane protein-1) was investigated by immunohistochemistry in 112 formalin fixed paraffin embedded...... in the individual tumor grades. LAMP-1/GFAP showed pronounced co-expression and LAMP-1/CD133 was co-expressed as well suggesting that tumor cells including the proposed tumor stem cells contain lysosomes. The results suggest that high amounts of lysosomes are present in glioblastomas and in the proposed tumor stem...

  18. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio

    2007-01-01

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  19. Expression and mechanism of high mobility group box protein-1 in retinal tissue of diabetic rats

    Directory of Open Access Journals (Sweden)

    Shuang Jiang

    2016-05-01

    Full Text Available AIM:To investigate the expression and mechanism of high mobility group box protein-1(HMGB1in the retina of diabetic rats. METHODS:Sixty SD rats were randomly divided into diabetic group and control group. Diabetic rat model was produced by intraperitioneal injection of 1% STZ with 60mg/Kg weight. The rats in control group received intraperitioneal injection of normal saline with same dosage. After injection, the rats were sacrificed and eyeballs were enucleated for HE staining, the retina fluorescence angiography, TUNEL and Western Blot detection at 1, 2 and 4mo for the expressions of HMGB1 and NF-κB. RESULTS:Compared with the control group, the retinal cells disorder, cell densities decreases, microvasculars occlusion were founded with inner and outer nuclear layer thinning and ganglion cell apoptosis. The fluorescence angiography showed that peripheral capillaries became circuitous and vascular occlusion and non-perfusion area could be seen. The expressions of HMGB1 and NF-κB were higher than those of control with time dependence and they had significant positive correlations(PCONCLUSION:The expression of HMGB1 increases in diabetic rat retina, which may involve in the occurrence of diabetic retinopathy through the NF- κB pathway.

  20. Expression of activator protein-1 (AP-1) family members in breast cancer

    International Nuclear Information System (INIS)

    Kharman-Biz, Amirhossein; Gao, Hui; Ghiasvand, Reza; Zhao, Chunyan; Zendehdel, Kazem; Dahlman-Wright, Karin

    2013-01-01

    The activator protein-1 (AP-1) transcription factor is believed to be important in tumorigenesis and altered AP-1 activity was associated with cell transformation. We aimed to assess the potential role of AP-1 family members as novel biomarkers in breast cancer. We studied the expression of AP-1 members at the mRNA level in 72 primary breast tumors and 37 adjacent non-tumor tissues and evaluated its correlation with clinicopathological parameters including estrogen receptor (ER), progesterone receptor (PR) and HER2/neu status. Expression levels of Ubiquitin C (UBC) were used for normalization. Protein expression of AP-1 members was assessed using Western blot analysis in a subset of tumors. We used student’s t-test, one-way ANOVA, logistic regression and Pearson’s correlation coefficient for statistical analyses. We found significant differences in the expression of AP-1 family members between tumor and adjacent non-tumor tissues for all AP-1 family members except Fos B. Fra-1, Fra-2, Jun-B and Jun-D mRNA levels were significantly higher in tumors compared to adjacent non-tumor tissues (p < 0.001), whilst c-Fos and c-Jun mRNA levels were significantly lower in tumors compared with adjacent non-tumor tissues (p < 0.001). In addition, Jun-B overexpression had outstanding discrimination ability to differentiate tumor tissues from adjacent non-tumor tissues as determined by ROC curve analysis. Moreover, Fra-1 was significantly overexpressed in the tumors biochemically classified as ERα negative (p = 0.012) and PR negative (p = 0.037). Interestingly, Fra-1 expression was significantly higher in triple-negative tumors compared with luminal carcinomas (p = 0.01). Expression levels of Fra-1 and Jun-B might be possible biomarkers for prognosis of breast cancer

  1. Prognostic significance of EBV latent membrane protein 1 expression in lymphomas: evidence from 15 studies.

    Directory of Open Access Journals (Sweden)

    Yuan Mao

    Full Text Available BACKGROUND: Epstein-Barr virus (EBV infection has been associated with lymphoma development. EBV latent membrane protein 1 (LMP1 is essential for EBV-mediated transformation and progression of different human cells, including lymphocytes. This meta-analysis investigated LMP1 expression with prognosis of patients with lymphoma. METHODS: The electronic databases of PubMed, Embase, and Chinese Biomedicine Databases were searched. There were 15 published studies available for a random effects model analysis. Quality assessment was performed using the Newcastle-Ottawa Quality Assessment Scale for cohort studies. A funnel plot was used to investigate publication bias, and sources of heterogeneity were identified by meta-regression analysis. The combined hazard ratios (HR and their corresponding 95% confidence intervals of LMP1 expression were calculated by comparison to the overall survival. RESULTS: Overall, there was no statistical significance found between LMP1 expression and survival of lymphoma patients (HR 1.25 [95% CI, 0.92-1.68]. In subgroup analyses, LMP1 expression was associated with survival in patients with non-Hodgkin lymphoma (NHL (HR = 1.84, 95% CI: 1.02-3.34, but not with survival of patients with Hodgkin disease (HD (HR = 1.03, 95% CI: 0.74-1.44. In addition, significant heterogeneity was present and the meta-regression revealed that the outcome of analysis was mainly influenced by the cutoff value. CONCLUSIONS: This meta-analysis demonstrated that LMP1 expression appears to be an unfavorable prognostic factor for overall survival of NHL patients. The data suggested that EBV infection and LMP1 expression may be an important factor for NHL development or progression.

  2. Tumor Suppressor p53 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1.

    Science.gov (United States)

    Wang, Qianli; Lingel, Amy; Geiser, Vicki; Kwapnoski, Zachary; Zhang, Luwen

    2017-10-15

    Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers. IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and

  3. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  4. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Takahashi, Nobuhiko; Yoshizaki, Takayuki; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka; Ieko, Masahiro

    2011-01-01

    Highlights: ► Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. ► Adipose lipin-1 expression is reduced in obesity. ► Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. ► Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-κB activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  5. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    International Nuclear Information System (INIS)

    Zhang, Xufang; Jiang, Hongwei; Gong, Qimei; Fan, Chen; Huang, Yihua; Ling, Junqi

    2014-01-01

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration

  6. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xufang, E-mail: xufang.zhang@student.qut.edu.au [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059 (Australia); Jiang, Hongwei, E-mail: jianghw@163.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Gong, Qimei, E-mail: gongqmei@gmail.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Fan, Chen, E-mail: c3.fan@student.qut.edu.au [Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059 (Australia); Huang, Yihua, E-mail: enu0701@163.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Ling, Junqi, E-mail: lingjq@mail.sysu.edu.cn [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China)

    2014-08-08

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration.

  7. cDNA-AFLP analysis of differential gene expression related to cell chemotactic and encystment of Azospirillum brasilense.

    Science.gov (United States)

    Li, Huamin; Cui, Yanhua; Wu, Lixian; Tu, Ran; Chen, Sanfeng

    2011-12-20

    Our previous study indicated org35 was involved in chemotaxis and interacted with nitrogen fixation transcriptional activator NifA via PAS domain. In order to reveal the role of org35 in nitrogen regulation, the downstream target genes of org35 were identified. We here report differentially expressed genes in org35 mutants comparing with wild type Sp7 by means of cDNA-AFLP. Four up-regulated transcript-derived fragments (TDFs) homologues of chemotaxis transduction proteins were found, including CheW, methyl-accepting chemotaxis protein and response regulator CheY-like receiver. Three distinct TDFs (AB46, AB58 and AB63) were similar to PHB de-polymerase C-terminus, cell shape-determining protein and flagellin domain protein. And 11 TDFs showed similarities with signal transduction proteins, including homologous protein of the nitrogen regulation protein NtrY and nitrate/nitrite response regulator protein NarL. These data suggested that the Azospirillum brasilense org35 was a multi-effecter and involved in chemotaxis, cyst development and regulation of nitrogen fixation. Copyright © 2010 Elsevier GmbH. All rights reserved.

  8. Sterol regulatory element binding protein-1 (SREBP1) gene expression is similarly increased in polycystic ovary syndrome and endometrial cancer.

    Science.gov (United States)

    Shafiee, Mohamad N; Mongan, Nigel; Seedhouse, Claire; Chapman, Caroline; Deen, Suha; Abu, Jafaru; Atiomo, William

    2017-05-01

    Women with polycystic ovary syndrome have a three-fold higher risk of endometrial cancer. Insulin resistance and hyperlipidemia may be pertinent factors in the pathogenesis of both conditions. The aim of this study was to investigate endometrial sterol regulatory element binding protein-1 gene expression in polycystic ovary syndrome and endometrial cancer endometrium, and to correlate endometrial sterol regulatory element binding protein-1 gene expression with serum lipid profiles. A cross-sectional study was performed at Nottingham University Hospital, UK. A total of 102 women (polycystic ovary syndrome, endometrial cancer and controls; 34 participants in each group) were recruited. Clinical and biochemical assessments were performed before endometrial biopsies were obtained from all participants. Taqman real-time polymerase chain reaction for endometrial sterol regulatory element binding protein-1 gene and its systemic protein expression were analyzed. The body mass indices of women with polycystic ovary syndrome (29.28 ± 2.91 kg/m 2 ) and controls (28.58 ± 2.62 kg/m 2 ) were not significantly different. Women with endometrial cancer had a higher mean body mass index (32.22 ± 5.70 kg/m 2 ). Sterol regulatory element binding protein-1 gene expression was significantly increased in polycystic ovary syndrome and endometrial cancer endometrium compared with controls (p ovary syndrome, but this was not statistically significant. Similarly, statistically insignificant positive correlations were found between endometrial sterol regulatory element binding protein-1 gene expression and body mass index in endometrial cancer (r = 0.643, p = 0.06) and waist-hip ratio (r = 0.096, p = 0.073). Sterol regulatory element binding protein-1 gene expression was significantly positively correlated with triglyceride in both polycystic ovary syndrome and endometrial cancer (p = 0.028 and p = 0.027, respectively). Quantitative serum sterol regulatory element

  9. Alterations in expression levels of deafness dystonia protein 1 affect mitochondrial morphology

    DEFF Research Database (Denmark)

    Engl, Gertraud; Florian, Stefan; Tranebjærg, Lisbeth

    2012-01-01

    Deafness-Dystonia-Optic Neuropathy (DDON) Syndrome is a rare X-linked progressive neurodegenerative disorder resulting from mutations in the TIMM8A gene encoding for the deafness dystonia protein 1 (DDP1). Despite important progress in identifying and characterizing novel mutations in this gene...

  10. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1 in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cyril Sobolewski

    2015-08-01

    Full Text Available The RNA-binding protein tristetraprolin (TTP promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE. In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC inhibitors (Trichostatin A, SAHA and sodium butyrate promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells and cervix carcinoma cells (HeLa. We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1. Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer.

  11. Analyzing Plasmodium falciparum erythrocyte membrane protein 1 gene expression by a next generation sequencing based method

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Petersen, Bent; Seguin-Orlando, Andaine

    2013-01-01

    at identifying PfEMP1 features associated with high virulence. Here we present the first effective method for sequence analysis of var genes expressed in field samples: a sequential PCR and next generation sequencing based technique applied on expressed var sequence tags and subsequently on long range PCR......, encoded by ~60 highly variable 'var' genes per haploid genome. PfEMP1 is exported to the surface of infected erythrocytes and is thought to be fundamental to immune evasion by adhesion to host and parasite factors. The highly variable nature has constituted a roadblock in var expression studies aimed...

  12. Regulation of Nuclear Receptor Interacting Protein 1 (NRIP1) Gene Expression in Response to Weight Loss and Exercise in Humans

    DEFF Research Database (Denmark)

    De Marinis, Yang Z; Sun, Jiangming; Bompada, Pradeep

    2017-01-01

    Objective: Nuclear receptor interacting protein 1 (NRIP1) is an important energy regulator, but few studies have addressed its role in humans. This study investigated adipose tissue and skeletal muscle NRIP1 gene expression and serum levels in response to weight loss and exercise in humans. Methods...... network/module. Conclusions: NRIP1 gene expression and serum levels are strongly associated with metabolic states such as obesity, weight loss, different types of exercise, and peripheral tissue insulin resistance, potentially as a mediator of sedentary effects.......: In patients with obesity, adipose tissue NRIP1 mRNA expression increased during weight loss and weight maintenance and showed strong associations with metabolic markers and anthropometric parameters. Serum NRIP1 protein levels also increased after weight loss. In skeletal muscle, imposed rest increased NRIP1...

  13. Spatial Expression of Otolith Matrix Protein-1 and Otolin-1 in Normally and Kinetotically Swimming Fish.

    Science.gov (United States)

    Weigele, Jochen; Franz-Odendaal, Tamara A; Hilbig, Reinhard

    2015-10-01

    Kinetosis (motion sickness) has been repeatedly shown to affect some fish of a given clutch following the transition from 1g to microgravity or from hypergravity to 1g. This susceptibility to kinetosis may be correlated with irregular inner ear otolith growth. Otoliths are mainly composed of calcium carbonate and matrix proteins, which play an important role in the process of otolith mineralization. Here, we examine the morphology of otoliths and the expression pattern of the major otolith proteins OMP-1 and otolin-1 in a series of hypergravity experiments. In the utricle, OMP-1 is present in centripetal (medial) and centrifugal (lateral) regions of the meshwork area. In the saccule, OMP-1 was expressed within a dorsal and a ventral narrow band of the meshwork area opposite to the periphery of the sulcus acusticus. In normal animals, the spatial expression pattern of OMP-1 reaches more posteriorly in the centrifugal aspect and is considerably broader in the centripetal portion of the utricle compared to kinetotic animals. However, otolin-1 was not expressed in the utricule. In the saccule, no differences were observed for either gene when comparing normal and kinetotically behaving fish. The difference in the utricular OMP-1 expression pattern between normally and kinetotically swimming fish indicates a different otolith morphology and thus a different geometry of the otoliths resting on the corresponding sensory maculae. As the utricle is the endorgan responsible for sensing gravity, the aberrant morphology of the utricular otoliths, based on OMP-1 expression, likely leads to the observed kinetotic behavior. © 2015 Wiley Periodicals, Inc.

  14. Human Sterol Regulatory Element-Binding Protein 1a Contributes Significantly to Hepatic Lipogenic Gene Expression

    Directory of Open Access Journals (Sweden)

    Andreas Bitter

    2015-01-01

    Full Text Available Background/Aims: Sterol regulatory element-binding protein (SREBP 1, the master regulator of lipogenesis, was shown to be associated with non-alcoholic fatty liver disease, which is attributed to its major isoform SREBP1c. Based on studies in mice, the minor isoform SREBP1a is regarded as negligible for hepatic lipogenesis. This study aims to elucidate the expression and functional role of SREBP1a in human liver. Methods: mRNA expression of both isoforms was quantified in cohorts of human livers and primary human hepatocytes. Hepatocytes were treated with PF-429242 to inhibit the proteolytic activation of SREBP precursor protein. SREBP1a-specifc and pan-SREBP1 knock-down were performed by transfection of respective siRNAs. Lipogenic SREBP-target gene expression was analyzed by real-time RT-PCR. Results: In human liver, SREBP1a accounts for up to half of the total SREBP1 pool. Treatment with PF-429242 indicated SREBP-dependent auto-regulation of SREBP1a, which however was much weaker than of SREBP1c. SREBP1a-specifc knock-down also reduced significantly the expression of SREBP1c and of SREBP-target genes. Regarding most SREBP-target genes, simultaneous knock-down of both isoforms resulted in effects of only similar extent as SREBP1a-specific knock-down. Conclusion: We here showed that SREBP1a is significantly contributing to the human hepatic SREBP1 pool and has a share in human hepatic lipogenic gene expression.

  15. Expression and activity of multidrug resistance protein 1 in a murine thymoma cell line

    Science.gov (United States)

    Echevarria-Lima, Juliana; Kyle-Cezar, Fernanda; Leite, Daniela F P; Capella, Luiz; Capella, Márcia A M; Rumjanek, Vivian M

    2005-01-01

    Multidrug resistance proteins [MRPs and P-glycoprotein (Pgp)] are members of the family of ATP-binding cassette (ABC) transport proteins, originally described as being involved in the resistance against anti-cancer agents in tumour cells. These proteins act as ATP-dependent efflux pumps and have now been described in normal cells where they exert physiological roles. The aim of this work was to investigate the expression and activity of MRP and Pgp in the thymoma cell line, EL4. It was observed that EL4 cells expressed mRNA for MRP1, but not for MRP2, MRP3 or Pgp. The activity of ABC transport proteins was evaluated by using the efflux of the fluorescent probes carboxy-2′-7′-dichlorofluorescein diacetate (CFDA) and rhodamine 123 (Rho 123). EL4 cells did not retain CFDA intracellularly, and MRP inhibitors (probenecid, indomethacin and MK 571) decreased MRP1 activity in a concentration-dependent manner. As expected, EL4 cells accumulated Rho 123, and the presence of cyclosporin A and verapamil did not modify this accumulation. Most importantly, when EL4 cells were incubated in the presence of the MRP1 inhibitors indomethacin and MK 571 for 6 days, they started to express CD4 and CD8 molecules on their surface, producing double-positive cells and CD8 single-positive cells. Our results suggest that MRP activity is important for the maintenance of the undifferentiated state in this cell type. This finding might have implications in the physiological process of normal thymocyte maturation. PMID:15804283

  16. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 expression and regulation in uterine leiomyoma.

    Science.gov (United States)

    Marsh, Erica E; Chibber, Shani; Wu, Ju; Siegersma, Kendra; Kim, Julie; Bulun, Serdar

    2016-04-01

    To determine the presence, differential expression, and regulation of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) in uterine leiomyomas. Laboratory in vivo and in vitro study with the use of human leiomyoma and myometrial tissue and primary cells. Academic medical center. Leiomyoma and myometrial tissue samples and cultured cells. 5-Aza-2'-deoxycytidine (5-aza-dC) treatment. Fold-change difference between EFEMP1 and fibulin-3 expression in leiomyoma tissue and cells compared with matched myometrial samples, and fold-change difference in EFEMP1 expression with 5-Aza-dC treatment. In vivo, EFEMP1 expression was 3.19-fold higher in myometrial tissue than in leiomyoma tissue. EFEMP1 expression in vitro was 5.03-fold higher in myometrial cells than in leiomyoma cells. Western blot and immunohistochemistry staining of tissue and cells confirmed similar findings in protein expression. Treatment of leiomyoma cells with 5-Aza-dC resulted in increased expression of EFEMP1 in vitro. The EFEMP1 gene and its protein product, fibulin-3, are both significantly down-regulated in leiomyoma compared with myometrium when studied both in vivo and in vitro. The increase in EFEMP1 expression in leiomyoma cells with 5-Aza-dC treatment suggest that differential methylation is responsible, in part, for the differences seen in gene expression. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Expression of tumor necrosis factor receptor-associated protein 1 and its clinical significance in kidney cancer.

    Science.gov (United States)

    Si, Tong; Yang, Guosheng; Qiu, Xiaofu; Luo, Youhua; Liu, Baichuan; Wang, Bingwei

    2015-01-01

    To investigate the expression and clinical significance of TRAP1 (tumor necrosis factor receptor-associated protein 1) in kidney cancer. TRAP1 expression was detected in kidney cancer and normal kidney tissues by qRT-PCR and immunohistochemistry (IHC), respectively. Then, the correlation of TRAP1 expression with clinicopathological characters and patients' prognosis was evaluated in kidney cancer. IHC results revealed that the high-expression rates of TRAP1 in kidney cancer tissues and normal kidney tissues were 51.3% (41/80), 23.3% (7/30), and the difference was statistically significant (P=0.01). Also, TRAP1 mRNA level in kidney cancer was found to be significantly greater compared with those in normal kidney by qRT-PCR. In addition, TRAP1 expression in kidney cancer significantly correlated with lymph node metastasis and clinical stage (Pkidney cancer and correlates with patients prognosis, which may be served as a potential marker for the diagnosis and treatment of kidney cancer.

  18. Role of CC chemokines (macrophage inflammatory protein-1 beta, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Bless, N M; Huber-Lang, M; Guo, R F

    2000-01-01

    The role of the CC chemokines, macrophage inflammatory protein-1 beta (MIP-1 beta), monocyte chemotactic peptide-1 (MCP-1), and RANTES, in acute lung inflammatory injury induced by intrapulmonary deposition of IgG immune complexes injury in rats was determined. Rat MIP-1 beta, MCP-1, and RANTES...... were cloned, the proteins were expressed, and neutralizing Abs were developed. mRNA and protein expression for MIP-1 beta and MCP-1 were up-regulated during the inflammatory response, while mRNA and protein expression for RANTES were constitutive and unchanged during the inflammatory response....... Treatment of rats with anti-MIP-1 beta Ab significantly decreased vascular permeability by 37% (p = 0.012), reduced neutrophil recruitment into lung by 65% (p = 0.047), and suppressed levels of TNF-alpha in bronchoalveolar lavage fluids by 61% (p = 0.008). Treatment of rats with anti-rat MCP-1 or anti...

  19. Cathepsin D Specifically Cleaves the Chemokines Macrophage Inflammatory Protein-1α, Macrophage Inflammatory Protein-1β, and SLC That Are Expressed in Human Breast Cancer

    Science.gov (United States)

    Wolf, Marlene; Clark-Lewis, Ian; Buri, Caroline; Langen, Hanno; Lis, Maddalena; Mazzucchelli, Luca

    2003-01-01

    Cathepsin D (Cath-D) expression in human primary breast cancer has been associated with a poor prognosis. In search of a better understanding of the Cath-D substrates possibly involved in cancer invasiveness and metastasis, we investigated the potential interactions between this protease and chemokines. Here we report that purified Cath-D, as well as culture supernatants from the human breast carcinoma cell lines MCF-7 and T47D, selectively degrade macrophage inflammatory protein (MIP)-1α (CCL3), MIP-1β (CCL4), and SLC (CCL21). Proteolysis was totally blocked by the protease inhibitor pepstatin A, and specificity of Cath-D cleavage was demonstrated using a large chemokine panel. Whereas MIP-1α and MIP-1β degradation was rapid and complete, cleavage of SLC was slow and not complete. Mass spectrometry analysis showed that Cath-D cleaves the Leu58 to Trp59 bond of SLC producing two functionally inactive fragments. Analysis of Cath-D proteolysis of a series of monocyte chemoattractant protein-3/MIP-1β hybrids indicated that processing of MIP-1β might start by cleaving off amino acids located in the C-terminal domain. In situ hybridization studies revealed MIP-1α, MIP-1β, and Cath-D gene expression mainly in the stromal compartment of breast cancers whereas SLC transcripts were found in endothelial cells of capillaries and venules within the neoplastic tissues. Cath-D production in the breast carcinoma cell lines MCF-7 and T47D, as assessed by enzyme-linked immunosorbent assay of culture supernatants and cell lysates, was not affected by stimulation with chemokines such as interleukin-8 (CXCL8), SDF-1 (CXCL12), and SLC. These data suggest that inactivation of chemokines by Cath-D possibly influences regulatory mechanisms in the tumoral extracellular microenvironment that in turn may affect the generation of the antitumoral immune response, the migration of cancer cells, or both processes. PMID:12651610

  20. Expression of ErbB3-binding protein-1 (EBP1 during primordial follicle formation: role of estradiol-17ß.

    Directory of Open Access Journals (Sweden)

    Anindit Mukherjee

    Full Text Available The formation of primordial follicles involves the interaction between the oocytes and surrounding somatic cells, which differentiate into granulosa cells. Estradiol-17ß (E promotes primordial follicle formation in vivo and in vitro; however, the underlying mechanisms are poorly understood. The expression of an ERBB3-binding protein 1 (EBP1 is downregulated in 8-day old hamster ovaries concurrent with the increase in serum estradiol levels and the formation of primordial follicles. The objectives of the present study were to determine the spatio-temporal expression and putative E regulation of EBP1 in ovarian cells during perinatal development with respect to primordial follicle formation. Hamster EBP1 nucleic acid and amino acid sequences were more than 93% and 98% similar, respectively, to those of mouse and human, and contained nucleolar localization signal, RNA-binding domain and several phosphorylation sites. EBP1 protein was present in somatic cells and oocytes from E15, and declined in oocytes by P1 and in somatic cells by P5. Thereafter, EBP1 expression increased through P7 with a transient decline on P8 primarily in interstitial cells. EBP1 mRNA levels mirrored protein expression pattern. E treatment on P1 and P4 upregulated EBP1 expression by P8 whereas E treatment on P4 downregulated it by 72 h suggesting a compensatory upregulation due to E pretreatment. Treatment with an FSH-antiserum, which suppressed primordial follicle formation, prevented the decline in EBP1 levels, and the effect was reversed by E treatment. Therefore, the results provide the first evidence that EBP1 may play an important role in mediating the effect of E in the differentiation of somatic cells into granulosa cells during primordial follicle formation.

  1. Dendritic cell nuclear protein-1, a novel depression-related protein, upregulates corticotropin-releasing hormone expression

    NARCIS (Netherlands)

    Zhou, Tian; Wang, Shanshan; Ren, Haigang; Qi, Xin-Rui; Luchetti, Sabina; Kamphuis, Willem; Zhou, Jiang-Ning; Wang, Guanghui; Swaab, Dick F.

    2010-01-01

    The recently discovered dendritic cell nuclear protein-1 is the product of a novel candidate gene for major depression. The A allele encodes full-length dendritic cell nuclear protein-1, while the T allele encodes a premature termination of translation at codon number 117 on chromosome 5. In the

  2. The shift from low to high non-structural protein 1 expression in rotavirus-infected MA-104 cells

    Directory of Open Access Journals (Sweden)

    Laura Martinez-Alvarez

    2013-06-01

    Full Text Available A hallmark of group/species A rotavirus (RVA replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1 is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV. NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover.

  3. Localization of macrophage inflammatory protein : Macrophage inflammatory PROTEIN-1 expression in rat brain after peripheral administration of lipopolysaccharide and focal cerebral ischemia

    NARCIS (Netherlands)

    Gourmala, NG; Limonta, S; Bochelen, D; Sauter, A; Boddeke, HWGM

    Macrophage inflammatory protein is a member of the C-C subfamily of chemokines, which exhibits, in addition to proinflammatory activities, a potent endogenous pyrogen activity. In this study, we analysed the time-course of expression and cellular source of macrophage inflammatory protein-1 alpha and

  4. Maternal circulating leukocytes display early chemotactic responsiveness during late gestation

    Directory of Open Access Journals (Sweden)

    Gomez-Lopez Nardhy

    2013-01-01

    Full Text Available Abstract Background Parturition has been widely described as an immunological response; however, it is unknown how this is triggered. We hypothesized that an early event in parturition is an increased responsiveness of peripheral leukocytes to chemotactic stimuli expressed by reproductive tissues, and this precedes expression of tissue chemotactic activity, uterine activation and the systemic progesterone/estradiol shift. Methods Tissues and blood were collected from pregnant Long-Evans rats on gestational days (GD 17, 20 and 22 (term gestation. We employed a validated Boyden chamber assay, flow cytometry, quantitative real time-polymerase chain reaction, and enzyme-linked immunosorbent assays. Results We found that GD20 maternal peripheral leukocytes migrated more than those from GD17 when these were tested with GD22 uterus and cervix extracts. Leukocytes on GD20 also displayed a significant increase in chemokine (C-C motif ligand 2 (Ccl2 gene expression and this correlated with an increase in peripheral granulocyte proportions and a decrease in B cell and monocyte proportions. Tissue chemotactic activity and specific chemokines (CCL2, chemokine (C-X-C motif ligand 1/CXCL1, and CXCL10 were mostly unchanged from GD17 to GD20 and increased only on GD22. CXCL10 peaked on GD20 in cervical tissues. As expected, prostaglandin F2α receptor and oxytocin receptor gene expression increased dramatically between GD20 and 22. Progesterone concentrations fell and estradiol-17β concentrations increased in peripheral serum, cervical and uterine tissue extracts between GD20 and 22. Conclusion Maternal circulating leukocytes display early chemotactic responsiveness, which leads to their infiltration into the uterus where they may participate in the process of parturition.

  5. [Expression of erythroblastic leukemia viral oncogene homolog 3 (ErbB-3) binding protein-1, matrix metalloproteinases, eplthelial cadherin in adenoid cystic carcinoma and correlation analysis].

    Science.gov (United States)

    Sun, Jian; Yu, You-cheng; Luo, Yi-xi; Tian, Zhen

    2012-12-01

    To investigate the expression of ErbB-3 binding protein-1 (EBP-1), matrix metalloproteinase 9 (MMP-9) and E-cadherin (E-cad) in adenoid cystic carcinoma and their correlation. Immunohistochemistry(PV6000 method) was used to detect EBP-1, MMP-9 and E-cad expression in 66 cases of adenoid cystic carcinoma tissues and matched para-cancerous normal tissues. In this study all cases were successfully followed up. The positive expression rate of EBP-1 in adenoid cystic carcinoma tissues was 85%. EBP-1 expression was significantly correlated to pathological pattern and clinical stage (P correlation between EBP-1 and E-cad expression, and positive correlation between EBP-1 and MMP-9. EBP-1 and its correlation with MMP-9 and E-cad may be used as useful indicators for clinical assessment of tumor biological behavior and prognosis in patients with adenoid cystic carcinoma.

  6. Evidence for in vitro and in vivo expression of the conserved VAR3 (type 3) plasmodium falciparum erythrocyte membrane protein 1

    DEFF Research Database (Denmark)

    Wang, Christian W; Lavstsen, Thomas; Bengtsson, Dominique C

    2012-01-01

    ABSTRACT: BACKGROUND: Members of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion antigen family are major contributors to the pathogenesis of P. falciparum malaria infections. The PfEMP1-encoding var genes are among the most diverse sequences in nature, but three genes......, var1, var2csa and var3 are found conserved in most parasite genomes. The most severe forms of malaria disease are caused by parasites expressing a subset of antigenically conserved PfEMP1 variants. Thus the ubiquitous and conserved VAR3 PfEMP1 is of particular interest to the research field. Evidence...... of VAR3 expression on the infected erythrocyte surface has never been presented, and var3 genes have been proposed to be transcribed and expressed differently from the rest of the var gene family members. METHODS: In this study, parasites expressing VAR3 PfEMP1 were generated using anti-VAR3 antibodies...

  7. Sterol regulatory element-binding protein-1 participates in the regulation of fatty acid synthase expression in colorectal neoplasia.

    Science.gov (United States)

    Li, J N; Mahmoud, M A; Han, W F; Ripple, M; Pizer, E S

    2000-11-25

    Endogenous fatty acid synthesis has been observed in certain rapidly proliferating normal and neoplastic tissues. Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate the expression of lipogenic genes including fatty acid synthase (FAS), the major biosynthetic enzyme for fatty acid synthesis. We have previously shown that SREBP-1, FAS, and Ki-67, a proliferation marker, colocalized in the crypts of the fetal gastrointestinal tract epithelium. This study sought to determine whether SREBP-1 participates in the regulation of proliferation-associated fatty acid synthesis in colorectal neoplasia. An immunohistochemical analysis of SREBP-1, FAS, and Ki-67 expression in 25 primary human colorectal carcinoma specimens showed colocalization in 22 of these. To elucidate a functional linkage between SREBP-1 activation and proliferation-associated FA synthesis, SREBP-1 and FAS content were assayed during the adaptive response of cultured HCT116 colon carcinoma cells to pharmacological inhibition of FA synthesis. Cerulenin and TOFA each inhibited the endogenous synthesis of fatty acids in a dose-dependent manner and each induced increases in both precursor and mature forms of SREBP-1. Subsequently, both the transcriptional activity of the FAS promoter in a luciferase reporter gene construct and the FAS expression increased. These results demonstrate that tumor cells recognize and respond to a deficiency in endogenous fatty acid synthesis by upregulating both SREBP-1 and FAS expression and support the model that SREBP-1 participates in the transcriptional regulation of lipogenic genes in colorectal neoplasia. Copyright 2000 Academic Press.

  8. Dual expression of Epstein-Barr virus, latent membrane protein-1 and human papillomavirus-16 E6 transform primary mouse embryonic fibroblasts through NF-κB signaling.

    Science.gov (United States)

    Shimabuku, Tetsuya; Tamanaha, Ayumi; Kitamura, Bunta; Tanabe, Yasuka; Tawata, Natsumi; Ikehara, Fukino; Arakaki, Kazunari; Kinjo, Takao

    2014-01-01

    The prevalence of Epstein-Barr virus (EBV) and high-risk human papilloma virus (HPV) infections in patients with oral cancer in Okinawa, southwest islands of Japan, has led to the hypothesis that carcinogenesis is related to EBV and HPV co-infection. To explore the mechanisms of transformation induced by EBV and HPV co-infection, we analyzed the transformation of primary mouse embryonic fibroblasts (MEFs) expressing EBV and HPV-16 genes, alone or in combination. Expression of EBV latent membrane protein-1 (LMP-1) alone or in combination with HPV-16 E6 increased cell proliferation and decreased apoptosis, whereas single expression of EBV nuclear antigen-1 (EBNA-1), or HPV-16 E6 did not. Co-expression of LMP-1 and E6 induced anchorage-independent growth and tumor formation in nude mice, whereas expression of LMP-1 alone did not. Although the singular expression of these viral genes showed increased DNA damage and DNA damage response (DDR), co-expression of LMP-1 and E6 did not induce DDR, which is frequently seen in cancer cells. Furthermore, co-expression of LMP-1 with E6 increased NF-κB signaling, and the knockdown of LMP-1 or E6 in co-expressing cells decreased cell proliferation, anchorage independent growth, and NF-κB activation. These data suggested that expression of individual viral genes is insufficient for inducing transformation and that co-expression of LMP-1 and E6, which is associated with suppression of DDR and increased NF-κB activity, lead to transformation. Our findings demonstrate the synergistic effect by the interaction of oncogenes from different viruses on the transformation of primary MEFs.

  9. Milk Fat Globule Membrane Attenuates High-Fat Diet-Induced Obesity by Inhibiting Adipogenesis and Increasing Uncoupling Protein 1 Expression in White Adipose Tissue of Mice

    Directory of Open Access Journals (Sweden)

    Tiange Li

    2018-03-01

    Full Text Available Milk fat globule membrane (MFGM, a protein-lipid complex surrounding the fat globules in milk, has many health benefits. The aim of the current study was to investigate whether MFGM could prevent obesity through inhibiting adipogenesis and promoting brown remodeling of white adipose tissue (WAT in mice fed with high-fat diet. C57BL/6 mice were fed a normal diet (ND, high-fat diet (HFD, HFD plus MFGM at 100 mg/kg BW, 200 mg/kg BW or 400 mg/kg BW for 8 weeks. Results showed that MFGM suppressed body weight gain induced by HFD, reduced white adipose tissue (WAT mass accompanied with the decrease in adipocyte sizes. MFGM was found to have partially improved serum lipid profiles, as well as to have suppressed HFD-induced adipogenesis as shown by reduced expression of peroxisome proliferators-activator receptor-γ (PPARγ, CCAAT/enhancer-binding protein-α (C/EBPα and sterol regulatory element-binding protein-1c (SREBP-1c. MFGM also markedly increased the phosphorylation of AMP-activated protein kinase (AMPK and acetyl-CoA carboxylase (ACC, showing activation of AMPK pathway. Moreover, MFGM promoted browning of inguinal WAT by upregulation the protein expression of uncoupling protein 1 (UCP1 in HFD mice. Taken together, these findings provide evidence that MFGM may protect against diet-induced adiposity by suppressing adipogenesis and promoting brown-like transformation in WAT.

  10. PI3K/AKT signaling modulates transcriptional expression of EWS/FLI1 through specificity protein 1.

    Science.gov (United States)

    Giorgi, Chiara; Boro, Aleksandar; Rechfeld, Florian; Lopez-Garcia, Laura A; Gierisch, Maria E; Schäfer, Beat W; Niggli, Felix K

    2015-10-06

    Ewing sarcoma (ES) is the second most frequent bone cancer in childhood and is characterized by the presence of the balanced translocation t(11;22)(q24;q12) in more than 85% of cases, generating a dysregulated transcription factor EWS/FLI1. This fusion protein is an essential oncogenic component of ES development which is necessary for tumor cell maintenance and represents an attractive therapeutic target. To search for modulators of EWS/FLI1 activity we screened a library of 153 targeted compounds and identified inhibitors of the PI3K pathway to directly modulate EWS/FLI1 transcription. Surprisingly, treatment of four different ES cell lines with BEZ235 resulted in down regulation of EWS/FLI1 mRNA and protein by ~50% with subsequent modulation of target gene expression. Analysis of the EWS/FLI1 promoter region (-2239/+67) using various deletion constructs identified two 14 bp minimal elements as being important for EWS/FLI1 transcription. We identified SP1 as modulator of EWS/FLI1 gene expression and demonstrated direct binding to one of these regions in the EWS/FLI1 promoter by EMSA and ChIP experiments. These results provide the first insights on the transcriptional regulation of EWS/FLI1, an area that has not been investigated so far, and offer an additional molecular explanation for the known sensitivity of ES cell lines to PI3K inhibition.

  11. Differential Expression of the Activator Protein 1 Transcription Factor Regulates Interleukin-1ß Induction of Interleukin 6 in the Developing Enterocyte.

    Directory of Open Access Journals (Sweden)

    Catherine M Cahill

    Full Text Available The innate immune response is characterized by activation of transcription factors, nuclear factor kappa B and activator protein-1 and their downstream targets, the pro-inflammatory cytokines including interleukin 1β and interleukin 6. Normal development of this response in the intestine is critical to survival of the human neonate and delays can cause the onset of devastating inflammatory diseases such as necrotizing enterocolitis. Previous studies have addressed the role of nuclear factor kappa B in the development of the innate immune response in the enterocyte, however despite its central role in the control of multiple pro-inflammatory cytokine genes, little is known on the role of Activator Protein 1 in this response in the enterocyte. Here we show that the canonical Activator Protein 1 members, cJun and cFos and their upstream kinases JNK and p38 play an essential role in the regulation of interleukin 6 in the immature enterocyte. Our data supports a model whereby the cFos/cJun heterodimer and the more potent cJun homodimer downstream of JNK are replaced by less efficient JunD containing dimers, contributing to the decreased responsiveness to interleukin 1β and decreased interleukin 6 secretion observed in the mature enterocyte. The tissue specific expression of JunB in colonocytes and colon derived tissues together with its ability to repress Interleukin-1β induction of an Interleukin-6 gene reporter in the NCM-460 colonocyte suggests that induction of JunB containing dimers may offer an attractive therapeutic strategy for the control of IL-6 secretion during inflammatory episodes in this area of the intestine.

  12. Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations

    Science.gov (United States)

    Westendorf, Christian; Negrete, Jose; Bae, Albert J.; Sandmann, Rabea; Bodenschatz, Eberhard; Beta, Carsten

    2013-01-01

    The rapid reorganization of the actin cytoskeleton in response to external stimuli is an essential property of many motile eukaryotic cells. Here, we report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. When averaging the actin response of many cells to a short pulse of the chemoattractant cAMP, we observed a transient accumulation of cortical actin reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. To substantiate that an oscillatory mechanism governs the actin dynamics in these cells, we systematically exposed a large number of cells to periodic pulse trains of different frequencies. Our results indicate a resonance peak at a stimulation period of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the regulatory network of the actin system. To test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and actin-interacting protein 1, as well as knockout mutants that lack Coronin and actin-interacting protein 1. These actin-binding proteins enhance the disassembly of actin filaments and thus allow us to estimate the delay time in the regulatory feedback loop. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed in our periodic stimulation experiments. PMID:23431176

  13. Expression, purification, crystallization and preliminary X-ray diffraction studies of the human keratin 4-binding domain of serine-rich repeat protein 1 from Streptococcus agalactiae

    International Nuclear Information System (INIS)

    Sundaresan, Ramya; Samen, Ulrike; Ponnuraj, Karthe

    2011-01-01

    Expression, purification and crystallization of Srr-1-K4BD, a human keratin 4-binding domain of serine-rich repeat protein 1 from S. agalactiae, was carried out. Native crystals of Srr-1-K4BD diffracted to 3.8 Å resolution using synchrotron radiation. Serine-rich repeat protein 1 (Srr-1) is a surface protein from Streptococcus agalactiae. A 17 kDa region of this protein has been identified to bind to human keratin 4 (K4) and is termed the Srr-1 K4-binding domain (Srr-1-K4BD). Recombinant Srr-1-K4BD was overexpressed in Escherichia coli BL21 (DE3) cells. Native and selenomethionine-substituted proteins were prepared using Luria–Bertani (LB) and M9 minimal media, respectively. A two-step purification protocol was carried out to obtain a final homogenous sample of Srr-1-K4BD. Crystals of native Srr-1-K4BD were obtained using PEG 3350 as a precipitant. The crystals diffracted to 3.8 Å resolution using synchrotron radiation and belonged to space group P2 1 , with unit-cell parameters a = 47.56, b = 59.48, c = 94.71 Å, β = 93.95°

  14. Dynamics of the Chemotactic Boycott Effect

    Science.gov (United States)

    Cisneros, Luis; Wolgemuth, Charles; Tuval, Idan

    2005-03-01

    Aerobic bacteria often live in thin fluid layers on irregular surfaces, near solid-air-water contact lines where the interplay between fluid interface geometry, nutrient transport, and chemotaxis is central to the micro-ecology. To elucidate these processes, we use the simplified geometry of a sessile drop and provide direct experimental evidence for the ``chemotactic Boycott effect" in suspensions of B. subtilis: upward oxygentaxis toward the drop surface leads to accumulation of cells in a thin layer, which flows down to the contact line and produces there a persistent vortex which traps cells near the meniscus. These phenomena are explained quantitatively with a mathematical model consisting of coupled oxygen diffusion and consumption, chemotaxis, and viscous fluid dynamics; they are shown to be associated with a singularity in the chemotactic dynamics at the contact line.

  15. Localization of monocyte chemotactic and activating factor (MCAF/MCP-1) in psoriasis

    DEFF Research Database (Denmark)

    Deleuran, M; Buhl, L; Ellingsen, T

    1996-01-01

    in the epidermal pustules in pustular psoriasis. In normals positive staining was observed in all the layers of the epidermis and in a few perivascular cells and blood vessels in the dermis. Where present in normal and diseased skin, eccrine ducts of sweat glands and sebaceous glands stained positive for MCAF......The monocyte chemotactic protein-1 (MCAF) also termed MCP-1, a strong chemotactic factor towards monocytes, is produced by several cell types present in the skin. The in situ presence of MCAF/MCP-1 protein in the skin has, however, not yet been established. Using immunohistochemical techniques we...... have investigated the distribution of MCAF in skin from patients with different types of psoriasis and normal healthy volunteers. We report the novel finding that psoriasis has strong positive immunostaining for MCAF located to all the layers of the epidermis, except the stratum granulosum, in pustular...

  16. Decreased expression of insulin-like growth factor binding protein-related protein-1 (IGFBP-rP1) in radiation-induced mouse hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Teishima, Jun [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine

    2002-04-01

    Insulin-like growth factor binding protein-related protein-1 (IGFBP-rP1) is a member of the IGFBP family, which was called IGFBP-7 or mac25 previously. Decreased expression of IGFBP-rP1 has been shown in breast cancer and prostatic cancer, and tumor suppressive effects of IGFBP-rP1 have been reported in prostatic cancer and osteosarcoma cell lines. In the present study, we investigated whether expression levels of IGFBP-rP1 were related to the development and the growth of radiation-induced hepatomas of B6C3F1 mice. In northern blot analysis, decreased expressions of IGFBP-rP1 gene were shown in radiation-induced mouse hepatomas compared to normal livers. In hepatoma cell lines established from these hepatomas, decreased expressions of IGFBP-rP1 were strongly related to the grade of anchorage-independent growth. In cell lines which were transfected with IGFBP-rP1cDNA, the doubling time of cell growth was increased, and the number and the size of colony formation in soft agar culture were decreased. In tumor formation assay by injecting these cells to B6C3F1 mice subcutaneously, the volume of tumors were decreased. Furthermore, the decreased expression of IGFBP-rP1 gene was observed in human hepatomas by northern blot analysis. These results may suggest that the suppression of IGFBP-rP1 is related to development and progression of mouse and human hepatomas. (author)

  17. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Morooka, Nobukatsu, E-mail: amorooka@gunma-u.ac.jp [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Ueguri, Kei [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Yee, Karen Kar Lye [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Human Resources Cultivation Center, Gunma University, 1-5-1 Tenjin-cho, Kiryushi, Gunma, 376-8515 (Japan); Yanase, Toshihiko [Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka, 814-0180 (Japan); Sato, Takashi [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan)

    2016-09-02

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.

  18. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    International Nuclear Information System (INIS)

    Morooka, Nobukatsu; Ueguri, Kei; Yee, Karen Kar Lye; Yanase, Toshihiko; Sato, Takashi

    2016-01-01

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.

  19. Low p53 Binding Protein 1 (53BP1) Expression Is Associated With Increased Local Recurrence in Breast Cancer Patients Treated With Breast-Conserving Surgery and Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Neboori, Hanmanth J.R. [Department of Radiation Oncology, Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Haffty, Bruce G., E-mail: hafftybg@umdnj.edu [Department of Radiation Oncology, The Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Wu Hao [Department of Radiation Oncology, Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Yang Qifeng [Department of Breast Surgery, Qilu Hospital, Shandong University, Ji' nan (China); Aly, Amal [Division of Medical Oncology, The Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Goyal, Sharad; Schiff, Devora [Department of Radiation Oncology, Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Moran, Meena S. [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States); Golhar, Ryan [Department of Radiation Oncology, Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Chen Chunxia; Moore, Dirk [Department of Biostatistics, The Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States); and others

    2012-08-01

    Purpose: To investigate whether the expression of p53 binding protein 1 (53BP1) has prognostic significance in a cohort of early-stage breast cancer patients treated with breast-conserving surgery and radiotherapy (BCS+RT). Methods and Materials: A tissue microarray of early-stage breast cancer treated with BCS+RT from a cohort of 514 women was assayed for 53BP1, estrogen receptor, progesterone receptor, and HER2 expression by immunohistochemistry. Through log-rank tests and univariate and multivariate models, the staining profile of each tumor was correlated with clinical endpoints, including ipsilateral breast recurrence-free survival (IBRFS), distant metastasis-free survival (DMFS), cause-specific survival (CSS), recurrence-free survival (RFS), and overall survival (OS). Results: Of the 477 (93%) evaluable tumors, 63 (13%) were scored as low. Low expression of 53BP1 was associated with worse outcomes for all endpoints studied, including 10-year IBRFS (76.8% vs. 90.5%; P=.01), OS (66.4% vs. 81.7%; P=.02), CSS (66.0% vs. 87.4%; P<.01), DMFS (55.9% vs. 87.0%; P<.01), and RFS (45.2% vs. 80.6%; P<.01). Multivariate analysis incorporating various clinico-pathologic markers and 53BP1 expression found that 53BP1 expression was again an independent predictor of all endpoints (IBRFS: P=.0254; OS: P=.0094; CSS: P=.0033; DMFS: P=.0006; RFS: P=.0002). Low 53BP1 expression was also found to correlate with triple-negative (TN) phenotype (P<.01). Furthermore, in subset analysis of all TN breast cancer, negative 53BP1 expression trended for lower IBRFS (72.3% vs. 93.9%; P=.0361) and was significant for worse DMFS (48.2% vs. 86.8%; P=.0035) and RFS (37.8% vs. 83.7%; P=.0014). Conclusion: Our data indicate that low 53BP1 expression is an independent prognostic indicator for local relapse among other endpoints in early-stage breast cancer and TN breast cancer patients treated with BCS+RT. These results should be verified in larger cohorts of patients to validate their clinical

  20. Low p53 Binding Protein 1 (53BP1) Expression Is Associated With Increased Local Recurrence in Breast Cancer Patients Treated With Breast-Conserving Surgery and Radiotherapy

    International Nuclear Information System (INIS)

    Neboori, Hanmanth J.R.; Haffty, Bruce G.; Wu Hao; Yang Qifeng; Aly, Amal; Goyal, Sharad; Schiff, Devora; Moran, Meena S.; Golhar, Ryan; Chen Chunxia; Moore, Dirk

    2012-01-01

    Purpose: To investigate whether the expression of p53 binding protein 1 (53BP1) has prognostic significance in a cohort of early-stage breast cancer patients treated with breast-conserving surgery and radiotherapy (BCS+RT). Methods and Materials: A tissue microarray of early-stage breast cancer treated with BCS+RT from a cohort of 514 women was assayed for 53BP1, estrogen receptor, progesterone receptor, and HER2 expression by immunohistochemistry. Through log–rank tests and univariate and multivariate models, the staining profile of each tumor was correlated with clinical endpoints, including ipsilateral breast recurrence–free survival (IBRFS), distant metastasis–free survival (DMFS), cause-specific survival (CSS), recurrence-free survival (RFS), and overall survival (OS). Results: Of the 477 (93%) evaluable tumors, 63 (13%) were scored as low. Low expression of 53BP1 was associated with worse outcomes for all endpoints studied, including 10-year IBRFS (76.8% vs. 90.5%; P=.01), OS (66.4% vs. 81.7%; P=.02), CSS (66.0% vs. 87.4%; P<.01), DMFS (55.9% vs. 87.0%; P<.01), and RFS (45.2% vs. 80.6%; P<.01). Multivariate analysis incorporating various clinico-pathologic markers and 53BP1 expression found that 53BP1 expression was again an independent predictor of all endpoints (IBRFS: P=.0254; OS: P=.0094; CSS: P=.0033; DMFS: P=.0006; RFS: P=.0002). Low 53BP1 expression was also found to correlate with triple-negative (TN) phenotype (P<.01). Furthermore, in subset analysis of all TN breast cancer, negative 53BP1 expression trended for lower IBRFS (72.3% vs. 93.9%; P=.0361) and was significant for worse DMFS (48.2% vs. 86.8%; P=.0035) and RFS (37.8% vs. 83.7%; P=.0014). Conclusion: Our data indicate that low 53BP1 expression is an independent prognostic indicator for local relapse among other endpoints in early-stage breast cancer and TN breast cancer patients treated with BCS+RT. These results should be verified in larger cohorts of patients to validate their

  1. Monocyte chemotactic protein-1 and other inflammatory parameters in Bernese Mountain dogs with disseminated histiocytic sarcoma

    DEFF Research Database (Denmark)

    Nielsen, Lise Nikolic; Kjelgaard-Hansen, Mads; Kristensen, Annemarie Thuri

    2013-01-01

    The interaction between cancer and the immune system, and the production of cytokines by the tumour itself have been associated with altered levels of cytokines in human cancer patients. Bernese Mountain dogs with disseminated histiocytic sarcoma (DHS) show vague and non-specific clinical signs....... Although histiocytes can secrete cytokines in response to inflammatory stimuli, serum cytokine concentrations in dogs with DHS have not previously been investigated. The aim of this study was to evaluate the immunological state of untreated Bernese Mountain dogs with DHS by assessing multiple serum...... cytokines and to correlate these with other inflammatory markers. As a prospective case control study, 17 Bernese Mountain dogs with DHS were included along with 18 healthy controls (12 Bernese Mountain dogs and 6 dogs of various breeds). Blood samples were examined for fibrinogen, C-reactive protein (CRP...

  2. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Schuetz, Erin G. [Department of Pharmaceutical Sciences, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Chen, Taosheng, E-mail: taosheng.chen@stjude.org [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States)

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  3. Low density lipoprotein receptor-related protein 1 expression correlates with cholesteryl ester accumulation in the myocardium of ischemic cardiomyopathy patients

    Directory of Open Access Journals (Sweden)

    Cal Roi

    2012-08-01

    Full Text Available Abstract Our hypothesis was that overexpression of certain lipoprotein receptors might be related to lipid accumulation in the human ischemic myocardium. Intramyocardial lipid overload contributes to contractile dysfunction and arrhythmias in cardiomyopathy. Thus, the purpose of this study was to assess the effect of hypercholesterolemic LDL and hypertrigliceridemic VLDL dose on LRP1 expression in cardiomyocytes, as well as the potential correlation between LRP1 expression and neutral lipid accumulation in the left ventricle tissue from ischemic cardiomyopathy patients. Cell culture experiments include control and LRP1-deficient cardiomyocytes exposed to lipoproteins under normoxic and hypoxic conditions. Explanted hearts from 18 ICM patients and eight non-diseased hearts (CNT were included. Low density lipoprotein receptor-related protein 1 (LRP1, very low density lipoprotein receptor (VLDLR and low density lipoprotein receptor (LDLR expression was analyzed by real time PCR and Western blotting. Cholesteryl ester (CE, triglyceride (TG and free cholesterol (FC content was assess by thin layer chromatography following lipid extraction. Western blotting experiments showed that protein levels of LRP1, VLDLR and HIF-1α were significantly upregulated in ischemic hearts. Immunohistochemistry and confocal microscopy analysis showed that LRP1 and HIF-1α were upregulated in cardiomyocytes of ICM patients. In vitro studies showed that VLDL, LDL and hypoxia exerted an upregulatory effect on LRP1 expression and that LRP1 played a major role in cholesteryl ester accumulation from lipoproteins in cardiomyocytes. Myocardial CE accumulation strongly correlated with LRP1 levels in ischemic hearts. Taken together, our results suggest that LRP1 upregulation is key for myocardial cholesterol ester accumulation in ischemic human hearts and that LRP1 may be a target to prevent the deleterious effects of myocardial cholesterol accumulation in ischemic cardiomyopathy.

  4. The group A streptococcal collagen-like protein 1, Scl1, mediates biofilm formation by targeting the EDA-containing variant of cellular fibronectin expressed in wounded tissue

    Science.gov (United States)

    Oliver-Kozup, Heaven; Martin, Karen H.; Schwegler-Berry, Diane; Green, Brett J.; Betts, Courtney; Shinde, Arti V.; Van De Water, Livingston; Lukomski, Slawomir

    2012-01-01

    Summary Wounds are known to serve as portals of entry for group A Streptococcus (GAS). Subsequent tissue colonization is mediated by interactions between GAS surface proteins and host extracellular matrix components. We recently reported that the streptococcal collagen-like protein-1, Scl1, selectively binds the cellular form of fibronectin (cFn) and also contributes to GAS biofilm formation on abiotic surfaces. One structural feature of cFn, which is predominantly expressed in response to tissue injury, is the presence of a spliced variant containing extra domain A (EDA/EIIIA). We now report that GAS biofilm formation is mediated by the Scl1 interaction with EDA-containing cFn. Recombinant Scl1 proteins that bound cFn also bound recombinant EDA within the C-C′ loop region recognized by the α9β1 integrin. The extracellular 2-D matrix derived from human dermal fibroblasts supports GAS adherence and biofilm formation. Altogether, this work identifies and characterizes a novel molecular mechanism by which GAS utilizes Scl1 to specifically target an extracellular matrix component that is predominantly expressed at the site of injury in order to secure host tissue colonization. PMID:23217101

  5. Expression of sheep pathogen Babesia sp. Xinjiang rhoptry-associated protein 1 and evaluation of its diagnostic potential by enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Niu, Qingli; Liu, Zhijie; Yang, Jifei; Yu, Peifa; Pan, Yuping; Zhai, Bintao; Luo, Jianxun; Guan, Guiquan; Yin, Hong

    2016-12-01

    Ovine babesiosis is one of the most important tick-borne haemoparasitic diseases of small ruminants. The ovine parasite Babesia sp. Xinjiang is widespread in China. In this study, recombinant full-length XJrRAP-1aα2 (rhoptry-associated protein 1aα2) and C-terminal XJrRAP-1aα2 CT of Babesia sp. Xinjiang were expressed and used to evaluate their diagnostic potential for Babesia sp. Xinjiang infections by indirect enzyme-linked immunosorbent assay (ELISA). Purified XJrRAP-1aα2 was tested for reactivity with sera from animals experimentally infected with Babesia sp. Xinjiang and other haemoparasites using Western blotting and ELISA. The results showed no cross-reactivities between XJrRAP-1aα2 CT and sera from animals infected by other pathogens. High level of antibodies against RAP-1a usually lasted 10 weeks post-infection (wpi). A total of 3690 serum samples from small ruminants in 23 provinces located in 59 different regions of China were tested by ELISA. The results indicated that the average positive rate was 30·43%, and the infections were found in all of the investigated provinces. This is the first report on the expression and potential use of a recombinant XJrRAP-1aα2 CT antigen for the development of serological assays for the diagnosis of ovine babesiosis, caused by Babesia sp. Xinjiang.

  6. Prognostic implications of the nuclear localization of Y-box-binding protein-1 and CXCR4 expression in ovarian cancer: their correlation with activated Akt, LRP/MVP and P-glycoprotein expression.

    Science.gov (United States)

    Oda, Yoshinao; Ohishi, Yoshihiro; Basaki, Yuji; Kobayashi, Hiroaki; Hirakawa, Toshio; Wake, Norio; Ono, Mayumi; Nishio, Kazuto; Kuwano, Michihiko; Tsuneyoshi, Masazumi

    2007-07-01

    The nuclear localization of Y-box-binding protein-1 (YB-1) is known to be a poor prognostic factor in several human malignancies, including ovarian carcinoma. Following on from our basic study dealing with microarray analyses of YB-1-associated gene expression in ovarian cancer cells, we examined whether nuclear localization of YB-1 is associated with the expression of CXCR4, a vault protein named lung resistance-related vault protein (LRP/MVP), phosphorylated Akt (p-Akt) or P-glycoprotein (P-gp) in human ovarian carcinoma. Fifty-three surgically resected ovarian carcinomas treated with paclitaxel and carboplatin were examined immunohistochemically for nuclear YB-1 expression and intrinsic expression of p-Akt, P-gp, LRP/MVP and CXCR4. Nuclear expression of YB-1 demonstrated significant correlation with p-Akt, P-gp and LRP expression, but no relationship with CXCR4 expression. By multivariate analysis, only YB-1 nuclear expression and CXCR4 expression were independent prognostic factors with regard to overall survival. These results indicate that YB-1 nuclear expression and CXCR4 expression are important prognostic factors in ovarian carcinoma.

  7. Expression and clinical significance of extracellular matrix protein 1 and vascular endothelial growth factor-C in lymphatic metastasis of human breast cancer

    International Nuclear Information System (INIS)

    Wu, Qiu-Wan; She, Hong-Qiang; Liang, Jing; Huang, Yu-Fan; Yang, Qing-Mo; Yang, Qiao-Lu; Zhang, Zhi-Ming

    2012-01-01

    Extracellular matrix protein 1 (ECM1) and vascular endothelial growth factor-C (VEGF-C) are secretory glycoproteins that are associated with lymphangiogenesis; these proteins could, therefore, play important roles in the lymphatic dissemination of tumors. However, very little is known about their potential roles in lymphangiogenesis. The aim of this study was to investigate whether correlations exist between ECM1 and VEGF-C in human breast cancer, lymphangiogenesis, and the clinicopathological characteristics of the disease. ECM1 and VEGF-C mRNA and protein expression levels in 41 patients were investigated using real-time reverse transcriptase polymerase chain reaction (RT-PCR), or immunohistochemical (IHC) staining of breast cancer tissue, matched noncancerous breast epithelial tissues, and suspicious metastatic axillary lymph nodes. D2-40 labelled lymph vessels and lymphatic microvessel density (LMVD) were counted. Correlations between ECM1 or VEGF-C protein expression levels, LMVD, and clinicopathological parameters were statistically tested. The rate of ECM1 positive staining in breast cancer tissues was higher (31/41, 75.6%) than that in the corresponding epithelial tissues (4/41, 9.8%, P < 0.001) and lymph nodes (13/41, 31.7%, P < 0.001). Similarly, the VEGF-C expression rate in cancer specimens was higher (33/41, 80.5%) than in epithelial tissues (19/41, 46.3%, P < 0.01) or lymph nodes (15/41, 36.6%, P < 0.01). Higher ECM1 and VEGF-C mRNA expression levels were also detected in the tumor tissues, compared to the non-cancerous tissue types or lymph nodes (P < 0.05). ECM1 protein expression was positively correlated with the estrogen receptor status (P < 0.05) and LMVD (P < 0.05). LMVD in the ECM1- and VEGF-C-positive tumor specimens was higher than that in the tissue types with negative staining (P < 0.05). Both ECM1 and VEGF-C were overexpressed in breast cancer tissue samples. ECM1 expression was positively correlated with estrogen responsiveness and the

  8. Monocyte chemotactic protein-3: possible involvement in apical periodontitis chemotaxis.

    Science.gov (United States)

    Dezerega, A; Osorio, C; Mardones, J; Mundi, V; Dutzan, N; Franco, M; Gamonal, J; Oyarzún, A; Overall, C M; Hernández, M

    2010-10-01

    To study the expression of monocyte chemotactic protein-3 (MCP-3, also known as chemokine CCL-7) in tissue from apical lesions (AL) and to associate MCP-3 expression with symptomatic or asymptomatic apical periodontitis. To determine the expression of MCP-3 in AL, biopsies obtained during tooth extraction procedures were fixed, subjected to routine processing and diagnosed as apical granuloma (AG) (n = 7) or radicular cyst (RC) (n = 5). As controls, apical periodontal ligament (PDL) specimens from healthy premolars extracted for orthodontics reasons were included (n = 7). All specimens were immunostained for MCP-3 and examined under a light microscope. In addition, homogenates from AL (n = 14) and healthy PDL samples (n = 7) were studied through immunowestern blot. Finally, periapical exudates samples were collected from root canals of teeth having diagnosis of symptomatic (n = 14) and asymptomatic apical periodontitis (n = 14) during routine endodontic treatments and analysed by immunowestern blot and densitometry.   MCP-3 was detected in AG and RC and localized mainly to inflammatory leucocytes, whereas no expression was observed in healthy PDLs. MCP-3 was also detected in periapical exudate, and its levels were significantly higher in symptomatic than in asymptomatic apical periodontitis. MCP-3 was expressed in AL and its levels associated with clinical symptoms. MCP-3 might play a role in disease pathogenesis, possibly by stimulating mononuclear chemotaxis. © 2010 International Endodontic Journal.

  9. Chemotactic droplet swimmers in complex geometries

    Science.gov (United States)

    Jin, Chenyu; Hokmabad, Babak V.; Baldwin, Kyle A.; Maass, Corinna C.

    2018-02-01

    Chemotaxis1 and auto-chemotaxis are key mechanisms in the dynamics of micro-organisms, e.g. in the acquisition of nutrients and in the communication between individuals, influencing the collective behaviour. However, chemical signalling and the natural environment of biological swimmers are generally complex, making them hard to access analytically. We present a well-controlled, tunable artificial model to study chemotaxis and autochemotaxis in complex geometries, using microfluidic assays of self-propelling oil droplets in an aqueous surfactant solution (Herminghaus et al 2014 Soft Matter 10 7008-22 Krüger et al 2016 Phys. Rev. Lett. 117). Droplets propel via interfacial Marangoni stresses powered by micellar solubilisation. Moreover, filled micelles act as a chemical repellent by diffusive phoretic gradient forces. We have studied these chemotactic effects in a series of microfluidic geometries, as published in Jin et al (2017 Proc. Natl Acad. Sci. 114 5089-94): first, droplets are guided along the shortest path through a maze by surfactant diffusing into the maze from the exit. Second, we let auto-chemotactic droplet swimmers pass through bifurcating microfluidic channels and record anticorrelations between the branch choices of consecutive droplets. We present an analytical Langevin model matching the experimental data. In a previously unpublished experiment, pillar arrays of variable sizes and shapes provide a convex wall interacting with the swimmer and, in the case of attachment, bending its trajectory and forcing it to revert to its own trail. We observe different behaviours based on the interplay of wall curvature and negative autochemotaxis, i.e. no attachment for highly curved interfaces, stable trapping at large pillars, and a narrow transition region where negative autochemotaxis makes the swimmers detach after a single orbit.

  10. Heterochromatin protein 1 (HP1a positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila.

    Directory of Open Access Journals (Sweden)

    Lucia Piacentini

    2009-10-01

    Full Text Available Heterochromatin Protein 1 (HP1a is a well-known conserved protein involved in heterochromatin formation and gene silencing in different species including humans. A general model has been proposed for heterochromatin formation and epigenetic gene silencing in different species that implies an essential role for HP1a. According to the model, histone methyltransferase enzymes (HMTases methylate the histone H3 at lysine 9 (H3K9me, creating selective binding sites for itself and the chromodomain of HP1a. This complex is thought to form a higher order chromatin state that represses gene activity. It has also been found that HP1a plays a role in telomere capping. Surprisingly, recent studies have shown that HP1a is present at many euchromatic sites along polytene chromosomes of Drosophila melanogaster, including the developmental and heat-shock-induced puffs, and that this protein can be removed from these sites by in vivo RNase treatment, thus suggesting an association of HP1a with the transcripts of many active genes. To test this suggestion, we performed an extensive screening by RIP-chip assay (RNA-immunoprecipitation on microarrays, and we found that HP1a is associated with transcripts of more than one hundred euchromatic genes. An expression analysis in HP1a mutants shows that HP1a is required for positive regulation of these genes. Cytogenetic and molecular assays show that HP1a also interacts with the well known proteins DDP1, HRB87F, and PEP, which belong to different classes of heterogeneous nuclear ribonucleoproteins (hnRNPs involved in RNA processing. Surprisingly, we found that all these hnRNP proteins also bind heterochromatin and are dominant suppressors of position effect variegation. Together, our data show novel and unexpected functions for HP1a and hnRNPs proteins. All these proteins are in fact involved both in RNA transcript processing and in heterochromatin formation. This suggests that, in general, similar epigenetic mechanisms

  11. Curcumin as a natural regulator of monocyte chemoattractant protein-1.

    Science.gov (United States)

    Karimian, Maryam Saberi; Pirro, Matteo; Majeed, Muhammed; Sahebkar, Amirhossein

    2017-02-01

    Monocyte chemoattractant/chemotactic protein-1 (MCP-1), a member of the CC chemokine family, is one of the key chemokines that regulate migration and tissue infiltration of monocytes/macrophages. Its role in the pathophysiology of several inflammatory diseases has been widely recognized, thus making MCP-1 a possible target for anti-inflammatory treatments. Curcumin (diferuloylmethane) is a natural polyphenol derived from the rhizomes of Curcuma Longa L. (turmeric). Anti-inflammatory action underlies numerous pharmacological effects of curcumin in the control and prevention of several diseases. The purpose of this review is to evaluate the effects of curcumin on the regulation of MCP-1 as a key mediator of chemotaxis and inflammation, and the biological consequences thereof. In vitro studies have shown that curcumin can decrease MCP-1 production in various cell lines. Animal studies have also revealed that curcumin can attenuate MCP-1 expression and improve a range of inflammatory diseases through multiple molecular targets and mechanisms of action. There is limited data from human clinical trials showing the decreasing effect of curcumin on MCP-1 concentrations and improvement of the course of inflammatory diseases. Most of the in vitro and animal studies confirm that curcumin exert its MCP-1-lowering and anti-inflammatory effects by down-regulating the mitogen-activated protein kinase (MAPK) and NF-κB signaling pathway. As yet, there is limited data from human clinical trials showing the effect of curcumin on MCP-1 levels and improvement of the course of inflammatory diseases. More evidence, especially from human studies, is needed to better assess the effects of curcumin on circulating MCP-1 in different human diseases and the role of this modulatory effect in the putative anti-inflammatory properties of curcumin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The chemotactic activity of sputum from patients with bronchiectasis.

    Science.gov (United States)

    Mikami, M; Llewellyn-Jones, C G; Bayley, D; Hill, S L; Stockley, R A

    1998-03-01

    Persistent polymorphonuclear neutrophil (PMN) recruitment to airway is thought to be an important component of continuing inflammation and progression of chronic destructive lung diseases. Although chemoattractants are required for the PMN to migrate, the nature of the chemoattractants in the airways has not yet been clarified. We therefore investigated the contribution of interleukin-8 (IL-8) and leukotriene-B4 (LTB4) to the chemotactic activity of lung secretions by inhibiting their activity using a monoclonal antibody to IL-8 and an LTB4 receptor antagonist (LY293111 sodium). Fifty-nine sputum samples obtained from 19 patients with bronchiectasis were studied. In preliminary studies the chemotactic responses to IL-8 and LTB4 were found to be additive, and we were able to remove their contribution independently with the appropriate antibody and antagonist. The chemotactic activity of the secretions was related to the macroscopic appearance (mucoid, mucopurulent, and purulent), and this appeared to be related to an increase in IL-8 contribution. Chemotactic activity was reduced by antibiotic therapy and again that seemed to relate to a reduction in the IL-8 contribution. The contributions of LTB4 were similar among the three types of sputum in varying clinical states. These data suggest that LTB4 and IL-8 are important chemotactic factors in lung secretions from such patients, although IL-8 appears to play a more important role during acute exacerbations. These results may be useful in determining therapeutic strategies for chronic destructive lung diseases in the future.

  13. Human type II pneumocyte chemotactic responses to CXCR3 activation are mediated by splice variant A.

    Science.gov (United States)

    Ji, Rong; Lee, Clement M; Gonzales, Linda W; Yang, Yi; Aksoy, Mark O; Wang, Ping; Brailoiu, Eugen; Dun, Nae; Hurford, Matthew T; Kelsen, Steven G

    2008-06-01

    Chemokine receptors control several fundamental cellular processes in both hematopoietic and structural cells, including directed cell movement, i.e., chemotaxis, cell differentiation, and proliferation. We have previously demonstrated that CXCR3, the chemokine receptor expressed by Th1/Tc1 inflammatory cells present in the lung, is also expressed by human airway epithelial cells. In airway epithelial cells, activation of CXCR3 induces airway epithelial cell movement and proliferation, processes that underlie lung repair. The present study examined the expression and function of CXCR3 in human alveolar type II pneumocytes, whose destruction causes emphysema. CXCR3 was present in human fetal and adult type II pneumocytes as assessed by immunocytochemistry, immunohistochemistry, and Western blotting. CXCR3-A and -B splice variant mRNA was present constitutively in cultured type II cells, but levels of CXCR3-B greatly exceeded CXCR3-A mRNA. In cultured type II cells, I-TAC, IP-10, and Mig induced chemotaxis. Overexpression of CXCR3-A in the A549 pneumocyte cell line produced robust chemotactic responses to I-TAC and IP-10. In contrast, I-TAC did not induce chemotactic responses in CXCR3-B and mock-transfected cells. Finally, I-TAC increased cytosolic Ca(2+) and activated the extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B kinases only in CXCR3-A-transfected cells. These data indicate that the CXCR3 receptor is expressed by human type II pneumocytes, and the CXCR3-A splice variant mediates chemotactic responses possibly through Ca(2+) activation of both mitogen-activated protein kinase and PI 3-kinase signaling pathways. Expression of CXCR3 in alveolar epithelial cells may be important in pneumocyte repair from injury.

  14. Association of Canine Osteosarcoma and Monocyte Phenotype and Chemotactic Function.

    Science.gov (United States)

    Tuohy, J L; Lascelles, B D X; Griffith, E H; Fogle, J E

    2016-07-01

    Monocytes/macrophages are likely key cells in immune modulation in dogs with osteosarcoma (OSA). Increased peripheral monocyte counts are negatively correlated with shorter disease-free intervals in dogs with OSA. Understanding the monocyte/macrophage's modulatory role in dogs with OSA can direct further studies in immunotherapy development for OSA. That OSA evades the immune response by down-regulating monocyte chemokine receptor expression and migratory function, and suppresses host immune responses. Eighteen dogs with OSA that have not received definitive treatment and 14 healthy age-matched controls Clinical study-expression of peripheral blood monocyte cell surface receptors, monocyte mRNA expression and cytokine secretion, monocyte chemotaxis, and survival were compared between clinical dogs with OSA and healthy control dogs. Cell surface expression of multiple chemokine receptors is significantly down-regulated in peripheral blood monocytes of dogs with OSA. The percentage expression of CCR2 (median 58%, range 2-94%) and CXCR2 expression (median 54%, range 2-92%) was higher in control dogs compared to dogs with OSA (CCR2 median 29%, range 3-45%, P = 0.0006; CXCR2 median 23%, range 0.2-52%, P = 0.0007). Prostaglandin E2 (PGE2 ) (OSA, median 347.36 pg/mL, range 103.4-1268.5; control, 136.23 pg/mL, range 69.93-542.6, P = .04) and tumor necrosis factor-alpha (TNF-α) (P = .02) levels are increased in OSA monocyte culture supernatants compared to controls. Peripheral blood monocytes of dogs with OSA exhibit decreased chemotactic function when compared to control dogs (OSA, median 1.2 directed to random migration, range 0.8-1.25; control, 1.6, range of 0.9-1.8, P = .018). Dogs with OSA have decreased monocyte chemokine receptor expression and monocyte chemotaxis, potential mechanisms by which OSA might evade the immune response. Reversal of monocyte dysfunction using immunotherapy could improve survival in dogs with OSA. Copyright © 2016 The Authors. Journal of

  15. Gene expression profile of zeitlupe/lov kelch protein1 T-DNA insertion mutants in Arabidopsis thaliana: Downregulation of auxin-inducible genes in hypocotyls.

    Science.gov (United States)

    Saitoh, Aya; Takase, Tomoyuki; Kitaki, Hiroyuki; Miyazaki, Yuji; Kiyosue, Tomohiro

    2015-01-01

    Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation.

  16. Lactate-Dehydrogenase 5 is overexpressed in non-small cell lung cancer and correlates with the expression of the transketolase-like protein 1

    Directory of Open Access Journals (Sweden)

    Stickeler Elmar

    2010-04-01

    Full Text Available Abstract Aims As one of the five Lactate dehydrogenase (LDH isoenzymes, LDH5 has the highest efficiency to catalyze pyruvate transformation to lactate. LDH5 overexpression in cancer cells induces an upregulated glycolytic metabolism and reduced dependence on the presence of oxygen. Here we analyzed LDH5 protein expression in a well characterized large cohort of primary lung cancers in correlation to clinico-pathological data and its possible impact on patient survival. Methods Primary lung cancers (n = 269 and non neoplastic lung tissue (n = 35 were tested for LDH5 expression by immunohistochemistry using a polyclonal LDH5 antibody (ab53010. The results of LDH5 expression were correlated to clinico-pathological data as well as to patient's survival. In addition, the results of the previously tested Transketolase like 1 protein (TKTL1 expression were correlated to LDH5 expression. Results 89.5% (n = 238 of NSCLC revealed LDH5 expression whereas LDH5 expression was not detected in non neoplastic lung tissues (n = 34 (p Conclusions LDH5 is overexpressed in NSCLC and could hence serve as an additional marker for malignancy. Furthermore, LDH5 correlates positively with the prognostic marker TKTL1. Our results confirm a close link between the two metabolic enzymes and indicate an alteration in the glucose metabolism in the process of malignant transformation.

  17. TGF-β induces the expression of Nedd4 family-interacting protein 1 (Ndfip1) to silence IL-4 production during iTreg cell differentiation

    Science.gov (United States)

    Beal, Allison M.; Ramos-Hernández, Natalia; Riling, Chris R.; Nowelsky, Erin A.; Oliver, Paula M.

    2011-01-01

    Mice deficient for the adaptor Ndfip1 develop inflammation at sites of environmental antigen exposure. We show here that these animals contain fewer inducible regulatory (iTreg) cells. In vitro, Ndfip1-deficient T cells express normal levels of the transcription factor Foxp3 during the first 48 hours of iTreg cell differentiation, however this cannot be sustained. Abortive Foxp3 expression is because Ndfip1–/– cells produce interleukin 4 (IL-4). We demonstrate that Ndfip1 is transiently unregulated during iTreg cell differentiation in a transforming growth factor-β (TGF-β) dependent manner. Once expressed Ndfip1 promotes Itch-mediated degradation of the transcription factor JunB, thus preventing IL-4 production. Based on these data, we propose that TGF-β signaling induces Ndfip1 expression to silence IL-4 production, thus permitting iTreg cell differentiation. PMID:22080920

  18. Survival of metastatic melanoma patients after dendritic cell vaccination correlates with expression of leukocyte phosphatidylethanolamine-binding protein 1/Raf kinase inhibitory protein

    DEFF Research Database (Denmark)

    Buschow, Sonja I; Ramazzotti, Matteo; Reinieren-Beeren, Inge M J

    2017-01-01

    -based biomarkers are of particular interest because of their straightforward implementation in routine clinical care. We sought to identify markers for dendritic cell (DC) vaccine-based immunotherapy against metastatic melanoma through gene expression analysis of peripheral blood mononuclear cells. A large....... Intriguingly, this was only the case for expression of PEBP1 after, but not prior to, DC vaccination. Moreover, the change in PEBP1 expression upon vaccination correlated well with survival. Further analyses revealed that PEBP1 expression positively correlated with genes involved in T cell responses...... but inversely correlated with genes associated with myeloid cells and aberrant inflammation including STAT3, NOTCH1, and MAPK1. Concordantly, PEBP1 inversely correlated with the myeloid/lymphoid-ratio and was suppressed in patients suffering from chronic inflammatory disease....

  19. Elevated Dengue Virus Nonstructural Protein 1 Serum Levels and Altered Toll-Like Receptor 4 Expression, Nitric Oxide, and Tumor Necrosis Factor Alpha Production in Dengue Hemorrhagic Fever Patients

    Directory of Open Access Journals (Sweden)

    Denise Maciel Carvalho

    2014-01-01

    Full Text Available Background. During dengue virus (DV infection, monocytes produce tumor necrosis factor alpha (TNF-α and nitric oxide (NO which might be critical to immunopathogenesis. Since intensity of DV replication may determine clinical outcomes, it is important to know the effects of viral nonstructural protein 1 (NS1 on innate immune parameters of infected patients. The present study investigates the relationships between dengue virus nonstructural protein 1 (NS1 serum levels and innate immune response (TLR4 expression and TNF-α/NO production of DV infected patients presenting different clinical outcomes. Methodology/Principal Findings. We evaluated NO, NS1 serum levels (ELISA, TNF-α production by peripheral blood mononuclear cells (PBMCs, and TLR4 expression on CD14+ cells from 37 dengue patients and 20 healthy controls. Early in infection, increased expression of TLR4 in monocytes of patients with dengue fever (DF was detected compared to patients with dengue hemorrhagic fever (DHF. Moreover, PBMCs of DHF patients showed higher NS1 and lower NO serum levels during the acute febrile phase and a reduced response to TLR4 stimulation by LPS (with a reduced TNF-α production when compared to DF patients. Conclusions/Significance. During DV infection in humans, some innate immune parameters change, depending on the NS1 serum levels, and phase and severity of the disease which may contribute to development of different clinical outcomes.

  20. Transport of Chemotactic Bacteria in Porous Media with Structured Heterogeneity

    Science.gov (United States)

    Ford, R. M.; Wang, M.; Liu, J.; Long, T.

    2008-12-01

    Chemical contaminants that become trapped in low permeability zones (e.g. clay lenses) are difficult to remediate using conventional pump-and-treat approaches. Chemotactic bacteria that are transported by groundwater through more permeable regions may migrate toward these less permeable zones in response to chemical gradients created by contaminant diffusion from the low permeability source, thereby enhancing the remediation process by directing bacteria to the contaminants they degrade. What effect does the heterogeneity associated with coarse- and fine-grained layers that are characteristic of natural groundwater environments have on the transport of microorganisms and their chemotactic response? To address this question experiments were conducted over a range of scales from a single capillary tube to a laboratory- scale column in both static and flowing systems with and without chemoattractant gradients. In static capillary assays, motile bacteria accumulated at the interface between an aqueous solution and a suspension of agarose particulates. In microfluidic devices with an array of staggered cylinders, chemotactic bacteria migrated transverse to flow in response to a chemoattractant gradient. In sand columns packed with a coarse-grained core and surrounded by a fine-grained annulus, chemotactic bacteria migrated preferentially toward a chemoattractant source along the centerline. Mathematical models and computer simulations were developed to analyze the experimental observations in terms of transport parameters from the advection- disperson-sorption equation.

  1. Efficient bacterial expression of recombinant potato mop-top virus non-structural triple gene block protein 1 modified by progressive deletion of its N-terminus

    Czech Academy of Sciences Publication Activity Database

    Pečenková, Tamara; Filigarová, Marie; Čeřovská, Noemi

    2005-01-01

    Roč. 41, - (2005), s. 128-135 ISSN 1046-5928 R&D Projects: GA ČR GA522/04/1329 Institutional research plan: CEZ:AV0Z50380511 Keywords : Protein expression * Potato mop-top virus * Triple gene block Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.553, year: 2005

  2. Transmembrane and ubiquitin-like domain-containing protein 1 (Tmub1/HOPS facilitates surface expression of GluR2-containing AMPA receptors.

    Directory of Open Access Journals (Sweden)

    Hyunjeong Yang

    Full Text Available Some ubiquitin-like (UBL domain-containing proteins are known to play roles in receptor trafficking. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs undergo constitutive cycling between the intracellular compartment and the cell surface in the central nervous system. However, the function of UBL domain-containing proteins in the recycling of the AMPARs to the synaptic surface has not yet been reported.Here, we report that the Transmembrane and ubiquitin-like domain-containing 1 (Tmub1 protein, formerly known as the Hepatocyte Odd Protein Shuttling (HOPS protein, which is abundantly expressed in the brain and which exists in a synaptosomal membrane fraction, facilitates the recycling of the AMPAR subunit GluR2 to the cell surface. Neurons transfected with Tmub1/HOPS-RNAi plasmids showed a significant reduction in the AMPAR current as compared to their control neurons. Consistently, the synaptic surface expression of GluR2, but not of GluR1, was significantly decreased in the neurons transfected with the Tmub1/HOPS-RNAi and increased in the neurons overexpressing EGFP-Tmub1/HOPS. The altered surface expression of GluR2 was speculated to be due to the altered surface-recycling of the internalized GluR2 in our recycling assay. Eventually, we found that GluR2 and glutamate receptor interacting protein (GRIP were coimmunoprecipitated by the anti-Tmub1/HOPS antibody from the mouse brain. Taken together, these observations show that the Tmub1/HOPS plays a role in regulating basal synaptic transmission; it contributes to maintain the synaptic surface number of the GluR2-containing AMPARs by facilitating the recycling of GluR2 to the plasma membrane.

  3. Honokiol reverses alcoholic fatty liver by inhibiting the maturation of sterol regulatory element binding protein-1c and the expression of its downstream lipogenesis genes

    International Nuclear Information System (INIS)

    Yin Huquan; Kim, Youn-Chul; Chung, Young-Suk; Kim, Young-Chul; Shin, Young-Kee; Lee, Byung-Hoon

    2009-01-01

    Ethanol induces hepatic steatosis via a complex mechanism that is not well understood. Among the variety of molecules that have been proposed to participate in this mechanism, the sterol regulatory element (SRE)-binding proteins (SREBPs) have been identified as attractive targets for therapeutic intervention. In the present study, we evaluated the effects of honokiol on alcoholic steatosis and investigated its possible effect on the inhibition of SREBP-1c maturation. In in vitro studies, H4IIEC3 rat hepatoma cells developed increased lipid droplets when exposed to ethanol, but co-treatment with honokiol reversed this effect. Honokiol inhibited the maturation of SREBP-1c and its translocation to the nucleus, the binding of nSREBP-1c to SRE or SRE-related sequences of its lipogenic target genes, and the expression of genes for fatty acid synthesis. In contrast, magnolol, a structural isomer of honokiol, had no effect on nSREBP-1c levels. Male Wistar rats fed with a standard Lieber-DeCarli ethanol diet for 4 weeks exhibited increased hepatic triglyceride and decreased hepatic glutathione levels, with concomitantly increased serum alanine aminotransferase and TNF-α levels. Daily administration of honokiol (10 mg/kg body weight) by gavage during the final 2 weeks of ethanol treatment completely reversed these effects on hepatotoxicity markers, including hepatic triglyceride, hepatic glutathione, and serum TNF-α, with efficacious abrogation of fat accumulation in the liver. Inhibition of SREBP-1c protein maturation and of the expression of Srebf1c and its target genes for hepatic lipogenesis were also observed in vivo. A chromatin immunoprecipitation assay demonstrated inhibition of specific binding of SREBP-1c to the Fas promoter by honokiol in vivo. These results demonstrate that honokiol has the potential to ameliorate alcoholic steatosis by blocking fatty acid synthesis regulated by SREBP-1c

  4. Loss of PPAR gamma in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Ferrer, Gerardo; Casagran, Oriol; Wankhade, Umesh; Noble, Alexis M; Eizirik, Decio L; Ortis, Fernanda; Cnop, Miriam; Liu, Dongmin; Si, Hongwei; Bassaganya-Riera, Josep

    2008-04-01

    Abscisic acid (ABA) is a natural phytohormone and peroxisome proliferator-activated receptor gamma (PPARgamma) agonist that significantly improves insulin sensitivity in db/db mice. Although it has become clear that obesity is associated with macrophage infiltration into white adipose tissue (WAT), the phenotype of adipose tissue macrophages (ATMs) and the mechanisms by which insulin-sensitizing compounds modulate their infiltration remain unknown. We used a loss-of-function approach to investigate whether ABA ameliorates insulin resistance through a mechanism dependent on immune cell PPARgamma. We characterized two phenotypically distinct ATM subsets in db/db mice based on their surface expression of F4/80. F4/80(hi) ATMs were more abundant and expressed greater concentrations of chemokine receptor (CCR) 2 and CCR5 when compared to F4/80(lo) ATMs. ABA significantly decreased CCR2(+) F4/80(hi) infiltration into WAT and suppressed monocyte chemoattractant protein-1 (MCP-1) expression in WAT and plasma. Furthermore, the deficiency of PPARgamma in immune cells, including macrophages, impaired the ability of ABA to suppress the infiltration of F4/80(hi) ATMs into WAT, to repress WAT MCP-1 expression and to improve glucose tolerance. We provide molecular evidence in vivo demonstrating that ABA improves insulin sensitivity and obesity-related inflammation by inhibiting MCP-1 expression and F4/80(hi) ATM infiltration through a PPARgamma-dependent mechanism.

  5. Homeopathic potencies of Arnica montana L. change gene expression in a Tamm-Horsfall protein-1 cell line in vitro model: the role of ethanol as a possible confounder and statistical bias.

    Science.gov (United States)

    Chirumbolo, Salvatore; Bjørklund, Geir

    2017-07-01

    Marzotto et al. showed that homeopathic preparations of Arnica montana L. acted directly on gene expression of Tamm-Horsfall protein-1 (THP-1) monocyte/macrophage cell lines activated with phorbol12-myristate13-acetate and interleukin-4 (IL-4). A. montana homeopathic dilutions are used in complementary and alternative medicine to treat inflammation disorders and post-traumatic events as well as for wound repair. The French Pharmacopoeia of these remedies uses 0.3% ethanol in each centesimal dilution. In this paper, we discuss how ethanol-containing A. montana homeopathic centesimal dilutions can change gene expression in IL-4-treated monocyte/macrophage THP-1. We assessed the role of ethanol in the Arnica homeopathic dilutions containing this alcohol by investigating its action on gene expression of THP-1 cell. Evidence would strongly suggest that the presence of ethanol in these remedies might play a fundamental role in the dilutions ability to affect gene expression, particularly for doses from 5c to 15c. Where, rather than playing a major role in the mesoscopic structure of water, the ethanol might have a chemical-physical role in the induction of THP-1 gene expression, apoptosis, and deoxyribonucleic acid function. This evidence generates a debate about the suggestion that the use of a binary-mixed solvent in homeopathic chemistry, used by Hahnemann since 1810, may be fundamental to explain the activity of homeopathy on cell models.

  6. Molecular Characterization and Expression Analysis of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Protein-1 Genes in Qinghai-Tibet Plateau and Lowland

    Directory of Open Access Journals (Sweden)

    Ya-bing Chen

    2015-01-01

    Full Text Available Insulin-like growth factor-1 (IGF-1 and insulin-like growth factor binding protein-1 (IGFBP-1 play a pivotal role in regulating cellular hypoxic response. In this study, we cloned and characterized the genes encoding IGF-1 and IGFBP-1 to improve the current knowledge on their roles in highland Bos grunniens (Yak. We also compared their expression levels in the liver and kidney tissues between yaks and lowland cattle. We obtained full-length 465 bp IGF-1 and 792 bp IGFBP-1, encoding 154 amino acids (AA IGF-1, and 263 AA IGFBP-1 protein, respectively using reverse transcriptase-polyerase chain reaction (RT-PCR technology. Analysis of their corresponding amino acid sequences showed a high identity between B. grunniens and lowland mammals. Moreover, the two genes were proved to be widely distributed in the examined tissues through expression pattern analysis. Real-time PCR results revealed that IGF-1 expression was higher in the liver and kidney tissues in B. grunniens than in Bos taurus (p<0.05. The IGFBP-1 gene was expressed at a higher level in the liver (p<0.05 of B. taurus than B. grunniens, but it has a similar expression level in the kidneys of the two species. These results indicated that upregulated IGF-1 and downregulated IGFBP-1 are associated with hypoxia adaptive response in B. grunniens.

  7. Expression of IGF-I, IGF-I receptor and IGF binding proteins-1, -2, -3, -4 and -5 in human atherectomy specimens.

    Science.gov (United States)

    Grant, M B; Wargovich, T J; Ellis, E A; Tarnuzzer, R; Caballero, S; Estes, K; Rossing, M; Spoerri, P E; Pepine, C

    1996-12-17

    The molecular and cellular processes that induce rapid atherosclerotic plaque progression in patients with unstable angina and initiate restenosis following coronary interventional procedures are uncertain. We examined primary (de novo) and restenotic lesions retrieved at the time of directional coronary atherectomy for expression of insulin-like-growth factor-I (IGF-I). IGF-I receptor, and five IGF binding proteins (IGFBPs), IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-5 in smooth muscle cells (SMCs) using colloidal gold immunocytochemistry. IGF-1, its receptor and binding proteins were not detected in SMCs of normal coronary arteries. IGF-I localized primarily in synthetic smooth muscle cells (sSMCs) in both de novo and restenotic plaques. IGF-I receptor localized on sSMCs and their processes and colocalized with IGF-I. Although morphometric analysis of IGF-I and IGF-I receptor immunoreactivity in sSMCs of de novo and restenotic lesions showed comparable levels of IGF-I (3.2 +/- 1.0 and 2.9 +/- 0.9, respectively). IGF-I receptor was significantly higher in de novo lesions as compared to restenotic lesions (10.7 +/- 2.5 and 4.2 +/- 1.3, P system.

  8. Kaempferol Reduces Matrix Metalloproteinase-2 Expression by Down-Regulating ERK1/2 and the Activator Protein-1 Signaling Pathways in Oral Cancer Cells

    Science.gov (United States)

    Lin, Chiao-Wen; Chen, Pei-Ni; Chen, Mu-Kuan; Yang, Wei-En; Tang, Chih-Hsin; Yang, Shun-Fa; Hsieh, Yih-Shou

    2013-01-01

    Background Kaempferol has been proposed as a potential drug for cancer chemoprevention and treatment because it is a natural polyphenol contained in plant-based foods. Recent studies have demonstrated that kaempferol protects against cardiovascular disease and cancer. Based on this finding, we investigated the mechanisms by which kaempferol produces the anti-metastatic effect in human tongue squamous cell carcinoma SCC4 cells. Methodology/Principal Findings In this study, we provided molecular evidence associated with the anti-metastatic effect of kaempferol by demonstrating a substantial suppression of SCC4 cell migration and invasion. This effect was associated with reduced expressions of MMP-2 and TIMP-2 mRNA and protein levels. Analysis of the transcriptional regulation indicated that kaempferol inhibited MMP-2 transcription by suppressing c-Jun activity. Kaempferol also produced an inhibitory effect on the phosphorylation of ERK1/2. Conclusions These findings provide new insights into the molecular mechanisms involved in the anti-metastatic effect of kaempferol, and are valuable in the prevention of oral cancer metastasis. PMID:24278338

  9. Towards neuroimmunotherapy for cancer: the neurotransmitters glutamate, dopamine and GnRH-II augment substantially the ability of T cells of few head and neck cancer patients to perform spontaneous migration, chemotactic migration and migration towards the autologous tumor, and also elevate markedly the expression of CD3zeta and CD3epsilon TCR-associated chains.

    Science.gov (United States)

    Saussez, Sven; Laumbacher, Barbara; Chantrain, Gilbert; Rodriguez, Alexandra; Gu, Songhai; Wank, Rudolf; Levite, Mia

    2014-08-01

    In previous studies we found that several Neurotransmitters and Neuropeptides among them: Glutamate, Dopamine, Gonadotropin-releasing-hormone (GnRH) I and II, Somatostatin, CGRP and Neuropeptide Y, can each by itself, at low physiological concentration (~10 nM) bind its receptors in human T cells and trigger several key T cell functions. These findings showed that the nervous system, via Neurotransmitters and Neuropeptides, can 'talk' directly to the immune system, and stimulate what we coined 'Nerve-Driven Immunity': immune responses dictated by the nervous system. In various human cancers, the immune system of the patients, and their T cells in particular, are not functioning well enough against the cancer due to several reasons, among them the suppressive effects on the immune system induced by: (1) the cancer itself, (2) the chemotherapy and radiotherapy, (3) the ongoing/chronic stress, anxiety, depression and pain felt by the cancer patients. In Head and Neck Cancer (HNC), 5-year survival rate remains below 50%, primarily because of local recurrences or second primary tumors. Two-thirds of HNC patients are diagnosed at advanced clinical stage and have significantly poorer prognosis. Most HNC patients have multiple severe immunological defects especially in their T cells. A major defect in T cells of patients with HNC or other types of cancer is low CD3zeta expression that correlates with poor prognosis, decreased proliferation, apoptotic profile, abnormal cytokine secretion and poor abilities of destructing cancer cells. T cells of cancer patients are often also unable to migrate properly towards the tumor. In this study we asked if Glutamate, Dopamine or GnRH-II can augment the spontaneous migration, chemotactic migration and towards autologous HNC migration, and also increase CD3zeta and CD3epsilon expression, of peripheral T cells purified from the blood of five HNC patients. These HNC patients had either primary tumor or recurrence, and have been already

  10. Anti-inflammatory and anti-chemotactic effects of dietary flaxseed oil on CD8(+) T cell/adipocyte-mediated cross-talk.

    Science.gov (United States)

    Monk, Jennifer M; Liddle, Danyelle M; Brown, Morgan J; Zarepoor, Leila; De Boer, Anna A; Ma, David W L; Power, Krista A; Robinson, Lindsay E

    2016-03-01

    CD8(+) T cell/adipocyte paracrine interactions represent a critical step in the development of the obese inflammatory phenotype that is disrupted by long-chain n-3 PUFA. Our objective was to determine the effect of flaxseed-derived n-3 PUFA (α-linolenic acid) on these paracrine interactions. C57BL/6 mice were fed 3.5% flaxseed oil (FX) + 3.5% corn oil diet w/w or an isocaloric 7% corn oil w/w control diet (CON) for 3 wk. 3T3-L1 adipocytes and purified primary splenic CD8(+) T cells were cocultured at an obese cellular ratio (10% CD8(+) T cells) and LPS-stimulated (10 ng/mL mimicking obese circulating endotoxin levels) for 24 h. FX cocultures reduced (i) secreted IL-6, tumor necrosis factor α (TNF-α), macrophage chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 1α (MIP-1α), and RANTES (regulated on activation, normal T cell expressed and secreted) levels; (ii) activation of inflammatory transcription factors NFκB (nuclear factor kappa-light-chain-enhancer of activated B cell) p65 and signal transducer and activator of transcription-3 (STAT3); and (iii) RAW264.7 macrophage chemotaxis versus CON (p ≤ 0.05). Coculture of pre-inflamed adipocytes (10 ng/mL LPS, 24 h prior to CD8(+) T-cell addition) resulted in reduced secretion of IL-6, IL-1β, MCP-1, MCP-3, MIP-1β, and RANTES in FX cocultures versus CON (p ≤ 0.05). FX exerts an anti-chemotactic and anti-inflammatory effect on CD8(+) T cell/adipocyte paracrine interactions (cross-talk), which has the potential to mitigate macrophage chemotaxis which drives components of the obese phenotype. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ketamine inhibits tumor necrosis factor-α and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    International Nuclear Information System (INIS)

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-01-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 μM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 μM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-α and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-α and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 μM) significantly inhibited LPS-induced TNF-α and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-α and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-α and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated

  12. Expression analysis and biological characterization of Babesia sp. BQ1 (Lintan) (Babesia motasi-like) rhoptry-associated protein 1 and its potential use in serodiagnosis via ELISA.

    Science.gov (United States)

    Niu, Qingli; Liu, Zhijie; Yang, Jifei; Yu, Peifa; Pan, Yuping; Zhai, Bintao; Luo, Jianxun; Moreau, Emmanuelle; Guan, Guiquan; Yin, Hong

    2016-05-31

    In China, ovine babesiosis is one of the most important tick-borne haemoparasitic diseases of small ruminants. It has a significant economic impact, and several Babesia motasi-like isolates have been recently shown to be responsible for ovine babesiosis in this country. Full-length and C-terminal-truncated forms of the rap-1a61-1 gene of Babesia sp. BQ1 (Lintan) were cloned into the pET-30a plasmid and subsequently expressed as His-fusion proteins. The resulting recombinant RAP-1a proteins (rRAP-1a61-1 and rRAP-1a61-1/CT) were purified and evaluated as diagnostic antigens using Western blot analysis and ELISA. The native Babesia sp. BQ1 (Lintan) RAP-1 protein was recognized using Western blots and IFAT by antibodies that were raised in rabbits against rRAP-1a61-1/CT. The specificity, sensitivity and positive threshold values for rRAP-1a61-1/CT in ELISA were evaluated. Cross-reactivity was observed between rRAP-1a61-1/CT and positive sera for Babesia sp. BQ1 (Lintan), Babesia sp. BQ1 (Ningxian) and Babesia sp. Tianzhu isolates obtained from infected sheep. At one week post-inoculation, a significant increase was observed in the amount of antibodies produced against RAP-1a, and high levels of antibodies against RAP-1a were observed for 3 months (at 84 days p.i.). A total of 3198 serum samples were collected from small ruminants in 54 different regions in 23 provinces of China. These samples were tested using ELISA based on the rRAP-1a61-1/CT protein. The results indicated that the average positive rate was 36.02 %. The present study suggests that rRAP-1a61-1/CT might be a potential diagnostic antigen for detecting several isolates of B. motasi-like parasites infection.

  13. Natural diterpenes from coffee, cafestol and kahweol induce apoptosis through regulation of specificity protein 1 expression in human malignant pleural mesothelioma

    Directory of Open Access Journals (Sweden)

    Lee Kyung-Ae

    2012-06-01

    Full Text Available Abstract Background Malignant pleural mesothelioma (MPM is a highly aggressive cancer with a very poor prognosis. Several clinical studies such as immunotherapy, gene therapy and molecular targeting agents have been tried for treatment of malignant mesothelioma, however, there is no application for effective clinical treatment. Coffee has various biological functions such as anti-oxidant, anti-inflammatory, anti-mutagenic and anti-carcinogenic activities. The therapeutic activities of the bioactive compounds in coffee was sugested to influence intracellular signaling of MPM. Regarding to the cancer-related functions, In this study, suppression of Sp1 protein level followed by induction of MSTO-211H cell apoptosis by cafestol and kahweol were investigated in oreder to determine Sp1's potential as a significant target for human MPM therapy as well. Methods Cells were treated separately with final concentration of cafestol and kahweol and the results were analyzed by MTS assay, DAPI staining, PI staining, luciferase assay, RT-PCR, and immunoblotting. Results Viability of MSTO-211H and H28 cells were decreased, and apoptotic cell death was increased in MSTO-211H as a result of cafestol and kahweol treatment. Cafestol and kahweol increased Sub-G1 population and nuclear condensation in MSTO-211H cells. Roles of Sp1 in cell proliferation and apoptosis of the MSTO-211H cells by the Sp1 inhibitor of Mithramycin A were previously confirmed. Cafestol and kahweol significantly suppressed Sp1 protein levels. Kahweol slightly attenuated Sp1 mRNA, while Cafestol did not affect in MSTO-211H cells. Cafestol and kahweol modulated the promoter activity and protein expression level of the Sp1 regulatory genes including Cyclin D1, Mcl-1, and Survivin in mesothelioma cells. Apoptosis signaling cascade was activated by cleavages of Bid, Caspase-3, and PARP with cafestol and by upregulation of Bax, and downregulation of Bcl-xl by kahweol. Conclusions Sp1 can be a novel

  14. Optimal methylation noise for best chemotactic performance of E. coli

    Science.gov (United States)

    Dev, Subrata; Chatterjee, Sakuntala

    2018-03-01

    In response to a concentration gradient of chemoattractant, E. coli bacterium modulates the rotational bias of flagellar motors which control its run-and-tumble motion, to migrate towards regions of high chemoattractant concentration. Presence of stochastic noise in the biochemical pathway of the cell has important consequences on the switching mechanism of motor bias, which in turn affects the runs and tumbles of the cell in a significant way. We model the intracellular reaction network in terms of coupled time evolution of three stochastic variables—kinase activity, methylation level, and CheY-P protein level—and study the effect of methylation noise on the chemotactic performance of the cell. In presence of a spatially varying nutrient concentration profile, a good chemotactic performance allows the cell to climb up the concentration gradient quickly and localize in the nutrient-rich regions in the long time limit. Our simulations show that the best performance is obtained at an optimal noise strength. While it is expected that chemotaxis will be weaker for very large noise, it is counterintuitive that the performance worsens even when noise level falls below a certain value. We explain this striking result by detailed analysis of CheY-P protein level statistics for different noise strengths. We show that when the CheY-P level falls below a certain (noise-dependent) threshold the cell tends to move down the concentration gradient of the nutrient, which has a detrimental effect on its chemotactic response. This threshold value decreases as noise is increased, and this effect is responsible for noise-induced enhancement of chemotactic performance. In a harsh chemical environment, when the nutrient degrades with time, the amount of nutrient intercepted by the cell trajectory is an effective performance criterion. In this case also, depending on the nutrient lifetime, we find an optimum noise strength when the performance is at its best.

  15. Expression of RIZ1 protein (Retinoblastoma-interacting zinc-finger protein 1) in prostate cancer epithelial cells changes with cancer grade progression and is modulated in vitro by DHT and E2.

    Science.gov (United States)

    Rossi, Valentina; Staibano, Stefania; Abbondanza, Ciro; Pasquali, Daniela; De Rosa, Caterina; Mascolo, Massimo; Bellastella, Giuseppe; Visconti, Daniela; De Bellis, Annamaria; Moncharmont, Bruno; De Rosa, Gaetano; Puca, Giovanni Alfredo; Bellastella, Antonio; Sinisi, Antonio Agostino

    2009-12-01

    The nuclear protein methyl-transferase Retinoblastoma-interacting zinc-finger protein 1 (RIZ1) is considered to be a downstream effector of estrogen action in target tissues. Silencing of RIZ1 expression is common in many tumors. We analyzed RIZ1 expression in normal and malignant prostate tissue and evaluated whether estradiol (E2) or dihydrotestosterone (DHT) treatment modulated RIZ1 in cultured prostate epithelial cells (PEC). Moreover, we studied the possible involvement of RIZ1 in estrogen action on the EPN prostate cell line, constitutively expressing both estrogen receptor (ER)-alpha and beta. RIZ1 protein, found in the nucleus of normal PECs by immunohistochemistry, was progressively lost in cancer tissues as the Gleason score increased and was only detected in the cytoplasmic compartment. RIZ1 transcript levels, as assayed by semi-quantitative RT-PCR in primary PEC cultures, were significantly reduced in cancer cells (P DHT treatment significantly increased RIZ1 transcript and protein levels (P DHT or E2 treatment in vitro. Furthermore, the E2 effects on ER-expressing prostate cells involve RIZ1, which confirms a possible role for ER-mediated pathways in a non-classic E(2)-target tissue.

  16. Deficiency of the Chemotactic Factor Inactivator in Human Sera with α1-Antitrypsin Deficiency

    Science.gov (United States)

    Ward, Peter A.; Talamo, Richard C.

    1973-01-01

    As revealed by appropriate fractionation procedures, human serum deficient in α1-antitrypsin (α1-AT) is also deficient in the naturally occurring chemotactic factor inactivator. These serum donors had severe pulmonary emphysema. Serum from patients with clinically similar pulmonary disease, but with presence of α1-AT in the serum, showed no such deficiency of the chemotactic factor inactivator. When normal human serum and α1-AT-deficient human sera are chemotactically activated by incubation with immune precipitates, substantially more chemotactic activity is generated in α1-AT-deficient serum. These data indicate that in α1-AT-deficient serum there is an imbalance in the generation and control of chemotactic factors. It is suggested that the theory regarding development of pulmonary emphysema in patients lacking the α1-antitrypsin in their serum should be modified to take into account a deficiency of the chemotactic factor inactivator. PMID:4683887

  17. Urease Plays an Important Role in the Chemotactic Motility of Helicobacter pylori in a Viscous Environment

    OpenAIRE

    Nakamura, Hiroki; Yoshiyama, Hironori; Takeuchi, Hiroaki; Mizote, Tomoko; Okita, Kiwamu; Nakazawa, Teruko

    1998-01-01

    Helicobacter pylori exhibits chemotactic responses to urea, flurofamide, acetohydroxamic acid, and sodium bicarbonate. In buffer, the chemotactic activities of a urease-positive strain were higher than those of the isogenic urease-negative strain. Moreover, the chemotactic activities of the urease-positive strain were increased in a viscous solution containing 3% polyvinylpyrrolidone, whereas those of the urease-negative mutant were not. These results are in accordance with the fact that the ...

  18. Global solution for a chemotactic haptotactic model of cancer invasion

    Science.gov (United States)

    Tao, Youshan; Wang, Mingjun

    2008-10-01

    This paper deals with a mathematical model of cancer invasion of tissue recently proposed by Chaplain and Lolas. The model consists of a reaction-diffusion-taxis partial differential equation (PDE) describing the evolution of tumour cell density, a reaction-diffusion PDE governing the evolution of the proteolytic enzyme concentration and an ordinary differential equation modelling the proteolysis of the extracellular matrix (ECM). In addition to random motion, the tumour cells are directed not only by haptotaxis (cellular locomotion directed in response to a concentration gradient of adhesive molecules along the ECM) but also by chemotaxis (cellular locomotion directed in response to a concentration gradient of the diffusible proteolytic enzyme). In one space dimension, the global existence and uniqueness of a classical solution to this combined chemotactic-haptotactic model is proved for any chemotactic coefficient χ > 0. In two and three space dimensions, the global existence is proved for small χ/μ (where μ is the logistic growth rate of the tumour cells). The fundamental point of proof is to raise the regularity of a solution from L1 to Lp (p > 1). Furthermore, the existence of blow-up solutions to a sub-model in two space dimensions for large χ shows, to some extent, that the condition that χ/μ is small is necessary for the global existence of a solution to the full model.

  19. Molecular characterization and expression pattern of X box-binding protein-1 (XBP1) in common carp (Cyprinus carpio L.): Indications for a role of XBP1 in antibacterial and antiviral immunity.

    Science.gov (United States)

    Li, Ting; Li, Hua; Peng, Shaoqing; Zhang, Fumiao; An, Liguo; Yang, Guiwen

    2017-08-01

    X box-binding protein-1 (XBP1) is a transcription factor that is essential for the unfolded protein response (UPR) and the differentiation of plasma cells, and some findings have also uncovered its function in innate immunity. XBP1 typically has two different transcripts, un-spliced (XBP1u) and spliced forms (XBP1s), but XBP1s is an active transcription factor in the regulation of target genes. To date, there is no evidence about the identification and function of XBP1 in common carp. Moreover, no data are currently available regarding the role of fish XBP1 in innate immunity. Thus, to determine whether XBP1 is involved in innate immune response in common carp, we cloned CcXBP1s and examined the expression of XBP1s and a XBP1s stimulated gene (IL-6) after Aeromonas hydrophila (A. hydrophila) and polyinosinic-polycytidylic acid (polyI:C) challenges. The results imply that CcXBP1s, as an active transcription factor, might play regulation roles in the antibacterial and antiviral innate immune responses of common carp. This allows us to gain new insights into the immunological function of XBP1 in fish innate immunity and the evolution of this important class of genes across vertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Delayed brain ischemia tolerance induced by electroacupuncture pretreatment is mediated via MCP-induced protein 1

    Science.gov (United States)

    2013-01-01

    Background Emerging studies have demonstrated that pretreatment with electroacupuncture (EA) induces significant tolerance to focal cerebral ischemia. The present study seeks to determine the involvement of monocyte chemotactic protein-induced protein 1 (MCPIP1), a recently identified novel modulator of inflammatory reactions, in the cerebral neuroprotection conferred by EA pretreatment in the animal model of focal cerebral ischemia and to elucidate the mechanisms of EA pretreatment-induced ischemic brain tolerance. Methods Twenty-four hours after the end of the last EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 90 minutes in male C57BL/6 mice and MCPIP1 knockout mice. Transcription and expression of MCPIP1 gene was monitored by qRT-PCR, Western blot and immunohistochemistry. The neurobehavioral scores, infarction volumes, proinflammatory cytokines and leukocyte infiltration in brain and NF-κB signaling were evaluated after ischemia/reperfusion. Results MCPIP1 protein and mRNA levels significantly increased specifically in mouse brain undergoing EA pretreatment. EA pretreatment significantly attenuated the infarct volume, neurological deficits, upregulation of proinflammatory cytokines and leukocyte infiltration in the brain of wild-type mice after MCAO compared with that of the non-EA group. MCPIP1-deficient mice failed to evoke EA pretreatment-induced tolerance compared with that of the control MCPIP1 knockout group without EA treatment. Furthermore, the activation of NF-κB signaling was significantly reduced in EA-pretreated wild-type mice after MCAO compared to that of the non-EA control group and MCPIP1-deficient mice failed to confer the EA pretreatment-induced inhibition of NF-κB signaling after MCAO. Conclusions Our data demonstrated that MCPIP1 deficiency caused significant lack of EA pretreatment-induced cerebral protective effects after MCAO compared with the control group and that MCPIP1 is

  1. Urease plays an important role in the chemotactic motility of Helicobacter pylori in a viscous environment.

    Science.gov (United States)

    Nakamura, H; Yoshiyama, H; Takeuchi, H; Mizote, T; Okita, K; Nakazawa, T

    1998-10-01

    Helicobacter pylori exhibits chemotactic responses to urea, flurofamide, acetohydroxamic acid, and sodium bicarbonate. In buffer, the chemotactic activities of a urease-positive strain were higher than those of the isogenic urease-negative strain. Moreover, the chemotactic activities of the urease-positive strain were increased in a viscous solution containing 3% polyvinylpyrrolidone, whereas those of the urease-negative mutant were not. These results are in accordance with the fact that the mutant strain did not show swarming in motility agar regardless of having flagella. Incubation of the wild-type strain with flurofamide resulted in partial inhibition of the chemotactic activities in the viscous solution. In addition, incubation with acetohydroxamic acid, a low-molecular-weight, diffusible urease inhibitor, resulted in complete loss of chemotactic activity in the viscous solution. The inhibition of the chemotactic activity by urease inhibitors paralleled the inhibition of urease. The chemotactic activity of H. pylori was also inhibited by the proton carrier carbonyl cyanide m-chlorophenylhydrazone, showing that H. pylori utilizes proton motive force for motility. These results indicate that cytoplasmic urease plays an important role in the chemotactic motility of H. pylori under a condition that mimics the ecological niche of the bacterium, the gastric mucous layer.

  2. Radioassay of granulocyte chemotaxis. Studies of human granulocytes and chemotactic factors. [/sup 51/Cr tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Gallin, J I

    1974-01-01

    The above studies demonstrate that the /sup 51/Cr radiolabel chemotactic assay is a relatively simple and objective means for studying leukocyte chemotaxis in both normal and pathological conditions. Application of this method to studies of normal human chemotaxis revealed a relatively narrow range of normal and little day-to-day variability. Analysis of this variability revealed that there is more variability among the response of different granulocytes to a constant chemotactic stimulus than among the chemotactic activity of different sera to a single cell source. Utilizing the /sup 51/Cr radioassay, the abnormal granulocyte chemotactic behavior reported in Chediak-Higashi syndrome and a patient with recurrent pyogenic infections and mucocutaneous candidiasis has been confirmed. The /sup 51/Cr chemotactic assay has also been used to assess the generation of chemotactic activity from human serum and plasma. The in vitro generation of two distinct chemotactic factors were examined; the complement product (C5a) and kallikrein, an enzyme of the kinin-generating pathway. Kinetic analysis of complement-related chemotactic factor formation, utilizing immune complexes or endotoxin to activate normal sera in the presence or absence of EGTA as well as kinetic analysis of activation of C2-deficient human serum, provided an easy means of distinguishing the classical (antibody-mediated) complement pathway from the alternate pathway. Such kinetic analysis is necessary to detect clinically important abnormalities since, after 60 min of generation time, normal chemotactic activity may be present despite complete absence or inhibition of one complement pathway. The chemotactic factor generated by either pathway of complement activation appears to be predominately attributable to C5a.

  3. Substrate-driven chemotactic assembly in an enzyme cascade

    Science.gov (United States)

    Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M.; Gilson, Michael K.; Butler, Peter J.; Hess, Henry; Benkovic, Stephen J.; Sen, Ayusman

    2018-03-01

    Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.

  4. Radiation-Induced Thymidine Phosphorylase Upregulation in Rectal Cancer Is Mediated by Tumor-Associated Macrophages by Monocyte Chemoattractant Protein-1 From Cancer Cells

    International Nuclear Information System (INIS)

    Kim, Tae-Dong; Li Ge; Song, Kyoung-Sub; Kim, Jin-Man; Kim, Jun-Sang; Kim, Jong-Seok; Yun, Eun-Jin; Park, Jong-Il; Park, Hae-Duck; Hwang, Byung-Doo; Lim, Kyu; Yoon, Wan-Hee

    2009-01-01

    Purpose: The mechanisms of thymidine phosphorylase (TP) regulation induced by radiation therapy (XRT) in various tumors are poorly understood. We investigated the effect and mechanisms of preoperative XRT on TP expression in rectal cancer tissues. Methods and Materials: TP expression and CD68 and monocyte chemoattractant protein-1 (MCP-1) levels in rectal cancer tissues and cancer cell lines were evaluated before and after XRT in Western blotting, immunohistochemistry, enzyme-linked immunoassay, and reverse transcription-polymerase chain reaction studies. Isolated peripheral blood monocytes were used in the study of chemotaxis under the influence of MCP-1 released by irradiated colon cancer cells. Results: Expression of TP was significantly elevated by 9 Gy of XRT in most rectal cancer tissues but not by higher doses of XRT. In keeping with the close correlation of the increase in both TP expression and the number of tumor-associated macrophages (TAMs), anti-TP immunoreactivity was found in the CD68-positive TAMs and not the neoplastic cells. Expression of MCP-1 was increased in most cases after XRT, and this increase was strongly correlated with TP expression. However, this increase in MCP-1 expression occurred in tumor cells and not stromal cells. The XRT upregulated MCP-1 mRNA and also triggered the release of MCP-1 protein from cultured colon cancer cells. The supernatant of irradiated colon cancer cells showed strong chemotactic activity for monocyte migration, but this activity was completely abolished by neutralizing antibody. Conclusions: Use of XRT induces MCP-1 expression in cancer cells, which causes circulating monocytes to be recruited into TAMs, which then upregulate TP expression in rectal cancer tissues

  5. Meisoindigo, but not its core chemical structure indirubin, inhibits zebrafish interstitial leukocyte chemotactic migration.

    Science.gov (United States)

    Ye, Baixin; Xiong, Xiaoxing; Deng, Xu; Gu, Lijuan; Wang, Qiongyu; Zeng, Zhi; Gao, Xiang; Gao, Qingping; Wang, Yueying

    2017-12-01

    Inflammatory disease is a big threat to human health. Leukocyte chemotactic migration is required for efficient inflammatory response. Inhibition of leukocyte chemotactic migration to the inflammatory site has been shown to provide therapeutic targets for treating inflammatory diseases. Our study was designed to discover effective and safe compounds that can inhibit leukocyte chemotactic migration, thus providing possible novel therapeutic strategy for treating inflammatory diseases. In this study, we used transgenic zebrafish model (Tg:zlyz-EGFP line) to visualize the process of leukocyte chemotactic migration. Then, we used this model to screen the hit compound and evaluate its biological activity on leukocyte chemotactic migration. Furthermore, western blot analysis was performed to evaluate the effect of the hit compound on the AKT or ERK-mediated pathway, which plays an important role in leukocyte chemotactic migration. In this study, using zebrafish-based chemical screening, we identified that the hit compound meisoindigo (25 μM, 50 μM, 75 μM) can significantly inhibit zebrafish leukocyte chemotactic migration in a dose-dependent manner (p = 0.01, p = 0.0006, p migration (p = 0.43). Furthermore, our results unexpectedly showed that indirubin, the core structure of meisoindigo, had no significant effect on zebrafish leukocyte chemotactic migration (p = 0.6001). Additionally, our results revealed that meisoindigo exerts no effect on the Akt or Erk-mediated signalling pathway. Our results suggest that meisoindigo, but not indirubin, is effective for inhibiting leukocyte chemotactic migration, thus providing a potential therapeutic agent for treating inflammatory diseases.

  6. Chemotactic Activity on Human Neutrophils to Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Tetiana Haniastuti

    2013-07-01

    Full Text Available Objective: The aim of this study was to evaluate chemotactic activity o neutrophil to S. mutans. Chemotaxis assay was performed in blind well chambers. Materials and Methods: Hanks balanced salt solution (HBSS containing 106 S. mutans,  108 S. mutans, 10-8 M fMLP, or HBSS alone were placed in the lower wells of the chamber and covered with polycorbonate membrane filter. Neutrophils suspension (2x105 cells was then placed in the upper compartment. After incubation for 60 mins at 37ºC in a humidified atmosphere with 5% CO2, the filters were removed and stained with Giemsa. Result: ANOVA revealed statistically significant differences among groups (p<0.05, indicating that S. mutans induced neutrophils chemotaxis. The number of neutrophils migration in response to 108 S. mutans and 106 S. mutans were signifiantly greater compared to fMLP (p<0.05. Conclusion: S. mutans may activate human neutrophils, resulting in the chemotaxis of the neutrophils.DOI: 10.14693/jdi.v16i2.99

  7. Sperm from sneaker male squids exhibit chemotactic swarming to CO₂.

    Science.gov (United States)

    Hirohashi, Noritaka; Alvarez, Luis; Shiba, Kogiku; Fujiwara, Eiji; Iwata, Yoko; Mohri, Tatsuma; Inaba, Kazuo; Chiba, Kazuyoshi; Ochi, Hiroe; Supuran, Claudiu T; Kotzur, Nico; Kakiuchi, Yasutaka; Kaupp, U Benjamin; Baba, Shoji A

    2013-05-06

    Behavioral traits of sperm are adapted to the reproductive strategy that each species employs. In polyandrous species, spermatozoa often form motile clusters, which might be advantageous for competing with sperm from other males. Despite this presumed advantage for reproductive success, little is known about how sperm form such functional assemblies. Previously, we reported that males of the coastal squid Loligo bleekeri produce two morphologically different euspermatozoa that are linked to distinctly different mating behaviors. Consort and sneaker males use two distinct insemination sites, one inside and one outside the female's body, respectively. Here, we show that sperm release a self-attracting molecule that causes only sneaker sperm to swarm. We identified CO2 as the sperm chemoattractant and membrane-bound flagellar carbonic anhydrase as its sensor. Downstream signaling results from the generation of extracellular H(+), intracellular acidosis, and recovery from acidosis. These signaling events elicit Ca(2+)-dependent turning behavior, resulting in chemotactic swarming. These results illuminate the bifurcating evolution of sperm underlying the distinct fertilization strategies of this species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    Science.gov (United States)

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  9. Enhanced neutrophil chemotactic activity after bronchial challenge in subjects with grain dust-induced asthma.

    Science.gov (United States)

    Park, H S; Jung, K S

    1998-03-01

    There have been few reports suggesting involvement of neutrophils in induction of bronchoconstriction after inhalation of grain dust. To understand the role of neutrophils in pathogenesis of grain dust-induced asthma. We observed serum neutrophil chemotactic activity during grain dust-bronchoprovocation tests in six asthmatic subjects with positive bronchial challenges (group I). They were compared with those of six symptomatic subjects from the same workplace with negative bronchial challenges (group II). After grain dust inhalation, serum neutrophil chemotactic activity significantly increased at 30 minutes (P = .028), and then decreased to baseline level at 240 minutes (P = .028) in five subjects of group I having isolated early asthmatic responses. Enhanced neutrophil chemotactic activity was persistent for up to 240 minutes in one asthmatic subject having both early and late asthmatic responses. There was, however, no significant change in serum neutrophil chemotactic activity during bronchial challenges in subjects of group II. Pre-incubation of sera with anti-interleukin-8 (IL-8) antibody did not affect the neutrophil chemotactic activity results of group I subjects. These results suggest that enhanced neutrophil chemotactic activity distinct from IL-8 may contribute to significant bronchoconstriction induced by grain dust.

  10. A novel dioxygenation product of arachidonic acid possesses potent chemotactic activity for human polymorphonuclear leukocytes.

    Science.gov (United States)

    Shak, S; Perez, H D; Goldstein, I M

    1983-12-25

    We have found that a novel dioxygenation product of arachidonic acid, 8(S),15(S)-dihydroxy-5,11-cis-9,13-trans-eicosatetraenoic acid (8,15-diHETE), possesses chemotactic activity for human polymorphonuclear leukocytes comparable to that of leukotriene B4. Authentic 8,15-diHETE, identified by gas chromatography-mass spectrometry, was prepared by treating arachidonic acid with soybean lipoxygenase and was purified by reverse-phase high performance liquid chromatography. Using a "leading front" assay, 8,15-diHETE exhibited significant chemotactic activity at a concentration of 5.0 ng/ml. Maximum chemotactic activity was observed at a concentration of 30 ng/ml. The 8,15-diHETE generated by mixed human leukocytes after stimulation with arachidonic acid and the calcium ionophore, A23187, exhibited quantitatively similar chemotactic activity. Two synthetic all-trans conjugated isomers of 8,15-diHETE, however, were not chemotactic at concentrations up to 500 ng/ml. In contrast to its potent chemotactic activity, 8,15-diHETE (at concentrations up to 10 micrograms/ml) was relatively inactive with respect to its ability to provoke either degranulation or generation of superoxide anion radicals by cytochalasin B-treated leukocytes. Both leukotriene B4 and 8,15-diHETE may be important mediators of inflammation.

  11. Direct and indirect radioiodination of protein: comparative study of chemotactic peptide labeling

    International Nuclear Information System (INIS)

    Lavinas, Tatiana

    2004-01-01

    The development of simple methods for protein radioiodination have stimulated the use of radioiodinated peptides in vivo. There are two basic methods for labeling proteins with radioiodine: direct labeling, reaction of an electrophilic radioiodine with functional activated groups on protein, like the phenol ring in the tyrosine residue, and the conjugation of a previously radioiodinated molecule to the protein, referred as indirect method. The great problem related to the direct radioiodination of proteins is the in vivo dehalogenation. This problem can be minimized if a non-phenolic prosthetic group is used in the indirect radioiodination of the peptide. The ATE prosthetic group, N-succinimidyl 3-(tri-n-butylstannyl) benzoate, when radioiodinated by electrophilic iododestannilation produces N-succinimidyl 3-[ 123 l/ 131 l] iodine benzoate (SIB) that is subsequently conjugated to the protein by the acylation of the lysine group. There are many radiopharmaceuticals employed in scintigraphic images of infection and inflammation used with some limitations. These limitations stimulated the improvement of a new class of radiopharmaceuticals, the receptor-specific related labeled peptides, as the mediators of the inflammatory response, that presents high affinity by receptors expressed in the inflammation process, and fast clearance from blood and non-target tissues. One of these molecules is the synthetic chemotactic peptide fNleLFNIeYK that presents potent chemotaxis for leukocytes, with high affinity by the receptors presented in polymorphonuclear leukocytes and mononuclear phagocytes. The objective of this work included the synthesis of ATE prosthetic group and comparative radioiodination of the chemotactic peptide fNleLFNIeYK by direct and indirect methods, with radiochemical purity determination and evaluation of in vivo and in vitro stability of the compounds. This work presented an original contribution in the comparative biological distribution studies of the

  12. The actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations

    Science.gov (United States)

    Westendorf, Christian; Negrete, Jose, Jr.; Bae, Albert; Sandmann, Rabea; Bodenschatz, Eberhard; Beta, Carsten

    2013-03-01

    We report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. The averaged F-actin response of many cells to a short-time pulse of cAMP is reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. We systematically exposed a large number of cells to periodic pulse trains. The results indicate a resonance peak at periodic inputs of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the actin regulatory network. To quantitatively test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and Aip1. These served as markers of the F-actin disassembly process and thus allow us to estimate the delay time. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed experimentally. Financial support by the Max-Planck Society and the DFG (SFB 937).

  13. Expression of adhesion molecules, chemokines and matrix metallo- proteinases (MMPs) in viable and degenerating stage of Taenia solium metacestode in swine neurocysticercosis.

    Science.gov (United States)

    Singh, Satyendra K; Singh, Aloukick K; Prasad, Kashi N; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Tripathi, Mukesh; Gupta, Rakesh K; Husain, Nuzhat

    2015-11-30

    Neurocysticercosis (NCC) is a parasitic infection of central nervous system (CNS). Expression of adhesion molecules, chemokines and matrix metalloproteinases (MMPs) were investigated on brain tissues surrounding viable (n=15) and degenerating cysticerci (n=15) of Taenia solium in swine by real-time RT-PCR and ELISA. Gelatin gel zymography was performed for MMPs activity. ICAM-1 (intercellular adhesion molecule-1), E-selectin, MIP-1α (macrophage inflammatory protein-1α), Eotaxin-1 and RANTES (regulated on activation, normal T cell expressed and secreted) were associated with degenerating cysticerci (cysts). However, VCAM-1 (vascular cell adhesion molecule-1), MCP-1 (monocyte chemotactic protein-1), MMP-2 and MMP-9 were associated with both viable and degenerating cysts. In conclusion, viable and degenerating cysticerci have different immune molecule profiles and role of these molecules in disease pathogenesis needs to be investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Neutrophil chemotactic activity in bronchoalveolar lavage fluid of patients with AIDS-associated Pneumocystis carinii pneumonia

    DEFF Research Database (Denmark)

    Benfield, T L; Kharazmi, A; Larsen, C G

    1997-01-01

    been shown to confer a poor prognosis in PCP. We therefore investigated the potential of BAL fluid from 17 patients with PCP to induce neutrophil chemotaxis. BAL fluid from patients induced considerable neutrophil chemotactic activity compared to normal controls. Elevated levels of IL-8 were detected...... in patient samples as compared to controls. A specific anti-IL-8 antibody significantly reduced chemotactic activity of patient samples by more than 50%. In conclusion, IL-8 appears to be a significant participant of neutrophil chemotaxis in AIDS-associated PCP, and may participate in the recruitment...

  15. Colloidal silver nanoparticles/rhamnolipid (SNPRL) composite as novel chemotactic antibacterial agent.

    Science.gov (United States)

    Bharali, P; Saikia, J P; Paul, S; Konwar, B K

    2013-10-01

    The antibacterial activity of silver nanoparticles and rhamnolipid are well known individually. In the present research, antibacterial and chemotactic activity due to colloidal silver nanoparticles (SNP), rhamnolipid (RL) and silver nanoparticles/rhamnolipid composite (SNPRL) were evaluated using Staphylococcus aureus (MTCC3160), Escherichia coli (MTCC40), Pseudomonas aeruginosa (MTCC8163) and Bacillus subtilis (MTCC441) as test strains. Further, the SNPRL nanoparticles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The observation clearly indicates that SNPRL shows prominent antibacterial and chemotactic activity in comparison to all of its individual precursor components. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Phospholipase D catalyzes phospholipid metabolism in chemotactic peptide-stimulated HL-60 granulocytes

    International Nuclear Information System (INIS)

    Pai, J.K.; Siegel, M.I.; Egan, R.W.; Billah, M.M.

    1988-01-01

    There exists circumstantial evidence for activation of phospholipase D (PLD) in intact cells. However, because of the complexity of phospholipid remodeling processes, it is essential to distinguish PLD clearly from other phospholipases and phospholipid remodeling enzymes. Therefore, to establish unequivocally PLD activity in dimethyl sulfoxide-differentiated HL-60 granulocytes, to demonstrate the relative contribution of PLD to phospholipid turnover, and to validate the hypothesis that the formation of phosphatidylethanol is an expression of PLD-catalyzed transphosphatidylation, we have developed methodologies to label HL-60 granulocytes in 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl-PC) with 32P without labeling cellular ATP. These methodologies involve (a) synthesis of alkyl-lysoPC containing 32P by a combination of enzymatic and chemical procedures and (b) incubation of HL-60 granulocytes with this alkyl-[32P] lysoPC which enters the cell and becomes acylated into membrane-associated alkyl-[32P]PC. Upon stimulation of these 32P-labeled cells with the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP), alkyl-[32P]phosphatidic acid (alkyl-[32P]PA) is formed rapidly. Because, under these conditions, cellular ATP has not been labeled with 32P, alkyl-[32P]PA must be formed via PLD-catalyzed hydrolysis of alkyl-[32P]PC at the terminal phosphodiester bond. This result conclusively demonstrates fMLP-induced activation of PLD in HL-60 granulocytes. These 32P-labeled HL-60 granulocytes have also been stimulated in the presence of ethanol to produce alkyl-[32P]phosphatidylethanol (alkyl-[32P]PEt). Formation of alkyl-[32P]PEt parallels that of alkyl-[32P]PA with respect to time course, fMLP concentration, inhibition by a specific fMLP antagonist (t-butoxycarbonyl-Met-Leu-Phe), and Ca2+ concentration

  17. Endothelial cell-driven regulation of CD9 or motility-related protein-1 expression in multiple myeloma cells within the murine 5T33MM model and myeloma patients

    DEFF Research Database (Denmark)

    De Bruyne, E; Levin Andersen, Thomas; De Raeve, H

    2006-01-01

    The cell surface expression of CD9, a glycoprotein of the tetraspanin family influencing several processes including cell motility and metastasis, inversely correlates with progression in several solid tumors. In the present work, we studied the expression and role of CD9 in multiple myeloma (MM...... interaction of the cells with BMEC and that CD9 is involved in transendothelial invasion, thus possibly mediating homing and/or spreading of the MM cells....

  18. CD147 and CD98 complex-mediated homotypic aggregation attenuates the CypA-induced chemotactic effect on Jurkat T cells.

    Science.gov (United States)

    Guo, Na; Zhang, Kui; Lv, Minghua; Miao, Jinlin; Chen, Zhinan; Zhu, Ping

    2015-02-01

    Homotypic cell aggregation plays important roles in physiological and pathological processes, including embryogenesis, immune responses, angiogenesis, tumor cell invasion and metastasis. CD147 has been implicated in most of these phenomena, and it was identified as a T cell activation-associated antigen due to its obvious up-regulation in activated T cells. However, the explicit function and mechanism of CD147 in T cells have not been fully elucidated. In this study, large and compact aggregates were observed in Jurkat T cells after treatment with the specific CD147 monoclonal antibody HAb18 or after the expression of CD147 was silenced by RNA interference, which indicated an inhibitory effect of CD147 in T cell homotypic aggregation. Knocking down CD147 expression resulted in a significant decrease in CD98, along with prominent cell aggregation, similar to that treated by CD98 and CD147 monoclonal antibodies. Furthermore, decreased cell chemotactic activity was observed following CD147- and CD98-mediated cell aggregation, and increased aggregation was correlated with a decrease in the chemotactic ability of the Jurkat T cells, suggesting that CD147- and CD98-mediated homotypic cell aggregation plays a negative role in T cell chemotaxis. Our data also showed that p-ERK, p-ZAP70, p-CD3ζ and p-LCK were significantly decreased in the CD147- and CD98-knocked down Jurkat T cells, which suggested that decreased CD147- and/or CD98-induced homotypic T cell aggregation and aggregation-inhibited chemotaxis might be associated with these signaling pathways. A role for CD147 in cell aggregation and chemotaxis was further indicated in primary CD4(+) T cells. Similarly, low expression of CD147 in primary T cells induced prominent cell aggregation and this aggregation attenuated primary T cell chemotactic ability in response to CypA. Our results have demonstrated the correlation between homotypic cell aggregation and the chemotactic response of T cells to CypA, and these data

  19. Low intensity ultrasound promotes the sensitivity of rat brain glioma to Doxorubicin by down-regulating the expressions of p-glucoprotein and multidrug resistance protein 1 in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available The overall prognosis for malignant glioma is extremely poor, and treatment options are limited in part because of multidrug resistant proteins. Our previous findings suggest low intensity ultrasound (LIUS can induce apoptosis of glioma cells. Given this finding, we were interested in determining if LIUS could help treat glioma by inhibiting multidrug resistant proteins, and if so, which pathways are involved. In this study, the toxicity sensitivity and multidrug resistance proteins of glioma induced by LIUS were investigated using CCK-8, immunohistochemistry, immunofluorency, and RT-PCR in tissue samples and cultured cells. LIUS inhibited increase of C6 cells in an intensity- and time-dependent manner. The toxicity sensitivity of C6 cells increased significantly after LIUS sonication (intensity of 142.0 mW/cm(2 or Doxorubicin (DOX at different concentration, particularly by the combination of LIUS sonication and DOX. The expressions of P-gp and MRP1 decreased significantly post-sonication at intensity of 142.0 mW/cm(2 both in vitro and in vivo. The expressions of p110 delta (PI3K, NF-κB-p65, Akt/PKB, and p-Akt/PKB were downregulated by LIUS sonication and DOX treatment separately or in combination at the same parameters in rat glioma. These results indicate that LIUS could increase the toxicity sensitivity of glioma by down-regulating the expressions of P-gp and MRP1, which might be mediated by the PI3K/Akt/NF-κB pathway.

  20. Dietary α-lactalbumin induced fatty liver by enhancing nuclear liver X receptor αβ/sterol regulatory element-binding protein-1c/PPARγ expression and minimising PPARα/carnitine palmitoyltransferase-1 expression and AMP-activated protein kinase α phosphorylation associated with atherogenic dyslipidaemia, insulin resistance and oxidative stress in Balb/c mice.

    Science.gov (United States)

    López-Oliva, María Elvira; Garcimartin, Alba; Muñoz-Martínez, Emilia

    2017-12-01

    The effect and the role played by dietary α-lactalbumin (α-LAC) on hepatic fat metabolism are yet to be fully elucidated. We reported previously that α-LAC intake induced atherogenic dyslipidaemia in Balb/c mice. The aim of the present study was to investigate if this atherogenic effect could be due to a possible α-LAC-induced hepatic steatosis. We examine the ability of dietary α-LAC to induce liver steatosis, identifying the molecular mechanisms underlying hepatic lipid metabolism in association with the lipid profile, peripheral insulin resistance (IR) and changes in the hepatic oxidative environment. Male Balb/c mice (n 6) were fed with diets containing either chow or 14 % α-LAC for 4 weeks. The α-LAC-fed mice developed abdominal adiposity and IR. Moderate liver steatosis with increased TAG and NEFA contents was correlated with atherogenic dyslipidaemia. There was increased nuclear expression of liver X receptor αβ (LXRαβ), sterol regulatory element-binding protein-1c (SREBP-1c) and PPARγ transcription factors and of the cytosolic enzymes acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase involved in the hepatic de novo lipogenesis. The opposite was found for the nuclear receptor PPARα and the mitochondrial enzyme carnitine palmitoyltransferase-1 (CPT-1), leading to reduced fatty acid β-oxidation (FAO). These changes were associated with a significant decrease in both p-Thr172-AMP-activated protein kinase α (AMPKα) (inactivation) and p-Ser79-ACC1 (activation) and with a more oxidative liver environment increasing lipid peroxidation and protein oxidation and reducing GSH:GSSG ratio in the α-LAC-fed mice. In conclusion, 4 weeks of 14 % α-LAC feeding induced liver steatosis associated with atherogenic dyslipidaemia, IR and oxidative stress by enhancing nuclear LXRαβ/SREBP-1c/PPARγ expression and diminishing PPARα/CPT-1 expression and AMPKα phosphorylation shifting the hepatic FAO toward fatty acid synthesis in Balb/c mice.

  1. Interleukin-4 and 13 induce the expression and release of monocyte chemoattractant protein 1, interleukin-6 and stem cell factor from human detrusor smooth muscle cells: synergy with interleukin-1beta and tumor necrosis factor-alpha

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Andresen, Lars; Alvarez, Susana

    2006-01-01

    Interstitial cystitis is characterized by an increased number of activated MCs in the detrusor muscle. However, to our knowledge the factors that influence the anatomical relationship between MCs and HDSMCs are unknown. MCP-1, IL-6 and SCF have a critical role in the regulation of MC development,......, signaling and function. We investigated whether HDSMCs are capable of expressing and releasing MCP-1, IL-6 and SCF in response to IL-4, IL-13, IL-1beta and tumor necrosis factor-alpha.......Interstitial cystitis is characterized by an increased number of activated MCs in the detrusor muscle. However, to our knowledge the factors that influence the anatomical relationship between MCs and HDSMCs are unknown. MCP-1, IL-6 and SCF have a critical role in the regulation of MC development...

  2. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice

    Directory of Open Access Journals (Sweden)

    LaFerla Frank M

    2005-10-01

    Full Text Available Abstract Background Alzheimer's disease is a complex neurodegenerative disorder characterized pathologically by a temporal and spatial progression of beta-amyloid (Aβ deposition, neurofibrillary tangle formation, and synaptic degeneration. Inflammatory processes have been implicated in initiating and/or propagating AD-associated pathology within the brain, as inflammatory cytokine expression and other markers of inflammation are pronounced in individuals with AD pathology. The current study examines whether inflammatory processes are evident early in the disease process in the 3xTg-AD mouse model and if regional differences in inflammatory profiles exist. Methods Coronal brain sections were used to identify Aβ in 2, 3, and 6-month 3xTg-AD and non-transgenic control mice. Quantitative real-time RT-PCR was performed on microdissected entorhinal cortex and hippocampus tissue of 2, 3, and 6-month 3xTg-AD and non-transgenic mice. Microglial/macrophage cell numbers were quantified using unbiased stereology in 3xTg-AD and non-transgenic entorhinal cortex and hippocampus containing sections. Results We observed human Aβ deposition at 3 months in 3xTg-AD mice which is enhanced by 6 months of age. Interestingly, we observed a 14.8-fold up-regulation of TNF-α and 10.8-fold up-regulation of MCP-1 in the entorhinal cortex of 3xTg-AD mice but no change was detected over time in the hippocampus or in either region of non-transgenic mice. Additionally, this increase correlated with a specific increase in F4/80-positive microglia and macrophages in 3xTg-AD entorhinal cortex. Conclusion Our data provide evidence for early induction of inflammatory processes in a model that develops amyloid and neurofibrillary tangle pathology. Additionally, our results link inflammatory processes within the entorhinal cortex, which represents one of the earliest AD-affected brain regions.

  3. LEGO bricks used as chemotactic chambers: evaluation by a computer-assisted image analysis technique.

    Science.gov (United States)

    Azzarà, A; Chimenti, M

    2004-01-01

    One of the main techniques used to explore neutrophil motility, employs micropore filters in chemotactic chambers. Many new models have been proposed, in order to perform multiple microassays in a rapid, inexpensive and reproducible way. In this work, LEGO bricks have been used as chemotactic chambers in the evaluation of neutrophil random motility and chemotaxis and compared with conventional Boyden chambers in a "time-response" experiment. Neutrophil motility throughout the filters was evaluated by means of an image-processing workstation, in which a dedicated algorithm recognizes and counts the cells in several fields and focal planes throughout the whole filter; correlates counts and depth values; performs a statistical analysis of data; calculates the true value of neutrophil migration; determines the distribution of cells; and displays the migration pattern. By this method, we found that the distances travelled by the cells in conventional chambers and in LEGO bricks were perfectly identical, both in random migration and under chemotactic conditions. Moreover, no interference with the physiological behaviour of neutrophils was detectable. In fact, the kinetics of migration was identical both in random migration (characterized by a gaussian pattern) and in chemotaxis (characterized by a typical stimulation peak, previously identified by our workstation). In conclusion, LEGO bricks are extremely precise devices. They are simple to use and allow the use of small amounts of chemoattractant solution and cell suspension, supplying by itself a triplicate test. LEGO bricks are inexpensive, fast and suitable for current diagnostic activity or for research investigations in every laboratory.

  4. Effect of Serum and Oxygen Concentration on Gene Expression and Secretion of Paracrine Factors by Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Patrick Page

    2014-01-01

    Full Text Available Mesenchymal stem cells (MSC secrete paracrine factors that may exert a protective effect on the heart after coronary artery occlusion. This study was done to determine the effect of hypoxia and serum levels on the mRNA expression and secretion of paracrine factors. Mouse bone marrow MSC were cultured with 5% or 20% serum and in either normoxic (21% O2 or hypoxic (1% O2 conditions. Expression of mRNA for vascular endothelial growth factor (VEGF, monocyte chemotactic protein-1 (MCP-1, macrophage inflammatory protein-1α (MIP-1α, MIP-1β, and matrix metalloproteinase-2 (MMP-2 was determined by RT-qPCR. Secretion into the culture media was determined by ELISA. Hypoxia caused a reduction in gene expression for MCP-1 and an increase for VEGF (5% serum, MIP-1α, MIP-1β, and MMP-2. Serum reduction lowered gene expression for VEGF (normoxia, MCP-1 (hypoxia, MIP-1α (hypoxia, MIP-1β (hypoxia, and MMP-2 (hypoxia and increased gene expression for MMP-2 (normoxia. The level of secretion of these factors into the media generally paralleled gene expression with some exceptions. These data demonstrate that serum and oxygen levels have a significant effect on the gene expression and secretion of paracrine factors by MSC which will affect how MSC interact in vivo during myocardial ischemia.

  5. Chemotactic response and adaptation dynamics in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Diana Clausznitzer

    2010-05-01

    Full Text Available Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia coli is integral for detecting chemicals over a wide range of background concentrations, ultimately allowing cells to swim towards sources of attractant and away from repellents. Its biochemical mechanism based on methylation and demethylation of chemoreceptors has long been known. Despite the importance of adaptation for cell memory and behavior, the dynamics of adaptation are difficult to reconcile with current models of precise adaptation. Here, we follow time courses of signaling in response to concentration step changes of attractant using in vivo fluorescence resonance energy transfer measurements. Specifically, we use a condensed representation of adaptation time courses for efficient evaluation of different adaptation models. To quantitatively explain the data, we finally develop a dynamic model for signaling and adaptation based on the attractant flow in the experiment, signaling by cooperative receptor complexes, and multiple layers of feedback regulation for adaptation. We experimentally confirm the predicted effects of changing the enzyme-expression level and bypassing the negative feedback for demethylation. Our data analysis suggests significant imprecision in adaptation for large additions. Furthermore, our model predicts highly regulated, ultrafast adaptation in response to removal of attractant, which may be useful for fast reorientation of the cell and noise reduction in adaptation.

  6. Enhanced basophil histamine release and neutrophil chemotactic activity predispose grain dust-induced airway obstruction.

    Science.gov (United States)

    Park, H; Jung, K; Kang, K; Nahm, D; Cho, S; Kim, Y

    1999-04-01

    The pathogenic mechanism of grain dust (GD)-induced occupational asthma (OA) remains unclear. To understand further the mechanism of GD-induced OA. Fifteen employees working in a same GD industry, complaining of work-related respiratory symptoms, were enrolled and were divided into two groups according to the GD-bronchoprovocation test (BPT) result: six positive responders were grouped as group III, nine negative responders as group II and five healthy controls as group I. Serum GD-specific immunoglobulin (Ig)E (sIgE), specific IgG (sIgG) and specific IgG4 (sIgG4) antibodies were detected by enzyme-linked immunosorbent assay. Basophil histamine release was measured by the autofluorometric method, and changes of serum neutrophil chemotactic activity were observed by the Boyden chamber method. For clinical parameters such as degree of airway hyperresponsiveness to methacholine, duration of respiratory symptoms, exposure duration, and prevalences of serum sIgE, sIgG and sIgG4 antibodies, there were no significant differences between group II and III (P > 0.05, respectively). Serum neutrophil chemotactic activity increased significantly at 30 min and decreased at 240 min after the GD-BPT in group III subjects (P 0.05). Basophil histamine release induced by GD was significantly higher in group III than those of group I or group II (P < 0.05, respectively), while minimal release of anti-IgG4 antibodies was noted in all three groups. These results suggest that enhanced basophil histamine release and serum neutrophil chemotactic activity might contribute to the development of GD-induced occupational asthma.

  7. Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity.

    Science.gov (United States)

    Mori, Shogo; Williams, Howard; Cagle, Davey; Karanovich, Kristopher; Horgen, F David; Smith, Roger; Watanabe, Coran M H

    2015-10-09

    A new bioactive macrolactone, nuiapolide (1) was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 μM against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol residue.

  8. Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity

    OpenAIRE

    Mori, Shogo; Williams, Howard; Cagle, Davey; Karanovich, Kristopher; Horgen, F. David; Smith, Roger; Watanabe, Coran M. H.

    2015-01-01

    A new bioactive macrolactone, nuiapolide (1) was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 μM against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol re...

  9. Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity

    Directory of Open Access Journals (Sweden)

    Shogo Mori

    2015-10-01

    Full Text Available A new bioactive macrolactone, nuiapolide (1 was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 μM against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol residue.

  10. Defect of netrophil chemotactic function is one of the etiology of aggressive periodontitis.

    Directory of Open Access Journals (Sweden)

    Yanti Rusyanti

    2016-06-01

    Full Text Available Characteristic of progressive destructive periodontal tissue in Aggressive Periodontitis is a features of disruption of the host-homeostasis as the results of imbalance between host response and specific bacterial pathogenic which presents at gingival sulcus. The objective of this study was to evaluate netrophil function of  Aggressive periodontitis molecularly by means of gen polimorphism of Formyl Peptide Receptor (FPR1 at the surface of netrophil cell, the level of IL-8 and netrophil chemotactic. The results of  the study  can be used as an early detection, prevention or to arrest tissue destruction and to restore a health-associated homeostasis in order to get better prognosis of Aggressive Periodontitis. The study was conducted during 20 months in Periodontic Clinic Dental Hospital, Faculty of Dentistry, Padjadjaran University, Genetica Moleculer Medical Laboratory of Research Institution Padjadjaran University Bandung. Research design used case control methode and sample selection is done in concecutive sampling of 32 aggressive periodontitis patients and 29 non aggressive periodontitis patients who were included in the inclusion criteria. Research materials were venous blood and gingival crevicular fluid. PCR-Sequensing methode was used to asses of gene FPR1 Polimorphism. ELISA methode was used to measure IL-8 level in gingival crevicular fluid, and Human CD66abce Microbead Kit by MACS Separation methode was used to asses netrophil chemotactic. Chi-square test, Fisher’s exact, unpaired t tests were employed to analyse the differences of  characteristic, allele frequencies and genotypic, bivariate analysis to analyse of risk factors and biserial point correlation to analyse correlation between risk factors. The results showed the existence of c576T>C>G gene FPR1 polymorphism 5.040 time-fold (p=0.006; OR=5.040 while the down regulation of IL-8( ≤0.064 pg/µl is 34.5 times-fold of having aggressive periodontitis (OR=34, and c576T

  11. MyD88 expression in the rat dental follicle: Implications for osteoclastogenesis and tooth eruption

    Science.gov (United States)

    Liu, Dawen; Yao, Shaomian; Wise, Gary E.

    2010-01-01

    Myeloid differentiation factor 88 (MyD88) is a key adaptor molecule in the interleukin-1 (IL-1) and IL-18 Toll-like receptor signaling pathway. Because it is present in dental follicle (DF) cells in vitro, the purpose of this study was to determine its chronological expression in vivo, as well as its possible role in osteoclastogenesis and tooth eruption. An oligo DNA microarray was used to determine gene expression of MyD88 in vivo in the DFs from the first mandibular molars of postnatal rats from days 1–11. The results showed that MyD88 was expressed maximally at day 3. Using siRNA to knock down MyD88 expression in the DF cells also reduced the gene expression of nuclear factor-kappa B-1 (NFKB1) and monocyte chemoattractant protein 1 (MCP-1). IL-1α up-regulated the expression of NFKB1, MCP-1 and receptor activator of nuclear factor kappa B ligand (RANKL), but knockdown of MyD88 nullified this IL-1α effect. Conditioned medium from DF cells with MyD88 knocked down reduced chemotactic activity for mononuclear cells and reduced osteoclastogenesis as opposed to controls. In conclusion, the maximal expression of MyD88 at day 3 in the DF may contribute to the major burst of osteoclastogenesis needed for eruption by up-regulating MCP-1 and RANKL expression. PMID:20662905

  12. Chemotactic behavior of deep subsurface bacteria toward carbohydrates, amino acids and a chlorinated alkene

    Energy Technology Data Exchange (ETDEWEB)

    Lopez de Victoria, G. (Puerto Rico Univ., Rio Piedras (Puerto Rico). Dept. of Biology)

    1989-02-01

    The chemotactic behavior of deep terrestrial subsurface bacteria toward amino acids, carbohydrates and trichloroethylene was assayed using a modification of the capillary method and bacterial enumeration by acridine orange direct counts. Eleven isolates of bacteria isolated from six different geological formations were investigated. A bimodal response rather than an absolute positive or negative response was observed in most assays. Most of the isolates were positively chemotactic to low concentrations of substrates and were repelled by high concentrations of the same substrate. However, this was not the case for trichloroethylene (TCE) which was mostly an attractant and elicited the highest responses in all the isolates when compared with amino acids and carbohydrates. The movement rates of these isolates in aseptic subsurface sediments in the absence and presence of TCE were also determined using a laboratory model. All of the isolates showed distinct response range, peak, and threshold concentrations when exposed to the same substrates suggesting that they are possibly different species as has been inferred from DNA homology studies. 101 refs., 4 figs., 57 tabs.

  13. An unusual protein kinase phosphorylates the chemotactic receptor of Dictystelium discoideum

    International Nuclear Information System (INIS)

    Meier, K.; Klein, C.

    1988-01-01

    The authors report the cAMP-dependent phosphorylation of the chemotactic receptor of Dictyostelium discoideum in partially purified plasma membranes. The protein kinase responsible for receptor phosphorylation is associated with this fraction and preferentially phosphorylates the ligand-occupied form of the receptor. 8-Azido[ 32 P]cAMP labeling of the cell surface has shown that the cAMP receptor exists in two forms. A 45-kDa protein is predominant on unstimulated cells. cAMP stimulation results in an increased receptor phosphorylation such that the receptor migrates on NaDodSO 4 /PAGE as a 47-kDa protein. Phosphorylation of the chemotactic receptor is not detected in membrane preparations unless cAMP is added to the incubation mixture. Only under those conditions is the phosphorylated 47-kDa form observed. The requirement for cAMP reflects the fact that the kinase involved preferentially uses the ligand-occupied receptor as a substrate. In vitro phosphorylation of the receptor does not involve tyrosine residues. The enzyme does not appear to be a cAMP- or cGMP-dependent protein kinase nor is it sensitive to guanine nucleotides, Ca 2+ /calmodulin, Ca 2+ /phospholipid, or EGTA. Similarities with the β-adrenergic receptor protein kinase are discussed

  14. Effects of Garlic Oil on the Migration of Neutrophil-Like Cell Studied by Using a Chemotactic Gradient Labchip

    Directory of Open Access Journals (Sweden)

    Po-Chen Shih

    2010-01-01

    Full Text Available We have designed and fabricated a novel chemotactic gradient Labchip for studying cell migration quantitatively. Owing to the great potential of garlic and its preparations in developing antiinflammatory drugs, the aim of the present study is to investigate the effect of garlic oil on the locomotion of a neutrophil-like cell by measuring the dynamic features of cell migration including migration direction, average migration speed, chemotactic index (CI, and motility index (MI with the newly designed Labchip. We found that garlic oil treatment lowered the values of CI and MI and reduced the average speed of cell migration from 13 to 8 μm/min. The results indicate that garlic oil is a potential inhibitor for neutrophil-like cell migration and chemotactic responsiveness. By comparing with the effects of nocodazole and cytochalasin B, we also suggest that the antiinflammatory activity exhibited by garlic oil was mainly through inhibiting the assembly-disassembly processes of the cytoskeleton.

  15. Epithelial membrane protein-1 is a biomarker of gefitinib resistance.

    Science.gov (United States)

    Jain, Anjali; Tindell, Charles A; Laux, Isett; Hunter, Jacob B; Curran, John; Galkin, Anna; Afar, Daniel E; Aronson, Nina; Shak, Steven; Natale, Ronald B; Agus, David B

    2005-08-16

    We describe a molecular resistance biomarker to gefitinib, epithelial membrane protein-1 (EMP-1). Gefitinib is a small-molecule inhibitor that competes for the ATP-binding site on EGF receptor (EGFR) and has been approved for patients with advanced lung cancers. Treatment with gefitinib has resulted in clinical benefit in patients, and, recently, heterozygous somatic mutations within the EGFR catalytic domain have been identified as a clinical correlate to objective response to gefitinib. However, clinical resistance to gefitinib limits the utility of this therapeutic to a fraction of patients, and objective clinical responses are rare. We aimed to assess the molecular phenotype and mechanism of in vivo gefitinib resistance in xenograft models and in patient samples. We generated in vivo gefitinib-resistance models in an adenocarcinoma xenograft model by serially passaging tumors in nude mice in presence of gefitinib until resistance was acquired. EMP-1 was identified as a surface biomarker whose expression correlated with acquisition of gefitinib resistance. EMP-1 expression was further correlated with lack of complete or partial response to gefitinib in lung cancer patient samples as well as clinical progression to secondary gefitinib resistance. EMP-1 expression and acquisition of gefitinib clinical resistance was independent of gefitinib-sensitizing EGFR somatic mutations. This report suggests the role of the adhesion molecule, EMP-1, as a biomarker of gefitinib clinical resistance, and further suggests a probable cross-talk between this molecule and the EGFR signaling pathway.

  16. Generation and partial characterization of an eosinophil chemotactic cytokine produced by sensitized equine mononuclear cells stimulated with Strongylus vulgaris antigen.

    Science.gov (United States)

    Dennis, V A; Klei, T R; Chapman, M R

    1993-07-01

    Supernatants generated by stimulation of peripheral blood mononuclear cells (PBMC) from Strongylus vulgaris sensitized or immunized ponies were assayed in vitro for eosinophil chemotactic activity (ECA) using the filter system in blind well chambers. The supernatants from these cultures were chemotactic for eosinophils, but not for neutrophils. Supernates from cultures of unsensitized PBMC stimulated with S. vulgaris antigen were not chemotactic for eosinophils. ECA was first detected in culture supernatants after 1.5 h of incubation and was dependent on both antigen and PBMC concentrations, but independent of serum concentrations. Both female and male S. vulgaris worm antigens stimulated ECA production from sensitized PBMC. ECA was not induced by in vitro stimulation of sensitized S. vulgaris PBMC by female Strongylus edentatus worm antigen. Partial characterization of the eosinophil chemotactic cytokine showed it to be nondialyzable, greater than 8000 molecular weight (MW), and sensitive to heating (56 and 95 degrees C), trypsin, and sodium metaperiodate treatments, suggesting that the cytokine is a protein containing some essential carbohydrate moieties. The cytokine described in this paper could partially contribute to the in vivo blood and tissue eosinophilia in experimental S. vulgaris infection.

  17. Eldecalcitol (ED-71), an analog of 1α,25(OH)2D3, inhibits the growth of squamous cell carcinoma (SCC) cells in vitro and in vivo by down-regulating expression of heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) and FGF-2.

    Science.gov (United States)

    Shintani, T; Takatsu, F; Rosli, S N Z; Usui, E; Hamada, A; Sumi, K; Hayashido, Y; Toratani, S; Okamoto, Tetsuji

    2017-10-01

    Heparin-binding protein 17 (HBp17)/fibroblast growth factor-binding protein-1 (FGFBP-1) was first purified from medium conditioned by A431 cells for its capacity to bind to fibroblast growth factors 1 and 2 (FGF-1 and -2). Among FGF family members, FGF-2 is a potent mitogen for various cell types, including vascular endothelial cells, fibroblasts, and cancer cells such as oral squamous cell carcinoma (OSCC) cells. Besides being well known in bone metabolism, the active form of vitamin D 3 , i.e., 1α,25(OH) 2 D 3 (1,25D 3 ), was reported to have protective effects for heart disease and cancer. Previously, we reported that 1,25D 3 inhibited HBp17/FGFBP-1 expression in OSCC cell lines through NF-κB inhibition (IκBα activation) and resulted in the inactivation of FGF-2. In this study, we examined the potential anti-tumor effect of ED-71, an analog of 1α,25(OH) 2 D 3 , for squamous cell carcinoma cells in vitro and in vivo. The cell lines used were OSCC cell lines (NA-HO-1-n-1 and UE-HO-1-u-1), established from oral cancer patients in our laboratory, and an epidermoid carcinoma/SCC cell line (A431). The growth assay in serum-free culture revealed that ED-71 inhibited the growth of the cancer cell lines in a dose-dependent manner. In addition, ED-71 suppressed HBp17/FGFBP-1 expression by inhibiting the NF-κB pathway as did 1,25D 3 . Furthermore, a luciferase reporter assay revealed that the promoter activity of HBp17/FGFBP-1 (region between -217 and +61) was down-regulated by ED-71. Oral administration of ED-71 significantly inhibited the growth of A431-derived tumors in athymic nude mice. Immunohistochemical analysis revealed that the expression of HBp17/FGFBP-1, FGF-2, CD31, and Ki-67 in the tumors of ED71-treated group was down-regulated in comparison to control. These results suggest that ED-71 possesses potential anti-tumor activity for SCCs both in vitro and in vivo. This compound may act directly on the tumor cells or on endothelial cells by modulating the

  18. Chemotactic preferences govern competition and pattern formation in simulated two-strain microbial communities.

    Science.gov (United States)

    Centler, Florian; Thullner, Martin

    2015-01-01

    Substrate competition is a common mode of microbial interaction in natural environments. While growth properties play an important and well-studied role in competition, we here focus on the influence of motility. In a simulated two-strain community populating a homogeneous two-dimensional environment, strains competed for a common substrate and only differed in their chemotactic preference, either responding more sensitively to a chemoattractant excreted by themselves or responding more sensitively to substrate. Starting from homogeneous distributions, three possible behaviors were observed depending on the competitors' chemotactic preferences: (i) distributions remained homogeneous, (ii) patterns formed but dissolved at a later time point, resulting in a shifted community composition, and (iii) patterns emerged and led to the extinction of one strain. When patterns formed, the more aggregating strain populated the core of microbial aggregates where starving conditions prevailed, while the less aggregating strain populated the more productive zones at the fringe or outside aggregates, leading to a competitive advantage of the less aggregating strain. The presence of a competitor was found to modulate a strain's behavior, either suppressing or promoting aggregate formation. This observation provides a potential mechanism by which an aggregated lifestyle might evolve even if it is initially disadvantageous. Adverse effects can be avoided as a competitor hinders aggregate formation by a strain which has just acquired this ability. The presented results highlight both, the importance of microbial motility for competition and pattern formation, and the importance of the temporal evolution, or history, of microbial communities when trying to explain an observed distribution.

  19. Transverse Chemotactic Migration of Bacteria from High to Low Permeability Regions in a Dual Permeability Porous Microfluidic Device

    Science.gov (United States)

    Singh, R.; Olson, M. S.

    2011-12-01

    Low permeability regions sandwiched between high permeability regions such as clay lenses are difficult to treat using conventional treatment methods. Trace concentrations of contaminants such as non-aqueous phase liquids (NAPLs) remain trapped in these regions and over the time diffuse out into surrounding water thereby acting as a long term source of groundwater contamination. Bacterial chemotaxis (directed migration toward a contaminant source), may be helpful in enhancing bioremediation of such contaminated sites. This study is focused on simulating a two-dimensional dual-permeability groundwater contamination scenario using microfluidic devices and evaluating transverse chemotactic migration of bacteria from high to low permeability regions. A novel bi-layer polydimethylsiloxane (PDMS) microfluidic device was fabricated using photolithography and soft lithography techniques to simulate contamination of a dual- permeability region due to leakage from an underground storage tank into a low permeability region. This device consists of a porous channel through which a bacterial suspension (Escherchia Coli HCB33) is flown and another channel for injecting contaminant/chemo-attractant (DL-aspertic acid) into the porous channel. The pore arrangement in the porous channel contains a 2-D low permeability region surrounded by high permeability regions on both sides. Experiments were performed under chemotactic and non-chemotactic (replacing attractant with buffer solution in the non porous channel) conditions. Images were captured in transverse pore throats at cross-sections 4.9, 9.8, and 19.6 mm downstream from the attractant injection point and bacteria were enumerated in the middle of each pore throat. Bacterial chemotaxis was quantified in terms of the change in relative bacterial counts in each pore throat at cross-sections 9.8 and 19.6 mm with respect to counts at the cross-section at 4.9 mm. Under non-chemotactic conditions, relative bacterial count was observed

  20. Hypoxia-inducible factor-1α regulates chemotactic migration of pancreatic ductal adenocarcinoma cells through directly transactivating the CX3CR1 gene.

    Directory of Open Access Journals (Sweden)

    Tiansuo Zhao

    Full Text Available CX3CR1 is an important chemokine receptor and regulates the chemotactic migration of pancreatic ductal adenocarcinoma (PDAC cells. Up to now, its regulatory mechanism remains largely undefined. Here, we report that hypoxia upregulates the expression of CX3CR1 in pancreatic cancer cells. When hypoxia-inducible factor (HIF-1α expression was knocked down in vitro and in vivo, the expression of CX3CR1 was significantly decreased. Chromatin immunoprecipitation assay demonstrated that HIF-1α bound to the hypoxia-response element (HRE; 5'-A/GCGTG-3' of CX3CR1 promoter under normoxia, and this binding was significantly enhanced under hypoxia. Overexpression of HIF-1α significantly upregulated the expression of luciferase reporter gene under the control of the CX3CR1 promoter in pancreatic cancer cells. Importantly, we demonstrated that HIF-1α may regulate cancer cell migration through CX3CR1. The HIF-1α/CX3CR1 pathway might represent a valuable therapeutic target to prevent invasion and distant metastasis in PDAC.

  1. Preparations of prokaryotic expression system, standard protein and antiserum, of human Y- box binding protein 1%人YB-1的高效原核表达及其标准蛋白与抗血清的制备

    Institute of Scientific and Technical Information of China (English)

    李朴; 史静; 郭变琴; 钟梁; 梁勤东; 涂植光

    2011-01-01

    Aim: To construct a GST- expression system of human Y - box binding protein 1 (YB - 1), prepare the YB - 1 standard protein and its antiserum. Methods : The code sequence of YB - 1 was subcloned to the expression vector pGEX - 6P - 1. The recombinant vector was transformed into E. coli BL21 to express fusion protein GST- YB1. SDS- PAGE was applied to analyze the expression level and form of fusion protein. Then, YB- 1 standard protein was obtained by the means of GST - affinity chromatography and column - protease - digestion. The rabbit was immunized with YB - 1 protein to prepare the anti - YB1 polyclonal antibody. Results: The recombinant expression vector was constructed. SDS - PAGE and Western blot results showed that the GST - fusion protein was high- level expressed with soluble - form, and YB - 1 standard protein and its antisermn were obtained successfully. Conclusions: An economical, rapid method to prepare YB - 1 standard protein is established, and further obtained the high titer and affinity YB - 1 polyclonal antibody, which lay foundations for preparation of YB - 1 monoclonal antibody and development of YB - 1 quantitative analysis methods.%目的:构建YB1-GST表达系统,建立经济高效YB-1蛋白制备方法并制备其多抗。方法:将YB-1编码序列亚克隆至表达载体pGEX-6P-1;转化表达菌并确定可溶性表达最佳条件;采用GST亲和层析与层析柱上PSP酶切融合蛋白获取无标签蛋白的YB-1,经超滤浓缩及Western blot鉴定后,进-步真空冷冻于燥,制备YB-1标准蛋白;采用大剂量YB-1长程免疫方案免疫家兔以制备其抗体。结果:成功构建了表达载体pGEX—YB1;SDS—PAGE结果显示,YB1-GST融合蛋白以可溶性表达为主;Western blot结果证实,表达产物经GST亲和层析、PSP酶切以及真空冷冻干燥后获得了纯度较高的YB-1标准蛋白,将该蛋白免疫家兔获得了较高效价与特异性的

  2. ARSENITE ACTIVATES KB-DEPENDENT IL-8 GENE EXPRESSION IN AIRWAY EPITHELIM IN THE ABSENCE OF NUCLEAR TRANSLOCATION OF NF-KB

    Science.gov (United States)

    Airway epithelial cells respond to certain environmental stresses by mounting a proinflammatory response, which is characterized by enhanced synthesis and release of the neutrophil chemotactic and activating factor interleukin-8 (IL-8). IL-8 expression is regulated at the transcr...

  3. Effect of selective phosphodiesterase inhibitors on the rat eosinophil chemotactic response in vitro

    Directory of Open Access Journals (Sweden)

    Alves Alessandra C

    1997-01-01

    Full Text Available In the present study, we have performed a comparative analysis of the effect of selective inhibitors of phosphodiesterase (PDE type III, IV and V on eosinophil chemotaxis triggered by platelet activating factor (PAF and leukotriene B4 (LTB4 in vitro. The effect of the analogues N6-2'-O-dibutyryladenosine 3':5' cyclic monophosphate (Bt2 cyclic AMP and N2-2'-O- dibutyrylguanosine 3':5' cyclic monophosphate (Bt2 cyclic GMP has also been determined. The eosinophils were obtained from the peritoneal cavity of naive Wistar rats and purified in discontinuous Percoll gradients to 85-95% purity. We observed that pre-incubation of eosinophils with the PDE type IV inhibitor rolipram suppressed the chemotactic response triggered by PAF and LTB4, in association with an increase in the intracellular levels of cyclic AMP. In contrast, neither zaprinast (type V inhibitor nor type III inhibitors milrinone and SK&F 94836 affected the eosinophil migration. Only at the highest concentration tested did the analogue Bt2 cyclic AMP suppress the eosinophil chemotaxis, under conditions where Bt2 cyclic GMP was ineffective. We have concluded that inhibition of PDE IV, but not PDE III or V, was able to block the eosinophil chemotaxis in vitro, suggesting that the suppressive activity of selective PDE IV inhibitors on tissue eosinophil accumulation may, at least, be partially dependent on their ability to directly inhibit the eosinophil migration.

  4. Investigations into the design principles in the chemotactic behavior of Escherichia coli.

    Science.gov (United States)

    Kim, Tae-Hwan; Jung, Sung Hoon; Cho, Kwang-Hyun

    2008-01-01

    Inspired by the recent studies on the analysis of biased random walk behavior of Escherichia coli[Passino, K.M., 2002. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22 (3), 52-67; Passino, K.M., 2005. Biomimicry for Optimization, Control and Automation. Springer-Verlag, pp. 768-798; Liu, Y., Passino, K.M., 2002. Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors. J. Optim. Theory Appl. 115 (3), 603-628], we have developed a model describing the motile behavior of E. coli by specifying some simple rules on the chemotaxis. Based on this model, we have analyzed the role of some key parameters involved in the chemotactic behavior to unravel the underlying design principles. By investigating the target tracking capability of E. coli in a maze through computer simulations, we found that E. coli clusters can be controlled as target trackers in a complex micro-scale-environment. In addition, we have explored the dynamical characteristics of this target tracking mechanism through perturbation of parameters under noisy environments. It turns out that the E. coli chemotaxis mechanism might be designed such that it is sensitive enough to efficiently track the target and also robust enough to overcome environmental noises.

  5. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri.

    Science.gov (United States)

    Mandel, Mark J; Schaefer, Amy L; Brennan, Caitlin A; Heath-Heckman, Elizabeth A C; Deloney-Marino, Cindy R; McFall-Ngai, Margaret J; Ruby, Edward G

    2012-07-01

    Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae ("vibrios"), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.

  6. Synergic production of neutrophil chemotactic activity by colonic epithelial cells and eosinophils.

    Science.gov (United States)

    Dent, Gordon; Loweth, Sam C; Hasan, Anwar Matar; Leslie, Fiona M

    2014-10-01

    The presence of eosinophils in the lumen and mucosa of the intestine is characteristic of both ulcerative colitis (UC) and Crohn's disease (CD). There is evidence of eosinophil activation in the intestine during acute inflammatory episodes of these diseases; these episodes are also characterized by an influx of neutrophils, which have the potential to cause extensive tissue damage. We undertook a study to determine whether eosinophils in contact with colonic epithelial cells produce factors that may attract neutrophils in response to immunological stimulation. Neutrophil chemotactic activity (NCA) and concentrations of three neutrophil-attracting CXC chemokines - CXCL1 (Groα), CXCL5 (Ena78) and CXCL8 (IL8) - were measured in supernatants of T84 colonic epithelial cells and blood eosinophils or eosinophil-like myeloid leukaemia cells (AML14.3D10), alone or in combination. Cells were stimulated with serum-opsonized zymosan (OZ) particles. NCA (Peosinophil co-cultures were significantly higher than in the supernatants of either cell type alone. Release of CXCL1 (Peosinophils but not higher than from OZ-stimulated epithelial cells. Eosinophils and colonic epithelial cells exhibit synergy in production of neutrophil chemoattractants in response to immunological stimulation. This may represent a mechanism for exaggerated recruitment of neutrophils to the intestine in response to acute infection in conditions that are characterized by the presence of eosinophils in the bowel. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Decreased numbers of chemotactic factor receptors in chronic neutropenia with defective chemotaxis: spontaneous recovery from the neutrophil abnormalities during early childhood

    International Nuclear Information System (INIS)

    Yasui, K.; Yamazaki, M.; Miyagawa, Y.; Komiyama, A.; Akabane, T.

    1987-01-01

    Childhood chronic neutropenia with decreased numbers of chemotactic factor receptors as well as defective chemotaxis was first demonstrated in an 8-month-old girl. Chemotactic factor receptors on neutrophils were assayed using tritiated N-formyl-methionyl-leucyl-phenylalanine ( 3 H-FMLP). The patient's neutrophils had decreased numbers of the receptors: numbers of the receptors were 20,000 (less than 3 SD) as compared with those of control cells of 52,000 +/- 6000 (mean +/- SD) (n = 10). The neutropenia disappeared spontaneously by 28 months of age parallel with the improvement of chemotaxis and increase in numbers of chemotactic factor receptors. These results demonstrate a transient decrease of neutrophil chemotactic factor receptors as one of the pathophysiological bases of a transient defect of neutrophil chemotaxis in this disorder

  8. Degradation of brown adipocyte purine nucleotides regulates uncoupling protein 1 activity

    Directory of Open Access Journals (Sweden)

    Tobias Fromme

    2018-02-01

    Full Text Available Objective: Non-shivering thermogenesis in mammalian brown adipose tissue depends on thermogenic uncoupling protein 1. Its activity is triggered by free fatty acids while purine nucleotides mediate inhibition. During activation, it is thought that free fatty acids overcome purine-mediated inhibition. We measured the cellular concentration and the release of purine nucleotide metabolites to uncover a possible role of purine nucleotide degradation in uncoupling protein 1 activation. Methods: With mass spectrometry, purine nucleotide metabolites were quantified in cellular homogenates and supernatants of cultured primary brown adipocytes. We also determined oxygen consumption in response to a β-adrenergic agonist. Results: Upon adrenergic activation, brown adipocytes decreased the intracellular concentration of inhibitory nucleotides (ATP, ADP, GTP and GDP and released the respective degradation products. At the same time, an increase in cellular calcium occurred. None of these phenomena occurred in white adipocytes or myotubes. The brown adipocyte expression of enzymes implicated in purine metabolic remodeling is altered upon cold exposure. Pharmacological and genetic interference of purine metabolism altered uncoupling protein 1 mediated uncoupled respiration. Conclusion: Adrenergic stimulation of brown adipocytes lowers the intracellular concentration of purine nucleotides, thereby contributing to uncoupling protein 1 activation. Keywords: Purine nucleotides, Uncoupling protein 1, Brown adipose tissue, Non-shivering thermogenesis, HILIC-MS/MS, Guanosine monophosphate reductase

  9. Plant-Adapted Escherichia coli Show Increased Lettuce Colonizing Ability, Resistance to Oxidative Stress and Chemotactic Response

    Science.gov (United States)

    Dublan, Maria de los Angeles; Ortiz-Marquez, Juan Cesar Federico; Lett, Lina; Curatti, Leonardo

    2014-01-01

    Background Escherichia coli is a widespread gut commensal and often a versatile pathogen of public health concern. E. coli are also frequently found in different environments and/or alternative secondary hosts, such as plant tissues. The lifestyle of E. coli in plants is poorly understood and has potential implications for food safety. Methods/Principal Findings This work shows that a human commensal strain of E. coli K12 readily colonizes lettuce seedlings and produces large microcolony-like cell aggregates in leaves, especially in young leaves, in proximity to the vascular tissue. Our observations strongly suggest that those cell aggregates arise from multiplication of single bacterial cells that reach those spots. We showed that E. coli isolated from colonized leaves progressively colonize lettuce seedlings to higher titers, suggesting a fast adaptation process. E. coli cells isolated from leaves presented a dramatic rise in tolerance to oxidative stress and became more chemotactic responsive towards lettuce leaf extracts. Mutant strains impaired in their chemotactic response were less efficient lettuce colonizers than the chemotactic isogenic strain. However, acclimation to oxidative stress and/or minimal medium alone failed to prime E. coli cells for enhanced lettuce colonization efficiency. Conclusion/Significance These findings help to understand the physiological adaptation during the alternative lifestyle of E. coli in/on plant tissues. PMID:25313845

  10. Specific effects of c-Jun NH2-terminal kinase-interacting protein 1 in neuronal axons

    Directory of Open Access Journals (Sweden)

    Shu Tang

    2016-01-01

    Full Text Available c-Jun NH2-terminal kinase (JNK-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B (TrkB anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of TrkB anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neurons in vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed TrkB complexes in vitro and in vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of TrkB gradually increased in axon terminals. However, the distribution of TrkB reduced in axon terminals after knocking out JNK-interacting protein 1. In addition, there were differences in distribution of TrkB after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of TrkB in dendrites. These findings confirm that JNK-interacting protein 1 can interact with TrkB in neuronal cells, and can regulate the transport of TrkB in axons, but not in dendrites.

  11. Direct and indirect radioiodination of protein: comparative study of chemotactic peptide labeling; Radioiodacao de proteina por via direta e indireta: estudo comparativo da marcacao de peptideo quimiotatico

    Energy Technology Data Exchange (ETDEWEB)

    Lavinas, Tatiana

    2004-07-01

    The development of simple methods for protein radioiodination have stimulated the use of radioiodinated peptides in vivo. There are two basic methods for labeling proteins with radioiodine: direct labeling, reaction of an electrophilic radioiodine with functional activated groups on protein, like the phenol ring in the tyrosine residue, and the conjugation of a previously radioiodinated molecule to the protein, referred as indirect method. The great problem related to the direct radioiodination of proteins is the in vivo dehalogenation. This problem can be minimized if a non-phenolic prosthetic group is used in the indirect radioiodination of the peptide. The ATE prosthetic group, N-succinimidyl 3-(tri-n-butylstannyl) benzoate, when radioiodinated by electrophilic iododestannilation produces N-succinimidyl 3-[{sup 123}l/{sup 131}l] iodine benzoate (SIB) that is subsequently conjugated to the protein by the acylation of the lysine group. There are many radiopharmaceuticals employed in scintigraphic images of infection and inflammation used with some limitations. These limitations stimulated the improvement of a new class of radiopharmaceuticals, the receptor-specific related labeled peptides, as the mediators of the inflammatory response, that presents high affinity by receptors expressed in the inflammation process, and fast clearance from blood and non-target tissues. One of these molecules is the synthetic chemotactic peptide fNleLFNIeYK that presents potent chemotaxis for leukocytes, with high affinity by the receptors presented in polymorphonuclear leukocytes and mononuclear phagocytes. The objective of this work included the synthesis of ATE prosthetic group and comparative radioiodination of the chemotactic peptide fNleLFNIeYK by direct and indirect methods, with radiochemical purity determination and evaluation of in vivo and in vitro stability of the compounds. This work presented an original contribution in the comparative biological distribution studies

  12. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin-8

    International Nuclear Information System (INIS)

    Grob, P.M.; David, E.; Warren, T.C.; DeLeon, R.P.; Farina, P.R.; Homon, C.A.

    1990-01-01

    Monocyte-derived neutrophil chemotactic factor/interleukin-8 (MDNCF/IL-8) is an 8,000-dalton protein produced by monocytes which exhibits activity as a chemoattractant for neutrophils with maximal activity achieved at a concentration of 50 ng/ml. This polypeptide has been iodinated by chloramine-T methodology (350 Ci/mM), and specific receptors for MDNCF/IL-8 have been detected on human neutrophils, U937 cells, THP-1 cells, and dimethyl sulfoxide-differentiated HL-60 cells. The binding of MDNCF/IL-8 to human neutrophils is not inhibited by interleukin-1 alpha, tumor necrosis factor-alpha, insulin, or epidermal growth factor. In addition, chemoattractants such as C5a, fMet-Leu-Phe, leukotriene B4, and platelet-activating factor fail to inhibit binding, suggesting that MDNCF/IL-8 utilizes a unique receptor. The receptor for MDNCF/IL-8 is apparently glycosylated since ligand binding is inhibited by the presence of wheat germ agglutinin, a lectin with a binding specificity for N-acetylglucosamine and neuraminic acid. Steady state binding experiments indicate Kd values of 4 and 0.5 nM and receptor numbers of 75,000 and 7,400 for human neutrophils and differentiated HL-60 cells, respectively. 125I-MDNCF/IL-8 bound to human neutrophils is rapidly internalized and subsequently released from cells as trichloroacetic acid-soluble radioactivity. Affinity labeling experiments suggest that the human neutrophil MDNCF/IL-8 receptor exhibits a mass of approximately 58,000 daltons

  13. Coccidioides Endospores and Spherules Draw Strong Chemotactic, Adhesive, and Phagocytic Responses by Individual Human Neutrophils.

    Directory of Open Access Journals (Sweden)

    Cheng-Yuk Lee

    Full Text Available Coccidioides spp. are dimorphic pathogenic fungi whose parasitic forms cause coccidioidomycosis (Valley fever in mammalian hosts. We use an innovative interdisciplinary approach to analyze one-on-one encounters between human neutrophils and two forms of Coccidioides posadasii. To examine the mechanisms by which the innate immune system coordinates different stages of the host response to fungal pathogens, we dissect the immune-cell response into chemotaxis, adhesion, and phagocytosis. Our single-cell technique reveals a surprisingly strong response by initially quiescent neutrophils to close encounters with C. posadasii, both from a distance (by complement-mediated chemotaxis as well as upon contact (by serum-dependent adhesion and phagocytosis. This response closely resembles neutrophil interactions with Candida albicans and zymosan particles, and is significantly stronger than the neutrophil responses to Cryptococcus neoformans, Aspergillus fumigatus, and Rhizopus oryzae under identical conditions. The vigorous in vitro neutrophil response suggests that C. posadasii evades in vivo recognition by neutrophils through suppression of long-range mobilization and recruitment of the immune cells. This observation elucidates an important paradigm of the recognition of microbes, i.e., that intact immunotaxis comprises an intricate spatiotemporal hierarchy of distinct chemotactic processes. Moreover, in contrast to earlier reports, human neutrophils exhibit vigorous chemotaxis toward, and frustrated phagocytosis of, the large spherules of C. posadasii under physiological-like conditions. Finally, neutrophils from healthy donors and patients with chronic coccidioidomycosis display subtle differences in their responses to antibody-coated beads, even though the patient cells appear to interact normally with C. posadasii endospores.

  14. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Hammer, Niels A; Nielsen, Jacob

    2004-01-01

    Insulin-like growth factor II mRNA-binding protein 1 (IMP1) belongs to a family of RNA-binding proteins implicated in mRNA localization, turnover, and translational control. Mouse IMP1 is expressed during early development, and an increase in expression occurs around embryonic day 12.5 (E12.5). T...

  15. Stroke Status Evoked Adhesion Molecule Genetic Alterations in Astrocytes Isolated from Stroke-Prone Spontaneously Hypertensive Rats and the Apigenin Inhibition of Their Expression

    Directory of Open Access Journals (Sweden)

    Kazuo Yamagata

    2010-01-01

    Full Text Available We examined the possibility that the expression of adhesion molecules is regulated differently in cultured astrocytes from stroke-prone spontaneously hypertensive rats (SHRSP/IZM rats than in those from Wistar Kyoto rats (WKY/IZM by tumor necrosis factor-alpha (TNF- or hypoxia and reoxygenation (H/R and the inhibitory effects of apigenin. It was found that the expression of vascular cell adhesion molecule-1 (VCAM-1 by TNF- in astrocytes isolated from SHRSP/IZM was increased compared with that in WKY/IZM. The expression of monocyte chemotactic protein-1 (MCP-1 mRNA induced by H/R in SHRSP/IZM astrocytes was increased compared with that in normal oxygen concentrations. Apigenin strongly attenuated TNF--induced VCAM-1 mRNA and protein expression and suppressed the adhesion of U937 cells and SHRSP/IZM astrocytes. These results suggest that the expression levels of adhesion molecules during H/R affect disease outcome and can drive SHRSP/IZM to stroke. It is suggested that apigenin regulates adhesion molecule expression in reactive astrocytes during ischemia.

  16. Sex-Specific Protection of Osteoarthritis by Deleting Cartilage Acid Protein 1

    OpenAIRE

    Ge, Xianpeng; Ritter, Susan Y.; Tsang, Kelly; Shi, Ruirui; Takei, Kohtaro; Aliprantis, Antonios O.

    2016-01-01

    Cartilage acidic protein 1 (CRTAC1) was recently identified as an elevated protein in the synovial fluid of patients with osteoarthritis (OA) by a proteomic analysis. This gene is also upregulated in both human and mouse OA by transcriptomic analysis. The objective of this study was to characterize the expression and function of CRTAC1 in OA. Here, we first confirm the increase of CRTAC1 in cartilage biopsies from OA patients undergoing joint replacement by real-time PCR and immunohistochemis...

  17. Amplification of the spleen macrophage population in malaria: possible role of a factor chemotactic for blood mononuclear cells

    International Nuclear Information System (INIS)

    Wyler, D.J.; Gallin, J.I.

    1976-01-01

    The mechanism of amplification of the splenic macrophages' population was investigated using mice infected with malaria as a model of an obligate intravascular infection. It was observed that these macrophages derived from blood monocytes rather than by local proliferation in the spleen. A factor, chemotactic for blood mononuclear cells, was present in spleen cells shortly after infection and preceded detectable increases in spleen macrophage number by 48 hours. This factor, in concert with spleen derived macrophage migration inhibition factor, may be important in the amplification of splenic macrophage population in intravascular infections

  18. Molecular basis of cellular localization of poly C binding protein 1 in neuronal cells

    International Nuclear Information System (INIS)

    Berry, Andrea M.; Flock, Kelly E.; Loh, Horace H.; Ko, Jane L.

    2006-01-01

    Poly C binding protein 1 (PCBP) is involved in the transcriptional regulation of neuronal mu-opioid receptor gene. In this study, we examined the molecular basis of PCBP cellular/nuclear localization in neuronal cells using EGFP fusion protein. PCBP, containing three KH domains and a variable domain, distributed in cytoplasm and nucleus with a preferential nuclear expression. Domain-deletional analyses suggested the requirement of variable and KH3 domains for strong PCBP nuclear expression. Within the nucleus, a low nucleolar PCBP expression was observed, and PCBP variable domain contributed to this restricted nucleolar expression. Furthermore, the punctate nuclear pattern of PCBP was correlated to its single-stranded (ss) DNA binding ability, with both requiring cooperativity of at least three sequential domains. Collectively, certain PCBP domains thus govern its nuclear distribution and transcriptional regulatory activity in the nucleus of neurons, whereas the low nucleolar expression implicates the disengagement of PCBP in the ribosomal RNA synthesis

  19. Simulation of self-propelled chemotactic bacteria in a stokes flow*

    Directory of Open Access Journals (Sweden)

    Maury B.

    2010-12-01

    Full Text Available We prescrit a method to simulate the motion of self-propelled rigid particles in a twodimensional Stokesian fluid, taking into account chemotactic behaviour. Self-propulsion is modelled as a point force associated to each particle, placed at a certain distance from its gravity centre. The method for solving the fluid flow and the motion of the bacteria is based on a variational formulation on the whole domain, including fluid and particles: rigid motion is enforced by penalizing the strain rate tensor on the rigid domain, while incompressibility is treated by duality. This leads to a minimisation problem over unconstrained functional spaces which cari lie easily implemented from any finite element Stokes solver. In order to ensure robustness, a projection algorithm is used to deal with contacts between particles. The particles are meant to represent bacteria of the Escherichia coli type, which interact with their chemical environment through consumption of nutrients and orientation in some favorable direction. Our mode’ takes into account the interaction with oxygen. An advection-diffusion equation on the oxygen concentration is solved in the fluid domain, with a source term accounting for oxygen consumption by the bacteria. In addition, self-propulsion is deactivated for those particles which cannot consume enough oxygen. Finally, the mode’ includes random changes in the orientation of the individual bacteria, with a frequency that depends on the surrounding oxygen concentration, in order to favor the direction of the concentration gradient and thus to reproduce chemotactic behaviour. Numerical simulations implemented with FreeFem++ are presented. Nous présentons une méthode de simulation du mouvement de particules rigides autopropulsées dans un fluide de Stokes en dimension 2. en prenant en compte leur comportement chimiotactique. L’auto-propulsion est modélisée par une force (presque ponctuelle associée à chaque particule et plac

  20. Lipopolysaccharide regulated protein expression is only partly impaired in monocytes from patients with type I diabetes

    Directory of Open Access Journals (Sweden)

    Abke Sabine

    2006-03-01

    Full Text Available Abstract Background Monocytes play an important role in innate immunity and atherosclerosis. A disturbed secretion of cytokines in lipopolysaccharide (LPS activated monocytes from type 1 diabetes (T1D patients has been described and may contribute to the impaired inflammatory response in these individuals. In the present study the influence of LPS on five different proteins with a function in immunity and atherosclerosis was analyzed in monocytes from controls and T1D patients. Methods Monocytes were isolated from controls and T1D patients and the LPS-stimulated increase of IL-6, CXCL8, monocyte chemotactic protein 1 (CCL2, MCP-1 and superoxide dismutase (SOD 2, as well as the LPS-mediated decrease of apolipoprotein E (Apo E in primary human monocytes from controls and T1D patients was determined. Results CCL2 and IL-6 secretion in response to LPS was found significantly reduced in monocytes from T1D patients when compared to controls whereas basal CCL2 release was similar in control and T1D cells. In contrast, CXCL8 and apolipoprotein E secretion and SOD 2 expression upon LPS stimulation is similar from T1D and control monocytes. Conclusion These data indicate that LPS-mediated protein expression is only partly disturbed in monocytes from T1D patients. Reduced secretion of IL-6 and CCL2 in activated monocytes of these patients may contribute to an impaired inflammatory response and vascular disease.

  1. Prokaryotic expression and in vitro functional analysis of IL-1β and MCP-1 from guinea pig.

    Science.gov (United States)

    Dirisala, Vijaya R; Jeevan, Amminikutty; Ly, Lan H; McMurray, David N

    2013-06-01

    The Guinea pig (Cavia porcellus) is an excellent animal model for studying human tuberculosis (TB) and also for a number of other infectious and non-infectious diseases. One of the major roadblocks in effective utilization of this animal model is the lack of readily available immunological reagents. In order to address this issue, guinea pig interleukin 1 beta (IL-1β) and monocyte chemoattractant protein-1 (MCP-1) were efficiently cloned and expressed in a prokaryotic expression vector, and the expressed proteins in soluble form from both the genes were confirmed by N-terminal sequencing. The biological activity of recombinant guinea pig IL-1β was demonstrated by its ability to drive proliferation in thymocytes, and the recombinant guinea pig MCP-1 exhibited chemotactic activity for guinea pig resident peritoneal macrophages. These biologically active recombinant guinea pig proteins will facilitate an in-depth understanding of the role they play in the immune responses of the guinea pig to TB and other diseases.

  2. Neutrophilic nodules in the intestinal walls of Japanese monkeys associated with the neutrophil chemotactic activity of larval extracts and secretions of Oesophagostomum aculeatum.

    Science.gov (United States)

    Horii, Y; Ishii, A; Owhashi, M; Miyoshi, M; Usui, M

    1985-01-01

    High neutrophil chemotactic activity was detected in the culture medium from Oesophagostomum aculeatum larvae in vitro using blind-well chambers with Millipore filters, and guinea pig leucocytes as indicator cells. Neutrophil chemotactic activity was also detected in the extract from larval worms in a dose dependent fashion. This activity was detected in the low molecular weight fractions adjacent to a sodium chloride marker by gel filtration on Sephadex G200. These results were further confirmed with monkey neutrophils. The possible role of this activity in the formation of granulomatous lesions rich in neutrophils found in O aculeatum infections in the Japanese monkey is discussed.

  3. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  4. Chemotactic Activity of Cyclophilin A in the Skin Mucus of Yellow Catfish (Pelteobagrus fulvidraco) and Its Active Site for Chemotaxis

    Science.gov (United States)

    Dawar, Farman Ullah; Tu, Jiagang; Xiong, Yang; Lan, Jiangfeng; Dong, Xing Xing; Liu, Xiaoling; Khattak, Muhammad Nasir Khan; Mei, Jie; Lin, Li

    2016-01-01

    Fish skin mucus is a dynamic barrier for invading pathogens with a variety of anti-microbial enzymes, including cyclophilin A (CypA), a multi-functional protein with peptidyl-prolyl cis/trans isomerase (PPIase) activity. Beside various other immunological functions, CypA induces leucocytes migration in vitro in teleost. In the current study, we have discovered several novel immune-relevant proteins in yellow catfish skin mucus by mass spectrometry (MS). The CypA present among them was further detected by Western blot. Moreover, the CypA present in the skin mucus displayed strong chemotactic activity for yellow catfish leucocytes. Interestingly, asparagine (like arginine in mammals) at position 69 was the critical site in yellow catfish CypA involved in leucocyte attraction. These novel efforts do not only highlight the enzymatic texture of skin mucus, but signify CypA to be targeted for anti-inflammatory therapeutics. PMID:27589721

  5. Chemotactic Activity of Cyclophilin A in the Skin Mucus of Yellow Catfish (Pelteobagrus fulvidraco and Its Active Site for Chemotaxis

    Directory of Open Access Journals (Sweden)

    Farman Ullah Dawar

    2016-08-01

    Full Text Available Fish skin mucus is a dynamic barrier for invading pathogens with a variety of anti-microbial enzymes, including cyclophilin A (CypA, a multi-functional protein with peptidyl-prolyl cis/trans isomerase (PPIase activity. Beside various other immunological functions, CypA induces leucocytes migration in vitro in teleost. In the current study, we have discovered several novel immune-relevant proteins in yellow catfish skin mucus by mass spectrometry (MS. The CypA present among them was further detected by Western blot. Moreover, the CypA present in the skin mucus displayed strong chemotactic activity for yellow catfish leucocytes. Interestingly, asparagine (like arginine in mammals at position 69 was the critical site in yellow catfish CypA involved in leucocyte attraction. These novel efforts do not only highlight the enzymatic texture of skin mucus, but signify CypA to be targeted for anti-inflammatory therapeutics.

  6. Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord.

    Science.gov (United States)

    Tahtouh, Muriel; Croq, Françoise; Vizioli, Jacopo; Sautiere, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Daha, Mohamed R; Pestel, Joël; Lefebvre, Christophe

    2009-02-01

    In vertebrates, central nervous system (CNS) protection is dependent on many immune cells including microglial cells. Indeed, activated microglial cells are involved in neuroinflammation mechanisms by interacting with numerous immune factors. Unlike vertebrates, some lophotrochozoan invertebrates can fully repair their CNS following injury. In the medicinal leech Hirudo medicinalis, the recruitment of microglial cells at the lesion site is essential for sprouting of injured axons. Interestingly, a new molecule homologous to vertebrate C1q was characterized in leech, named HmC1q (for H. medicinalis) and detected in neurons and glial cells. In chemotaxis assays, leech microglial cells were demonstrated to respond to human C1q. The chemotactic activity was reduced when microglia was preincubated with signaling pathway inhibitors (Pertussis Toxin or wortmannin) or anti-human gC1qR antibody suggesting the involvement of gC1qR in C1q-mediated migration in leech. Assays using cells preincubated with NO chelator (cPTIO) showed that C1q-mediated migration was associated to NO production. Of interest, by using anti-HmC1q antibodies, HmC1q released in the culture medium was shown to exhibit a similar chemotactic effect on microglial cells as human C1q. In summary, we have identified, for the first time, a molecule homologous to mammalian C1q in leech CNS. Its chemoattractant activity on microglia highlights a new investigation field leading to better understand leech CNS repair mechanisms.

  7. Resveratrol Increases Nephrin and Podocin Expression and Alleviates Renal Damage in Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Qing-Rong Pan

    2014-07-01

    Full Text Available Resveratrol is well known for its anti-inflammation and anti-oxidant properties, and has been shown to be effective in alleviating the development of obesity. The purpose of this investigation was to analyze the effect of resveratrol on renal damage in obese rats induced by a high-fat diet (HFD and its possible mechanisms. Male Sprague-Dawley rats were divided into three groups: control, HFD, and HFD plus resveratrol (treated with 100 mg/kg/day resveratrol. Body weight, serum and urine metabolic parameters, and kidney histology were measured. Meanwhile, the activities of nuclear factor-κB (NF-κB and superoxide dismutase (SOD, the content of malondialdehyde (MDA, and the protein levels of tumor necrosis factor (TNF-α, monocyte chemotactic protein-1 (MCP-1, nephrin and podocin in kidney were detected. Our work showed that resveratrol alleviated dyslipidemia and renal damage induced by HFD, decreased MDA level and increased SOD activity. Furthermore, the elevated NF-κB activity, increased TNF-α and MCP-1 levels, and reduced expressions of nephrin and podocin induced by HFD were significantly reversed by resveratrol. These results suggest resveratrol could ameliorate renal injury in rats fed a HFD, and the mechanisms are associated with suppressing oxidative stress and NF-κB signaling pathway that in turn up-regulate nephrin and podocin protein expression.

  8. Autoantibodies Targeting AT1 Receptor from Patients with Acute Coronary Syndrome Upregulate Proinflammatory Cytokines Expression in Endothelial Cells Involving NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Weijuan Li

    2014-01-01

    Full Text Available Our study intended to prove whether agonistic autoantibodies to angiotensin II type 1 receptor (AT1-AAs exist in patients with coronary heart disease (CHD and affect the human endothelial cell (HEC by upregulating proinflammatory cytokines expression involved in NF-κB pathway. Antibodies were determined by chronotropic responses of cultured neonatal rat cardiomyocytes coupled with receptor-specific antagonists (valsartan and AT1-EC2 as described previously. Interleukin-6 (IL-6, vascular cell adhesion molecule-1 (VCAM-1, and monocyte chemotactic protein-1 (MCP-1 expression were improved at both mRNA and protein levels in HEC, while NF-κB in the DNA level was improved detected by electrophoretic mobility shift assays (EMSA. These improvements could be inhibited by specific AT1 receptor blocker valsartan, NF-κB blocker pyrrolidine dithiocarbamate (PDTC, and specific short peptides from the second extracellular loop of AT1 receptor. These results suggested that AT1-AAs, via the AT1 receptor, induce expression of proinflammatory cytokines involved in the activation of NF-κB. AT1-AAs may play a great role in the pathogenesis of the acute coronary syndrome by mediating vascular inflammatory effects involved in the NF-κB pathway.

  9. Cleft analysis of Zika virus non-structural protein 1

    Institute of Scientific and Technical Information of China (English)

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2017-01-01

    The non-strctural protein 1 is an important molecule of the viruses in flavivirus group including to Zika virus. Recently, the NS1 of Zika virus was discovered.There is still no complete information of the molecular interaction of NS1 of Zika virus which can be the clue for explanation for its pathogenesis and further drug search. Here the authors report the cleft analysis of NS1 of Zika virus and the result can be useful for future development of good diagnostic tool and antiviral drug finding for management of Zika virus.

  10. Cleft analysis of Zika virus non-structural protein 1

    Institute of Scientific and Technical Information of China (English)

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2017-01-01

    The non-structural protein 1 is an important molecule of the viruses in flavivirus group including to Zika virus. Recently, the NS1 of Zika virus was discovered. There is still no complete information of the molecular interaction of NS1 of Zika virus which can be the clue for explanation for its pathogenesis and further drug search. Here the authors report the cleft analysis of NS1 of Zika virus and the result can be useful for future development of good diagnostic tool and antiviral drug finding for management of Zika virus.

  11. Cleft analysis of Zika virus non-structural protein 1

    Directory of Open Access Journals (Sweden)

    Somsri Wiwanitkit

    2017-08-01

    Full Text Available The non-structural protein 1 is an important molecule of the viruses in flavivirus group including to Zika virus. Recently, the NS1 of Zika virus was discovered. There is still no complete information of the molecular interaction of NS1 of Zika virus which can be the clue for explanation for its pathogenesis and further drug search. Here the authors report the cleft analysis of NS1 of Zika virus and the result can be useful for future development of good diagnostic tool and antiviral drug finding for management of Zika virus.

  12. Cleft analysis of Zika virus non-structural protein 1

    OpenAIRE

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2017-01-01

    The non-structural protein 1 is an important molecule of the viruses in flavivirus group including to Zika virus. Recently, the NS1 of Zika virus was discovered. There is still no complete information of the molecular interaction of NS1 of Zika virus which can be the clue for explanation for its pathogenesis and further drug search. Here the authors report the cleft analysis of NS1 of Zika virus and the result can be useful for future development of good diagnostic tool and antiviral drug fin...

  13. EXPRESS

    International Nuclear Information System (INIS)

    Ancelin, C.; Le, P.; DeSaint-Quentin, S.; Villatte, N.

    1987-01-01

    This paper presents EXPRESS, an expert system developed for the automation of reliability studies. The first part consists in the description of the method for static thermohydraulic systems. In this step, the authors define the knowledge representation based on the two inference engines - ALOUETTE and LCR developed by EDF. They explain all the process to construct a fault tree from a topological and functional description of the system. Numerous examples are exhibited in illustration of the method. This is followed by the lessons derived from the studies performed on some safety systems of the PALUEL nuclear plant. The development of the same approach for electric power systems is described, insisting on the difference resulting from the sequential nature of these systems. Finally, they show the main advantages identified during the studies

  14. Structural studies of human glioma pathogenesis-related protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu [College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States); Koski, Raymond A.; Bonafé, Nathalie [L2 Diagnostics LLC, 300 George Street, New Haven, CT 06511 (United States); College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States)

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.

  15. Hierarchical, domain type-specific acquisition of antibodies to Plasmodium falciparum erythrocyte membrane protein 1 in Tanzanian children

    DEFF Research Database (Denmark)

    Cham, Gerald K K; Turner, Louise; Kurtis, Jonathan D

    2010-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant antigen expressed on the surface of malaria-infected erythrocytes. PfEMP1 attaches to the vascular lining and allows infected erythrocytes to avoid filtration through the spleen. Each parasite genome encodes about 60 diffe...... and play a major role in limiting parasite multiplication in the blood.......Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant antigen expressed on the surface of malaria-infected erythrocytes. PfEMP1 attaches to the vascular lining and allows infected erythrocytes to avoid filtration through the spleen. Each parasite genome encodes about 60...... different PfEMP1 variants, each PfEMP1 comprises several domains in its extracellular region, and the PfEMP1 repertoire in different parasites contains domain types that are serologically cross-reactive. In this longitudinal study, we followed 672 children living in an area of high malaria transmission...

  16. Influence of prosthetic radioiodination on the chemical and biological behavior of chemotactic peptides labeled at high specific activity

    International Nuclear Information System (INIS)

    Pozzi, Oscar R.; Sajaroff, Elisa O.; Edreira, Martin M.

    2006-01-01

    The influence of radioiodination made through prosthetic group N-succinimidyl-3-[ 131 I]iodo-benzoate ([ 131 I]SIB) on the behavior of small peptides was investigated using as model the chemotactic hexapeptide Nα-for-Nle-Leu-Phe-Nle-Tyr-Lys. No carrier added labeled peptide was isolated by reverse-phase HPLC (RP-HPLC) with coupling efficiencies up to 59-75%. Biodistribution in normal and infected C57 mice showed mainly a hepatobiliary clearance, a very low thyroid uptake and the highest uptake at the infection site was within 1h of injection. Superoxide production and competitive binding assays studies in human polymorphonuclear leukocytes showed a preserved biological activity and high-affinity specific binding. However, the results indicated that the changes observed in the receptor-binding properties with an IC 50 almost twice than the unlabeled peptide and the increasing in the hepatobiliary excretion could be the consequence of the increased lipophicity observed due to the presence of the prosthetic group together with a strong influence of the radioisotope per se

  17. Influence of prosthetic radioiodination on the chemical and biological behavior of chemotactic peptides labeled at high specific activity

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Oscar R. [National Atomic Energy Commission, Ezeiza Atomic Centre, Buenos Aires (Argentina)]. E-mail: oscar.pozzi@duke.edu; Sajaroff, Elisa O. [National Atomic Energy Commission, Ezeiza Atomic Centre, Buenos Aires (Argentina); Edreira, Martin M. [National Atomic Energy Commission, Ezeiza Atomic Centre, Buenos Aires (Argentina)

    2006-06-15

    The influence of radioiodination made through prosthetic group N-succinimidyl-3-[{sup 131}I]iodo-benzoate ([{sup 131}I]SIB) on the behavior of small peptides was investigated using as model the chemotactic hexapeptide N{alpha}-for-Nle-Leu-Phe-Nle-Tyr-Lys. No carrier added labeled peptide was isolated by reverse-phase HPLC (RP-HPLC) with coupling efficiencies up to 59-75%. Biodistribution in normal and infected C57 mice showed mainly a hepatobiliary clearance, a very low thyroid uptake and the highest uptake at the infection site was within 1h of injection. Superoxide production and competitive binding assays studies in human polymorphonuclear leukocytes showed a preserved biological activity and high-affinity specific binding. However, the results indicated that the changes observed in the receptor-binding properties with an IC{sub 50} almost twice than the unlabeled peptide and the increasing in the hepatobiliary excretion could be the consequence of the increased lipophicity observed due to the presence of the prosthetic group together with a strong influence of the radioisotope per se.

  18. Characterization of the formyl peptide chemotactic receptor appearing at the phagocytic cell surface after exposure to phorbol myristate acetate

    International Nuclear Information System (INIS)

    Gardner, J.P.; Melnick, D.A.; Malech, H.L.

    1986-01-01

    The biochemistry and subcellular source of new formyl peptide chemotactic receptor appearing at the human neutrophil and differentiated HL-60 (d-HL-60) cell surface after stimulation with phorbol myristate acetate (PMA) were examined. Formyl peptide receptor was analyzed by affinity labeling with formyl-norleu-leu-phe-norleu- [ 125 I]iodotyr-lys and ethylene glycol bis(succinimidyl succinate) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and densitometric analysis of autoradiographs. PMA, a specific granule secretagogue, increases affinity labeling of formyl peptide receptors on the neutrophil surface by 100%, and on d-HL-60, which lack specific granule markers, by 20%. Papain treatment markedly reduces surface labeling of formyl peptide receptor in both neutrophils and d-HL-60, and results in the appearance of a lower m.w. membrane-bound receptor fragment. PMA stimulation of papain-treated cells increases uncleaved surface receptor on neutrophils by 400%, and on D-HL-60 by only 45%. This newly appearing receptor is the same apparent m.w. (55,000 to 75,000 for neutrophils; 62,000 to 80,000 for d-HL-60) and yields the same papain cleavage product as receptor on the surface of unstimulated cells. These observations suggest that specific granule membranes contain large amounts of formyl peptide receptor, which is biochemically identical to that found on the cell surface and can be mobilized to the cell surface with appropriate stimulation

  19. PEG-albumin plasma expansion increases expression of MCP-1 evidencing increased circulatory wall shear stress: an experimental study.

    Directory of Open Access Journals (Sweden)

    C Makena Hightower

    Full Text Available Treatment of blood loss with plasma expanders lowers blood viscosity, increasing cardiac output. However, increased flow velocity by conventional plasma expanders does not compensate for decreased viscosity in maintaining vessel wall shear stress (WSS, decreasing endothelial nitric oxide (NO production. A new type of plasma expander using polyethylene glycol conjugate albumin (PEG-Alb causes supra-perfusion when used in extreme hemodilution and is effective in treating hemorrhagic shock, although it is minimally viscogenic. An acute 40% hemodilution/exchange-transfusion protocol was used to compare 4% PEG-Alb to Ringer's lactate, Dextran 70 kDa and 6% Hetastarch (670 kDa in unanesthetized CD-1 mice. Serum cytokine analysis showed that PEG-Alb elevates monocyte chemotactic protein-1 (MCP-1, a member of a small inducible gene family, as well as expression of MIP-1α, and MIP-2. MCP-1 is specific to increased WSS. Given the direct link between increased WSS and production of NO, the beneficial resuscitation effects due to PEG-Alb plasma expansion appear to be due to increased WSS through increased perfusion and blood flow rather than blood viscosity.

  20. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1 Mutant Zebrafish.

    Directory of Open Access Journals (Sweden)

    Brian P Grone

    Full Text Available Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1, are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing "dark-flash" visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations.

  1. (−-Epigallocatechin gallate inhibits endotoxin-induced expression of inflammatory cytokines in human cerebral microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Li Jieliang

    2012-07-01

    Full Text Available Abstract Background (−-Epigallocatechin gallate (EGCG is a major polyphenol component of green tea that has antioxidant activities. Lipopolysaccharide (LPS induces inflammatory cytokine production and impairs blood–brain barrier (BBB integrity. We examined the effect of EGCG on LPS-induced expression of the inflammatory cytokines in human cerebral microvascular endothelial cells (hCMECs and BBB permeability. Methods The expression of TNF-α, IL-1β and monocyte chemotactic protein-1 (MCP-1/CCL2 was determined by quantitative real time PCR (qRT-PCR and ELISA. Intercellular adhesion molecule 1 (ICAM-1 and vascular cell adhesion molecule (VCAM in hCMECs were examined by qRT-PCR and Western blotting. Monocytes that adhered to LPS-stimulated endothelial cells were measured by monocyte adhesion assay. Tight junctional factors were detected by qRT-PCR (Claudin 5 and Occludin and immunofluorescence staining (Claudin 5 and ZO-1. The permeability of the hCMEC monolayer was determined by fluorescence spectrophotometry of transmembrane fluorescin and transendothelial electrical resistance (TEER. NF-kB activation was measured by luciferase assay. Results EGCG significantly suppressed the LPS-induced expression of IL-1β and TNF-α in hCMECs. EGCG also inhibited the expression of MCP-1/CCL2, VCAM-1 and ICAM-1. Functional analysis showed that EGCG induced the expression of tight junction proteins (Occludin and Claudin-5 in hCMECs. Investigation of the mechanism showed that EGCG had the ability to inhibit LPS-mediated NF-κB activation. In addition, 67-kD laminin receptor was involved in the anti-inflammatory effect of EGCG. Conclusions Our results demonstrated that LPS induced inflammatory cytokine production in hCMECs, which could be attenuated by EGCG. These data indicate that EGCG has a therapeutic potential for endotoxin-mediated endothelial inflammation.

  2. Cytokine-Like Protein 1(Cytl1: A Potential Molecular Mediator in Embryo Implantation.

    Directory of Open Access Journals (Sweden)

    Zhichao Ai

    Full Text Available Cytokine-like protein 1 (Cytl1, originally described as a protein expressed in CD34+ cells, was recently identified as a functional secreted protein involved in chondrogenesis and cartilage development. However, our knowledge of Cytl1 is still limited. Here, we determined the Cytl1 expression pattern regulated by ovarian hormones at both the mRNA and protein levels. We found that the endometrial expression of Cytl1 in mice was low before or on the first day of gestation, significantly increased during embryo implantation, and then decreased at the end of implantation. We investigated the effects of Cytl1 on endometrial cell proliferation, and the effects on the secretion of leukemia inhibitory factor (LIF and heparin-binding epidermal growth factor (HB-EGF. We also explored the effect of Cytl1 on endometrial adhesion properties in cell-cell adhesion assays. Our findings demonstrated that Cytl1 is an ovarian hormone-dependent protein expressed in the endometrium that enhances the proliferation of HEC-1-A and RL95-2 cells, stimulates endometrial secretion of LIF and HB-EGF, and enhances the adhesion of HEC-1-A and RL95-2 cells to JAR spheroids. This study suggests that Cytl1 plays an active role in the regulation of embryo implantation.

  3. Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria.

    Science.gov (United States)

    Roundhill, E A; Burchill, S A

    2012-03-13

    Overexpression of plasma membrane multi-drug resistance protein 1 (MRP-1) can lead to multidrug resistance. In this study, we describe for the first time the expression of mitochondrial MRP-1 in untreated human normal and cancer cells and tissues. MRP-1 expression and subcellular localisation in normal and cancer cells and tissues was examined by differential centrifugation and western blotting, and immunofluorescence microscopy. Viable mitochondria were isolated and MRP-1 efflux activity measured using the calcein-AM functional assay. MRP-1 expression was increased using retroviral infection and specific overexpression confirmed by RNA array. Cell viability was determined by trypan blue exclusion and annexin V-propidium iodide labelling of cells. MRP-1 was detected in the mitochondria of cancer and normal cells and tissues. The efflux activity of mitochondrial MRP-1 was more efficient (55-64%) than that of plasma membrane MRP-1 (11-22%; PMRP-1 expression resulted in a preferential increase in mitochondrial MRP-1, suggesting selective targeting to this organelle. Treatment with a non-lethal concentration of doxorubicin (0.85 nM, 8 h) increased mitochondrial and plasma membrane MRP-1, increasing resistance to MRP-1 substrates. For the first time, we have identified MRP-1 with efflux activity in human mitochondria. Mitochondrial MRP-1 may be an exciting new therapeutic target where historically MRP-1 inhibitor strategies have limited clinical success.

  4. Targeted deletion of fibrinogen like protein 1 reveals a novel role in energy substrate utilization.

    Directory of Open Access Journals (Sweden)

    Valeriy Demchev

    Full Text Available Fibrinogen like protein 1(Fgl1 is a secreted protein with mitogenic activity on primary hepatocytes. Fgl1 is expressed in the liver and its expression is enhanced following acute liver injury. In animals with acute liver failure, administration of recombinant Fgl1 results in decreased mortality supporting the notion that Fgl1 stimulates hepatocyte proliferation and/or protects hepatocytes from injury. However, because Fgl1 is secreted and detected in the plasma, it is possible that the role of Fgl1 extends far beyond its effect on hepatocytes. In this study, we show that Fgl1 is additionally expressed in brown adipose tissue. We find that signals elaborated following liver injury also enhance the expression of Fgl1 in brown adipose tissue suggesting that there is a cross talk between the injured liver and adipose tissues. To identify extra hepatic effects, we generated Fgl1 deficient mice. These mice exhibit a phenotype suggestive of a global metabolic defect: Fgl1 null mice are heavier than wild type mates, have abnormal plasma lipid profiles, fasting hyperglycemia with enhanced gluconeogenesis and exhibit differences in white and brown adipose tissue morphology when compared to wild types. Because Fgl1 shares structural similarity to Angiopoietin like factors 2, 3, 4 and 6 which regulate lipid metabolism and energy utilization, we postulate that Fgl1 is a member of an emerging group of proteins with key roles in metabolism and liver regeneration.

  5. Detection and Quantification of the Fragile X Mental Retardation Protein 1 (FMRP

    Directory of Open Access Journals (Sweden)

    Giuseppe LaFauci

    2016-12-01

    Full Text Available The final product of FMR1 gene transcription, Fragile X Mental Retardation Protein 1 (FMRP, is an RNA binding protein that acts as a repressor of translation. FMRP is expressed in several tissues and plays important roles in neurogenesis, synaptic plasticity, and ovarian functions and has been implicated in a number of neuropsychological disorders. The loss of FMRP causes Fragile X Syndrome (FXS. In most cases, FXS is due to large expansions of a CGG repeat in FMR1—normally containing 6–54 repeats—to over 200 CGGs and identified as full mutation (FM. Hypermethylation of the repeat induces FMR1 silencing and lack of FMRP expression in FM male. Mosaic FM males express low levels of FMRP and present a less severe phenotype that inversely correlates with FMRP levels. Carriers of pre-mutations (55–200 CGG show increased mRNA, and normal to reduced FMRP levels. Alternative splicing of FMR1 mRNA results in 24 FMRP predicted isoforms whose expression are tissues and developmentally regulated. Here, we summarize the approaches used by several laboratories including our own to (a detect and estimate the amount of FMRP in different tissues, developmental stages and various pathologies; and (b to accurately quantifying FMRP for a direct diagnosis of FXS in adults and newborns.

  6. Detection and Quantification of the Fragile X Mental Retardation Protein 1 (FMRP).

    Science.gov (United States)

    LaFauci, Giuseppe; Adayev, Tatyana; Kascsak, Richard; Brown, W Ted

    2016-12-09

    The final product of FMR1 gene transcription, Fragile X Mental Retardation Protein 1 (FMRP), is an RNA binding protein that acts as a repressor of translation. FMRP is expressed in several tissues and plays important roles in neurogenesis, synaptic plasticity, and ovarian functions and has been implicated in a number of neuropsychological disorders. The loss of FMRP causes Fragile X Syndrome (FXS). In most cases, FXS is due to large expansions of a CGG repeat in FMR1 -normally containing 6-54 repeats-to over 200 CGGs and identified as full mutation (FM). Hypermethylation of the repeat induces FMR1 silencing and lack of FMRP expression in FM male. Mosaic FM males express low levels of FMRP and present a less severe phenotype that inversely correlates with FMRP levels. Carriers of pre-mutations (55-200 CGG) show increased mRNA, and normal to reduced FMRP levels. Alternative splicing of FMR1 mRNA results in 24 FMRP predicted isoforms whose expression are tissues and developmentally regulated. Here, we summarize the approaches used by several laboratories including our own to (a) detect and estimate the amount of FMRP in different tissues, developmental stages and various pathologies; and (b) to accurately quantifying FMRP for a direct diagnosis of FXS in adults and newborns.

  7. Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma.

    Science.gov (United States)

    Li, Ming; Mukasa, Akitake; Inda, Maria del-Mar; Zhang, Jianhua; Chin, Lynda; Cavenee, Webster; Furnari, Frank

    2011-12-19

    Although GBP1 (guanylate binding protein 1) was among the first interferon-inducible proteins identified, its function is still largely unknown. Epidermal growth factor receptor (EGFR) activation by amplification or mutation is one of the most frequent genetic lesions in a variety of human tumors. These include glioblastoma multiforme (GBM), which is characterized by independent but interrelated features of extensive invasion into normal brain parenchyma, rapid growth, necrosis, and angiogenesis. In this study, we show that EGFR activation promoted GBP1 expression in GBM cell lines through a signaling pathway involving Src and p38 mitogen-activated protein kinase. Moreover, we identified YY1 (Yin Yang 1) as the downstream transcriptional regulator regulating EGFR-driven GBP1 expression. GBP1 was required for EGFR-mediated MMP1 (matrix metalloproteinase 1) expression and glioma cell invasion in vitro. Although deregulation of GBP1 expression did not affect glioma cell proliferation, overexpression of GBP1 enhanced glioma cell invasion through MMP1 induction, which required its C-terminal helical domain and was independent of its GTPase activity. Reducing GBP1 levels by RNA interference in invasive GBM cells also markedly inhibited their ability to infiltrate the brain parenchyma of mice. GBP1 expression was high and positively correlated with EGFR expression in human GBM tumors and cell lines, particularly those of the neural subtype. Together, these findings establish GBP1 as a previously unknown link between EGFR activity and MMP1 expression and nominate it as a novel potential therapeutic target for inhibiting GBM invasion.

  8. Expression of EMAP-II in the rat dental follicle and its potential role in tooth eruption

    Science.gov (United States)

    Liu, Dawen; Wise, Gary E.

    2008-01-01

    Endothelial monocyte-activating polypeptide II (EMAP-II) is an inflammatory cytokine with chemotactic activity. Because the dental follicle (DF) recruits mononuclear cells (osteoclast precursors) to promote the osteoclastogenesis needed for tooth eruption, it was the aim of this study to determine if EMAP-II may contribute to this recruitment. Using a DNA microarray, EMAP-II was found to be highly expressed in vivo in the DFs of day 1 to day 11 postnatal rats, with its expression elevated at days 1 and 3. Using a siRNA to knock down EMAP-II expression also resulted in a reduction in expression of CSF-1 and MCP-1 in the DF cells. Addition of EMAP-II protein to the DF cells partially restored the expression of CSF-1 and MCP-1. In chemotaxis assays using either conditioned medium of the DF cells with anti-EMAP-II antibody added or conditioned medium of DF cells with EMAP-II knocked down by siRNA, migration indexes of bone marrow mononuclear cells were significantly reduced. These results suggest that EMAP-II is another chemotactic molecule in the dental follicle involved in recruitment of mononuclear cells, and that EMAP-II may exert its chemotactic function directly by recruiting mononuclear cells and indirectly by enhancing the expression of other chemotactic molecules (CSF-1 and MCP-1). PMID:18705801

  9. The Role of Y-Box Binding Protein 1 in Kidney Injury: Friend or Foe?

    Science.gov (United States)

    Ke, Ben; Fan, Chuqiao; Tu, Weiping; Fang, Xiangdong

    2018-01-01

    Y-box-binding protein 1 (YB-1) is a multifunctional protein involved in various cellular processes via the transcriptional and translational regulation of target gene expression. YB-1 promotes acute or chronic kidney injury through multiple molecular pathways; however, accumulating evidence suggests that significantly increased YB-1 levels are of great importance in renoprotection. In addition, YB-1 may contribute to obesity-related kidney disease by promoting adipogenesis. Thus, the role of YB-1 in kidney injury is complicated, and no comprehensive review is currently available. In this review, we summarise recent progress in our understanding of the function of YB-1 in kidney injury and provide an overview of the dual role of YB-1 in kidney disease. Moreover, we propose that YB-1 is a potential therapeutic target to restrict kidney disease. © 2018 The Author(s). Published by S. Karger AG, Basel.

  10. Serum concentration and interaction properties of MBL/ficolin associated protein-1

    DEFF Research Database (Denmark)

    Skjoedt, Mikkel-Ole; Hummelshoj, Tina; Palarasah, Yaseelan

    2011-01-01

    pathway (LCP) recognition molecules and MAP-1. We expressed recombinant MAP-1 in CHO DG44 cells, developed a quantitative ELISA assay based on a MAP-1 specific monoclonal capture antibody and measured the serum levels in 100 Danish blood donors. In addition we assessed the association properties between......Recently, a novel protein named MBL/ficolin associated protein-1 (MAP-1) derived from the MASP1 gene through differential splicing was identified. In the present study, we established biochemical characteristics, determined the serum level and assessed the interactions between the lectin complement...... MAP-1 and Ficolin-2, -3 and MBL in serum using ELISA and density gradient ultra centrifugation. When recombinant MAP-1 was subjected to N-glycosidase F treatment the molecular mass decreased from ~45kDa to ~40kDa equivalent with the calculated molecular mass from the deduced amino acid sequence...

  11. The Role of Activator Protein-1 (AP-1) Family Members in CD30-Positive Lymphomas

    Science.gov (United States)

    Garces de los Fayos Alonso, Ines; Lagger, Sabine; Merkel, Olaf; Kenner, Lukas

    2018-01-01

    The Activator Protein-1 (AP-1) transcription factor (TF) family, composed of a variety of members including c-JUN, c-FOS and ATF, is involved in mediating many biological processes such as proliferation, differentiation and cell death. Since their discovery, the role of AP-1 TFs in cancer development has been extensively analysed. Multiple in vitro and in vivo studies have highlighted the complexity of these TFs, mainly due to their cell-type specific homo- or hetero-dimerization resulting in diverse transcriptional response profiles. However, as a result of the increasing knowledge of the role of AP-1 TFs in disease, these TFs are being recognized as promising therapeutic targets for various malignancies. In this review, we focus on the impact of deregulated expression of AP-1 TFs in CD30-positive lymphomas including Classical Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma. PMID:29597249

  12. MAVS protein is attenuated by rotavirus nonstructural protein 1.

    Directory of Open Access Journals (Sweden)

    Satabdi Nandi

    Full Text Available Rotavirus is the single, most important agent of infantile gastroenteritis in many animal species, including humans. In developing countries, rotavirus infection attributes approximately 500,000 deaths annually. Like other viruses it establishes an intimate and complex interaction with the host cell to counteract the antiviral responses elicited by the cell. Among various pattern recognition receptors (PAMPs of the host, the cytosolic RNA helicases interact with viral RNA to activate the Mitochondrial Antiviral Signaling protein (MAVS, which regulates cellular interferon response. With an aim to identify the role of different PAMPs in rotavirus infected cell, MAVS was found to degrade in a time dependent and strain independent manner. Rotavirus non-structural protein 1 (NSP1 which is a known IFN antagonist, interacted with MAVS and degraded it in a strain independent manner, resulting in a complete loss of RNA sensing machinery in the infected cell. To best of our knowledge, this is the first report on NSP1 functionality where a signaling protein is targeted unanimously in all strains. In addition NSP1 inhibited the formation of detergent resistant MAVS aggregates, thereby averting the antiviral signaling cascade. The present study highlights the multifunctional role of rotavirus NSP1 and reinforces the fact that the virus orchestrates the cellular antiviral response to its own benefit by various back up strategies.

  13. Effects of Different Types of Electroacupuncture on Expression of High Mobility Group Box Pro-tein-1 and Interleukin-10 in Hippocampus of APP/PS1 Mice%不同电针法对APP/PS1小鼠海马高迁移率族蛋白B1和白细胞介素-10表达的影响

    Institute of Scientific and Technical Information of China (English)

    赵江豪; 姚海江; 王远征; 卢梦晗; 李昱颉; 宋萌; 杨利娟; 刘俊彤; 李志刚

    2018-01-01

    目的 观察"通督启神"法脉冲电针与音乐电针对APP/PS1模型小鼠空间学习记忆能力及海马内炎症介质表达的影响.方法 APP/PS1双转基因雄性小鼠32只随机分为模型组(n=8)、药物组(n=8)、脉冲电针组(n=8)和音乐电针组(n=8),相同月龄C57BL/6雄性小鼠作为正常对照组(n=8).脉冲电针组与音乐电针组以各自电针仪电针百会、印堂,留针20 min,取针后点刺人中.药物组予盐酸多奈哌齐0.92 mg/kg灌胃.正常对照组、模型组与药物组以相同方法抓取束缚20 min.治疗15 d后,行Morris水迷宫测试,免疫组化观察海马高迁移率族蛋白B1(HMGB1)与白细胞介素-10(IL-10)表达,Western blotting检测海马HMGB1与IL-10的表达.结果 两个电针组从训练第4天起,逃避潜伏较模型组缩短(P0.05);海马HMGB1的表达降低(P0.05).结论 "通督启神"法脉冲电针与音乐电针均能改善APP/PS1小鼠学习记忆功能,音乐电针在抑制炎性因子表达、促进抗炎因子表达方面可能优于脉冲电针.%Objective To compare the effect of impulse electroacupuncture (impulse-EA) and music electroacupuncture (music-EA) for Tongdu Qishen on spatial learning and memory, and expression of cytokine in the hippocampus of APP/PS1 mice. Methods A total of 32 APP/PS1 double transgenic male mice were randomly divided into model group (n=8), drug group (n=8), impulse-EA group (n=8) and music-EA group (n=8), the same background and age male C57BL/6 mice were observed as normal group (n=8). The impulse-EA group and music-EA group accepted EA at Baihui (GV20) and Yintang (GV29), connected with their own electroacupuncture stimulators, for 20 minuts, then, they were pricked Renzhong (GV26) for a while. The drug group accepted donepezil hydrochloride 0.92 mg/kg intra-gastrically. The normal group, model group and drug group were grabbed and bounded in the same way. After 15 days of treatment, they were assessed with Morris water maze. The expression of

  14. An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged maize root volatile compounds.

    Science.gov (United States)

    Laznik, Z; Trdan, S

    2013-07-01

    Entomopathogenic nematodes (EPNs) respond to a variety of stimuli when foraging. In a laboratory investigation, we tested the chemotactic responses of 8 EPN strains (Steinernema and Heterorhabditis) to three mechanically damaged maize root compounds (linalool, α-caryophyllene and β-caryophyllene). We hypothesized that the EPN directional response to the tested volatile compounds would vary among the species and volatile compound and may be related to foraging strategies. The nematodes with an intermediate foraging strategy (Steinernema feltiae) proved to be less active in their movement toward volatile compounds in a comparison with the ambushers (Steinernema carpocapsae) and cruisers (Steinernema kraussei and Heterorhabditis bacteriophora); β-caryophyllene was found to be the most attractive substance in our experiment. The results of our investigation showed that the cruisers were more attracted to β-caryophyllene than the ambushers and intermediates. The foraging strategy did not affect the movement of the IJs toward the other tested volatile compounds or the control. Our results suggest that the response to different volatile cues is more a strain-specific characteristic than a different host-searching strategy. Only S. carpocapsae strain B49 displayed an attraction to linalool, whereas S. kraussei showed a retarded reaction to β-caryophyllene and α-caryophyllene in our experiment. The EPN strains showed only a weak attraction to α-caryophyllene, suggesting that this volatile compound could not have an important role in the orientation of IJs to the damaged roots of maize plants. These results expand our knowledge of volatile compounds as the cues that may be used by EPNs for finding hosts or other aspects of navigation in the soil. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. HTLV-1 Tax upregulates early growth response protein 1 through nuclear factor-κB signaling.

    Science.gov (United States)

    Huang, Qingsong; Niu, Zhiguo; Han, Jingxian; Liu, Xihong; Lv, Zhuangwei; Li, Huanhuan; Yuan, Lixiang; Li, Xiangping; Sun, Shuming; Wang, Hui; Huang, Xinxiang

    2017-08-01

    Human T cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that causes adult T cell leukemia (ATL) in susceptible individuals. The HTLV-1-encoded oncoprotein Tax induces persistent activation of the nuclear factor-κB (NF-κB) pathway. Early growth response protein 1 (EGR1) is overexpressed in HTLV-1-infected T cell lines and ATL cells. Here, we showed that both Tax expression and HTLV-1 infection promoted EGR1 overexpression. Loss of the NF-κB binding site in the EGR1 promotor or inhibition of NF-κB activation reduced Tax-induced EGR1 upregulation. Tax mutants unable to activate NF-κB induced only slight EGR1 upregulation as compared with wild-type Tax, confirming NF-κB pathway involvement in EGR1 regulation. Tax also directly interacted with the EGR1 protein and increased endogenous EGR1 stability. Elevated EGR1 in turn promoted p65 nuclear translocation and increased NF-κB activation. These results demonstrate a positive feedback loop between EGR1 expression and NF-κB activation in HTLV-1-infected and Tax-expressing cells. Both NF-κB activation and Tax-induced EGR1 stability upregulated EGR1, which in turn enhanced constitutive NF-κB activation and facilitated ATL progression in HTLV-1-infected cells. These findings suggest EGR1 may be an effective anti-ATL therapeutic target.

  16. Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangpeng; Zhang, Qian; Peng, Jiahe; Jiang, Chanjui; Zhang, Yan; Shen, Lili; Dong, Jinyu; Wang, Yongchao; Jiang, Yu, E-mail: yujiang0207@163.com

    2015-11-27

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, which plays important roles in bile acids/lipid homeostasis and inflammation. Monocyte chemoattractant protein-1 (MCP-1) contributes to macrophage infiltration into body tissues during inflammation. Here we investigated whether FXR can regulate MCP-1 expression in murine macrophage. FXR activation down regulate MCP-1 mRNA and protein levels in ANA-1 and Raw264.7 cells. Luciferase reporter assay, Gel shift and Chromatin immunoprecipitation assays have revealed that the activated FXR bind to the FXR element located in −738 bp ∼  −723 bp in MCP-1 promoter. These results suggested that FXR may serve as a novel target for regulating MCP-1 levels for the inflammation related diseases therapies. - Highlights: • FXR is expressed in murine macrophage cell line. • FXR down regulates MCP-1 expression. • FXR binds to the DR4 in MCP-1 promoter.

  17. Tumor necrosis factor-α-induced protein 1 and immunity to hepatitis B virus

    Science.gov (United States)

    Lin, Marie C; Lee, Nikki P; Zheng, Ning; Yang, Pai-Hao; Wong, Oscar G; Kung, Hsiang-Fu; Hui, Chee-Kin; Luk, John M; Lau, George Ka-Kit

    2005-01-01

    AIM: To compare the gene expression profile in a pair of HBV-infected twins. METHODS: The gene expression profile was compared in a pair of HBV-infected twins. RESULTS: The twins displayed different disease outcomes. One acquired natural immunity against HBV, whereas the other became a chronic HBV carrier. Eighty-eight and forty-six genes were found to be up- or down-regulated in their PBMCs, respectively. Tumor necrosis factor-alpha-induced protein 1 (TNF-αIP1) that expressed at a higher level in the HBV-immune twins was identified and four pairs of siblings with HBV immunity by RT-PCR. However, upon HBV core antigen stimulation, TNF-αIP1 was downregulated in PBMCs from subjects with immunity, whereas it was slightly upregulated in HBV carriers. Bioinformatics analysis revealed a K+ channel tetramerization domain in TNF-αIP1 that shares a significant homology with some human, mouse, and C elegan proteins. CONCLUSION: TNF-αIP1 may play a role in the innate immunity against HBV. PMID:16437679

  18. Structural requirements for cub domain containing protein 1 (CDCP1 and Src dependent cell transformation.

    Directory of Open Access Journals (Sweden)

    Gwendlyn Kollmorgen

    Full Text Available Cub domain containing protein 1 (CDCP1 is strongly expressed in tumors derived from lung, colon, ovary, or kidney. It is a membrane protein that is phosphorylated and then bound by Src family kinases. Although expression and phosphorylation of CDCP1 have been investigated in many tumor cell lines, the CDCP1 features responsible for transformation have not been fully evaluated. This is in part due to the lack of an experimental system in which cellular transformation depends on expression of exogenous CDCP1 and Src. Here we use retrovirus mediated co-overexpression of c-Src and CDCP1 to induce focus formation of NIH3T3 cells. Employing different mutants of CDCP1 we show that for a full transformation capacity, the intact amino- and carboxy-termini of CDCP1 are essential. Mutation of any of the core intracellular tyrosine residues (Y734, Y743, or Y762 abolished transformation, and mutation of a palmitoylation motif (C689,690G strongly reduced it. Src kinase binding to CDCP1 was not required since Src with a defective SH2 domain generated even more CDCP1 dependent foci whereas Src myristoylation was necessary. Taken together, the focus formation assay allowed us to define structural requirements of CDCP1/Src dependent transformation and to characterize the interaction of CDCP1 and Src.

  19. IQ-domain GTPase-activating protein 1 promotes the malignant phenotype of invasive ductal breast carcinoma via canonical Wnt pathway.

    Science.gov (United States)

    Zhao, Huan-Yu; Han, Yang; Wang, Jian; Yang, Lian-He; Zheng, Xiao-Ying; Du, Jiang; Wu, Guang-Ping; Wang, En-Hua

    2017-06-01

    IQ-domain GTPase-activating protein 1 is a scaffolding protein with multidomain which plays a role in modulating dishevelled (Dvl) nuclear translocation in canonical Wnt pathway. However, the biological function and mechanism of IQ-domain GTPase-activating protein 1 in invasive ductal carcinoma (IDC) remain unknown. In this study, we found that IQ-domain GTPase-activating protein 1 expression was elevated in invasive ductal carcinoma, which was positively correlated with tumor grade, lymphatic metastasis, and poor prognosis. Coexpression of IQ-domain GTPase-activating protein 1 and Dvl in the nucleus and cytoplasm of invasive ductal carcinoma was significantly correlated but not in the membrane. Postoperative survival in the patients with their coexpression in the nucleus and cytoplasm was obviously lower than that without coexpression. The positive expression rates of c-myc and cyclin D1 were significantly higher in the patients with nuclear coexpression of Dvl and IQ-domain GTPase-activating protein 1 than that with cytoplasmic coexpression, correlating with poor prognosis. IQ-domain GTPase-activating protein 1 significantly enhanced cell proliferation and invasion in invasive ductal carcinoma cell lines by interacting with Dvl in cytoplasm to promote Dvl nuclear translocation so as to upregulate the expression of c-myc and cyclin D1. Collectively, our data suggest that IQ-domain GTPase-activating protein 1 may promote the malignant phenotype of invasive ductal carcinoma via canonical Wnt signaling, and it could be used as a potential prognostic biomarker for breast cancer patients.

  20. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Christensen, Karina; Aaberg-Jessen, Charlotte

    Targeting lysosomes is a novel approach in cancer therapy providing a possible way of killing the otherwise apoptosis-resistant cancer cells. Recent research has thus shown that lysosome targeting compounds induce cell death in a cervix cancer cell line. Tumor stem cells in glioblastomas have...

  1. Expressions of Wingless and Int1 (Wnt)-induced secreted protein 1 ...

    African Journals Online (AJOL)

    Methods: A total of 37 PQ-poisoned patients were enrolled in the study, and divided into non-survivor group (NS) and survival group (S) based .... the differences among quantitative variables. The relationships between categorical .... of serum PQ concentration and WISP 1 would be beneficial for forecasting the prognosis.

  2. Capillary arterialization requires the bone-marrow-derived cell (BMC)-specific expression of chemokine (C-C motif) receptor-2, but BMCs do not transdifferentiate into microvascular smooth muscle.

    Science.gov (United States)

    Nickerson, Meghan M; Burke, Caitlin W; Meisner, Joshua K; Shuptrine, Casey W; Song, Ji; Price, Richard J

    2009-01-01

    Chemokine (C-C motif) receptor-2 (CCR2) regulates arteriogenesis and angiogenesis, facilitating the MCP-1-dependent recruitment of growth factor-secreting bone marrow-derived cells (BMCs). Here, we tested the hypothesis that the BMC-specific expression of CCR2 is also required for new arteriole formation via capillary arterialization. Following non-ischemic saphenous artery occlusion, we measured the following in gracilis muscles: monocyte chemotactic protein-1 (MCP-1) in wild-type (WT) C57Bl/6J mice by ELISA, and capillary arterialization in WT-WT and CCR2(-/-)-WT (donor-host) bone marrow chimeric mice, as well as BMC transdifferentiation in EGFP(+)-WT mice, by smooth muscle (SM) alpha-actin immunochemistry. MCP-1 levels were significantly elevated 1 day after occlusion in WT mice. In WT-WT mice at day 7, compared to sham controls, arterial occlusion induced a 34% increase in arteriole length density, a 46% increase in SM alpha-actin(+) vessels, and a 45% increase in the fraction of vessels coated with SM alpha-actin, indicating significant capillary arterialization. However, in CCR2(-/-)-WT mice, no differences were observed between arterial occlusion and sham surgery. In EGFP(+)-WT mice, EGFP and SM alpha-actin never colocalized. We conclude that BMC-specific CCR2 expression is required for skeletal muscle capillary arterialization following arterial occlusion; however, BMCs do not transdifferentiate into smooth muscle.

  3. PTIP associated protein 1, PA1, is an independent prognostic factor for lymphnode negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Takashi Takeshita

    Full Text Available Pax transactivation domain interacting protein (PTIP associated protein 1, PA1, was a newly found protein participating in the modulation of transactivity of nuclear receptor super family members such as estrogen receptor (ER, androgen receptor (AR and glucocorticoid receptor (GR. Breast cancer is one of the most life threatening diseases for women and has tight association with estrogen and ER. This study was performed to understand the function of PA1 in breast cancer. The expression of PA1 had been evaluated in a total of 344 primary invasive breast cancer samples and examined the relationship with clinical output, relapse free survival (RFS, breast cancer-specific survival (BCSS. PA1 expression was observed in both nucleus and cytoplasm, however, appeared mainly in nuclear. PA1 nuclear expression was correlated with postmenopausal (P = 0.0097, smaller tumor size (P = 0.0025, negative Ki67 (P = 0.02, positive AR (P = 0.049 and positive ERβ (P = 0.0020. Kaplan-Meier analysis demonstrated PA1 nuclear positive cases seemed to have a longer survival than negative ones for RFS (P = 0.023 but not for BCSS (P = 0.23. In the Cox hazards model, PA1 nuclear protein expression proved to be a significant prognostic univariate parameter for RFS (P = 0.03, but not for BCSS (P = 0.20. In addition, for those patients without lymphnode metastasis PA1 was found to be an independent prognostic factor for RFS (P = 0.025, which was verified by univariate and multivariate analyses. These investigations suggested PA1 expression could be a potential prognostic indicator for RFS in breast cancer.

  4. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells

    International Nuclear Information System (INIS)

    Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max

    2005-01-01

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1α). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  5. Epstein-Barr virus associated modulation of Wnt pathway is not dependent on latent membrane protein-1.

    Directory of Open Access Journals (Sweden)

    Natasha Webb

    2008-09-01

    Full Text Available Previous studies have indicated that Epstein-Barr virus (EBV can modulate the Wnt pathway in virus-infected cells and this effect is mediated by EBV-encoded oncogene latent membrane protein 1 (LMP1. Here we have reassessed the role of LMP1 in regulating the expression of various mediators of the canonical Wnt cascade. Contradicting the previous finding, we found that the levels of E-cadherin, beta-catenin, Glycogen Synthase Kinase 3ss (GSK3beta, axin and alpha-catenin were not affected by the expression of LMP1 sequences from normal B cells or nasopharyngeal carcinoma. Moreover, we also show that LMP1 expression had no detectable effect on the E-cadherin and beta-catenin interaction and did not induce transcriptional activation of beta-catenin. Taken together these studies demonstrate that EBV-mediated activation of Wnt pathway is not dependent on the expression of LMP1.

  6. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis

    Directory of Open Access Journals (Sweden)

    Boyce Mark

    2012-08-01

    Full Text Available Abstract Background Bluetongue virus (BTV is a double-stranded RNA (dsRNA virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Results Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1 as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3′ poly(A sequence identifying the 3′ end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. Conclusions NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed

  7. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis.

    Science.gov (United States)

    Boyce, Mark; Celma, Cristina C P; Roy, Polly

    2012-08-29

    Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp) as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1) as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs) of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3' poly(A) sequence identifying the 3' end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed replacement of cellular protein synthesis with viral protein

  8. Intermittent pneumatic leg compressions acutely upregulate VEGF and MCP-1 expression in skeletal muscle.

    Science.gov (United States)

    Roseguini, Bruno T; Mehmet Soylu, S; Whyte, Jeffrey J; Yang, H T; Newcomer, Sean; Laughlin, M Harold

    2010-06-01

    Application of intermittent pneumatic compressions (IPC) is an extensively used therapeutic strategy in vascular medicine, but the mechanisms by which this method works are unclear. We tested the hypothesis that acute application (150 min) of cyclic leg compressions in a rat model signals upregulation of angiogenic factors in skeletal muscle. To explore the impact of different pressures and frequency of compressions, we divided rats into four groups as follows: 120 mmHg (2 s inflation/2 s deflation), 200 mmHg (2 s/2 s), 120 mmHg (4 s/16 s), and control (no intervention). Blood flow and leg oxygenation (study 1) and the mRNA expression of angiogenic mediators in the rat tibialis anterior muscle (study 2) were assessed after a single session of IPC. In all three groups exposed to the intervention, a modest hyperemia (approximately 37% above baseline) between compressions and a slight, nonsignificant increase in leg oxygen consumption (approximately 30%) were observed during IPC. Compared with values in the control group, vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) mRNA increased significantly (P < 0.05) only in rats exposed to the higher frequency of compressions (2 s on/2 s off). Endothelial nitric oxide synthase, matrix metalloproteinase-2, and hypoxia-inducible factor-1alpha mRNA did not change significantly following the intervention. These findings show that IPC application augments the mRNA content of key angiogenic factors in skeletal muscle. Importantly, the magnitude of changes in mRNA expression appeared to be modulated by the frequency of compressions such that a higher frequency (15 cycles/min) evoked more robust changes in VEGF and MCP-1 compared with a lower frequency (3 cycles/min).

  9. Function-blocking antibodies to human vascular adhesion protein-1: a potential anti-inflammatory therapy.

    Science.gov (United States)

    Kirton, Christopher M; Laukkanen, Marja-Leena; Nieminen, Antti; Merinen, Marika; Stolen, Craig M; Armour, Kathryn; Smith, David J; Salmi, Marko; Jalkanen, Sirpa; Clark, Michael R

    2005-11-01

    Human vascular adhesion protein-1 (VAP-1) is a homodimeric 170-kDa sialoglycoprotein that is expressed on the surface of endothelial cells and functions as a semicarbazide-sensitive amine oxidase and as an adhesion molecule. Blockade of VAP-1 has been shown to reduce leukocyte adhesion and transmigration in in vivo and in vitro models, suggesting that VAP-1 is a potential target for anti-inflammatory therapy. In this study we have constructed mouse-human chimeric antibodies by genetic engineering in order to circumvent the potential problems involved in using murine antibodies in man. Our chimeric anti-VAP-1 antibodies, which were designed to lack Fc-dependent effector functions, bound specifically to cell surface-expressed recombinant human VAP-1 and recognized VAP-1 in different cell types in tonsil. Furthermore, the chimeric antibodies prevented leukocyte adhesion and transmigration in vitro and in vivo. Hence, these chimeric antibodies have the potential to be used as a new anti-inflammatory therapy.

  10. Sex-Specific Protection of Osteoarthritis by Deleting Cartilage Acid Protein 1.

    Science.gov (United States)

    Ge, Xianpeng; Ritter, Susan Y; Tsang, Kelly; Shi, Ruirui; Takei, Kohtaro; Aliprantis, Antonios O

    2016-01-01

    Cartilage acidic protein 1 (CRTAC1) was recently identified as an elevated protein in the synovial fluid of patients with osteoarthritis (OA) by a proteomic analysis. This gene is also upregulated in both human and mouse OA by transcriptomic analysis. The objective of this study was to characterize the expression and function of CRTAC1 in OA. Here, we first confirm the increase of CRTAC1 in cartilage biopsies from OA patients undergoing joint replacement by real-time PCR and immunohistochemistry. Furthermore, we report that proinflammatory cytokines interleukin-1beta and tumor necrosis factor alpha upregulate CRTAC1 expression in primary human articular chondrocytes and synovial fibroblasts. Genetic deletion of Crtac1 in mice significantly inhibited cartilage degradation, osteophyte formation and gait abnormalities of post-traumatic OA in female, but not male, animals undergoing the destabilization of medial meniscus (DMM) surgery. Taken together, CRTAC1 is upregulated in the osteoarthritic joint and directly induced in chondrocytes and synovial fibroblasts by pro-inflammatory cytokines. This molecule is necessary for the progression of OA in female mice after DMM surgery and thus represents a potential therapy for this prevalent disease, especially for women who demonstrate higher rates and more severe OA.

  11. Sex-Specific Protection of Osteoarthritis by Deleting Cartilage Acid Protein 1.

    Directory of Open Access Journals (Sweden)

    Xianpeng Ge

    Full Text Available Cartilage acidic protein 1 (CRTAC1 was recently identified as an elevated protein in the synovial fluid of patients with osteoarthritis (OA by a proteomic analysis. This gene is also upregulated in both human and mouse OA by transcriptomic analysis. The objective of this study was to characterize the expression and function of CRTAC1 in OA. Here, we first confirm the increase of CRTAC1 in cartilage biopsies from OA patients undergoing joint replacement by real-time PCR and immunohistochemistry. Furthermore, we report that proinflammatory cytokines interleukin-1beta and tumor necrosis factor alpha upregulate CRTAC1 expression in primary human articular chondrocytes and synovial fibroblasts. Genetic deletion of Crtac1 in mice significantly inhibited cartilage degradation, osteophyte formation and gait abnormalities of post-traumatic OA in female, but not male, animals undergoing the destabilization of medial meniscus (DMM surgery. Taken together, CRTAC1 is upregulated in the osteoarthritic joint and directly induced in chondrocytes and synovial fibroblasts by pro-inflammatory cytokines. This molecule is necessary for the progression of OA in female mice after DMM surgery and thus represents a potential therapy for this prevalent disease, especially for women who demonstrate higher rates and more severe OA.

  12. Correlation of urinary monocyte chemo-attractant protein-1 with other parameters of renal injury in type-II diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Ibrahim Salwa

    2008-01-01

    Full Text Available Diabetic nephropathy (DN is the leading cause of end-stage renal disease in the western world. Increased number of interstitial macrophages has been observed in biopsies from patients with DN. Monocyte chemo-attractant protein-1 (MCP-1 is the strongest known chemo-tactic factor for monocytes and is upregulated in DN. We examined urinary levels of MCP-1 in patients with type-2 diabetes mellitus (DM to assess its possible correlation with other para-meters of renal injury. The urinary MCP-1 level was assessed in 75 patients with type-2 DM (25 patients each with no microalbuminuria, with macroalbuminuria and, with renal impairment and compared them with matched healthy control subjects. The HbA1c and estimated glomerular fil-tration rate (eGFR derived from the abbreviated Modification of Diet in Renal Disease (MDRD equation were examined in the study groups in relation to the urinary MCP-1. The urinary MCP-1 level was significantly higher in patients with micro and macroalbuminuria (167.41 ± 50.23 and 630.87 ± 318.10 ng/gm creatinine respectively as compared with normoalbuminuric patients and healthy controls (63.85 ± 21.15 and 61.50 ± 24.81 ng/gm creatinine, p< 0.001. MCP-1 correlated positively with urine albumin/creatinine ratio (ACR (r= 0.75, p< 0.001, HbA1c (r= 0.55, p< 0.001 and inversely with eGFR (r=-0.60, p< 0.001. Our findings suggest that hyperglycemia is associated with increased urinary levels of MCP-1 that is closely linked to renal damage as reflected by proteinuria and eGFR levels. Collectively, these findings suggest that MCP-1 is in-volved in the pathogenesis of diabetic nephropathy through its various stages.

  13. Expression and migratory analysis of 5 human uveal melanoma cell lines for CXCL12, CXCL8, CXCL1, and HGF

    Directory of Open Access Journals (Sweden)

    Di Cesare Sebastian

    2007-01-01

    Full Text Available Abstract Background The aim of this study was to characterize the presence and roles of CXCL12, CXCL8, CXCL1, and HGF in five human uveal melanoma cell lines, using different methods, in order to ascertain their significance in this disease. Methods Five human uveal melanoma cell lines (92.1, SP6.5, MKT-BR, OCM-1, and UW-1 of known proliferative, invasive, and metastatic potential were used in this experiment. A migration assay was used in order to assess the responsiveness of each cell line towards the four chosen chemotactic factors. Immunohistochemistry was then performed for all five cell lines (cytospins using antibodies directed toward CXCL1, CXCL8 and their receptors CXCR2 and CXCR1 respectively. Quantitative real-time PCR was then performed on all five cell lines in order to establish the presence of these four chemotactic factors. Results All five human uveal melanoma cell lines migrated towards the four chosen chemotactic factors at a level greater than that of the negative control. Chemokines CXCL1 and CXCL8 resulted in the greatest number of migrating cells in all five of our cell lines. Immunohistochemistry confirmed the expression of CXCL1, CXCL8, and their receptors CXCR2 and CXCR1 in all five of the cell lines. Quantitative real-time PCR results established expression of CXCL8, CXCL1, and HGF in all 5 cell lines tested. CXCL1 and CXCL8 are highly expressed in SP6.5 and UW-1. None of the five cell lines expressed any detectable levels of CXCL12. Conclusion The migratory ability of the 5 human uveal melanoma cell lines was positively influenced by the four chemotactic factors tested, namely CXCL12, CXCL8, CXCL1, and HGF. Self-expression of chemotactic factors CXCL8, CXCL1, and HGF may indicate an autocrine system, which perhaps contributes to the cells' metastatic ability in vivo.

  14. The level of CD147 expression correlates with cyclophilin-induced signalling and chemotaxis

    Directory of Open Access Journals (Sweden)

    Constant Stephanie

    2011-10-01

    Full Text Available Abstract Background Previous studies identified CD147 as the chemotactic receptor on inflammatory leukocytes for extracellular cyclophilins (eCyp. However, CD147 is not known to associate with signal transducing molecules, so other transmembrane proteins, such as proteoglycans, integrins, and CD98, were suggested as receptor or co-receptor for eCyp. CD147 is ubiquitously expressed on many cell types, but relationship between the level of CD147 expression and cellular responses to eCyp has never been analyzed. Given the role of eCyp in pathogenesis of many diseases, it is important to know whether cellular responses to eCyp are regulated at the level of CD147 expression. Results Here, we manipulated CD147 expression levels on HeLa cells using RNAi and investigated the signalling and chemotactic responses to eCypA. Both Erk activation and chemotaxis correlated with the level of CD147 expression, with cells exhibiting low level expression being practically unresponsive to eCypA. Conclusions Our results provide the first demonstration of a chemotactic response of HeLa cells to eCypA, establish a correlation between the level of CD147 expression and the magnitude of cellular responses to eCypA, and indicate that CD147 may be a limiting factor in the receptor complex determining cyclophilin-induced Erk activation and cell migration.

  15. Sequential, ordered acquisition of antibodies to Plasmodium falciparum erythrocyte membrane protein 1 domains

    DEFF Research Database (Denmark)

    Cham, Gerald K K; Turner, Louise; Lusingu, John

    2009-01-01

    The binding of erythrocytes infected with mature blood stage parasites to the vascular bed is key to the pathogenesis of malignant malaria. The binding is mediated by members of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. PfEMP1s can be divided into groups, and it has pr....... The identification of PfEMP1 domains expressed by parasites causing disease in infants and young children is important for development of vaccines protecting against severe malaria.......The binding of erythrocytes infected with mature blood stage parasites to the vascular bed is key to the pathogenesis of malignant malaria. The binding is mediated by members of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. PfEMP1s can be divided into groups, and it has...... previously been suggested that parasites expressing group A or B/A PfEMP1s are most pathogenic. To test the hypothesis that the first malaria infections in infants and young children are dominated by parasites expressing A and B/A PfEMP1s, we measured the plasma Ab level against 48 recombinant PfEMP1 domains...

  16. Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1

    Directory of Open Access Journals (Sweden)

    Patarroyo Manuel E

    2011-10-01

    Full Text Available Abstract Background Plasmodium vivax malaria remains a major health problem in tropical and sub-tropical regions worldwide. Several rhoptry proteins which are important for interaction with and/or invasion of red blood cells, such as PfRONs, Pf92, Pf38, Pf12 and Pf34, have been described during the last few years and are being considered as potential anti-malarial vaccine candidates. This study describes the identification and characterization of the P. vivax rhoptry neck protein 1 (PvRON1 and examine its antigenicity in natural P. vivax infections. Methods The PvRON1 encoding gene, which is homologous to that encoding the P. falciparum apical sushi protein (ASP according to the plasmoDB database, was selected as our study target. The pvron1 gene transcription was evaluated by RT-PCR using RNA obtained from the P. vivax VCG-1 strain. Two peptides derived from the deduced P. vivax Sal-I PvRON1 sequence were synthesized and inoculated in rabbits for obtaining anti-PvRON1 antibodies which were used to confirm the protein expression in VCG-1 strain schizonts along with its association with detergent-resistant microdomains (DRMs by Western blot, and its localization by immunofluorescence assays. The antigenicity of the PvRON1 protein was assessed using human sera from individuals previously exposed to P. vivax malaria by ELISA. Results In the P. vivax VCG-1 strain, RON1 is a 764 amino acid-long protein. In silico analysis has revealed that PvRON1 shares essential characteristics with different antigens involved in invasion, such as the presence of a secretory signal, a GPI-anchor sequence and a putative sushi domain. The PvRON1 protein is expressed in parasite's schizont stage, localized in rhoptry necks and it is associated with DRMs. Recombinant protein recognition by human sera indicates that this antigen can trigger an immune response during a natural infection with P. vivax. Conclusions This study shows the identification and characterization of

  17. Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention.

    Science.gov (United States)

    Tewari, Devesh; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad; Sureda, Antoni; Farooqi, Ammad Ahmad; Atanasov, Atanas G; Vacca, Rosa Anna; Sethi, Gautam; Bishayee, Anupam

    2018-02-01

    Activator protein 1 (AP-1) is a key transcription factor in the control of several cellular processes responsible for cell survival proliferation and differentiation. Dysfunctional AP-1 expression and activity are involved in several severe diseases, especially inflammatory disorders and cancer. Therefore, targeting AP-1 has recently emerged as an attractive therapeutic strategy for cancer prevention and therapy. This review summarizes our current understanding of AP-1 biology and function as well as explores and discusses several natural bioactive compounds modulating AP-1-associated signaling pathways for cancer prevention and intervention. Current limitations, challenges, and future directions of research are also critically discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Targeted disruption of fibrinogen like protein-1 accelerates hepatocellular carcinoma development

    International Nuclear Information System (INIS)

    Nayeb-Hashemi, Hamed; Desai, Anal; Demchev, Valeriy; Bronson, Roderick T.; Hornick, Jason L.; Cohen, David E.; Ukomadu, Chinweike

    2015-01-01

    Fibrinogen like protein-1 (Fgl1) is a predominantly liver expressed protein that has been implicated as both a hepatoprotectant and a hepatocyte mitogen. Fgl1 expression is decreased in hepatocellular carcinoma (HCC) and its loss correlates with a poorly differentiated phenotype. To better elucidate the role of Fgl1 in hepatocarcinogenesis, we treated mice wild type or null for Fgl1 with diethyl nitrosamine and monitored for incidence of hepatocellular cancer. We find that mice lacking Fgl1 develop HCC at more than twice the rate of wild type mice. We show that hepatocellular cancers from Fgl1 null mice are molecularly distinct from those of the wild type mice. In tumors from Fgl1 null mice there is enhanced activation of Akt and downstream targets of the mammalian target of rapamycin (mTOR). In addition, there is paradoxical up regulation of putative hepatocellular cancer tumor suppressors; tripartite motif-containing protein 35 (Trim35) and tumor necrosis factor super family 10b (Tnfrsf10b). Taken together, these findings suggest that Fgl1 acts as a tumor suppressor in hepatocellular cancer through an Akt dependent mechanism and supports its role as a potential therapeutic target in HCC. - Highlights: • Fgl1 knockout mice (Fgl1KO) are more prone to carcinogen-induced liver cancer compared to wild type (WT) mates. • Tumors from the Fgl1KO are molecularly distinct with enhanced Akt and mTOR activity in comparison with Fgl1WT tumors. • Tumors from the Fgl1KO have enhanced expression of Trim35 and Tnfrsf10b, putative HCC tumor suppressors

  19. [Roles of Y box-binding protein 1 in SK-BR-3 breast cancer proliferation].

    Science.gov (United States)

    Shi, Jianhong; Lü, Xinrui; Wang, Bing; Daudan, Lin; Yanan, Wang; Yuhui, Bu; Zhenfeng, Ma

    2014-09-30

    To explore the roles of Y box-binding protein 1 (YB-1) in breast cancer cell proliferation. Twenty cases of surgical removal of breast cancer tissue (diagnosed with invasive ductal carcinoma, stage II, by postoperative paraffin pathology) and normal breast tissues adjacent to carcinoma were collected during June 2013 to August 2013.Quantitative real-time PCR (qRT-PCR) was performed to detect the YB1 mRNA levels. Cultured mammary epithelial cells (HBL-100) and breast cancer cells (MCF7, MDA-MB-231 & SK-BR-3 cells) were harvested and qRT-PCR was performed to detect the YB1 mRNA levels.SK-BR-3 cells were stimulated with various concentrations of PDGF-BB and YB1 expression levels were detected by qRT-PCR. Down-regulation or over-expression of YB1 by si-YB1 or Ad-GFP-YB1 was detected in SK-BR-3 cells. And MTS cell proliferation assay kit was used to detect cell proliferation. YB1 mRNA levels were significantly higher in breast cancer tissues and MDA-MB-231 and SK-BR-3 breast cancer cell lines than that in adjacent normal breast tissues and HBL-100 mammary epithelial cells respectively (P BR-3 cells in a dose-dependent manner. A down-regulation of endogenous YB1 decreases and an over-expression of exogenous YB1 promotes the proliferation activity in SK-BR-3 cells.

  20. Targeted disruption of fibrinogen like protein-1 accelerates hepatocellular carcinoma development

    Energy Technology Data Exchange (ETDEWEB)

    Nayeb-Hashemi, Hamed; Desai, Anal; Demchev, Valeriy [Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine. Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Bronson, Roderick T. [Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115 (United States); Hornick, Jason L. [Department of Pathology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Cohen, David E. [Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine. Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Ukomadu, Chinweike, E-mail: cukomadu@partners.org [Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine. Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2015-09-18

    Fibrinogen like protein-1 (Fgl1) is a predominantly liver expressed protein that has been implicated as both a hepatoprotectant and a hepatocyte mitogen. Fgl1 expression is decreased in hepatocellular carcinoma (HCC) and its loss correlates with a poorly differentiated phenotype. To better elucidate the role of Fgl1 in hepatocarcinogenesis, we treated mice wild type or null for Fgl1 with diethyl nitrosamine and monitored for incidence of hepatocellular cancer. We find that mice lacking Fgl1 develop HCC at more than twice the rate of wild type mice. We show that hepatocellular cancers from Fgl1 null mice are molecularly distinct from those of the wild type mice. In tumors from Fgl1 null mice there is enhanced activation of Akt and downstream targets of the mammalian target of rapamycin (mTOR). In addition, there is paradoxical up regulation of putative hepatocellular cancer tumor suppressors; tripartite motif-containing protein 35 (Trim35) and tumor necrosis factor super family 10b (Tnfrsf10b). Taken together, these findings suggest that Fgl1 acts as a tumor suppressor in hepatocellular cancer through an Akt dependent mechanism and supports its role as a potential therapeutic target in HCC. - Highlights: • Fgl1 knockout mice (Fgl1KO) are more prone to carcinogen-induced liver cancer compared to wild type (WT) mates. • Tumors from the Fgl1KO are molecularly distinct with enhanced Akt and mTOR activity in comparison with Fgl1WT tumors. • Tumors from the Fgl1KO have enhanced expression of Trim35 and Tnfrsf10b, putative HCC tumor suppressors.

  1. Ionizing Radiation Stimulates Expression of Pro-Osteoclastogenic Genes in Marrow and Skeletal Tissue

    Science.gov (United States)

    Alwood, J. S.; Shahnazari, M.; Chicana, B.; Schreurs, A. S.; Kumar, A.; Bartolini, A.; Shirazi-Fard, Y.; Globus, R. K.

    2015-01-01

    Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically-active, cancellous-bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total-body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16wk), male C57BL/6J mice were exposed to either 2Gy gamma rays (137Cs, 0.8Gy/min) or heavy ions (56Fe, 600MeV, 0.50-1.1Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is =10Gy) or accumulates over long-duration, interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4hrs-7d later. Gamma irradiation caused a prompt (2.6-fold within 4hrs) and persistent (peaking at 4.1-fold within 1d) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappaB-ligand (Rankl) within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3d of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (e.g., monocyte chemotactic protein-1 increased 11.9-fold, tumor necrosis factor-alpha increased 1.7- fold over controls). Marrow expression of the RANKL decoy receptor, osteoprotegerin (Opg), also rose after irradiation (11.3-fold). The ratio Rankl/Opg in marrow was increased 1.8-fold, a net pro-resorption balance. As expected, radiation increased a serum marker of resorption (tartrate resistant acid phosphatase) and led to cancellous bone loss (16% decrease in bone volume/total volume) through reduced trabecular struts. We conclude that total-body irradiation (gamma or heavy-ion) caused temporal, concerted regulation of gene expression within marrow and mineralized tissue for

  2. The LDL Receptor-Related Protein 1: At the Crossroads of Lipoprotein Metabolism and Insulin Signaling

    Directory of Open Access Journals (Sweden)

    Dianaly T. Au

    2017-01-01

    Full Text Available The metabolic syndrome is an escalating worldwide public health concern. Defined by a combination of physiological, metabolic, and biochemical factors, the metabolic syndrome is used as a clinical guideline to identify individuals with a higher risk for type 2 diabetes and cardiovascular disease. Although risk factors for type 2 diabetes and cardiovascular disease have been known for decades, the molecular mechanisms involved in the pathophysiology of these diseases and their interrelationship remain unclear. The LDL receptor-related protein 1 (LRP1 is a large endocytic and signaling receptor that is widely expressed in several tissues. As a member of the LDL receptor family, LRP1 is involved in the clearance of chylomicron remnants from the circulation and has been demonstrated to be atheroprotective. Recently, studies have shown that LRP1 is involved in insulin receptor trafficking and regulation and glucose metabolism. This review summarizes the role of tissue-specific LRP1 in insulin signaling and its potential role as a link between lipoprotein and glucose metabolism in diabetes.

  3. Regulation of hedgehog signaling by Myc-interacting zinc finger protein 1, Miz1.

    Directory of Open Access Journals (Sweden)

    Jiuyi Lu

    Full Text Available Smoothened (Smo mediated Hedgehog (Hh signaling plays an essential role in regulating embryonic development and postnatal tissue homeostasis. Aberrant activation of the Hh pathway contributes to the formation and progression of various cancers. In vertebrates, however, key regulatory mechanisms responsible for transducing signals from Smo to the nucleus remain to be delineated. Here, we report the identification of Myc-interacting Zinc finger protein 1 (Miz1 as a Smo and Gli2 binding protein that positively regulates Hh signaling. Overexpression of Miz1 increases Gli luciferase reporter activity, whereas knockdown of endogenous Miz1 has the opposite effect. Activation of Smo induces translocation of Miz1 to the primary cilia together with Smo and Gli2. Furthermore, Miz1 is localized to the nucleus upon Hh activation in a Smo-dependent manner, and loss of Miz1 prevents the nuclear translocation of Gli2. More importantly, silencing Miz1 expression inhibits cell proliferation in vitro and the growth of Hh-driven medulloblastoma tumors allografted in SCID mice. Taken together, these results identify Miz1 as a novel regulator in the Hh pathway that plays an important role in mediating Smo-dependent oncogenic signaling.

  4. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing.

    Science.gov (United States)

    Saveliev, Alexander; Everett, Christopher; Sharpe, Tammy; Webster, Zoë; Festenstein, Richard

    2003-04-24

    Gene repression is crucial to the maintenance of differentiated cell types in multicellular organisms, whereas aberrant silencing can lead to disease. The organization of DNA into chromatin and heterochromatin is implicated in gene silencing. In chromatin, DNA wraps around histones, creating nucleosomes. Further condensation of chromatin, associated with large blocks of repetitive DNA sequences, is known as heterochromatin. Position effect variegation (PEV) occurs when a gene is located abnormally close to heterochromatin, silencing the affected gene in a proportion of cells. Here we show that the relatively short triplet-repeat expansions found in myotonic dystrophy and Friedreich's ataxia confer variegation of expression on a linked transgene in mice. Silencing was correlated with a decrease in promoter accessibility and was enhanced by the classical PEV modifier heterochromatin protein 1 (HP1). Notably, triplet-repeat-associated variegation was not restricted to classical heterochromatic regions but occurred irrespective of chromosomal location. Because the phenomenon described here shares important features with PEV, the mechanisms underlying heterochromatin-mediated silencing might have a role in gene regulation at many sites throughout the mammalian genome and modulate the extent of gene silencing and hence severity in several triplet-repeat diseases.

  5. Cell biological characterization of the malaria vaccine candidate trophozoite exported protein 1.

    Directory of Open Access Journals (Sweden)

    Caroline Kulangara

    Full Text Available In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1. In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.

  6. N-Terminal Plasmodium vivax Merozoite Surface Protein-1, a Potential Subunit for Malaria Vivax Vaccine

    Directory of Open Access Journals (Sweden)

    Fernanda G. Versiani

    2013-01-01

    Full Text Available The human malaria is widely distributed in the Middle East, Asia, the western Pacific, and Central and South America. Plasmodium vivax started to have the attention of many researchers since it is causing diseases to millions of people and several reports of severe malaria cases have been noticed in the last few years. The lack of in vitro cultures for P. vivax represents a major delay in developing a functional malaria vaccine. One of the major candidates to antimalarial vaccine is the merozoite surface protein-1 (MSP1, which is expressed abundantly on the merozoite surface and capable of activating the host protective immunity. Studies have shown that MSP-1 possesses highly immunogenic fragments, capable of generating immune response and protection in natural infection in endemic regions. This paper shows humoral immune response to different proteins of PvMSP1 and the statement of N-terminal to be added to the list of potential candidates for malaria vivax vaccine.

  7. Multiple effects of the special AT-rich binding protein 1 (SATB1) in colon carcinoma.

    Science.gov (United States)

    Frömberg, Anja; Rabe, Michael; Aigner, Achim

    2014-12-01

    SATB1 (special AT-rich binding protein 1) is a global chromatin organizer regulating the expression of a large number of genes. Overexpression has been found in various solid tumors and positively correlated with prognostic and clinicopathological properties. In colorectal cancer (CRC), SATB1 overexpression and its correlation with poor differentiation, invasive depth, TNM (tumor, nodes, metastases) stage and prognosis have been demonstrated. However, more detailed studies on the SATB1 functions in CRC are warranted. In this article, we comprehensively analyze the cellular and molecular role of SATB1 in CRC cell lines with different SATB1 expression levels by using RNAi-mediated knockdown. Using siRNAs with different knockdown efficacies, we demonstrate antiproliferative, cell cycle-inhibitory and proapoptotic effects of SATB1 knockdown in a SATB1 gene dose-dependent manner. Tumor growth inhibition is confirmed in vivo in a subcutaneous tumor xenograft mouse model using stable knockdown cells. The in-depth analysis of cellular effects reveals increased activities of caspases-3, -7, -8, -9 and other mediators of apoptotic pathways. Similarly, the analysis of E- and N-cadherin, slug, twist, β-catenin and MMP7 indicates SATB1 effects on epithelial-mesenchymal transition (EMT) and matrix breakdown. Our results also establish SATB1 effects on receptor tyrosine kinases and (proto-)oncogenes such as HER receptors and Pim-1. Taken together, this suggests a more complex molecular interplay between tumor-promoting and possible inhibitory effects in CRC by affecting multiple pathways and molecules involved in proliferation, cell cycle, EMT, invasion and cell survival. © 2014 UICC.

  8. Hepatitis B virus X promotes hepatocellular carcinoma development via nuclear protein 1 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Yesol; Shin, Hye-jun; Bak, In seon [Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon (Korea, Republic of); Yoon, Do-young [Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul (Korea, Republic of); Yu, Dae-Yeul, E-mail: dyyu10@kribb.re.kr [Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon (Korea, Republic of)

    2015-10-30

    Hepatocellular carcinoma (HCC) is one of the most common malignancies and chronic hepatitis B virus (HBV) infection is a major risk factor for HCC. Hepatitis B virus X (HBx) protein relates to trigger oncogenesis. HBx has oncogenic properties with a hyperproliferative response to HCC. Nuclear protein 1 (NUPR1) is a stress-response protein, frequently upregulated in several cancers. Recent data revealed that NUPR1 is involved in tumor progression, but its function in HCC is not revealed yet. Here we report HBx can induce NUPR1 in patients, mice, and HCC cell lines. In an HBx transgenic mouse model, we found that HBx overexpression upregulates NUPR1 expression consistently with tumor progression. Further, in cultured HBV positive cells, HBx knockdown induces downregulation of NUPR1. Smad4 is a representative transcription factor, regulated by HBx, and we showed that HBx upregulates NUPR1 by Smad4 dependent way. We found that NUPR1 can inhibit cell death and induce vasculogenic mimicry in HCC cell lines. Moreover, NUPR1 silencing in HepG2-HBx showed reduced cell motility. These results suggest that HBx can modulate NUPR1 expression through the Smad4 pathway and NUPR1 has a role in hepatocellular carcinoma progression. - Highlights: • NUPR1 is overexpressed in HBx transgenic mouse and HCC patients. • NUPR1 inactivation hampers the HBx induced growth, VM formation, and migration of HepG2 cells in vitro. • NUPR1 has a role for survival of HCC and mechanistically NUPR1 is activated by HBx-Smad4 axis.

  9. Monocyte chemoattractant protein-1 (MCP-1 regulates macrophage cytotoxicity in abdominal aortic aneurysm.

    Directory of Open Access Journals (Sweden)

    Qiwei Wang

    Full Text Available AIMS: In abdominal aortic aneurysm (AAA, macrophages are detected in the proximity of aortic smooth muscle cells (SMCs. We have previously demonstrated in a murine model of AAA that apoptotic SMCs attract monocytes and other leukocytes by producing MCP-1. Here we tested whether infiltrating macrophages also directly contribute to SMC apoptosis. METHODS AND RESULTS: Using a SMC/RAW264.7 macrophage co-culture system, we demonstrated that MCP-1-primed RAWs caused a significantly higher level of apoptosis in SMCs as compared to control macrophages. Next, we detected an enhanced Fas ligand (FasL mRNA level and membrane FasL protein expression in MCP-1-primed RAWs. Neutralizing FasL blocked SMC apoptosis in the co-culture. In situ proximity ligation assay showed that SMCs exposed to primed macrophages contained higher levels of receptor interacting protein-1 (RIP1/Caspase 8 containing cell death complexes. Silencing RIP1 conferred apoptosis resistance to SMCs. In the mouse elastase injury model of aneurysm, aneurysm induction increased the level of RIP1/Caspase 8 containing complexes in medial SMCs. Moreover, TUNEL-positive SMCs in aneurysmal tissues were frequently surrounded by CD68(+/FasL(+ macrophages. Conversely, elastase-treated arteries from MCP-1 knockout mice display a reduction of both macrophage infiltration and FasL expression, which was accompanied by diminished apoptosis of SMCs. CONCLUSION: Our data suggest that MCP-1-primed macrophages are more cytotoxic. MCP-1 appears to modulate macrophage cytotoxicity by increasing the level of membrane bound FasL. Thus, we showed that MCP-1-primed macrophages kill SMCs through a FasL/Fas-Caspase8-RIP1 mediated mechanism.

  10. Study on the correlation between extracellular matrix protein-1 and the growth, metastasis and angiogenesis of laryngeal carcinoma.

    Science.gov (United States)

    Meng, Xin-Yu; Liu, Juan; Lv, Feng; Liu, Ming-Qiu; Wan, Jing-Ming

    2015-01-01

    To investigate the correlation between extracellular matrix protein-1 (ECM1) and the growth, metastasis and angiogenesis of laryngeal carcinoma. Forty-five samples with laryngeal benign and malignant tumors confirmed by pathology in Laiwu City People's Hospital from March 2006 to March 2011 were collected, in which there were 29 cases with laryngeal carcinoma and 16 with benign tumors. The expression of ECM1 and factor VIII-related antigens in patients with laryngeal carcinoma and those with benign tumors was respectively detected using immunohistochemical method, and the correlation between ECM1 staining grade and microvessel density (MVD) was analyzed. In laryngeal carcinoma tissue, ECM1 was mainly expressed in cytoplasm, less in cytomembrane or intercellular substance. With abundant expression in the tissue of laryngeal benign tumors (benign mesenchymoma and hemangioma), ECM1 was primarily expressed in the connective tissue, which was different from the expression in laryngeal carcinoma tissue. The proportion of positive ECM1 staining (++) in patients with laryngeal carcinoma was dramatically higher than those with benign tumors (pcorrelation analysis revealed that ECM1 staining grade in laryngeal carcinoma tissue had a significantly-positive correlation with MVD (r=0.866, p=0.000). ECM1 expression in laryngeal carcinoma is closely associated with tumor cell growth, metastasis and angiogenesis, which can be considered as an effective predictor in the occurrence and postoperative recurrence of laryngeal carcinoma.

  11. Association of Tyrosinase (TYR and Tyrosinase-related Protein 1 (TYRP1 with Melanic Plumage Color in Korean Quails (

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2013-11-01

    Full Text Available TYR (Tyrosinase and TYRP1 (Tyrosinase-related protein 1 play crucial roles in determining the coat color of birds. In this paper, we aimed to characterize the relationship of TYR and TYRP1 genes with plumage colors in Korean quails. The SNPs were searched by cDNA sequencing and PCR-SSCP in three plumage color Korean quails (maroon, white and black plumage. Two SNPs (367T→C and 1153C→T were found in the coding region of TYRP1 gene, but had no significant association with plumage phenotype in Korean quails. The expression of TYR was higher in black plumage quails than that in maroon plumage quails. In contrast, the expression of TYRP1 was lower in black plumage quails than that in maroon plumage quails. This study suggested that the melanic plumage color in Korean quails may be associated with either increased production of TYR or decreased production of TYRP1.

  12. Cartilage link protein 1 (Crtl1), an extracellular matrix component playing an important role in heart development.

    Science.gov (United States)

    Wirrig, Elaine E; Snarr, Brian S; Chintalapudi, Mastan R; O'neal, Jessica L; Phelps, Aimee L; Barth, Jeremy L; Fresco, Victor M; Kern, Christine B; Mjaatvedt, Corey H; Toole, Bryan P; Hoffman, Stanley; Trusk, Thomas C; Argraves, W Scott; Wessels, Andy

    2007-10-15

    To expand our insight into cardiac development, a comparative DNA microarray analysis was performed using tissues from the atrioventricular junction (AVJ) and ventricular chambers of mouse hearts at embryonic day (ED) 10.5-11.0. This comparison revealed differential expression of approximately 200 genes, including cartilage link protein 1 (Crtl1). Crtl1 stabilizes the interaction between hyaluronan (HA) and versican, two extracellular matrix components essential for cardiac development. Immunohistochemical studies showed that, initially, Crtl1, versican, and HA are co-expressed in the endocardial lining of the heart, and in the endocardially derived mesenchyme of the AVJ and outflow tract (OFT). At later stages, this co-expression becomes restricted to discrete populations of endocardially derived mesenchyme. Histological analysis of the Crtl1-deficient mouse revealed a spectrum of cardiac malformations, including AV septal and myocardial defects, while expression studies showed a significant reduction in versican levels. Subsequent analysis of the hdf mouse, which carries an insertional mutation in the versican gene (CSPG2), demonstrated that haploinsufficient versican mice display septal defects resembling those seen in Crtl1(-/-) embryos, suggesting that reduced versican expression may contribute to a subset of the cardiac abnormalities observed in the Crtl1(-/-) mouse. Combined, these findings establish an important role for Crtl1 in heart development.

  13. Glycogen Synthase Kinase 3 Inactivation Induces Cell Senescence through Sterol Regulatory Element Binding Protein 1-Mediated Lipogenesis in Chang Cells.

    Science.gov (United States)

    Kim, You-Mie; Song, Insun; Seo, Yong-Hak; Yoon, Gyesoon

    2013-12-01

    Enhanced lipogenesis plays a critical role in cell senescence via induction of expression of the mature form of sterol regulatory element binding protein 1 (SREBP1), which contributes to an increase in organellar mass, one of the indicators of senescence. We investigated the molecular mechanisms by which signaling molecules control SREBP1-mediated lipogenesis and senescence. We developed cellular models for stress-induced senescence, by exposing Chang cells, which are immortalized human liver cells, to subcytotoxic concentrations (200 µM) of deferoxamine (DFO) and H2O2. In this model of stress-induced cell senescence using DFO and H2O2, the phosphorylation profile of glycogen synthase kinase 3α (GSK3α) and β corresponded closely to the expression profile of the mature form of SREBP-1 protein. Inhibition of GSK3 with a subcytotoxic concentration of the selective GSK3 inhibitor SB415286 significantly increased mature SREBP1 expression, as well as lipogenesis and organellar mass. In addition, GSK3 inhibition was sufficient to induce senescence in Chang cells. Suppression of GSK3 expression with siRNAs specific to GSK3α and β also increased mature SREBP1 expression and induced senescence. Finally, blocking lipogenesis with fatty acid synthase inhibitors (cerulenin and C75) and siRNA-mediated silencing of SREBP1 and ATP citrate lyase (ACL) significantly attenuated GSK3 inhibition-induced senescence. GSK3 inactivation is an important upstream event that induces SREBP1-mediated lipogenesis and consequent cell senescence.

  14. Influence of HFE variants and cellular iron on monocyte chemoattractant protein-1

    Directory of Open Access Journals (Sweden)

    Simmons Zachary

    2009-02-01

    Full Text Available Abstract Background Polymorphisms in the MHC class 1-like gene known as HFE have been proposed as genetic modifiers of neurodegenerative diseases that include neuroinflammation as part of the disease process. Variants of HFE are relatively common in the general population and are most commonly associated with iron overload, but can promote subclinical cellular iron loading even in the absence of clinically identified disease. The effects of the variants as well as the resulting cellular iron dyshomeostasis potentially impact a number of disease-associated pathways. We tested the hypothesis that the two most common HFE variants, H63D and C282Y, would affect cellular secretion of cytokines and trophic factors. Methods We screened a panel of cytokines and trophic factors using a multiplexed immunoassay in human neuroblastoma SH-SY5Y cells expressing different variants of HFE. The influence of cellular iron secretion on the potent chemokine monocyte chemoattractant protein-1 (MCP-1 was assessed using ferric ammonium citrate and the iron chelator, desferroxamine. Additionally, an antioxidant, Trolox, and an anti-inflammatory, minocycline, were tested for their effects on MCP-1 secretion in the presence of HFE variants. Results Expression of the HFE variants altered the labile iron pool in SH-SY5Y cells. Of the panel of cytokines and trophic factors analyzed, only the release of MCP-1 was affected by the HFE variants. We further examined the relationship between iron and MCP-1 and found MCP-1 secretion tightly associated with intracellular iron status. A potential direct effect of HFE is considered because, despite having similar levels of intracellular iron, the association between HFE genotype and MCP-1 expression was different for the H63D and C282Y HFE variants. Moreover, HFE genotype was a factor in the effect of minocycline, a multifaceted antibiotic used in treating a number of neurologic conditions associated with inflammation, on MCP-1

  15. Respiratory syncytial virus and TNFalpha induction of chemokine gene expression involves differential activation of Rel A and NF-kappaB1

    Directory of Open Access Journals (Sweden)

    Roebuck Kenneth A

    2002-03-01

    Full Text Available Abstract Background Respiratory syncytial virus (RSV infection of airway epithelial cells stimulates the expression and secretion of a variety of cytokines including the chemotactic cytokines interleukin-8 (IL-8, monocyte chemoattractant protein-1 (MCP-1, and RANTES (regulated upon activation, normal T cell expressed and secreted. Chemokines are important chemoattractants for the recruitment of distinct sets of leukocytes to airway sites of inflammation. Results We have shown previously that chemokine expression is regulated in airway epithelial cells (A549 in a stimulus-specific manner in part through the redox-responsive transcription factors AP-1 and NF-κB. In this study, we examined the NF-κB-mediated effects of RSV and the proinflammatory cytokine TNFα on the induction of IL-8, MCP-1 and RANTES chemokine gene expression in A549 epithelial cells. The results demonstrate that RSV induces chemokine expression with distinct kinetics that is associated with a specific pattern of NF-κB binding activity. This distinction was further demonstrated by the differential effects of the NF-κB inhibitors dexamethasone (DEX and N-acetyl-L-cysteine (NAC. NAC preferentially inhibited RSV induced chemokine expression, whereas DEX preferentially inhibited TNFα induced chemokine expression. DNA binding studies using NF-κB subunit specific binding ELISA demonstrated that RSV and TNFα induced different NF-κB binding complexes containing Rel A (p65 and NF-κB1 (p50. Both TNFα and RSV strongly induced Rel A the activation subunit of NF-κB, whereas only TNFα was able to substantially induce the p50 subunit. Consistent with the expression studies, RSV but not TNFα induction of Rel A and p50 were markedly inhibited by NAC, providing a mechanism by which TNFα and RSV can differentially activate chemokine gene expression via NF-κB. Conclusions These data suggest that RSV induction of chemokine gene expression, in contrast to TNFα, involves redox

  16. Myocardial ischemic preconditioning upregulated protein 1(Mipu1):zinc finger protein 667 - a multifunctional KRAB/C{sub 2}H{sub 2} zinc finger protein

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.; Zhang, C. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); Fan, W.J. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province (China); Pan, W.J.; Feng, D.M.; Qu, S.L.; Jiang, Z.S. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China)

    2014-10-31

    Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C{sub 2}H{sub 2} motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element.

  17. Niche-Specific Requirement for Hyphal Wall protein 1 in Virulence of Candida albicans

    Science.gov (United States)

    Staab, Janet F.; Datta, Kausik; Rhee, Peter

    2013-01-01

    Specialized Candida albicans cell surface proteins called adhesins mediate binding of the fungus to host cells. The mammalian transglutaminase (TG) substrate and adhesin, Hyphal wall protein 1 (Hwp1), is expressed on the hyphal form of C. albicans where it mediates fungal adhesion to epithelial cells. Hwp1 is also required for biofilm formation and mating thus the protein functions in both fungal-host and self-interactions. Hwp1 is required for full virulence of C. albicans in murine models of disseminated candidiasis and of esophageal candidiasis. Previous studies correlated TG activity on the surface of oral epithelial cells, produced by epithelial TG (TG1), with tight binding of C. albicans via Hwp1 to the host cell surfaces. However, the contribution of other Tgs, specifically tissue TG (TG2), to disseminated candidiasis mediated by Hwp1 was not known. A newly created hwp1 null strain in the wild type SC5314 background was as virulent as the parental strain in C57BL/6 mice, and virulence was retained in C57BL/6 mice deleted for Tgm2 (TG2). Further, the hwp1 null strains displayed modestly reduced virulence in BALB/c mice as did strain DD27-U1, an independently created hwp1Δ/Δ in CAI4 corrected for its ura3Δ defect at the URA3 locus. Hwp1 was still needed to produce wild type biofilms, and persist on murine tongues in an oral model of oropharyngeal candidiasis consistent with previous studies by us and others. Finally, lack of Hwp1 affected the translocation of C. albicans from the mouse intestine into the bloodstream of mice. Together, Hwp1 appears to have a minor role in disseminated candidiasis, independent of tissue TG, but a key function in host- and self-association to the surface of oral mucosa. PMID:24260489

  18. Fatty acid transport protein 1 regulates retinoid metabolism and photoreceptor development in mouse retina.

    Directory of Open Access Journals (Sweden)

    Aurélie Cubizolle

    Full Text Available In retinal pigment epithelium (RPE, RPE65 catalyzes the isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol in the visual cycle and controls the rhodopsin regeneration rate. However, the mechanisms by which these processes are regulated are still unclear. Fatty Acid Transport Protein 1 (FATP1 is involved in fatty acid uptake and lipid metabolism in a variety of cell types. FATP1 co-localizes with RPE65 in RPE and inhibits its isomerase activity in vitro. Here, we further investigated the role of FATP1 in the visual cycle using transgenic mice that overexpress human FATP1 specifically in the RPE (hFATP1TG mice. The mice displayed no delay in the kinetics of regeneration of the visual chromophore 11-cis-retinal after photobleaching and had no defects in light sensitivity. However, the total retinoid content was higher in the hFATP1TG mice than in wild type mice, and the transgenic mice also displayed an age-related accumulation (up to 40% of all-trans-retinal and retinyl esters that was not observed in control mice. Consistent with these results, hFATP1TG mice were more susceptible to light-induced photoreceptor degeneration. hFATP1 overexpression also induced an ~3.5-fold increase in retinosome autofluorescence, as measured by two-photon microscopy. Interestingly, hFATP1TG retina contained ~25% more photoreceptor cells and ~35% longer outer segments than wild type mice, revealing a non-cell-autonomous effect of hFATP1 expressed in the RPE. These data are the first to show that FATP1-mediated fatty acid uptake in the RPE controls both retinoid metabolism in the outer retina and photoreceptor development.

  19. Nucleotide sequence of cloned cDNA for human sphingolipid activator protein 1 precursor

    International Nuclear Information System (INIS)

    Dewji, N.N.; Wenger, D.A.; O'Brien, J.S.

    1987-01-01

    Two cDNA clones encoding prepro-sphingolipid activator protein 1 (SAP-1) were isolated from a λ gt11 human hepatoma expression library using polyclonal antibodies. These had inserts of ≅ 2 kilobases (λ-S-1.2 and λ-S-1.3) and both were both homologous with a previously isolated clone (λ-S-1.1) for mature SAP-1. The authors report here the nucleotide sequence of the longer two EcoRI fragments of S-1.2 and S-1.3 that were not the same and the derived amino acid sequences of mature SAP-1 and its prepro form. The open reading frame encodes 19 amino acids, which are colinear with the amino-terminal sequence of mature SAP-1, and extends far beyond the predicted carboxyl terminus of mature SAP-1, indicating extensive carboxyl-terminal processing. The nucleotide sequence of cDNA encoding prepro-SAP-1 includes 1449 bases from the assigned initiation codon ATG at base-pair 472 to the stop codon TGA at base-pair 1921. The first 23 amino acids coded after the initiation ATG are characteristic of a signal peptide. The calculated molecular mass for a polypeptide encoded by 1449 bases is ≅ 53 kDa, in keeping with the reported value for pro-SAP-1. The data indicate that after removal of the signal peptide mature SAP-1 is generated by removing an additional 7 amino acids from the amino terminus and ≅ 373 amino acids from the carboxyl terminus. One potential glycosylation site was previously found in mature SAP-1. Three additional potential glycosylation sites are present in the processed carboxyl-terminal polypeptide, which they designate as P-2

  20. Negative regulatory roles of ORMDL3 in the Fc epsilon RI-triggered expression of proinflammatory mediators and chemotactic response in murine mast cells

    Czech Academy of Sciences Publication Activity Database

    Bugajev, Viktor; Hálová, Ivana; Dráberová, Lubica; Bambousková, Monika; Potůčková, Lucie; Dráberová, Helena; Paulenda, Tomáš; Junyent, Sergi; Dráber, Petr

    2016-01-01

    Roč. 73, č. 6 (2016), s. 1265-1285 ISSN 1420-682X R&D Projects: GA ČR(CZ) GA14-00703S; GA ČR(CZ) GBP302/12/G101; GA ČR(CZ) GA14-09807S Institutional support: RVO:68378050 Keywords : Mast cell interference * ORMDL3 knockdown * Prostalglandin D2 * Degranulation * Chemotaxis * Proinflammatory cytokines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.788, year: 2016

  1. Tumor protein 53-induced nuclear protein 1 (TP53INP1 enhances p53 function and represses tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jeyran eShahbazi

    2013-05-01

    Full Text Available Tumor protein 53-induced nuclear protein 1 (TP53INP1 is a stress-induced p53 target gene whose expression is modulated by transcription factors such as p53, p73 and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. When associated with homeodomain-interacting protein kinase-2 (HIPK2, TP53INP1 phosphorylates p53 protein at Serine 46, enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53 target genes such as p21, PIG-3 and MDM2, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis; while TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment.

  2. Plasmalemmal Vesicle Associated Protein-1 (PV-1 is a marker of blood-brain barrier disruption in rodent models

    Directory of Open Access Journals (Sweden)

    Ali Zarina S

    2008-02-01

    Full Text Available Abstract Background Plasmalemmal vesicle associated protein-1 (PV-1 is selectively expressed in human brain microvascular endothelial cells derived from clinical specimens of primary and secondary malignant brain tumors, cerebral ischemia, and other central nervous system (CNS diseases associated with blood-brain barrier breakdown. In this study, we characterize the murine CNS expression pattern of PV-1 to determine whether localized PV-1 induction is conserved across species and disease state. Results We demonstrate that PV-1 is selectively upregulated in mouse blood vessels recruited by brain tumor xenografts at the RNA and protein levels, but is not detected in non-neoplastic brain. Additionally, PV-1 is induced in a mouse model of acute ischemia. Expression is confined to the cerebovasculature within the region of infarct and is temporally regulated. Conclusion Our results confirm that PV-1 is preferentially induced in the endothelium of mouse brain tumors and acute ischemic brain tissue and corresponds to blood-brain barrier disruption in a fashion analogous to human patients. Characterization of PV-1 expression in mouse brain is the first step towards development of rodent models for testing anti-edema and anti-angiogenesis therapeutic strategies based on this molecule.

  3. The effects of Epstein-Barr virus-encoded latent membrane protein-1 in the irradiated nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Hsu, H.-Y.; Hsu, W.-L.

    2003-01-01

    Full text: Nasopharyngeal carcinoma (NPC) is a common cancer in southern China and Taiwan. NPC is closely associated with Epstein-Barr virus (EBV) and the EBV encoded latent membrane protein-1 (LMP-1)is commonly found in the tumor cells. Radiotherapy is the effective choice for most of the NPC patients with different classification and stages. The previous studies showed that EBV-associated NPC tend to be more sensitive to radiotherapy and have been shown the better prognosis than that of EBV-negative NPC. It suggests that LMP-1 may be able to modulate the cellular sensitivity of apoptosis induced by radiation in some kinds of NPC cells. In our study, LMP-1-expressing HONE-1 NPC cells were taken to treat with radiation to investigate whether the LMP-1 can prevent the cells from apoptosis induced by irradiation. The growth of LMP-1-expressing HONE-1 NPC cells were not significantly different from that without expressing LMP-1 at a giving dose of 2, 4 or 6Gy. However, the arrested cellular growth was found in LMP-1-expressing cells irradiated with a dose higher than 8Gy. In addition to the DNA fragmentation, the different levels of several related proteins of the apoptotic pathway and the mRNA of cell cycle arrest in these transfected cells were also investigated after various treatments

  4. Alterations in cell growth and signaling in ErbB3 binding protein-1 (Ebp1 deficient mice

    Directory of Open Access Journals (Sweden)

    Lee Myounghee

    2008-12-01

    Full Text Available Abstract Background The ErbB3 binding protein-1 (Ebp1 belongs to a family of DNA/RNA binding proteins implicated in cell growth, apoptosis and differentiation. However, the physiological role of Ebp1 in the whole organism is not known. Therefore, we generated Ebp1-deficient mice carrying a gene trap insertion in intron 2 of the Ebp1 (pa2g4 gene. Results Ebp1-/- mice were on average 30% smaller than wild type and heterozygous sex matched littermates. Growth retardation was apparent from Day 10 until Day 30. IGF-1 production and IGBP-3 and 4 protein levels were reduced in both embryo fibroblasts and adult knock-out mice. The proliferation of fibroblasts derived from Day 12.5 knock out embryos was also decreased as compared to that of wild type cells. Microarray expression analysis revealed changes in genes important in cell growth including members of the MAPK signal transduction pathway. In addition, the expression or activation of proliferation related genes such as AKT and the androgen receptor, previously demonstrated to be affected by Ebp1 expression in vitro, was altered in adult tissues. Conclusion These results indicate that Ebp1 can affect growth in an animal model, but that the expression of proliferation related genes is cell and context specific. The Ebp1-/- mouse line represents a new in vivo model to investigate Ebp1 function in the whole organism.

  5. UPregulated single-stranded DNA-binding protein 1 induces cell chemoresistance to cisplatin in lung cancer cell lines.

    Science.gov (United States)

    Zhao, Xiang; He, Rong; Liu, Yu; Wu, Yongkai; Kang, Leitao

    2017-07-01

    Cisplatin and its analogues are widely used as anti-tumor drugs in lung cancer but many cisplatin-resistant lung cancer cases have been identified in recent years. Single-stranded DNA-binding protein 1 (SSDBP1) can effectively induce H69 cell resistance to cisplatin in our previous identification; thus, it is necessary to explore the mechanism underlying the effects of SSDBP1-induced resistance to cisplatin. First, SSDBP1-overexpressed or silent cell line was constructed and used to analyze the effects of SSDBP1 on chemoresistance of lung cancer cells to cisplatin. SSDBP1 expression was assayed by real-time PCR and Western blot. Next, the effects of SSDBP1 on cisplatin sensitivity, proliferation, and apoptosis of lung cancer cell lines were assayed by MTT and flow cytometry, respectively; ABC transporters, apoptosis-related genes, and cell cycle-related genes by real-time PCR, and DNA wound repair by comet assay. Low expression of SSDBP1 was observed in H69 cells, while increased expression in cisplatin-resistant H69 cells. Upregulated expression of SSDBP1 in H69AR cells was identified to promote proliferation and cisplatin resistance and inhibit apoptosis, while downregulation of SSDBP1 to inhibit cisplatin resistance and proliferation and promoted apoptosis. Moreover, SSDBP1 promoted the expression of P2gp, MRP1, Cyclin D1, and CDK4 and inhibited the expression of caspase 3 and caspase 9. Furthermore, SSDBP1 promoted the DNA wound repair. These results indicated that SSDBP1 may induce cell chemoresistance of cisplatin through promoting DNA repair, resistance-related gene expression, cell proliferation, and inhibiting apoptosis.

  6. Fish-oil-derived n-3 PUFAs reduce inflammatory and chemotactic adipokine-mediated cross-talk between co-cultured murine splenic CD8+ T cells and adipocytes.

    Science.gov (United States)

    Monk, Jennifer M; Liddle, Danyelle M; De Boer, Anna A; Brown, Morgan J; Power, Krista A; Ma, David Wl; Robinson, Lindsay E

    2015-04-01

    Obese adipose tissue (AT) inflammation is characterized by dysregulated adipokine production and immune cell accumulation. Cluster of differentiation (CD) 8+ T cell AT infiltration represents a critical step that precedes macrophage infiltration. n-3 (ω-3) Polyunsaturated fatty acids (PUFAs) exert anti-inflammatory effects in obese AT, thereby disrupting AT inflammatory paracrine signaling. We assessed the effect of n-3 PUFAs on paracrine interactions between adipocytes and primary CD8+ T cells co-cultured at the cellular ratio observed in obese AT. C57BL/6 mice were fed either a 3% menhaden fish-oil + 7% safflower oil (FO) diet (wt:wt) or an isocaloric 10% safflower oil (wt:wt) control (CON) for 3 wk, and splenic CD8+ T cells were isolated by positive selection (via magnetic microbeads) and co-cultured with 3T3-L1 adipocytes. Co-cultures were unstimulated (cells alone), T cell receptor stimulated, or lipopolysaccharide (LPS) stimulated for 24 h. In LPS-stimulated co-cultures, FO reduced secreted protein concentrations of interleukin (IL)-6 (-42.6%), tumor necrosis factor α (-67%), macrophage inflammatory protein (MIP) 1α (-52%), MIP-1β (-62%), monocyte chemotactic protein (MCP) 1 (-23%), and MCP-3 (-19%) vs. CON, which coincided with a 74% reduction in macrophage chemotaxis toward secreted chemotaxins in LPS-stimulated FO-enriched co-culture-conditioned media. FO increased mRNA expression of the inflammatory signaling negative regulators monocyte chemoattractant 1-induced protein (Mcpip; +9.3-fold) and suppressor of cytokine signaling 3 (Socs3; +1.7-fold), whereas FO reduced activation of inflammatory transcription factors nuclear transcription factor κB (NF-κB) p65 and signal transducer and activator of transcription 3 (STAT3) by 27% and 33%, respectively. Finally, mRNA expression of the inflammasome components Caspase1 (-36.4%), Nod-like receptor family pyrin domain containing 3 (Nlrp3; -99%), and Il1b (-68.8%) were decreased by FO compared with CON (P

  7. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    Directory of Open Access Journals (Sweden)

    Julie Sahler

    Full Text Available Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ. In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles

  8. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    Science.gov (United States)

    Sahler, Julie; Woeller, Collynn F; Phipps, Richard P

    2014-01-01

    Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ). In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles also changed monocyte

  9. Tsetse salivary gland proteins 1 and 2 are high affinity nucleic acid binding proteins with residual nuclease activity.

    Directory of Open Access Journals (Sweden)

    Guy Caljon

    Full Text Available Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2 display DNA/RNA non-specific, high affinity nucleic acid binding with K(D values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents.

  10. Limited cross-reactivity among domains of the Plasmodium falciparum clone 3D7 erythrocyte membrane protein 1 family

    DEFF Research Database (Denmark)

    Joergensen, Louise; Turner, Louise; Magistrado, Pamela

    2006-01-01

    The var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family is responsible for antigenic variation and sequestration of infected erythrocytes during malaria. We have previously grouped the 60 PfEMP1 variants of P. falciparum clone 3D7 into groups A and B/A (category A......) and groups B, B/C, and C (category non-A). Expression of category A molecules is associated with severe malaria, and that of category non-A molecules is associated with uncomplicated malaria and asymptomatic infection. Here we assessed cross-reactivity among 60 different recombinant PfEMP1 domains derived...... from clone 3D7 by using a competition enzyme-linked immunosorbent assay and a pool of plasma from 63 malaria-exposed Tanzanian individuals. We conclude that naturally acquired antibodies are largely directed toward epitopes varying between different domains with a few, mainly category A, domains...

  11. ERG induces epigenetic activation of Tudor domain-containing protein 1 (TDRD1) in ERG rearrangement-positive prostate cancer.

    Science.gov (United States)

    Kacprzyk, Lukasz A; Laible, Mark; Andrasiuk, Tatjana; Brase, Jan C; Börno, Stefan T; Fälth, Maria; Kuner, Ruprecht; Lehrach, Hans; Schweiger, Michal R; Sültmann, Holger

    2013-01-01

    Overexpression of ERG transcription factor due to genomic ERG-rearrangements defines a separate molecular subtype of prostate tumors. One of the consequences of ERG accumulation is modulation of the cell's gene expression profile. Tudor domain-containing protein 1 gene (TDRD1) was reported to be differentially expressed between TMPRSS2:ERG-negative and TMPRSS2:ERG-positive prostate cancer. The aim of our study was to provide a mechanistic explanation for the transcriptional activation of TDRD1 in ERG rearrangement-positive prostate tumors. Gene expression measurements by real-time quantitative PCR revealed a remarkable co-expression of TDRD1 and ERG (r(2) = 0.77) but not ETV1 (r(2)prostate cancer in vivo. DNA methylation analysis by MeDIP-Seq and bisulfite sequencing showed that TDRD1 expression is inversely correlated with DNA methylation at the TDRD1 promoter in vitro and in vivo (ρ = -0.57). Accordingly, demethylation of the TDRD1 promoter in TMPRSS2:ERG-negative prostate cancer cells by DNA methyltransferase inhibitors resulted in TDRD1 induction. By manipulation of ERG dosage through gene silencing and forced expression we show that ERG governs loss of DNA methylation at the TDRD1 promoter-associated CpG island, leading to TDRD1 overexpression. We demonstrate that ERG is capable of disrupting a tissue-specific DNA methylation pattern at the TDRD1 promoter. As a result, TDRD1 becomes transcriptionally activated in TMPRSS2:ERG-positive prostate cancer. Given the prevalence of ERG fusions, TDRD1 overexpression is a common alteration in human prostate cancer which may be exploited for diagnostic or therapeutic procedures.

  12. Reconstitution of a physical complex between the N-formyl chemotactic peptide receptor and G protein. Inhibition by pertussis toxin-catalyzed ADP ribosylation.

    Science.gov (United States)

    Bommakanti, R K; Bokoch, G M; Tolley, J O; Schreiber, R E; Siemsen, D W; Klotz, K N; Jesaitis, A J

    1992-04-15

    Photoaffinity-labeled N-formyl chemotactic peptide receptors from human neutrophils solubilized in octyl glucoside exhibit two forms upon sucrose density gradient sedimentation, with apparent sedimentation coefficients of approximately 4 and 7 S. The 7 S form can be converted to the 4 S form by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) with an EC50 of approximately 20 nM, suggesting that the 7 S form may represent a physical complex of the receptor with endogenous G protein (Jesaitis, A. J., Tolley, J. O., Bokoch, G. M., and Allen, R. A. (1989) J. Cell Biol. 109, 2783-2790). To probe the nature of the 7 S form, we reconstituted the 7 S form from the 4 S form by adding purified G protein. The 4 S form, obtained by solubilizing GTP gamma S-treated neutrophil plasma membranes, was incubated with purified (greater than 95%) Gi protein from bovine brain (containing both Gi alpha 1 and Gi alpha 2) or with neutrophil G protein (Gn), and formation of the 7 S complex was analyzed on sucrose density gradients. The EC50 of 7 S complex formation induced by the two G proteins was 70 +/- 25 and 170 +/- 40 nM for Gn and Gi, respectively. No complexation was measurable when bovine transducin (Gt) was used up to 30 times the EC50 for Gn. The EC50 for Gi was the same for receptors, obtained from formyl peptide-stimulated or unstimulated cells. The addition of 10 microM GTP gamma S to the reconstituted 7 S complex caused a complete revision of the receptor to the 4 S form, and anti-Gi peptide antisera immunosedimented the 7 S form. ADP-ribosylation of Gi prevented formation of the 7 S form even at 20 times the concentration of unribosylated Gi normally used to attain 50% conversion to the 7 S form. These observations suggest that the 7 S species is a physical complex containing N-formyl chemotactic peptide receptor and G protein.

  13. Placenta-specific protein 1 promotes cell proliferation and invasion in non-small cell lung cancer

    Science.gov (United States)

    Yang, Li; Zha, Tian-Qi; He, Xiang; Chen, Liang; Zhu, Quan; Wu, Wei-Bing; Nie, Feng-Qi; Wang, Qian; Zang, Chong-Shuang; Zhang, Mei-Ling; He, Jing; Li, Wei; Jiang, Wen; Lu, Kai-Hua

    2018-01-01

    Pulmonary carcinoma-associated proteins have emerged as crucial players in governing fundamental biological processes such as cell proliferation, apoptosis and metastasis in human cancers. Placenta-specific protein 1 (PLAC1) is a cancer-related protein, which is activated and upregulated in a variety of malignant tissues, including prostate cancer, gastric adenocarcinoma, colorectal, epithelial ovarian and breast cancer. However, its biological role and clinical significance in non-small cell lung cancer (NSCLC) development and progression are still unknown. In the present study, we found that PLAC1 was significantly upregulated in NSCLC tissues, and its expression level was associated with advanced pathological stage and it was also correlated with shorter progression-free survival of lung cancer patients. Furthermore, knockdown of PLAC1 expression by siRNA inhibited cell proliferation, induced apoptosis and impaired invasive ability in NSCLC cells partly via regulation of epithelial-mesenchymal transition (EMT)-related protein expression. Our findings present that increased PLAC1 could be identified as a negative prognostic biomarker in NSCLC and regulate cell proliferation and invasion. Thus, we conclusively demonstrated that PLAC1 plays a key role in NSCLC development and progression, which may provide novel insights on the function of tumor-related gene-driven tumorigenesis. PMID:29138842

  14. Proteomic analysis identifies insulin-like growth factor-binding protein-related protein-1 as a podocyte product.

    Science.gov (United States)

    Matsumoto, Takayuki; Hess, Sonja; Kajiyama, Hiroshi; Sakairi, Toru; Saleem, Moin A; Mathieson, Peter W; Nojima, Yoshihisa; Kopp, Jeffrey B

    2010-10-01

    The podocyte secretory proteome may influence the phenotype of adjacent podocytes, endothelial cells, parietal epithelial cells, and tubular epithelial cells but has not been systematically characterized. We have initiated studies to characterize this proteome, with the goal of further understanding the podocyte cell biology. We cultured differentiated conditionally immortalized human podocytes and subjected the proteins in conditioned medium to mass spectrometry. At a false discovery rate of factor-binding protein-related protein-1 (IGFBP-rP1), was expressed in mRNA and protein of cultured podocytes. In addition, transforming growth factor-β1 stimulation increased IGFBP-rP1 in conditioned medium. We analyzed IGFBP-rP1 glomerular expression in a mouse model of human immunodeficiency virus-associated nephropathy. IGFBP-rP1 was absent from podocytes of normal mice and was expressed in podocytes and pseudocrescents of transgenic mice, where it was coexpressed with desmin, a podocyte injury marker. We conclude that IGFBP-rP1 may be a product of injured podocytes. Further analysis of the podocyte secretory proteome may identify biomarkers of podocyte injury.

  15. Loss of Selenium-Binding Protein 1 Decreases Sensitivity to Clastogens and Intracellular Selenium Content in HeLa Cells.

    Science.gov (United States)

    Zhao, Changhui; Zeng, Huawei; Wu, Ryan T Y; Cheng, Wen-Hsing

    2016-01-01

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesize that SBP1 sequesters cellular selenium and sensitizes cancer cells to DNA-damaging agents. To test this hypothesis, we knocked down SBP1 expression in HeLa cervical cancer cells by employing a short hairpin RNA (shRNA) approach. Reduced sensitivity to hydrogen peroxide, paraquat and camptothecin, reactive oxygen species content, and intracellular retention of selenium after selenomethionine treatment were observed in SBP1 shRNA HeLa cells. Results from Western analyses showed that treatment of HeLa cells with selenomethionine resulted in increased SBP1 protein expression in a dose-dependent manner. Knockdown of SBP1 rendered HeLa cells increased expression of glutathione peroxidase-1 but not glutathione peroxidase-4 protein levels and accelerated migration from a wound. Altogether, SBP1 retains supplemental selenium and sensitizes HeLa cancer cells to clastogens, suggesting a new cancer treatment strategy by sequestering selenium through SBP1.

  16. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar,; Kumari, Neeti [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India); Goyal, Neena, E-mail: neenacdri@yahoo.com [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer The study presents cloning and characterization of TCP1{gamma} gene from L. donovani. Black-Right-Pointing-Pointer TCP1{gamma} is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. Black-Right-Pointing-Pointer LdTCP{gamma} exhibited differential expression in different stages of promastigotes. Black-Right-Pointing-Pointer LdTCP{gamma} co-localized with actin, a cytoskeleton protein. Black-Right-Pointing-Pointer The data suggests that this gene may have a role in differentiation/biogenesis. Black-Right-Pointing-Pointer First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1{gamma}), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1{gamma} of Leishmania donovani (LdTCP1{gamma}), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1{gamma} revealed the presence of all the characteristic features of TCP1{gamma}. However, leishmanial TCP1{gamma} represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1{gamma} exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1{gamma} as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1{gamma} was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1{gamma} with actin suggests

  17. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani

    International Nuclear Information System (INIS)

    Bhaskar,; Kumari, Neeti; Goyal, Neena

    2012-01-01

    Highlights: ► The study presents cloning and characterization of TCP1γ gene from L. donovani. ► TCP1γ is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. ► LdTCPγ exhibited differential expression in different stages of promastigotes. ► LdTCPγ co-localized with actin, a cytoskeleton protein. ► The data suggests that this gene may have a role in differentiation/biogenesis. ► First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1γ), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1γ of Leishmania donovani (LdTCP1γ), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1γ revealed the presence of all the characteristic features of TCP1γ. However, leishmanial TCP1γ represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1γ exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1γ as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1γ was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1γ with actin suggests that, this gene may have a role in maintaining the structural dynamics of cytoskeleton of parasite.

  18. Perilipin-mediated lipid droplet formation in adipocytes promotes sterol regulatory element-binding protein-1 processing and triacylglyceride accumulation.

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    Full Text Available Sterol regulatory element-binding protein-1 (SREBP-1 has been thought to be a critical factor that assists adipogenesis. During adipogenesis SREBP-1 stimulates lipogenic gene expression, and peroxisome proliferator-activated receptor γ (PPARγ enhances perilipin (plin gene expression, resulting in generating lipid droplets (LDs to store triacylglycerol (TAG in adipocytes. Plin coats adipocyte LDs and protects them from lipolysis. Here we show in white adipose tissue (WAT of plin-/- mice that nuclear active SREBP-1 and its target gene expression, but not nuclear SREBP-2, significantly decreased on attenuated LD formation. When plin-/- mouse embryonic fibroblasts (MEFs differentiated into adipocytes, attenuated LDs were formed and nuclear SREBP-1 decreased, but enforced plin expression restored them to their original state. Since LDs are largely derived from the endoplasmic reticulum (ER, alterations in the ER cholesterol content were investigated during adipogenesis of 3T3-L1 cells. The ER cholesterol greatly reduced in differentiated adipocytes. The ER cholesterol level in plin-/- WAT was significantly higher than that of wild-type mice, suggesting that increased LD formation caused a change in ER environment along with a decrease in cholesterol. When GFP-SREBP-1 fusion proteins were exogenously expressed in 3T3-L1 cells, a mutant protein lacking the S1P cleavage site was poorly processed during adipogenesis, providing evidence of the increased canonical pathway for SREBP processing in which SREBP-1 is activated by two cleavage enzymes in the Golgi. Therefore, LD biogenesis may create the ER microenvironment favorable for SREBP-1 activation. We describe the novel interplay between LD formation and SREBP-1 activation through a positive feedback loop.

  19. X-ray repair cross complementing protein 1 in base excision repair

    DEFF Research Database (Denmark)

    Hanssen-Bauer, Audun; Solvang-Garten, Karin; Akbari, Mansour

    2012-01-01

    X-ray Repair Cross Complementing protein 1 (XRCC1) acts as a scaffolding protein in the converging base excision repair (BER) and single strand break repair (SSBR) pathways. XRCC1 also interacts with itself and rapidly accumulates at sites of DNA damage. XRCC1 can thus mediate the assembly of large...

  20. Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis

    NARCIS (Netherlands)

    Lai, Xuelei; Wichers, Harry J.; Soler-Lopez, Montserrat; Dijkstra, Bauke W.

    2017-01-01

    Tyrosinase-related protein 1 (TYRP1) is one of three tyrosinase-like glycoenzymes in human melanocytes that are key to the production of melanin, the compound responsible for the pigmentation of skin, eye, and hair. Difficulties with producing these enzymes in pure form have hampered the

  1. Abnormal monocyte recruitment and collateral artery formation in monocyte chemoattractant protein-1 deficient mice

    NARCIS (Netherlands)

    Voskuil, Michiel; Hoefer, Imo E.; van Royen, Niels; Hua, Jing; de Graaf, Stijn; Bode, Christoph; Buschmann, Ivo R.; Piek, Jan J.

    2004-01-01

    Monocyte chemoattractant protein 1 (MCP-1) has been shown to be effective for the stimulation of collateral artery formation in small and large animal models. The availability of a genetic knockout mouse enables evaluation of the importance of the role of MCP-1 in the natural course of collateral

  2. Specificity protein 1-zinc finger protein 179 pathway is involved in the attenuation of oxidative stress following brain injury

    Directory of Open Access Journals (Sweden)

    Jian-Ying Chuang

    2017-04-01

    Full Text Available After sudden traumatic brain injuries, secondary injuries may occur during the following days or weeks, which leads to the accumulation of reactive oxygen species (ROS. Since ROS exacerbate brain damage, it is important to protect neurons against their activity. Zinc finger protein 179 (Znf179 was shown to act as a neuroprotective factor, but the regulation of gene expression under oxidative stress remains unknown. In this study, we demonstrated an increase in Znf179 protein levels in both in vitro model of hydrogen peroxide (H2O2-induced ROS accumulation and animal models of traumatic brain injury. Additionally, we examined the sub-cellular localization of Znf179, and demonstrated that oxidative stress increases Znf179 nuclear shuttling and its interaction with specificity protein 1 (Sp1. Subsequently, the positive autoregulation of Znf179 expression, which is Sp1-dependent, was further demonstrated using luciferase reporter assay and green fluorescent protein (GFP-Znf179-expressing cells and transgenic mice. The upregulation of Sp1 transcriptional activity induced by the treatment with nerve growth factor (NGF led to an increase in Znf179 levels, which further protected cells against H2O2-induced damage. However, Sp1 inhibitor, mithramycin A, was shown to inhibit NGF effects, leading to a decrease in Znf179 expression and lower cellular protection. In conclusion, the results obtained in this study show that Znf179 autoregulation through Sp1-dependent mechanism plays an important role in neuroprotection, and NGF-induced Sp1 signaling may help attenuate more extensive (ROS-induced damage following brain injury.

  3. Escherichia coli fusion carrier proteins act as solubilizing agents for recombinant uncoupling protein 1 through interactions with GroEL

    International Nuclear Information System (INIS)

    Douette, Pierre; Navet, Rachel; Gerkens, Pascal; Galleni, Moreno; Levy, Daniel; Sluse, Francis E.

    2005-01-01

    Fusing recombinant proteins to highly soluble partners is frequently used to prevent aggregation of recombinant proteins in Escherichia coli. Moreover, co-overexpression of prokaryotic chaperones can increase the amount of properly folded recombinant proteins. To understand the solubility enhancement of fusion proteins, we designed two recombinant proteins composed of uncoupling protein 1 (UCP1), a mitochondrial membrane protein, in fusion with MBP or NusA. We were able to express soluble forms of MBP-UCP1 and NusA-UCP1 despite the high hydrophobicity of UCP1. Furthermore, the yield of soluble fusion proteins depended on co-overexpression of GroEL that catalyzes folding of polypeptides. MBP-UCP1 was expressed in the form of a non-covalent complex with GroEL. MBP-UCP1/GroEL was purified and characterized by dynamic light scattering, gel filtration, and electron microscopy. Our findings suggest that MBP and NusA act as solubilizing agents by forcing the recombinant protein to pass through the bacterial chaperone pathway in the context of fusion protein

  4. Loss of monocyte chemoattractant protein-1 alters macrophage polarization and reduces NFκB activation in the foreign body response.

    Science.gov (United States)

    Moore, Laura Beth; Sawyer, Andrew J; Charokopos, Antonios; Skokos, Eleni A; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials elicits a foreign body response characterized by fusion of macrophages to form foreign body giant cells and fibrotic encapsulation. Studies of the macrophage polarization involved in this response have suggested that alternative (M2) activation is associated with more favorable outcomes. Here we investigated this process in vivo by implanting mixed cellulose ester filters or polydimethylsiloxane disks in the peritoneal cavity of wild-type (WT) and monocyte chemoattractant protein-1 (MCP-1) knockout mice. We analyzed classical (M1) and alternative (M2) gene expression via quantitative polymerase chain reaction, immunohistochemistry and enzyme-linked immunosorbent assay in both non-adherent cells isolated by lavage and implant-adherent cells. Our results show that macrophages undergo unique activation that displays features of both M1 and M2 polarization including induction of tumor necrosis factor α (TNF), which induces the expression and nuclear translocation of p50 and RelA determined by immunofluorescence and Western blot. Both processes were compromised in fusion-deficient MCP-1 KO macrophages in vitro and in vivo. Furthermore, inclusion of BAY 11-7028, an inhibitor of NFκB activation, reduced nuclear translocation of RelA and fusion in WT macrophages. Our studies suggest that peritoneal implants elicit a unique macrophage polarization phenotype leading to induction of TNF and activation of the NFκB pathway. Published by Elsevier Ltd.

  5. Complement 5a Enhances Hepatic Metastases of Colon Cancer via Monocyte Chemoattractant Protein-1-mediated Inflammatory Cell Infiltration.

    Science.gov (United States)

    Piao, Chunmei; Cai, Lun; Qiu, Shulan; Jia, Lixin; Song, Wenchao; Du, Jie

    2015-04-24

    Complement 5a (C5a), a potent immune mediator generated by complement activation, promotes tumor growth; however, its role in tumor metastasis remains unclear. We demonstrate that C5a contributes to tumor metastases by modulating tumor inflammation in hepatic metastases of colon cancer. Colon cancer cell lines generate C5a under serum-free conditions, and C5a levels increase over time in a murine syngeneic colon cancer hepatic metastasis model. Furthermore, in the absence of C5a receptor or upon pharmacological inhibition of C5a production with an anti-C5 monoclonal antibody, tumor metastasis is severely impaired. A lack of C5a receptor in colon cancer metastatic foci reduces the infiltration of macrophages, neutrophils, and dendritic cells, and the role for C5a receptor on these cells were further verified by bone marrow transplantation experiments. Moreover, C5a signaling increases the expression of the chemokine monocyte chemoattractant protein-1 and the anti-inflammatory molecules arginase-1, interleukin 10, and transforming growth factor β, but is inversely correlated with the expression of pro-inflammatory molecules, which suggests a mechanism for the role of C5a in the inflammatory microenvironment required for tumor metastasis. Our results indicate a new and potentially promising therapeutic application of complement C5a inhibitor for the treatment of malignant tumors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Complement 5a Enhances Hepatic Metastases of Colon Cancer via Monocyte Chemoattractant Protein-1-mediated Inflammatory Cell Infiltration*

    Science.gov (United States)

    Piao, Chunmei; Cai, Lun; Qiu, Shulan; Jia, Lixin; Song, Wenchao; Du, Jie

    2015-01-01

    Complement 5a (C5a), a potent immune mediator generated by complement activation, promotes tumor growth; however, its role in tumor metastasis remains unclear. We demonstrate that C5a contributes to tumor metastases by modulating tumor inflammation in hepatic metastases of colon cancer. Colon cancer cell lines generate C5a under serum-free conditions, and C5a levels increase over time in a murine syngeneic colon cancer hepatic metastasis model. Furthermore, in the absence of C5a receptor or upon pharmacological inhibition of C5a production with an anti-C5 monoclonal antibody, tumor metastasis is severely impaired. A lack of C5a receptor in colon cancer metastatic foci reduces the infiltration of macrophages, neutrophils, and dendritic cells, and the role for C5a receptor on these cells were further verified by bone marrow transplantation experiments. Moreover, C5a signaling increases the expression of the chemokine monocyte chemoattractant protein-1 and the anti-inflammatory molecules arginase-1, interleukin 10, and transforming growth factor β, but is inversely correlated with the expression of pro-inflammatory molecules, which suggests a mechanism for the role of C5a in the inflammatory microenvironment required for tumor metastasis. Our results indicate a new and potentially promising therapeutic application of complement C5a inhibitor for the treatment of malignant tumors. PMID:25739439

  7. Oxysterol-Binding Protein-Related Protein 1L Regulates Cholesterol Egress from the Endo-Lysosomal System

    Directory of Open Access Journals (Sweden)

    Kexin Zhao

    2017-05-01

    Full Text Available Lipoprotein cholesterol is delivered to the limiting membrane of late endosomes/lysosomes (LELs by Niemann-Pick C1 (NPC1. However, the mechanism of cholesterol transport from LELs to the endoplasmic reticulum (ER is poorly characterized. We report that oxysterol-binding protein-related protein 1L (ORP1L is necessary for this stage of cholesterol export. CRISPR-mediated knockout of ORP1L in HeLa and HEK293 cells reduced esterification of cholesterol to the level in NPC1 knockout cells, and it increased the expression of sterol-regulated genes and de novo cholesterol synthesis, indicative of a block in cholesterol transport to the ER. In the absence of this transport pathway, cholesterol-enriched LELs accumulated in the Golgi/perinuclear region. Cholesterol delivery to the ER required the sterol-, phosphatidylinositol 4-phosphate-, and vesicle-associated membrane protein-associated protein (VAP-binding activities of ORP1L, as well as NPC1 expression. These results suggest that ORP1L-dependent membrane contacts between LELs and the ER coordinate cholesterol transfer with the retrograde movement of endo-lysosomal vesicles.

  8. Increased cerebrospinal fluid levels of cytokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1β (MIP-1β) in patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Martínez, H R; Escamilla-Ocañas, C E; Camara-Lemarroy, C R; González-Garza, M T; Moreno-Cuevas, J; García Sarreón, M A

    2017-10-10

    Neuroinflammation has recently been described in amyotrophic lateral sclerosis (ALS). However, the precise role of such proinflammatory cytokines as monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1β (MIP-1β) in ALS has not yet been determined. In this study, we determined cerebrospinal fluid (CSF) MCP-1 and MIP-1β levels and assessed their association with the duration and severity of ALS. Concentrations of MCP-1 and MIP-1β were determined in the CSF of 77 patients diagnosed with ALS and 13 controls. Cytokine levels were analysed in relation to ALS duration (12months) and severity (30points on the ALS Functional Rating Scale administered at hospital admission). Higher CSF MIP-1β (10.68pg/mL vs. 4.69pg/mL, P<.0001) and MCP-1 (234.89pg/mL vs. 160.95pg/mL, P=.011) levels were found in the 77 patients with ALS compared to controls. There were no differences in levels of either cytokine in relation to disease duration or severity. However, we did observe a significant positive correlation between MIP-1β and MCP-1 in patients with ALS. The increase in MIP-1β and MCP-1 levels suggests that these cytokines may have a synergistic effect on ALS pathogenesis. However, in our cohort, no association was found with either the duration or the clinical severity of the disease. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Gamma Interferon-Induced Guanylate Binding Protein 1 Is a Novel Actin Cytoskeleton Remodeling Factor

    OpenAIRE

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J. K.; Schubert, Dirk W.; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin a...

  10. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection

    DEFF Research Database (Denmark)

    Madsen, Andreas N; Nansen, Anneline; Christensen, Jan P

    2003-01-01

    The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus...... control or virus-induced T-cell-dependent inflammation. Thus, MIP-1alpha is not mandatory for T-cell-mediated antiviral immunity....

  11. Purification, crystallization and X-ray diffraction analysis of human dynamin-related protein 1 GTPase-GED fusion protein

    International Nuclear Information System (INIS)

    Klinglmayr, Eva; Wenger, Julia; Mayr, Sandra; Bossy-Wetzel, Ella; Puehringer, Sandra

    2012-01-01

    The crystallization and initial diffraction analysis of human Drp1 GTPase-GED fusion protein are reported. The mechano-enzyme dynamin-related protein 1 plays an important role in mitochondrial fission and is implicated in cell physiology. Dysregulation of Drp1 is associated with abnormal mitochondrial dynamics and neuronal damage. Drp1 shares structural and functional similarities with dynamin 1 with respect to domain organization, ability to self-assemble into spiral-like oligomers and GTP-cycle-dependent membrane scission. Structural studies of human dynamin-1 have greatly improved the understanding of this prototypical member of the dynamin superfamily. However, high-resolution structural information for full-length human Drp1 covering the GTPase domain, the middle domain and the GTPase effector domain (GED) is still lacking. In order to obtain mechanistic insights into the catalytic activity, a nucleotide-free GTPase-GED fusion protein of human Drp1 was expressed, purified and crystallized. Initial X-ray diffraction experiments yielded data to 2.67 Å resolution. The hexagonal-shaped crystals belonged to space group P2 1 2 1 2, with unit-cell parameters a = 53.59, b = 151.65, c = 43.53 Å, one molecule per asymmetric unit and a solvent content of 42%. Expression of selenomethionine-labelled protein is currently in progress. Here, the expression, purification, crystallization and X-ray diffraction analysis of the Drp1 GTPase-GED fusion protein are presented, which form a basis for more detailed structural and biophysical analysis

  12. The mycobacterial DNA-binding protein 1 (MDP1 from Mycobacterium bovis BCG influences various growth characteristics

    Directory of Open Access Journals (Sweden)

    Maurischat Sven

    2008-06-01

    Full Text Available Abstract Background Pathogenic mycobacteria such as M. tuberculosis, M. bovis or M. leprae are characterised by their extremely slow growth rate which plays an important role in mycobacterial virulence and eradication of the bacteria. Various limiting factors influence the generation time of mycobacteria, and the mycobacterial DNA-binding protein 1 (MDP1 has also been implicated in growth regulation. Our strategy to investigate the role of MDP1 in mycobacterial growth consisted in the generation and characterisation of a M. bovis BCG derivative expressing a MDP1-antisense gene. Results The expression rate of the MDP1 protein in the recombinant M. bovis BCG containing the MDP1-antisense plasmid was reduced by about 50% compared to the reference strain M. bovis BCG containing the empty vector. In comparison to this reference strain, the recombinant M. bovis BCG grew faster in broth culture and reached higher cell masses in stationary phase. Likewise its intracellular growth in mouse and human macrophages was ameliorated. Bacterial clumping in broth culture was reduced by the antisense plasmid. The antisense plasmid increased the susceptibility of the bacteria towards Ampicillin. 2-D protein gels of bacteria maintained under oxygen-poor conditions demonstrated a reduction in the number and the intensity of many protein spots in the antisense strain compared to the reference strain. Conclusion The MDP1 protein has a major impact on various growth characteristics of M. bovis BCG. It plays an important role in virulence-related traits such as aggregate formation and intracellular multiplication. Its impact on the protein expression in a low-oxygen atmosphere indicates a role in the adaptation to the hypoxic conditions present in the granuloma.

  13. Analyzing Plasmodium falciparum erythrocyte membrane protein 1 gene expression by a next-generation-sequencing based method

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Petersen, Bent; Seguin-Orlando, Andaine

    2013-01-01

    To prevent the spread of resistance among gastro-intestinal nematode populations, the use of bioactive tannin-rich plants is currently investigated as an alternative to the exclusive use of anthelmintic (AH) synthetic drugs. Studies of AH effects on cattle nematodes using tannin-rich legumes...

  14. The impact of acute aerobic exercise on chitinase 3-like protein 1 and intelectin-1 expression in obesity.

    Science.gov (United States)

    Huang, Chun-Jung; Slusher, Aaron L; Whitehurst, Michael; Wells, Marie; Maharaj, Arun; Shibata, Yoshimi

    2016-01-01

    Chitinase 3-like 1 (CHI3L1) and intelectin 1 (ITLN-1) recognize microbial N-acetylglucosamine polymer and galactofuranosyl carbohydrates, respectively. Both lectins are highly abundant in plasma and seem to play pro- and anti-inflammatory roles, respectively, in obesity and inflammatory-related illnesses. The aim of this study was to examine whether plasma levels of these lectins in obese subjects are useful for monitoring inflammatory conditions immediately influenced by acute aerobic exercise. Plasma interleukin-6, a pro-inflammatory cytokine, was also examined. Twenty-two (11 obese and 11 normal-weight) healthy subjects, ages 18-30 years, were recruited to perform a 30 min bout of acute aerobic exercise at 75% VO2max. We confirmed higher baseline levels of plasma CHI3L1, but lower ITLN-1, in obese subjects than in normal-weight subjects. The baseline levels of CHI3L1 were negatively correlated with cardiorespiratory fitness (relative VO2max). However, when controlled for BMI, the relationship between baseline level of CHI3L1 and relative VO2max was no longer observed. While acute aerobic exercise elicited an elevation in these parameters, we found a lower ITLN-1 response in obese subjects compared to normal-weight subjects. Our study clearly indicates that acute aerobic exercise elicits a pro-inflammatory response (e.g. CHI3L1) with a lower anti-inflammatory effect (e.g. ITLN-1) in obese individuals. Furthermore, these lectins could be predictors of outcome of exercise interventions in obesity-associated inflammation. © 2015 by the Society for Experimental Biology and Medicine.

  15. The characterization of DNA methylation-mediated regulation of bovine placental lactogen and bovine prolactin-related protein-1 genes

    Directory of Open Access Journals (Sweden)

    Patel Osman V

    2009-03-01

    Full Text Available Abstract Background Bovine trophoblast binucleate cells (BNC express a plethora of molecules including bovine placental lactogen (bPL, gene name is bCSH1 and bovine prolactin-related protein-1 (bPRP1. BCSH1 and bPRP1 are members of the growth hormone (GH/prolactin (PRL gene family, which are expressed simultaneously in BNC and are central to placentation and the progression of pregnancy in cattle. However, there is a paucity of information on the transcriptional regulatory mechanisms of both the bCSH1 and bPRP1 genes. Recent studies, however, have demonstrated that the expression of a number of genes is controlled by the methylation status of their promoter region. In the present study, we examined the cell-type-specific epigenetic alterations of the 5'-flanking region of the bCSH1 and bPRP1 genes to gain an insight into their regulatory mechanisms. Results Analysis of 5-aza-2'-deoxycytidine treatment demonstrated that bCSH1 expression is moderately induced in fibroblast cultures but enhanced in BT-1 cells. Sodium bisulfite based sequencing revealed that bCSH1 is hypomethylated in the cotyledonary tissue but not in the fetal skin, and this pattern was not altered with the progression of pregnancy. On the other hand, the methylation status of bPRP1 was similar between the cotyledon and fetal skin. The bPRP1 gene was exclusively hypermethylated in a bovine trophoblast cell-derived BT-1 cell-line. While the activity of bCSH1 was similar in both BT-1 and bovine fibroblast cells, that of bPRP1 was specific to BT-1. Treatment with a demethylating agent and luciferase assays provided in vitro evidence of the positive regulation of bCSH1 but not bPRP1. Conclusion This is the first report to identify the differential regulatory mechanisms of the bCSH1 and bPRP1 genes and indicates that bCSH1 might potentially be the only transcript that is subject to DNA methyltransferase regulation. The data indicates the possibility of novel kinetics of induction of

  16. Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer.

    Science.gov (United States)

    Castellvi, Josep; Garcia, Angel; Rojo, Federico; Ruiz-Marcellan, Carmen; Gil, Antonio; Baselga, Jose; Ramon y Cajal, Santiago

    2006-10-15

    Growth factor receptors and cell signaling factors play a crucial role in human carcinomas and have been studied in ovarian tumors with varying results. Cell signaling involves multiple pathways and a myriad of factors that can be mutated or amplified. Cell signaling is driven through the mammalian target of rapamycin (mTOR) and extracellular regulated kinase (ERK) pathways and by some downstream molecules, such as 4E binding protein 1 (4EBP1), eukaryotic initiation factor 4E, and p70 ribosomal protein S6 kinase (p70S6K). The objectives of this study were to analyze the real role that these pathways play in ovarian cancer, to correlate them with clinicopathologic characteristics, and to identify the factors that transmit individual proliferation signals and are associated with pathologic grade and prognosis, regardless specific oncogenic alterations upstream. One hundred twenty-nine ovarian epithelial tumors were studied, including 20 serous cystadenomas, 7 mucinous cystadenomas, 11 serous borderline tumors, 16 mucinous borderline tumors, 29 serous carcinomas, 16 endometrioid carcinomas, 15 clear cell carcinomas, and 15 mucinous carcinomas. Tissue microarrays were constructed, and immunohistochemistry for the receptors epidermal growth factor receptor (EGFR) and c-erb-B2 was performed and with phosphorylated antibodies for protein kinase B (AKT), 4EBP1, p70S6K, S6, and ERK. Among 129 ovarian neoplasms, 17.8% were positive for c-erb-B2, 9.3% were positive for EGFR, 47.3% were positive for phosphorylated AKT (p-AKT), 58.9% were positive for p-ERK, 41.1% were positive for p-4EBP1, 26.4% were positive for p70S6K, and 15.5% were positive for p-S6. Although EGFR, p-AKT, and p-ERK expression did not differ between benign, borderline, or malignant tumors, c-erb-B2, p-4EBP1, p-p70S6K, and p-S6 were expressed significantly more often in malignant tumors. Only p-4EBP1 expression demonstrated prognostic significance (P = .005), and only surgical stage and p-4EBP1 expression

  17. Reduced selenium-binding protein 1 in breast cancer correlates with poor survival and resistance to the anti-proliferative effects of selenium.

    Directory of Open Access Journals (Sweden)

    Sheng Zhang

    Full Text Available Supplemental dietary selenium is associated with reduced incidence of many cancers. The antitumor function of selenium is thought to be mediated through selenium-binding protein 1 (SELENBP1. However, the significance of SELENBP1 expression in breast cancer is still largely unknown. A total of 95 normal and tumor tissues assay and 12 breast cancer cell lines were used in this study. We found that SELENBP1 expression in breast cancer tissues is reduced compared to normal control. Low SELENBP1 expression in ER(+ breast cancer patients was significantly associated with poor survival (p<0.01, and SELENBP1 levels progressively decreased with advancing clinical stages of breast cancer. 17-β estradiol (E2 treatment of high SELENBP1-expressing ER(+ cell lines led to a down-regulation of SELENBP1, a result that did not occur in ER(- cell lines. However, after ectopic expression of ER in an originally ER(- cell line, down-regulation of SELENBP1 upon E2 treatment was observed. In addition, selenium treatment resulted in reduced cell proliferation in endogenous SELENBP1 high cells; however, after knocking-down SELENBP1, we observed no significant reduction in cell proliferation. Similarly, selenium has no effect on inhibition of cell proliferation in low endogenous SELENBP1 cells, but the inhibitory effect is regained following ectopic SELENBP1 expression. Furthermore, E2 treatment of an ER silenced high endogenous SELENBP1 expressing cell line showed no abolishment of cell proliferation inhibition upon selenium treatment. These data indicate that SELENBP1 expression is regulated via estrogen and that the cell proliferation inhibition effect of selenium treatment is dependent on the high level of SELENBP1 expression. Therefore, the expression level of SELENBP1 could be an important marker for predicting survival and effectiveness of selenium supplementation in breast cancer. This is the first study to reveal the importance of monitoring SELENBP1 expression

  18. Impaired LDL receptor-related protein 1 translocation correlates with improved dyslipidemia and atherosclerosis in apoE-deficient mice.

    Directory of Open Access Journals (Sweden)

    Philip L S M Gordts

    Full Text Available OBJECTIVE: Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1 dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE. METHODS AND RESULTS: LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with apoE-deficient mice. In the absence of apoE, relative to LRP1 wild-type animals, LRP1 mutated mice showed an increased clearance of postprandial lipids despite a compromised LRP1 endocytosis rate and inefficient insulin-mediated translocation of the receptor to the plasma membrane, likely due to inefficient slow recycling of the mutated receptor. Postprandial lipoprotein improvement was explained by increased hepatic clearance of triglyceride-rich remnant lipoproteins and accompanied by a compensatory 1.6-fold upregulation of LDLR expression in hepatocytes. One year-old apoE-deficient mice having the dysfunctional LRP1 revealed a 3-fold decrease in spontaneous atherosclerosis development and a 2-fold reduction in LDL-cholesterol levels. CONCLUSION: These findings demonstrate that the NPxYxxL motif in LRP1 is important for insulin-mediated translocation and slow perinuclear endosomal recycling. These LRP1 impairments correlated with reduced atherogenesis and cholesterol levels in apoE-deficient mice, likely via compensatory LDLR upregulation.

  19. Modulation of the tumor microenvironment by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma.

    Science.gov (United States)

    Yoshizaki, Tomokazu; Kondo, Satoru; Endo, Kazuhira; Nakanishi, Yosuke; Aga, Mitsuharu; Kobayashi, Eiji; Hirai, Nobuyuki; Sugimoto, Hisashi; Hatano, Miyako; Ueno, Takayoshi; Ishikawa, Kazuya; Wakisaka, Naohiro

    2018-02-01

    Latent membrane protein 1 (LMP1) is a primary oncogene encoded by the Epstein-Barr virus, and various portions of LMP1 are detected in nasopharyngeal carcinoma (NPC) tumor cells. LMP1 has been extensively studied since the discovery of its transforming property in 1985. LMP1 promotes cancer cell growth during NPC development and facilitates the interaction of cancer cells with surrounding stromal cells for invasion, angiogenesis, and immune modulation. LMP1 is detected in 100% of pre-invasive NPC tumors and in approximately 50% of advanced NPC tumors. Moreover, a small population of LMP1-expressing cells in advanced NPC tumor tissue is proposed to orchestrate NPC tumor tissue maintenance and development through cancer stem cells and progenitor cells. Recent studies suggest that LMP1 activity shifts according to tumor development stage, but it still has a pivotal role during all stages of NPC development. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  20. Dual Role of Ancient Ubiquitous Protein 1 (AUP1) in Lipid Droplet Accumulation and Endoplasmic Reticulum (ER) Protein Quality Control

    Science.gov (United States)

    Klemm, Elizabeth J.; Spooner, Eric; Ploegh, Hidde L.

    2011-01-01

    Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit the soluble E2 ubiquitin-conjugating enzyme UBE2G2. We further show that the CUE domain of AUP1 regulates polyubiquitylation and facilitates the interaction of AUP1 with the HRD1 complex and with dislocation substrates. AUP1 localizes both to the ER and to lipid droplets. The AUP1 expression level affects the abundance of cellular lipid droplets and as such represents the first protein with lipid droplet regulatory activity to be linked to ER quality control. These findings indicate a possible connection between ER protein quality control and lipid droplets. PMID:21857022

  1. Characterization of surface antigen protein 1 (SurA1) from Acinetobacter baumannii and its role in virulence and fitness.

    Science.gov (United States)

    Liu, Dong; Liu, Zeng-Shan; Hu, Pan; Cai, Ling; Fu, Bao-Quan; Li, Yan-Song; Lu, Shi-Ying; Liu, Nan-Nan; Ma, Xiao-Long; Chi, Dan; Chang, Jiang; Shui, Yi-Ming; Li, Zhao-Hui; Ahmad, Waqas; Zhou, Yu; Ren, Hong-Lin

    2016-04-15

    Acinetobacter baumannii is a Gram-negative bacillus that causes nosocomial infections, such as bacteremia, pneumonia, and meningitis and urinary tract and wound infections. In the present study, the surface antigen protein 1 (SurA1) gene of A. baumannii strain CCGGD201101 was identified, cloned and expressed, and then its roles in fitness and virulence were investigated. Virulence was observed in the human lung cancer cell lines A549 and HEp-2 at one week after treatment with recombinant SurA1. One isogenic SurA1 knock-out strain, GR0015, which was derived from the A. baumannii strain CCGGD201101 isolated from diseased chicks in a previous study, highlighted the effect of SurA1 on fitness and growth. Its growth rate in LB broth and killing activity in human sera were significantly decreased compared with strain CCGGD201101. In the Galleria mellonella insect model, the isogenic SurA1 knock-out strain exhibited a lower survival rate and decreased dissemination. These results suggest that SurA1 plays an important role in the fitness and virulence of A. baumannii. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Suitability of macrophage inflammatory protein-1beta production by THP-1 cells in differentiating skin sensitizers from irritant chemicals.

    Science.gov (United States)

    Lim, Yeon-Mi; Moon, Seong-Joon; An, Su-Sun; Lee, Soo-Jin; Kim, Seo-Young; Chang, Ih-Seop; Park, Kui-Lea; Kim, Hyoung-Ah; Heo, Yong

    2008-04-01

    Worldwide restrictions in animal use for research have driven efforts to develop alternative methods. The study aimed to test the efficacy of the macrophage inflammatory protein-1beta (MIP-1beta) assay for testing chemicals' skin-sensitizing capacity. The assay was performed using 9 chemicals judged to be sensitizing and 7 non-sensitizing by the standard in vivo assays. THP-1 cells were cultured in the presence or absence of 4 doses, 0.01x, 0.1x, 0.5x, or 1x IC(50) (50% inhibitory concentration for THP-1 cell proliferation) of these chemicals for 24 hr, and the MIP-1beta level in the supernatants was determined. Skin sensitization by the test chemicals was determined by MIP-1beta production rates. The MIP-1beta production rate was expressed as the relative increase in MIP-1beta production in response to chemical treatment compared with vehicle treatment. When the threshold MIP-1beta production rate used was 100% or 105% of dimethyl sulfoxide, all the sensitizing chemicals tested (dinitrochlorobenzene, hexyl cinnamic aldehyde, eugenol, hydroquinone, dinitrofluorobenzene, benzocaine, nickel, chromium, and 5-chloro-2-methyl-4-isothiazolin-3-one) were positive, and all the non-sensitizing chemicals (methyl salicylate, benzalkonium chloride, lactic acid, isopropanol, and salicylic acid), with the exception of sodium lauryl sulfate, were negative for MIP-1beta production. These results indicate that MIP-1beta could be a biomarker for classification of chemicals as sensitizers or non-sensitizers.

  3. The nucleotide sequence of human transition protein 1 cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Luerssen, H; Hoyer-Fender, S; Engel, W [Universitaet Goettingen (West Germany)

    1988-08-11

    The authors have screened a human testis cDNA library with an oligonucleotide of 81 mer prepared according to a part of the published nucleotide sequence of the rat transition protein TP 1. They have isolated a cDNA clone with the length of 441 bp containing the coding region of 162 bp for human transition protein 1. There is about 84% homology in the coding region of the sequence compared to rat. The human cDNA-clone encodes a polypeptide of 54 amino acids of which 7 are different to that of rat.

  4. Blockade of Vascular Adhesion Protein-1 Inhibits Lymphocyte Infiltration in Rat Liver Allograft Rejection

    OpenAIRE

    Martelius, Timi; Salaspuro, Ville; Salmi, Marko; Krogerus, Leena; Höckerstedt, Krister; Jalkanen, Sirpa; Lautenschlager, Irmeli

    2004-01-01

    Vascular adhesion protein-1 (VAP-1) has been shown to mediate lymphocyte adhesion to endothelia at sites of inflammation, but its functional role in vivo has not been tested in any rodent model. Here we report the effects of VAP-1 blockade on rat liver allograft rejection. BN recipients of PVG liver allografts (known to develop acute rejection by day 7) were treated with 2 mg/kg anti-VAP-1 (a new anti-rat VAP-1 mAb 174–5) or isotype-matched irrelevant antibody (NS1) every other day (n = 6/gro...

  5. Up-regulation of endothelial monocyte chemoattractant protein-1 by coplanar PCB77 is caveolin-1-dependent

    International Nuclear Information System (INIS)

    Majkova, Zuzana; Smart, Eric; Toborek, Michal; Hennig, Bernhard

    2009-01-01

    Atherosclerosis, the primary cause of heart disease and stroke is initiated in the vascular endothelium, and risk factors for its development include environmental exposure to persistent organic pollutants. Caveolae are membrane microdomains involved in regulation of many signaling pathways, and in particular in endothelial cells. We tested the hypothesis that intact caveolae are required for coplanar PCB77-induced up-regulation of monocyte chemoattractant protein-1 (MCP-1), an endothelium-derived chemokine that attracts monocytes into sub-endothelial space in early stages of the atherosclerosis development. Atherosclerosis-prone LDL-R -/- mice (control) or caveolin-1 -/- /LDL-R -/- mice were treated with PCB77. PCB77 induced aortic mRNA expression and plasma protein levels of MCP-1 in control, but not caveolin-1 -/- /LDL-R -/- mice. To study the mechanism of this effect, primary endothelial cells were used. PCB77 increased MCP-1 levels in endothelial cells in a time- and concentration-dependent manner. This effect was abolished by caveolin-1 silencing using siRNA. Also, MCP-1 up-regulation by PCB77 was prevented by inhibiting p38 and c-Jun N-terminal kinase (JNK), but not ERK1/2, suggesting regulatory functions via p38 and JNK MAPK pathways. Finally, pre-treatment of endothelial cells with the aryl hydrocarbon receptor (AhR) inhibitor α-naphthoflavone (α-NF) partially blocked MCP-1 up-regulation. Thus, our data demonstrate that coplanar PCB77 can induce MCP-1 expression by endothelial cells and that this effect is mediated by AhR, as well as p 38 and JNK MAPK pathways. Intact caveolae are required for these processes both in vivo and in vitro. This further supports a key role for caveolae in vascular inflammation induced by persistent organic pollutants.

  6. Positive Selection Drives the Evolution of rhino, a Member of the Heterochromatin Protein 1 Family in Drosophila.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Heterochromatin comprises a significant component of many eukaryotic genomes. In comparison to euchromatin, heterochromatin is gene poor, transposon rich, and late replicating. It serves many important biological roles, from gene silencing to accurate chromosome segregation, yet little is known about the evolutionary constraints that shape heterochromatin. A complementary approach to the traditional one of directly studying heterochromatic DNA sequence is to study the evolution of proteins that bind and define heterochromatin. One of the best markers for heterochromatin is the heterochromatin protein 1 (HP1, which is an essential, nonhistone chromosomal protein. Here we investigate the molecular evolution of five HP1 paralogs present in Drosophila melanogaster. Three of these paralogs have ubiquitous expression patterns in adult Drosophila tissues, whereas HP1D/rhino and HP1E are expressed predominantly in ovaries and testes respectively. The HP1 paralogs also have distinct localization preferences in Drosophila cells. Thus, Rhino localizes to the heterochromatic compartment in Drosophila tissue culture cells, but in a pattern distinct from HP1A and lysine-9 dimethylated H3. Using molecular evolution and population genetic analyses, we find that rhino has been subject to positive selection in all three domains of the protein: the N-terminal chromo domain, the C-terminal chromo-shadow domain, and the hinge region that connects these two modules. Maximum likelihood analysis of rhino sequences from 20 species of Drosophila reveals that a small number of residues of the chromo and shadow domains have been subject to repeated positive selection. The rapid and positive selection of rhino is highly unusual for a gene encoding a chromosomal protein and suggests that rhino is involved in a genetic conflict that affects the germline, belying the notion that heterochromatin is simply a passive recipient of "junk DNA" in eukaryotic genomes.

  7. Functional characterization of the ER stress induced X-box-binding protein-1 (Xbp-1 in the porcine system

    Directory of Open Access Journals (Sweden)

    Jin Dong-Il

    2011-05-01

    Full Text Available Abstract Background The unfolded protein response (UPR is an evolutionary conserved adaptive reaction for increasing cell survival under endoplasmic reticulum (ER stress conditions. X-box-binding protein-1 (Xbp1 is a key transcription factor of UPR that activates genes involved in protein folding, secretion, and degradation to restore ER function. The UPR induced by ER stress was extensively studied in diseases linked to protein misfolding and aggregations. However, in the porcine system, genes in the UPR pathway were not investigated. In this study, we isolated and characterized the porcine Xbp1 (pXbp1 gene in ER stress using porcine embryonic fibroblast (PEF cells and porcine organs. ER stress was induced by the treatment of tunicamycin and cell viability was investigated by the MTT assay. For cloning and analyzing the expression pattern of pXbp1, RT-PCR analysis and Western blot were used. Knock-down of pXbp1 was performed by the siRNA-mediated gene silencing. Results We found that the pXbp1 mRNA was the subject of the IRE1α-mediated unconventional splicing by ER stress. Knock-down of pXbp1 enhanced ER stress-mediated cell death in PEF cells. In adult organs, pXbp1 mRNA and protein were expressed and the spliced forms were detected. Conclusions It was first found that the UPR mechanisms and the function of pXbp1 in the porcine system. These results indicate that pXbp1 plays an important role during the ER stress response like other animal systems and open a new opportunity for examining the UPR pathway in the porcine model system.

  8. Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila.

    Directory of Open Access Journals (Sweden)

    Danielle Vermaak

    2005-07-01

    Full Text Available Heterochromatin comprises a significant component of many eukaryotic genomes. In comparison to euchromatin, heterochromatin is gene poor, transposon rich, and late replicating. It serves many important biological roles, from gene silencing to accurate chromosome segregation, yet little is known about the evolutionary constraints that shape heterochromatin. A complementary approach to the traditional one of directly studying heterochromatic DNA sequence is to study the evolution of proteins that bind and define heterochromatin. One of the best markers for heterochromatin is the heterochromatin protein 1 (HP1, which is an essential, nonhistone chromosomal protein. Here we investigate the molecular evolution of five HP1 paralogs present in Drosophila melanogaster. Three of these paralogs have ubiquitous expression patterns in adult Drosophila tissues, whereas HP1D/rhino and HP1E are expressed predominantly in ovaries and testes respectively. The HP1 paralogs also have distinct localization preferences in Drosophila cells. Thus, Rhino localizes to the heterochromatic compartment in Drosophila tissue culture cells, but in a pattern distinct from HP1A and lysine-9 dimethylated H3. Using molecular evolution and population genetic analyses, we find that rhino has been subject to positive selection in all three domains of the protein: the N-terminal chromo domain, the C-terminal chromo-shadow domain, and the hinge region that connects these two modules. Maximum likelihood analysis of rhino sequences from 20 species of Drosophila reveals that a small number of residues of the chromo and shadow domains have been subject to repeated positive selection. The rapid and positive selection of rhino is highly unusual for a gene encoding a chromosomal protein and suggests that rhino is involved in a genetic conflict that affects the germline, belying the notion that heterochromatin is simply a passive recipient of "junk DNA" in eukaryotic genomes.

  9. Colonic vascular conductance increased by Daikenchuto via calcitonin gene-related peptide and receptor-activity modifying protein 1.

    Science.gov (United States)

    Kono, Toru; Koseki, Takashi; Chiba, Shinichi; Ebisawa, Yoshiaki; Chisato, Naoyuki; Iwamoto, Jun; Kasai, Shinichi

    2008-11-01

    did not affect the hyperemia. Japanese pepper significantly increased CVC at 45 min or later, whereas ginseng radix only showed a significant increase at 15 min. Reverse transcription-polymerase chain reaction showed that mRNA for calcitonin receptor-like receptor, receptor-activity modifying protein 1, and CGRP were expressed in rat colon and up-regulated by DKT. The present study demonstrated that DKT increased CVC, which was mainly mediated by CGRP and its receptor components.

  10. Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer

    International Nuclear Information System (INIS)

    Pires, L.A.; Hegg, R.; Freitas, F.R.; Tavares, E.R.; Almeida, C.P.; Baracat, E.C.; Maranhão, R.C.

    2012-01-01

    Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy

  11. Deletion of Iron Regulatory Protein 1 Causes Polycythemia and Pulmonary Hypertension in Mice through Translational De-repression of HIF2α

    Science.gov (United States)

    Ghosh, Manik C.; Zhang, De-Liang; Jeong, Suh Young; Kovtunovych, Gennadiy; Ollivierre-Wilson, Hayden; Noguchi, Audrey; Tu, Tiffany; Senecal, Thomas; Robinson, Gabrielle; Crooks, Daniel R.; Tong, Wing-Hang; Ramaswamy, Kavitha; Singh, Anamika; Graham, Brian B.; Tuder, Rubin M.; Yu, Zu-Xi; Eckhaus, Michael; Lee, Jaekwon; Springer, Danielle A.; Rouault, Tracey A.

    2013-01-01

    SUMMARY Iron regulatory proteins 1 and 2 (Irps) post-transcriptionally control the expression of transcripts that contain iron responsive element (IRE) sequences, including ferritin, ferroportin, transferrin receptor and hypoxia inducible factor 2α (HIF2α). We report here that mice with targeted deletion of Irp1 developed pulmonary hypertension and polycythemia that was exacerbated by a low iron diet. Hematocrits increased to 65% in iron-starved mice, and many polycythemic mice died of abdominal hemorrhages. Irp1 deletion enhanced HIF2α protein expression in kidneys of Irp1−/− mice, which led to increased erythropoietin (EPO) expression, polycythemia and concomitant tissue iron deficiency. Increased HIF2α expression in pulmonary endothelial cells induced high expression of endothelin-1, likely contributing to the pulmonary hypertension of Irp1−/− mice. Our results reveal why anemia is an early physiological consequence of iron deficiency, highlight the physiological significance of Irp1 in regulating erythropoiesis and iron distribution, and provide important insights into the molecular pathogenesis of pulmonary hypertension. PMID:23395173

  12. Ran GTPase-activating protein 1 is a therapeutic target in diffuse large B-cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Kung-Chao Chang

    Full Text Available Lymphoma-specific biomarkers contribute to therapeutic strategies and the study of tumorigenesis. Diffuse large B-cell lymphoma (DLBCL is the most common type of malignant lymphoma. However, only 50% of patients experience long-term survival after current treatment; therefore, developing novel therapeutic strategies is warranted. Comparative proteomic analysis of two DLBCL lines with a B-lymphoblastoid cell line (LCL showed differential expression of Ran GTPase-activating protein 1 (RanGAP1 between them, which was confirmed using immunoblotting. Immunostaining showed that the majority of DLBCLs (92%, 46/50 were RanGAP1(+, while reactive lymphoid hyperplasia (n = 12 was RanGAP1(+ predominantly in germinal centers. RanGAP1 was also highly expressed in other B-cell lymphomas (BCL, n = 180 with brisk mitotic activity (B-lymphoblastic lymphoma/leukemia: 93%, and Burkitt lymphoma: 95% or cell-cycle dysregulation (mantle cell lymphoma: 83%, and Hodgkin's lymphoma 91%. Interestingly, serum RanGAP1 level was higher in patients with high-grade BCL (1.71 ± 2.28 ng/mL, n = 62 than in low-grade BCL (0.75 ± 2.12 ng/mL, n = 52 and healthy controls (0.55 ± 1.58 ng/mL, n = 75 (high-grade BCL vs. low-grade BCL, p = 0.002; high-grade BCL vs. control, p < 0.001, Mann-Whitney U test. In vitro, RNA interference of RanGAP1 showed no effect on LCL but enhanced DLBCL cell death (41% vs. 60%; p = 0.035 and cell-cycle arrest (G0/G1: 39% vs. 49%, G2/M: 19.0% vs. 7.5%; p = 0.030 along with decreased expression of TPX2 and Aurora kinases, the central regulators of mitotic cell division. Furthermore, ON 01910.Na (Estybon, a multikinase inhibitor induced cell death, mitotic cell arrest, and hyperphosphorylation of RanGAP1 in DLBCL cell lines but no effects in normal B and T cells. Therefore, RanGAP1 is a promising marker and therapeutic target for aggressive B-cell lymphoma, especially DLBCL.

  13. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    International Nuclear Information System (INIS)

    Backues, Steven K.; Bednarek, Sebastian Y.

    2010-01-01

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  14. Dynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis

    Science.gov (United States)

    Zhang, Zhenzhen; Wu, Shengnan; Feng, Jie

    2011-01-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial dynamics in response to UV irradiation in human lung adenocarcinoma cells (ASTC-α-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Our results suggest that Drp1 is involved in the regulation of transition from an interconnecting network to a punctiform mitochondrial phenotype during UV-induced apoptosis.

  15. Uveitis induced by programmed cell death protein 1 inhibitor therapy with nivolumab in metastatic melanoma patient.

    Science.gov (United States)

    Kanno, Hiroaki; Ishida, Kyoko; Yamada, Wataru; Nishida, Takashi; Takahashi, Nobumichi; Mochizuki, Kiyofumi; Mizuno, Yuki; Matsuyama, Kanako; Takahashi, Tomoko; Seishima, Mariko

    2017-11-01

    Nivolumab, a new immune checkpoint inhibitor, binds to programmed cell death-protein 1 receptors on T cell, blockades binding of its ligands, and augments the immunologic reaction against tumor cells. Augmented immune response, however, may lead to immune-related adverse events. Herein we describe a rare case of bilateral anterior uveitis induced by nivolumab treatment for metastatic melanoma. A 54-year-old woman presented with mild conjunctival redness and blurred vision two months after initiating nivolumab treatment. Ophthalmological examination revealed bilateral non-granulomatous anterior uveitis. The flare values in the anterior chamber were monitored as an objective inflammatory index during nivolumab therapy and clinical time course was reported in this paper. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  16. Involvement of fractalkine and macrophage inflammatory protein-1 alpha in moderate-severe depression

    Directory of Open Access Journals (Sweden)

    Rosaria Alba Merendino

    2004-01-01

    Full Text Available MODERATE-severe depression (MSD is linked to overexpression of proinflammatory cytokines and chemokines. Fractalkine (FKN and macrophage inflammatory protein-1 alpha (MIP-1α are, respectively, members of CX3C and C-C chemokines, and both are involved in recruiting and activating mononuclear phagocytes in the central nervous system. We analysed the presence of FKN and MIP-1α in sera of untreated MSD patients and healthy donors. High FKN levels were observed in all MSD patients as compared with values only detectable in 26% of healthy donors. MIP-1α was measurable in 20% of patients, while no healthy donors showed detectable chemokine levels. In conclusion, we describe a previously unknown involvement of FKN in the pathogenesis of MSD, suggesting that FKN may represent a target for a specific immune therapy of this disease.

  17. Cerebrospinal fluid monocyte chemoattractant protein-1 in alcoholics: support for a neuroinflammatory model of chronic alcoholism.

    Science.gov (United States)

    Umhau, John C; Schwandt, Melanie; Solomon, Matthew G; Yuan, Peixiong; Nugent, Allison; Zarate, Carlos A; Drevets, Wayne C; Hall, Samuel D; George, David T; Heilig, Markus

    2014-05-01

    Liver inflammation in alcoholism has been hypothesized to influence the development of a neuroinflammatory process in the brain characterized by neurodegeneration and altered cognitive function. Monocyte chemoattractant protein-1/chemokine (C-C motif) ligand 2 (MCP-1/CCL2) elevations have been noted in the alcoholic brain at autopsy and may have a role in this process. We studied cerebrospinal fluid (CSF) levels of MCP-1 as well as interleukin-1β and tumor necrosis factor-α in 13 healthy volunteers and 28 alcoholics during weeks 1 and 4 following detoxification. Serum liver enzymes were obtained as markers of alcohol-related liver inflammation. Compared to healthy volunteers, MCP-1 levels were significantly higher in alcoholics both on day 4 and day 25 (p alcohol-induced liver inflammation, as defined by peripheral concentrations of GGT and AST/GOT. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  18. In silico analysis of the polygalacturonase inhibiting protein 1 from apple, Malus domestica.

    Science.gov (United States)

    Matsaunyane, Lerato Bt; Oelofse, Dean; Dubery, Ian A

    2015-03-11

    The Malus domestica polygalacturonase inhibiting protein 1 (MdPGIP1) gene, encoding the M. domestica polygalacturonase inhibiting protein 1 (MdPGIP1), was isolated from the Granny Smith apple cultivar (GenBank accession no. DQ185063). The gene was used to transform tobacco and potato for enhanced resistance against fungal diseases. Analysis of the MdPGIP1 nucleotide sequence revealed that the gene comprises 993 nucleotides that encode a 330 amino acid polypeptide. In silico characterization of the MdPGIP1 polypeptide revealed domains typical of PGIP proteins, which include a 24 amino acid putative signal peptide, a potential cleavage site [Alanine-Leucine-Serine (ALS)] for the signal peptide, a 238 amino acid leucine-rich repeat (LRR) domain, a 46 amino acid N-terminal domain and a 22 amino acid C-terminal domain. The hydropathic evaluation of MdPGIP1 indicated a repetitive hydrophobic motif in the LRR domain and a hydrophilic surface area consistent with a globular protein. The typical consensus glycosylation sequence of Asn-X-Ser/Thr was identified in MdPGIP1, indicating potential N-linked glycosylation of MdPGIP1. The molecular mass of non-glycosylated MdPGIP1 was calculated as 36.615 kDa and the theoretical isoelectric point as 6.98. Furthermore, the secondary and tertiary structure of MdPGIP1 was modelled, and revealed that MdPGIP1 is a curved and elongated molecule that contains sheet B1, sheet B2 and 310-helices on its LRR domain. The overall properties of the MdPGIP1 protein is similar to that of the prototypical Phaseolus vulgaris PGIP 2 (PvPGIP2), and the detected differences supported its use in biotechnological applications as an inhibitor of targeted fungal polygalacturonases (PGs).

  19. CUB-domain-containing protein 1 overexpression in solid cancers promotes cancer cell growth by activating Src family kinases.

    Science.gov (United States)

    Leroy, C; Shen, Q; Strande, V; Meyer, R; McLaughlin, M E; Lezan, E; Bentires-Alj, M; Voshol, H; Bonenfant, D; Alex Gaither, L

    2015-10-29

    The transmembrane glycoprotein, CUB (complement C1r/C1s, Uegf, Bmp1) domain-containing protein 1 (CDCP1) is overexpressed in several cancer types and is a predictor of poor prognosis for patients on standard of care therapies. Phosphorylation of CDCP1 tyrosine sites is induced upon loss of cell adhesion and is thought to be linked to metastatic potential of tumor cells. Using a tyrosine-phosphoproteomics screening approach, we characterized the phosphorylation state of CDCP1 across a panel of breast cancer cell lines. We focused on two phospho-tyrosine pTyr peptides of CDCP1, containing Tyr707 and Tyr806, which were identified in all six lines, with the human epidermal growth factor 2-positive HCC1954 cells showing a particularly high phosphorylation level. Pharmacological modulation of tyrosine phosphorylation indicated that, the Src family kinases (SFKs) were found to phosphorylate CDCP1 at Tyr707 and Tyr806 and play a critical role in CDCP1 activity. We demonstrated that CDCP1 overexpression in HEK293 cells increases global phosphotyrosine content, promotes anchorage-independent cell growth and activates several SFK members. Conversely, CDCP1 downregulation in multiple solid cancer cell lines decreased both cell growth and SFK activation. Analysis of primary human tumor samples demonstrated a correlation between CDCP1 expression, SFK and protein kinase C (PKC) activity. Taken together, our results suggest that CDCP1 overexpression could be an interesting therapeutic target in multiple solid cancers and a good biomarker to stratify patients who could benefit from an anti-SFK-targeted therapy. Our data also show that multiple tyrosine phosphorylation sites of CDCP1 are important for the functional regulation of SFKs in several tumor types.

  20. Choline transport via choline transporter-like protein 1 in conditionally immortalized rat syncytiotrophoblast cell lines TR-TBT.

    Science.gov (United States)

    Lee, N-Y; Choi, H-M; Kang, Y-S

    2009-04-01

    Choline is an essential nutrient for phospholipids and acetylcholine biosynthesis in normal development of fetus. In the present study, we investigated the functional characteristics of choline transport system and inhibitory effect of cationic drugs on choline transport in rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT). Choline transport was weakly Na(+) dependent and significantly influenced by extracellular pH and by membrane depolarization. The transport process of choline is saturable with Michaelis-Menten constants (K(m)) of 68microM and 130microM in TR-TBT 18d-1 and TR-TBT 18d-2 respectively. Choline uptake in the cells was inhibited by unlabeled choline and hemicholinium-3 as well as various organic cations including guanidine, amiloride and acetylcholine. However, the prototypical organic cation tetraethylammonium and cimetidine showed very little inhibitory effect of choline uptake in TR-TBT cells. RT-PCR revealed that choline transporter-like protein 1 (CTL1) and organic cation transporter 2 (OCT2) are expressed in TR-TBT cells. The transport properties of choline in TR-TBT cells were similar or identical to that of CTL1 but not OCT2. CTL1 was also detected in human placenta. In addition, several cationic drugs such as diphenhydramine and verapamil competitively inhibited choline uptake in TR-TBT 18d-1 with K(i) of 115microM and 55microM, respectively. Our results suggest that choline transport system, which has intermediate affinity and weakly Na(+) dependent, in TR-TBT seems to occur through a CTL1 and this system may have relevance with the uptake of pharmacologically important organic cation drugs.

  1. Epstein Barr virus Latent Membrane Protein-1 enhances dendritic cell therapy lymph node migration, activation, and IL-12 secretion.

    Directory of Open Access Journals (Sweden)

    James M Termini

    Full Text Available Dendritic cells (DC are a promising cell type for cancer vaccines due to their high immunostimulatory capacity. However, improper maturation of DC prior to treatment may account for the limited efficacy of DC vaccine clinical trials. Latent Membrane Protein-1 (LMP1 of Epstein-Barr virus was examined for its ability to mature and activate DC as a gene-based molecular adjuvant for DC vaccines. DC were transduced with an adenovirus 5 vector (Ad5 expressing LMP1 under the control of a Tet-inducible promoter. Ad5-LMP1 was found to mature and activate both human and mouse DC. LMP1 enhanced in vitro migration of DC toward CCL19, as well as in vivo migration of DC to the inguinal lymph nodes of mice following intradermal injection. LMP1-transduced DC increased T cell proliferation in a Pmel-1 adoptive transfer model and enhanced survival in B16-F10 melanoma models. LMP1-DC also enhanced protection in a vaccinia-Gag viral challenge assay. LMP1 induced high levels of IL-12p70 secretion in mouse DC when compared to standard maturation protocols. Importantly, LMP1-transduced human DC retained the capacity to secrete IL-12p70 and TNF in response to DC restimulation. In contrast, DC matured with Monocyte Conditioned Media-Mimic cocktail (Mimic were impaired in IL-12p70 secretion following restimulation. Overall, LMP1 matured and activated DC, induced migration to the lymph node, and generated high levels of IL-12p70 in a murine model. We propose LMP1 as a promising molecular adjuvant for DC vaccines.

  2. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Takahisa eKanekiyo

    2014-05-01

    Full Text Available Accumulation and aggregation of amyloid-β (Aβ peptides in the brain trigger the development of progressive neurodegeneration and dementia associated with Alzheimer’s disease (AD. Perturbation in Aβ clearance, rather than Aβ production, is likely the cause of sporadic, late-onset AD, which accounts for the majority of AD cases. Since cellular uptake and subsequent degradation constitute a major Aβ clearance pathway, the receptor-mediated endocytosis of Aβ has been intensely investigated. Among Aβ receptors, the low-density lipoprotein receptor-related protein 1 (LRP1 is one of the most studied receptors. LRP1 is a large endocytic receptor for more than 40 ligands, including apolipoprotein E (apoE, α2-macroglobulin and Aβ. Emerging in vitro and in vivo evidence demonstrates that LRP1 is critically involved in brain Aβ clearance. LRP1 is highly expressed in a variety of cell types in the brain including neurons, vascular cells and glial cells, where LRP1 functions to maintain brain homeostasis and control Aβ metabolism. LRP1-mediated endocytosis regulates cellular Aβ uptake by binding to Aβ either directly or indirectly through its co-receptors or ligands. Furthermore, LRP1 regulates several signaling pathways, which also likely influences Aβ endocytic pathways. In this review, we discuss how LRP1 regulates the brain Aβ clearance and how this unique endocytic receptor participates in AD pathogenesis. Understanding of the mechanisms underlying LRP1-mediated Aβ clearance should enable the rational design of novel diagnostic and therapeutic strategies for AD.

  3. The streptococcal collagen-like protein-1 (Scl1 is a significant determinant for biofilm formation by group a Streptococcus

    Directory of Open Access Journals (Sweden)

    Oliver-Kozup Heaven A

    2011-12-01

    Full Text Available Abstract Background Group A Streptococcus (GAS is a human-specific pathogen responsible for a number of diseases characterized by a wide range of clinical manifestations. During host colonization GAS-cell aggregates or microcolonies are observed in tissues. GAS biofilm, which is an in vitro equivalent of tissue microcolony, has only recently been studied and little is known about the specific surface determinants that aid biofilm formation. In this study, we demonstrate that surface-associated streptococcal collagen-like protein-1 (Scl1 plays an important role in GAS biofilm formation. Results Biofilm formation by M1-, M3-, M28-, and M41-type GAS strains, representing an intraspecies breadth, were analyzed spectrophotometrically following crystal violet staining, and characterized using confocal and field emission scanning electron microscopy. The M41-type strain formed the most robust biofilm under static conditions, followed by M28- and M1-type strains, while the M3-type strains analyzed here did not form biofilm under the same experimental conditions. Differences in architecture and cell-surface morphology were observed in biofilms formed by the M1- and M41-wild-type strains, accompanied by varying amounts of deposited extracellular matrix and differences in cell-to-cell junctions within each biofilm. Importantly, all Scl1-negative mutants examined showed significantly decreased ability to form biofilm in vitro. Furthermore, the Scl1 protein expressed on the surface of a heterologous host, Lactococcus lactis, was sufficient to induce biofilm formation by this organism. Conclusions Overall, this work (i identifies variations in biofilm formation capacity among pathogenically different GAS strains, (ii identifies GAS surface properties that may aid in biofilm stability and, (iii establishes that the Scl1 surface protein is an important determinant of GAS biofilm, which is sufficient to enable biofilm formation in the heterologous host

  4. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor

    Science.gov (United States)

    Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju

    2016-01-01

    Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone–related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo. In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.—Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. PMID:27075243

  5. Honey bee foraging induces upregulation of early growth response protein 1, hormone receptor 38 and candidate downstream genes of the ecdysteroid signalling pathway.

    Science.gov (United States)

    Singh, A S; Shah, A; Brockmann, A

    2018-02-01

    In honey bees, continuous foraging at an artificial feeder induced a sustained upregulation of the immediate early genes early growth response protein 1 (Egr-1) and hormone receptor 38 (Hr38). This gene expression response was accompanied by an upregulation of several Egr-1 candidate downstream genes: ecdysone receptor (EcR), dopamine/ecdysteroid receptor (DopEcR), dopamine decarboxylase and dopamine receptor 2. Hr38, EcR and DopEcR are components of the ecdysteroid signalling pathway, which is highly probably involved in learning and memory processes in honey bees and other insects. Time-trained foragers still showed an upregulation of Egr-1 when the feeder was presented at an earlier time of the day, suggesting that the genomic response is more dependent on the food reward than training time. However, presentation of the feeder at the training time without food was still capable of inducing a transient increase in Egr-1 expression. Thus, learnt feeder cues, or even training time, probably affect Egr-1 expression. In contrast, whole brain Egr-1 expression changes did not differ between dancing and nondancing foragers. On the basis of our results we propose that food reward induced continuous foraging ultimately elicits a genomic response involving Egr-1 and Hr38 and their downstream genes. Furthermore this genomic response is highly probably involved in foraging-related learning and memory responses. © 2017 The Royal Entomological Society.

  6. Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, Cong; Wang, Jingchao [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Guo, Wei [Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Wang, Huan; Wang, Chao; Liu, Yu [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Sun, Xiaoping, E-mail: xsun6@whu.edu.cn [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); State Key Laboratory of Virology, Wuhan University, Wuhan, 430072 (China)

    2016-01-01

    Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated that triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.

  7. Role of metastasis-associated protein 1 in prognosis of patients with digestive tract cancers: A meta-analysis.

    Directory of Open Access Journals (Sweden)

    Guo-Dong Cao

    Full Text Available Metastasis-associated protein 1 (MTA1 is a transcriptional regulator and significantly associated with prognosis of patients with cancer. However, its role as a potential prognostic marker in digestive tract cancer (DTC is controversial. In this study, a meta-analysis was conducted to evaluate the MTA1 expression as a predictor of clinicopathology and survival of patients with DTC.We searched PubMed, Ovid, Web of Science and Cochrane databases using multiple search strategies for eligible studies. STATA 11.0 software was used to pool the data and analyze the association, odds ratios (ORs and 95% confidence intervals (CIs were used to measure the strength of the association. Furthermore, the Newcastle-Ottawa scale was used to evaluate the quality of eligible studies.MTA1 overexpression was strongly associated with depth of invasion (OR = 1.88, 95%CI: 1.05-3.37, P = 0.03, lymph node metastasis (OR = 2.30, 95%CI: 1.76-3.01, P<0.001, vascular invasion (OR = 2.02, 95%CI: 1.40-2.91, P<0.001 and TNM stage (OR = 2.78, 95%CI: 1.63-4.74, P<0.001, and was related to 1- (RR = 1.84, 95%CI: 1.18-2.89, P = 0.008, 3- (RR = 1.74, 95%CI: 1.32-2.30, P<0.001 and 5-year (RR = 1.64, 95%CI: 1.18-2.27, P = 0.003 OS. Further, MTA1 was associated with 1- (RR = 4.16, 95%CI: 1.35-12.81, P = 0.01, 3- (RR = 1.90, 95%CI: 1.02-3.53, P = 0.04 and 5- (RR = 2.17, 95%CI: 1.41-3.32, P<0.001 year DFS. In subgroup analyses based on study quality and tumor type, MTA1 overexpression was obviously related to clinical parameters, such as lymph node metastasis and TNM stage, and was also associated with prognosis of patients with gastrointestinal or esophageal cancer.MTA1 expression is strongly correlated with metastasis-related variables, and represents a promising prognostic factor in DTC.

  8. Rice hypersensitive induced reaction protein 1 (OsHIR1) associates with plasma membrane and triggers hypersensitive cell death.

    Science.gov (United States)

    Zhou, Liang; Cheung, Ming-Yan; Li, Man-Wah; Fu, Yaping; Sun, Zongxiu; Sun, Sai-Ming; Lam, Hon-Ming

    2010-12-30

    In plants, HIR (Hypersensitive Induced Reaction) proteins, members of the PID (Proliferation, Ion and Death) superfamily, have been shown to play a part in the development of spontaneous hypersensitive response lesions in leaves, in reaction to pathogen attacks. The levels of HIR proteins were shown to correlate with localized host cell deaths and defense responses in maize and barley. However, not much was known about the HIR proteins in rice. Since rice is an important cereal crop consumed by more than 50% of the populations in Asia and Africa, it is crucial to understand the mechanisms of disease responses in this plant. We previously identified the rice HIR1 (OsHIR1) as an interacting partner of the OsLRR1 (rice Leucine-Rich Repeat protein 1). Here we show that OsHIR1 triggers hypersensitive cell death and its localization to the plasma membrane is enhanced by OsLRR1. Through electron microscopy studies using wild type rice plants, OsHIR1 was found to mainly localize to the plasma membrane, with a minor portion localized to the tonoplast. Moreover, the plasma membrane localization of OsHIR1 was enhanced in transgenic rice plants overexpressing its interacting protein partner, OsLRR1. Co-localization of OsHIR1 and OsLRR1 to the plasma membrane was confirmed by double-labeling electron microscopy. Pathogen inoculation studies using transgenic Arabidopsis thaliana expressing either OsHIR1 or OsLRR1 showed that both transgenic lines exhibited increased resistance toward the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. However, OsHIR1 transgenic plants produced more extensive spontaneous hypersensitive response lesions and contained lower titers of the invading pathogen, when compared to OsLRR1 transgenic plants. The OsHIR1 protein is mainly localized to the plasma membrane, and its subcellular localization in that compartment is enhanced by OsLRR1. The expression of OsHIR1 may sensitize the plant so that it is more prone to HR and hence can react more

  9. tlpA gene expression is required for arginine and bicarbonate chemotaxis in Helicobacter pylori.

    Science.gov (United States)

    Cerda, Oscar A; Núñez-Villena, Felipe; Soto, Sarita E; Ugalde, José Manuel; López-Solís, Remigio; Toledo, Héctor

    2011-01-01

    About half of the human population is infected with Helicobacter pylori, a bacterium causing gastritis, peptic ulcer and progression to gastric cancer. Chemotaxis and flagellar motility are required for colonization and persistence of H. pylori in the gastric mucus layer. It is not completely clear which chemical gradients are used by H. pylori to maintain its position. TlpA, a chemotaxis receptor for arginine/ bicarbonate, has been identified. This study aimed to find out whether tlpA gene expression is required for the chemotactic response to arginine/bicarbonate. Wild-type motile H. pylori ATCC 700392 and H. pylori ATCC 43504, a strain having an interrupted tlpA gene, were used. Also, a tlpA-knockout mutant of H. pylori 700392 (H. pylori 700-tlpA::cat) was produced by homologous recombination. Expression of tlpA was assessed by a Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) assay. Chemotaxis was measured as a Relative Chemotaxis Response (RCR) by a modified capillary assay. H. pylori 700392 presented chemotaxis to arginine and sodium bicarbonate. H. pylori 700-tlpA::cat showed neither tlpA gene expression nor chemotaxis towards arginine and bicarbonate. Besides confirming that TlpA is a chemotactic receptor for arginine/bicarbonate in H. pylori, this study showed that tlpA gene expression is required for arginine/bicarbonate chemotaxis.

  10. tlpA gene expression is required for arginine and bicarbonate chemotaxis in Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Oscar A Cerda

    2011-01-01

    Full Text Available About half of the human population is infected with Helicobacter pylori, a bacterium causing gastritis, peptic ulcer and progression to gastric cancer. Chemotaxis and flagellar motility are required for colonization and persistence of H. pylori in the gastric mucus layer. It is not completely clear which chemical gradients are used by H. pylori to maintain its position. TlpA, a chemotaxis receptor for arginine/ bicarbonate, has been identified. This study aimed to find out whether tlpA gene expression is required for the chemotactic response to arginine/bicarbonate. Wild-type motile H. pylori ATCC 700392 and H. pylori ATCC 43504, a strain having an interrupted tlpA gene, were used. Also, a tlpA-knockout mutant of H. pylori 700392 (H. pylori 700-tlpA::cat was produced by homologous recombination. Expression of tlpA was assessed by a Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR assay. Chemotaxis was measured as a Relative Chemotaxis Response (RCR by a modified capillary assay. H. pylori 700392 presented chemotaxis to arginine and sodium bicarbonate. H. pylori 700-tlpA::cat showed neither tlpA gene expression nor chemotaxis towards arginine and bicarbonate. Besides confirming that TlpA is a chemotactic receptor for arginine/bicarbonate in H. pylori, this study showed that tlpA gene expression is required for arginine/bicarbonate chemotaxis.

  11. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor

    DEFF Research Database (Denmark)

    Tran, E H; Kuziel, W A; Owens, T

    2000-01-01

    -type mice in Th1 cytokine gene expression, the kinetics and severity of disease, and infiltration of the central nervous system by lymphocytes, macrophages and granulocytes. RNase protection assays showed comparable accumulation of mRNA for the chemokines interferon-inducible protein-10, RANTES, macrophage...... and its CCR5 receptor in the induction of EAE by immunizing C57BL / 6 mice deficient in either MIP-1alpha or CCR5 with myelin oligodendrocyte glycoprotein (MOG). We found that MIP-1alpha-deficient mice were fully susceptible to MOG-induced EAE. These knockout animals were indistinguishable from wild...... chemoattractant protein-1, MIP-1beta, MIP-2, lymphotactin and T cell activation gene-3 during the course of the disease. CCR5-deficient mice were also susceptible to disease induction by MOG. The dispensability of MIP-1alpha and CCR5 for MOG-induced EAE in C57BL / 6 mice supports the idea that differential...

  12. Detection of early atherosclerosis with radiolabeled monocyte chemoattractant protein-1 in prediabeteic Zucker rats

    Energy Technology Data Exchange (ETDEWEB)

    Blankenberg, F.G. [Div. of Pediatric Radiology, Stanford, CA (United States); Wen, P.; Dai, M.; Zhu, D.; Panchal, S.N.; Valantine, H.A. [Division of Cardiovascular Medicine, Department of Medicine, Stanford, California (United States); Tait, J.F. [Dept. of Laboratory Medicine, Univ. of Washington, Seattle (United States); Post, A.M.; Strauss, H.W. [Div. of Nuclear Medicine, Stanford Univ., CA (United States)

    2001-12-01

    Background: Migration of monocytes into the arterial wall is an early finding of atherosclerosis. Monocytes are attracted to sites of vascular endothelial cell injury, the initiating event in the development of atheromatous disease, by a chemokine known as monocyte chemoattractant protein-1 (MCP-1). Injured vascular endothelial and smooth muscle cells selectively secrete MCP-1. Objective: This study was performed to determine if radiolabeled MCP-1 would co-localize at sites of monocyte/macrophage concentration in an experimental model of transplant-induced vasculopathy in diabetic animals. Materials and methods: Hearts from 3-month-old male Zucker rats, heterozygote (Lean) or homozygote (Fat) for the diabetes-associated gene fa, were transplanted into the abdomens of genetically matched recipients. Lean and Fat animals were then fed normal or high-fat diets for 90 days. Results: At 90 days significant increases (P < 0.013) of MCP-1 graft uptake were seen at imaging and confirmed on scintillation gamma well counting studies in Lean (n = 5) and Fat (n = 12) animals, regardless of diet, 400 % and 40 %, above control values, respectively. MCP-1 uptake of native and grafted hearts correlated with increased numbers of perivascular macrophages (P < 0.02), as seen by immunostaining with an antibody specific for macrophages (ED 2). Conclusion: Radiolabeled MCP-1 can detect abnormally increased numbers of perivascular mononuclear cells in native and grafted hearts in prediabetic rats. MCP-1 may be useful in the screening of diabetic children for early atherosclerotic disease. (orig.)

  13. Structural Insights into RNA Recognition by the Alternate-Splicing Regulator CUG-Binding Protein 1

    Energy Technology Data Exchange (ETDEWEB)

    M Teplova; J Song; H Gaw; A Teplov; D Patel

    2011-12-31

    CUG-binding protein 1 (CUGBP1) regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of myotonic dystrophy. CUGBP1 harbors three RRM domains and preferentially targets UGU-rich mRNA elements. We describe crystal structures of CUGBP1 RRM1 and tandem RRM1/2 domains bound to RNAs containing tandem UGU(U/G) elements. Both RRM1 in RRM1-RNA and RRM2 in RRM1/2-RNA complexes use similar principles to target UGU(U/G) elements, with recognition mediated by face-to-edge stacking and water-mediated hydrogen-bonding networks. The UG step adopts a left-handed Z-RNA conformation, with the syn guanine recognized through Hoogsteen edge-protein backbone hydrogen-bonding interactions. NMR studies on the RRM1/2-RNA complex establish that both RRM domains target tandem UGUU motifs in solution, whereas filter-binding assays identify a preference for recognition of GU over AU or GC steps. We discuss the implications of CUGBP1-mediated targeting and sequestration of UGU(U/G) elements on pre-mRNA alternative-splicing regulation, translational regulation, and mRNA decay.

  14. The Y-Box Binding Protein 1 Suppresses Alzheimer's Disease Progression in Two Animal Models.

    Directory of Open Access Journals (Sweden)

    N V Bobkova

    Full Text Available The Y-box binding protein 1 (YB-1 is a member of the family of DNA- and RNA binding proteins. It is involved in a wide variety of DNA/RNA-dependent events including cell proliferation and differentiation, stress response, and malignant cell transformation. Previously, YB-1 was detected in neurons of the neocortex and hippocampus, but its precise role in the brain remains undefined. Here we show that subchronic intranasal injections of recombinant YB-1, as well as its fragment YB-11-219, suppress impairment of spatial memory in olfactory bulbectomized (OBX mice with Alzheimer's type degeneration and improve learning in transgenic 5XFAD mice used as a model of cerebral amyloidosis. YB-1-treated OBX and 5XFAD mice showed a decreased level of brain β-amyloid. In OBX animals, an improved morphological state of neurons was revealed in the neocortex and hippocampus; in 5XFAD mice, a delay in amyloid plaque progression was observed. Intranasally administered YB-1 penetrated into the brain and could enter neurons. In vitro co-incubation of YB-1 with monomeric β-amyloid (1-42 inhibited formation of β-amyloid fibrils, as confirmed by electron microscopy. This suggests that YB-1 interaction with β-amyloid prevents formation of filaments that are responsible for neurotoxicity and neuronal death. Our data are the first evidence for a potential therapeutic benefit of YB-1 for treatment of Alzheimer's disease.

  15. Xerophthalmia of Sjogren's Syndrome Diagnosed with Anti-Salivary Gland Protein 1 Antibodies

    Directory of Open Access Journals (Sweden)

    Sahana Vishwanath

    2014-06-01

    Full Text Available Purpose: The purpose of this report is to describe 2 patients with persistent severe dry eyes, positive Schirmer tests for Sjogren's syndrome (SS but lacking antibodies to either Ro or La. These patients were diagnosed to have SS by detecting antibodies to salivary gland protein 1 (Sp1 and parotid secretory protein (PSP. This report emphasizes the existence of patients with SS who lack antibodies to either Ro or La and may therefore be misdiagnosed. Detection of novel autoantibodies, including antibodies to Sp1 and PSP, are helpful in identifying these patients. Initial presentation may simply be dry eyes. Methods: Two patients who presented to our ophthalmology clinic are described. One of the patients underwent multiple procedures over a period of 10 years for severe xerophthalmia. The other patient had rheumatoid arthritis and xerophthalmia. However, in both patients, chronic xerophthalmia had been considered to be idiopathic because antibodies Ro and La were negative. Further serologic testing revealed antibodies to Sp1 and PSP. Results: Two patients who lacked antibodies to Ro and La but not to Sp1 and PSP were diagnosed as having SS. Conclusion: Patients presenting with unexplained dry eyes may not always show the serology markers in the current criteria for SS, anti-Ro and anti-La. In these cases, investigation for novel, early antibodies to Sp1 and PSP is of importance in the diagnosis of SS.

  16. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway.

    Science.gov (United States)

    Wang, Zhao V; Deng, Yingfeng; Gao, Ningguo; Pedrozo, Zully; Li, Dan L; Morales, Cyndi R; Criollo, Alfredo; Luo, Xiang; Tan, Wei; Jiang, Nan; Lehrman, Mark A; Rothermel, Beverly A; Lee, Ann-Hwee; Lavandero, Sergio; Mammen, Pradeep P A; Ferdous, Anwarul; Gillette, Thomas G; Scherer, Philipp E; Hill, Joseph A

    2014-03-13

    The hexosamine biosynthetic pathway (HBP) generates uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in metabolism and multiple diseases, regulation of the HBP remains largely undefined. Here, we show that spliced X-box binding protein 1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers HBP activation via Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We further establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions. Finally, we demonstrate a physiologic role for the UPR-HBP axis by showing that acute stimulation of Xbp1s in heart by ischemia/reperfusion confers robust cardioprotection in part through induction of the HBP. Collectively, these studies reveal that Xbp1s couples the UPR to the HBP to protect cells under stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Synthesis and structure activity relationships of carbamimidoylcarbamate derivatives as novel vascular adhesion protein-1 inhibitors.

    Science.gov (United States)

    Yamaki, Susumu; Yamada, Hiroyoshi; Nagashima, Akira; Kondo, Mitsuhiro; Shimada, Yoshiaki; Kadono, Keitaro; Yoshihara, Kosei

    2017-11-01

    Vascular adhesion protein-1 (VAP-1) is a promising therapeutic target for the treatment of diabetic nephropathy. Here, we conducted structural optimization of the glycine amide derivative 1, which we previously reported as a novel VAP-1 inhibitor, to improve stability in dog and monkey plasma, and aqueous solubility. By chemical modification of the right part in the glycine amide derivative, we identified the carbamimidoylcarbamate derivative 20c, which showed stability in dog and monkey plasma while maintaining VAP-1 inhibitory activity. We also found that conversion of the pyrimidine ring in 20c into saturated rings was effective for improving aqueous solubility. This led to the identification of 28a and 35 as moderate VAP-1 inhibitors with excellent aqueous solubility. Further optimization led to the identification of 2-fluoro-3-{3-[(6-methylpyridin-3-yl)oxy]azetidin-1-yl}benzyl carbamimidoylcarbamate (40b), which showed similar human VAP-1 inhibitory activity to 1 with improved aqueous solubility. 40b showed more potent ex vivo efficacy than 1, with rat plasma VAP-1 inhibitory activity of 92% at 1h after oral administration at 0.3mg/kg. In our pharmacokinetic study, 40b showed good oral bioavailability in rats, dogs, and monkeys, which may be due to its improved stability in dog and monkey plasma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Specific interaction with cardiolipin triggers functional activation of Dynamin-Related Protein 1.

    Directory of Open Access Journals (Sweden)

    Itsasne Bustillo-Zabalbeitia

    Full Text Available Dynamin-Related Protein 1 (Drp1, a large GTPase of the dynamin superfamily, is required for mitochondrial fission in healthy and apoptotic cells. Drp1 activation is a complex process that involves translocation from the cytosol to the mitochondrial outer membrane (MOM and assembly into rings/spirals at the MOM, leading to membrane constriction/division. Similar to dynamins, Drp1 contains GTPase (G, bundle signaling element (BSE and stalk domains. However, instead of the lipid-interacting Pleckstrin Homology (PH domain present in the dynamins, Drp1 contains the so-called B insert or variable domain that has been suggested to play an important role in Drp1 regulation. Different proteins have been implicated in Drp1 recruitment to the MOM, although how MOM-localized Drp1 acquires its fully functional status remains poorly understood. We found that Drp1 can interact with pure lipid bilayers enriched in the mitochondrion-specific phospholipid cardiolipin (CL. Building on our previous study, we now explore the specificity and functional consequences of this interaction. We show that a four lysine module located within the B insert of Drp1 interacts preferentially with CL over other anionic lipids. This interaction dramatically enhances Drp1 oligomerization and assembly-stimulated GTP hydrolysis. Our results add significantly to a growing body of evidence indicating that CL is an important regulator of many essential mitochondrial functions.

  19. Gamma interferon-induced guanylate binding protein 1 is a novel actin cytoskeleton remodeling factor.

    Science.gov (United States)

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J K; Schubert, Dirk W; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies.

  20. Localization and activity of multidrug resistance protein 1 in the secretory pathway of Leishmania parasites.

    Science.gov (United States)

    Dodge, Matthew A; Waller, Ross F; Chow, Larry M C; Zaman, Muhammad M; Cotton, Leanne M; McConville, Malcolm J; Wirth, Dyann F

    2004-03-01

    Upregulation of the multidrug resistance protein 1 (LeMDR1) in the protozoan parasite, Leishmania enriettii, confers resistance to hydrophobic drugs such as vinblastine, but increases the sensitivity of these parasites to the mitochondrial drug, rhodamine 123. In order to investigate the mechanism of action of LeMDR1, the subcellular localization of green fluorescent protein (GFP)-tagged versions of LeMDR1 and the fate of the traceable-fluorescent LeMDR1 substrate calcein AM were examined in both Leishmania mexicana and L. enriettii LeMDR1 -/- and overexpressing cell lines. The LeMDR1-GFP chimera was localized by fluorescence microscopy to a number of secretory and endocytic compartments, including the Golgi apparatus, endoplasmic reticulum (ER) and a multivesicular tubule (MVT)-lysosome. Pulse-chase labelling experiments with calcein AM suggested that the Golgi and ER pools, but not the MVT-lysosome pool, of LeMDR1 were active in pumping calcein AM out of the cell. Cells labelled with calcein AM under conditions that slow vesicular transport (low temperature and stationary growth) inhibited export and resulted in the accumulation of fluorescent calcein in both the Golgi and the mitochondria. We propose that LeMDR1 substrates are pumped into secretory compartments and exported from the parasite by exocytosis. Accumulation of MDR substrates in the ER can result in alternative transport to the mitochondrion, explaining the reciprocal sensitivity of drug-resistant Leishmania to vinblastine and rhodamine 123.

  1. Improved crystallization and diffraction of caffeine-induced death suppressor protein 1 (Cid1)

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Luke A., E-mail: luke@strubi.ox.ac.uk; Durrant, Benjamin P.; Barber, Michael; Harlos, Karl [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Fleurdépine, Sophie; Norbury, Chris J. [University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Gilbert, Robert J. C., E-mail: luke@strubi.ox.ac.uk [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2015-02-21

    The use of truncation and RNA-binding mutations of caffeine induced death suppressor protein 1 (Cid1) as a means to enhance crystallogenesis leading to an improvement of X-ray diffraction resolution by 1.5 Å is reported. The post-transcriptional addition of uridines to the 3′-end of RNAs is an important regulatory process that is critical for coding and noncoding RNA stability. In fission yeast and metazoans this untemplated 3′-uridylylation is catalysed by a single family of terminal uridylyltransferases (TUTs) whose members are adapted to specific RNA targets. In Schizosaccharomyces pombe the TUT Cid1 is responsible for the uridylylation of polyadenylated mRNAs, targeting them for destruction. In metazoans, the Cid1 orthologues ZCCHC6 and ZCCHC11 uridylate histone mRNAs, targeting them for degradation, but also uridylate microRNAs, altering their maturation. Cid1 has been studied as a model TUT that has provided insights into the larger and more complex metazoan enzyme system. In this paper, two strategies are described that led to improvements both in the crystallogenesis of Cid1 and in the resolution of diffraction by ∼1.5 Å. These advances have allowed high-resolution crystallo@@graphic studies of this TUT system to be initiated.

  2. Blockade of vascular adhesion protein-1 inhibits lymphocyte infiltration in rat liver allograft rejection.

    Science.gov (United States)

    Martelius, Timi; Salaspuro, Ville; Salmi, Marko; Krogerus, Leena; Höckerstedt, Krister; Jalkanen, Sirpa; Lautenschlager, Irmeli

    2004-12-01

    Vascular adhesion protein-1 (VAP-1) has been shown to mediate lymphocyte adhesion to endothelia at sites of inflammation, but its functional role in vivo has not been tested in any rodent model. Here we report the effects of VAP-1 blockade on rat liver allograft rejection. BN recipients of PVG liver allografts (known to develop acute rejection by day 7) were treated with 2 mg/kg anti-VAP-1 (a new anti-rat VAP-1 mAb 174-5) or isotype-matched irrelevant antibody (NS1) every other day (n = 6/group) and one group with anti-VAP-1 2 mg/kg daily (n = 7). On day 7, samples were collected for transplant aspiration cytology, histology, and immunohistochemistry. Lymphocyte infiltration to the graft was clearly affected by VAP-blockade. The total inflammation, mainly the number of active lymphoid cells, in transplant aspiration cytology was significantly decreased in animals treated with anti-VAP-1 (4.7 +/- 1.0 and 2.4 +/- 1.0 corrected increment units, respectively) compared to control (6.6 +/- 1.0) (P VAP-1 plays an important role in lymphocyte infiltration to sites of inflammation, and, in particular, liver allograft rejection.

  3. Detection of early atherosclerosis with radiolabeled monocyte chemoattractant protein-1 in prediabeteic Zucker rats

    International Nuclear Information System (INIS)

    Blankenberg, F.G.; Wen, P.; Dai, M.; Zhu, D.; Panchal, S.N.; Valantine, H.A.; Tait, J.F.; Post, A.M.; Strauss, H.W.

    2001-01-01

    Background: Migration of monocytes into the arterial wall is an early finding of atherosclerosis. Monocytes are attracted to sites of vascular endothelial cell injury, the initiating event in the development of atheromatous disease, by a chemokine known as monocyte chemoattractant protein-1 (MCP-1). Injured vascular endothelial and smooth muscle cells selectively secrete MCP-1. Objective: This study was performed to determine if radiolabeled MCP-1 would co-localize at sites of monocyte/macrophage concentration in an experimental model of transplant-induced vasculopathy in diabetic animals. Materials and methods: Hearts from 3-month-old male Zucker rats, heterozygote (Lean) or homozygote (Fat) for the diabetes-associated gene fa, were transplanted into the abdomens of genetically matched recipients. Lean and Fat animals were then fed normal or high-fat diets for 90 days. Results: At 90 days significant increases (P < 0.013) of MCP-1 graft uptake were seen at imaging and confirmed on scintillation gamma well counting studies in Lean (n = 5) and Fat (n = 12) animals, regardless of diet, 400 % and 40 %, above control values, respectively. MCP-1 uptake of native and grafted hearts correlated with increased numbers of perivascular macrophages (P < 0.02), as seen by immunostaining with an antibody specific for macrophages (ED 2). Conclusion: Radiolabeled MCP-1 can detect abnormally increased numbers of perivascular mononuclear cells in native and grafted hearts in prediabetic rats. MCP-1 may be useful in the screening of diabetic children for early atherosclerotic disease. (orig.)

  4. Improved crystallization and diffraction of caffeine-induced death suppressor protein 1 (Cid1)

    International Nuclear Information System (INIS)

    Yates, Luke A.; Durrant, Benjamin P.; Barber, Michael; Harlos, Karl; Fleurdépine, Sophie; Norbury, Chris J.; Gilbert, Robert J. C.

    2015-01-01

    The use of truncation and RNA-binding mutations of caffeine induced death suppressor protein 1 (Cid1) as a means to enhance crystallogenesis leading to an improvement of X-ray diffraction resolution by 1.5 Å is reported. The post-transcriptional addition of uridines to the 3′-end of RNAs is an important regulatory process that is critical for coding and noncoding RNA stability. In fission yeast and metazoans this untemplated 3′-uridylylation is catalysed by a single family of terminal uridylyltransferases (TUTs) whose members are adapted to specific RNA targets. In Schizosaccharomyces pombe the TUT Cid1 is responsible for the uridylylation of polyadenylated mRNAs, targeting them for destruction. In metazoans, the Cid1 orthologues ZCCHC6 and ZCCHC11 uridylate histone mRNAs, targeting them for degradation, but also uridylate microRNAs, altering their maturation. Cid1 has been studied as a model TUT that has provided insights into the larger and more complex metazoan enzyme system. In this paper, two strategies are described that led to improvements both in the crystallogenesis of Cid1 and in the resolution of diffraction by ∼1.5 Å. These advances have allowed high-resolution crystallo@@graphic studies of this TUT system to be initiated

  5. Activator Protein-1: redox switch controlling structure and DNA-binding.

    Science.gov (United States)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Activator Protein-1: redox switch controlling structure and DNA-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.; Rudenko, Gabby (Texas-MED); (Icahn)

    2017-09-07

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.

  7. Macrophage inflammatory protein-1alpha: a link between innate immunity and familial Mediterranean fever?

    Science.gov (United States)

    Dizdar, Omer; Kalyoncu, Umut; Karadag, Omer; Akdogan, Ali; Kiraz, Sedat; Ertenli, Ihsan; Barista, Ibrahim; Calguneri, Meral

    2007-01-01

    The aim of this study is to investigate the relationship between chemokines and the inflammation in Familial Mediterranean Fever (FMF). Forty-nine patients with FMF (41 in remission and 8 in acute attack period) and 20 healthy controls were included in the study. Serum levels of macrophage inflammatory protein-1alpha (MIP-1alpha) were assessed in the patients and the controls, along with other parameters of disease activity, i.e., fibrinogen, C-reactive protein and erythrocyte sedimentation rate. Serum MIP-1alpha levels of the patients with FMF in acute attack period were significantly higher than the patients in remission and healthy controls (p=0.02 and p=0.038, respectively). MIP-1alpha levels were weakly correlated with CRP (r=0.32, p=0.032) levels. MIP-1alpha may have a role in the pathogenesis of FMF attacks. MIP-1alpha and other chemokines may constitute a link between the innate immune system and FMF.

  8. LDL Receptor-Related Protein-1 (LRP1 Regulates Cholesterol Accumulation in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna P Lillis

    Full Text Available Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1 to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR-deficient background (macLRP1-/-. After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.

  9. Rotavirus nonstructural protein 1 antagonizes innate immune response by interacting with retinoic acid inducible gene I

    Directory of Open Access Journals (Sweden)

    Qin Lan

    2011-12-01

    Full Text Available Abstract Background The nonstructural protein 1 (NSP1 of rotavirus has been reported to block interferon (IFN signaling by mediating proteasome-dependent degradation of IFN-regulatory factors (IRFs and (or the β-transducin repeat containing protein (β-TrCP. However, in addition to these targets, NSP1 may subvert innate immune responses via other mechanisms. Results The NSP1 of rotavirus OSU strain as well as the IRF3 binding domain truncated NSP1 of rotavirus SA11 strain are unable to degrade IRFs, but can still inhibit host IFN response, indicating that NSP1 may target alternative host factor(s other than IRFs. Overexpression of NSP1 can block IFN-β promoter activation induced by the retinoic acid inducible gene I (RIG-I, but does not inhibit IFN-β activation induced by the mitochondrial antiviral-signaling protein (MAVS, indicating that NSP1 may target RIG-I. Immunoprecipitation experiments show that NSP1 interacts with RIG-I independent of IRF3 binding domain. In addition, NSP1 induces down-regulation of RIG-I in a proteasome-independent way. Conclusions Our findings demonstrate that inhibition of RIG-I mediated type I IFN responses by NSP1 may contribute to the immune evasion of rotavirus.

  10. The alpha hemolysin of Escherichia Coli power the metabolism oxidative of neutrophils human beings in response to the peptide chemotactic FMLP: comparison with the ionophore of calcium A23187

    International Nuclear Information System (INIS)

    Garcia, J.

    2000-01-01

    The calcium ionophore ionomycin primes polymorphonuclear leukocytes (PMN) for increased superoxide production upon stimulation with the chemotactic peptide FMLP (Helman Finkel, T. et al J Biol Chem 1987; 262: 12589-12596) In this investigation we assessed the effect of PMN priming with either alpha hemolysin (AH) or the calcium ionophore A23187, both of which increase intracellular calcium, on the oxidative metabolism of PMN (as measured by chemiluminescence) in response to secondary stimulation with FMLP. Both A23187 and AH priming increased, the luminol-enhanced chemiluminescence in response to secondary stimulation with FMLP, indicating overstimulation of PMLP oxidative metabolism. Additional experiments using lucigenin as chemiluminescence enhancer showed that A23187, but not AH priming of PMN, increased superoxide release in a manner similar to that reported for ionomycin. These results are discussed in reference to infectious processes involving hemolytic E. coli (Author) [es

  11. Olfactory receptor signaling is regulated by the post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) scaffold multi-PDZ domain protein 1.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2009-12-01

    The unique ability of mammals to detect and discriminate between thousands of different odorant molecules is governed by the diverse array of olfactory receptors expressed by olfactory sensory neurons in the nasal epithelium. Olfactory receptors consist of seven transmembrane domain G protein-coupled receptors and comprise the largest gene superfamily in the mammalian genome. We found that approximately 30% of olfactory receptors possess a classical post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) domain binding motif in their C-termini. PDZ domains have been established as sites for protein-protein interaction and play a central role in organizing diverse cell signaling assemblies. In the present study, we show that multi-PDZ domain protein 1 (MUPP1) is expressed in the apical compartment of olfactory sensory neurons. Furthermore, on heterologous co-expression with olfactory sensory neurons, MUPP1 was shown to translocate to the plasma membrane. We found direct interaction of PDZ domains 1 + 2 of MUPP1 with the C-terminus of olfactory receptors in vitro. Moreover, the odorant-elicited calcium response of OR2AG1 showed a prolonged decay in MUPP1 small interfering RNA-treated cells. We have therefore elucidated the first building blocks of the putative \\'olfactosome\\

  12. Prostacyclin Inhibits Non-Small Cell Lung Cancer Growth by a Frizzled 9-Dependent Pathway That Is Blocked by Secreted Frizzled-Related Protein 1

    Directory of Open Access Journals (Sweden)

    Meredith A. Tennis

    2010-03-01

    Full Text Available The goal of this study was to assess the ability of iloprost, an orally active prostacyclin analog, to inhibit transformed growth of human non-small cell lung cancer (NSCLC and to define the mechanism of iloprost's tumor suppressive effects. In a panel of NSCLC cell lines, the ability of iloprost to inhibit transformed cell growth was not correlated with the expression of the cell surface receptor for prostacyclin, but instead was correlated with the presence of Frizzled 9 (Fzd 9 and the activation of peroxisome proliferator-activated receptor-γ (PPARγ. Silencing of Fzd 9 blocked PPARγ activation by iloprost, and expression of Fzd 9 in cells lacking the protein resulted in iloprost's activation of PPARγ and inhibition of transformed growth. Interestingly, soluble Frizzled-related protein-1, a well-known inhibitor of Wnt/Fzd signaling, also blocked the effects of iloprost and Fzd 9. Moreover, mice treated with iloprost had reduced lung tumors and increased Fzd 9 expression. These studies define a novel paradigm, linking the eicosanoid pathway and Wnt signaling. In addition, these data also suggest that prostacyclin analogs may represent a new class of therapeutic agents in the treatment of NSCLC where the restoration of noncanonical Wnt signaling maybe important for the inhibition of transformed cell growth.

  13. Regulation of glucose transporter protein-1 and vascular endothelial growth factor by hypoxia inducible factor 1α under hypoxic conditions in Hep-2 human cells.

    Science.gov (United States)

    Xu, Ou; Li, Xiaoming; Qu, Yongtao; Liu, Shuang; An, Jie; Wang, Maoxin; Sun, Qingjia; Zhang, Wen; Lu, Xiuying; Pi, Lihong; Zhang, Min; Shen, Yupeng

    2012-12-01

    The present study evaluated the regulation of glucose transporter protein-1 (Glut-1) and vascular endothelial growth factor (VEGF) by hypoxia inducible factor 1α (HIF-1α) under hypoxic conditions in Hep-2 human cells to explore the feasibility of these three genes as tumor markers. Hep-2 cells were cultured under hypoxic and normoxic conditions for 6, 12, 24, 36 and 48 h. The proliferation of Hep-2 cells was evaluated using an MTT assay. The protein and mRNA expression levels of HIF-1α, Glut-1 and VEGF were detected using the S-P immunocytochemical method, western blotting and reverse transcription polymerase chain reaction (RT-PCR). The results revealed that the expression levels of HIF-1α, Glut-1 and VEGF protein in Hep-2 cells were significantly elevated under hypoxic conditions compared with those under normoxic conditions over 36 h. Under hypoxic conditions, mRNA levels of HIF-1α were stable, while mRNA levels of Glut-1 and VEGF changed over time. In conclusion, Glut-1 and VEGF were upregulated by HIF-1α under hypoxic conditions in a time-dependent manner in Hep-2 cells and their co-expression serves as a tumor marker.

  14. A polyvalent hybrid protein elicits antibodies against the diverse allelic types of block 2 in Plasmodium falciparum merozoite surface protein 1.

    Science.gov (United States)

    Tetteh, Kevin K A; Conway, David J

    2011-10-13

    Merozoite surface protein 1 (MSP1) of Plasmodium falciparum has been implicated as an important target of acquired immunity, and candidate components for a vaccine include polymorphic epitopes in the N-terminal polymorphic block 2 region. We designed a polyvalent hybrid recombinant protein incorporating sequences of the three major allelic types of block 2 together with a composite repeat sequence of one of the types and N-terminal flanking T cell epitopes, and compared this with a series of recombinant proteins containing modular sub-components and similarly expressed in Escherichia coli. Immunogenicity of the full polyvalent hybrid protein was tested in both mice and rabbits, and comparative immunogenicity studies of the sub-component modules were performed in mice. The full hybrid protein induced high titre antibodies against each of the major block 2 allelic types expressed as separate recombinant proteins and against a wide range of allelic types naturally expressed by a panel of diverse P. falciparum isolates, while the sub-component modules had partial antigenic coverage as expected. This encourages further development and evaluation of the full MSP1 block 2 polyvalent hybrid protein as a candidate blood-stage component of a malaria vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Monocyte chemoattractant protein-1: a proinflammatory cytokine elevated in sarcopenic obesity

    Directory of Open Access Journals (Sweden)

    Lim JP

    2015-03-01

    Full Text Available Jun Pei Lim,1,2 Bernard P Leung,3 Yew Yoong Ding,1,2 Laura Tay,1,2 Noor Hafizah Ismail,2,4 Audrey Yeo,2 Suzanne Yew,2 Mei Sian Chong1,2 1Department of Geriatric Medicine, 2Institute of Geriatrics and Active Ageing, 3Department of Rheumatology, Allergy and Immunology, 4Department of Community and Continuing Care, Tan Tock Seng Hospital, Singapore Objective: Sarcopenic obesity (SO is associated with poorer physical outcomes and functional status in the older adult. A proinflammatory milieu associated with central obesity is postulated to enhance muscle catabolism. We set out to examine associations of the chemokine monocyte chemoattractant protein-1 (MCP-1 in groups of older adults, with sarcopenia, obesity, and the SO phenotypes.Methods: A total of 143 community dwelling, well, older adults were recruited. Cross-sectional clinical data, physical performance, and muscle mass measurements were collected. Obesity and sarcopenia were defined using revised National Cholesterol Education Program (NCEP obesity guidelines and those of the Asian Working Group for Sarcopenia. Serum levels of MCP-1 were measured by enzyme-linked immunosorbent assay (ELISA.Results: In all, 25.2% of subjects were normal, 15.4% sarcopenic, 48.3% obese, and 11.2% were SO. The SO groups had the lowest appendicular lean mass, highest percentage body fat, and lowest performance scores on the Short Physical Performance Battery and grip strength. The MCP-1 levels were significantly different, with the highest levels found in SO participants (P<0.05.Conclusion: Significantly raised MCP-1 levels in obese and SO subjects support the theory of chronic inflammation due to excess adiposity. Longitudinal studies will reveal whether SO represents a continuum of obesity causing accelerated sarcopenia and cardiovascular events, or the coexistence of two separate conditions with synergistic effects affecting functional performance. Keywords: chemokine C-C motif ligand 2 (CCL-2, elderly

  16. A novel fission-independent role of dynamin-related protein 1 in cardiac mitochondrial respiration.

    Science.gov (United States)

    Zhang, Huiliang; Wang, Pei; Bisetto, Sara; Yoon, Yisang; Chen, Quan; Sheu, Shey-Shing; Wang, Wang

    2017-02-01

    Mitochondria in adult cardiomyocytes exhibit static morphology and infrequent dynamic changes, despite the high abundance of fission and fusion regulatory proteins in the heart. Previous reports have indicated that fusion proteins may bear functions beyond morphology regulation. Here, we investigated the role of fission protein, dynamin-related protein 1 (DRP1), on mitochondrial respiration regulation in adult cardiomyocytes. By using genetic or pharmacological approaches, we manipulated the activity or protein level of fission and fusion proteins and found they mildly influenced mitochondrial morphology in adult rodent cardiomyocytes, which is in contrast to their significant effect in H9C2 cardiac myoblasts. Intriguingly, inhibiting endogenous DRP1 by dominant-negative DRP1 mutation (K38A), shRNA, or Mdivi-1 suppressed maximal respiration and respiratory control ratio in isolated mitochondria from adult mouse heart or in adult cardiomyocytes from rat. Meanwhile, basal respiration was increased due to increased proton leak. Facilitating mitofusin-mediated fusion by S3 compound, however, failed to inhibit mitochondrial respiration in adult cardiomyocytes. Mechanistically, DRP1 inhibition did not affect the maximal activity of individual respiratory chain complexes or the assembly of supercomplexes. Knocking out cyclophilin D, a regulator of mitochondrial permeability transition pore (mPTP), abolished the effect of DRP1 inhibition on respiration. Finally, DRP1 inhibition decreased transient mPTP-mediated mitochondrial flashes, delayed laser-induced mPTP opening and suppressed mitochondrial reactive oxygen species (ROS). These results uncover a novel non-canonical function of the fission protein, DRP1 in maintaining or positively stimulating mitochondrial respiration, bioenergetics and ROS signalling in adult cardiomyocyte, which is likely independent of morphological changes. Published on behalf of the European Society of Cardiology. All rights reserved. © The

  17. Temporal stability of naturally acquired immunity to Merozoite Surface Protein-1 in Kenyan Adults

    Directory of Open Access Journals (Sweden)

    Crabb Brendan S

    2009-07-01

    Full Text Available Abstract Background Naturally acquired immunity to blood-stage Plasmodium falciparum infection develops with age and after repeated infections. In order to identify immune surrogates that can inform vaccine trials conducted in malaria endemic populations and to better understand the basis of naturally acquired immunity it is important to appreciate the temporal stability of cellular and humoral immune responses to malaria antigens. Methods Blood samples from 16 adults living in a malaria holoendemic region of western Kenya were obtained at six time points over the course of 9 months. T cell immunity to the 42 kDa C-terminal fragment of Merozoite Surface Protein-1 (MSP-142 was determined by IFN-γ ELISPOT. Antibodies to the 42 kDa and 19 kDa C-terminal fragments of MSP-1 were determined by serology and by functional assays that measure MSP-119 invasion inhibition antibodies (IIA to the E-TSR (3D7 allele and growth inhibitory activity (GIA. The haplotype of MSP-119 alleles circulating in the population was determined by PCR. The kappa test of agreement was used to determine stability of immunity over the specified time intervals of 3 weeks, 6 weeks, 6 months, and 9 months. Results MSP-1 IgG antibodies determined by serology were most consistent over time, followed by MSP-1 specific T cell IFN-γ responses and GIA. MSP-119 IIA showed the least stability over time. However, the level of MSP-119 specific IIA correlated with relatively higher rainfall and higher prevalence of P. falciparum infection with the MSP-119 E-TSR haplotype. Conclusion Variation in the stability of cellular and humoral immune responses to P. falciparum blood stage antigens needs to be considered when interpreting the significance of these measurements as immune endpoints in residents of malaria endemic regions.

  18. Insight into temperature dependence of GTPase activity in human guanylate binding protein-1.

    Directory of Open Access Journals (Sweden)

    Anjana Rani

    Full Text Available Interferon-γ induced human guanylate binding protein-1(hGBP1 belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1.

  19. Structural organization of the genes for rat von Ebner's gland proteins 1 and 2 reveals their close relationship to lipocalins.

    Science.gov (United States)

    Kock, K; Ahlers, C; Schmale, H

    1994-05-01

    The rat von Ebner's gland protein 1 (VEGP 1) is a secretory protein, which is abundantly expressed in the small acinar von Ebner's salivary glands of the tongue. Based on the primary structure of this protein we have previously suggested that it is a member of the lipocalin superfamily of lipophilic-ligand carrier proteins. Although the physiological role of VEGP 1 is not clear, it might be involved in sensory or protective functions in the taste epithelium. Here, we report the purification of VEGP 1 and of a closely related secretory polypeptide, VEGP 2, the isolation of a cDNA clone encoding VEGP 2, and the isolation and structural characterization of the genes for both proteins. Protein purification by gel-filtration and anion-exchange chromatography using Mono Q revealed the presence of two different immunoreactive VEGP species. N-terminal sequence determination of peptide fragments isolated after protease Asp-N digestion allowed the identification of a new VEGP, named VEGP 2, in addition to the previously characterized VEGP 1. The complete VEGP 2 sequence was deduced from a cDNA clone isolated from a von Ebner's gland cDNA library. The VEGP 2 cDNA encodes a protein of 177 amino acids and is 94% identical to VEGP 1. DNA sequence analysis of the rat VEGP 1 and 2 genes isolated from rat genomic libraries revealed that both span about 4.5 kb and contain seven exons. The VEGP 1 and 2 genes are non-allelic distinct genes in the rat genome and probably arose by gene duplication. The high degree of nucleotide sequence identity in introns A-C (94-100%) points to a recent gene conversion event that included the 5' part of the genes. The genomic organization of the rat VEGP genes closely resembles that found in other lipocalins such as beta-lactoglobulin, mouse urinary proteins (MUPs) and prostaglandin D synthase, and therefore provides clear evidence that VEGPs belong to this superfamily of proteins.

  20. Suppression of LIM and SH3 Domain Protein 1 (LASP1) Negatively Regulated by Androgen Receptor Delays Castration Resistant Prostate Cancer Progression.

    Science.gov (United States)

    Dejima, Takashi; Imada, Kenjiro; Takeuchi, Ario; Shiota, Masaki; Leong, Jeffrey; Tombe, Tabitha; Tam, Kevin; Fazli, Ladan; Naito, Seiji; Gleave, Martin E; Ong, Christopher J

    2017-02-01

    LIM and SH3 domain protein 1 (LASP1) has been implicated in several human malignancies and has been shown to predict PSA recurrence in prostate cancer. However, the anti-tumor effect of LASP1 knockdown and the association between LASP1 and the androgen receptor (AR) remains unclear. The aim of this study is to clarify the significance of LASP1 as a target for prostate cancer, and to test the effect of silencing LASP1 in vivo using antisense oligonucleotides (ASO). A tissue microarray (TMA) was performed to characterize the differences in LASP1 expression in prostate cancer treated after hormone deprivation therapy. Flow cytometry was used to analyze cell cycle. We designed LASP1 ASO for knockdown of LASP1 in vivo studies. The expression of LASP1 in TMA was increased after androgen ablation and persisted in castration resistant prostate cancer (CRPC). Also in TMA, compared with LNCaP cell, LASP1 expression is elevated in CRPC cell lines (C4-2 and VehA cells). Interestingly, suppression of AR elevated LASP1 expression conversely, AR activation decreased LASP1 expression. Silencing of LASP1 reduced cell growth through G1 arrest which was accompanied by a decrease of cyclin D1. Forced overexpression of LASP1 promoted cell cycle and induced cell growth which was accompanied by an increase of cyclin D1. Systemic administration of LASP1 ASO with athymic mice significantly inhibited tumor growth in CRPC xenografts. These results indicate that LASP1 is negatively regulated by AR at the transcriptional level and promotes tumor growth through induction of cell cycle, ultimately suggesting that LASP1 may be a potential target in prostate cancer treatment. Prostate 77:309-320, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. The integrated endoplasmic reticulum stress response in Leishmania amazonensis macrophage infection: the role of X-box binding protein 1 transcription factor.

    Science.gov (United States)

    Dias-Teixeira, Karina Luiza; Calegari-Silva, Teresa Cristina; dos Santos, Guilherme R R M; Vitorino Dos Santos, José; Lima, Carolina; Medina, Jorge Mansur; Aktas, Bertal Huseyin; Lopes, Ulisses G

    2016-04-01

    Endoplasmic reticulum (ER) stress triggers the integrated ER-stress response (IERSR) that ensures cellular survival of ER stress and represents a primordial form of innate immunity. We investigated the role of IERSR duringLeishmania amazonensisinfection. Treatment of RAW 264.7 infected macrophages with the ER stress-inducing agent thapsigargin (TG; 1 μM) increasedL. amazonensisinfectivity in an IFN1-α receptor (IFNAR)-dependent manner. In Western blot assays, we showed thatL. amazonensisactivates the inositol-requiring enzyme (IRE1)/ X-box binding protein (XBP)-1-splicing arms of the IERSR in host cells. In chromatin immunoprecipitation (ChIP) assays, we showed an increased occupancy of enhancer and promoter sequences for theIfnbgene by XBP1 in infected RAW 264.7 cells. Knocking down XBP1 expression by transducing RAW 264.7 cells with the short hairpin XBP1 lentiviral vector significantly reduced the parasite proliferation associated with impaired translocation of phosphorylated IFN regulatory transcription factor (IRF)-3 to the nucleus and a decrease in IFN1-β expression. Knocking down XBP1 expression also increased NO concentration, as determined by Griess reaction and reduced the expression of antioxidant genes, such as heme oxygenase (HO)-1, that protect parasites from oxidative stress. We conclude thatL. amazonensisactivation of XBP1 plays a critical role in infection by protecting the parasites from oxidative stress and increasing IFN1-β expression.-Dias-Teixeira, K. L., Calegari-Silva, T. C., Dos Santos, G. R. R. M., Vitorino dos Santos, J., Lima, C., Medina, J. M., Aktas, B. H., Lopes, U. G. The integrated endoplasmic reticulum stress response inLeishmania amazonensismacrophage infection: the role of X-box binding protein 1 transcription factor. © FASEB.

  2. The Arabidopsis PLAT Domain Protein1 Is Critically Involved in Abiotic Stress Tolerance

    Czech Academy of Sciences Publication Activity Database

    Tae Kyung, H.; van der Graaff, E.; Albacete, A.; Eom, S. H.; Grosskinsky, D. K.; Böhm, B.; Janschek, U.; Rim, Y.; Walid Wahid, A.; Kim, S.; Roitsch, Thomas

    2014-01-01

    Roč. 9, č. 11 (2014), e112946 E-ISSN 1932-6203 Institutional support: RVO:67179843 Keywords : abscisic-acid * endoplasmic-reticulum * salicylic-acid * transcription factors * gene-expression * pseudomonas-syringae * signal-transduction * plants response * cold stress * salt stress Subject RIV: EH - Ecology, Behaviour Impact factor: 3.234, year: 2014

  3. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  4. Adipocyte spliced form of X-box-binding protein 1 promotes adiponectin multimerization and systemic glucose homeostasis

    NARCIS (Netherlands)

    Sha, H.; Yang, L.; Liu, M.; Xia, S.; Liu, Y.; Liu, F.; Kersten, A.H.; Qi, L.

    2014-01-01

    The physiological role of the spliced form of X-box–binding protein 1 (XBP1s), a key transcription factor of the endoplasmic reticulum (ER) stress response, in adipose tissue remains largely unknown. In this study, we show that overexpression of XBP1s promotes adiponectin multimerization in

  5. Loss of selenium-binding protein 1 decreases sensitivity to clastogens and intracellular selenium content in HeLa cells

    Science.gov (United States)

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesized that loss of SBP1 modulates cellular selenium content and the response of ...

  6. Integrin cytoplasmic domain-associated protein-1 (ICAP-1) interacts with the ROCK-I kinase at the plasma membrane

    NARCIS (Netherlands)

    Stroeken, Peter J. M.; Alvarez, Belén; van Rheenen, Jacco; Wijnands, Yvonne M.; Geerts, Dirk; Jalink, Kees; Roos, Ed

    2006-01-01

    The integrin cytoplasmic domain-associated protein-1 (ICAP-1) binds via its C-terminal PTB (phosphotyrosine-binding) domain to the cytoplasmic tails of beta1 but not other integrins. Using the yeast two-hybrid assay, we found that ICAP-1 binds the ROCK-I kinase, an effector of the RhoA GTPase. By

  7. Y-box protein-1/p18 fragment identifies malignancies in patients with chronic liver disease

    International Nuclear Information System (INIS)

    Tacke, Frank; Kanig, Nicolas; En-Nia, Abdelaziz; Kaehne, Thilo; Eberhardt, Christiane S; Shpacovitch, Victoria; Trautwein, Christian; Mertens, Peter R

    2011-01-01

    Immunohistochemical detection of cold shock proteins is predictive for deleterious outcome in various malignant diseases. We recently described active secretion of a family member, denoted Y-box (YB) protein-1. We tested the clinical and diagnostic value of YB-1 protein fragment p18 (YB-1/p18) detection in blood for malignant diseases. We used a novel monoclonal anti-YB-1 antibody to detect YB-1/p18 by immunoblotting in plasma samples of healthy volunteers (n = 33), patients with non-cancerous, mostly inflammatory diseases (n = 60), hepatocellular carcinoma (HCC; n = 25) and advanced solid tumors (n = 20). YB-1/p18 was then tested in 111 patients with chronic liver diseases, alongside established tumor markers and various diagnostic measures, during evaluation for potential liver transplantation. We developed a novel immunoblot to detect the 18 kD fragment of secreted YB-1 in human plasma (YB-1/p18) that contains the cold-shock domains (CSD) 1-3 of the full-length protein. YB-1/p18 was detected in 11/25 HCC and 16/20 advanced carcinomas compared to 0/33 healthy volunteers and 10/60 patients with non-cancerous diseases. In 111 patients with chronic liver disease, YB-1/p18 was detected in 20 samples. Its occurrence was not associated with advanced Child stages of liver cirrhosis or liver function. In this cohort, YB-1/p18 was not a good marker for HCC, but proved most powerful in detecting malignancies other than HCC (60% positive) with a lower rate of false-positive results compared to established tumor markers. Alpha-fetoprotein (AFP) was most sensitive in detecting HCC, but simultaneous assessment of AFP, CA19-9 and YB-1/p18 improved overall identification of HCC patients. Plasma YB-1/p18 can identify patients with malignancies, independent of acute inflammation, renal impairment or liver dysfunction. The detection of YB-1/p18 in human plasma may have potential as a tumor marker for screening of high-risk populations, e.g. before organ transplantation, and should

  8. Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes.

    Science.gov (United States)

    Bobone, Sara; Hilsch, Malte; Storm, Julian; Dunsing, Valentin; Herrmann, Andreas; Chiantia, Salvatore

    2017-06-15

    Influenza A virus matrix protein 1 (M1) is an essential component involved in the structural stability of the virus and in the budding of new virions from infected cells. A deeper understanding of the molecular basis of virion formation and the budding process is required in order to devise new therapeutic approaches. We performed a detailed investigation of the interaction between M1 and phosphatidylserine (PS) (i.e., its main binding target at the plasma membrane [PM]), as well as the distribution of PS itself, both in model membranes and in living cells. To this end, we used a combination of techniques, including Förster resonance energy transfer (FRET), confocal microscopy imaging, raster image correlation spectroscopy, and number and brightness (N&B) analysis. Our results show that PS can cluster in segregated regions in the plane of the lipid bilayer, both in model bilayers constituted of PS and phosphatidylcholine and in living cells. The viral protein M1 interacts specifically with PS-enriched domains, and such interaction in turn affects its oligomerization process. Furthermore, M1 can stabilize PS domains, as observed in model membranes. For living cells, the presence of PS clusters is suggested by N&B experiments monitoring the clustering of the PS sensor lactadherin. Also, colocalization between M1 and a fluorescent PS probe suggest that, in infected cells, the matrix protein can specifically bind to the regions of PM in which PS is clustered. Taken together, our observations provide novel evidence regarding the role of PS-rich domains in tuning M1-lipid and M1-M1 interactions at the PM of infected cells. IMPORTANCE Influenza virus particles assemble at the plasma membranes (PM) of infected cells. This process is orchestrated by the matrix protein M1, which interacts with membrane lipids while binding to the other proteins and genetic material of the virus. Despite its importance, the initial step in virus assembly (i.e., M1-lipid interaction) is still

  9. Merozoite surface protein-1 genetic diversity in Plasmodium malariae and Plasmodium brasilianum from Brazil.

    Science.gov (United States)

    Guimarães, Lilian O; Wunderlich, Gerhard; Alves, João M P; Bueno, Marina G; Röhe, Fabio; Catão-Dias, José L; Neves, Amanda; Malafronte, Rosely S; Curado, Izilda; Domingues, Wilson; Kirchgatter, Karin

    2015-11-16

    The merozoite surface protein 1 (MSP1) gene encodes the major surface antigen of invasive forms of the Plasmodium erythrocytic stages and is considered a candidate vaccine antigen against malaria. Due to its polymorphisms, MSP1 is also useful for strain discrimination and consists of a good genetic marker. Sequence diversity in MSP1 has been analyzed in field isolates of three human parasites: P. falciparum, P. vivax, and P. ovale. However, the extent of variation in another human parasite, P. malariae, remains unknown. This parasite shows widespread, uneven distribution in tropical and subtropical regions throughout South America, Asia, and Africa. Interestingly, it is genetically indistinguishable from P. brasilianum, a parasite known to infect New World monkeys in Central and South America. Specific fragments (1 to 5) covering 60 % of the MSP1 gene (mainly the putatively polymorphic regions), were amplified by PCR in isolates of P. malariae and P. brasilianum from different geographic origin and hosts. Sequencing of the PCR-amplified products or cloned PCR fragments was performed and the sequences were used to construct a phylogenetic tree by the maximum likelihood method. Data were computed to give insights into the evolutionary and phylogenetic relationships of these parasites. Except for fragment 4, sequences from all other fragments consisted of unpublished sequences. The most polymorphic gene region was fragment 2, and in samples where this region lacks polymorphism, all other regions are also identical. The low variability of the P. malariae msp1 sequences of these isolates and the identification of the same haplotype in those collected many years apart at different locations is compatible with a low transmission rate. We also found greater diversity among P. brasilianum isolates compared with P. malariae ones. Lastly, the sequences were segregated according to their geographic origins and hosts, showing a strong genetic and geographic structure. Our data

  10. Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures

    Directory of Open Access Journals (Sweden)

    Tuan Anh Pham

    2016-03-01

    Full Text Available Hybrid nanoparticle (NP structures containing organic building units such as polymers, peptides, DNA and proteins have great potential in biosensor and electronic applications. The nearly free modification of the polymer chain, the variation of the protein and DNA sequence and the implementation of functional moieties provide a great platform to create inorganic structures of different morphology, resulting in different optical and magnetic properties. Nevertheless, the design and modification of a protein structure with functional groups or sequences for the assembly of biohybrid materials is not trivial. This is mainly due to the sensitivity of its secondary, tertiary and quaternary structure to the changes in the interaction (e.g., hydrophobic, hydrophilic, electrostatic, chemical groups between the protein subunits and the inorganic material. Here, we use hemolysin coregulated protein 1 (Hcp1 from Pseudomonas aeruginosa as a building and gluing unit for the formation of biohybrid structures by implementing cysteine anchoring points at defined positions on the protein rim (Hcp1_cys3. We successfully apply the Hcp1_cys3 gluing unit for the assembly of often linear, hybrid structures of plasmonic gold (Au NP, magnetite (Fe3O4 NP, and cobalt ferrite nanoparticles (CoFe2O4 NP. Furthermore, the assembly of Au NPs into linear structures using Hcp1_cys3 is investigated by UV–vis spectroscopy, TEM and cryo-TEM. One key parameter for the formation of Au NP assembly is the specific ionic strength in the mixture. The resulting network-like structure of Au NPs is characterized by Raman spectroscopy, showing surface-enhanced Raman scattering (SERS by a factor of 8·104 and a stable secondary structure of the Hcp1_cys3 unit. In order to prove the catalytic performance of the gold hybrid structures, they are used as a catalyst in the reduction reaction of 4-nitrophenol showing similar catalytic activity as the pure Au NPs. To further extend the

  11. The Role of Fibroblast Growth Factor Binding Protein 1 in Skin Carcinogenesis and Inflammation

    DEFF Research Database (Denmark)

    Schmidt, Marcel Oliver; Garman, Khalid Ammar; Lee, Yong Gu

    2018-01-01

    , and is upregulated in various cancers. Here we evaluated the contribution of endogenous FGFBP1 to development and homeostasis as well as to skin pathologies utilizing Fgfbp1-knockout (KO) mice. Relative to wild-type (WT) littermates KO mice showed no gross pathologies. Still, in KO mice a significant thickening...... of the epidermis associated with a decreased transepidermal water loss and increased pro-inflammatory gene expression in the skin was detected. Also, skin carcinogen challenge by DMBA/TPA resulted in delayed and reduced papillomatosis in KO mice. This was paralleled by delayed healing of skin wounds and reduced...... angiogenic sprouting in subcutaneous matrigel plugs. Heterozygous GFP-knock-in mice revealed rapid induction of gene expression during papilloma induction and during wound healing. Examination of WT skin grafted onto Fgfbp1 GFP knockin reporter hosts and bone marrow transplants from the GFP reporter model...

  12. Increased phosphorylation of histone H3 at serine 10 is involved in Epstein-Barr virus latent membrane protein-1-induced carcinogenesis of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Li, Binbin; Huang, Guoliang; Zhang, Xiangning; Li, Rong; Wang, Jian; Dong, Ziming; He, Zhiwei

    2013-01-01

    Increased histone H3 phosphorylation is an essential regulatory mechanism for neoplastic cell transformation. We aimed to explore the role of histone H3 phosphorylation at serine10 (p-H3Ser10) in Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1)-induced carcinogenesis of nasopharyngeal carcinoma (NPC). The expression of p-H3Ser10 was detected by the immunohistochemical analysis in NPC, chronic nasopharyngitis and normal nasopharynx tissues, and its correlation with LMP1 was analyzed in NPC tissues and cell lines. Using the small interfering RNA (siRNA)-H3 and histone H3 mutant (S10A), the effect of histone H3 Ser10 motif on LMP1-induced CNE1 cell proliferation, transformation and activator protein-1 (AP-1) activation were evaluated by CCK-8, focus-forming and reporter gene assay respectively. Mitogen- and stress-activated kinase 1 (MSK1) kinase activity and phosphorylation were detected by in vitro kinase assay and western blot. Using MSK1 inhibitor H89 or siRNA-MSK1, the regulatory role of MSK1 on histone H3 phosphorylation and AP-1 activation were analyzed. Immunohistochemical analysis revealed that the expression of p-H3Ser10 was significantly higher in the poorly differentiated NPC tissues than that in chronic nasopharyngitis (p <0.05) and normal nasopharynx tissues (p <0.001). Moreover, high level of p-H3Ser10 was positively correlated with the expression of LMP1 in NPC tissues (χ 2 =6.700, p =0.01; C=0.350) and cell lines. The knockdown and mutant (S10A) of histone H3 suppressed LMP1-induced CNE1 cell proliferation, foci formation and AP-1 activation. In addition, LMP1 could increase MSK1 kinase activity and phosphorylation. MSK1 inhibitor H89 or knockdown of MSK1 by siRNA blocked LMP1-induced phosphorylation of histone H3 at Ser10 and AP-1 activation. EBV-LMP1 can induce phosphorylation of histone H3 at Ser10 via MSK1. Increased phosphorylation of histone H3 at Ser10 is likely a crucial regulatory mechanism involved in LMP1-induced carcinogenesis of

  13. Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 Regulates Xylem Development and Growth by a Conserved Mechanism That Modulates Hormone Signaling1[W][OPEN

    Science.gov (United States)

    Grienenberger, Etienne; Douglas, Carl J.

    2014-01-01

    Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-β-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways. PMID:24567189

  14. Inhibition of Y-box binding protein-1 slows the growth of glioblastoma multiforme and sensitizes to temozolomide independent O6-methylguanine-DNA methyltransferase.

    Science.gov (United States)

    Gao, Yuanyuan; Fotovati, Abbas; Lee, Cathy; Wang, Michelle; Cote, Gilbert; Guns, Emma; Toyota, Brian; Faury, Damien; Jabado, Nada; Dunn, Sandra E

    2009-12-01

    Glioblastoma multiforme (GBM) is an aggressive type of brain tumor where 5 years. In adults, GBM is the most common type of brain tumor. It is rarer in children, where it constitutes approximately 15% of all brain tumors diagnosed. These tumors are often invasive, making surgical resection difficult. Further, they can be refractory to current therapies such as temozolomide. The current dogma is that temozolomide resistance rests on the expression of O6-methylguanine-DNA methyltransferase (MGMT) because it cleaves methylated DNA adducts formed by the drug. Our laboratory recently reported that another drug resistance gene known as the Y-box binding protein-1 (YB-1) is highly expressed in primary GBM but not in normal brain tissues based on the evaluation of primary tumors. We therefore questioned whether GBM depend on YB-1 for growth and/or response to temozolomide. Herein, we report that YB-1 inhibition reduced tumor cell invasion and growth in monolayer as well as in soft agar. Moreover, blocking this protein ultimately delayed tumor onset in mice. Importantly, inhibiting YB-1 enhanced temozolomide sensitivity in a manner that was independent of MGMT in models of adult and pediatric GBM. In conclusion, inhibiting YB-1 may be a novel way to improve the treatment of GBM.

  15. YB1/p32, a nuclear Y-box binding protein 1, is a novel regulator of myoblast differentiation that interacts with Msx1 homeoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Song, Young Joon [Department of Biological Sciences, College of Natural Science, Inha University, 253 Yonghyun-dong, Nam-Gu, Incheon, Korea, 402-751 (Korea, Republic of); Lee, Hansol, E-mail: hlee@inha.ac.kr [Department of Biological Sciences, College of Natural Science, Inha University, 253 Yonghyun-dong, Nam-Gu, Incheon, Korea, 402-751 (Korea, Republic of)

    2010-02-15

    Precisely controlled cellular differentiation is essential for the proper development of vertebrate embryo and deregulated differentiation is a major cause of many human congenital diseases as well as cancer. Msx1 is a member of the homeoprotein family implicated in these processes, which inhibits the differentiation of skeletal muscle and other cell types, presumably by regulating transcription of target genes through interaction with other cellular factors. We presently show that YB1/p32, a nuclear Y-box binding protein 1, interacts with Msx1 homeoprotein and functions as a regulator of C2C12 myoblast differentiation. We demonstrate that YB1/p32 functionally interacts with Msx1 through its N-terminal region and colocalizes with Msx1 at the nuclear periphery. Moreover, we find that YB1/p32 is competent for inhibition of C2C12 myoblast differentiation, which is correlated with its activity as a negative regulator of MyoD gene expression and binding to the MyoD core enhancer region (CER). Furthermore, YB1/p32 cooperates with Msx1 in transcriptional repression and knocking down the expression of endogenous YB1 attenuates the effects of Msx1. Taken together, our study has uncovered a new function of YB1/p32, a regulator of skeletal muscle differentiation.

  16. YB1/p32, a nuclear Y-box binding protein 1, is a novel regulator of myoblast differentiation that interacts with Msx1 homeoprotein

    International Nuclear Information System (INIS)

    Song, Young Joon; Lee, Hansol

    2010-01-01

    Precisely controlled cellular differentiation is essential for the proper development of vertebrate embryo and deregulated differentiation is a major cause of many human congenital diseases as well as cancer. Msx1 is a member of the homeoprotein family implicated in these processes, which inhibits the differentiation of skeletal muscle and other cell types, presumably by regulating transcription of target genes through interaction with other cellular factors. We presently show that YB1/p32, a nuclear Y-box binding protein 1, interacts with Msx1 homeoprotein and functions as a regulator of C2C12 myoblast differentiation. We demonstrate that YB1/p32 functionally interacts with Msx1 through its N-terminal region and colocalizes with Msx1 at the nuclear periphery. Moreover, we find that YB1/p32 is competent for inhibition of C2C12 myoblast differentiation, which is correlated with its activity as a negative regulator of MyoD gene expression and binding to the MyoD core enhancer region (CER). Furthermore, YB1/p32 cooperates with Msx1 in transcriptional repression and knocking down the expression of endogenous YB1 attenuates the effects of Msx1. Taken together, our study has uncovered a new function of YB1/p32, a regulator of skeletal muscle differentiation.

  17. β-Hydroxybutyrate Facilitates Fatty Acids Synthesis Mediated by Sterol Regulatory Element-Binding Protein1 in Bovine Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2015-11-01

    Full Text Available Background/Aims: In dairy cows, β-hydroxybutyrate (BHBA is utilized as precursors of de novo synthesized fatty acids in mammary gland. Ketotic cows are characterized by excessive negative energy balance (NEB, which can further increase the blood BHBA concentration. Sterol regulatory element-binding protein1 (SREBP1 and cell death-inducing DNA fragmentation factor-alpha-like effector α (Cidea play crucial roles in lipid synthesis. Therefore, we hypothesized that BHBA could stimulate SREBP1/Cidea pathway to increase milk fat synthesis in bovine mammary epithelial cells. Methods: Bovine mammary epithelial cells were treated with different concentrations of BHBA and transfected with adenovirus to silence SREBP1 expression. The effects of BHBA on the lipid synthesis in bovine mammary epithelial cells were investigated. Results: The results showed that BHBA could significantly increase the expression of SREBP1, fatty acid synthase (FAS, acetyl-CoA carboxylase α (ACC-α, Cidea and diacylglycerol transferase-1 (DGAT-1, as well as the triglycerides (TG content in bovine mammary epithelial cells. BHBA treatment also increased the transfer of mature SREBP1 to nucleus compared with control group. However, SREBP1 silencing could significantly down-regulate the overexpression of FAS, ACC-α, Cidea and DGAT-1, as well as TG content induced by BHBA. Conclusion: The present data indicate that BHBA can significantly increase TG secretion mediated by SREBP1 in bovine mammary epithelial cells.

  18. Sytemic inflammation in cachexia - is tumour cytokine expression profile the culprit?

    Directory of Open Access Journals (Sweden)

    Emidio Marques De Matos-Neto

    2015-12-01

    Full Text Available Cachexia affects about 80 percent of gastrointestinal cancer patients. This multifactorial syndrome resulting in involuntary and continuous weight loss is accompanied by systemic inflammation and immune cell infiltration in various tissues. Understanding the interactions between tumor, immune cells and peripheral tissues could help attenuating systemic inflammation. Therefore, we investigated inflammation in the subcutaneous adipose tissue and in the tumor, in weight stable and cachectic cancer patients with same diagnosis, in order to establish correlations between tumor microenvironment and secretory pattern with adipose tissue and systemic inflammation. Infiltrating monocyte phenotypes of subcutaneous and tumor vascular-stromal fraction were identified by flow cytometry. Gene and protein expression of inflammatory and chemotactic factors was measured with qRT-PCR and Multiplex Magpix® system, respectively. Subcutaneous vascular-stromal fraction exhibited no differences in regard to macrophage subtypes, while in the tumor, the percentage of M2 macrophages was decreased in the cachectic patients, in comparison to weight-stable counterparts. CCL3, CCL4 and IL-1β expression was higher in the adipose tissue and tumor tissue in cachectic group. In both tissues chemotactic factors were positively correlated with IL-1β. Furthermore, positive correlations were found for the content of chemoattractants and cytokines in the tumor and adipose tissue. The results strongly suggest that the crosstalk between the tumor and peripheral tissues is more pronounced in cachectic patients, compared to weight-stable patients with the same tumor diagnosis.

  19. IL-8 and MCP Gene Expression and Production by LPS-Stimulated Human Corneal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Roni M. Shtein

    2012-01-01

    Full Text Available Purpose. To determine time course of effect of lipopolysaccharide (LPS on production of interleukin-8 (IL-8 and monocyte chemotactic protein (MCP by cultured human corneal stromal cells. Methods. Human corneal stromal cells were harvested from donor corneal specimens, and fourth to sixth passaged cells were used. Cell cultures were stimulated with LPS for 2, 4, 8, and 24 hours. Northern blot analysis of IL-8 and MCP gene expression and ELISA for IL-8 and MCP secretion were performed. ELISA results were analyzed for statistical significance using two-tailed Student's t-test. Results. Northern blot analysis demonstrated significantly increased IL-8 and MCP gene expression after 4 and 8 hours of exposure to LPS. ELISA for secreted IL-8 and MCP demonstrated statistically significant increases (P<0.05 after corneal stromal cell stimulation with LPS. Conclusions. This paper suggests that human corneal stromal cells may participate in corneal inflammation by secreting potent leukocyte chemotactic and activating proteins in a time-dependent manner when exposed to LPS.

  20. Monocyte Chemoattractant Protein-1 in the choroid plexus: a potential link between vascular pro-inflammatory mediators and the CNS during peripheral tissue inflammation

    Science.gov (United States)

    Mitchell, K.; Yang, H.-Y. T.; Berk, J. D.; Tran, J. H.; Iadarola, M. J.

    2009-01-01

    During peripheral tissue inflammation, inflammatory processes in the CNS can be initiated by blood-borne pro-inflammatory mediators. The choroid plexus, the site of CSF production, is a highly specialized interface between the vascular system and CNS, and thus, this structure may be an important element in communication between the vascular compartment and the CNS during peripheral tissue inflammation. We investigated the potential participation of the choroid plexus in this process during peripheral tissue inflammation by examining expression of the SCYA2 gene which codes for monocyte chemoattractant protein-1 (MCP-1). MCP-1 protein was previously reported to be induced in a variety of cells during peripheral tissue inflammation. In the basal state, SCYA2 is highly expressed in the choroid plexus as compared to other CNS tissues. During hind paw inflammation, SCYA2 expression was significantly elevated in choroid plexus, whereas it remained unchanged in a variety of brain regions. The SCYA2-expressing cells were strongly associated with the choroid plexus as vascular depletion of blood cells by whole-body saline flush did not significantly alter SCYA2 expression in the choroid plexus. In situ hybridization suggested that the SCYA2-expressing cells were localized to the choroid plexus stroma. To elucidate potential molecular mechanisms of SCYA2 increase, we examined genes in the NF-κβ signaling cascade including TNF-α, IL-1β and IκBα in choroid tissue. Given that we also detected increased levels of MCP-1 protein by ELISA, we sought to identify potential downstream targets of MCP-1 and observed altered expression levels of mRNAs encoding tight junction proteins TJP2 and claudin 5. Finally, we detected a substantial up-regulation of the transcript encoding E-selectin, a molecule which could participate in leukocyte recruitment to the choroid plexus along with MCP-1. Together, these results suggest that profound changes occur in the choroid plexus during

  1. Human Eosinophils Express Functional CCR7

    Science.gov (United States)

    Ueki, Shigeharu; Estanislau, Jessica; Weller, Peter F.

    2013-01-01

    Human eosinophils display directed chemotactic activity toward an array of soluble chemokines. Eosinophils have been observed to migrate to draining lymph nodes in experimental models of allergic inflammation, yet it is unknown whether eosinophils express CCR7, a key chemokine receptor in coordinating leukocyte trafficking to lymph nodes. The purpose of this study is to demonstrate expression of CCR7 by human eosinophils and functional responses to CCL19 and CCL21, the known ligands of CCR7. Human eosinophils were purified by negative selection from healthy donors. CCR7 expression of freshly purified, unstimulated eosinophils and of IL-5–primed eosinophils was determined by flow cytometry and Western blot. Chemotaxis to CCL19 and CCL21 was measured in transwell assays. Shape changes to CCL19 and CCL21 were analyzed by flow cytometry and microscopy. Calcium fluxes of fluo-4 AM–loaded eosinophils were recorded by flow cytometry after chemokine stimulation. ERK phosphorylation of CCL19- and CCL21-stimulated eosinophils was measured by Western blot and Luminex assay. Human eosinophils expressed CCR7 as demonstrated by flow cytometry and Western blots. Eosinophils exhibited detectable cell surface expression of CCR7. IL-5–primed eosinophils exhibited chemotaxis toward CCL19 and CCL21 in a dose-dependent fashion. Upon stimulation with CCL19 or CCL21, IL-5–primed eosinophils demonstrated dose-dependent shape changes with polarization of F-actin and exhibited calcium influxes. Finally, primed eosinophils stimulated with CCL19 or CCL21 exhibited increased phosphorylation of ERK in response to both CCR7 ligands. We demonstrate that human eosinophils express CCR7 and have multipotent responses to the known ligands of CCR7. PMID:23449735

  2. Dual Role of Ancient Ubiquitous Protein 1 (AUP1) in Lipid Droplet Accumulation and Endoplasmic Reticulum (ER) Protein Quality Control

    OpenAIRE

    Klemm, Elizabeth J.; Spooner, Eric; Ploegh, Hidde L.

    2011-01-01

    Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit t...

  3. [Insulin-like growth factor-binding protein-1: a new biochemical marker of nonalcoholic fatty liver disease?].

    Science.gov (United States)

    Graffigna, Mabel Nora; Belli, Susana H; de Larrañaga, Gabriela; Fainboim, Hugo; Estepo, Claudio; Peres, Silvia; García, Natalia; Levalle, Oscar

    2009-03-01

    to assess the presence of nonalcoholic fatty liver disease in patients with risk factors for this pathology (obesity, dyslipidemia, metabolic syndrome and diabetes type 2) and to determine the role of insulin, HOMA index, insulin-like growth factor-binding protein-1, sex hormone-binding globulin and plasminogen activator inhibitor type 1, as biochemical markers. Ninety-one patients with risk factors for nonalcoholic fatty liver disease were evaluated. Serum transaminases, insulin, sex hormone-binding globulin, insulin-like growth factor-binding protein-1 and plasminogen activator inhibitor type 1 were measured. The diagnosis of fatty liver was performed by ultrasonography and liver biopsies were performed to 31 subjects who had steatosis by ultrasonography and high alanine aminotransferase. Nonalcoholic fatty liver disease was present in 65 out of 91 patients (71,4%). Liver biopsy performed to 31 subjects confirmed nonalcoholic steatohepatitis. Twenty-five patients had different degrees of fibrosis. Those individuals with fatty liver had higher waist circumference, serum levels of triglycerides, insulin and HOMA index, and lower serum insulin-like growth factor-binding protein-1 concentration. The degree ofhepatic steatosis by ultrasonography was positively correlated to waist circumference, triglycerides, insulin and HOMA index (p<0,003; p<0,003; p<0,002 and p<0,001, respectively), and was negatively correlated to HDL-cholesterol and insulin-like growth factor-binding protein-1 (p<0,025 and p<0,018, respectively). We found a high prevalence of NAFLD in patients with risk factors, most of them overweight or obese. Although SHBG and PAI-1 have a closely relationship to insulin resistance, they did not show to be markers of NAFLD. Regardless of low IGFBP-1 levels associated with NAFLD, serum IGFBP-1 measure is less accessible than insulin and triglycerides levels, HOMA index and waist circumference. Moreover, it is not a better marker for NAFLD than the above

  4. Activation of the polyomavirus enhancer by a murine activator protein 1 (AP1) homolog and two contiguous proteins.

    OpenAIRE

    Martin, M E; Piette, J; Yaniv, M; Tang, W J; Folk, W R

    1988-01-01

    The polyomavirus enhancer is composed of multiple DNA sequence elements serving as binding sites for proteins present in mouse nuclear extracts that activate transcription and DNA replication. We have identified three such proteins and their binding sites and correlate them with enhancer function. Mutation of nucleotide (nt) 5140 in the enhancer alters the binding site (TGACTAA, nt 5139-5145) for polyomavirus enhancer A binding protein 1 (PEA1), a murine homolog of the human transcription fac...

  5. Characterization and vaccine potential of Fasciola gigantica saposin-like protein 1 (SAP-1).

    Science.gov (United States)

    Kueakhai, Pornanan; Changklungmoa, Narin; Waseewiwat, Pinkamon; Thanasinpaiboon, Thanaporn; Cheukamud, Werachon; Chaichanasak, Pannigan; Sobhon, Prasert

    2017-01-15

    The recombinant Fasciola gigantica Saposin-like protien-1 (rFgSAP-1) was cloned by polymerase chain reaction (PCR) from NEJ cDNA, expressed in Escherichia coli BL21 (DE3) and used for production of a polyclonal antibody in rabbits (anti-rFgSAP-1). By immunoblotting and immunohistochemistry, rabbit IgG anti-rFgSAP-1 reacted with rFgSAP-1 at a molecular weight 12kDa, but not with rFgSAP-2. The rFgSAP-1 reacted with antisera from mouse infected with F. gigantica metacercariae collected at 2, 4, and 6 weeks after infection. The FgSAP-1 protein was expressed at a high level in the caecal epithelium of metacercariae and NEJs. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rFgSAP-1 combined with Alum adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae per mouse by the oral route. The percents protection of rFgSAP-1 vaccine were estimated to be 73.2% and 74.3% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. The levels of IgG1 and IgG2a specific to rFgSAP-1 in the immune sera, which are indicative of Th2 and Th1 immune responses, were inversely and significantly correlated with the numbers of worm recoveries. The rFgSAP-1-vaccinated mice showed significantly reduced levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and liver damage. These indicated that rFgSAP-1 has strong potential as a vaccine candidate against F. gigantica, whose efficacy will be studied further in large economic animals including cattle, sheep, and goat. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Prognostic significance of proline, glutamic acid, leucine rich protein 1 (PELP1) in triple-negative breast cancer: a retrospective study on 129 cases

    International Nuclear Information System (INIS)

    Zhang, Yanzhi; Dai, Jiali; McNamara, Keely M.; Bai, Bing; Shi, Mumu; Chan, Monica S. M.; Liu, Ming; Sasano, Hironobu; Wang, Xiuli; Li, Xiaolei; Liu, Lijuan; Ma, Ying; Cao, Shuwen; Xing, Yanchun; Zhao, Baoshan; Song, Yinli; Wang, Lin

    2015-01-01

    Triple-negative breast cancer (TNBC) is associated with an aggressive clinical course due to the lack of therapeutic targets. Therefore, identifying reliable prognostic biomarkers and novel therapeutic targets for patients with TNBC is required. Proline, glutamic acid, leucine rich protein 1 (PELP1) is a novel steroidal receptor co-regulator, functioning as an oncogene and its expression is maintained in estrogen receptor (ER) negative breast cancers. PELP1 has been proposed as a prognostic biomarker in hormone-related cancers, including luminal-type breast cancers, but its significance in TNBC has not been studied. PELP1 immunoreactivity was evaluated using immunohistochemistry in 129 patients with TNBC. Results were correlated with clinicopathological variables including patient’s age, tumor size, lymph node stage, tumor grade, clinical stage, histological type, Ki-67 LI, as well as clinical outcome of the patients, including disease-free survival (DFS) and overall survival (OS). PELP1 was localized predominantly in the nuclei of carcinoma cells in TNBC. With the exception of a positive correlation between PELP1 protein expression and lymph node stage (p = 0.027), no significant associations between PELP1 protein expression and other clinicopathological variables, including DFS and OS, were found. However, when PELP1 and Ki-67 LI were grouped together, we found that patients in the PELP1/Ki-67 double high group (n = 48) demonstrated significantly reduced DFS (p = 0.005, log rank test) and OS (p = 0.002, log rank test) than others (n = 81). Multivariable analysis supported PELP1/Ki-67 double high expression as an independent prognostic factor in patients with TNBC, with an adjusted hazard ratio of 2.020 for recurrence (95 % CL, 1.022–3.990; p = 0.043) and of 2.380 for death (95 % CL, 1.138–4.978; p = 0.021). We found that evaluating both PELP1 and Ki-67 expression in TNBC could enhance the prognostic sensitivity of the two biomarkers. Therefore, we propose

  7. Adaptor protein 1 B mu subunit does not contribute to the recycling of kAE1 protein in polarized renal epithelial cells.

    Science.gov (United States)

    Almomani, Ensaf Y; Touret, Nicolas; Cordat, Emmanuelle

    2018-04-13

    Mutations in the gene encoding the kidney anion exchanger 1 (kAE1) can lead to distal renal tubular acidosis (dRTA). dRTA mutations reported within the carboxyl (C)-terminal tail of kAE1 result in apical mis-targeting of the exchanger in polarized renal epithelial cells. As kAE1 physically interacts with the μ subunit of epithelial adaptor protein 1 B (AP-1B), we investigated the role of heterologously expressed μ1B subunit of the AP-1B complex for kAE1 retention to the basolateral membrane in polarized porcine LLC-PK1 renal epithelial cells that are devoid of endogenous AP-1B. We confirmed the interaction and close proximity between kAE1 and μ1B using immunoprecipitation and proximity ligation assay, respectively. Expressing the human μ1B subunit in these cells decreased significantly the amount of cell surface kAE1 at the steady state, but had no significant effect on kAE1 recycling and endocytosis. We show that (i) heterologous expression of μ1B displaces the physical interaction of endogenous GAPDH with kAE1 WT supporting that both AP-1B and GAPDH proteins bind to an overlapping site on kAE1 and (ii) phosphorylation of tyrosine 904 within the potential YDEV interaction motif does not alter the kAE1/AP-1B interaction. We conclude that μ1B subunit is not involved in recycling of kAE1.

  8. Plasmodium knowlesi Skeleton-Binding Protein 1 Localizes to the 'Sinton and Mulligan' Stipplings in the Cytoplasm of Monkey and Human Erythrocytes.

    Science.gov (United States)

    Lucky, Amuza Byaruhanga; Sakaguchi, Miako; Katakai, Yuko; Kawai, Satoru; Yahata, Kazuhide; Templeton, Thomas J; Kaneko, Osamu

    2016-01-01

    The malaria parasite, Plasmodium, exports protein products to the infected erythrocyte to introduce modifications necessary for the establishment of nutrient acquisition and surface display of host interaction ligands. Erythrocyte remodeling impacts parasite virulence and disease pathology and is well documented for the human malaria parasite Plasmodium falciparum, but has been less described for other Plasmodium species. For P. falciparum, the exported protein skeleton-binding protein 1 (PfSBP1) is involved in the trafficking of erythrocyte surface ligands and localized to membranous structures within the infected erythrocyte, termed Maurer's clefts. In this study, we analyzed SBP1 orthologs across the Plasmodium genus by BLAST analysis and conserved gene synteny, which were also recently described by de Niz et al. (2016). To evaluate the localization of an SBP1 ortholog, we utilized the zoonotic malaria parasite, Plasmodium knowlesi. Immunofluorescence assay of transgenic P. knowlesi parasites expressing epitope-tagged recombinant PkSBP1 revealed a punctate staining pattern reminiscent of Maurer's clefts, following infection of either monkey or human erythrocytes. The recombinant PkSBP1-positive puncta co-localized with Giemsa-stained structures, known as 'Sinton and Mulligan' stipplings. Immunoelectron microscopy also showed that recombinant PkSBP1 localizes within or on the membranous structures akin to the Maurer's clefts. The recombinant PkSBP1 expressed in P. falciparum-infected erythrocytes co-localized with PfSBP1 at the Maurer's clefts, indicating an analogous trafficking pattern. A member of the P. knowlesi 2TM protein family was also expressed and localized to membranous structures in infected monkey erythrocytes. These results suggest that the trafficking machinery and induced erythrocyte cellular structures of P. knowlesi are similar following infection of both monkey and human erythrocytes, and are conserved with P. falciparum.

  9. Plasmodium knowlesi Skeleton-Binding Protein 1 Localizes to the ‘Sinton and Mulligan’ Stipplings in the Cytoplasm of Monkey and Human Erythrocytes

    Science.gov (United States)

    Lucky, Amuza Byaruhanga; Sakaguchi, Miako; Katakai, Yuko; Kawai, Satoru; Yahata, Kazuhide; Templeton, Thomas J.

    2016-01-01

    The malaria parasite, Plasmodium, exports protein products to the infected erythrocyte to introduce modifications necessary for the establishment of nutrient acquisition and surface display of host interaction ligands. Erythrocyte remodeling impacts parasite virulence and disease pathology and is well documented for the human malaria parasite Plasmodium falciparum, but has been less described for other Plasmodium species. For P. falciparum, the exported protein skeleton-binding protein 1 (PfSBP1) is involved in the trafficking of erythrocyte surface ligands and localized to membranous structures within the infected erythrocyte, termed Maurer's clefts. In this study, we analyzed SBP1 orthologs across the Plasmodium genus by BLAST analysis and conserved gene synteny, which were also recently described by de Niz et al. (2016). To evaluate the localization of an SBP1 ortholog, we utilized the zoonotic malaria parasite, Plasmodium knowlesi. Immunofluorescence assay of transgenic P. knowlesi parasites expressing epitope-tagged recombinant PkSBP1 revealed a punctate staining pattern reminiscent of Maurer's clefts, following infection of either monkey or human erythrocytes. The recombinant PkSBP1-positive puncta co-localized with Giemsa-stained structures, known as ‘Sinton and Mulligan’ stipplings. Immunoelectron microscopy also showed that recombinant PkSBP1 localizes within or on the membranous structures akin to the Maurer's clefts. The recombinant PkSBP1 expressed in P. falciparum-infected erythrocytes co-localized with PfSBP1 at the Maurer's clefts, indicating an analogous trafficking pattern. A member of the P. knowlesi 2TM protein family was also expressed and localized to membranous structures in infected monkey erythrocytes. These results suggest that the trafficking machinery and induced erythrocyte cellular structures of P. knowlesi are similar following infection of both monkey and human erythrocytes, and are conserved with P. falciparum. PMID:27732628

  10. KLONING GEN PUTATIVE CLEAVAGE PROTEIN 1 (PCP-1 PADA UDANG VANAME (Litopenaeus vannamei YANG TERSERANG INFECTIOUS MYONECROSIS VIRUS

    Directory of Open Access Journals (Sweden)

    Hessy Novita

    2016-12-01

    Full Text Available Penanggulangan penyakit ikan dapat dilakukan dengan cara meningkatkan kekebalan tubuh ikan melalui program vaksinasi. Namun vaksinasi tidak tepat untuk udang, karena udang tidak mempunyai immunological memory seperti ikan. Oleh karena itu, perlindungan udang terhadap serangan penyakit viral dengan menggunakan RNA interference (RNAi. Teknologi RNAi digunakan untuk menghalangi (interfere proses replikasi infectious myonecrosis virus (IMNV pada udang vaname dengan cara menon-aktifkan gen putative cleavage protein 1 (PCP-1, yang berfungsi dalam pembentukan capsid dan proses transkripsi RNA IMNV. Penelitian ini bertujuan untuk melakukan kloning gen putative cleavage protein 1 dalam rangka perakitan teknologi RNAi untuk pengendalian penyakit IMNV pada udang vaname. Tahapan penelitian meliputi koleksi sampel, isolasi RNA, sintesis cDNA, amplifikasi PCR, purifikasi DNA, transformasi, isolasi plasmid, serta sekuensing dan analisis data. Hasil isolasi plasmid cDNA PCP-1 memperlihatkan semua koloni bakteri terseleksi ternyata membawa plasmid hasil insersi DNA gen PCP–1, hasil sekuen dengan nilai homologinya mencapai 100% dan 99% yang dibandingkan dengan sekuen di Genebank. Hasil penelitian menunjukkan bahwa kloning gen putative cleavage protein 1 (PCP-1 dari udang vaname yang terserang Infectious Myonecrosis Virus berhasil dikloning yang nantinya digunakan untuk perakitan RNAi. The prevention of fish diseases can be done by increasing of the fish immune through vaccination programs. However, the vaccination can not be done for the shrimp,due to the absence of  immunological memory. Therefore, the protection of shrimp against viral diseases was done by using of RNA interference (RNAi. RNAi technology is used to interfere infectious myonecrosis virus (IMNV replication process on white shrimp by disabling of putative cleavage protein 1 (PCP-1gene, which functions in capsid formation and RNA transcription process. The study was conducted to perform putative

  11. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts.

    Science.gov (United States)

    Wang, Daren; Zhang, Hui; Li, Min; Frid, Maria G; Flockton, Amanda R; McKeon, B Alexandre; Yeager, Michael E; Fini, Mehdi A; Morrell, Nicholas W; Pullamsetti, Soni S; Velegala, Sivareddy; Seeger, Werner; McKinsey, Timothy A; Sucharov, Carmen C; Stenmark, Kurt R

    2014-01-03

    Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti-miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract-binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3' untranslated region of polypyrimidine tract-binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly

  12. Latent Membrane Protein 1 as a molecular adjuvant for single-cycle lentiviral vaccines

    Directory of Open Access Journals (Sweden)

    Rahmberg Andrew R

    2011-05-01

    Full Text Available Abstract Background Molecular adjuvants are a promising method to enhance virus-specific immune responses and protect against HIV-1 infection. Immune activation by ligands for receptors such as CD40 can induce dendritic cell activation and maturation. Here we explore the incorporation of two CD40 mimics, Epstein Barr Virus gene LMP1 or an LMP1-CD40 chimera, into a strain of SIV that was engineered to be limited to a single cycle of infection. Results Full length LMP1 or the chimeric protein LMP1-CD40 was cloned into the nef-locus of single-cycle SIV. Human and Macaque monocyte derived macrophages and DC were infected with these viruses. Infected cells were analyzed for activation surface markers by flow cytometry. Cells were also analyzed for secretion of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-12p70 and TNF by cytometric bead array. Conclusions Overall, single-cycle SIV expressing LMP1 and LMP1-CD40 produced a broad and potent TH1-biased immune response in human as well as rhesus macaque macrophages and DC when compared with control virus. Single-cycle SIV-LMP1 also enhanced antigen presentation by lentiviral vector vaccines, suggesting that LMP1-mediated immune activation may enhance lentiviral vector vaccines against HIV-1.

  13. Nod-like receptor protein 1 inflammasome mediates neuron injury under high glucose.

    Science.gov (United States)

    Meng, Xian-Fang; Wang, Xiao-Lan; Tian, Xiu-Juan; Yang, Zhi-Hua; Chu, Guang-Pin; Zhang, Jing; Li, Man; Shi, Jing; Zhang, Chun

    2014-04-01

    Diabetic encephalopathy is one of the most common complications of diabetes. Inflammatory events during diabetes may be an important mechanism of diabetic encephalopathy. Inflammasome is a multiprotein complex consisting of Nod-like receptor proteins (NLRPs), apoptosis-associated speck-like protein (ASC), and caspase 1 or 5, which functions to switch on the inflammatory process and the release of inflammatory factors. The present study hypothesized that the formation and activation of NLRP1 inflammasome turns on neuroinflammation and neuron injury during hyperglycemia. The results demonstrated that the levels of interleukin-1 beta (IL-1β) were increased in the cortex of streptozocin (STZ)-induced diabetic rats. The levels of mature IL-1β and IL-18 were also elevated in culture medium of neurons treated with high glucose (50 mM). The expression of three essential components of the NLRP1 inflammasome complex, namely, NLRP1, ASC, and caspase 1, was also upregulated in vivo and in vitro under high glucose. Silencing the ASC gene prevented the caspase-1 activation, and inhibiting caspase 1 activity blocked hyperglycemia-induced release of inflammatory factors and neuron injury. Moreover, we found that pannexin 1 mediated the actvitation of NLRP1 inflammasome under high glucose. These results suggest that hyperglycemia induces neuroinflammation through activation of NLRP1 inflammasome, which represents a novel mechanism of diabetes-associated neuron injury.

  14. Paxillin associates with poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of migrating cells.

    Science.gov (United States)

    Woods, Alison J; Roberts, Marnie S; Choudhary, Jyoti; Barry, Simon T; Mazaki, Yuichi; Sabe, Hisataka; Morley, Simon J; Critchley, David R; Norman, Jim C

    2002-02-22

    Using mass spectrometry we have identified proteins which co-immunoprecipitate with paxillin, an adaptor protein implicated in the integrin-mediated signaling pathways of cell motility. A major component of paxillin immunoprecipitates was poly(A)-binding protein 1, a 70-kDa mRNA-binding protein. Poly(A)-binding protein 1 associated with both the alpha and beta isoforms of paxillin, and this was unaffected by RNase treatment consistent with a protein-protein interaction. The NH(2)-terminal region of paxillin (residues 54-313) associated directly with poly(A)-binding protein 1 in cell lysates, and with His-poly(A)-binding protein 1 immobilized in microtiter wells. Binding was specific, saturable and of high affinity (K(d) of approximately 10 nm). Cell fractionation studies showed that at steady state, the bulk of paxillin and poly(A)-binding protein 1 was present in the "dense" polyribosome-associated endoplasmic reticulum. However, inhibition of nuclear export with leptomycin B caused paxillin and poly(A)-binding protein 1 to accumulate in the nucleus, indicating that they shuttle between the nuclear and cytoplasmic compartments. When cells migrate, poly(A)-binding protein 1 colocalized with paxillin-beta at the tips of lamellipodia. Our results suggest a new mechanism whereby a paxillin x poly(A)-binding protein 1 complex facilitates transport of mRNA from the nucleus to sites of protein synthesis at the endoplasmic reticulum and the leading lamella during cell migration.

  15. Changes in circulating level of IGF-I and IGF-binding protein-1 from the first to second trimester as predictors of preeclampsia

    DEFF Research Database (Denmark)

    Vatten, Lars J; Nilsen, Tom I L; Juul, Anders

    2008-01-01

    To assess whether circulating IGF-I and IGF-binding protein-1 (IGFBP-1) in the first and second trimester are associated with subsequent risk of preterm and term preeclampsia.......To assess whether circulating IGF-I and IGF-binding protein-1 (IGFBP-1) in the first and second trimester are associated with subsequent risk of preterm and term preeclampsia....

  16. A DNA Microarray Analysis of Chemokine and Receptor Genes in the Rat Dental Follicle – Role of Secreted Frizzled-Related Protein-1 in Osteoclastogenesis

    Science.gov (United States)

    Liu, Dawen; Wise, Gary E.

    2007-01-01

    The dental follicle, a loose connective tissue sac that surrounds the unerupted tooth, appears to regulate the osteoclastogenesis needed for eruption; i.e., bone resorption to form an eruption pathway. Thus, DNA microarray studies were conducted to determine which chemokines and their receptors were expressed chronologically in the dental follicle, chemokines that might attract osteoclast precursors. In the rat first mandibular molar, a major burst of osteoclastogenesis occurs at day 3 with a minor burst at day 10. The results of the microarray confirmed our previous studies showing the gene expression of molecules such as CSF-1 and MCP-1 in the dental follicle cells. Other new genes also were detected, including secreted frizzled-related protein-1 (SFRP-1), which was found to be down-regulated at days 3 and 9. Using rat bone marrow cultures to conduct in vitro osteoclastogenic assays, it was demonstrated that SFRP-1 inhibited osteoclast formation in a concentration-dependent fashion. However, with increasing concentrations of SFRP-1, the number of TRAP-positive mononuclear cells increased suggesting that SFRP-1 inhibits osteoclast formation by inhibiting the fusion of mononuclear cells (osteoclast precursors). Co-culturing bone marrow mononuclear cells and dental follicle cells demonstrated that the dental follicle cells were secreting a product(s) that inhibited osteoclastogenesis, as measured by counting of TRAP-positive osteoclasts. Adding an antibody either to SFRP-1 or OPG partially restored osteoclastogenesis. Adding both anti-SFRP-1 and anti-OPG fully negated the inhibitory effect of the follicle cells upon osteoclastogenesis. These results strongly suggest that SFRP-1 and OPG, both secreted by the dental follicle cells, use different pathways to exert their inhibitory effect on osteoclastogenesis. Based on these in vitro studies of osteoclastogenesis, it is likely that the down-regulation of SFRP-1 gene expression in the dental follicle at days 3 and 9 is

  17. Chitinase-3-like Protein 1: A Progranulin Downstream Molecule and Potential Biomarker for Gaucher Disease

    Directory of Open Access Journals (Sweden)

    Jinlong Jian

    2018-02-01

    Full Text Available We recently reported that progranulin (PGRN is a novel regulator of glucocerebrosidase and its deficiency associates with Gaucher Diseases (GD (Jian et al., 2016a; Jian et al., 2018. To isolate the relevant downstream molecules, we performed a whole genome microarray and mass spectrometry analysis, which led to the isolation of Chitinase-3-like-1 (CHI3L1 as one of the up-regulated genes in PGRN null mice. Elevated levels of CHI3L1 were confirmed by immunoblotting and immunohistochemistry. In contrast, treatment with recombinant Pcgin, a derivative of PGRN, as well as imigluerase, significantly reduced the expressions of CHI3L1 in both PGRN null GD model and the fibroblasts from GD patients. Serum levels of CHIT1, a clinical biomarker for GD, were significantly higher in GD patients than healthy controls (51.16 ± 2.824 ng/ml vs 35.07 ± 2.099 ng/ml, p < 0.001. Similar to CHIT1, serum CHI3L1 was also significantly increased in GD patients compared with healthy controls (1736 ± 152.1 pg/ml vs 684.7 ± 68.20 pg/ml, p < 0.001. Whereas the PGRN level is significantly reduced in GD patients as compared to the healthy control (91.56 ± 3.986 ng/ml vs 150.6 ± 4.501, p < 0.001. Collectively, these results indicate that CHI3L1 may be a previously unrecognized biomarker for diagnosing GD and for evaluating the therapeutic effects of new GD drug(s.

  18. A selective inhibition of c-Fos/activator protein-1 as a potential therapeutic target for intervertebral disc degeneration and associated pain.

    Science.gov (United States)

    Makino, Hiroto; Seki, Shoji; Yahara, Yasuhito; Shiozawa, Shunichi; Aikawa, Yukihiko; Motomura, Hiraku; Nogami, Makiko; Watanabe, Kenta; Sainoh, Takeshi; Ito, Hisakatsu; Tsumaki, Noriyuki; Kawaguchi, Yoshiharu; Yamazaki, Mitsuaki; Kimura, Tomoatsu

    2017-12-05

    Intervertebral disc (IVD) degeneration is a major cause of low back pain. The transcription factor c-Fos/Activator Protein-1 (AP-1) controls the expression of inflammatory cytokines and matrix metalloproteinases (MMPs) that contribute to the pathogenesis IVD degeneration. We investigated the effects of inhibition of c-Fos/AP-1 on IVD degeneration and associated pain. A selective inhibitor, T-5224, significantly suppressed the interleukin-1β-induced up-regulation of Mmp-3, Mmp-13 and Adamts-5 transcription in human nucleus pulposus cells and in a mouse explant culture model of IVD degeneration. We used a tail disc percutaneous needle puncture method to further assess the effects of oral administration of T-5224 on IVD degeneration. Analysis of disc height, T2-magnetic resonance imaging (MRI) findings, and histology revealed that IVD degeneration was significantly mitigated by T-5224. Further, oral administration of T-5224 ameliorated pain as indicated by the extended tail-flick latency in response to heat stimulation of rats with needle-puncture-induced IVD degeneration. These findings suggest that the inhibition of c-Fos/AP-1 prevents disc degeneration and its associated pain and that T-5224 may serve as a drug for the prevention of IVD degeneration.

  19. Immunohistochemical detection of autophagy-related microtubule-associated protein 1 light chain 3 (LC3) in the cerebellums of dogs naturally infected with canine distemper virus.

    Science.gov (United States)

    Kabak, Y B; Sozmen, M; Yarim, M; Guvenc, T; Karayigit, M O; Gulbahar, M Y

    2015-01-01

    We investigated the expression of microtubule-associated protein 1 light chain 3 (LC3) protein in the cerebellums of dogs infected with canine distemper virus (CDV) using immunohistochemistry to detect autophagy. The cerebellums of 20 dogs infected with CDV were used. Specimens showing demyelination of white matter were considered to have an acute infection, whereas specimens showing signs of severe perivascular cuffing and demyelination of white matter were classified as having chronic CDV. Cerebellar sections were immunostained with CDV and LC3 antibodies. The cytoplasm of Purkinje cells, granular layer cells, motor neurons in large cerebellar ganglia and some neurons in white matter were positive for the LC3 antibody in both the control and CDV-infected dogs. In the infected cerebellums, however, white matter was immunostained more intensely, particularly the neurons and gemistocytic astrocytes in the demyelinated areas, compared to controls. Autophagy also was demonstrated in CDV-positive cells using double immunofluorescence staining. Our findings indicate that increased autophagy in the cerebellum of dogs naturally infected with CDV may play a role in transferring the virus from cell to cell.

  20. Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr-encoded oncoprotein latent membrane protein 1

    International Nuclear Information System (INIS)

    Tao Yongguang; Song Xing; Deng Xiyun; Xie Daxin; Lee, Leo M.; Liu Yiping; Li Wei; Li Lili; Deng Lin; Wu Qiao; Gong Jianping; Cao Ya

    2005-01-01

    Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is considered to be the major oncogenic protein of EBV-encoded proteins and has always been the core of the oncogenic mechanism of EBV. Advanced studies on nuclear translocation of the epidermal growth factor receptor (EGFR) family have greatly improved our knowledge of the biological function of cell surface receptors. In this study, we used the Tet-on LMP1 HNE2 cell line as a cell model, which is a dual-stable LMP1-integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 which could be regulated by the Tet system. We found that LMP1 could regulate the nuclear accumulation of EGFR in a dose-dependent manner quantitatively and qualitatively. We also demonstrated that the nuclear localization sequence of EGFR played some roles in the location of the protein within the nucleus under LMP1 regulation and EGFR in the nucleus could bind to the promoters of cyclinD1 and cyclinE, respectively. We further demonstrated that EGFR is involved in the acceleration of the G1/S phase transition by LMP1 through binding to cyclinD1 and cyclinE directly. These findings provided a novel view that the acceleration of LMP1 on the G1/S transition via the nuclear accumulation of EGFR was critical in the process of nasopharyngeal carcinoma

  1. Role of latent membrane protein 1 in chronic active Epstein–Barr virus infection-derived T/NK-cell proliferation

    International Nuclear Information System (INIS)

    Ito, Takuto; Kawazu, Hidetaka; Murata, Takayuki; Iwata, Seiko; Arakawa, Saki; Sato, Yoshitaka; Kuzushima, Kiyotaka; Goshima, Fumi; Kimura, Hiroshi

    2014-01-01

    Epstein–Barr virus (EBV) predominantly infects B cells and causes B-cell lymphomas, such as Burkitt lymphoma and Hodgkin lymphoma. However, it also infects other types of cells, including T and natural killer (NK) cells, and causes disorders, such as chronic active EBV infection (CAEBV) and T/NK-cell lymphoma. The CAEBV is a lymphoproliferative disease with poor prognosis, where EBV-positive T or NK cells grow rapidly, although the molecular mechanisms that cause the cell expansion still remain to be elucidated. EBV-encoded latent membrane protein 1 (LMP1) is an oncogene that can transform some cell types, such as B cells and mouse fibroblasts, and thus may stimulate cell proliferation in CAEBV. Here, we examined the effect of LMP1 on EBV-negative cells using the cells conditionally expressing LMP1, and on CAEBV-derived EBV-positive cells by inhibiting the function of LMP1 using a dominant negative form of LMP1. We demonstrated that LMP1 was responsible for the increased cell proliferation in the cell lines derived from CAEBV, while LMP1 did not give any proliferative advantage to the EBV-negative cell line

  2. The c-Jun N-terminal kinase pathway is critical for cell transformation by the latent membrane protein 1 of Epstein-Barr virus

    International Nuclear Information System (INIS)

    Kutz, Helmut; Reisbach, Gilbert; Schultheiss, Ute; Kieser, Arnd

    2008-01-01

    The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) transforms cells activating signal transduction pathways such as NF-κB, PI3-kinase, or c-Jun N-terminal kinase (JNK). Here, we investigated the functional role of the LMP1-induced JNK pathway in cell transformation. Expression of a novel dominant-negative JNK1 allele caused a block of proliferation in LMP1-transformed Rat1 fibroblasts. The JNK-specific inhibitor SP600125 reproduced this effect in Rat1-LMP1 cells and efficiently interfered with proliferation of EBV-transformed lymphoblastoid cells (LCLs). Inhibition of the LMP1-induced JNK pathway in LCLs caused the downregulation of c-Jun and Cdc2, the essential G2/M cell cycle kinase, which was accompanied by a cell cycle arrest of LCLs at G2/M phase transition. Moreover, SP600125 retarded tumor growth of LCLs in a xenograft model in SCID mice. Our data support a critical role of the LMP1-induced JNK pathway for proliferation of LMP1-transformed cells and characterize JNK as a potential target for intervention against EBV-induced malignancies

  3. Identification and functional characterisation of Complement Regulator Acquiring Surface Protein-1 of serum resistant Borrelia garinii OspA serotype 4

    Directory of Open Access Journals (Sweden)

    Zipfel Peter F

    2010-02-01

    Full Text Available Abstract Background B. burgdorferi sensu lato (sl is the etiological agent of Lyme borreliosis in humans. Spirochetes have adapted themselves to the human immune system in many distinct ways. One important immune escape mechanism for evading complement activation is the binding of complement regulators Factor H (CFH or Factor H-like protein1 (FHL-1 to Complement Regulator-Acquiring Surface Proteins (CRASPs. Results We demonstrate that B. garinii OspA serotype 4 (ST4 PBi resist complement-mediated killing by binding of FHL-1. To identify the primary ligands of FHL-1 four CspA orthologs from B. garinii ST4 PBi were cloned and tested for binding to human CFH and FHL-1. Orthologs BGA66 and BGA71 were found to be able to bind both complement regulators but with different intensities. In addition, all CspA orthologs were tested for binding to mammalian and avian CFH. Distinct orthologs were able to bind to CFH of different animal origins. Conclusions B. garinii ST4 PBi is able to evade complement killing and it can bind FHL-1 to membrane expressed proteins. Recombinant proteins BGA66 can bind FHL-1 and human CFH, while BGA71 can bind only FHL-1. All recombinant CspA orthologs from B. garinii ST4 PBi can bind CFH from different animal origins. This partly explains the wide variety of animals that can be infected by B. garinii.

  4. Induction of fibroblast growth factor 21 does not require activation of the hepatic X-box binding protein 1 in mice

    Directory of Open Access Journals (Sweden)

    Shantel Olivares

    2017-12-01

    Full Text Available Objective: Fibroblast growth factor 21 (FGF21, a key regulator of the metabolic response to fasting, is highly induced by endoplasmic reticulum (ER stress. The X-box binding protein 1 (Xbp1 is one of several ER stress proteins that has been shown to directly activate the FGF21 promoter. We aimed to determine whether hepatic Xbp1 is required for induction of hepatic FGF21 in vivo. Methods: Mice bearing a hepatocyte-specific deletion of Xbp1 (Xbp1LKO were subjected to fasting, pharmacologic ER stress, or a ketogenic diet, all potent stimuli of Fgf21 expression. Results: Hepatocyte-specific Xbp1 knockout mice demonstrated normal induction of FGF21 in response to fasting or pharmacologic ER stress and enhanced induction of FGF21 in response to a ketogenic diet. Consistent with preserved induction of FGF21, Xbp1LKO mice exhibited normal induction of FGF21 target genes and normal ketogenesis in response to fasting or a ketogenic diet. Conclusion: Hepatic Xbp1 is not required for induction of FGF21 under physiologic or pathophysiologic conditions in vivo. Keywords: Unfolded protein response, Endoplasmic reticulum stress, Fasting, Fatty acid oxidation, Ketogenic diet

  5. Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model.

    Directory of Open Access Journals (Sweden)

    Kelly Jean Thomas

    Full Text Available Evasion of apoptosis is implicated in almost all aspects of cancer progression, as well as treatment resistance. In this study, resistance to apoptosis was identified in tumorigenic lung epithelial (A549 cells as a consequence of defects in mitochondrial and autophagic function. Mitochondrial function is determined in part by mitochondrial morphology, a process regulated by mitochondrial dynamics whereby the joining of two mitochondria, fusion, inhibits apoptosis while fission, the division of a mitochondrion, initiates apoptosis. Mitochondrial morphology of A549 cells displayed an elongated phenotype-mimicking cells deficient in mitochondrial fission protein, Dynamin-related protein 1 (Drp1. A549 cells had impaired Drp1 mitochondrial recruitment and decreased Drp1-dependent fission. Cytochrome c release and caspase-3 and PARP cleavage were impaired both basally and with apoptotic stimuli in A549 cells. Increased mitochondrial mass was observed in A549 cells, suggesting defects in mitophagy (mitochondrial selective autophagy. A549 cells had decreased LC3-II lipidation and lysosomal inhibition suggesting defects in autophagy occur upstream of lysosomal degradation. Immunostaining indicated mitochondrial localized LC3 punctae in A549 cells increased after mitochondrial uncoupling or with a combination of mitochondrial depolarization and ectopic Drp1 expression. Increased inhibition of apoptosis in A549 cells is correlated with impeded mitochondrial fission and mitophagy. We suggest mitochondrial fission defects contribute to apoptotic resistance in A549 cells.

  6. Y-box-binding protein 1 interacts with hepatitis C virus NS3/4A and influences the equilibrium between viral RNA replication and infectious particle production.

    Science.gov (United States)

    Chatel-Chaix, Laurent; Melançon, Pierre; Racine, Marie-Ève; Baril, Martin; Lamarre, Daniel

    2011-11-01

    The hepatitis C virus (HCV) NS3/4A protein has several essential roles in the virus life cycle, most probably through dynamic interactions with host factors. To discover cellular cofactors that are co-opted by HCV for its replication, we elucidated the NS3/4A interactome using mass spectrometry and identified Y-box-binding protein 1 (YB-1) as an interacting partner of NS3/4A protein and HCV genomic RNA. Importantly, silencing YB-1 expression decreased viral RNA replication and severely impaired the propagation of the infectious HCV molecular clone JFH-1. Immunofluorescence studies further revealed a drastic HCV-dependent redistribution of YB-1 to the surface of the lipid droplets, an important organelle for HCV assembly. Core and NS3 protein-dependent polyprotein maturation were shown to be required for YB-1 relocalization. Unexpectedly, YB-1 knockdown cells showed the increased production of viral infectious particles while HCV RNA replication was impaired. Our data support that HCV hijacks YB-1-containing ribonucleoparticles and that YB-1-NS3/4A-HCV RNA complexes regulate the equilibrium between HCV RNA replication and viral particle production.

  7. Competitive Enzyme-Linked Immunosorbent Assay Based on a Rhoptry-Associated Protein 1 Epitope Specifically Identifies Babesia bovis-Infected Cattle

    Science.gov (United States)

    Goff, Will L.; McElwain, Terry F.; Suarez, Carlos E.; Johnson, Wendell C.; Brown, Wendy C.; Norimine, Junzo; Knowles, Donald P.

    2003-01-01

    The competitive enzyme-linked immunosorbent assay (cELISA) format has proven to be an accurate, reliable, easily standardized, and high-throughput method for detecting hemoparasite infections. In the present study, a species-specific, broadly conserved, and tandemly repeated B-cell epitope within the C terminus of the rhoptry-associated protein 1 of the hemoparasite Babesia bovis was cloned and expressed as a histidine-tagged thioredoxin fusion peptide and used as antigen in a cELISA. The assay was optimized with defined negative and positive bovine sera, where positive sera inhibited the binding of the epitope-specific monoclonal antibody BABB75A4. The cELISA accurately differentiated animals with B. bovis-specific antibodies from uninfected animals and from animals with antibodies against other tick-borne hemoparasites (98.7% specificity). In addition, B. bovis-specific sera from Australia, Argentina, Bolivia, Puerto Rico, and Morocco inhibited the binding of BABB75A4, confirming conservation of the epitope. The assay first detected experimentally infected animals between 13 and 17 days postinfection, and with sera from naturally infected carrier cattle, was comparable to indirect immunofluorescence (98.3% concordance). The assay appears to have the characteristics necessary for an epidemiologic and disease surveillance tool. PMID:12522037

  8. Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis.

    Science.gov (United States)

    Tsuzuki, Syusaku; Handa, Yoshihiro; Takeda, Naoya; Kawaguchi, Masayoshi

    2016-04-01

    Arbuscular mycorrhizal (AM) symbiosis is the most widespread association between plants and fungi. To provide novel insights into the molecular mechanisms of AM symbiosis, we screened and investigated genes of the AM fungus Rhizophagus irregularis that contribute to the infection of host plants. R. irregularis genes involved in the infection were explored by RNA-sequencing (RNA-seq) analysis. One of the identified genes was then characterized by a reverse genetic approach using host-induced gene silencing (HIGS), which causes RNA interference in the fungus via the host plant. The RNA-seq analysis revealed that 19 genes are up-regulated by both treatment with strigolactone (SL) (a plant symbiotic signal) and symbiosis. Eleven of the 19 genes were predicted to encode secreted proteins and, of these, SL-induced putative secreted protein 1 (SIS1) showed the largest induction under both conditions. In hairy roots of Medicago truncatula, SIS1 expression is knocked down by HIGS, resulting in significant suppression of colonization and formation of stunted arbuscules. These results suggest that SIS1 is a putative secreted protein that is induced in a wide spatiotemporal range including both the presymbiotic and symbiotic stages and that SIS1 positively regulates colonization of host plants by R. irregularis.

  9. Neuronal low-density lipoprotein receptor-related protein 1 binds and endocytoses prion fibrils via receptor cluster 4

    DEFF Research Database (Denmark)

    Jen, Angela; Parkyn, Celia J; Mootoosamy, Roy C

    2010-01-01

    For infectious prion protein (designated PrP(Sc)) to act as a template to convert normal cellular protein (PrP(C)) to its distinctive pathogenic conformation, the two forms of prion protein (PrP) must interact closely. The neuronal receptor that rapidly endocytoses PrP(C) is the low......-density lipoprotein receptor-related protein 1 (LRP1). We show here that on sensory neurons LRP1 is also the receptor that binds and rapidly endocytoses smaller oligomeric forms of infectious prion fibrils, and recombinant PrP fibrils. Although LRP1 binds two molecules of most ligands independently to its receptor...... both prion and LRP1 biology....

  10. Identification of multidrug resistance protein 1 (MRP1/ABCC1) as a molecular gate for cellular export of cobalamin

    DEFF Research Database (Denmark)

    Beedholm-Ebsen, Rasmus; van de Wetering, Koen; Hardlei, Tore

    2010-01-01

    transporters by cellular gene silencing showed a role in cellular Cbl efflux of the ATP-binding cassette (ABC)-drug transporter, ABCC1, alias multidrug resistance protein 1 (MRP1), which is present in the basolateral membrane of intestinal epithelium and in other cells. The ability of MRP1 to mediate ATP...... and kidney. In contrast, Cbl accumulates in the terminal part of the intestine of these mice, suggesting a functional malabsorption because of a lower epithelial basolateral Cbl efflux. The identification of this Cbl export mechanism now allows the delineation of a coherent pathway for Cbl trafficking from...

  11. Unusual Presentation of Pelizaeus-Merzbacher Disease: Female Patient with Deletion of the Proteolipid Protein 1 Gene

    Directory of Open Access Journals (Sweden)

    Teva Brender

    2015-01-01

    Full Text Available Pelizaeus-Merzbacher disease (PMD is neurodegenerative leukodystrophy caused by dysfunction of the proteolipid protein 1 (PLP1 gene on Xq22, which codes for an essential myelin protein. As an X-linked condition, PMD primarily affects males; however there have been a small number of affected females reported in the medical literature with a variety of different mutations in this gene. No affected females to date have a deletion like our patient. In addition to this, our patient has skewed X chromosome inactivation which adds to her presentation as her unaffected mother also carries the mutation.

  12. The blood-brain barrier fatty acid transport protein 1 (FATP1/SLC27A1) supplies docosahexaenoic acid to the brain, and insulin facilitates transport.

    Science.gov (United States)

    Ochiai, Yusuke; Uchida, Yasuo; Ohtsuki, Sumio; Tachikawa, Masanori; Aizawa, Sanshiro; Terasaki, Tetsuya

    2017-05-01

    We purposed to clarify the contribution of fatty acid transport protein 1 (FATP1/SLC 27A1) to the supply of docosahexaenoic acid (DHA) to the brain across the blood-brain barrier in this study. Transport experiments showed that the uptake rate of [ 14 C]-DHA in human FATP1-expressing HEK293 cells was significantly greater than that in empty vector-transfected (mock) HEK293 cells. The steady-state intracellular DHA concentration was nearly 2-fold smaller in FATP1-expressing than in mock cells, suggesting that FATP1 works as not only an influx, but also an efflux transporter for DHA. [ 14 C]-DHA uptake by a human cerebral microvascular endothelial cell line (hCMEC/D3) increased in a time-dependent manner, and was inhibited by unlabeled DHA and a known FATP1 substrate, oleic acid. Knock-down of FATP1 in hCMEC/D3 cells with specific siRNA showed that FATP1-mediated uptake accounts for 59.2-73.0% of total [ 14 C]-DHA uptake by the cells. Insulin treatment for 30 min induced translocation of FATP1 protein to the plasma membrane in hCMEC/D3 cells and enhanced [ 14 C]-DHA uptake. Immunohistochemical analysis of mouse brain sections showed that FATP1 protein is preferentially localized at the basal membrane of brain microvessel endothelial cells. We found that two neuroprotective substances, taurine and biotin, in addition to DHA, undergo FATP1-mediated efflux. Overall, our results suggest that FATP1 localized at the basal membrane of brain microvessels contributes to the transport of DHA, taurine and biotin into the brain, and insulin rapidly increases DHA supply to the brain by promoting translocation of FATP1 to the membrane. Read the Editorial Comment for this article on page 324. © 2016 International Society for Neurochemistry.

  13. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan [Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3 (Canada); Babiuk, Lorne A. [University of Alberta, Edmonton, Alberta (Canada); Liu, Qiang, E-mail: qiang.liu@usask.ca [Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3 (Canada)

    2010-11-19

    Research highlights: {yields} A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. {yields} HCV-3a NS5A increases mature SREBP-1c protein level. {yields} HCV-3a NS5A activates SREBP-1c transcription. {yields} Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. {yields} Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  14. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    International Nuclear Information System (INIS)

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan; Babiuk, Lorne A.; Liu, Qiang

    2010-01-01

    Research highlights: → A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. → HCV-3a NS5A increases mature SREBP-1c protein level. → HCV-3a NS5A activates SREBP-1c transcription. → Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. → Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  15. X-box binding protein 1 is essential for the anti-oxidant defense and cell survival in the retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Yimin Zhong

    Full Text Available Damage to the retinal pigment epithelium (RPE is an early event in the pathogenesis of age-related macular degeneration (AMD. X-box binding protein 1 (XBP1 is a key transcription factor that regulates endoplasmic reticulum (ER homeostasis and cell survival. This study aimed to delineate the role of endogenous XBP1 in the RPE. Our results show that in a rat model of light-induced retinal degeneration, XBP1 activation was suppressed in the RPE/choroid complex, accompanied by decreased anti-oxidant genes and increased oxidative stress. Knockdown of XBP1 by siRNA resulted in reduced expression of SOD1, SOD2, catalase, and glutathione synthase and sensitized RPE cells to oxidative damage. Using Cre/LoxP system, we generated a mouse line that lacks XBP1 only in RPE cells. Compared to wildtype littermates, RPE-XBP1 KO mice expressed less SOD1, SOD2, and catalase in the RPE, and had increased oxidative stress. At age 3 months and older, these mice exhibited apoptosis of RPE cells, decreased number of cone photoreceptors, shortened photoreceptor outer segment, reduced ONL thickness, and deficit in retinal function. Electron microscopy showed abnormal ultrastructure, Bruch's membrane thickening, and disrupted basal membrane infolding in XBP1-deficient RPE. These results indicate that XBP1 is an important gene involved in regulation of the anti-oxidant defense in the RPE, and that impaired activation of XBP1 may contribute to RPE dysfunction and cell death during retinal degeneration and AMD.

  16. A δ38 deletion variant of human transketolase as a model of transketolase-like protein 1 exhibits no enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Stefan Schneider

    Full Text Available Besides transketolase (TKT, a thiamin-dependent enzyme of the pentose phosphate pathway, the human genome encodes for two closely related transketolase-like proteins, which share a high sequence identity with TKT. Transketolase-like protein 1 (TKTL1 has been implicated in cancerogenesis as its cellular expression levels were reported to directly correlate with invasion efficiency of cancer cells and patient mortality. It has been proposed that TKTL1 exerts its function by catalyzing an unusual enzymatic reaction, a hypothesis that has been the subject of recent controversy. The most striking difference between TKTL1 and TKT is a deletion of 38 consecutive amino acids in the N-terminal domain of the former, which constitute part of the active site in authentic TKT. Our structural and sequence analysis suggested that TKTL1 might not possess transketolase activity. In order to test this hypothesis in the absence of a recombinant expression system for TKTL1 and resilient data on its biochemical properties, we have engineered and biochemically characterized a "pseudo-TKTL1" Δ38 deletion variant of human TKT (TKTΔ38 as a viable model of TKTL1. Although the isolated protein is properly folded under in vitro conditions, both thermal stability as well as stability of the TKT-specific homodimeric assembly are markedly reduced. Circular dichroism and NMR spectroscopic analysis further indicates that TKTΔ38 is unable to bind the thiamin cofactor in a specific manner, even at superphysiological concentrations. No transketolase activity of TKTΔ38 can be detected for conversion of physiological sugar substrates thus arguing against an intrinsically encoded enzymatic function of TKTL1 in tumor cell metabolism.

  17. Identification of novel putative-binding proteins for cellular prion protein and a specific interaction with the STIP1 homology and U-Box-containing protein 1

    Science.gov (United States)

    Gimenez, Ana Paula Lappas; Richter, Larissa Morato Luciani; Atherino, Mariana Campos; Beirão, Breno Castello Branco; Fávaro, Celso; Costa, Michele Dietrich Moura; Zanata, Silvio Marques; Malnic, Bettina; Mercadante, Adriana Frohlich

    2015-01-01

    ABSTRACT Prion diseases involve the conversion of the endogenous cellular prion protein, PrPC, into a misfolded infectious isoform, PrPSc. Several functions have been attributed to PrPC, and its role has also been investigated in the olfactory system. PrPC is expressed in both the olfactory bulb (OB) and olfactory epithelium (OE) and the nasal cavity is an important route of transmission of diseases caused by prions. Moreover, Prnp−/− mice showed impaired behavior in olfactory tests. Given the high PrPC expression in OE and its putative role in olfaction, we screened a mouse OE cDNA library to identify novel PrPC-binding partners. Ten different putative PrPC ligands were identified, which were involved in functions such as cellular proliferation and apoptosis, cytoskeleton and vesicle transport, ubiquitination of proteins, stress response, and other physiological processes. In vitro binding assays confirmed the interaction of PrPC with STIP1 homology and U-Box containing protein 1 (Stub1) and are reported here for the first time. Stub1 is a co-chaperone with ubiquitin E3-ligase activity, which is associated with neurodegenerative diseases characterized by protein misfolding and aggregation. Physiological and pathological implications of PrPC-Stub1 interaction are under investigation. The PrPC-binding proteins identified here are not exclusive to the OE, suggesting that these interactions may occur in other tissues and play general biological roles. These data corroborate the proposal that PrPC is part of a multiprotein complex that modulates several cellular functions and provide a platform for further studies on the physiological and pathological roles of prion protein. PMID:26237451

  18. Huntingtin-Interacting Protein 1-Related Protein Plays a Critical Role in Dendritic Development and Excitatory Synapse Formation in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Lin Peng

    2017-06-01

    Full Text Available Huntingtin-interacting protein 1-related (HIP1R protein is considered to be an endocytic adaptor protein like the other two members of the Sla2 family, Sla2p and HIP1. They all contain homology domains responsible for the binding of clathrin, inositol lipids and F-actin. Previous studies have revealed that HIP1R is highly expressed in different regions of the mouse brain and localizes at synaptic structures. However, the function of HIP1R in the nervous system remains unknown. In this study, we investigated HIP1R function in cultured rat hippocampal neurons using an shRNA knockdown approach. We found that, after HIP1R knockdown, the dynamics and density of dendritic filopodia, and dendritic branching and complexity were significantly reduced in developing neurons, as well as the densities of dendritic spines and PSD95 clusters in mature neurons. Moreover, HIP1R deficiency led to significantly reduced expression of the ionotropic glutamate receptor GluA1, GluN2A and GluN2B subunits, but not the GABAA receptor α1 subunit. Similarly, HIP1R knockdown reduced the amplitude and frequency of the miniature excitatory postsynaptic current, but not of the miniature inhibitory postsynaptic current. In addition, the C-terminal proline-rich region of HIP1R responsible for cortactin binding was found to confer a dominant-negative effect on dendritic branching in cultured developing neurons, implying a critical role of cortactin binding in HIP1R function. Taken together, the results of our study suggest that HIP1R plays important roles in dendritic development and excitatory synapse formation and function.

  19. Attachment, invasion, chemotaxis, and proteinase expression of B16-BL6 melanoma cells exhibiting a low metastatic phenotype after exposure to dietary restriction of tyrosine and phenylalanine.

    Science.gov (United States)

    Uhlenkott, C E; Huijzer, J C; Cardeiro, D J; Elstad, C A; Meadows, G G

    1996-03-01

    We previously reported that low levels of tyrosine (Tyr) and phenylalanine (Phe) alter the metastatic phenotype of B16-BL6 (BL6) murine melanoma and select for tumor cell populations with decreased lung colonizing ability. To more specifically characterize the effects of Tyr and Phe restriction on the malignant phenotype of BL6, we investigated in vitro attachment, invasion, proteinase expression, and chemotaxis of high and low metastatic BL6 variants. High metastatic variant cells were isolated from subcutaneous tumors of mice fed a nutritionally complete diet (ND cells) and low metastatic variant cells were isolated from mice fed a diet restricted in Tyr and Phe (LTP cells). Results indicate that attachment to reconstituted basement membrane (Matrigel) was significantly reduced in LTP cells as compared to ND cells. Attachment to collagen IV, laminin, and fibronectin were similar between the two variants. Invasion through Matrigel and growth factor-reduced Matrigel were significantly decreased in LTP cells as compared to ND cells. Zymography revealed the presence of M(r) 92,000 and M(r) 72,000 progelatinases, tissue plasminogen activator, and urokinase plasminogen activator in the conditioned medium of both variants; however, there were no differences in activity of these secreted proteinases between the two variants. Growth of the variants on growth factor-reduced Matrigel similarly induced expression of the M(r) 92,000 progelatinase. The variants exhibited similar chemotactic responses toward laminin. However, the chemotactic response toward fibronectin by LTP cells was significantly increased. MFR5, a monoclonal antibody which selectively blocks function of the alpha 5 chain of the alpha 5 beta 1 integrin, VLA-5, decreased the chemotactic response toward fibronectin of ND cells by 37%; the chemotactic response by LTP cells was reduced by 49%. This effect was specific for fibronectin-mediated chemotaxis since the chemotaxis toward laminin and invasion through

  20. microRNA-4516 Contributes to Different Functions of Epithelial Permeability Barrier by Targeting Poliovirus Receptor Related Protein 1 in Enterovirus 71 and Coxsackievirus A16 Infections

    Directory of Open Access Journals (Sweden)

    Yajie Hu

    2018-04-01

    Full Text Available Enterovirus 71 (EV-A71 and coxsackievirus A16 (CV-A16 remain the predominant etiological agents of hand, foot, and mouth disease (HFMD. The clinical manifestations caused by the two viruses are obviously different. CV-A16 usually triggers a repeated infection, and airway epithelial integrity is often the potential causative factor of respiratory repeated infections. Our previous studies have demonstrated that there were some differentially expressed miRNAs involved in the regulation of adhesion function of epithelial barrier in EV-A71 and CV-A16 infections. In this study, we compared the differences between EV-A71 and CV-A16 infections on the airway epithelial barrier function in human bronchial epithelial (16HBE cells and further screened the key miRNA which leaded to the formation of these differences. Our results showed that more rapid proliferation, more serious destruction of 16HBE cells permeability, more apoptosis and disruption of intercellular adhesion-associated molecules were found in CV-A16 infection as compared to EV-A71 infection. Furthermore, we also identified that microRNA-4516 (miR-4516, which presented down-regulation in EV-A71 infection and up-regulation in CV-A16 infection was an important regulator of intercellular junctions by targeting Poliovirus receptor related protein 1(PVRL1. The expressions of PVRL1, claudin4, ZO-1 and E-cadherin in CV-A16-infected cells were significantly less than those in EV-A71-infected cells, while the expressions of these proteins were subverted when pre-treated with miR-4516-overexpression plasmid in EV-A71 infected and miR-4516-knockdown plasmid in CV-A16 infected 16HBE cells. Thus, these data suggested that the opposite expression of miR-4516 in EV-A71 and CV-A16 infections might be the initial steps leading to different epithelial impairments of 16HBE cells by destroying intercellular adhesion, which finally resulted in different outcomes of EV-A71 and CV-A16 infections.

  1. Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shang-Der, E-mail: chensd@adm.cgmh.org.tw [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Lin, Tsu-Kung [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Yang, Ding-I. [Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan (China); Lee, Su-Ying [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Shaw, Fu-Zen [Department of Psychology, National Cheng Kung University, Tainan, Taiwan (China); Liou, Chia-Wei [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Chuang, Yao-Chung, E-mail: ycchuang@adm.cgmh.org.tw [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China)

    2015-05-01

    Recent studies showed that increased mitochondrial fission is an early event of cell death during cerebral ischemia and dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, which may be regulated by PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase thought to protect cells from stress-induced mitochondrial dysfunction and regulate mitochondrial fission. However, the roles of PINK1 and Drp1 in hippocampal injury caused by transient global ischemia (TGI) remain unknown. We therefore tested the hypothesis that TGI may induce PINK1 causing downregulation of Drp1 phosphorylation to enhance hippocampal neuronal survival, thus functioning as an endogenous neuroprotective mechanism. We found progressively increased PINK1 expression in the hippocampal CA1 subfield1-48 h following TGI, reaching the maximal level at 4 h. Despite lack of changes in the expression level of total Drp1 and phosphor-Drp1 at Ser637, TGI induced a time-dependent increase of Drp1 phosphorlation at Ser616 that peaked after 24 h. Notably, PINK1-siRNA increased p-Drp1(Ser616) protein level in hippocampal CA1 subfield 24 h after TGI. The PINK1 siRNA also aggravated the TGI-induced oxidative DNA damage with an increased 8-hydroxy-deoxyguanosine (8-OHdG) content in hippocampal CA1 subfield. Furthermore, PINK1 siRNA also augmented TGI-induced apoptosis as evidenced by the increased numbers of TUNEL-positive staining and enhanced DNA fragmentation. These findings indicated that PINK1 is an endogenous protective mediator vital for neuronal survival under ischemic insult through regulating Drp1 phosphorylation at Ser616. - Highlights: • Transient global ischemia increases expression of PINK1 and p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA decreases PINK1 expression but increases p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA augments oxidative stress and neuronal damage in hippocampal CA1 subfield.

  2. Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury

    International Nuclear Information System (INIS)

    Chen, Shang-Der; Lin, Tsu-Kung; Yang, Ding-I.; Lee, Su-Ying; Shaw, Fu-Zen; Liou, Chia-Wei; Chuang, Yao-Chung

    2015-01-01

    Recent studies showed that increased mitochondrial fission is an early event of cell death during cerebral ischemia and dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, which may be regulated by PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase thought to protect cells from stress-induced mitochondrial dysfunction and regulate mitochondrial fission. However, the roles of PINK1 and Drp1 in hippocampal injury caused by transient global ischemia (TGI) remain unknown. We therefore tested the hypothesis that TGI may induce PINK1 causing downregulation of Drp1 phosphorylation to enhance hippocampal neuronal survival, thus functioning as an endogenous neuroprotective mechanism. We found progressively increased PINK1 expression in the hippocampal CA1 subfield1-48 h following TGI, reaching the maximal level at 4 h. Despite lack of changes in the expression level of total Drp1 and phosphor-Drp1 at Ser637, TGI induced a time-dependent increase of Drp1 phosphorlation at Ser616 that peaked after 24 h. Notably, PINK1-siRNA increased p-Drp1(Ser616) protein level in hippocampal CA1 subfield 24 h after TGI. The PINK1 siRNA also aggravated the TGI-induced oxidative DNA damage with an increased 8-hydroxy-deoxyguanosine (8-OHdG) content in hippocampal CA1 subfield. Furthermore, PINK1 siRNA also augmented TGI-induced apoptosis as evidenced by the increased numbers of TUNEL-positive staining and enhanced DNA fragmentation. These findings indicated that PINK1 is an endogenous protective mediator vital for neuronal survival under ischemic insult through regulating Drp1 phosphorylation at Ser616. - Highlights: • Transient global ischemia increases expression of PINK1 and p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA decreases PINK1 expression but increases p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA augments oxidative stress and neuronal damage in hippocampal CA1 subfield

  3. Neogambogic acid prevents silica-induced fibrosis via inhibition of high-mobility group box 1 and MCP-1-induced protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096 (China); Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Zhang, Mei, E-mail: meizhang1717@163.com [Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Wang, Zhongjiang [Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Cheng, Yusi; Liu, Haijun [Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Zhou, Zewei [Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Han, Bing [Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Chen, Baoan [Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Yao, Honghong, E-mail: yaohh@seu.edu.cn [Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096 (China); Chao, Jie, E-mail: chaojie@seu.edu.cn [Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096 (China); Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China)

    2016-10-15

    Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO{sub 2}); early stages are characterized by alveolar inflammation, and later stages are characterized by progressive lung fibrosis. Mounting evidence indicates that high-mobility group box 1 (HMGB1) is involved in pulmonary fibrosis. Whether neogambogic acid (NGA) inhibits macrophage and fibroblast activation induced by SiO{sub 2} by targeting HMGB1 remains unclear. Methods and results: Experiments using cultured mouse macrophages (RAW264.7 cells) demonstrated that SiO{sub 2} treatment induces the expression of HMGB1 in a time- and dose-dependent manner via mitogen-activated protein kinases (MAPKs) and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway; in turn, this expression causes macrophage apoptosis and fibroblast activation. Pretreating macrophages with NGA inhibited the HMGB1 expression induced by SiO{sub 2} and attenuated both macrophage apoptosis and fibroblast activation. Moreover, NGA directly inhibited MCP-1-induced protein 1 (MCPIP1) expression, as well as markers of fibroblast activation and migration induced by SiO{sub 2}. Furthermore, the effects of NGA on macrophages and fibroblasts were confirmed in vivo by exposing mice to SiO{sub 2}. Conclusion: NGA can prevent SiO{sub 2}-induced macrophage activation and apoptosis via HMGB1 inhibition and SiO{sub 2}-induced fibrosis via the MCPIP1 pathway. Targeting HMGB1 and MCPIP1 with NGA could provide insights into the potential development of a therapeutic approach for alleviating the inflammation and fibrosis induced by SiO{sub 2}. - Highlights: • The SiO{sub 2} induced HMGB1 in alveolar macrophage and MCPIP1 in fibroblast. • NGA rescued the SiO{sub 2}-induced apoptosis of alveolar macrophages via HMGB1 signaling. • NGA inhibited the fibroblast activation induced by SiO{sub 2} via MCPIP1 signaling. • NGA might represent a potential therapeutic approach for silicosis.

  4. 3D7-derived Plasmodium falciparum erythrocyte membrane protein 1 is a frequent target of naturally acquired antibodies recognizing protein domains in a particular pattern independent of malaria transmission intensity

    DEFF Research Database (Denmark)

    Joergensen, Louise; Vestergaard, Lasse S; Turner, Louise

    2007-01-01

    Protection against Plasmodium falciparum malaria is largely mediated by IgG against surface Ags such as the erythrocyte membrane protein 1 family (PfEMP1) responsible for antigenic variation and sequestration of infected erythrocytes. PfEMP1 molecules can be divided into groups A, B/A, B, C, and B......, the sequence by which individuals acquired Abs to particular constructs was largely the same in the three villages. This indicates that the pattern of PfEMP1 expression by parasites transmitted at the different sites was similar, suggesting that PfEMP1 expression is nonrandom and shaped by host......-parasite relationship factors operating at all transmission intensities....

  5. LDL receptor-related protein 1 regulates the abundance of diverse cell-signaling proteins in the plasma membrane proteome.

    Science.gov (United States)

    Gaultier, Alban; Simon, Gabriel; Niessen, Sherry; Dix, Melissa; Takimoto, Shinako; Cravatt, Benjamin F; Gonias, Steven L

    2010-12-03

    LDL receptor-related protein 1 (LRP1) is an endocytic receptor, reported to regulate the abundance of other receptors in the plasma membrane, including uPAR and tissue factor. The goal of this study was to identify novel plasma membrane proteins, involved in cell-signaling, that are regulated by LRP1. Membrane protein ectodomains were prepared from RAW 264.7 cells in which LRP1 was silenced and control cells using protease K. Peptides were identified by LC-MS/MS. By analysis of spectral counts, 31 transmembrane and secreted proteins were regulated in abundance at least 2-fold when LRP1 was silenced. Validation studies confirmed that semaphorin4D (Sema4D), plexin domain-containing protein-1 (Plxdc1), and neuropilin-1 were more abundant in the membranes of LRP1 gene-silenced cells. Regulation of Plxdc1 by LRP1 was confirmed in CHO cells, as a second model system. Plxdc1 coimmunoprecipitated with LRP1 from extracts of RAW 264.7 cells and mouse liver. Although Sema4D did not coimmunoprecipitate with LRP1, the cell-surface level of Sema4D was increased by RAP, which binds to LRP1 and inhibits binding of other ligands. These studies identify Plxdc1, Sema4D, and neuropilin-1 as novel LRP1-regulated cell-signaling proteins. Overall, LRP1 emerges as a generalized regulator of the plasma membrane proteome.

  6. Crystallization and preliminary crystallographic analysis of a calcineurin B-like protein 1 (CBL1) mutant from Ammopiptanthus mongolicus

    International Nuclear Information System (INIS)

    Shang, Guijun; Cang, Huaixing; Liu, Zhijie; Gao, Wei; Bi, Ruchang

    2010-01-01

    Recombinant calcineurin B-like protein 1 from Ammopiptanthus mongolicus (AmCBL1) was overexpressed, purified and crystallized. Calcineurin B-like protein 1 (CBL1) is a calcium sensor in plants. It transmits the calcium signal through the downstream protein CBL-interacting protein kinase (CIPK). CBL1 and CIPK play crucial roles in the response to environmental stresses such as low K + , osmotic shock, high salt, cold and drought. Recombinant CBL1 from Ammopiptanthus mongolicus (AmCBL1) was overexpressed, purified and crystallized. However, the crystal did not diffract well. A mutant prepared using the surface-entropy method and crystallized using the hanging-drop method at 298 K with PEG 2000 MME as a precipitant diffracted to 2.90 Å resolution. The crystal belonged to space group P2 1 2 1 2, with unit-cell parameters a = 99.87, b = 114.42, c = 63.80 Å, α = β = γ = 90.00° and three molecules per asymmetric unit

  7. Nuclear detection of Y-box protein-1 (YB-1) closely associates with progesterone receptor negativity and is a strong adverse survival factor in human breast cancer

    International Nuclear Information System (INIS)

    Dahl, Edgar; Dunn, Sandra E; Mertens, Peter R; En-Nia, Abdelaziz; Wiesmann, Frank; Krings, Renate; Djudjaj, Sonja; Breuer, Elisabeth; Fuchs, Thomas; Wild, Peter J; Hartmann, Arndt

    2009-01-01

    Y-box binding protein-1 (YB-1) is the prototypic member of the cold shock protein family that fulfills numerous cellular functions. In the nucleus YB-1 protein orchestrates transcription of proliferation-related genes, whereas in the cytoplasm it associates with mRNA and directs translation. In human tumor entities, such as breast, lung and prostate cancer, cellular YB-1 expression indicates poor clinical outcome, suggesting that YB-1 is an attractive marker to predict patients' prognosis and, potentially, is suitable to individualize treatment protocols. Given these predictive qualities of YB-1 detection we sought to establish a highly specific monoclonal antibody (Mab) for diagnostic testing and its characterization towards outcome prediction (relapse-free and overall survival). Hybridoma cell generation was carried out with recombinant YB-1 protein as immunogen and Mab characterization was performed using immunoblotting and ELISA with recombinant and tagged YB-1 proteins, as well as immunohistochemistry of healthy and breast cancer specimens. Breast tumor tissue array staining results were analyzed for correlations with receptor expression and outcome parameters. YB-1-specific Mab F-E2G5 associates with conformational binding epitopes mapping to two domains within the N-terminal half of the protein and detects nuclear YB-1 protein by immunohistochemistry in paraffin-embedded breast cancer tissues. Prognostic evaluation of Mab F-E2G5 was performed by immunohistochemistry of a human breast cancer tissue microarray comprising 179 invasive breast cancers, 8 ductal carcinoma in situ and 37 normal breast tissue samples. Nuclear YB-1 detection in human breast cancer cells was associated with poor overall survival (p = 0.0046). We observed a close correlation between nuclear YB-1 detection and absence of progesterone receptor expression (p = 0.002), indicating that nuclear YB-1 detection marks a specific subgroup of breast cancer. Likely due to limitation of sample

  8. Molecular cloning and preliminary function study of iron responsive element binding protein 1 gene from cypermethrin-resistant Culex pipiens pallens

    Directory of Open Access Journals (Sweden)

    Tan Wenbin

    2011-11-01

    Full Text Available Abstract Background Insecticide resistance jeopardizes the control of mosquito populations and mosquito-borne disease control, which creates a major public health concern. Two-dimensional electrophoresis identified one protein segment with high sequence homology to part of Aedes aegypti iron-responsive element binding protein (IRE-BP. Method RT-PCR and RACE (rapid amplification of cDNA end were used to clone a cDNA encoding full length IRE-BP 1. Real-time quantitative RT-PCR was used to evaluate the transcriptional level changes in the Cr-IRE strain Aedes aegypti compared to the susceptible strain of Cx. pipiens pallens. The expression profile of the gene was established in the mosquito life cycle. Methyl tritiated thymidine (3H-TdR was used to observe the cypermethrin resistance changes in C6/36 cells containing the stably transfected IRE-BP 1 gene of Cx. pipiens pallens. Results The complete sequence of iron responsive element binding protein 1 (IRE-BP 1 has been cloned from the cypermethrin-resistant strain of Culex pipiens pallens (Cr-IRE strain. Quantitative RT-PCR analysis indicated that the IRE-BP 1 transcription level was 6.7 times higher in the Cr-IRE strain than in the susceptible strain of 4th instar larvae. The IRE-BP 1 expression was also found to be consistently higher throughout the life cycle of the Cr-IRE strain. A protein of predicted size 109.4 kDa has been detected by Western blotting in IRE-BP 1-transfected mosquito C6/36 cells. These IRE-BP 1-transfected cells also showed enhanced cypermethrin resistance compared to null-transfected or plasmid vector-transfected cells as determined by 3H-TdR incorporation. Conclusion IRE-BP 1 is expressed at higher levels in the Cr-IRE strain, and may confer some insecticide resistance in Cx. pipiens pallens.

  9. Ubiquitin ligase RNF123 mediates degradation of heterochromatin protein 1α and β in lamin A/C knock-down cells.

    Directory of Open Access Journals (Sweden)

    Pankaj Chaturvedi

    Full Text Available The nuclear lamina is a key determinant of nuclear architecture, integrity and functionality in metazoan nuclei. Mutations in the human lamin A gene lead to highly debilitating genetic diseases termed as laminopathies. Expression of lamin A mutations or reduction in levels of endogenous A-type lamins leads to nuclear defects such as abnormal nuclear morphology and disorganization of heterochromatin. This is accompanied by increased proteasomal degradation of certain nuclear proteins such as emerin, nesprin-1α, retinoblastoma protein and heterochromatin protein 1 (HP1. However, the pathways of proteasomal degradation have not been well characterized.To investigate the mechanisms underlying the degradation of HP1 proteins upon lamin misexpression, we analyzed the effects of shRNA-mediated knock-down of lamins A and C in HeLa cells. Cells with reduced levels of expression of lamins A and C exhibited proteasomal degradation of HP1α and HP1β but not HP1γ. Since specific ubiquitin ligases are upregulated in lamin A/C knock-down cells, further studies were carried out with one of these ligases, RNF123, which has a putative HP1-binding motif. Ectopic expression of GFP-tagged RNF123 directly resulted in degradation of HP1α and HP1β. Mutational analysis showed that the canonical HP1-binding pentapeptide motif PXVXL in the N-terminus of RNF123 was required for binding to HP1 proteins and targeting them for degradation. The role of endogenous RNF123 in the degradation of HP1 isoforms was confirmed by RNF123 RNAi experiments. Furthermore, FRAP analysis suggested that HP1β was displaced from chromatin in laminopathic cells.Our data support a role for RNF123 ubiquitin ligase in the degradation of HP1α and HP1β upon lamin A/C knock-down. Hence lamin misexpression can cause degradation of mislocalized proteins involved in key nuclear processes by induction of specific components of the ubiquitin-proteasome system.

  10. Metabolic Reprogramming Regulates the Proliferative and Inflammatory Phenotype of Adventitial Fibroblasts in Pulmonary Hypertension Through the Transcriptional Corepressor C-Terminal Binding Protein-1.

    Science.gov (United States)

    Li, Min; Riddle, Suzette; Zhang, Hui; D'Alessandro, Angelo; Flockton, Amanda; Serkova, Natalie J; Hansen, Kirk C; Moldvan, Radu; McKeon, B Alexandre; Frid, Maria; Kumar, Sushil; Li, Hong; Liu, Hongbing; Caánovas, Angela; Medrano, Juan F; Thomas, Milton G; Iloska, Dijana; Plecitá-Hlavatá, Lydie; Ježek, Petr; Pullamsetti, Soni; Fini, Mehdi A; El Kasmi, Karim C; Zhang, QingHong; Stenmark, Kurt R

    2016-10-11

    Changes in metabolism have been suggested to contribute to the aberrant phenotype of vascular wall cells, including fibroblasts, in pulmonary hypertension (PH). Here, we test the hypothesis that metabolic reprogramming to aerobic glycolysis is a critical adaptation of fibroblasts in the hypertensive vessel wall that drives proliferative and proinflammatory activation through a mechanism involving increased activity of the NADH-sensitive transcriptional corepressor C-terminal binding protein 1 (CtBP1). RNA sequencing, quantitative polymerase chain reaction, 13 C-nuclear magnetic resonance, fluorescence-lifetime imaging, mass spectrometry-based metabolomics, and tracing experiments with U- 13 C-glucose were used to assess glycolytic reprogramming and to measure the NADH/NAD + ratio in bovine and human adventitial fibroblasts and mouse lung tissues. Immunohistochemistry was used to assess CtBP1 expression in the whole-lung tissues. CtBP1 siRNA and the pharmacological inhibitor 4-methylthio-2-oxobutyric acid (MTOB) were used to abrogate CtBP1 activity in cells and hypoxic mice. We found that adventitial fibroblasts from calves with severe hypoxia-induced PH and humans with idiopathic pulmonary arterial hypertension (PH-Fibs) displayed aerobic glycolysis when cultured under normoxia, accompanied by increased free NADH and NADH/NAD + ratios. Expression of the NADH sensor CtBP1 was increased in vivo and in vitro in fibroblasts within the pulmonary adventitia of humans with idiopathic pulmonary arterial hypertension and animals with PH and cultured PH-Fibs, respectively. Decreasing NADH pharmacologically with MTOB or genetically blocking CtBP1 with siRNA upregulated the cyclin-dependent genes (p15 and p21) and proapoptotic regulators (NOXA and PERP), attenuated proliferation, corrected the glycolytic reprogramming phenotype of PH-Fibs, and augmented transcription of the anti-inflammatory gene HMOX1. Chromatin immunoprecipitation analysis demonstrated that CtBP1 directly

  11. Metabolic Reprogramming Regulates the Proliferative and Inflammatory Phenotype of Adventitial Fibroblasts in Pulmonary Hypertension Through the Transcriptional Co-Repressor C-terminal Binding Protein-1

    Science.gov (United States)

    Li, Min; Riddle, Suzette; Zhang, Hui; D’Alessandro, Angelo; Flockton, Amanda; Serkova, Natalie J.; Hansen, Kirk C.; Moldvan, Radu; McKeon, B. Alexandre; Frid, Maria; Kumar, Sushil; Li, Hong; Liu, Hongbing; Cánovas, Angela; Medrano, Juan F.; Thomas, Milton G.; Iloska, Dijana; Plecita-Hlavata, Lydie; Ježek, Petr; Pullamsetti, Soni; Fini, Mehdi A.; El Kasmi, Karim C.; Zhang, Qinghong; Stenmark, Kurt R.

    2016-01-01

    Background Changes in metabolism have been suggested to contribute to the aberrant phenotype of vascular wall cells including fibroblasts in pulmonary hypertension (PH). Herein, we test the hypothesis that metabolic reprogramming to aerobic glycolysis is a critical adaptation of fibroblasts in the hypertensive vessel wall that drives proliferative and pro-inflammatory activation through a mechanism involving increased activity of the NADH-sensitive transcriptional co-repressor C-terminal binding protein 1 (CtBP1). Methods RNA-Sequencing, qPCR, 13C-NMR, fluorescence-lifetime imaging, mass spectrometry-based metabolomics and tracing experiments with U-13C-glucose were used to assess glycolytic reprogramming and to measure NADH/NAD+ ratio in bovine and human adventitial fibroblasts, and mouse lung tissues. Immunohistochemistry was utilized to assess CtBP1 expression in the whole lung tissues. CtBP1 siRNA and the pharmacologic inhibitor 4-methylthio-2-oxobutyric acid (MTOB) were utilized to abrogate CtBP1 activity in cells and hypoxic mice. Results We found adventitial fibroblasts from calves with severe hypoxia-induced PH and humans with IPAH (PH-Fibs) displayed aerobic glycolysis when cultured under normoxia, accompanied by increased free NADH and NADH/NAD+ ratios. Expression of the NADH sensor CtBP1 was increased in vivo and in vitro in fibroblasts within the pulmonary adventitia of humans with IPAH and animals with PH and cultured PH-Fibs, respectively. Decreasing NADH pharmacologically with MTOB, or genetically blocking CtBP1 using siRNA, upregulated the cyclin-dependent genes (p15 and p21) and pro-apoptotic regulators (NOXA and PERP), attenuated proliferation, corrected the glycolytic reprogramming phenotype of PH-Fibs, and augmented transcription of the anti-inflammatory gene HMOX1. ChIP analysis demonstrated that CtBP1 directly binds the HMOX1 promoter. Treatment of hypoxic mice with MTOB decreased glycolysis and expression of inflammatory genes, attenuated

  12. Specific T-cell recognition of the merozoite proteins rhoptry-associated protein 1 and erythrocyte-binding antigen 1 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jakobsen, P H; Hviid, L; Theander, T G

    1993-01-01

    The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living i...... by individuals living in an area with a high transmission rate of malaria. Most of the donor plasma samples tested contained immunoglobulin G (IgG) and IgM antibodies recognizing the merozoite proteins, while only a minority showed high IgG reactivity to the synthetic peptides.......The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living...

  13. Dystrobrevin-binding protein 1 gene (DTNBP1) variants associated with cerebrospinal fluid homovanillic acid and 5-hydroxyindoleacetic acid concentrations in healthy volunteers

    DEFF Research Database (Denmark)

    Andreou, Dimitrios; Saetre, Peter; Kähler, Anna K

    2011-01-01

    The dystrobrevin binding protein-1 (DTNBP1) gene encodes dysbindin-1, a protein involved in neurodevelopmental and neurochemical processes related mainly to the monoamine dopamine. We investigated possible associations between eleven DTNBP1 polymorphisms and cerebrospinal fluid (CSF) concentratio...

  14. Molecular energy dissipation in nanoscale networks of Dentin Matrix Protein 1 is strongly dependent on ion valence

    Science.gov (United States)

    Adams, J; Fantner, G E; Fisher, L W; Hansma, P K

    2008-01-01

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use Atomic Force Microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of Dentin Matrix Protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface, and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence. PMID:18843380

  15. Sequence analysis of the Epstein-Barr virus (EBV) latent membrane protein-1 gene and promoter region

    DEFF Research Database (Denmark)

    Sandvej, Kristian; Gratama, J W; Munch, M

    1997-01-01

    Sequence variations in the Epstein-Barr virus (EBV) encoded latent membrane protein-1 (LMP-1) gene have been described in a Chinese nasopharyngeal carcinoma-derived isolate (CAO), and in viral isolates from various EBV-associated tumors. It has been suggested that these genetic changes, which...... include loss of a Xho I restriction site (position 169425) and a C-terminal 30-base pair (bp) deletion (position 168287-168256), define EBV genotypes associated with increased tumorigenicity or with disease among particular geographic populations. To determine the frequency of LMP-1 variations in European...... wild-type virus isolates, we sequenced the LMP-1 promoter and gene in EBV from lymphoblastoid cell lines from healthy carriers and patients without EBV-associated disease. Sequence changes were often present, and defined at least four main groups of viral isolates, which we designate Groups A through D...

  16. Mice lacking collapsin response mediator protein 1 manifest hyperactivity, impaired learning and memory, and impaired prepulse inhibition

    Directory of Open Access Journals (Sweden)

    Naoya eYamashita

    2013-12-01

    Full Text Available Collapsin response mediator protein 1 (CRMP1 is one of the CRMP family members that are involved in various aspects of neuronal development such as axonal guidance and neuronal migration. Here we provide evidence that crmp1-/- mice exhibited behavioral abnormalities related to schizophrenia. The crmp1-/- mice exhibited hyperactivity and/or impaired emotional behavioral phenotype. These mice also exhibited impaired context-dependent memory and long-term memory retention. Furthermore, crmp1-/- mice exhibited decreased prepulse inhibition, and this phenotype was rescued by administration of chlorpromazine, a typical antipsychotic drug. In addition, in vivo microdialysis revealed that the methamphetamine-induced release of dopamine in prefrontal cortex was exaggerated in crmp1-/- mice, suggesting that enhanced mesocortical dopaminergic transmission contributes to their hyperactivity phenotype. These observations suggest that impairment of CRMP1 function may be involved in the pathogenesis of schizophrenia. We propose that crmp1-/- mouse may model endophenotypes present in this neuropsychiatric disorder.

  17. Low-Density Lipoprotein Receptor–Related Protein-1 Is a Therapeutic Target in Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Stefano Toldo, PhD

    2017-10-01

    Full Text Available Low-density lipoprotein receptor–related protein-1 (LRP1 is a ubiquitous membrane receptor functioning as a scavenger and regulatory receptor, inducing anti-inflammatory and prosurvival signals. Based on the known structure–activity of the LRP1 receptor binding site, the authors synthesized a small peptide (SP16. SP16 induced a >50% reduction in infarct size (p < 0.001 and preservation of left ventricular systolic function (p < 0.001, and treatment with an LRP1 blocking antibody eliminated the protective effects of SP16. In conclusion, LRP1 activation with SP16 given within 30 min of reperfusion during experimental acute myocardial infarction leads to a cardioprotective signal reducing infarct size and preservation of cardiac systolic function.

  18. Molecular energy dissipation in nanoscale networks of dentin matrix protein 1 is strongly dependent on ion valence

    International Nuclear Information System (INIS)

    Adams, J; Fantner, G E; Hansma, P K; Fisher, L W

    2008-01-01

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use atomic force microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of dentin matrix protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence

  19. Molecular energy dissipation in nanoscale networks of dentin matrix protein 1 is strongly dependent on ion valence

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J; Fantner, G E; Hansma, P K [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Fisher, L W [Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD 20892 (United States)], E-mail: adams@physics.ucsb.edu, E-mail: fantner@physics.ucsb.edu, E-mail: lfisher@dir.nidcr.nih.gov, E-mail: prasant@physics.ucsb.edu

    2008-09-24

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use atomic force microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of dentin matrix protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence.

  20. The tomato UV-damaged DNA-binding protein-1 (DDB1) is implicated in pathogenesis-related (PR) gene expression and resistance to Agrobacterium tumefaciens

    Science.gov (United States)

    Plants defend themselves against potential pathogens via the recognition of pathogen-associated molecular patterns (PAMPs). However, the molecular mechanisms underlying this PAMP triggered immunity (PTI) are largely unknown. In this study, we show that tomato HP1/DDB1, coding for a key component of ...

  1. Production of a Recombinant E. coli Expressed Malarial Vaccine from the C-Terminal Fragment of Plasmodium Falciparum 3D7 Merozoite Surface Protein-1

    National Research Council Canada - National Science Library

    Angov, Evelina

    2000-01-01

    .... However, it appears to lack T-helper epitopes. Since antibody is likely the effector mechanism induced by MSP1-19, it is important to insure that recombinant vaccines based on this antigen be folded correctly and contain T-helper epitopes...

  2. Production of a Recombinant E. coli Expressed Malarial Vaccine from the C-Terminal Fragment of Plasmodium Falciparum 3D7 Merozoite Surface Protein-1

    National Research Council Canada - National Science Library

    Angov, Evelina

    2000-01-01

    .... Since antibody is likely the effector mechanism induced by MSP-(42), it is important to insure that recombinant vaccines based upon this antigen be folded correctly and contain T-helper epitopes that will enhance induction of humoral responses...

  3. Localization and Differential Expression of the Krüppel-Associated Box Zinc Finger Proteins 1 and 54 in Early Mouse Development

    DEFF Research Database (Denmark)

    Albertsen, Maria; Teperek, Marta; Elholm, Grethe

    2010-01-01

    -fused reporter gene into zygotes demonstrated the intracellular distribution of ZFP1-green fluorescent protein (GFP) and ZFP54-GFP colocalized with a DNA marker in the two-cell embryo. The KRAB domain was essential to colocalize with DNA, and deletion of the KRAB domain in ZFP1-GFP and ZFP54-GFP localized...

  4. Molecular cloning, functional expression, and tissue distribution of a novel human gap junction-forming protein, connexin-31.9. Interaction with zona occludens protein-1

    NARCIS (Netherlands)

    Nielsen, Peter A; Beahm, Derek L; Giepmans, Ben N G; Baruch, Amos; Hall, James E; Kumar, Nalin M

    2002-01-01

    A novel human connexin gene (GJA11) was cloned from a genomic library. The open reading frame encoded a hypothetical protein of 294 amino acid residues with a predicted molecular mass of 31,933, hence referred to as connexin-31.9 (Cx31.9) or alpha 11 connexin. A clone in GenBank containing the

  5. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells.

    Science.gov (United States)

    Gordillo, Gayle M; Biswas, Ayan; Khanna, Savita; Spieldenner, James M; Pan, Xueliang; Sen, Chandan K

    2016-05-06

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells*

    Science.gov (United States)

    Gordillo, Gayle M.; Biswas, Ayan; Khanna, Savita; Spieldenner, James M.; Pan, Xueliang; Sen, Chandan K.

    2016-01-01

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. PMID:26961872

  7. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1).

    Science.gov (United States)

    Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan

    2013-08-09

    Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.

  8. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Guangwen; Qin, Mei [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Liu, Xianyong [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Suo, Jingxia; Tang, Xinming; Tao, Geru [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Han, Qian [Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 (United States); Suo, Xun [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Wu, Wenxue, E-mail: labboard@126.com [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China)

    2013-10-25

    Highlights: •We found a new protective protein – (IMPI) in Eimeria tenella. •EtIMP1-flagellin fusion protein is an effective immunogen against Eimeria infection. •Flagellin can be as an apicomplexan parasite vaccine adjuvant in chickens. -- Abstract: Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens.

  9. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin

    International Nuclear Information System (INIS)

    Yin, Guangwen; Qin, Mei; Liu, Xianyong; Suo, Jingxia; Tang, Xinming; Tao, Geru; Han, Qian; Suo, Xun; Wu, Wenxue

    2013-01-01

    Highlights: •We found a new protective protein – (IMPI) in Eimeria tenella. •EtIMP1-flagellin fusion protein is an effective immunogen against Eimeria infection. •Flagellin can be as an apicomplexan parasite vaccine adjuvant in chickens. -- Abstract: Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens

  10. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral Latent Membrane Protein 1 and the immunomodulatory protein galectin 9

    International Nuclear Information System (INIS)

    Keryer-Bibens, Cécile; Pioche-Durieu, Catherine; Villemant, Cécile; Souquère, Sylvie; Nishi, Nozomu; Hirashima, Mitsuomi; Middeldorp, Jaap; Busson, Pierre

    2006-01-01

    Nasopharyngeal carcinomas (NPC) are consistently associated with the Epstein-Barr virus (EBV). Their malignant epithelial cells contain the viral genome and express several antigenic viral proteins. However, the mechanisms of immune escape in NPCs are still poorly understood. EBV-transformed B-cells have been reported to release exosomes carrying the EBV-encoded latent membrane protein 1 (LMP1) which has T-cell inhibitory activity. Although this report suggested that NPC cells could also produce exosomes carrying immunosuppressive proteins, this hypothesis has remained so far untested. Malignant epithelial cells derived from NPC xenografts – LMP1-positive (C15) or negative (C17) – were used to prepare conditioned culture medium. Various microparticles and vesicles released in the culture medium were collected and fractionated by differential centrifugation. Exosomes collected in the last centrifugation step were further purified by immunomagnetic capture on beads carrying antibody directed to HLA class II molecules. Purified exosomes were visualized by electron microscopy and analysed by western blotting. The T-cell inhibitory activities of recombinant LMP1 and galectin 9 were assessed on peripheral blood mononuclear cells activated by CD3/CD28 cross-linking. HLA-class II-positive exosomes purified from C15 and C17 cell supernatants were containing either LMP1 and galectin 9 (C15) or galectin 9 only (C17). Recombinant LMP1 induced a strong inhibition of T-cell proliferation (IC50 = 0.17 nM). In contrast recombinant galectin 9 had a weaker inhibitory effect (IC50 = 46 nM) with no synergy with LMP1. This study provides the proof of concept that NPC cells can release HLA class-II positive exosomes containing galectin 9 and/or LMP1. It confirms that the LMP1 molecule has intrinsic T-cell inhibitory activity. These findings will encourage investigations of tumor exosomes in the blood of NPC patients and assessment of their effects on various types of target cells

  11. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    Science.gov (United States)

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum).

    Science.gov (United States)

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. Inhibition of CUG-binding protein 1 and activation of caspases are critically involved in piperazine derivative BK10007S induced apoptosis in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Ju-Ha Kim

    Full Text Available Though piperazine derivative BK10007S was known to induce apoptosis in pancreatic cancer xenograft model as a T-type CaV3.1 a1G isoform calcium channel blocker, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the antitumor mechanism of BK10007S was elucidated in hepatocellular carcinoma cells (HCCs. Herein, BK10007S showed significant cytotoxicity by 3-[4,5-2-yl]-2,5-diphenyltetra-zolium bromide (MTT assay and anti-proliferative effects by colony formation assay in HepG2 and SK-Hep1 cells. Also, apoptotic bodies and terminal deoxynucleotidyl transferase (TdT dUTP Nick End Labeling (TUNEL positive cells were observed in BK10007S treated HepG2 and SK-Hep1 cells by 4',6-diamidino-2-phenylinodole (DAPI staining and TUNEL assay, respectively. Consistently, BK10007S increased sub G1 population in HepG2 and SK-Hep1 cells by cell cycle analysis. Furthermore, Western blotting revealed that BK10007S activated the caspase cascades (caspase 8, 9 and 3, cleaved poly (ADP-ribose polymerase (PARP, and downregulated the expression of cyclin D1, survivin and for CUG-binding protein 1 (CUGBP1 or CELF1 in HepG2 and SK-Hep1 cells. Conversely, overexpression of CUGBP1 reduced cleavages of PARP and caspase 3, cytotoxicity and subG1 population in BK10007S treated HepG2 cells. Overall, these findings provide scientific evidences that BK10007S induces apoptosis via inhibition of CUGBP1 and activation of caspases in hepatocellular carcinomas as a potent anticancer candidate.

  14. Chondroitin Sulfate Inhibits Monocyte Chemoattractant Protein-1 Release From 3T3-L1 Adipocytes: A New Treatment Opportunity for Obesity-Related Inflammation?

    Directory of Open Access Journals (Sweden)

    Thomas V Stabler

    2017-08-01

    Full Text Available Monocyte chemoattractant protein-1 (MCP-1 overproduction from inflamed adipose tissue is a major contributor to obesity-related metabolic syndromes. 3T3-L1 embryonic fibroblasts were cultured and differentiated into adipocytes using an established protocol. Adipocytes were treated with lipopolysaccharide (LPS to induce inflammation and thus MCP-1 release. At the same time, varying concentrations of chondroitin sulfate (CS were added in a physiologically relevant range (10-200 µg/mL to determine its impact on MCP-1 release. Chondroitin sulfate, a natural glycosaminoglycan of connective tissue including the cartilage extracellular matrix, was chosen on the basis of our previous studies demonstrating its anti-inflammatory effect on macrophages. Because the main action of MCP-1 is to induce monocyte migration, cultured THP-1 monocytes were used to test whether CS at the highest physiologically relevant concentration could inhibit cell migration induced by human recombinant MCP-1. Chondroitin sulfate (100-200 µg/mL inhibited MCP-1 release from inflamed adipocytes in a dose-dependent manner ( P  < .01, 95% confidence interval [CI]: −5.89 to −3.858 at 100 µg/mL and P  < .001, 95% CI: −6.028 to −3.996 at 200 µg/mL but had no effect on MCP-1–driven chemotaxis of THP-1 monocytes. In summary, CS could be expected to reduce macrophage infiltration into adipose tissue by reduction in adipocyte expression and release of MCP-1 and as such might reduce adipose tissue inflammation in response to pro-inflammatory stimuli such as LPS, now increasingly recognized to be relevant in vivo.

  15. Chemotactic waves of bacteria at the mesoscale

    OpenAIRE

    Calvez, Vincent

    2016-01-01

    The existence of travelling waves for a model of concentration waves of bacteria is investigated. The model consists in a kinetic equation for the biased motion of cells following a run-and-tumble process, coupled with two reaction-diffusion equations for the chemical signals. Strong mathematical difficulties arise in comparison with the diffusive regime which was studied in a previous work. The cornerstone of the proof consists in establishing monotonicity properties of the spatial density o...

  16. Preclinical evaluation of the efficacy, pharmacokinetics and immunogenicity of JS-001, a programmed cell death protein-1 (PD-1) monoclonal antibody.

    Science.gov (United States)

    Fu, Jie; Wang, Fang; Dong, Li-Hou; Zhang, Jing; Deng, Cheng-Lian; Wang, Xue-Li; Xie, Xin-Yao; Zhang, Jing; Deng, Ruo-Xian; Zhang, Li-Bo; Wu, Hai; Feng, Hui; Chen, Bo; Song, Hai-Feng

    2017-05-01

    JS-001 is the first monoclonal antibody (mAb) against programmed cell death protein-1 (PD-1) approved by the China Food and Drug Administration (CFDA) into the clinical trails. To date, however, no pre-clinical pharmacological and pharmacokinetic (PK) data are available. In this study, we investigated the efficacy of JS-001 and conducted a preclinical PK study, including the monitoring of anti-drug antibodies (ADAs). We found that JS-001 specifically bound to PD-1 antigen with an EC 50 of 21 nmol/L, and competently blocked the binding of PD-1 antigen to PD-L1 and PD-L2 with IC 50 of 3.0 and 3.1 nmol/L, respectively. Furthermore, JS-001 displayed distinct species cross-reactivity: it could bind to the PD-1 antigen on the peripheral blood mononuclear cells (PBMCs) of humans and cynomolgus monkeys, but not to those of mice and woodchucks; the K d values for the interaction between JS-001 and PD-1 antigens on CD8 + T cells of human and cynomolgus monkey were 2.1 nmol/L and 1.2 nmol/L, respectively. In vitro, treatment with JS-001 (0.01-10 μg/mL) dose-dependently stimulated human T cell proliferation, as well as IFN-γ and TNF-α secretion. In HBsAg-vaccinated cynomolgus monkeys, the expression of PD-1 + /CD4 + and PD-1 + /CD8 + was significantly elevated, intramuscular injection of JS-001 (1 and 10 mg/kg) resulted in dramatic decreases in PD-1 + /CD4 + and PD-1 + /CD8 + expression in a dose-dependent manner, which was supported by PD-1 receptor occupancy (RO) results. In the PK study, 18 cynomolgus monkeys treated with single, ascending doses of 1, 10, and 75 mg/kg, and another 6 cynomolgus monkeys received 10 mg/kg successive administration. The plasma clearance of JS-001 followed a linear PK profile with single administration in the 1 and 10 mg/kg groups and a non-linear PK profile in the 75 mg/kg group. In the successive 10 mg/kg administration group, no drug accumulation was observed. But the AUC from the last exposure was lower than that of the first

  17. Regulation of YKL-40 expression during genotoxic or microenvironmental stress in human glioblastoma cells

    DEFF Research Database (Denmark)

    Junker, Nanna; Johansen, Julia S; Hansen, Lasse T

    2005-01-01

    YKL-40 is a 40 kDa secreted glycoprotein belonging to the family of 'mammalian chitinase-like proteins', but without chitinase activity. YKL-40 has a proliferative effect on fibroblasts, chondrocytes and synoviocytes, and chemotactic effect on endothelium and vascular smooth muscle cells. Elevated...... material from glioblastomas patients. We investigated the expression of YKL-40 in three human malignant glioma cell lines exposed to different types of stress. Whereas a polymerase chain reaction transcript was detectable in all three cell lines, only U87 produced measurable amounts of YKL-40 protein. In U...... is attenuated by p53. In contrast, both basic fibroblast growth factor and tumor necrosing factor-alpha repressed YKL-40. These are the first data on regulation of YKL-40 in cancer cells. Diverse types of stress resulted in YKL-40 elevation, which strongly supports an involvement of YKL-40 in the malignant...

  18. Genetic diversity in the block 2 region of the merozoite surface protein-1 of Plasmodium falciparum in central India

    Directory of Open Access Journals (Sweden)

    Bharti Praveen K

    2012-03-01

    Full Text Available Abstract Background Malaria continues to be a significant health problem in India. Several of the intended Plasmodium falciparum vaccine candidate antigens are highly polymorphic. The genetic diversity of P. falciparum merozoite surface protein-1 (MSP-1 has been extensively studied from various parts of the world. However, limited data are available from India. The aim of the present study was a molecular characterization of block 2 region of MSP-1 gene from the tribal-dominated, forested region of Madhya Pradesh. Methods DNA sequencing analysis was carried out in 71 field isolates collected between July 2005 to November 2005 and in 98 field isolates collected from July 2009 to December 2009. Alleles identified by DNA sequencing were aligned with the strain 3D7 and polymorphism analysis was done by using Edit Sequence tool (DNASTAR. Results The malaria positivity was 26% in 2005, which rose to 29% in 2009 and P. falciparum prevalence was also increased from 72% in 2005 to 81% in 2009. The overall allelic prevalence was higher in K1 (51% followed by MAD20 (28% and RO33 (21% in 2005 while in 2009, RO33 was highest (40% followed by K1 (36% and MAD20 (24%. Conclusions The present study reports extensive genetic variations and dynamic evolution of block 2 region of MSP-1 in central India. Characterization of antigenic diversity in vaccine candidate antigens are valuable for future vaccine trials as well as understanding the population dynamics of P. falciparum parasites in this area.

  19. Syntaxin binding protein 1 is not required for allergic inflammation via IgE-mediated mast cell activation.

    Directory of Open Access Journals (Sweden)

    Zhengli Wu

    Full Text Available Mast cells play a central role in both innate and acquired immunity. When activated by IgE-dependent FcεRI cross-linking, mast cells rapidly initiate a signaling cascade and undergo an extensive release of their granule contents, including inflammatory mediators. Some SNARE (soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptor proteins and SM (Sec1/Munc18 family proteins are involved in mast cell degranulation. However, the function of syntaxin binding protein 1 (STXBP1, a member of SM family, in mast cell degranulation is currently unknown. In this study, we examined the role of STXBP1 in IgE-dependent mast cell activation. Liver-derived mast cells (LMCs from wild-type and STXBP1-deficient mice were cultured in vitro for the study of mast cell maturation, degranulation, cytokine and chemokine production, as well as MAPK, IκB-NFκB, and NFAT signaling pathways. In addition, in vivo models of passive cutaneous anaphylaxis and late-phase IgE-dependent inflammation were conducted in mast cell deficient W(sh mice that had been reconstituted with wild-type or STXBP1-deficient mast cells. Our findings indicate that STXBP1 is not required for any of these important functional mechanisms in mast cells both in vitro and in vivo. Our results demonstrate that STXBP1 is dispensable during IgE-mediated mast cell activation and in IgE-dependent allergic inflammatory reactions.

  20. Roles of dynamin-related protein 1 in the regulation of mitochondrial fission and apoptosis in response to UV stimuli

    Science.gov (United States)

    Zhang, Zhenzhen; Feng, Jie; Wu, Shengnan

    2011-03-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, it remains unclear whether this event has a significant impact on the rate of cell death or only accompanies apoptosis as an epiphenomenon. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial morphology and apoptosis in response to UV irradiation in human lung adenocarcinoma cells (ASTC-a-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Down-regulation of Drp1 by shRNA inhibits UV-induced apoptosis. Our results suggest that Drp1 is involved in the regulation of transition from a reticulo-tubular to a punctiform mitochondrial phenotype and mitochondrial fission plays an important role in UV-induced apoptosis.

  1. Multidrug resistance-associated protein-1 (MRP1 genetic variants, MRP1 protein levels and severity of COPD

    Directory of Open Access Journals (Sweden)

    Rutgers Bea

    2010-05-01

    Full Text Available Abstract Background Multidrug resistance-associated protein-1 (MRP1 protects against oxidative stress and toxic compounds generated by cigarette smoking, which is the main risk factor for chronic obstructive pulmonary disease (COPD. We have previously shown that single nucleotide polymorphisms (SNPs in MRP1 significantly associate with level of FEV1 in two independent population based cohorts. The aim of our study was to assess the associations of MRP1 SNPs with FEV1 level, MRP1 protein levels and inflammatory markers in bronchial biopsies and sputum of COPD patients. Methods Five SNPs (rs212093, rs4148382, rs504348, rs4781699, rs35621 in MRP1 were genotyped in 110 COPD patients. The effects of MRP1 SNPs were analyzed using linear regression models. Results One SNP, rs212093 was significantly associated with a higher FEV1 level and less airway wall inflammation. Another SNP, rs4148382 was significantly associated with a lower FEV1 level, higher number of inflammatory cells in induced sputum and with a higher MRP1 protein level in bronchial biopsies. Conclusions This is the first study linking MRP1 SNPs with lung function and inflammatory markers in COPD patients, suggesting a role of MRP1 SNPs in the severity of COPD in addition to their association with MRP1 protein level in bronchial biopsies.

  2. Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice.

    Directory of Open Access Journals (Sweden)

    Joshua E Basford

    Full Text Available Valvular disease is common in patients with Marfan syndrome and can lead to cardiomyopathy. However, some patients develop cardiomyopathy in the absence of hemodynamically significant valve dysfunction, suggesting alternative mechanisms of disease progression. Disruption of LDL receptor-related protein-1 (Lrp1 in smooth muscle cells has been shown to cause vascular pathologies similar to Marfan syndrome, with activation of smooth muscle cells, vascular dysfunction and aortic aneurysms. This study used echocardiography and blood pressure monitoring in mouse models to determine whether inactivation of Lrp1 in vascular smooth muscle leads to cardiomyopathy, and if so, whether the mechanism is a consequence of valvular disease. Hemodynamic changes during treatment with captopril were also assessed. Dilation of aortic roots was observed in young Lrp1-knockout mice and progressed as they aged, whereas no significant aortic dilation was detected in wild type littermates. Diastolic blood pressure was lower and pulse pressure higher in Lrp1-knockout mice, which was normalized by treatment with captopril. Aortic dilation was followed by development of aortic insufficiency and subsequent dilated cardiomyopathy due to valvular disease. Thus, smooth muscle cell Lrp1 deficiency results in aortic dilation and insufficiency that causes secondary cardiomyopathy that can be improved by captopril. These findings provide novel insights into mechanisms of cardiomyopathy associated with vascular activation and offer a new model of valvular cardiomyopathy.

  3. Identification of c.483C>T polymorphism in the caprine tyrosinase-related protein 1 (TYRP1 gene

    Directory of Open Access Journals (Sweden)

    Bouabid Badaoui

    2012-03-01

    Full Text Available Tyrosinase-related protein 1 (TYRP1 has been shown to play a fundamental role in pigmentation both in human and mouse. In this work, we aimed to characterize the variability of the caprine TYRP1 gene and investigate its segregation in a wide array of goat breeds. By partially sequencing the coding region of the TYRP1 gene in 18 individuals from eight different breeds, we were able to identify a synonymous nucleotide substitution at exon 3 (c.483C>T. An extensive survey of Iberian and Balearic (N=175, Italian (N=99, Swiss (N=54, Asian (N=14, Canarian (N=92 and North African (N=117 goats with different coat colours was carried out. We found that the C-allele has a different distribution in European vs African breeds, being almost fixed in the latter. Moreover, the C-allele showed an increased frequency in white coated breeds (Girgentana, Grigia Molisana, Blanca de Rasquera and Saanen when compared with those displaying a dark pigmentation (Cilentana Nera, Azpi Gorri and Murciano- Granadina. This could be due to genetic drift, migration and other factors associated with the demographic history of breeds under analysis or to a genetic hitchhiking event (c.483C>T frequencies would be shaped by a neighbouring causal mutation differentially selected in white and black goats. More refined studies will be needed to distinguish between these two alternative explanations.

  4. p53 binding protein 1 foci as a biomarker of DNA double strand breaks induced by ionizing radiation

    International Nuclear Information System (INIS)

    Ng, C.K.M.; Wong, M.Y.P.; Lam, R.K.K.; Ho, J.P.Y.; Chiu, S.K.; Yu, K.N.

    2011-01-01

    Foci of p53 binding protein 1 (53 BP1) have been used as a biomarker of DNA double-strand breaks (DSBs) in cells induced by ionizing radiations. 53 BP1 was shown to relocalize into foci shortly after irradiation, with the number of foci closely paralleling the number of DNA DSBs. However, consensus on criteria in terms of the numbers of 53 BP1 foci to define cells damaged by direct irradiation or by bystander signals has not been reached, which is partly due to the presence of 53 BP1 also in normal cells. The objective of the present work was to study the changes in the distribution of cells with different numbers of 53 BP1 foci in a cell population after low-dose ionizing irradiation (<0.1 Gy) provided by alpha particles, with a view to propose feasible criteria for defining cells damaged by direct irradiation or by bystander signals. It was proposed that the change in the percentage of cells with 1-3 foci should be used for such purposes. The underlying reasons were discussed.

  5. A stable aspirin-triggered lipoxin A4 analog blocks phosphorylation of leukocyte-specific protein 1 in human neutrophils.

    Science.gov (United States)

    Ohira, Taisuke; Bannenberg, Gerard; Arita, Makoto; Takahashi, Minoru; Ge, Qingyuan; Van Dyke, Thomas E; Stahl, Gregory L; Serhan, Charles N; Badwey, John A

    2004-08-01

    Lipoxins and their aspirin-triggered 15-epimers are endogenous anti-inflammatory agents that block neutrophil chemotaxis in vitro and inhibit neutrophil influx in several models of acute inflammation. In this study, we examined the effects of 15-epi-16-(p-fluoro)-phenoxy-lipoxin A(4) methyl ester, an aspirin-triggered lipoxin A(4)-stable analog (ATLa), on the protein phosphorylation pattern of human neutrophils. Neutrophils stimulated with the chemoattractant fMLP were found to exhibit intense phosphorylation of a 55-kDa protein that was blocked by ATLa (10-50 nM). This 55-kDa protein was identified as leukocyte-specific protein 1, a downstream component of the p38-MAPK cascade in neutrophils, by mass spectrometry, Western blotting, and immunoprecipitation experiments. ATLa (50 nM) also reduced phosphorylation/activation of several components of the p38-MAPK pathway in these cells (MAPK kinase 3/MAPK kinase 6, p38-MAPK, MAPK-activated protein kinase-2). These results indicate that ATLa exerts its anti-inflammatory effects, at least in part, by blocking activation of the p38-MAPK cascade in neutrophils, which is known to promote chemotaxis and other proinflammatory responses by these cells.

  6. Sequence diversity of the C-terminal region of Plasmodium falciparum merozoite surface protein 1 in southern Iran.

    Science.gov (United States)

    Zamani, Zahra; Razavi, Mohammad Reza; Sadeghi, Sedigheh; Naddaf, Saeed; Pourfallah, Fatemeh; Mirkhani, Fatemeh; Arjmand, Mohammad; Feizhaddad, Hossein; Rad, Mina Ebrahimi; Ebrahimi Rad, Mina; Tameemi, Marzieh; Assmar, Mehdi

    2009-01-01

    The C-terminal region of the merozoite surface protein 1 (MSP-1) of Plasmodium falciparum is a strong vaccine candidate as it is associated with immunity to the parasite. This corresponds approximately to the conserved 17th block of the gene and is composed of two EGF- like domains. These domains exhibit only four single amino acid substitutions which show several potential variants in this region of the gene. As the variations might be important for a regional vaccine design, a study was carried out to determine the variation