WorldWideScience

Sample records for chemolithoautotroph sulfurimonas denitrificans

  1. The Genome of the Epsilonproteobacterial Chemolithoautotroph Sulfurimonas dentrificans

    Energy Technology Data Exchange (ETDEWEB)

    USF Genomics Class; Sievert, Stefan M.; Scott, Kathleen M.; Klotz, Martin G.; Chain, Patrick S.G.; Hauser, Loren J.; Hemp, James; Hugler, Michael; Land, Miriam; Lapidus, Alla; Larimer, Frank W.; Lucas, Susan; Malfatti, Stephanie A.; Meyer, Folker; Paulsen, Ian T.; Ren, Qinghu; Simon, Jorg

    2007-08-08

    Sulfur-oxidizing epsilonproteobacteria are common in a variety of sulfidogenic environments. These autotrophic and mixotrophic sulfur-oxidizing bacteria are believed to contribute substantially to the oxidative portion of the global sulfur cycle. In order to better understand the ecology and roles of sulfur-oxidizing epsilonproteobacteria, in particular those of the widespread genus Sulfurimonas, in biogeochemical cycles, the genome of Sulfurimonas denitrificans DSM1251 was sequenced. This genome has many features, including a larger size (2.2 Mbp), that suggest a greater degree of metabolic versatility or responsiveness to the environment than seen for most of the other sequenced epsilonproteobacteria. A branched electron transport chain is apparent, with genes encoding complexes for the oxidation of hydrogen, reduced sulfur compounds, and formate and the reduction of nitrate and oxygen. Genes are present for a complete, autotrophic reductive citric acid cycle. Many genes are present that could facilitate growth in the spatially and temporally heterogeneous sediment habitat from where Sulfurimonas denitrificans was originally isolated. Many resistance-nodulation-development family transporter genes (10 total) are present; of these, several are predicted to encode heavy metal efflux transporters. An elaborate arsenal of sensory and regulatory protein-encoding genes is in place, as are genes necessary to prevent and respond to oxidative stress.

  2. Genetic manipulation of the obligate chemolithoautotrophic bacterium Thiobacillus denitrificans

    Energy Technology Data Exchange (ETDEWEB)

    Beller, H.R.; Legler, T.C.; Kane, S.R.

    2011-07-15

    Chemolithoautotrophic bacteria can be of industrial and environmental importance, but they present a challenge for systems biology studies, as their central metabolism deviates from that of model organisms and there is a much less extensive experimental basis for their gene annotation than for typical organoheterotrophs. For microbes with sequenced genomes but unconventional metabolism, the ability to create knockout mutations can be a powerful tool for functional genomics and thereby render an organism more amenable to systems biology approaches. In this chapter, we describe a genetic system for Thiobacillus denitrificans, with which insertion mutations can be introduced by homologous recombination and complemented in trans. Insertion mutations are generated by in vitro transposition, the mutated genes are amplified by the PCR, and the amplicons are introduced into T. denitrificans by electroporation. Use of a complementation vector, pTL2, based on the IncP plasmid pRR10 is also addressed.

  3. The Genome Sequence of the Obligately Chemolithoautotrophic, Facultatively Anaerobic Bacterium Thiobacillus denitrificans

    OpenAIRE

    Beller, Harry R.; Chain, Patrick S. G.; Letain, Tracy E.; Chakicherla, Anu; Larimer, Frank W.; Richardson, Paul M.; Coleman, Matthew A.; Wood, Ann P.; Kelly, Donovan P.

    2006-01-01

    The complete genome sequence of Thiobacillus denitrificans ATCC 25259 is the first to become available for an obligately chemolithoautotrophic, sulfur-compound-oxidizing, β-proteobacterium. Analysis of the 2,909,809-bp genome will facilitate our molecular and biochemical understanding of the unusual metabolic repertoire of this bacterium, including its ability to couple denitrification to sulfur-compound oxidation, to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV), and to...

  4. Anaerobic, Nitrate-Dependent Oxidation of U(IV) Oxide Minerals by the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    Energy Technology Data Exchange (ETDEWEB)

    Beller, H R

    2004-06-25

    Under anaerobic conditions and at circumneutral pH, cells of the widely-distributed, obligate chemolithoautotrophic bacterium Thiobacillus denitrificans oxidatively dissolved synthetic and biogenic U(IV) oxides (uraninite) in nitrate-dependent fashion: U(IV) oxidation required the presence of nitrate and was strongly correlated to nitrate consumption. This is the first report of anaerobic U(IV) oxidation by an autotrophic bacterium.

  5. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    Directory of Open Access Journals (Sweden)

    Harry R Beller

    2013-08-01

    Full Text Available Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV and Fe(II oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II oxidation, namely (a whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV oxides as electron donors under denitrifying conditions], (b Fe(II oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c random transposon-mutagenesis studies with screening for Fe(II oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III, which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV oxidation, nor have other c-type cytochromes yet been implicated in the process.

  6. Whole-Genome Transcriptional Analysis of Chemolithoautotrophic Thiosulfate Oxidation by Thiobacillus denitrificans Under Aerobic vs. Denitrifying Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Beller, H R; Letain, T E; Chakicherla, A; Kane, S R; Legler, T C; Coleman, M A

    2006-04-22

    Thiobacillus denitrificans is one of the few known obligate chemolithoautotrophic bacteria capable of energetically coupling thiosulfate oxidation to denitrification as well as aerobic respiration. As very little is known about the differential expression of genes associated with ke chemolithoautotrophic functions (such as sulfur-compound oxidation and CO2 fixation) under aerobic versus denitrifying conditions, we conducted whole-genome, cDNA microarray studies to explore this topic systematically. The microarrays identified 277 genes (approximately ten percent of the genome) as differentially expressed using Robust Multi-array Average statistical analysis and a 2-fold cutoff. Genes upregulated (ca. 6- to 150-fold) under aerobic conditions included a cluster of genes associated with iron acquisition (e.g., siderophore-related genes), a cluster of cytochrome cbb3 oxidase genes, cbbL and cbbS (encoding the large and small subunits of form I ribulose 1,5-bisphosphate carboxylase/oxygenase, or RubisCO), and multiple molecular chaperone genes. Genes upregulated (ca. 4- to 95-fold) under denitrifying conditions included nar, nir, and nor genes (associated respectively with nitrate reductase, nitrite reductase, and nitric oxide reductase, which catalyze successive steps of denitrification), cbbM (encoding form II RubisCO), and genes involved with sulfur-compound oxidation (including two physically separated but highly similar copies of sulfide:quinone oxidoreductase and of dsrC, associated with dissimilatory sulfite reductase). Among genes associated with denitrification, relative expression levels (i.e., degree of upregulation with nitrate) tended to decrease in the order nar > nir > nor > nos. Reverse transcription, quantitative PCR analysis was used to validate these trends.

  7. Genome-Enabled Studies of Anaerobic, Nitrate-Dependent Iron Oxidation in the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    Science.gov (United States)

    Beller, H. R.; Zhou, P.; Legler, T. C.; Chakicherla, A.; O'Day, P. A.

    2013-12-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. Of the transposon mutants defective in Fe(II) oxidation, one mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process.

  8. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitfificans.

    Energy Technology Data Exchange (ETDEWEB)

    Beller, H R [Lawrence Livermore National Laboratory (LLNL); Larimer, Frank W [ORNL

    2006-02-01

    The complete genome sequence of Thiobacillus denitrificans ATCC 25259 is the first to become available for an obligately chemolithoautotrophic, sulfur-compound-oxidizing, {beta}-proteobacterium. Analysis of the 2,909,809-bp genome will facilitate our molecular and biochemical understanding of the unusual metabolic repertoire of this bacterium, including its ability to couple denitrification to sulfur-compound oxidation, to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV), and to oxidize mineral electron donors. Notable genomic features include (i) genes encoding c-type cytochromes totaling 1 to 2 percent of the genome, which is a proportion greater than for almost all bacterial and archaeal species sequenced to date, (ii) genes encoding two [NiFe]hydrogenases, which is particularly significant because no information on hydrogenases has previously been reported for T. denitrificans and hydrogen oxidation appears to be critical for anaerobic U(IV) oxidation by this species, (iii) a diverse complement of more than 50 genes associated with sulfur-compound oxidation (including sox genes, dsr genes, and genes associated with the AMP-dependent oxidation of sulfite to sulfate), some of which occur in multiple (up to eight) copies, (iv) a relatively large number of genes associated with inorganic ion transport and heavy metal resistance, and (v) a paucity of genes encoding organic-compound transporters, commensurate with obligate chemolithoautotrophy. Ultimately, the genome sequence of T. denitrificans will enable elucidation of the mechanisms of aerobic and anaerobic sulfur-compound oxidation by {beta}-proteobacteria and will help reveal the molecular basis of this organism's role in major biogeochemical cycles (i.e., those involving sulfur, nitrogen, and carbon) and groundwater restoration.

  9. Assimilation of ammonia in Paracoccus denitrificans.

    Science.gov (United States)

    Mikes, V; Chválová, H; Mátlová, L

    1991-01-01

    Two pathways serve for assimilation of ammonia in Paracoccus denitrificans. Glutamate dehydrogenase (NADP+) catalyzes the assimilation at a high NH4+ concentration. If nitrate serves as the nitrogen source, glutamate is synthesized by glutamate-ammonia ligase and glutamate synthase (NADPH). At a very low NH4+ concentration, all three enzymes are synthesized simultaneously. No direct relationship exists between glutamate dehydrogenase (NADP+) and glutamate-ammonia ligase in P. denitrificans, while the glutamate synthase (NADPH) activity changes in parallel with that of the latter enzyme. Ammonia does not influence the induction or repression of glutamate dehydrogenase (NADP+). The inner concentration of metabolites indicates a possible repression of glutamate dehydrogenase (NADP+) by the high concentration of glutamine or its metabolic products as in the case when NH4+ is formed by assimilative nitrate reduction. No direct effect of the intermediates of nitrate assimilation on the synthesis of glutamate dehydrogenase (NADP+) was observed. PMID:1688163

  10. Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium

    Science.gov (United States)

    Tomlinson, G. A.; Jahnke, L. L.; Hochstein, L. I.

    1986-01-01

    Halobacterium denitrificans was one of several carbohydrate-utilizing, denitrifying, extremely halophilic bacteria isolated by anaerobic enrichment in the presence of nitrate. Anaerobic growth took place only when nitrate (or nitrite) was present and was accompanied by the production of dinitrogen. In the presence of high concentrations of nitrate (i.e., 0.5 percent), nitrous oxide and nitrite were also detected. When grown aerobically in a mineral-salts medium containing 0.005 percent yeast extract, H. denitrificans utilized a variety of carbohydrates as sources of carbon and energy. In every case, carbohydrate utilization was accompanied by acid production.

  11. Halobacterium denitrificans sp. nov. - An extremely halophilic denitrifying bacterium

    Science.gov (United States)

    Tomlinson, G. A.; Jahnke, L. L.; Hochstein, L. I.

    1986-01-01

    Halobacterium denitrificans was one of several carbohydrate-utilizing, denitrifying, extremely halophilic bacteria isolated by anaerobic enrichment in the presence of nitrate. Anaerobic growth took place only when nitrate (or nitrite) was present and was accompanied by the production of dinitrogen. In the presence of high concentrations of nitrate (i.e., 0.5 percent), nitrous oxide and nitrite were also detected. When grown aerobically in a mineral-salts medium containing 0.005 percent yeast extract, H. denitrificans utilized a variety of carbohydrates as sources of carbon and energy. In every case, carbohydrate utilization was accompanied by acid production.

  12. Oxidation of Molecular Hydrogen by a Chemolithoautotrophic Beggiatoa Strain

    Science.gov (United States)

    2016-01-01

    ABSTRACT A chemolithoautotrophic strain of the family Beggiatoaceae, Beggiatoa sp. strain 35Flor, was found to oxidize molecular hydrogen when grown in a medium with diffusional gradients of oxygen, sulfide, and hydrogen. Microsensor profiles and rate measurements suggested that the strain oxidized hydrogen aerobically when oxygen was available, while hydrogen consumption under anoxic conditions was presumably driven by sulfur respiration. Beggiatoa sp. 35Flor reached significantly higher biomass in hydrogen-supplemented oxygen-sulfide gradient media, but hydrogen did not support growth of the strain in the absence of reduced sulfur compounds. Nevertheless, hydrogen oxidation can provide Beggiatoa sp. 35Flor with energy for maintenance and assimilatory purposes and may support the disposal of internally stored sulfur to prevent physical damage resulting from excessive sulfur accumulation. Our knowledge about the exposure of natural populations of Beggiatoaceae to hydrogen is very limited, but significant amounts of hydrogen could be provided by nitrogen fixation, fermentation, and geochemical processes in several of their typical habitats such as photosynthetic microbial mats and submarine sites of hydrothermal fluid flow. IMPORTANCE Reduced sulfur compounds are certainly the main electron donors for chemolithoautotrophic Beggiatoaceae, but the traditional focus on this topic has left other possible inorganic electron donors largely unexplored. In this paper, we provide evidence that hydrogen oxidation has the potential to strengthen the ecophysiological plasticity of Beggiatoaceae in several ways. Moreover, we show that hydrogen oxidation by members of this family can significantly influence biogeochemical gradients and therefore should be considered in environmental studies. PMID:26896131

  13. Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans.

    OpenAIRE

    Ingvorsen, K.; Højer-Pedersen, B; Godtfredsen, S E

    1991-01-01

    A cyanide-metabolizing bacterium, strain DF3, isolated from soil was identified as Alcaligenes xylosoxidans subsp. denitrificans. Whole cells and cell extracts of strain DF3 catalyzed hydrolysis of cyanide to formate and ammonia (HCN + 2H2O----HCOOH + NH3) without forming formamide as a free intermediate. The cyanide-hydrolyzing activity was inducibly produced in cells during growth in cyanide-containing media. Cyanate (OCN-) and a wide range of aliphatic and aromatic nitriles were not hydrol...

  14. Anaerobic testosterone degradation in Steroidobacter denitrificans - Identification of transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Fahrbach, Michael, E-mail: michael.fahrbach@web.d [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf (Switzerland); Krauss, Martin, E-mail: martin.krauss@eawag.c [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf (Switzerland); Preiss, Alfred, E-mail: alfred.preiss@item.fraunhofer.d [Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, D-30625 Hannover (Germany); Kohler, Hans-Peter E., E-mail: hkohler@eawag.c [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf (Switzerland); Hollender, Juliane, E-mail: juliane.hollender@eawag.c [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf (Switzerland)

    2010-08-15

    The transformation of the androgenic steroid testosterone by gammaproteobacterium Steroidobacter denitrificans was studied under denitrifying conditions. For the first time, growth experiments showed that testosterone was mineralized under consumption of nitrate and concurrent biomass production. Experiments with cell suspensions using [4-{sup 14}C]-testosterone revealed the intermediate production of several transformation products (TPs). Characterisation of ten TPs was carried out by means of HPLC coupled to high resolution mass spectrometry with atmospheric pressure chemical ionization as well as {sup 1}H and {sup 13}C NMR spectroscopy. 3{beta}-hydroxy-5{alpha}-androstan-17-one (trans-androsterone) was formed in the highest amount followed by 5{alpha}-androstan-3,17-dione. The data suggests that several dehydrogenation and hydrogenation processes take place concurrently in ring A and D because no consistent time-resolved pattern of TP peaks was observed and assays using 2 TPs as substrates resulted in essentially the same TPs. The further transformation of testosterone in S. denitrificans seems to be very efficient and fast without formation of detectable intermediates. - Testosterone is completely mineralized by Steroidobacter denitrificans under denitrifying conditions with initial formation of several reduced and oxidized transformation products.

  15. Aerobic and anaerobic growth of Paracoccus denitrificans on methanol.

    Science.gov (United States)

    Bamforth, C W; Quayle, J R

    1978-10-01

    1. The dye-linked methanol dehydrogenase from Paracoccus denitrificans grown aerobically on methanol has been purified and its properties compared with similar enzymes from other bacteria. It was shown to be specific and to have high affinity for primary alcohols and formaldehyde as substrate, ammonia was the best activator and the enzyme could be linked to reduction of phenazine methosulphate. 2. Paracoccus denitrificans could be grown anaerobically on methanol, using nitrate or nitrite as electron acceptor. The methanol dehydrogenase synthesized under these conditions could not be differentiated from the aerobically-synthesized enzyme. 3. Activities of methanol dehydrogenase, formaldehyde dehydrogenase, formate dehydrogenase, nitrate reductase and nitrite reductase were measured under aerobic and anaerobic growth conditions. 4. Difference spectra of reduced and oxidized cytochromes in membrane and supernatant fractions of methanol-grown P. denitrificans were measured. 5. From the results of the spectral and enzymatic analyses it has been suggested that anaerobic growth on methanol/nitrate is made possible by reduction of nitrate to nitrite using electrons derived from the pyridine nucleotide-linked dehydrogenations of formaldehyde and formate, the nitrite so produced then functioning as electron acceptor for methanol dehydrogenase via cytochrome c and nitrite reductase. PMID:718372

  16. Productivity-Diversity Relationships from Chemolithoautotrophically Based Sulfidic Karst Systems

    Directory of Open Access Journals (Sweden)

    Porter Megan L.

    2009-01-01

    Full Text Available Although ecosystems thriving in the absence of photosynthetic processes are no longer considered unique phenomena, we haveyet to understand how these ecosystems are energetically sustained via chemosynthesis. Ecosystem energetics were measuredin microbial mats from active sulfidic caves (Movile Cave, Romania; Frasassi Caves, Italy; Lower Kane Cave, Wyoming, USA; andCesspool Cave, Virginia, USA using radiotracer techniques. We also estimated bacterial diversity using 16S rRNA sequences torelate the productivity measurements to the composition of the microbial communities. All of the microbial communities investigatedwere dominated by chemolithoautotrophic productivity, with the highest rates from Movile Cave at 281 g C/m2/yr. Heterotrophicproductivities were at least one order of magnitude less than autotrophy from all of the caves. We generated 414 new 16S rRNAgene sequences that represented 173 operational taxonomic units (OTUs with 99% sequence similarity. Although 13% of theseOTUs were found in more than one cave, the compositions of each community were significantly different from each other (P≤0.001.Autotrophic productivity was positively correlated with overall species richness and with the number of bacterial OTUs affiliated withthe Epsilonproteobacteria, a group known for sulfur cycling and chemolithoautotrophy. Higher rates of autotrophy were also stronglypositively correlated to available metabolic energy sources, and specifically to dissolved sulfide concentrations. The relationship ofautotrophic productivity and heterotrophic cycling rates to bacterial species richness can significantly impact the diversity of highertrophic levels in chemolithoautotrophically-based cave ecosystems, with the systems possessing the highest productivity supportingabundant and diverse macro-invertebrate communities.

  17. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea.

    Science.gov (United States)

    Papp, Benedek; Török, Tibor; Sándor, Erzsébet; Fekete, Erzsébet; Flipphi, Michel; Karaffa, Levente

    2016-05-01

    Nitrosomonas europaea is a chemolithoautotrophic nitrifier, a gram-negative bacterium that can obtain all energy required for growth from the oxidation of ammonia to nitrite, and this may be beneficial for various biotechnological and environmental applications. However, compared to other bacteria, growth of ammonia oxidizing bacteria is very slow. A prerequisite to produce high cell density N. europaea cultures is to minimize the concentrations of inhibitory metabolic by-products. During growth on ammonia nitrite accumulates, as a consequence, N. europaea cannot grow to high cell concentrations under conventional batch conditions. Here, we show that single-vessel dialysis membrane bioreactors can be used to obtain substantially increased N. europaea biomasses and substantially reduced nitrite levels in media initially containing high amounts of the substrate. Dialysis membrane bioreactor fermentations were run in batch as well as in continuous mode. Growth was monitored with cell concentration determinations, by assessing dry cell mass and by monitoring ammonium consumption as well as nitrite formation. In addition, metabolic activity was probed with in vivo acridine orange staining. Under continuous substrate feed, the maximal cell concentration (2.79 × 10(12)/L) and maximal dry cell mass (0.895 g/L) achieved more than doubled the highest values reported for N. europaea cultivations to date. PMID:26358065

  18. The Impact of Nitrite on Aerobic Growth of Paracoccus denitrificans PD1222

    OpenAIRE

    Hartop, Katherine

    2014-01-01

    The effect of nitrite stress induced in Paracoccus denitrificans PD1222 was examined using additions of sodium nitrite to an aerobic bacterial culture. Nitrite generates a strong stress response in P. denitrificans, causing growth inhibition. This is dependent on both the concentration of nitrite present and the pH. The pH dependent effect of nitrite growth inhibition is likely a result of nitrite and free nitrous acid (FNA; pKa = 3.16) and subsequent reactive nitrogen oxides, ...

  19. Microbiological Denitrification and Denitrifying Activity of Paracoccus Denitrificans

    Institute of Scientific and Technical Information of China (English)

    万曦; 万国江; 等

    2000-01-01

    With rapidly industrial and agricultural development,more and more fertilizers,chemicals and heavy ions will be discharged into lakes and rivers,which would cause lake eutrophication and quality deterioration in drinking water sources.Therefore,denitrification is essential for controlling the amounts of nitrogen,During the transformation process from nitrate to the end products-nitrogen and several intermediated[e.g.nitrite(NO2-),nitrous oxide(N2O) and nitric oxide(NO)]may be accumulated,which have more toxic influences on the environment.in This study,the denitrification effect of Paracoccus Denitrificans was examined on the changes between oxic and anoxic conditions at varying pH.At pH=7.5,denitrification proceeded well after 3 switches from oxic to anoxic conditions and vice versa,Production of N2 was constant and the amounts of NO2-,N2O and NO were extremely low.How ever,at pH=6.8,denitrification activity was inhitied and there large amounts of the intermaediates.The denitrifying bacteria decreased violently in dry weight and were washed out.

  20. Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production.

    Science.gov (United States)

    Kernan, Timothy; Majumdar, Sudipta; Li, Xiaozheng; Guan, Jingyang; West, Alan C; Banta, Scott

    2016-01-01

    There is growing interest in developing non-photosynthetic routes for the conversion of CO2 to fuels and chemicals. One underexplored approach is the transfer of energy to the metabolism of genetically modified chemolithoautotrophic bacteria. Acidithiobacillus ferrooxidans is an obligate chemolithoautotroph that derives its metabolic energy from the oxidation of iron or sulfur at low pH. Two heterologous biosynthetic pathways have been expressed in A. ferrooxidans to produce either isobutyric acid or heptadecane from CO2 and the oxidation of Fe(2+). A sevenfold improvement in productivity of isobutyric acid was obtained through improved media formulations in batch cultures. Steady-state efficiencies were lower in continuous cultures, likely due to ferric inhibition. If coupled to solar panels, the photon-to-fuel efficiency of this proof-of-principle process approaches estimates for agriculture-derived biofuels. These efforts lay the foundation for the utilization of this organism in the exploitation of electrical energy for biochemical synthesis. PMID:26174759

  1. Kinetics of iron acquisition from ferric siderophores by Paracoccus denitrificans

    International Nuclear Information System (INIS)

    The kinetics of iron accumulation by iron-starved Paracoccus denitrificans during the first 2 min of exposure to 55Fe-labeled ferric siderophore chelates is described. Iron is acquired from the ferric chelate of the natural siderophore L-parabactin in a process exhibiting biphastic kinetics by Lineweaver-Burk analysis. The kinetic data for 1 microM less than [Fe L-parabactin] less than 10 microM fit a regression line which suggests a low-affinity system (Km = 3.9 +/- 1.2 microM, Vmax = 494 pg-atoms of 55Fe min-1 mg of protein-1), whereas the data for 0.1 microM less than or equal to [Fe L-parabactin] less than or equal to 1 microM fit another line consistent with a high-affinity system (Km = 0.24 +/- 0.06 microM, Vmax = 108 pg-atoms of 55Fe min-1 mg of protein-1). The Km of the high-affinity uptake is comparable to the binding affinity we had previously reported for the purified ferric L-parabactin receptor protein in the outer membrane. In marked contrast, ferric D-parabactin data fit a single regression line corresponding to a simple Michaelis-Menten process with comparatively low affinity (Km = 3.1 +/- 0.9 microM, Vmax = 125 pg-atoms of 55Fe min-1 mg of protein-1). Other catecholamide siderophores with an intact oxazoline ring derived from L-threonine (L-homoparabactin, L-agrobactin, and L-vibriobactin) also exhibit biphasic kinetics with a high-affinity component similar to ferric L-parabactin. Circular dichroism confirmed that these ferric chelates, like ferric L-parabactin, exist as the lambda enantiomers

  2. NCBI nr-aa BLAST: CBRC-MDOM-06-0011 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MDOM-06-0011 ref|YP_393083.1| putative integral membrane protein [Sulfurimonas... denitrificans DSM 1251] gb|ABB43848.1| putative integral membrane protein [Sulfurimonas denitrificans DSM 1251] YP_393083.1 0.11 23% ...

  3. NCBI nr-aa BLAST: CBRC-MDOM-07-0060 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MDOM-07-0060 ref|YP_393083.1| putative integral membrane protein [Sulfurimonas... denitrificans DSM 1251] gb|ABB43848.1| putative integral membrane protein [Sulfurimonas denitrificans DSM 1251] YP_393083.1 0.51 26% ...

  4. NCBI nr-aa BLAST: CBRC-MDOM-05-0049 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MDOM-05-0049 ref|YP_393083.1| putative integral membrane protein [Sulfurimonas... denitrificans DSM 1251] gb|ABB43848.1| putative integral membrane protein [Sulfurimonas denitrificans DSM 1251] YP_393083.1 0.47 25% ...

  5. NCBI nr-aa BLAST: CBRC-MDOM-08-0115 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MDOM-08-0115 ref|YP_393083.1| putative integral membrane protein [Sulfurimonas... denitrificans DSM 1251] gb|ABB43848.1| putative integral membrane protein [Sulfurimonas denitrificans DSM 1251] YP_393083.1 0.12 25% ...

  6. NCBI nr-aa BLAST: CBRC-MDOM-02-0387 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MDOM-02-0387 ref|YP_393083.1| putative integral membrane protein [Sulfurimonas... denitrificans DSM 1251] gb|ABB43848.1| putative integral membrane protein [Sulfurimonas denitrificans DSM 1251] YP_393083.1 0.033 24% ...

  7. Effect of electromagnetic fields on the denitrification activity of Paracoccus denitrificans

    Czech Academy of Sciences Publication Activity Database

    Fojt, Lukáš; Strašák, Luděk; Vetterl, Vladimír

    2007-01-01

    Roč. 70, č. 1 (2007), s. 91-95. ISSN 1567-5394 R&D Projects: GA AV ČR(CZ) IBS5004107 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : low-frequency electromagnetic field * denitrification * Paracoccus denitrificans Subject RIV: BO - Biophysics Impact factor: 2.992, year: 2007

  8. Effect of electromagnetic fields on the denitrification activity of Paracoccus denitrificans

    Czech Academy of Sciences Publication Activity Database

    Fojt, Lukáš; Strašák, Luděk; Vetterl, Vladimír

    Coimbra, 2005, s. 149-149. [Joint Meeting Bioelectrochemistry - 2005. Coimbra (PT), 19.06.2005-24.06.2005] R&D Projects: GA AV ČR(CZ) IBS5004107; GA MŠk(CZ) ME 685 Institutional research plan: CEZ:AV0Z50040507 Keywords : magnetic field * P. denitrificans * denitrification Subject RIV: BO - Biophysics

  9. Regulation of oxidative phosphorylation: the flexible respiratory network of Paracoccus denitrificans.

    Science.gov (United States)

    Van Spanning, R J; de Boer, A P; Reijnders, W N; De Gier, J W; Delorme, C O; Stouthamer, A H; Westerhoff, H V; Harms, N; van der Oost, J

    1995-10-01

    Paracoccus denitrificans is a facultative anaerobic bacterium that has the capacity to adjust its metabolic infrastructure, quantitatively and/or qualitatively, to the prevailing growth condition. In this bacterium the relative activity of distinct catabolic pathways is subject to a hierarchical control. In the presence of oxygen the aerobic respiration, the most efficient way of electron transfer-linked phosphorylation, has priority. At high oxygen tensions P. denitrificans synthesizes an oxidase with a relatively low affinity for oxygen, whereas under oxygen limitation a high-affinity oxidase appears specifically induced. During anaerobiosis, the pathways with lower free energy-transducing efficiency are induced. In the presence of nitrate, the expression of a number of dehydrogenases ensures the continuation of oxidative phosphorylation via denitrification. After identification of the structural components that are involved in both the aerobic and the anaerobic respiratory networks of P. denitrificans, the intriguing next challenge is to get insight in its regulation. Two transcription regulators have recently been demonstrated to be involved in the expression of a number of aerobic and/or anaerobic respiratory complexes in P. denitrificans. Understanding of the regulation machinery is beginning to emerge and promises much excitement in discovery. PMID:8718455

  10. Colonization of an acid resistant Kingella denitrificans in the stomach may contribute to gastric dysbiosis by Helicobacter pylori.

    Science.gov (United States)

    Okamoto, Takeshi; Hayashi, Yasuhiro; Mizuno, Hidekazu; Yanai, Hideo; Nishikawa, Jun; Nakazawa, Teruko; Iizasa, Hisashi; Jinushi, Masahisa; Sakaida, Isao; Yoshiyama, Hironori

    2014-03-01

    In the stomach of a gastric ulcer patient who had been administered an anti-acid, a gram-negative and urease-negative bacillus similar in size to Helicobacter pylori was infected together with H. pylori. According to biochemical test and 16S rRNA gene analysis, the urease-negative bacterium was identified as Kingella denitrificans, a human nasopharyngeal commensal. In contrast to the standard strain of K. denitrificans, the isolate showed catalase activity, did not produce acid from glucose, and exhibited acid tolerance. Acid tolerance of H. pylori was increased by cocultivation with the K. denitrificans isolate, but not with other isolates of K. denitrificans. Disruption of physiological and immunological niche by dysbiotic colonization of bacterium may provide pathological attributes to human stomach. Collectively, a careful administration of anti-acids to the elderly, especially those with atrophic gastritis, is necessary to avoid repression of the gastric barrier to bacteria. PMID:24462438

  11. Importance of Chemolithoautotrophic Production to Mobile Benthic Predators in the Gulf of Mexico

    Science.gov (United States)

    Morgan, E.; Macavoy, S.; Carney, R.

    2005-05-01

    The continental slope of the Gulf of Mexico is characterized by substantial hydrocarbon seepage which provides reduced energy sources, both CH4 and H2S, for chemolithoautotrophs existing as endosymbionts within mussels and tubeworms found in dense colonies that provide habitat for an array of endemic and colonial fauna. The extent of trophic export of chemosynthetic biomass to the seep communities and the surrounding benthic communities in the Gulf, however, remains an open question. To elucidate the nutritional associations between seep residents and the surrounding benthos the carbon, nitrogen and sulfur stable isotope values of the hagfish Eptatretus sp., the giant isopod Bathynomus giganteus and the predatory snail Phymorhyncus sp. were interpreted through a three source, dual isotope mixing model. The model was able to assess the contributions of different isotopic signals to a mixture and thus could distinguish between photosynthetic/phytodetritus based sources, methanotrophic sources and thiotrophic sources. Incorporation of chemosynthetic based food sources was minimal on the whole and species specific; however some of the organisms considered in this study did incorporate nutrition from chemolithoautotrophic sources.

  12. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2

    Energy Technology Data Exchange (ETDEWEB)

    Scott, K M; Sievert, S M; Abril, F N; Ball, L A; Barrett, C J; Blake, R A; Boller, A J; Chain, P G; Clark, J A; Davis, C R; Detter, C; Do, K F; Dobrinski, K P; Faza, B I; Fitzpatrick, K A; Freyermuth, S K; Harmer, T L; Hauser, L J; Hugler, M; Kerfeld, C A; Klotz, M G; Kong, W W; Land, M; Lapidus, A; Larimer, F W; Longo, D L; Lucas, S; Malfatti, S A; Massey, S E; Martin, D D; McCuddin, Z; Meyer, F; Moore, J L; Ocampo Jr., L H; Paul, J H; Paulsen, I T; Reep, D K; Ren, Q; Ross, R L; Sato, P Y; Thomas, P; Tinkham, L E; Zerugh, G T

    2007-01-10

    Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 bp), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of CDSs encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. T. crunogena XCL-2 is unusual among obligate sulfur oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. A 38 kb prophage is present, and a high level of prophage induction was observed, which may play a role in keeping competing populations of close relatives in check. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome.

  13. Novel Castellaniella denitrificans SA13P as a Potent Malachite Green Decolorizing Strain

    Directory of Open Access Journals (Sweden)

    Ankita Chawla

    2014-01-01

    Full Text Available Triphenylmethane dyes represent a major group of dyes causing serious environmental hazards. Malachite Green is one of the commonly and extensively used triphenylmethane dyes although it is carcinogenic and mutagenic in nature. Various physicochemical methods have been employed for its elimination but are highly expensive, coupled with the formation of huge amount of sludge. Hence, biological methods being ecofriendly are good alternatives. In the present study, the novel bacterial isolate SA13P was isolated from UASB tank of tannery effluent treatment plant. Phylogenetic characterization of 1470 bp fragment of SA13P has revealed its similarity with Castellaniella denitrificans. This strain has been found to decolorize the dye (malachite green at a concentration of 100 mg L−1 (80.29%. Decolorization was done by living bacterial cells rather than adsorption. Growth conditions have also been optimized for the decolorization. Maximum decolorization was observed at a temperature of 37°C and pH 8.0. Also, it has been found that bacterization of seeds of Vigna radiata with Castellaniella denitrificans SA13P increases germination rate. We have reported for the first time that Castellaniella denitrificans SA13P may be used as a novel strain for dye decolorization (malachite green and biological treatment of tannery effluent.

  14. Population structure of deep-sea chemolithoautotrophs: identification of phenotypic and genotypic correlations

    Science.gov (United States)

    Mino, S.; Nakagawa, S.; Sawabe, T.; Miyazaki, J.; Makita, H.; Nunoura, T.; Yamamoto, M.; Takai, K.

    2012-12-01

    Deep-sea hydrothermal fields are areas on the seafloor of high biological productivity fueled primarily by microbial chemosynthesis. Chemolithoautotrophic Epsilonproteobacteria and Persephonella with an ability to utilize inorganic substrates such as elemental sulfur and hydrogen are important members in wide range of temperature conditions in deep-sea hydrothermal vents. However, little is known about their population genetic structure such as intraspecific genetic diversity, distribution pattern, and phenotypic characteristics. Previously, using genetic approach based on multi-locus sequence analysis (MLSA), we clarified that Epsilonproteobacteria Group A, B, F, and Persephonella populations were geographically separated, and Epsilonproteobacteria appeared to diverge by mutation rather than recombination. Contrary to genetic evidence for allopatric segregation in deep-sea chemoautotrophs, however, phenotypic evidence has never been found. In addition, analyzing such a phenotypic characteristic may lead to a better understanding of the interactions microbes have with their environment. In this study, we present a metabolomic approach based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to reveal phenotypic biogeographical discrimination. We demonstrated the whole-cell MALDI-TOF MS method on Epsilonproteobacteria and Persephonella populations. These chemoautotrophic strains used in this study were isolated from chimney structures, vent fluids, and hydrothermal sediments. These hydrothermal samples were collected from geographically separated hydrothermal areas of the South Mariana Trough, Okinawa Trough and Central Indian Ridge. Based on mass peaks (signal/noise >10) within the m/z range of 2000-14000, phenotypic analysis was carried out by cluster analysis. The result of phenotypic analysis was compared with the genotypic clusters. The whole-cell MALDI-TOF MS revealed that Persephonella population was identified to

  15. Chemolithoautotrophic production mediating the cycling of the greenhouse gases N2O and CH4 in an upwelling ecosystem

    OpenAIRE

    Farías, L.; Fernández, C.; J. Faúndez; M. Cornejo; Alcaman, M. E.

    2009-01-01

    The high availability of electron donors occurring in coastal upwelling ecosystems with marked oxyclines favours chemoautotrophy, in turn leading to high N2O and CH4 cycling associated with aerobic NH4+ (AAO) and CH4 oxidation (AMO). This is the case of the highly productive coastal upwelling area off central Chile (36° S), where we evaluated the importance of total chemolithoautotrophic vs. photoautotrophic production, the specific contributions of AAO and AMO to che...

  16. Identification of periplasmic nitrate reductase Mo(V) EPR signals in intact cells of Paracoccus denitrificans.

    Science.gov (United States)

    Sears, H J; Bennett, B; Spiro, S; Thomson, A J; Richardson, D J

    1995-08-15

    EPR spectroscopy has been successfully used to detect signals due to molybdenum (V) and ferric iron in intact cells of aerobically grown Paracoccus denitrificans. The signals are ascribed to the catalytic molybdenum centre and to the haem iron of the periplasmic nitrate reductase. These signals are absent from a mutant strain deficient in this enzyme. The Mo(V) signal is due to the High-g Split species which has been well characterized in the purified enzyme. This confirms that the High-g Split is the physiologically relevant signal of a number observed in the previous work on the purified enzyme. PMID:7646461

  17. Comparing chemolithoautotrophic subseafloor communities across geochemical gradients using meta-omics and RNA-SIP

    Science.gov (United States)

    Fortunato, C. S.; Huber, J. A.

    2015-12-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. Past studies have shown that the taxonomic structure of subseafloor communities differs based on the geochemical signatures of individual vents. In this study, we expanded beyond phylogeny and used a combination of metagenomic, metatranscriptomic, and RNA-based stable isotope probing (RNA-SIP) analyses to identify the metabolic potential, expression patterns, and the active autotrophic players and genomic pathways present in venting fluids from Axial Seamount, an active submarine volcano off the coast of Oregon, USA. Low-temperature diffuse vent fluids from three hydrothermal vents, Marker 113, Marker 33, and Anemone, were filtered and preserved on the seafloor for metagenome and metatranscriptome analyses. Fluid for RNA-SIP was also collected and incubated shipboard with 13C-labeled sodium bicarbonate at 30ºC, 55ºC, and 80ºC for each vent. Taxonomically, Epsilonproteobacteria comprised a significant proportion of the community at all three vents, but each vent also had distinct groups that were abundant including SUP05 at Anemone and Methanococcus at Marker 113. Functionally, vents shared many metabolic processes including genes for denitrification, sulfur reduction and sulfur, hydrogen, and ammonium oxidation, which were present and expressed in similar abundance across all three vents. One metabolic difference between vents was the presence and expression of genes for methanogenesis, which were highly abundant and expressed at Marker 113, in lower abundance and expression at Marker 33, and not present at Anemone. RNA-SIP analysis is ongoing but initial results from Marker 113 revealed that at mesophilic, thermophilic, or hyperthemophilic temperatures, different genera and autotrophic metabolisms dominated

  18. Cloning, expression and characterization of 3-hydroxyisobutyrate dehydrogenase from Pseudomonas denitrificans ATCC 13867.

    Directory of Open Access Journals (Sweden)

    Shengfang Zhou

    Full Text Available The gene encoding an NAD(+-dependent, 3-hydroxyisobutyrate dehydrogenase (3HIBDH-IV from Pseudomonas denitrificans ATCC 13867 was cloned and expressed in Escherichia coli BL 21 (DE3 and characterized to understand its physiological relevance in the degradation of 3-hydroxypropionic acid (3-HP. The deduced amino acid sequence showed high similarity to other 3-hydroxyisobutyrate dehydrogenase isozymes (3HIBDHs of P. denitrificans ATCC 13867. A comparison of 3HIBDH-IV with its relevant enzymes along with molecular docking studies suggested that Lys171, Asn175 and Gly123 are important for its catalytic function on 3-hydroxyacids. The recombinant 3HIBDH-IV was purified to homogeneity utilizing a Ni-NTA-HP resin column in high yield. 3HIBDH-IV was very specific to (S-3-hydroxyisobutyrate, but also catalyzed the oxidation of 3-HP to malonate semialdehyde. The specific activity and half-saturation constant (K m for 3-HP at 30°C and pH 9.0 were determined to be 17 U/mg protein and 1.0 mM, respectively. Heavy metals, such as Ag(+ and Hg(2+, completely inhibited the 3HIBDH-IV activity, whereas dithiothreitol, 2-mercaptoethanol and ethylenediaminetetraacetic acid increased its activity 1.5-1.8-fold. This paper reports the characteristics of 3HIBDH-IV as well as its probable role in 3-HP degradation.

  19. Two variants of the assembly factor Surf1 target specific terminal oxidases in Paracoccus denitrificans.

    Science.gov (United States)

    Bundschuh, Freya A; Hoffmeier, Klaus; Ludwig, Bernd

    2008-10-01

    Biogenesis of cytochrome c oxidase (COX) relies on a large number of assembly proteins, one of them being Surf1. In humans, the loss of Surf1 function is associated with Leigh syndrome, a fatal neurodegenerative disorder. In the soil bacterium Paracoccus denitrificans, homologous genes specifying Surf1 have been identified and located in two operons of terminal oxidases: surf1q is the last gene of the qox operon (coding for a ba(3)-type ubiquinol oxidase), and surf1c is found at the end of the cta operon (encoding subunits of the aa(3)-type cytochrome c oxidase). We introduced chromosomal single and double deletions for both surf1 genes, leading to significantly reduced oxidase activities in membrane. Our experiments on P. denitrificans surf1 single deletion strains show that both Surf1c and Surf1q are functional and act independently for the aa(3)-type cytochrome c oxidase and the ba(3)-type quinol oxidase, respectively. This is the first direct experimental evidence for the involvement of a Surf1 protein in the assembly of a quinol oxidase. Analyzing the heme content of purified cytochrome c oxidase, we conclude that Surf1, though not indispensable for oxidase assembly, is involved in an early step of cofactor insertion into subunit I. PMID:18582433

  20. Purification, characterization and crystallization of the F-ATPase from Paracoccus denitrificans

    Science.gov (United States)

    Morales-Rios, Edgar; Watt, Ian N.; Zhang, Qifeng; Ding, Shujing; Fearnley, Ian M.; Montgomery, Martin G.; Wakelam, Michael J. O.; Walker, John E.

    2015-01-01

    The structures of F-ATPases have been determined predominantly with mitochondrial enzymes, but hitherto no F-ATPase has been crystallized intact. A high-resolution model of the bovine enzyme built up from separate sub-structures determined by X-ray crystallography contains about 85% of the entire complex, but it lacks a crucial region that provides a transmembrane proton pathway involved in the generation of the rotary mechanism that drives the synthesis of ATP. Here the isolation, characterization and crystallization of an integral F-ATPase complex from the α-proteobacterium Paracoccus denitrificans are described. Unlike many eubacterial F-ATPases, which can both synthesize and hydrolyse ATP, the P. denitrificans enzyme can only carry out the synthetic reaction. The mechanism of inhibition of its ATP hydrolytic activity involves a ζ inhibitor protein, which binds to the catalytic F1-domain of the enzyme. The complex that has been crystallized, and the crystals themselves, contain the nine core proteins of the complete F-ATPase complex plus the ζ inhibitor protein. The formation of crystals depends upon the presence of bound bacterial cardiolipin and phospholipid molecules; when they were removed, the complex failed to crystallize. The experiments open the way to an atomic structure of an F-ATPase complex. PMID:26423580

  1. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions.

    Science.gov (United States)

    Hosono, Takahiro; Alvarez, Kelly; Lin, In-Tian; Shimada, Jun

    2015-12-01

    In batch culture experiments, we examined the isotopic change of nitrogen in nitrate (δ(15)NNO3), carbon in dissolved inorganic carbon (δ(13)CDIC), and sulfur in sulfate (δ(34)SSO4) during heterotrophic and autotrophic denitrification of two bacterial strains (Pseudomonas aureofaciens and Thiobacillus denitrificans). Heterotrophic denitrification (HD) experiments were conducted with trisodium citrate as electron donor, and autotrophic denitrification (AD) experiments were carried out with iron disulfide (FeS2) as electron donor. For heterotrophic denitrification experiments, a complete nitrate reduction was accomplished, however bacterial denitrification with T. denitrificans is a slow process in which, after seventy days nitrate was reduced to 40% of the initial concentration by denitrification. In the HD experiment, systematic change of δ(13)CDIC (from -7.7‰ to -12.2‰) with increase of DIC was observed during denitrification (enrichment factor εN was -4.7‰), suggesting the contribution of C of trisodium citrate (δ(13)C=-12.4‰). No SO4(2-) and δ(34)SSO4 changes were observed. In the AD experiment, clear fractionation of δ(13)CDIC during DIC consumption (εC=-7.8‰) and δ(34)SSO4 during sulfur use of FeS2-S (around 2‰), were confirmed through denitrification (εN=-12.5‰). Different pattern in isotopic change between HD and AD obtained on laboratory-scale are useful to recognize the type of denitrification occurring in the field. PMID:26529303

  2. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions

    Science.gov (United States)

    Hosono, Takahiro; Alvarez, Kelly; Lin, In-Tian; Shimada, Jun

    2015-12-01

    In batch culture experiments, we examined the isotopic change of nitrogen in nitrate (δ15NNO3), carbon in dissolved inorganic carbon (δ13CDIC), and sulfur in sulfate (δ34SSO4) during heterotrophic and autotrophic denitrification of two bacterial strains (Pseudomonas aureofaciens and Thiobacillus denitrificans). Heterotrophic denitrification (HD) experiments were conducted with trisodium citrate as electron donor, and autotrophic denitrification (AD) experiments were carried out with iron disulfide (FeS2) as electron donor. For heterotrophic denitrification experiments, a complete nitrate reduction was accomplished, however bacterial denitrification with T. denitrificans is a slow process in which, after seventy days nitrate was reduced to 40% of the initial concentration by denitrification. In the HD experiment, systematic change of δ13CDIC (from - 7.7‰ to - 12.2‰) with increase of DIC was observed during denitrification (enrichment factor εN was - 4.7‰), suggesting the contribution of C of trisodium citrate (δ13C = - 12.4‰). No SO42 - and δ34SSO4 changes were observed. In the AD experiment, clear fractionation of δ13CDIC during DIC consumption (εC = - 7.8‰) and δ34SSO4 during sulfur use of FeS2-S (around 2‰), were confirmed through denitrification (εN = - 12.5‰). Different pattern in isotopic change between HD and AD obtained on laboratory-scale are useful to recognize the type of denitrification occurring in the field.

  3. Achromobacter denitrificans strain SP1 efficiently remediates di(2-ethylhexyl)phthalate.

    Science.gov (United States)

    Pradeep, S; Josh, M K Sarath; Binod, P; Devi, R Sudha; Balachandran, S; Anderson, Robin C; Benjamin, Sailas

    2015-02-01

    This study describes how Achromobacter denitrificans strain SP1, a novel isolate from heavily plastics-contaminated sewage sludge efficiently consumed the hazardous plasticizer, di(2-ethylhexyl)phthalate (DEHP) as carbon source supplemented in a simple basal salt medium (BSM). Response surface methodology was employed for the statistical optimization of the process parameters such as temperature (32°C), agitation (200 rpm), DEHP concentration (10 mM), time (72 h) and pH (8.0). At these optimized conditions, experimentally observed DEHP degradation was 63%, while the predicted value was 59.2%; and the correlation coefficient between them was 0.998, i.e., highly significant and fit to the predicted model. Employing GC-MS analysis, the degradation pathway was partially deduced with intermediates such as mono(2-ethylhexyl)phthalate and 2-ethyl hexanol. Briefly, this first report describes A. denitrificans strain SP1 as a highly efficient bacterium for completely remediating the hazardous DEHP (10 mM) in 96 h in BSM (50% consumed in 60 h), which offers great potentials for efficiently cleaning the DEHP-contaminated environments such as soil, sediments and water upon its deployment. PMID:25463861

  4. Vliv elektromagnetických polí na denitrifikační aktivitu bakterií Paracoccus denitrificans

    Czech Academy of Sciences Publication Activity Database

    Fojt, Lukáš; Strašák, Luděk; Vetterl, Vladimír

    Valtice, 2005. s. 20. [XXVIII. Dny lékařské biofyziky. 25.05.2005-27.05.2005, Valtice] Institutional research plan: CEZ:AV0Z50040507 Keywords : P. denitrificans * denitrification * LF magnetic field Subject RIV: BO - Biophysics

  5. Associations of Eu(III) with Gram-negative bacteria, Alcaligenes faecalis, Shewanella putrefaciens, and Paracoccus denitrificans

    International Nuclear Information System (INIS)

    We studied the association of Eu(III) with Gram-negative bacteria, Alcaligenes faecalis, Shewanella putrefaciens, and Paracoccus denitrificans by a batch method and time-resolved laser-induced fluorescence spectroscopy (TRLFS). The kinetics study showed that the Eu(III) adsorption on the bacteria rapidly proceeded. The Eu(III) adsorption on A. faecalis and P. denitrificans at pHs 3, 4, and 5, and that on S.putrefaciens at pHs 4 and 5 reached a maximum within 5 minutes after contact. For P. denitrificans, the percent adsorption of Eu(III) decreased after the maximum percent adsorption was attained, which suggests the existence of exudates with an affinity with Eu(III). TRLFS showed that the coordination of Eu(III) on these bacteria is multidentate through an inner-spherical process. The ligand field of Eu(III) on P. denitrificans was as strong as the ones observed for halophilic microorganisms, while that of A. faecalis and S. putrefaciens was the typical one observed for non-halophilic microorganisms. The coordination environment of Eu(III) on the bacteria differed from each other, though they are categorized as Gram-negative bacteria with the similar cell wall components. (author)

  6. Co-Cultures of Pseudomonas aeruginosa and Roseobacter denitrificans Reveal Shifts in Gene Expression Levels Compared to Solo Cultures

    Directory of Open Access Journals (Sweden)

    Crystal A. Conway

    2012-01-01

    Full Text Available Consistent biosynthesis of desired secondary metabolites (SMs from pure microbial cultures is often unreliable. In a proof-of-principle study to induce SM gene expression and production, we describe mixed “co-culturing” conditions and monitoring of messages via quantitative real-time PCR (qPCR. Gene expression of model bacterial strains (Pseudomonas aeruginosa PAO1 and Roseobacter denitrificans Och114 was analyzed in pure solo and mixed cocultures to infer the effects of interspecies interactions on gene expression in vitro, Two P. aeruginosa genes (PhzH coding for portions of the phenazine antibiotic pathway leading to pyocyanin (PCN and the RhdA gene for thiosulfate: cyanide sulfurtransferase (Rhodanese and two R. denitrificans genes (BetaLact for metallo-beta-lactamase and the DMSP gene for dimethylpropiothetin dethiomethylase were assessed for differential expression. Results showed that R. denitrificans DMSP and BetaLact gene expression became elevated in a mixed culture. In contrast, P. aeruginosa co-cultures with R. denitrificans or a third species did not increase target gene expression above control levels. This paper provides insight for better control of target SM gene expression in vitro and bypass complex genetic engineering manipulations.

  7. The Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC19707

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, M G; Arp, D J; Chain, P S; El-Sheikh, A F; Hauser, L J; Hommes, N G; Larimer, F W; Malfatti, S A; Norton, J M; Poret-Peterson, A T; Vergez, L M; Ward, B B

    2006-08-03

    The Gammaproteobacterium, Nitrosococcus oceani (ATCC 19707), is a Gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; 50.4% G+C) and a plasmid (40,420 bp) that contain 3052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. In contrast to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance and the ability to assimilate carbon via gluconeogenesis. One set of genes for type I RuBisCO was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H{sup +}-dependent F{sub 0}F{sub 1}-type, one Na{sup +}-dependent V-type).

  8. Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Larimer, Frank W [ORNL; Arp, D J [Oregon State University; Hickey, W J [University of Wisconsin, Madison

    2006-03-01

    The alphaproteobacterium Nitrobacter winogradskyi (ATCC 25391) is a gram-negative facultative chemolithoautotroph capable of extracting energy from the oxidation of nitrite to nitrate. Sequencing and analysis of its genome revealed a single circular chromosome of 3,402,093 bp encoding 3,143 predicted proteins. There were extensive similarities to genes in two alphaproteobacteria, Bradyrhizobium japonicum USDA110 (1,300 genes) and Rhodopseudomonas palustris CGA009 CG (815 genes). Genes encoding pathways for known modes of chemolithotrophic and chemoorganotrophic growth were identified. Genes encoding multiple enzymes involved in anapleurotic reactions centered on C2 to C4 metabolism, including a glyoxylate bypass, were annotated. The inability of N. winogradskyi to grow on C6 molecules is consistent with the genome sequence, which lacks genes for complete Embden-Meyerhof and Entner-Doudoroff pathways, and active uptake of sugars. Two gene copies of the nitrite oxidoreductase, type I ribulose-1,5-bisphosphate carboxylase/oxygenase, cytochrome c oxidase, and gene homologs encoding an aerobic-type carbon monoxide dehydrogenase were present. Similarity of nitrite oxidoreductases to respiratory nitrate reductases was confirmed. Approximately 10% of the N. winogradskyi genome codes for genes involved in transport and secretion, including the presence of transporters for various organic-nitrogen molecules. The N. winogradskyi genome provides new insight into the phylogenetic identity and physiological capabilities of nitrite-oxidizing bacteria. The genome will serve as a model to study the cellular and molecular processes that control nitrite oxidation and its interaction with other nitrogen-cycling processes.

  9. Chemolithoautotrophic arsenite oxidation by a thermophilic Anoxybacillus flavithermus strain TCC9-4 from a hot spring in Tengchong of Yunnan, China

    OpenAIRE

    Jiang, Dawei; Li, Ping; Jiang, Zhou; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Guo, Qinghai; Wang, Yanxin

    2015-01-01

    A new facultative chemolithoautotrophic arsenite (AsIII)-oxidizing bacterium TCC9-4 was isolated from a hot spring microbial mat in Tengchong of Yunnan, China. This strain could grow with AsIII as an energy source, CO2–HCO3- as a carbon source and oxygen as the electron acceptor in a minimal salts medium. Under chemolithoautotrophic conditions, more than 90% of 100 mg/L AsIII could be oxidized by the strain TCC9-4 in 36 h. Temperature was an important environmental factor that strongly influe...

  10. Expression studies on the ba3 quinol oxidase from Paracoccus denitrificans. A bb3 variant is enzymatically inactive.

    Science.gov (United States)

    Zickermann, I; Tautu, O S; Link, T A; Korn, M; Ludwig, B; Richter, O M

    1997-06-15

    Expression of the quinol oxidase from Paracoccus denitrificans has been examined using a polyclonal antibody directed against subunit II and a promoter probe vector carrying the promoter region of the qox operon. Under aerobic conditions nitrate and nitrite act as specific inducers of the expression. To obtain an enzymatically competent quinol oxidase complex, an intact ctaB gene is required, which constitutes part of the cta operon coding for the aa3 cytochrome c oxidase of P. denitrificans. Deletion of ctaB leads to a change in heme composition of the quinol oxidase with heme b replacing the high-spin heme a of the binuclear center, causing loss of electron transport activity. PMID:9219517

  11. Nitrite and nitrous oxide reductase regulation by nitrogen oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106.

    Science.gov (United States)

    Sabaty, M; Schwintner, C; Cahors, S; Richaud, P; Verméglio, A

    1999-10-01

    We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N(2)O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N(2)O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase. PMID:10498715

  12. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent.

    Science.gov (United States)

    Fortunato, Caroline S; Huber, Julie A

    2016-08-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched (13)C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent. PMID:26872039

  13. Nitrite and Nitrous Oxide Reductase Regulation by Nitrogen Oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106

    OpenAIRE

    Sabaty, Monique; Schwintner, Carole; Cahors, Sandrine; Richaud, Pierre; Verméglio, Andre

    1999-01-01

    We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N2O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored b...

  14. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1.

    Science.gov (United States)

    Kits, K Dimitri; Klotz, Martin G; Stein, Lisa Y

    2015-09-01

    Obligate methanotrophs belonging to the Phyla Proteobacteria and Verrucomicrobia require oxygen for respiration and methane oxidation; nevertheless, aerobic methanotrophs are abundant and active in low oxygen environments. While genomes of some aerobic methanotrophs encode putative nitrogen oxide reductases, it is not understood whether these metabolic modules are used for NOx detoxification, denitrification or other purposes. Here we demonstrate using microsensor measurements that a gammaproteobacterial methanotroph Methylomonas denitrificans sp. nov. strain FJG1(T) couples methane oxidation to nitrate reduction under oxygen limitation, releasing nitrous oxide as a terminal product. Illumina RNA-Seq data revealed differential expression of genes encoding a denitrification pathway previously unknown to methanotrophs as well as the pxmABC operon in M. denitrificans sp. nov. strain FJG1(T) in response to hypoxia. Physiological and transcriptome data indicate that genetic inventory encoding the denitrification pathway is upregulated only upon availability of nitrate under oxygen limitation. In addition, quantitation of ATP levels demonstrates that the denitrification pathway employs inventory such as nitrate reductase NarGH serving M. denitrificans sp. nov. strain FJG1(T) to conserve energy during oxygen limitation. This study unravelled an unexpected metabolic flexibility of aerobic methanotrophs, thereby assigning these bacteria a new role at the metabolic intersection of the carbon and nitrogen cycles. PMID:25580993

  15. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans.

    Science.gov (United States)

    de Boer, A P; van der Oost, J; Reijnders, W N; Westerhoff, H V; Stouthamer, A H; van Spanning, R J

    1996-12-15

    The genes that encode the hc-type nitric-oxide reductase from Paracoccus denitrificans have been identified. They are part of a cluster of six genes (norCBQDEF) and are found near the gene cluster that encodes the cd1-type nitrite reductase, which was identified earlier [de Boer, A. P. N., Reijnders, W. N. M., Kuenen, J. G., Stouthamer, A. H. & van Spanning, R. J. M. (1994) Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans, Antonie Leeu wenhoek 66, 111-127]. norC and norB encode the cytochrome-c-containing subunit II and cytochrome b-containing subunit I of nitric-oxide reductase (NO reductase), respectively. norQ encodes a protein with an ATP-binding motif and has high similarity to NirQ from Pseudomonas stutzeri and Pseudomonas aeruginosa and CbbQ from Pseudomonas hydrogenothermophila. norE encodes a protein with five putative transmembrane alpha-helices and has similarity to CoxIII, the third subunit of the aa3-type cytochrome-c oxidases. norF encodes a small protein with two putative transmembrane alpha-helices. Mutagenesis of norC, norB, norQ and norD resulted in cells unable to grow anaerobically. Nitrite reductase and NO reductase (with succinate or ascorbate as substrates) and nitrous oxide reductase (with succinate as substrate) activities were not detected in these mutant strains. Nitrite extrusion was detected in the medium, indicating that nitrate reductase was active. The norQ and norD mutant strains retained about 16% and 23% of the wild-type level of NorC, respectively. The norE and norF mutant strains had specific growth rates and NorC contents similar to those of the wild-type strain, but had reduced NOR and NIR activities, indicating that their gene products are involved in regulation of enzyme activity. Mutant strains containing the norCBQDEF region on the broad-host-range vector pEG400 were able to grow anaerobically, although at a lower specific growth rate and with lower

  16. Investigating the Proton Donor in the NO Reductase from Paracoccus denitrificans

    Science.gov (United States)

    ter Beek, Josy; Krause, Nils; Ädelroth, Pia

    2016-01-01

    Variant nomenclature: the variants were made in the NorB subunit if not indicated by the superscript c, which are variants in the NorC subunit (e.g. E122A = exchange of Glu-122 in NorB for an Ala, E71cD; exchange of Glu-71 in NorC for an Asp). Bacterial NO reductases (NORs) are integral membrane proteins from the heme-copper oxidase superfamily. Most heme-copper oxidases are proton-pumping enzymes that reduce O2 as the last step in the respiratory chain. With electrons from cytochrome c, NO reductase (cNOR) from Paracoccus (P.) denitrificans reduces NO to N2O via the following reaction: 2NO+2e-+2H+→N2O+H2O. Although this reaction is as exergonic as O2-reduction, cNOR does not contribute to the electrochemical gradient over the membrane. This means that cNOR does not pump protons and that the protons needed for the reaction are taken from the periplasmic side of the membrane (since the electrons are donated from this side). We previously showed that the P. denitrificans cNOR uses a single defined proton pathway with residues Glu-58 and Lys-54 from the NorC subunit at the entrance. Here we further strengthened the evidence in support of this pathway. Our further aim was to define the continuation of the pathway and the immediate proton donor for the active site. To this end, we investigated the region around the calcium-binding site and both propionates of heme b3 by site directed mutagenesis. Changing single amino acids in these areas often had severe effects on cNOR function, with many variants having a perturbed active site, making detailed analysis of proton transfer properties difficult. Our data does however indicate that the calcium ligation sphere and the region around the heme b3 propionates are important for proton transfer and presumably contain the proton donor. The possible evolutionary link between the area for the immediate donor in cNOR and the proton loading site (PLS) for pumped protons in oxygen-reducing heme-copper oxidases is discussed. PMID

  17. Characterization of heme-binding properties of Paracoccus denitrificans Surf1 proteins.

    Science.gov (United States)

    Hannappel, Achim; Bundschuh, Freya A; Ludwig, Bernd

    2011-05-01

    Biogenesis of cytochrome c oxidase (COX) is a highly complex process involving >30 chaperones in eukaryotes; those required for the incorporation of the copper and heme cofactors are also conserved in bacteria. Surf1, associated with heme a insertion and with Leigh syndrome if defective in humans, is present as two homologs in the soil bacterium Paracoccus denitrificans, Surf1c and Surf1q. In an in vitro interaction assay, the heme a transfer from purified heme a synthase, CtaA, to Surf1c was followed, and both Surf proteins were tested for their heme a binding properties. Mutation of four strictly conserved amino acid residues within the transmembrane part of each Surf1 protein confirmed their requirement for heme binding. Interestingly the mutation of a tryptophan residue in transmembrane helix II (W200 in Surf1c and W209 in Surf1q) led to a drastic switch in the heme composition, with Surf1 now being populated mostly by heme o, the intermediate in the heme a biosynthetic pathway. This tryptophan residue discriminates between the two heme moieties, apparently coordinates the formyl group of heme a, and most likely presents the cofactor in a spatial orientation suitable for optimal transfer to its target site within subunit I of cytochrome c oxidase. PMID:21418525

  18. Dynamic characteristics of Paracoccus denitrificans in alternate aerobic-anaerobic continuous cultivations

    Energy Technology Data Exchange (ETDEWEB)

    Waki, T.; Kawato, Y.; Shimatani, Y.; Ichikawa, K.

    1980-06-01

    The alternate aerobic-anaerobic continuous culture system was used to analyze the adaptation phenomena of Paracoccus denitrificans quantitatively, which will be observed in a single sludge nitrification-denitrification system. After the initial rapid reduction of nitrate in the anaerobic period, a rather high rate of nitrate reduction was maintained. The lag of adaptation to each condition was short and this was explained by the presence of large amounts of the cytochromes and enzymes required for both aerobic and nitrate/nitrite respirations. When the alternation cycle of aerobic and anaerobic conditions was short, the nitrate concentration was lower than that in anaerobic continuous cultures at the same dilution rate. The apparent specific rate of nitrate reduction was almost the same as that in anaerobic continuous cultures when the alternation cycle was short. On the other hand, the nitrite accumulated at high concentrations and the apparent specific rate of nitrite reduction was very low. The actual reduction rate of nitrate in the anaerobic periods was found to be unaffected by the length of the aerobic periods, however, the actual reduction rate of nitrite was highly affected by the aerobic periods. By considering the initial rapid reduction of nitrate in the alternate aerobic-anaerobic system, it was suggested that the higher recycling ratio which corresponds to the shorter alternation cycle, was effective in increasing the efficiency of nitrogen removal in the single sludge nitrification-denitrification system.

  19. Paracoccus denitrificans for the effluent recycling during continuous denitrification of liquid food.

    Science.gov (United States)

    Tippkötter, Nils; Roikaew, Wipa; Ulber, Roland; Hoffmann, Alexander; Denzler, Hans-Jörg; Buchholz, Heinrich

    2010-01-01

    Nitrate is an undesirable component of several foods. A typical case of contamination with high nitrate contents is whey concentrate, containing nitrate in concentrations up to 25 l. The microbiological removal of nitrate by Paracoccus denitrificans under formation of harmless nitrogen in combination with a cell retention reactor is described here. Focus lies on the resource-conserving design of a microbal denitrification process. Two methods are compared. The application of polyvinyl alcohol-immobilized cells, which can be applied several times in whey feed, is compared with the implementation of a two step denitrification system. First, the whey concentrate's nitrate is removed by ion exchange and subsequently the eluent regenerated by microorganisms under their retention by crossflow filtration. Nitrite and nitrate concentrations were determined by reflectometric color measurement with a commercially available Reflectoquant device. Correction factors for these media had to be determined. During the pilot development, bioreactors from 4 to 250 mg x L(-1) and crossflow units with membrane areas from 0.02 to 0.80 m(2) were examined. Based on the results of the pilot plants, a scaling for the exemplary process of denitrifying 1,000 tons per day is discussed. PMID:20187124

  20. Transient characteristics of Paracoccus denitrificans with changes between aerobic and anaerobic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Waki, T.; Murayama, K.; Kawato, Y.; Ichikawa, K.

    1980-06-01

    The growth characteristics of Paracoccus denitrificans in both aerobic and anaerobic conditions and in the transient phase from aerobic to anaerobic conditions and vice versa were studied in batch and continuous cultures. The growth yield coefficients for glucose and the maximum specific growth rate were 0.59 (g cell/g glucose) and 0.49 (1/hr), and 0.41 (g cell/g glucose) and 0.23 (1/hr) in aerobic and anaerobic conditions, respectively. The nitrate reductase activities in an anaerobic continuous culture were almost constant irrespective of the growth rate and the enzymes were considered to be present in excess. Most of the nitrate reductase activity observed under aerobic conditions using the medium without ammonium chloride was due to the assimilative nitrate reductase. On the transition from anaerobic to aerobic conditions, the nitrate reductase activity was inhibited by the oxygen and the reduction of nitrate was stopped. When the conditions were changed from aerobic to anaerobic the glucose consumption and the growth stopped for a few hours and the nitrate reductase activity started to increase, however, the initial rapid reduction of nitrate and the accumulation of nitrite were observed. The nitrite reductase activity started to increase after the nitrite accumulated to a high concentration. The high efficiency of nitrogen removal in the single sludge nitrification-denitrification system was considered to be attributed to the initial rapid reduction of nirate during the transient phase in spite of the long adaptation lag for denitrification.

  1. Phospholipid Fatty Acids as Physiological Indicators of Paracoccus denitrificans Encapsulated in Silica Sol-Gel Hydrogels

    Directory of Open Access Journals (Sweden)

    Josef Trögl

    2015-02-01

    Full Text Available The phospholipid fatty acid (PLFA content was determined in samples of Paracoccus denitrificans encapsulated in silica hydrogel films prepared from prepolymerized tetramethoxysilane (TMOS. Immediately after encapsulation the total PLFA concentration was linearly proportional to the optical density (600 nm of the input microbial suspension (R2 = 0.99. After 7 days this relationship remained linear, but with significantly decreased slope, indicating a higher extinction of bacteria in suspensions of input concentration 108 cells/mL and higher. trans-Fatty acids, indicators of cytoplasmatic membrane disturbances, were below the detection limit. The cy/pre ratio (i.e., ratio of cyclopropylated fatty acids (cy17:0 + cy19:0 to their metabolic precursors (16:1ω7 + 18:1ω7, an indicator of the transition of the culture to a stationary growth-phase, decreased depending on co-immobilization of nutrients in the order phosphate buffer > mineral medium > Luria Broth rich medium. The ratio, too, was logarithmically proportional to cell concentration. These results confirm the applicability of total PLFA as an indicator for the determination of living biomass and cy/pre ratio for determination of nutrient limitation of microorganisms encapsulated in sol-gel matrices. This may be of interest for monitoring of sol-gel encapsulated bacteria proposed as optical recognition elements in biosensor construction, as well as other biotechnological applications.

  2. Study of the selenite reduction in Rhodobacter sphaeroides f. sp. denitrificans

    International Nuclear Information System (INIS)

    Selenium is an essential element for all living organisms at the low level; however it becomes toxic and mutagenic at higher concentrations. The predominant forms of selenium in natural environments are selenate and selenite which are toxic. Bacteria can use several mechanisms of detoxification such as methylation in volatile compounds or reduction in elemental selenium. In this way, our model, Rhodobacter sphaeroides f. sp. denitrificans, is able to reduce selenite into selenium. We have combined biochemical and molecular approaches to better characterize the mechanism and protagonists of this reduction. After studying the physiological response of the bacterium in the presence of selenite, we screened a transposon library in order to isolate mutants with a weakened reduction ability. Two of these selected mutants are affected in genes involved in the molybdenum cofactor synthesis, moaA and mogA. Several reductases, the molybdo enzymes, required this cofactor. Furthermore the addition of tungsten, a competitor for the molybdenum, in the culture medium, dramatically reduces the rate of selenite reduction. These results strongly suggest that a molybdo enzyme is involved in one of the selenite reduction pathways. The potential role of different proteins has been investigated, especially for the nitrate reductase, the DMSO reductase and the biotin sulfoxide reductase. We have also selected a mutant affected in the smoM gene which encodes a peri-plasmic component of a TRAP transporter. The phenotype of this mutant suggests the involvement of this transporter in the selenite import. (author)

  3. Purification and characterization of the xylanase produced by Jonesia denitrificans BN-13.

    Science.gov (United States)

    Boucherba, Nawel; Gagaoua, Mohammed; Copinet, Estelle; Bettache, Azeddine; Duchiron, Francis; Benallaoua, Said

    2014-03-01

    Jonesia denitrificans BN-13 produces six xylanases: Xyl1, Xyl2, Xyl3, Xyl4, Xyl5, and Xyl6; the Xyl4 was purified and characterized after two consecutive purification steps using ultrafiltration and anion exchange chromatography. The xylanase-specific activity was found to be 77 unit (U)/mg. The molecular weight of the Xyl4 estimated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a monomeric isoenzyme of about 42 kDa. It showed an optimum pH value of 7.0 and a temperature of 50 °C. It was stable at 50 °C for 9.34 h. The enzyme showed to be activated by Mn(+2), β-mercaptoethanol, and dithiothreitol (DTT) with a high affinity towards birchwood xylan (with a K(m) of 1 mg ml(-1)) and hydrolysis of oat-spelt xylan with a K(m) of 1.85 mg ml(-1). The ability of binding to cellulose and/or xylan was also investigated. PMID:24425300

  4. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512.

    OpenAIRE

    T Fujiwara; Fukumori, Y

    1996-01-01

    A highly active nitric oxide reductase was purified from Paracoccus denitrificans ATCC 35512, formerly named Thiosphaera pantotropha, which was anaerobically cultivated in the presence of nitrate. The enzyme was composed of two subunits with molecular masses of 34 and 15 kDa and contained two hemes b and one heme c per molecule. Copper was not found in the enzyme. The spectral properties suggested that one of the two hemes b and heme c were in six-coordinated low-spin states and another heme ...

  5. Anaerobic Growth of Paracoccus denitrificans Requires Cobalamin: Characterization of cobK and cobJ Genes

    OpenAIRE

    Shearer, Neil; Hinsley, Andrew P.; Spanning, Rob J.M. van; Spiro, Stephen

    1999-01-01

    A pleiotropic mutant of Paracoccus denitrificans, which has a severe defect that affects its anaerobic growth when either nitrate, nitrite, or nitrous oxide is used as the terminal electron acceptor and which is also unable to use ethanolamine as a carbon and energy source for aerobic growth, was isolated. This phenotype of the mutant is expressed only during growth on minimal media and can be reversed by addition of cobalamin (vitamin B12) or cobinamide to the media or by growth on rich medi...

  6. Mass Spectrometric Studies of the Effect of pH on the Accumulation of Intermediates in Denitrification by Paracoccus denitrificans

    OpenAIRE

    Thomsen, Jens K.; Geest, Torben; Cox, Raymond P.

    1994-01-01

    We have used a quadrupole mass spectrometer with a gas-permeable membrane inlet for continuous measurements of the production of N2O and N2 from nitrate or nitrite by cell suspensions of Paracoccus denitrificans. The use of nitrate and nitrite labeled with 15N was shown to simplify the interpretation of the results when these gases were measured. This approach was used to study the effect of pH on the production of denitrification intermediates from nitrate and nitrite under anoxic conditions...

  7. The coupling of electron transfer and proton translocation: electrostatic calculations on Paracoccus denitrificans cytochrome c oxidase.

    Science.gov (United States)

    Kannt, A; Lancaster, C R; Michel, H

    1998-02-01

    We have calculated the electrostatic potential and interaction energies of ionizable groups and analyzed the response of the protein environment to redox changes in Paracoccus denitrificans cytochrome c oxidase by using a continuum dielectric model and finite difference technique. Subsequent Monte Carlo sampling of protonation states enabled us to calculate the titration curves of all protonatable groups in the enzyme complex. Inclusion of a model membrane allowed us to restrict the calculations to the functionally essential subunits I and II. Some residues were calculated to have complex titration curves, as a result of strong electrostatic coupling, desolvation, and dipolar interactions. Around the heme a3-CuB binuclear center, we have identified a cluster of 18 strongly interacting residues that account for most of the proton uptake linked to electron transfer. This was calculated to be between 0.7 and 1.1 H+ per electron, depending on the redox transition considered. A hydroxide ion bound to CuB was determined to become protonated to form water upon transfer of the first electron to the binuclear site. The bulk of the protonation changes linked to further reduction of the heme a3-CuB center was calculated to be due to proton uptake by the interacting cluster and Glu(II-78). Upon formation of the three-electron reduced state (P1), His325, modeled in an alternative orientation away from CuB, was determined to become protonated. The agreement of these results with experiment and their relevance in the light of possible mechanisms of redox-coupled proton transfer are discussed. PMID:9533684

  8. Biochemical properties of Paracoccus denitrificans FnrP: reactions with molecular oxygen and nitric oxide.

    Science.gov (United States)

    Crack, Jason C; Hutchings, Matthew I; Thomson, Andrew J; Le Brun, Nick E

    2016-03-01

    In Paracoccus denitrificans, three CRP/FNR family regulatory proteins, NarR, NnrR and FnrP, control the switch between aerobic and anaerobic (denitrification) respiration. FnrP is a [4Fe-4S] cluster-containing homologue of the archetypal O2 sensor FNR from E. coli and accordingly regulates genes encoding aerobic and anaerobic respiratory enzymes in response to O2, and also NO, availability. Here we show that FnrP undergoes O2-driven [4Fe-4S] to [2Fe-2S] cluster conversion that involves up to 2 O2 per cluster, with significant oxidation of released cluster sulfide to sulfane observed at higher O2 concentrations. The rate of the cluster reaction was found to be ~sixfold lower than that of E. coli FNR, suggesting that FnrP can remain transcriptionally active under microaerobic conditions. This is consistent with a role for FnrP in activating expression of the high O2 affinity cytochrome c oxidase under microaerobic conditions. Cluster conversion resulted in dissociation of the transcriptionally active FnrP dimer into monomers. Therefore, along with E. coli FNR, FnrP belongs to the subset of FNR proteins in which cluster type is correlated with association state. Interestingly, two key charged residues, Arg140 and Asp154, that have been shown to play key roles in the monomer-dimer equilibrium in E. coli FNR are not conserved in FnrP, indicating that different protomer interactions are important for this equilibrium. Finally, the FnrP [4Fe-4S] cluster is shown to undergo reaction with multiple NO molecules, resulting in iron nitrosyl species and dissociation into monomers. PMID:26790880

  9. Description of Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Om [Florida State University, Tallahassee; Green, Stefan [Florida State University, Tallahassee; Jasrotia, Puja [Florida State University, Tallahassee; Overholt, Will [Florida State University, Tallahassee; Canion, Andy [Florida State University, Tallahassee; Watson, David B [ORNL; Brooks, Scott C [ORNL; Kostka, [Georgia Institute of Technology, Atlanta

    2012-01-01

    Bacterial strains 2APBS1T and 116-2 were isolated from the subsurface of a nuclear legacy waste site where sediments are co-contaminated with large amounts of acidity, nitrate, metal radionuclides and other heavy metals. A combination of physiological and genetic assays indicated that these strains represent the first members of the Rhodanobacter genus shown to be capable of complete denitrification. Cells of strain 2APBS1T and 116-2 were Gram negative, non-spore-forming, rods, 3-5 micro;m long and 0.25-0.5 m in diameter. The isolates were facultative anaerobes, and had temperature and pH optima for growth at 30 C and pH 6.5, respectively, and could tolerate up to 2.0 % NaCl, though growth improved in its absence. Strains 2APBS1T and 116-2 contained fatty acid profiles and 100 % Q-8 ubiquinone, that are characteristic features of the genus Rhodanobacter. Although strains 2APBS1T and 116-2 share high SSU rRNA gene sequence similarity to R. thiooxydans (>99%), DNA-DNA hybridization values were substantially below the 70% threshold used to designate novel species. Thus, based on genotypic, phylogenetic, chemotaxonomic and physiological differences, strains 2APBS1T and 116-2 are considered to represent a novel species of the genus Rhodanobacter, for which the name Rhodanobacter denitrificans sp. nov is proposed. The type strain is 2APBS1T (=DSM 23569T =JCM 17641T). Strain 116-2 (=DSM 24678 = JCM 17642) is a reference strain.

  10. The Chemolithoautotroph Acidithiobacillus ferrooxidans Can Survive under Phosphate-Limiting Conditions by Expressing a C-P Lyase Operon That Allows It To Grow on Phosphonates▿ †

    OpenAIRE

    Vera, Mario; Pagliai, Fernando; Guiliani, Nicolas; Jerez, Carlos A.

    2008-01-01

    The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans is of great importance in biomining operations. During the bioleaching of ores, microorganisms are subjected to a variety of environmental stresses and to the limitations of some nutrients, such as inorganic phosphate (Pi), which is an essential component for all living cells. Although the primary source of phosphorus for microorganisms is Pi, some bacteria are also able to metabolize Pi esters (with a C-O-P bond) and phosphon...

  11. Chemolithoautotrophic production mediating the cycling of the greenhouses gases N2O and CH4 in an upwelling ecosystem

    OpenAIRE

    Alcaman, M. E.; M. Cornejo; J. Faúndez; Fernández, C.; Farías, L.

    2009-01-01

    Coastal upwelling ecosystems with marked oxyclines (redoxclines) present high availability of electron donors that favour chemoautotrophy, leading in turn to high N2O and CH4 cycling associated with aerobic NH4+ (AAO) and CH4 oxidation (AMO). This is the case of the highly productive coastal upwelling area off Central Chile (36° S), where we evaluated the importance of total chemolithoautotrophic vs. photoautotrophic production, the specific contributions of AAO and AMO to chemosynthesis ...

  12. Insights into Glycogen Metabolism in Chemolithoautotrophic Bacteria from Distinctive Kinetic and Regulatory Properties of ADP-Glucose Pyrophosphorylase from Nitrosomonas europaea

    OpenAIRE

    Machtey, Matías; Kuhn, Misty L.; Flasch, Diane A; Aleanzi, Mabel; Ballicora, Miguel A; Iglesias, Alberto A.

    2012-01-01

    Nitrosomonas europaea is a chemolithoautotroph that obtains energy by oxidizing ammonia in the presence of oxygen and fixes CO2 via the Benson-Calvin cycle. Despite its environmental and evolutionary importance, very little is known about the regulation and metabolism of glycogen, a source of carbon and energy storage. Here, we cloned and heterologously expressed the genes coding for two major putative enzymes of the glycogen synthetic pathway in N. europaea, ADP-glucose pyrophosphorylase and...

  13. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512.

    Science.gov (United States)

    Fujiwara, T; Fukumori, Y

    1996-04-01

    A highly active nitric oxide reductase was purified from Paracoccus denitrificans ATCC 35512, formerly named Thiosphaera pantotropha, which was anaerobically cultivated in the presence of nitrate. The enzyme was composed of two subunits with molecular masses of 34 and 15 kDa and contained two hemes b and one heme c per molecule. Copper was not found in the enzyme. The spectral properties suggested that one of the two hemes b and heme c were in six-coordinated low-spin states and another heme b was in a five-coordinated high-spin state and reacted with carbon monoxide. The enzyme showed high cytochrome c-nitric oxide oxidoreductase activity and formed nitrous oxide from nitric oxide with the expected stoichiometry when P. denitrificans ATCC 35512 ferrocytochrome c-550 was used as the electron donor. The V max and Km values for nitric oxide were 84 micromol of nitric oxide per min/mg of protein and 0.25 microM, respectively. Furthermore, the enzyme showed ferrocytochrome c-550-O2 oxidoreductase activity with a V max of 8.4 micromol of O2 per min/mg of protein and a Km value of 0.9 mM. Both activities were 50% inhibited by about 0.3 mM KCN. PMID:8606159

  14. Enzymatic properties, evidence for in vivo expression, and intracellular localization of shewasin D, the pepsin homolog from Shewanella denitrificans.

    Science.gov (United States)

    Leal, Ana Rita; Cruz, Rui; Bur, Daniel; Huesgen, Pitter F; Faro, Rosário; Manadas, Bruno; Wlodawer, Alexander; Faro, Carlos; Simões, Isaura

    2016-01-01

    The widespread presence of pepsin-like enzymes in eukaryotes together with their relevance in the control of multiple biological processes is reflected in the large number of studies published so far for this family of enzymes. By contrast, pepsin homologs from bacteria have only recently started to be characterized. The work with recombinant shewasin A from Shewanella amazonensis provided the first documentation of this activity in prokaryotes. Here we extend our studies to shewasin D, the pepsin homolog from Shewanella denitrificans, to gain further insight into this group of bacterial peptidases that likely represent ancestral versions of modern eukaryotic pepsin-like enzymes. We demonstrate that the enzymatic properties of recombinant shewasin D are strongly reminiscent of eukaryotic pepsin homologues. We determined the specificity preferences of both shewasin D and shewasin A using proteome-derived peptide libraries and observed remarkable similarities between both shewasins and eukaryotic pepsins, in particular with BACE-1, thereby confirming their phylogenetic proximity. Moreover, we provide first evidence of expression of active shewasin D in S. denitrificans cells, confirming its activity at acidic pH and inhibition by pepstatin. Finally, our results revealed an unprecedented localization for a family A1 member by demonstrating that native shewasin D accumulates preferentially in the cytoplasm. PMID:27029611

  15. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, Carbon fixation in A. ferrooxidans

    Directory of Open Access Journals (Sweden)

    Esparza Mario

    2010-08-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is chemolithoautotrophic γ-proteobacterium that thrives at extremely low pH (pH 1-2. Although a substantial amount of information is available regarding CO2 uptake and fixation in a variety of facultative autotrophs, less is known about the processes in obligate autotrophs, especially those living in extremely acidic conditions, prompting the present study. Results Four gene clusters (termed cbb1-4 in the A. ferrooxidans genome are predicted to encode enzymes and structural proteins involved in carbon assimilation via the Calvin-Benson-Bassham (CBB cycle including form I of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO, EC 4.1.1.39 and the CO2-concentrating carboxysomes. RT-PCR experiments demonstrated that each gene cluster is a single transcriptional unit and thus is an operon. Operon cbb1 is divergently transcribed from a gene, cbbR, encoding the LysR-type transcriptional regulator CbbR that has been shown in many organisms to regulate the expression of RubisCO genes. Sigma70-like -10 and -35 promoter boxes and potential CbbR-binding sites (T-N11-A/TNA-N7TNA were predicted in the upstream regions of the four operons. Electrophoretic mobility shift assays (EMSAs confirmed that purified CbbR is able to bind to the upstream regions of the cbb1, cbb2 and cbb3 operons, demonstrating that the predicted CbbR-binding sites are functional in vitro. However, CbbR failed to bind the upstream region of the cbb4 operon that contains cbbP, encoding phosphoribulokinase (EC 2.7.1.19. Thus, other factors not present in the assay may be required for binding or the region lacks a functional CbbR-binding site. The cbb3 operon contains genes predicted to encode anthranilate synthase components I and II, catalyzing the formation of anthranilate and pyruvate from chorismate. This suggests a novel regulatory connection between CO2 fixation and tryptophan biosynthesis. The presence of a form II Rubis

  16. Chemolithoautotrophic production mediating the cycling of the greenhouses gases N2O and CH4 in an upwelling ecosystem

    Science.gov (United States)

    Farías, L.; Fernández, C.; Faúndez, J.; Cornejo, M.; Alcaman, M. E.

    2009-06-01

    Coastal upwelling ecosystems with marked oxyclines (redoxclines) present high availability of electron donors that favour chemoautotrophy, leading in turn to high N2O and CH4 cycling associated with aerobic NH4+ (AAO) and CH4 oxidation (AMO). This is the case of the highly productive coastal upwelling area off Central Chile (36° S), where we evaluated the importance of total chemolithoautotrophic vs. photoautotrophic production, the specific contributions of AAO and AMO to chemosynthesis and their role in gas cycling. Chemoautotrophy (involving bacteria and archaea) was studied at a time-series station during monthly (2002-2009) and seasonal cruises (January 2008, September 2008, January 2009) and was assessed in terms of dark carbon assimilation (CA), N2O and CH4 cycling, and the natural C isotopic ratio of particulate organic carbon (δ13POC). Total Integrated dark CA fluctuated between 19.4 and 2.924 mg C m-2 d-1. It was higher during active upwelling and represented on average 27% of the integrated photoautotrophic production (from 135 to 7.626 mg C m-2d-1). At the oxycline, δ13POC averaged -22.209‰ this was significantly lighter compared to the surface (-19.674‰) and bottom layers (-20.716‰). This pattern, along with low NH4+ content and high accumulations of N2O, NO2- and NO3- within the oxycline indicates that chemolithoautotrophs and specifically AA oxydisers were active. Dark CA was reduced from 27 to 48% after addition of a specific AAO inhibitor (ATU) and from 24 to 76% with GC7, a specific archaea inhibitor, indicating that AAO and maybe AMO microbes (most of them archaea) were performing dark CA through oxidation of NH4+ and CH4. AAO produced N2O at rates from 8.88 to 43 nM d-1 and a fraction of it was effluxed into the atmosphere (up to 42.85 μmol m-2 d-1). AMO on the other hand consumed CH4 at rates between 0.41 and 26.8 nM d-1 therefore preventing its efflux to the atmosphere (up to 18.69 μmol m-2 d-1). These findings show that chemically

  17. Chemolithoautotrophic production mediating the cycling of the greenhouses gases N2O and CH4 in an upwelling ecosystem

    Directory of Open Access Journals (Sweden)

    M. E. Alcaman

    2009-06-01

    Full Text Available Coastal upwelling ecosystems with marked oxyclines (redoxclines present high availability of electron donors that favour chemoautotrophy, leading in turn to high N2O and CH4 cycling associated with aerobic NH4+ (AAO and CH4 oxidation (AMO. This is the case of the highly productive coastal upwelling area off Central Chile (36° S, where we evaluated the importance of total chemolithoautotrophic vs. photoautotrophic production, the specific contributions of AAO and AMO to chemosynthesis and their role in gas cycling. Chemoautotrophy (involving bacteria and archaea was studied at a time-series station during monthly (2002–2009 and seasonal cruises (January 2008, September 2008, January 2009 and was assessed in terms of dark carbon assimilation (CA, N2O and CH4 cycling, and the natural C isotopic ratio of particulate organic carbon (δ13POC. Total Integrated dark CA fluctuated between 19.4 and 2.924 mg C m−2 d−1. It was higher during active upwelling and represented on average 27% of the integrated photoautotrophic production (from 135 to 7.626 mg C m−2d−1. At the oxycline, δ13POC averaged -22.209‰ this was significantly lighter compared to the surface (-19.674‰ and bottom layers (-20.716‰. This pattern, along with low NH4+ content and high accumulations of N2O, NO2- and NO3- within the oxycline indicates that chemolithoautotrophs and specifically AA oxydisers were active. Dark CA was reduced from 27 to 48% after addition of a specific AAO inhibitor (ATU and from 24 to 76% with GC7, a specific archaea inhibitor, indicating that AAO and maybe AMO microbes (most of them archaea were performing dark CA through oxidation of NH4+ and CH4. AAO produced N2O at rates from 8.88 to 43 nM d−1 and a fraction of it was effluxed into the atmosphere (up to 42.85 μmol m−2 d−1. AMO on the other hand consumed CH4 at rates between 0.41 and 26.8 nM d−1 therefore preventing its efflux to the atmosphere (up to 18.69 μmol m−2 d−1. These

  18. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types

    Science.gov (United States)

    Amend, Jan P.; McCollom, Thomas M.; Hentscher, Michael; Bach, Wolfgang

    2011-10-01

    Active deep-sea hydrothermal vents are hosted by a range of different rock types, including basalt, peridotite, and felsic rocks. The associated hydrothermal fluids exhibit substantial chemical variability, which is largely attributable to compositional differences among the underlying host rocks. Numerical models were used to evaluate the energetics of seven inorganic redox reactions (potential catabolisms of chemolithoautotrophs) and numerous biomolecule synthesis reactions (anabolism) in a representative sampling of these systems, where chemical gradients are established by mixing hydrothermal fluid with seawater. The wide ranging fluid compositions dictate demonstrable differences in Gibbs energies (Δ G r) of these catabolic and anabolic reactions in three peridotite-hosted, six basalt-hosted, one troctolite-basalt hybrid, and two felsic rock-hosted systems. In peridotite-hosted systems at low to moderate temperatures (10), hydrogen oxidation yields the most catabolic energy, but the oxidation of methane, ferrous iron, and sulfide can also be moderately exergonic. At higher temperatures, and consequent SW:HF mixing ratios biomass synthesis yielded up to ˜900 J per g dry cell mass. The energetics of anabolism in basalt- and felsic rock-hosted systems were far less favorable. The results suggest that in peridotite-hosted (and troctolite-basalt hybrid) systems, compared with their basalt (and felsic rock) counterparts, microbial catabolic strategies—and consequently variations in microbial phylotypes—may be far more diverse and some biomass synthesis may yield energy rather than imposing a high energetic cost.

  19. Rates and Equilibrium of CuA to heme a electron transfer in Paracoccus denitrificans cytochrome c oxidase

    DEFF Research Database (Denmark)

    Farver, Ole; Grell, Ernst; Ludwig, Bernd;

    2006-01-01

    Intramolecular electron transfer between CuA and heme a in solubilized bacterial (Paracoccus denitrificans) cytochrome c oxidase was investigated by pulse radiolysis. CuA, the initial electron acceptor, was reduced by 1-methylnicotinamide radicals in a diffusion-controlled reaction, as monitored by...... absorption changes at 825 nm, followed by partial restoration of the absorption and paralleled by an increase in the heme a absorption at 605 nm. The latter observations indicate partial reoxidation of the CuA center and the concomitant reduction of heme a. The rate constants for heme a reduction and Cu......A reoxidation were identical within experimental error and independent of the enzyme concentration and its degree of reduction, demonstrating that a fast intramolecular electron equilibration is taking place between CuA and heme a. The rate constants for CuA --> heme a ET and the reverse heme a --> CuA process...

  20. Protoplast fusion technology for improved production of coenzyme Q10 using Paracoccus denitrificans ATCC 19367 mutant strains

    Directory of Open Access Journals (Sweden)

    Pradipta Tokdar

    2014-01-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Induced mutants generated from Paracoccus denitrificans ATCC 19367 having antibiotic resistant markers, were used as parent strains to carry out protoplast fusion. The generated fusants were screened using standardized protocol for CoQ10 production. Among the generated fusants, one fusant namely PF-P1 showed 1.73 folds enhancements in specific CoQ10 content than wild type strain. Fusant PF-P1 was characterized by biochemical and molecular approaches where it showed differences than wild type strain. The fusant was further identified by 16S rRNA gene sequence analysis that showed eight nucleotide base pair mutation on conserved region and 99% homology with Paracoccus denitrificans strains. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  1. Structure of a catalytic dimer of the α- and β-subunits of the F-ATPase from Paracoccus denitrificans at 2.3 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Ríos, Edgar; Montgomery, Martin G. [The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY (United Kingdom); Leslie, Andrew G. W. [The Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH (United Kingdom); García-Trejo, José J. [Universidad Nacional Autónoma de México, Mexico City (Mexico); Walker, John E., E-mail: walker@mrc-mbu.cam.ac.uk [The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY (United Kingdom)

    2015-09-23

    The structure of the αβ heterodimer of the F-ATPase from the α-proteobacterium P. denitrificans has been determined at 2.3 Å resolution. It corresponds to the ‘open’ or ‘empty’ catalytic interface found in other F-ATPases. The structures of F-ATPases have predominantly been determined from mitochondrial enzymes, and those of the enzymes in eubacteria have been less studied. Paracoccus denitrificans is a member of the α-proteobacteria and is related to the extinct protomitochondrion that became engulfed by the ancestor of eukaryotic cells. The P. denitrificans F-ATPase is an example of a eubacterial F-ATPase that can carry out ATP synthesis only, whereas many others can catalyse both the synthesis and the hydrolysis of ATP. Inhibition of the ATP hydrolytic activity of the P. denitrificans F-ATPase involves the ζ inhibitor protein, an α-helical protein that binds to the catalytic F{sub 1} domain of the enzyme. This domain is a complex of three α-subunits and three β-subunits, and one copy of each of the γ-, δ- and ∊-subunits. Attempts to crystallize the F{sub 1}–ζ inhibitor complex yielded crystals of a subcomplex of the catalytic domain containing the α- and β-subunits only. Its structure was determined to 2.3 Å resolution and consists of a heterodimer of one α-subunit and one β-subunit. It has no bound nucleotides, and it corresponds to the ‘open’ or ‘empty’ catalytic interface found in other F-ATPases. The main significance of this structure is that it aids in the determination of the structure of the intact membrane-bound F-ATPase, which has been crystallized.

  2. Poly(3-Hydroxybutyrate) Production from Glycerol by Zobellella denitrificans MW1 via High-Cell-Density Fed-Batch Fermentation and Simplified Solvent Extraction▿

    OpenAIRE

    Ibrahim, Mohammad H A; Steinbüchel, Alexander

    2009-01-01

    Industrial production of biodegradable polyesters such as polyhydroxyalkanoates is hampered by high production costs, among which the costs for substrates and for downstream processing represent the main obstacles. Inexpensive fermentable raw materials such as crude glycerol, an abundant by-product of the biodiesel industry, have emerged to be promising carbon sources for industrial fermentations. In this study, Zobellella denitrificans MW1, a recently isolated bacterium, was used for the pro...

  3. The Inhibitory Mechanism of the ζ Subunit of the F1FO-ATPase Nanomotor of Paracoccus denitrificans and Related α-Proteobacteria.

    Science.gov (United States)

    García-Trejo, José J; Zarco-Zavala, Mariel; Mendoza-Hoffmann, Francisco; Hernández-Luna, Eduardo; Ortega, Raquel; Mendoza-Hernández, Guillermo

    2016-01-01

    The ζ subunit is a novel inhibitor of the F1FO-ATPase of Paracoccus denitrificans and related α-proteobacteria. It is different from the bacterial (ϵ) and mitochondrial (IF1) inhibitors. The N terminus of ζ blocks rotation of the γ subunit of the F1-ATPase of P. denitrificans (Zarco-Zavala, M., Morales-Ríos, E., Mendoza-Hernández, G., Ramírez-Silva, L., Pérez-Hernández, G., and García-Trejo, J. J. (2014) FASEB J. 24, 599-608) by a hitherto unknown quaternary structure that was first modeled here by structural homology and protein docking. The F1-ATPase and F1-ζ models of P. denitrificans were supported by cross-linking, limited proteolysis, mass spectrometry, and functional data. The final models show that ζ enters into F1-ATPase at the open catalytic αE/βE interface, and two partial γ rotations lock the N terminus of ζ in an "inhibition-general core region," blocking further γ rotation, while the ζ globular domain anchors it to the closed αDP/βDP interface. Heterologous inhibition of the F1-ATPase of P. denitrificans by the mitochondrial IF1 supported both the modeled ζ binding site at the αDP/βDP/γ interface and the endosymbiotic α-proteobacterial origin of mitochondria. In summary, the ζ subunit blocks the intrinsic rotation of the nanomotor by inserting its N-terminal inhibitory domain at the same rotor/stator interface where the mitochondrial IF1 or the bacterial ϵ binds. The proposed pawl mechanism is coupled to the rotation of the central γ subunit working as a ratchet but with structural differences that make it a unique control mechanism of the nanomotor to favor the ATP synthase activity over the ATPase turnover in the α-proteobacteria. PMID:26546676

  4. Structure of a catalytic dimer of the α- and β-subunits of the F-ATPase from Paracoccus denitrificans at 2.3 Å resolution

    International Nuclear Information System (INIS)

    The structure of the αβ heterodimer of the F-ATPase from the α-proteobacterium P. denitrificans has been determined at 2.3 Å resolution. It corresponds to the ‘open’ or ‘empty’ catalytic interface found in other F-ATPases. The structures of F-ATPases have predominantly been determined from mitochondrial enzymes, and those of the enzymes in eubacteria have been less studied. Paracoccus denitrificans is a member of the α-proteobacteria and is related to the extinct protomitochondrion that became engulfed by the ancestor of eukaryotic cells. The P. denitrificans F-ATPase is an example of a eubacterial F-ATPase that can carry out ATP synthesis only, whereas many others can catalyse both the synthesis and the hydrolysis of ATP. Inhibition of the ATP hydrolytic activity of the P. denitrificans F-ATPase involves the ζ inhibitor protein, an α-helical protein that binds to the catalytic F1 domain of the enzyme. This domain is a complex of three α-subunits and three β-subunits, and one copy of each of the γ-, δ- and ∊-subunits. Attempts to crystallize the F1–ζ inhibitor complex yielded crystals of a subcomplex of the catalytic domain containing the α- and β-subunits only. Its structure was determined to 2.3 Å resolution and consists of a heterodimer of one α-subunit and one β-subunit. It has no bound nucleotides, and it corresponds to the ‘open’ or ‘empty’ catalytic interface found in other F-ATPases. The main significance of this structure is that it aids in the determination of the structure of the intact membrane-bound F-ATPase, which has been crystallized

  5. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources.

    Science.gov (United States)

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe(2+) ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD(+) through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats. PMID:26500609

  6. Cetia pacifica gen. nov., sp. nov., a chemolithoautotrophic, thermophilic, nitrate-ammonifying bacterium from a deep-sea hydrothermal vent.

    Science.gov (United States)

    Grosche, Ashley; Sekaran, Hema; Pérez-Rodríguez, Ileana; Starovoytov, Valentin; Vetriani, Costantino

    2015-04-01

    A thermophilic, anaerobic, chemolithoautotrophic bacterium, strain TB-6(T), was isolated from a deep-sea hydrothermal vent located on the East Pacific Rise at 9° N. The cells were Gram-staining-negative and rod-shaped with one or more polar flagella. Cell size was approximately 1-1.5 µm in length and 0.5 µm in width. Strain TB-6(T) grew between 45 and 70 °C (optimum 55-60 °C), 0 and 35 g NaCl l(-1) (optimum 20-30 g l(-1)) and pH 4.5 and 7.5 (optimum pH 5.5-6.0). Generation time under optimal conditions was 2 h. Growth of strain TB-6(T) occurred with H2 as the energy source, CO2 as the carbon source and nitrate or sulfur as electron acceptors, with formation of ammonium or hydrogen sulfide, respectively. Acetate, (+)-d-glucose, Casamino acids, sucrose and yeast extract were not used as carbon and energy sources. Inhibition of growth occurred in the presence of lactate, peptone and tryptone under a H2/CO2 (80 : 20; 200 kPa) gas phase. Thiosulfate, sulfite, arsenate, selenate and oxygen were not used as electron acceptors. The G+C content of the genomic DNA was 36.8 mol%. Phylogenetic analysis of the 16S rRNA gene of strain TB-6(T) showed that this organism branched separately from the three most closely related genera, Caminibacter , Nautilia and Lebetimonas , within the family Nautiliaceae . Strain TB-6(T) contained several unique fatty acids in comparison with other members of the family Nautiliaceae . Based on experimental evidence, it is proposed that the organism represents a novel species and genus within the family Nautiliaceae , Cetia pacifica, gen. nov., sp. nov. The type strain is TB-6(T) ( = DSM 27783(T) = JCM 19563(T)). PMID:25604337

  7. Chemolithoautotrophic production mediating the cycling of the greenhouse gases N2O and CH4 in an upwelling ecosystem

    Science.gov (United States)

    Farías, L.; Fernández, C.; Faúndez, J.; Cornejo, M.; Alcaman, M. E.

    2009-12-01

    The high availability of electron donors occurring in coastal upwelling ecosystems with marked oxyclines favours chemoautotrophy, in turn leading to high N2O and CH4 cycling associated with aerobic NH4+ (AAO) and CH4 oxidation (AMO). This is the case of the highly productive coastal upwelling area off central Chile (36° S), where we evaluated the importance of total chemolithoautotrophic vs. photoautotrophic production, the specific contributions of AAO and AMO to chemosynthesis and their role in gas cycling. Chemolithoautotrophy was studied at a time-series station during monthly (2007-2009) and seasonal cruises (January 2008, September 2008, January 2009) and was assessed in terms of the natural C isotopic ratio of particulate organic carbon (δ13POC), total and specific (associated with AAO and AMO) dark carbon assimilation (CA), and N2O and CH4 cycling experiments. At the oxycline, δ13POC averaged -22.2‰; this was significantly lighter compared to the surface (-19.7‰) and bottom layers (-20.7‰). Total integrated dark CA in the whole water column fluctuated between 19.4 and 2.924 mg C m-2 d-1, was higher during active upwelling, and contributed 0.7 to 49.7% of the total integrated autotrophic CA (photo plus chemoautotrophy), which ranged from 135 to 7.626 mg C m-2 d-1, and averaged 20.3% for the whole sampling period. Dark CA was reduced by 27 to 48% after adding a specific AAO inhibitor (ATU) and by 24 to 76% with GC7, a specific archaea inhibitor. This indicates that AAO and AMO microbes (most of them archaea) were performing dark CA through the oxidation of NH4+ and CH4. Net N2O cycling rates varied between 8.88 and 43 nM d-1, whereas net CH4 cycling rates ranged from -0.41 to -26.8 nM d-1. The addition of both ATU and GC7 reduced N2O accumulation and increased CH4 consumption, suggesting that AAO and AMO were responsible, in part, for the cycling of these gases. These findings show that chemically driven chemolithoautotrophy (with NH4+ and CH4 acting

  8. Chemolithoautotrophic production mediating the cycling of the greenhouse gases N2O and CH4 in an upwelling ecosystem

    Directory of Open Access Journals (Sweden)

    M. E. Alcaman

    2009-12-01

    Full Text Available The high availability of electron donors occurring in coastal upwelling ecosystems with marked oxyclines favours chemoautotrophy, in turn leading to high N2O and CH4 cycling associated with aerobic NH4+ (AAO and CH4 oxidation (AMO. This is the case of the highly productive coastal upwelling area off central Chile (36° S, where we evaluated the importance of total chemolithoautotrophic vs. photoautotrophic production, the specific contributions of AAO and AMO to chemosynthesis and their role in gas cycling. Chemolithoautotrophy was studied at a time-series station during monthly (2007–2009 and seasonal cruises (January 2008, September 2008, January 2009 and was assessed in terms of the natural C isotopic ratio of particulate organic carbon (δ13POC, total and specific (associated with AAO and AMO dark carbon assimilation (CA, and N2O and CH4 cycling experiments. At the oxycline, δ13POC averaged −22.2‰; this was significantly lighter compared to the surface (−19.7‰ and bottom layers (−20.7‰. Total integrated dark CA in the whole water column fluctuated between 19.4 and 2.924 mg C m−2 d−1, was higher during active upwelling, and contributed 0.7 to 49.7% of the total integrated autotrophic CA (photo plus chemoautotrophy, which ranged from 135 to 7.626 mg C m−2 d−1, and averaged 20.3% for the whole sampling period. Dark CA was reduced by 27 to 48% after adding a specific AAO inhibitor (ATU and by 24 to 76% with GC7, a specific archaea inhibitor. This indicates that AAO and AMO microbes (most of them archaea were performing dark CA through the oxidation of NH4+ and CH4. Net N2O cycling rates varied between 8.88 and 43 nM d−1, whereas net CH4 cycling rates ranged from −0.41 to −26.8 nM d−1. The addition of both ATU and GC7 reduced N2O accumulation and increased CH4 consumption, suggesting that AAO and AMO were responsible, in part, for the cycling of these gases. These findings show that chemically driven

  9. Energy transfer in an LH4-like light harvesting complex from the aerobic purple photosynthetic bacterium Roseobacter denitrificans

    Energy Technology Data Exchange (ETDEWEB)

    Niedzwiedzki, Dariusz; Fuciman, Marcel; Frank, Harry A; Blankenship, R. E.

    A peripheral light-harvesting complex from the aerobic purple bacterium Roseobacter (R.) denitrificans was purified and its photophysical properties characterized. The complex contains two types of pigments, bacteriochlorophyll (BChl) a and the carotenoid (Car) spheroidenone and possesses unique spectroscopic properties. It appears to lack the B850 bacteriochlorophyll a Q{sub y} band that is typical for similar light-harvesting complex 2 antennas. Circular dichroism and low temperature steady-state absorption spectroscopy revealed that the B850 band is present but is shifted significantly to shorter wavelengths and overlaps with the B800 band at room temperature. Such a spectral signature classifies this protein as a member of the light-harvesting complex 4 class of peripheral light-harvesting complexes, along with the previously known light-harvesting complex 4 from Rhodopseudomonas palustris. The influence of the spectral change on the light-harvesting ability was studied using steady-state absorption, fluorescence, circular dichroism, femtosecond and microsecond time-resolved absorption and time-resolved fluorescence spectroscopies. The results were compared to the properties of the similar (in pigment composition) light-harvesting complex 2 from aerobically grown Rhodobacter sphaeroides and are understood within the context of shared similarities and differences and the putative influence of the pigments on the protein structure and its properties.

  10. Isolation and characterization of ubiquinol oxidase complexes from Paracoccus denitrificans cells cultured under various limiting growth conditions in the chemostat.

    Science.gov (United States)

    Bosma, G; Braster, M; Stouthamer, A H; van Verseveld, H W

    1987-06-15

    To obtain more information about the composition of the respiratory chain under different growth conditions and about the regulation of electron-transfer to several oxidases and reductases, ubiquinol oxidase complexes were partially purified from membranes of Paracoccus denitrificans cells grown in carbon-source-limited aerobic, nitrate-limited anaerobic and oxygen-limited chemostat cultures. The isolated enzymes consisted of cytochromes bc1, c552 and aa3. In comparison with the aerobic ubiquinol oxidase complex, the oxygen- and nitrate-limited ones contained, respectively, less and far less of the cytochrome aa3 subunits and the anaerobic complex also contained lower amounts of cytochrome c552. In addition, extra haem-containing polypeptides were present with apparent Mr of 14,000, 30,000 and 45,000, the former one only in the anaerobic and the latter two in both the anaerobic and oxygen-limited preparations. This is the first report describing four different membrane-bound c-type cytochromes. The potentiometric and spectral characteristics of the redox components in membrane particles and isolated ubiquinol oxidase fractions were determined by combined potentiometric analysis and spectrum deconvolution. Membranes of nitrate- and oxygen-limited cells contained extra high-potential cytochrome b in comparison with the membranes of aerobically grown cells. No difference was detected between the three isolated ubiquinol oxidase complexes. Aberrances with already published values of redox potentials are discussed. PMID:3036512

  11. The chemolithoautotroph Acidithiobacillus ferrooxidans can survive under phosphate-limiting conditions by expressing a C-P lyase operon that allows it to grow on phosphonates.

    Science.gov (United States)

    Vera, Mario; Pagliai, Fernando; Guiliani, Nicolas; Jerez, Carlos A

    2008-03-01

    The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans is of great importance in biomining operations. During the bioleaching of ores, microorganisms are subjected to a variety of environmental stresses and to the limitations of some nutrients, such as inorganic phosphate (P(i)), which is an essential component for all living cells. Although the primary source of phosphorus for microorganisms is P(i), some bacteria are also able to metabolize P(i) esters (with a C-O-P bond) and phosphonates (with a very inert C-P bond). By using bioinformatic analysis of genomic sequences of the type strain of A. ferrooxidans (ATCC 23270), we found that as part of a Pho regulon, this bacterium has a complete gene cluster encoding C-P lyase, which is the main bacterial enzyme involved in phosphonate (Pn) degradation in other microorganisms. A. ferrooxidans was able to grow in the presence of methyl-Pn or ethyl-Pn as an alternative phosphorus source. Under these growth conditions, a great reduction in inorganic polyphosphate (polyP) levels was seen compared with the level for cells grown in the presence of P(i). By means of reverse transcription-PCR (RT-PCR), DNA macroarrays, and real-time RT-PCR experiments, it was found that A. ferrooxidans phn genes were cotranscribed and their expression was induced when the microorganism was grown in methyl-Pn as the only phosphorus source. This is the first report of phosphonate utilization in a chemolithoautotrophic microorganism. The existence of a functional C-P lyase system is a clear advantage for the survival under P(i) limitation, a condition that may greatly affect the bioleaching of ores. PMID:18203861

  12. Comparison of the cytochrome c oxidase inherent catalase side-reaction from Paracoccus denitrificans in the wild type and recombinant form

    OpenAIRE

    Hilbers, Florian

    2015-01-01

    The four subunit (SU) aa3 cytochrome c oxidase (CcO) from Paracoccus denitrificans is one of the terminal enzymes of the respiratory chain. It uses electrons from cytochrome c to reduce molecular oxygen to water. Its binuclear active center, residing in SU I, contains hemeÊa3 and CuB, the latter being liganded by three histidine residues. Apart from its oxygen reductase activity, the protein possesses a peroxidase and a catalase activity. To compare variants and the wild type (WT) protein ...

  13. Untersuchung der Protonenbewegung während des O-E-Schrittes im katalytischen Zyklus der Cytochrom-c-Oxidase von Paracoccus denitrificans

    OpenAIRE

    Kirchberg, Kristina

    2007-01-01

    Die vorliegende Arbeit befaßte sich mit der Untersuchung der Protonenbewegung während des O-E Schrittes im katalytischen Zyklus der Cytochrom-c-Oxidase von P. denitrificans. Die Zuordnung der Protonenbewegung zu den einzelnen Schritten des katalytischen Zyklus der Cytochrom-c-Oxidase ist immer noch ein Gegenstand zahlreicher Kontroversen. Obwohl von Ruitenberg et al. (2000) durch Spannungsmessungen gezeigt wurde, daß die Reduktion von Häm a während des ersten Elektrontransfers in das oxidiert...

  14. [Effect of temperature on the rate of oxidation of pyrrhotite-rich sulfide ore flotation concentrate and the structure of the acidophilic chemolithoautotrophic microbial community].

    Science.gov (United States)

    Moshchanetskii, P V; Pivovarova, T A; Belyi, A V; Kondrat'eva, T F

    2014-01-01

    Oxidation of flotation concentrate of a pyrrhotite-rich sulfide ore by acidophilic chemolithoautotrophic microbial communities at 35, 40, and 45 degrees C was investigated. According to the physicochemical parameters of the liquid phase of the pulp, as well as the results of analysis of the solid residue after biooxidation and cyanidation, the community developed at 40 degrees C exhibited the highest rate of oxidation. The degree of gold recovery at 35, 40, and 45 degrees C was 89.34, 94.59, and 83.25%, respectively. At 40 degrees C, the highest number of microbial cells (6.01 x 10(9) cells/mL) was observed. While temperature had very little effect on the species composition of microbial communities, except for the absence of Leptospirillum ferriphilum at 35 degrees C, the shares of individual species in the communities varied with temperature. Relatively high numbers of Sulfobacillus thermosulfidooxidans, the organism oxidizing iron and elemental sulfur at higher rates than other acidophilic chemolithotrophic species, were observed at 40 degrees C. PMID:25844443

  15. Crystallization and initial X-ray diffraction studies of the flavoenzyme NAD(P)H:(acceptor) oxidoreductase (FerB) from the soil bacterium Paracoccus denitrificans

    International Nuclear Information System (INIS)

    The flavin-dependent enzyme FerB from P. denitrificans has been purified and both native and SeMet-substituted FerB have been crystallized. The two variants crystallized in two different crystallographic forms belonging to the monoclinic space group P21 and the orthorhombic space group P21212, respectively. X-ray diffraction data were collected to 1.75 Å resolution for both forms. The flavin-dependent enzyme FerB from Paracoccus denitrificans reduces a broad range of compounds, including ferric complexes, chromate and most notably quinones, at the expense of the reduced nicotinamide adenine dinucleotide cofactors NADH or NADPH. Recombinant unmodified and SeMet-substituted FerB were crystallized under similar conditions by the hanging-drop vapour-diffusion method with microseeding using PEG 4000 as the precipitant. FerB crystallized in several different crystal forms, some of which diffracted to approximately 1.8 Å resolution. The crystals of native FerB belonged to space group P21, with unit-cell parameters a = 61.6, b = 110.1, c = 65.2 Å, β = 118.2° and four protein molecules in the asymmetric unit, whilst the SeMet-substituted form crystallized in space group P21212, with unit-cell parameters a = 61.2, b = 89.2, c = 71.5 Å and two protein molecules in the asymmetric unit. Structure determination by the three-wavelength MAD/MRSAD method is now in progress

  16. Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation.

    Science.gov (United States)

    Wodara, C; Bardischewsky, F; Friedrich, C G

    1997-08-01

    A 13-kb genomic region of Paracoccus dentrificans GB17 is involved in lithotrophic thiosulfate oxidation. Adjacent to the previously reported soxB gene (C. Wodara, S. Kostka, M. Egert, D. P. Kelly, and C. G. Friedrich, J. Bacteriol. 176:6188-6191, 1994), 3.7 kb were sequenced. Sequence analysis revealed four additional open reading frames, soxCDEF. soxC coded for a 430-amino-acid polypeptide with an Mr of 47,339 that included a putative signal peptide of 40 amino acids (Mr of 3,599) with a RR motif present in periplasmic proteins with complex redox centers. The mature soxC gene product exhibited high amino acid sequence similarity to the eukaryotic molybdoenzyme sulfite oxidase and to nitrate reductase. We constructed a mutant, GBsoxC delta, carrying an in-frame deletion in soxC which covered a region possibly coding for the molybdenum cofactor binding domain. GBsoxC delta was unable to grow lithoautotrophically with thiosulfate but grew well with nitrate as a nitrogen source or as an electron acceptor. Whole cells and cell extracts of mutant GBsoxC delta contained 10% of the thiosulfate-oxidizing activity of the wild type. Only a marginal rate of sulfite-dependent cytochrome c reduction was observed from cell extracts of mutant GBsoxC delta. These results demonstrated that sulfite dehydrogenase was essential for growth with thiosulfate of P. dentrificans GB17. soxD coded for a periplasmic diheme c-type cytochrome of 384 amino acids (Mr of 39,983) containing a putative signal peptide with an Mr of 2,363. soxE coded for a periplasmic monoheme c-type cytochrome of 236 amino acids (Mr of 25,926) containing a putative signal peptide with an Mr of 1,833. SoxD and SoxE were highly identical to c-type cytochromes of P. denitrificans and other organisms. soxF revealed an incomplete open reading frame coding for a peptide of 247 amino acids with a putative signal peptide (Mr of 2,629). The deduced amino acid sequence of soxF was 47% identical and 70% similar to the sequence

  17. The Online Morphology Control and Dynamic Studies on Improving Vitamin B12 Production by Pseudomonas denitrificans with Online Capacitance and Specific Oxygen Consumption Rate.

    Science.gov (United States)

    Wang, Ze-Jian; Shi, Hui-Lin; Wang, Ping

    2016-07-01

    The relationship between the morphological character of Pseudomonas denitrificans and vitamin B12 synthesis based on real-time capacitance measurement and online specific oxygen consumption rate (Q O2) control was established for enhancing vitamin B12 production. Results demonstrated that the threshold Q O2 value lower than 2.0 mmol/gDCW/l would greatly stimulate the state transfer from the cell number growth phase to the cell elongation phase and promote rapid vitamin B12 biosynthesis, while the vitamin B12 biosynthesis rate could also be inhibited when the rate of cell's length-to-width ratio (ratio-LW) was higher than 10:1. Furthermore, the optimal morphology controlling strategy was achieved based on online Q O2 control, which increases the appropriate active cell numbers at the former phase, and then control the elongation of ratio-LW no more than 10:1 at the vitamin B12 biosynthesis phase. The maximal vitamin B12 production reached 239.7 mg/l at 168 h, which was improved by 14.7 % compared with the control (208 mg/l). This online controlling strategy would be effectively applied for improving industrial vitamin B12 fermentation. PMID:27022751

  18. The structure of RdDddP from Roseobacter denitrificans reveals that DMSP lyases in the DddP-family are metalloenzymes.

    Directory of Open Access Journals (Sweden)

    Jan-Hendrik Hehemann

    Full Text Available Marine microbes degrade dimethylsulfoniopropionate (DMSP, which is produced in large quantities by marine algae and plants, with DMSP lyases into acrylate and the gas dimethyl sulfide (DMS. Approximately 10% of the DMS vents from the sea into the atmosphere and this emission returns sulfur, which arrives in the sea through rivers and runoff, back to terrestrial systems via clouds and rain. Despite their key role in this sulfur cycle DMSP lyases are poorly understood at the molecular level. Here we report the first X-ray crystal structure of the putative DMSP lyase RdDddP from Roseobacter denitrificans, which belongs to the abundant DddP family. This structure, determined to 2.15 Å resolution, shows that RdDddP is a homodimeric metalloprotein with a binuclear center of two metal ions located 2.7 Å apart in the active site of the enzyme. Consistent with the crystallographic data, inductively coupled plasma mass spectrometry (ICP-MS and total reflection X-ray fluorescence (TRXF revealed the bound metal species to be primarily iron. A 3D structure guided analysis of environmental DddP lyase sequences elucidated the critical residues for metal binding are invariant, suggesting all proteins in the DddP family are metalloenzymes.

  19. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification.

    Science.gov (United States)

    Carr, G J; Page, M D; Ferguson, S J

    1989-02-15

    1. A Clark-type electrode that responds to nitric oxide has been used to show that cytoplasmic membrane vesicles of Paracoccus denitrificans have a nitric-oxide reductase activity. Nitrous oxide is the reaction product. NADH, succinate or isoascorbate plus 2,3,5,6-tetramethyl-1,4-phenylene diamine can act as reductants. The NADH-dependent activity is resistant to freezing of the vesicles and thus the NADH:nitric-oxide oxidoreductase activity of stored frozen vesicles provides a method for calibrating the electrode by titration of dissolved nitric oxide with NADH. The periplasmic nitrite reductase and nitrous-oxide reductase enzymes are absent from the vesicles which indicates that nitric-oxide reductase is a discrete enzyme associated with the denitrification process. This conclusion was supported by the finding that nitric-oxide reductase activity was absent from both membranes prepared from aerobically grown P. denitrificans and bovine heart submitochondrial particles. 2. The NADH: nitric-oxide oxidoreductase activity was inhibited by concentrations of antimycin or myxothiazol that were just sufficient to inhibit the cytochrome bc1 complex of the ubiquinol--cytochrome-c oxidoreductase. The activity was deduced to be proton translocating by the observations of: (a) up to 3.5-fold stimulation upon addition of an uncoupler; and (b) ATP synthesis with a P:2e ratio of 0.75. 3. Nitrite reductase of cytochrome cd1 type was highly purified from P. denitrificans in a new, high-yield, rapid two- or three-step procedure. This enzyme catalysed stoichiometric synthesis of nitric oxide. This observation, taken together with the finding that the maximum rate of NADH:nitric-oxide oxidoreductase activity catalysed by the vesicles was comparable with that of NADH:nitrate-oxidoreductase, is consistent with a role for nitric-oxide reductase in the physiological conversion of nitrate or nitrite to dinitrogen gas. 4. Intact cells of P. denitrificans also reduced nitric oxide in an

  20. FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation.

    Science.gov (United States)

    Van Spanning, R J; De Boer, A P; Reijnders, W N; Westerhoff, H V; Stouthamer, A H; Van Der Oost, J

    1997-03-01

    The Paracoccus denitrificans fnrP gene encoding a homologue of the Escherichia coli FNR protein was localized upstream of the gene cluster that encodes the high-affinity cbb3-type oxidase. FnrP harbours the invariant cysteine residues that are supposed to be the ligands of the redox-sensitive [4Fe-4S] cluster in FNR. NNR, another FNR-like transcriptional regulator in P. denitrificans, does not. Analysis of FnrP and NNR single and double mutants revealed that the two regulators each exert exclusive control on the expression of a discrete set of target genes. In FnrP mutants, the expression of cytochrome c peroxidase was blocked, that of membrane-bound nitrate reductase and the cbb3-type oxidase was significantly reduced, whilst the activity of the bb3-type quinol oxidase was increased. The amounts of the nitrite and nitric oxide reductases in these FnrP mutants were the same as in the wild type. NNR mutants, on the other hand, were disturbed exclusively in the concentrations of nitrite reductase and nitric oxide reductase. An FnrP.NNR double mutant combined the phenotypes of the single mutant strains. In all three mutants, the concentrations and/or activities of the aa3-type oxidase, cytochrome C550, cytochrome C552, and nitrous oxide reductase equalled those in the wild type. As the FNR boxes in front of the FnrP- and NNR-regulated genes are highly similar to or even identical to each other, the absence of cross-talk between the regulation by FnrP and NNR implies that as yet unidentified factors are important in the control. It is proposed that the redox state of an intracellular redox couple other than the oxygen/water couple is one of the factors that modulates the activity of FnrP. PMID:9076727

  1. Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy.

    Science.gov (United States)

    Butler, C S; Charnock, J M; Bennett, B; Sears, H J; Reilly, A J; Ferguson, S J; Garner, C D; Lowe, D J; Thomson, A J; Berks, B C; Richardson, D J

    1999-07-13

    The periplasmic nitrate reductase from Paracoccus denitrificans is a soluble two-subunit enzyme which binds two hemes (c-type), a [4Fe-4S] center, and a bis molybdopterin guanine dinucleotide cofactor (bis-MGD). A catalytic cycle for this enzyme is presented based on a study of these redox centers using electron paramagnetic resonance (EPR) and extended X-ray absorption fine structure (EXAFS) spectroscopies. The Mo(V) EPR signal of resting NAP (High g [resting]) has g(av) = 1.9898 is rhombic, exhibits low anisotropy, and is split by two weakly interacting protons which are not solvent-exchangeable. Addition of exogenous ligands to this resting state (e.g., nitrate, nitrite, azide) did not change the form of the signal. A distinct form of the High g Mo(V) signal, which has slightly lower anisotropy and higher rhombicity, was trapped during turnover of nitrate and may represent a catalytically relevant Mo(V) intermediate (High g [nitrate]). Mo K-edge EXAFS analysis was undertaken on the ferricyanide oxidized enzyme, a reduced sample frozen within 10 min of dithionite addition, and a nitrate-reoxidized form of the enzyme. The oxidized enzyme was fitted best as a di-oxo Mo(VI) species with 5 sulfur ligands (4 at 2. 43 A and 1 at 2.82 A), and the reduced form was fitted best as a mono-oxo Mo(IV) species with 3 sulfur ligands at 2.35 A. The addition of nitrate to the reduced enzyme resulted in reoxidation to a di-oxo Mo(VI) species similar to the resting enzyme. Prolonged incubation of NAP with dithionite in the absence of nitrate (i.e., nonturnover conditions) resulted in the formation of a species with a Mo(V) EPR signal that is quite distinct from the High g family and which has a g(av) = 1.973 (Low g [unsplit]). This signal resembles those of the mono-MGD xanthine oxidase family and is proposed to arise from an inactive form of the nitrate reductase in which the Mo(V) form is only coordinated by the dithiolene of one MGD. In samples of NAP that had been reduced with

  2. Dicty_cDB: Contig-U15070-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available us M.14.25, ... 53 3e-05 AE006641_2942( AE006641 |pid:none) Sulfolobus solfataricus P2, com... 52 8e-05 AF15...1059( AE006641 |pid:none) Sulfolobus solfataricus P2, com... 41 0.18 AF224509_3( AF224509 |pid:none) Bactero...0153_1364( CP000153 |pid:none) Sulfurimonas denitrificans DSM ... 35 7.4 CP000745_318( CP000745 |pid:none) Methanococcus mari...kn*kkkik*nscfykikrldfhtlffikfnmtpvitafls faflcfaswcvgeggeilgkkydasiiggliiawlntapeaiff...itdcssvdvaftsrpv rkcyfcskscgiprallaywektnvysininiil*ylnlfvtlllflllenyf*knkiif *fffffskikkkk*nkilvfik*kgwtftpff

  3. Dicty_cDB: Contig-U06184-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available ... 48 0.48 1 ( FC714212 ) CAXY8749.fwd CAXY Lottia gigantea from male gonad... 48 0.48 1 ( BA000026 ) Mycoplasma penetrans...cellular protein transport protein U... 40 0.059 X54378_1( X54378 |pid:none) S.cer... esculentum CTR1-like protein kinase ... 46 1.9 1 ( AP010786 ) Solanum lycopersicum DNA, chromosome 8, clon...e) Sulfurimonas denitrificans DSM 1... 36 1.1 EF568108_62( EF568108 |pid:none) Glossina pallidipes salivary glan...e) Kluyveromyces thermotolerans str... 34 4.2 AY042084_3( AY042084 |pid:none) Plasmodium falciparum er

  4. Protection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars Environmental Conditions

    OpenAIRE

    Gómez, Felipe; Mateo-Martí, Eva; Prieto-Ballesteros, Olga; Martín-Gago, Jose; Amils, Ricardo

    2010-01-01

    Abstract Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we stud...

  5. Metagenome of a Versatile Chemolithoautotroph from Expanding Oceanic Dead Zones

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, David A.; Zaikova, Elena; Howes, Charles L.; Song, Young; Wright, Jody; Tringe, Susannah G.; Tortell, Philippe D.; Hallam, Steven J.

    2009-07-15

    Oxygen minimum zones (OMZs), also known as oceanic"dead zones", are widespread oceanographic features currently expanding due to global warming and coastal eutrophication. Although inhospitable to metazoan life, OMZs support a thriving but cryptic microbiota whose combined metabolic activity is intimately connected to nutrient and trace gas cycling within the global ocean. Here we report time-resolved metagenomic analyses of a ubiquitous and abundant but uncultivated OMZ microbe (SUP05) closely related to chemoautotrophic gill symbionts of deep-sea clams and mussels. The SUP05 metagenome harbors a versatile repertoire of genes mediating autotrophic carbon assimilation, sulfur-oxidation and nitrate respiration responsive to a wide range of water column redox states. Thus, SUP05 plays integral roles in shaping nutrient and energy flow within oxygen-deficient oceanic waters via carbon sequestration, sulfide detoxification and biological nitrogen loss with important implications for marine productivity and atmospheric greenhouse control.

  6. Productivity-Diversity Relationships from Chemolithoautotrophically Based Sulfidic Karst Systems

    OpenAIRE

    Porter Megan L.; Summers Engel Annette; Kane Thomas C.; Kinkle Brian K.

    2009-01-01

    Although ecosystems thriving in the absence of photosynthetic processes are no longer considered unique phenomena, we haveyet to understand how these ecosystems are energetically sustained via chemosynthesis. Ecosystem energetics were measuredin microbial mats from active sulfidic caves (Movile Cave, Romania; Frasassi Caves, Italy; Lower Kane Cave, Wyoming, USA; andCesspool Cave, Virginia, USA) using radiotracer techniques. We also estimated bacterial diversity using 16S rRNA sequences torela...

  7. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospiracrunogena XCL-2

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Kathleen M.; Sievert, Stefan M.; Abril, Fereniki N.; Ball,Lois A.; Barrett, Chantell J.; Blake, Rodrigo A.; Boller, Amanda J.; Chain, Patrick S.G.; Clark, Justine A.; Davis, Carisa R.; Detter, Chris; Do, Kimberly F.; Dobrinski, Kimberly P.; Faza, BrandonI.; Fitzpatrick,Kelly A.; Freyermuth, Sharyn K.; Harmer, Tara L.; Hauser, Loren J.; Hugler, Michael; Kerfeld, Cheryl A.; Klotz, Martin G.; Kong, William W.; Land, Miriam; Lapidus, Alla; Larimer, Frank W.; Longo, Dana L.; Lucas,Susan; Malfatti, Stephanie A.; Massey, Steven E.; Martin, Darlene D.; McCuddin, Zoe; Meyer, Folker; Moore, Jessica L.; Ocampo, Luis H.; Paul,John H.; Paulsen, Ian T.; Reep, Douglas K.; Ren, Qinghu; Ross, Rachel L.; Sato, Priscila Y.; Thomas, Phaedra; Tinkham, Lance E.; Zeruth, Gary T.

    2006-08-23

    Presented here is the complete genome sequence ofThiomicrospira crunogena XCL-2, representative of ubiquitouschemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-seahydrothermal vents. This gammaproteobacterium has a single chromosome(2,427,734 bp), and its genome illustrates many of the adaptations thathave enabled it to thrive at vents globally. It has 14 methyl-acceptingchemotaxis protein genes, including four that may assist in positioningit in the redoxcline. A relative abundance of CDSs encoding regulatoryproteins likely control the expression of genes encoding carboxysomes,multiple dissolved inorganic nitrogen and phosphate transporters, as wellas a phosphonate operon, which provide this species with a variety ofoptions for acquiring these substrates from the environment. T. crunogenaXCL-2 is unusual among obligate sulfur oxidizing bacteria in relying onthe Sox system for the oxidation of reduced sulfur compounds. A 38 kbprophage is present, and a high level of prophage induction was observed,which may play a role in keeping competing populations of close relativesin check. The genome has characteristics consistent with an obligatelychemolithoautotrophic lifestyle, including few transporters predicted tohave organic allocrits, and Calvin-Benson-Bassham cycle CDSs scatteredthroughout the genome.

  8. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems

    Science.gov (United States)

    McCollom, Thomas M.; Shock, Everett L.

    1997-10-01

    Mixing of hydrothermal fluids and seawater at the ocean floor, combined with slow reaction kinetics for oxidation/reduction reactions, provides a source of metabolic energy for chemolithotrophic microorganisms which are the primary biomass producers for an extensive submarine ecosystem that is essentially independent of photosynthesis. Thermodynamic models are used to explore geochemical constraints on the amount of metabolic energy potentially available from chemosynthetic reactions involving S, C, Fe, and Mn compounds during mixing of hydrothermal fluids with seawater. For the vent fluid used in the calculations (EPR 21°N OBS), the model indicates that mixing environments are favorable for oxidation of H 2S, CH 4, Fe 2+ and Mn 2+ only below ˜ 38°C, with methanogenesis and reduction of sulfate or S° favored at higher temperatures, suggesting that environments dominated by mixing provide habitats for mesophilic (but not thermophilic) aerobes and thermophilic (but not mesophilic) anaerobes. A maximum of ˜760 cal per kilogram vent fluid is available from sulfide oxidation while between 8 and 35 cal/kg vent fluid is available from methanotrophy, methanogenesis, oxidation of Fe or Mn, or sulfate reduction. The total potential for chemosynthetic primary production at deep-sea hydrothermal vents globally is estimated to be about 10 13 g biomass per year, which represents ˜0.02% of the global primary production by photosynthesis in the oceans. Thermophilic methanogens and sulfate- and S°-reducers are likely to be the predominant organisms in the walls of vent chimneys and in the diffuse mixing zones beneath warm vents, where biological processes may contribute to the high methane concentrations of vent fluids and heavy 34S/32S S ratios of vent sulfide minerals. The metabolic processes taking place in these systems may be analogs of the first living systems to evolve on the Earth.

  9. Influence of increasing dissolved inorganic carbon concentrations and decreasing pH on chemolithoautrophic bacteria from oxic-sulfidic interfaces

    Science.gov (United States)

    Mammitzsch, K.; Jost, G.; Jürgens, K.

    2012-12-01

    Increases in the dissolved inorganic carbon (DIC) concentration are expected to cause a decrease in the pH of ocean waters, a process known as ocean acidification. In oxygen-deficient zones this will add to already increased DIC and decreased pH values. It is not known how this might affect microbial communities and microbially mediated processes. In this study, the potential effects of ocean acidification on chemolithoautotrophic prokaryotes of marine oxic-anoxic transition zones were investigated, using the chemoautotrophic denitrifying ɛ-proteobacterium "Sulfurimonas gotlandica" strain GD1 as a model organism. This and related taxa use reduced sulfur compounds, e.g. sulfide and thiosulfate, as electron donors and were previously shown to be responsible for nitrate removal and sulfide detoxification in redox zones of the Baltic Sea water column but occur also in other oxygen-deficient marine systems. Bacterial cell growth within a broad range of DIC concentrations and pH values was monitored and substrate utilization was determined. The results showed that the DIC saturation concentration for growth was already reached at 800 μM, which is well below in situ DIC levels. The pH optimum was between 6.6 and 8.0. Within a pH range of 6.6-7.1 there was no significant difference in substrate utilization; however, at lower pH values cell growth decreased sharply and cell-specific substrate consumption increased. These findings suggest that a direct effect of ocean acidification, with the predicted changes in pH and DIC, on chemolithoautotrophic bacteria such as "S. gotlandica" str. GD1 is generally not very probable.

  10. Influence of increasing dissolved inorganic carbon concentrations and decreasing pH on chemolithoautrophic bacteria from oxic-sulfidic interfaces

    Directory of Open Access Journals (Sweden)

    K. Mammitzsch

    2012-12-01

    Full Text Available Increases in the dissolved inorganic carbon (DIC concentration are expected to cause a decrease in the pH of ocean waters, a process known as ocean acidification. In oxygen-deficient zones this will add to already increased DIC and decreased pH values. It is not known how this might affect microbial communities and microbially mediated processes. In this study, the potential effects of ocean acidification on chemolithoautotrophic prokaryotes of marine oxic-anoxic transition zones were investigated, using the chemoautotrophic denitrifying ε-proteobacterium "Sulfurimonas gotlandica" strain GD1 as a model organism. This and related taxa use reduced sulfur compounds, e.g. sulfide and thiosulfate, as electron donors and were previously shown to be responsible for nitrate removal and sulfide detoxification in redox zones of the Baltic Sea water column but occur also in other oxygen-deficient marine systems. Bacterial cell growth within a broad range of DIC concentrations and pH values was monitored and substrate utilization was determined. The results showed that the DIC saturation concentration for growth was already reached at 800 μM, which is well below in situ DIC levels. The pH optimum was between 6.6 and 8.0. Within a pH range of 6.6–7.1 there was no significant difference in substrate utilization; however, at lower pH values cell growth decreased sharply and cell-specific substrate consumption increased. These findings suggest that a direct effect of ocean acidification, with the predicted changes in pH and DIC, on chemolithoautotrophic bacteria such as "S. gotlandica" str. GD1 is generally not very probable.

  11. Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization.

    Science.gov (United States)

    Kobayashi, Takuro; Li, Yu-You; Kubota, Kengo; Harada, Hideki; Maeda, Takeki; Yu, Han-Qing

    2012-01-01

    The microbial mats responsible for biological desulfurization from biogas in a full-scale anaerobic digester were characterized in terms of their structure, as well as their chemical and microbial properties. Filament-shaped elemental sulfur 100-500 μm in length was shown to cover the mats, which cover the entire headspace of the digester. This is the first report on filamentous sulfur production in a non-marine environment. The results of the analysis of the mats suggest that the key players in the sulfide oxidation and sulfur production in the bio-desulfurization in the headspace of the digester were likely to be two sulfide-oxidizing bacteria (SOB) species related to Halothiobacillus neapolitanus and Sulfurimonas denitrificans, and that the microbial community, cell density, activity for sulfide oxidation varied according to the environmental conditions at the various locations of the mats. Since the water and nutrients necessary for the SOB were provided by the digested sludge droplets deposited on the mats, and our results show that a higher rate of sulfide oxidation occurred with more frequent digested sludge deposition, the habitat of the SOB needs to be made in the lower part of the headspace near the liquid level of the digested sludge to maintain optimal conditions. PMID:21735263

  12. Bacterial community analysis of a gas-phase biotrickling filter for biogas mimics desulfurization through the rRNA approach.

    Science.gov (United States)

    Maestre, Juan P; Rovira, R; Alvarez-Hornos, F J; Fortuny, M; Lafuente, J; Gamisans, X; Gabriel, D

    2010-08-01

    The bacterial composition of a lab-scale biotrickling filter (BTF) treating high loads of H(2)S was investigated by the rRNA approach. Two 16S rRNA gene clone libraries were established 42 and 189 d after reactor startup, while fluorescent in-situ hybridization (FISH) with DNA probes was performed throughout 260d of reactor operation. Diversity, community structure and metamorphosis were studied from reactor startup to fully-established pseudo-steady state operation at near neutral pH and at an inlet H(2)S concentration of 2000 ppmv (load of 55.6g H(2)S m(-3)h(-1)). In addition, FISH was used for assessing the spatial distribution of sulfur-oxidizing bacteria (SOB) along the length of the reactor under pseudo-steady state operation. A major shift in the diversity of the community was observed with the operating time, from a well-diverse community at startup to pseudo-steady state operation with a majority of retrieved sequences affiliated to SOB of the sulfur cycle including Thiothrix spp., Thiobacillus spp., and Sulfurimonas denitrificans. Although aerobic species were predominant along the BTF, a vertical stratification was encountered, in which facultative anaerobes had a major relative abundance in the inlet part of the BTF, where the sulfide to oxygen ratio was higher. The observed changes were related to the trophic properties of the community, the DO concentration, the accumulation of elemental sulfur and the operation at neutral pH. PMID:20554311

  13. Influence of magnetic fields on the denitrification activity of bacteria Paracoccus denitrificans

    Czech Academy of Sciences Publication Activity Database

    Fojt, Lukáš; Strašák, Luděk; Vetterl, Vladimír

    Prague, 2005. s. 65. [Coherence and Electromagnetic Fields in Biological Systems. 01.07.2005-04.07.2005, Prague] Institutional research plan: CEZ:AV0Z50040507 Keywords : magnetic fields effect * bacteria * denitrification Subject RIV: BO - Biophysics

  14. Untersuchungen zur Funktion des Oxidase-Biogenesefaktors Surf1 aus Paracoccus denitrificans

    OpenAIRE

    Bundschuh, Freya Alena

    2010-01-01

    Die mitochondriale Atmungskette und insbesondere die Cytochrom c Oxidase als deren terminales Enzym sind essentiell für den Energiestoffwechsel eukaryotischer Zellen. Die Assemblierung der mitochondrialen Cytochrom c Oxidase mit ihren bis zu 13 Untereinheiten ist noch nicht bis ins Detail aufgeklärt, aber es handelt sich um einen geordneten, stark regulierten Prozess, und Defekte der Assemblierung sind häufig Ursache für neurodegenerative und myopathische Erkrankungen. In Eukaryoten sind bish...

  15. Energy coupling to nitrate uptake into the denitrifying cells of Paracoccus denitrificans.

    Science.gov (United States)

    Kucera, Igor

    2005-09-01

    This study deals with the effects of the agents that dissipate the individual components of the proton motive force (short-chain fatty acids, nigericin, and valinomycin) upon the methyl viologen-coupled nitrate reductase activity in intact cells. Substitution of butyrate or acetate for chloride in Tris-buffered assay media resulted in a marked inhibition at pH 7. In a Tris--chloride buffer of neutral pH, the reaction was almost fully inhibitable by nigericin. Alkalinisation increased the IC(50) value for nigericin and decreased the maximal inhibition attained. Both types of inhibitions could be reversed by the permeabilisation of cells or by the addition of nitrite, and that caused by nigericin disappeared at high extracellular concentrations of potassium. These data indicate that nitrate transport step relies heavily on the pH gradient at neutral pH. Since the affinity of cells for nitrate was strongly diminished by imposing an inside-positive potassium (or lithium) diffusion potential at alkaline external pH, a potential dependent step may be of significance in the transporter cycle under these conditions. Experiments with sodium-depleted media provided no hints for Na(+) as a possible H(+) substitute. PMID:16112075

  16. A Rare Cause of Calcified Subdural Empyema and Ventriculitis in a Pediatric Patient: Achromobacter Denitrificans

    OpenAIRE

    Beker-Acay, Mehtap; Boyaci, Mehmet Gazi; Asik, Gulsah; Koken, Resit; Unlu, Ebru; Rakip, Usame

    2016-01-01

    Intracranial infections in the pediatric age group are still important causes of morbidity in developing countries. A 2-year-old male patient presented with acute onset of seizures and loss of consciousness to our emergency department with a past history of being followed for hypogammaglobulinemia. Unenhanced computerized tomography scan of the brain revealed a right frontoparietal peripherally calcified extraaxial collection, brain edema and a left sided shift. Contrast enhanced magnetic res...

  17. Application of RNA Stable Isotope Probing (SIP) to Link Community Activity with Microorganisms Responsible for Autotrophy in the Subseafloor at Axial Seamount

    Science.gov (United States)

    Huber, J. A.; Fortunato, C. S.

    2014-12-01

    The global ocean comprises the Earth's largest biome, with microorganisms playing a dominant biogeochemical role. However, the potential for production of new microbial biomass within the subseafloor is rarely considered in traditional oceanographic paradigms of carbon cycling or microbial food webs. In this study, we used RNA Stable Isotope Probing (RNA SIP) to determine the microbial community composition and genetic repertoire of active subseafloor autotrophs in warm venting fluids from Axial Seamount. RNA is a responsive biomarker because it is a reflection of cellular activity independent of replication, and RNA SIP thus provides access to both the function of a microbial community and the phylogeny of the organisms accountable for key functions. Diffuse fluids were incubated shipboard at 30°C, 55°C, and 80°C with 13DIC and H2. Metatranscriptomic sequencing of both the enriched and non-enriched RNA was carried out from 13C and 12C controls. In addition, filtered fluid samples were preserved in situ for comparative meta -transcriptomic and -genomic analyses. Diverse lineages of bacteria and archaea and accompanying metabolisms were detected in situ, but RNA SIP results show dominance of three different groups of autotrophs active under each experimental condition. At 30°C, members of the Sulfurimonas genus dominated, with genes for hydrogen oxidation, nitrate reduction, and carbon fixation via the rTCA cycle highly expressed. At 55°C, both Caminibacter and Nautilia transcripts were detected for rTCA cycle, hydrogen oxidation, and nitrate reduction. At 80°C, transcripts for hydrogenotrophic methanogenesis mediated by members of Methanocaldococcus were detected. These results suggest the subseafloor hosts various anaerobic chemolithoautotrophs that span a wide temperature range, with hydrogen playing a key role in microbial metabolism. Complementary experiments are currently being carried out on the seafloor with a novel in situ incubator unit to provide

  18. Complete genome sequence of the haloalkaliphilic, obligately chemolithoautotrophic thiosulfate and sulfide-oxidizing γ-proteobacterium Thioalkalimicrobium cyclicum type strain ALM 1 (DSM 14477(T)).

    Science.gov (United States)

    Kappler, Ulrike; Davenport, Karen; Beatson, Scott; Lapidus, Alla; Pan, Chongle; Han, Cliff; Montero-Calasanz, Maria Del Carmen; Land, Miriam; Hauser, Loren; Rohde, Manfred; Göker, Markus; Ivanova, Natalia; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C

    2016-01-01

    Thioalkalimicrobium cyclicum Sorokin et al. 2002 is a member of the family Piscirickettsiaceae in the order Thiotrichales. The γ-proteobacterium belongs to the colourless sulfur-oxidizing bacteria isolated from saline soda lakes with stable alkaline pH, such as Lake Mono (California) and Soap Lake (Washington State). Strain ALM 1(T) is characterized by its adaptation to life in the oxic/anoxic interface towards the less saline aerobic waters (mixolimnion) of the stable stratified alkaline salt lakes. Strain ALM 1(T) is the first representative of the genus Thioalkalimicrobium whose genome sequence has been deciphered and the fourth genome sequence of a type strain of the Piscirickettsiaceae to be published. The 1,932,455 bp long chromosome with its 1,684 protein-coding and 50 RNA genes was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008. PMID:27274784

  19. Complete genome sequence of the haloalkaliphilic, obligately chemolithoautotrophic thiosulfate and sulfide-oxidizing γ-proteobacterium Thioalkalimicrobium cyclicum type strain ALM 1 (DSM 14477T)

    OpenAIRE

    Kappler, Ulrike; Davenport, Karen; Beatson, Scott; Lapidus, Alla; Pan, Chongle; Han, Cliff; Montero-Calasanz, Maria del Carmen; Land, Miriam; Hauser, Loren; Rohde, Manfred; Göker, Markus; Ivanova, Natalia; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C.

    2016-01-01

    Thioalkalimicrobium cyclicum Sorokin et al. 2002 is a member of the family Piscirickettsiaceae in the order Thiotrichales. The γ-proteobacterium belongs to the colourless sulfur-oxidizing bacteria isolated from saline soda lakes with stable alkaline pH, such as Lake Mono (California) and Soap Lake (Washington State). Strain ALM 1T is characterized by its adaptation to life in the oxic/anoxic interface towards the less saline aerobic waters (mixolimnion) of the stable stratified alkaline salt ...

  20. Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation.

    OpenAIRE

    Wodara, C; Bardischewsky, F; Friedrich, C G

    1997-01-01

    A 13-kb genomic region of Paracoccus dentrificans GB17 is involved in lithotrophic thiosulfate oxidation. Adjacent to the previously reported soxB gene (C. Wodara, S. Kostka, M. Egert, D. P. Kelly, and C. G. Friedrich, J. Bacteriol. 176:6188-6191, 1994), 3.7 kb were sequenced. Sequence analysis revealed four additional open reading frames, soxCDEF. soxC coded for a 430-amino-acid polypeptide with an Mr of 47,339 that included a putative signal peptide of 40 amino acids (Mr of 3,599) with a RR...

  1. Elektronentransfer zwischen Komplex III und IV der Atmungskette von Paracoccus denitrificans und Thermus thermophilus : funktionelle und kinetische Charakterisierung der Interaktionen anhand von löslichen Fragmenten

    OpenAIRE

    Janzon, Julia

    2007-01-01

    Adenosintriphosphat (ATP) als universelles Energieäquivalent der Zelle wird durch die oxidative Phosphorylierung synthetisiert, bei der Elektronen entlang des elektrochemischen Gefälles der Atmungskette über verschiedene Redoxkomplexe transferiert und durch die chemiosmotische Kopplung Protonen über die Membran gepumpt werden. Der Protonengradient wird dann von der ATP-Synthase genutzt, um ADP zu ATP zu phosphorylieren. Zentraler Redoxkomplex der Atmungskette vieler Pro- und Eukaryonten ist d...

  2. Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture

    DEFF Research Database (Denmark)

    Foesel, Bärbel U.; Drake, Harold L.; Schramm, Andreas

    2011-01-01

    Three Gram-negative bacterial strains were isolated from the biofilter of a recirculating marine aquaculture. They were non-pigmented rods, mesophiles, moderately halophilic, and showed chemoorganoheterotrophic growth on various sugars, fatty acids, and amino acids, with oxygen as electron acceptor......; strains D9-3T and D11-58 were in addition able to denitrify. Phototrophic or fermentative growth could not be demonstrated. Phylogenetic analysis of the 16S rRNA gene sequences placed D9-3T and D11-58, and D1-19T on two distinct branches within the alpha-3 proteobacterial Rhodobacteraceae, affiliated with...... = DSM 18921T = ATCC BAA-1447T; additional strain D11-58 = DSM19039 = ATCC BAA-1448) and Pararhodobacter aggregans gen. nov., sp. nov (type strain D1-19T = DSM 18938T = ATCC BAA-1446T)....

  3. NCBI nr-aa BLAST: CBRC-OPRI-01-0485 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OPRI-01-0485 ref|YP_680544.1| magnesium ... chelatase subunit D [Roseobacter denitrificans OCh ... 114] gb|ABG29858.1| magnesium -chelatase 60 kDa subunit [Roseobacter denitrifican ...

  4. Experimental investigation of activities and tolerance of denitrifying bacteria under alkaline and reducing condition

    International Nuclear Information System (INIS)

    In the geological disposal system of TRU wastes, nitrogen generation by denitrifying bacteria could provide significant impact on the assessment of this system, because nitrate contained in process concentrated liquid waste might be electron acceptor for denitrifying bacteria. In this study, the activities and tolerance of denitrifying under disposal condition were investigated. Pseudomonas denitrificans as denitrifying bacteria was used. The results showed that Pseudomonas denitrificans had activity under reducing condition, but under high pH condition (pH>9.5), the activity of Pseudomonas denitrificans was not detected. It is possible that the activity of Pseudomonas denitrificans would be low under disposal condition. (author)

  5. Gene : CBRC-CJAC-01-1298 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-1298 Novel UN D UNKNOWN PG54_MYCTU 8e-13 37% ref|ZP_00631733.1| Hemolysin-type calc ... ium-binding region ... [Paracoccus denitrificans PD1222] ref|YP_915912.1| ... Hemolysin-type calcium-binding region ... [Paracoccus denitrificans PD1222] gb|ABL70216.1| H ...

  6. NCBI nr-aa BLAST: CBRC-LAFR-01-0953 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-0953 ref|YP_316208.1| possible transmembrane protein [Thiobacillus denit...rificans ATCC 25259] gb|AAZ98403.1| possible transmembrane protein [Thiobacillus denitrificans ATCC 25259] YP_316208.1 0.005 24% ...

  7. NCBI nr-aa BLAST: CBRC-DNOV-01-2699 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DNOV-01-2699 ref|YP_394140.1| hypothetical protein Tmden_1628 [Thiomicrospira ...denitrificans ATCC 33889] gb|ABB44905.1| hypothetical protein Tmden_1628 [Thiomicrospira denitrificans ATCC 33889] YP_394140.1 0.002 34% ...

  8. Gene : CBRC-OPRI-01-0485 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OPRI-01-0485 Novel UN B UNKNOWN Y2116_KOCRD 0.003 30% ref|YP_680544.1| magnesium ... chelatase ... [Roseobacter denitrificans OCh 114] gb|ABG29858.1| magnesium -chelatase 60 kDa subunit [Roseobacter denitrifican ...

  9. Determinants Encoding Resistance to Several Heavy Metals in Newly Isolated Copper-Resistant Bacteria

    OpenAIRE

    Dressler, Cathrin; Kües, Ursula; Nies, Dietrich H.; Friedrich, Bärbel

    1991-01-01

    Three copper-resistant, gram-negative bacteria were isolated and characterized. Of the three strains, Alcaligenes denitrificans AH tolerated the highest copper concentration (MIC = 4 mM CuSO4). All three strains showed various levels of resistance to other metal ions. A. denitrificans AH contains sequences which cross-hybridized with the mer (mercury resistance) determinant of Tn21 and the czc (cobalt, zinc, and cadmium resistance), cnr (cobalt and nickel resistance), and chr (chromate resist...

  10. Inducible gene expression system by 3-hydroxypropionic acid

    OpenAIRE

    Zhou, Shengfang; Ainala, Satish Kumar; Seol, Eunhee; Nguyen, Trinh Thi; Park, Sunghoon

    2015-01-01

    Background 3-Hydroxypropionic acid (3-HP) is an important platform chemical that boasts a variety of industrial applications. Gene expression systems inducible by 3-HP, if available, are of great utility for optimization of the pathways of 3-HP production and excretion. Results Here we report the presence of unique inducible gene expression systems in Pseudomonas denitrificans and other microorganisms. In P. denitrificans, transcription of three genes (hpdH, mmsA and hbdH-4) involved in 3-HP ...

  11. Characterization of Bacterial Biofilms for Wastewater Treatment

    OpenAIRE

    Andersson, Sofia

    2009-01-01

    Research performed at the Division of Environmental Microbiology has over the last years resulted in the isolation of possible bacterial key-organisms with efficient nutrient removal properties (Comamonas denitrificans, Brachymonas denitrificans, Aeromonas hydrophila). Effective use of these organisms for enhanced nutrient removal in wastewater treatment applications requires the strains to be retained, to proliferate and to maintain biological activity within theprocess. This can be achieved...

  12. Stimulation of autotrophic denitrification by intrusions of the Bosporus Plume into the anoxic Black Sea

    Directory of Open Access Journals (Sweden)

    Clara A. Fuchsman

    2012-07-01

    Full Text Available Autotrophic denitrification was measured in the southwestern coastal Black Sea, where the Bosporus Plume injects oxidized chemical species (especially O2 and NO3- into the oxic, suboxic and anoxic layers. Prominent oxygen intrusions caused an overlap of NOx- and sulfide at the same station where autotrophic denitrification activity was detected with incubation experiments. Several bacteria that have been proposed to oxidize sulfide in other low oxygen environments were found in the Black Sea including SUP05, Sulfurimonas, Arcobacter, and BS-GSO2. Comparison of TRFLP profiles from this mixing zone station and the Western Gyre (a station not affected by the Bosporus Plume indicate the greatest relative abundance of Sulfurimonas and Arcobacter at the appropriate depths at the mixing zone station. The autotrophic gammaproteobacterium BS-GSO2 correlated with ammonium fluxes rather than with sulfide fluxes and the maximum in SUP05 peak height was shallower than the depths where autotrophic denitrification was detected. Notably, anammox activity was not detected at the mixing zone station, though low levels of DNA from the anammox bacteria Candidatus Scalindua were present. These results provide evidence for a modified ecosystem with different N2 production pathways in the southwest coastal region compared to that found in the rest of the Black Sea. Moreover, the same Sulfurimonas phylotype (BS139 was previously detected on >30 μm particles in the suboxic zone of the Western Gyre along with DNA of potential sulfate reducers, so it is possible that particle-attached autotrophic denitrification may be an overlooked N2 production pathway in the central Black Sea as well.

  13. Dicty_cDB: Contig-U04537-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available e) Flavobacterium johnsoniae UW101,... 42 0.015 CP000153_1829( CP000153 |pid:none) Sulfurimonas deni...1 CP001068_1900( CP001068 |pid:none) Ralstonia pickettii 12J chromos... 39 0.21 AK083654_1( AK083654 |pid:non...ome... 44 7.3 1 ( AP006680 ) Lotus japonicus genomic DNA, chromosome 1, clone:... 44 ...2 2e-08 AE004091_399( AE004091 |pid:none) Pseudomonas aeruginosa PAO1, com... 62 ...e) Desulfotalea psychrophila LSv54... 61 3e-08 CP000744_497( CP000744 |pid:none) Pseudomonas aeruginos

  14. Complete nitrification by Nitrospira bacteria

    DEFF Research Database (Denmark)

    Daims, Holger; Lebedeva, Elena V.; Pjevac, Petra;

    2015-01-01

    Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetic...

  15. Draft Genome Sequence of Clostridium aceticum DSM 1496, a Potential Butanol Producer through Syngas Fermentation

    OpenAIRE

    Song, Yoseb; Hwang, Soonkyu; Cho, Byung-Kwan

    2015-01-01

    Clostridium aceticum DSM 1496 is a Gram-negative anaerobic chemolithoautotrophic acetogenic bacterium that is capable of producing commodity chemicals from syngas fermentation. In this study, we report the draft genome sequence of the C. aceticum DSM 1496 strain (4.16 Mb) to elucidate the syngas fermentation metabolic pathway.

  16. Draft Genome Sequence of Acetobacterium bakii DSM 8239, a Potential Psychrophilic Chemical Producer through Syngas Fermentation

    OpenAIRE

    Hwang, Soonkyu; Song, Yoseb; Cho, Byung-Kwan

    2015-01-01

    Acetobacterium bakii DSM 8239 is an anaerobic, psychrophilic, and chemolithoautotrophic bacterium that is a potential platform for producing commodity chemicals from syngas fermentation. We report here the draft genome sequence of A. bakii DSM 8239 (4.14 Mb) to elucidate its physiological and metabolic properties related to syngas fermentation.

  17. Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus.

    Science.gov (United States)

    Valdes, Jorge; Ossandon, Francisco; Quatrini, Raquel; Dopson, Mark; Holmes, David S

    2011-12-01

    Acidithiobacillus thiooxidans is a mesophilic, extremely acidophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and inorganic sulfur compounds. Here we present the draft genome sequence of A. thiooxidans ATCC 19377, which has allowed the identification of genes for survival and colonization of extremely acidic environments. PMID:22123759

  18. Draft Genome Sequence of the Extremely Acidophilic Biomining Bacterium Acidithiobacillus thiooxidans ATCC 19377 Provides Insights into the Evolution of the Acidithiobacillus Genus

    OpenAIRE

    Valdes, Jorge; Ossandon, Francisco; Quatrini, Raquel; Dopson, Mark; Holmes, David S.

    2011-01-01

    Acidithiobacillus thiooxidans is a mesophilic, extremely acidophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and inorganic sulfur compounds. Here we present the draft genome sequence of A. thiooxidans ATCC 19377, which has allowed the identification of genes for survival and colonization of extremely acidic environments.

  19. Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation

    NARCIS (Netherlands)

    Klatt, Judith M.; Polerecky, Lubos

    2015-01-01

    Chemolithoautotrophic sulfur oxidizing bacteria (SOB) couple the oxidation of reduced sulfur compounds to the production of biomass. Their role in the cycling of carbon, sulfur, oxygen, and nitrogen is, however, difficult to quantify due to the complexity of sulfur oxidation pathways. We describe a

  20. Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids.

    Science.gov (United States)

    Akerman, Nancy H; Butterfield, David A; Huber, Julie A

    2013-01-01

    Microorganisms throughout the dark ocean use reduced sulfur compounds for chemolithoautotrophy. In many deep-sea hydrothermal vents, sulfide oxidation is quantitatively the most important chemical energy source for microbial metabolism both at and beneath the seafloor. In this study, the presence and activity of vent endemic Epsilonproteobacteria was examined in six low-temperature diffuse vents over a range of geochemical gradients from Axial Seamount, a deep-sea volcano in the Northeast Pacific. PCR primers were developed and applied to target the sulfur oxidation soxB gene of Epsilonproteobacteria. soxB genes belonging to the genera Sulfurimonas and Sulfurovum are both present and expressed at most diffuse vent sites, but not in background seawater. Although Sulfurovum-like soxB genes were detected in all fluid samples, the RNA profiles were nearly identical among the vents and suggest that Sulfurimonas-like species are the primary Epsilonproteobacteria responsible for actively oxidizing sulfur via the Sox pathway at each vent. Community patterns of subseafloor Epsilonproteobacteria 16S rRNA genes were best matched to methane concentrations in vent fluids, as well as individual vent locations, indicating that both geochemistry and geographical isolation play a role in structuring subseafloor microbial populations. The data show that in the subseafloor at Axial Seamount, Epsilonproteobacteria are expressing the soxB gene and that microbial patterns in community distribution are linked to both vent location and chemistry. PMID:23847608

  1. Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids

    Directory of Open Access Journals (Sweden)

    JulieAHuber

    2013-07-01

    Full Text Available Microorganisms throughout the dark ocean use reduced sulfur compounds for chemolithoautotrophy. In many deep-sea hydrothermal vents, sulfide oxidation is quantitatively the most important chemical energy source for microbial metabolism both at and beneath the seafloor. In this study, the presence and activity of vent endemic Epsilonproteobacteria was examined in six low-temperature diffuse vents over a range of geochemical gradients from Axial Seamount, a deep-sea volcano in the Northeast Pacific. PCR primers were developed and applied to target the sulfur oxidation soxB gene of Epsilonproteobacteria. soxB genes belonging to the genera Sulfurimonas and Sulfurovum are both present and expressed at most diffuse vent sites, but not in background seawater. Although Sulfurovum-like soxB genes were detected in all fluid samples, the RNA profiles were nearly identical among the vents and suggest that Sulfurimonas-like species are the primary Epsilonproteobacteria responsible for actively oxidizing sulfur via the Sox pathway at each vent. Community patterns of subseafloor Epsilonproteobacteria 16S rRNA genes were best matched to methane concentrations in vent fluids, as well as individual vent locations, indicating that both geochemistry and geographical isolation play a role in structuring subseafloor microbial populations. The data show that in the subseafloor at Axial Seamount, Epsilonproteobacteria are expressing the soxB gene and that microbial patterns in community distribution are linked to both vent location and chemistry.

  2. Respiratory arsenate reductase as a bidirectional enzyme

    International Nuclear Information System (INIS)

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe-S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  3. Respiratory arsenate reductase as a bidirectional enzyme

    Science.gov (United States)

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  4. Complete nitrification by Nitrospira bacteria.

    Science.gov (United States)

    Daims, Holger; Lebedeva, Elena V; Pjevac, Petra; Han, Ping; Herbold, Craig; Albertsen, Mads; Jehmlich, Nico; Palatinszky, Marton; Vierheilig, Julia; Bulaev, Alexandr; Kirkegaard, Rasmus H; von Bergen, Martin; Rattei, Thomas; Bendinger, Bernd; Nielsen, Per H; Wagner, Michael

    2015-12-24

    Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century. Here we report on the discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers. The genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation, which are concomitantly activated during growth by ammonia oxidation to nitrate. Genes affiliated with the phylogenetically distinct ammonia monooxygenase and hydroxylamine dehydrogenase genes of Nitrospira are present in many environments and were retrieved on Nitrospira-contigs in new metagenomes from engineered systems. These findings fundamentally change our picture of nitrification and point to completely nitrifying Nitrospira as key components of nitrogen-cycling microbial communities. PMID:26610024

  5. Role of Surf1 in heme recruitment for bacterial COX biogenesis.

    Science.gov (United States)

    Hannappel, Achim; Bundschuh, Freya A; Ludwig, Bernd

    2012-06-01

    Biogenesis of the mitochondrial cytochrome c oxidase (COX) is a highly complex process involving subunits encoded both in the nuclear and the organellar genome; in addition, a large number of assembly factors participate in this process. The soil bacterium Paracoccus denitrificans is an interesting alternative model for the study of COX biogenesis events because the number of chaperones involved is restricted to an essential set acting in the metal centre formation of oxidase, and the high degree of sequence homology suggests the same basic mechanisms during early COX assembly. Over the last years, studies on the P. denitrificans Surf1 protein shed some light on this important assembly factor as a heme a binding protein associated with Leigh syndrome in humans. Here, we summarise our current knowledge about Surf1 and its role in heme a incorporation events during bacterial COX biogenesis. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes. PMID:21945856

  6. Microbial control of the production of hydrogen sulfide by sulfate-reducing bacteria.

    Science.gov (United States)

    Montgomery, A D; McLnerney, M J; Sublette, K L

    1990-03-01

    A sulfide-resistant ctrain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium or in Berea sandstone cores. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. These data suggest that strain F would be effective in controlling sulfide production in oil reservoirs and other environments. PMID:18592547

  7. Poly-beta-hydroxybutyrate-accumulating bacteria protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii.

    Science.gov (United States)

    Halet, Dirk; Defoirdt, Tom; Van Damme, Petra; Vervaeren, Han; Forrez, Ilse; Van de Wiele, Tom; Boon, Nico; Sorgeloos, Patrick; Bossier, Peter; Verstraete, Willy

    2007-06-01

    A poly-beta-hydroxybutyrate (PHB)-accumulating enrichment culture was obtained using activated sludge from a polyphosphate-accumulating reactor as inoculum. PHB accumulated by the enrichment culture significantly enhanced the survival of Artemia nauplii, infected with the virulent pathogen Vibrio campbellii LMG 21363. A strain was isolated from the enrichment culture, based on its ability to accumulate PHB, and 16S rRNA gene sequencing of the isolate revealed 99% sequence similarity to Brachymonas denitrificans AS-P1. The isolate, named PHB2, showed good PHB-accumulating activity (up to 32% of the cell dry weight). PHB accumulated by isolate PHB2 was able to protect Artemia completely from the V. campbellii strain. Our data indicate that PHB-accumulating bacteria, such as B. denitrificans PHB2, could be used as an an effective and economically interesting alternative strategy to control infections in aquaculture. PMID:17391334

  8. An Immunological Strategy To Monitor In Situ the Phosphate Starvation State in Thiobacillus ferrooxidans

    OpenAIRE

    Varela, Patricia; Levicán, Gloria; Rivera, Francisco; Jerez, Carlos A.

    1998-01-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. During the process of ore bioleaching, the microorganisms are subjected to several stressing conditions, including the lack of some essential nutrients, which can affect the rates and yields of bioleaching. When T. ferrooxidans is starved for phosphate, the cells respond by inducing the synthesis of several proteins, some of which are outer membrane proteins of high molecular w...

  9. Periplasmic Proteins of the Extremophile Acidithiobacillus ferrooxidans: A HIGH THROUGHPUT PROTEOMICS ANALYSIS*S

    OpenAIRE

    Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J; Shabanowitz, Jeffrey; Hunt, Donald F; Jerez, Carlos A.

    2007-01-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction...

  10. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans

    OpenAIRE

    Yin, Huaqun; Zhang, Xian; Li, Xiaoqi; He, Zhili; Liang, Yili; Guo, Xue; Hu, Qi; Xiao, Yunhua; Cong, Jing; Ma, Liyuan; Niu, Jiaojiao; Liu, Xueduan

    2014-01-01

    Background Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing techno...

  11. The Chromosomal Arsenic Resistance Genes of Thiobacillus ferrooxidans Have an Unusual Arrangement and Confer Increased Arsenic and Antimony Resistance to Escherichia coli

    OpenAIRE

    Butcher, Bronwyn G.; Deane, Shelly M.; Rawlings, Douglas E.

    2000-01-01

    The chromosomal arsenic resistance genes of the acidophilic, chemolithoautotrophic, biomining bacterium Thiobacillus ferrooxidans were cloned and sequenced. Homologues of four arsenic resistance genes, arsB, arsC, arsH, and a putative arsR gene, were identified. The T. ferrooxidans arsB (arsenite export) and arsC (arsenate reductase) gene products were functional when they were cloned in an Escherichia coli ars deletion mutant and conferred increased resistance to arsenite, arsenate, and anti...

  12. Molecular Cloning, Sequencing, and Expression of omp-40, the Gene Coding for the Major Outer Membrane Protein from the Acidophilic Bacterium Thiobacillus ferrooxidans†

    OpenAIRE

    Guiliani, Nicolas; Jerez, Carlos A.

    2000-01-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. Some of the surface components of this microorganism are probably involved in adaptation to their acidic environment and in bacterium-mineral interactions. We have isolated and characterized omp40, the gene coding for the major outer membrane protein from T. ferrooxidans. The deduced amino acid sequence of the Omp40 protein has 382 amino acids and a calculated molecular weight ...

  13. Nitrification at Low pH by Aggregated Chemolithotrophic Bacteria

    OpenAIRE

    De Boer, W.; Klein Gunnewiek, P.J.A.; Veenhuis, M; Bock, E; Laanbroek, H. J.

    1991-01-01

    A study was performed to gain insight into the mechanism of acid-tolerant, chemolithotrophic nitrification. Microorganisms that nitrified at pH 4 were enriched from two Dutch acid soils. Nitrate production in the enrichment cultures was indicated to be of a chemolithoautotrophic nature as it was (i) completely inhibited by acetylene at a concentration as low as 1-mu-mol/liter and (ii) strongly retarded under conditions of carbon dioxide limitation. Electron microscopy of the enrichment cultur...

  14. Distribution and origin of Thaumarchaea in the deep hypolimnion of Lake Maggiore

    OpenAIRE

    Coci, Manuela; Corno, Gianluca; Callieri, Cristiana; Roberto BERTONI

    2015-01-01

    Thaumarchaea represents one of the most abundant groups of Archaea on Earth, being found in a variety of environments including soils, oceans, and freshwaters. Ammonia-oxidizing Thaumarchaea (AOA) significantly contribute to the global nitrogen and carbon cycle through chemolithoautotrophic oxidation of reduced nitrogen compounds. Their distribution of in freshwaters is still far less known than in marine and terrestrial environments. In this study, we analyzed the diversity and relative abun...

  15. Complete genome sequence of Thialkalivibrio versutus D301 isolated from Soda Lake in northern China, a typical strain with great ability to oxidize sulfide.

    Science.gov (United States)

    Mu, Tingzhen; Zhou, Jiemin; Yang, Maohua; Xing, Jianmin

    2016-06-10

    Thioalkalivibrio versutus D301 isolated from Soda Lake is a haloalkaliphilic and obligated chemolithoautotrophic Gram-negative bacterium. The strain has a good adaption to hyperhaline and highly alkaline environment and a powerful sulfur-oxidizing ability. Here, we present the complete genome sequence of T. versutus D301, providing insights into the genomic basis of its effects and facilitating its application in microbial desulfurization. PMID:27080450

  16. Sulfur-Oxidizing Bacteria in Soap Lake (Washington State), a Meromictic, Haloalkaline Lake with an Unprecedented High Sulfide Content▿

    OpenAIRE

    Dimitry Y Sorokin; Foti, Mirjam; Pinkart, Holly C.; Muyzer, Gerard

    2006-01-01

    Culture-dependent and -independent techniques were used to study the diversity of chemolithoautotrophic sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake containing an unprecedentedly high sulfide concentration in the anoxic monimolimnion. Both approaches revealed the dominance of bacteria belonging to the genus Thioalkalimicrobium, which are common inhabitants of soda lakes. A dense population of Thioalkalimicrobium (up to 107 cells/ml) was found at t...

  17. The anaerobic community of an estuarine environment: an analogue for life on Mars.

    OpenAIRE

    Curtis-Harper, E.; Pearson, V. K.; Schwenzer, S. P.; Olsson-Francis, K.

    2015-01-01

    In this study, we used microbiological techniques in combination with several analytical geochemical techniques to identify potential biomarkers for life on Mars. A community of anaerobic microorganisms containing chemolithoautotrophs was isolated from below the redox potential discontinuity (RPD) layer. The anaerobic conditions, the 11-15 ˚C temperature and high salinity (37 g l-1 NaCl) make the sub-RPD zone an ideal environment to sample a biological analogue for the martian subsurface. Sam...

  18. Thermodynamic investigations of microbial metabolism and abiotic organic synthesis in seafloor hydrothermal systems

    OpenAIRE

    Hentscher, Michael

    2012-01-01

    Hydrothermal circulation of seawater within the oceanic crust creates conditions suitable for chemosynthesis-based microbial life. Synthesis of abiotic organic compounds takes place during seawater-basement rock interaction at elevated temperatures. Low temperature circulation in the recharge zone allows chemolithoautotrophs to gain energy by oxidizing or reduction of minerals, while deeper and hotter regions (reaction zone) are dominated by rock alteration and produce the reduced conditions ...

  19. Associations of Europium(III) with gram-negative bacteria

    International Nuclear Information System (INIS)

    Full text of publication follows: Migration of radionuclides in the environment is greatly affected by bacteria. Gram-negative bacteria are ubiquitous in the environment and can preferentially bind radionuclides because of the presence of the cell envelop consisting of two membrane bilayers with an intervening thin peptidoglycan layer, where carboxyl and phosphate functional groups are mainly involved in metal cation adsorption. In this study, we investigated the association of Eu(III) with four Gram-negative bacteria Pseudomonas fluorescens, Alcaligenes faecalis, Shewanella putrefaciens, and Paracoccus denitrificans. Europium(III) is a good analogue of Am(III) and Cm(III). The association of Eu(III) with the bacteria were determined by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The kinetics study showed that the Eu(III) adsorption on the bacteria proceeded rapidly. The Eu(III) adsorption on P. fluorescens at pH 3, A. faecalis and P. denitrificans at pHs 3, 4, and 5, and S. putrefaciens at pHs 4 and 5 reached a maximum within 5 minutes after contact. For P. denitrificans, the percent adsorption of Eu(III) decreased after the maximum percent adsorption was attained, which suggests the existence of exudates with an affinity with Eu(III). TRLFS showed that the coordination of Eu(III) on these bacteria is multi-dentate through an inner-spherical process. The ligand field of Eu(III) on P. denitrificans was as strong as the ones observed for halo-philic microorganisms, while that of P. fluorescens, A. faecalis, and S. putrefaciens was the typical one observed for non-halo-philic microorganisms. The coordination environment of Eu(III) on the bacteria differed from each other, though they are categorized as Gram-negative bacteria with the similar cell wall components. (authors)

  20. Surf1, Associated with Leigh Syndrome in Humans, Is a Heme-binding Protein in Bacterial Oxidase Biogenesis*

    OpenAIRE

    Bundschuh, Freya A.; Hannappel, Achim; Anderka, Oliver; Ludwig, Bernd

    2009-01-01

    Biogenesis of mitochondrial cytochrome c oxidase (COX) relies on a large number of assembly factors, among them the transmembrane protein Surf1. The loss of human Surf1 function is associated with Leigh syndrome, a fatal neurodegenerative disorder caused by severe COX deficiency. In the bacterium Paracoccus denitrificans, two homologous proteins, Surf1c and Surf1q, were identified, which we characterize in the present study. When coexpressed in Escherichia coli together with enzymes for heme ...

  1. Characterization of Pseudomonas Species Isolated from the Rhizosphere of Plants Grown in Serozem Soil, Semi-Arid Region of Uzbekistan

    OpenAIRE

    Dilfuza Egamberdiyeva

    2005-01-01

    Collections of native Pseudomonas spp. are kept at the NCAM of Uzbekistan. Some of those organisms were isolated from the rhizosphere of cotton, wheat, corn, melon, alfalfa, and tomato grown in field locations within a semi-arid region of Uzbekistan. Strains used for this study were Pseudomonas alcaligenes, P. aurantiaca, P. aureofaciens, P. denitrificans, P. mendocina, P. rathonis, and P. stutzeri. Some of the pseudomonads have been characterized in this report. These strains produced enzyme...

  2. Allosteric nucleotide-binding site in the mitochondrial NADH:ubiquinone oxidoreductase (respiratory complex I)

    OpenAIRE

    Grivennikova, Vera G.; Gladyshev, Grigory V.; Vinogradov, Andrei D.

    2011-01-01

    The rotenone-insensitive NADH:hexaammineruthenium III (HAR) oxidoreductase reactions catalyzed by bovine heart and Yarrowia lipolytica submitochondrial particles or purified bovine complex I are stimulated by ATP and other purine nucleotides. The soluble fraction of mammalian complex I (FP) and prokaryotic complex I homolog NDH-1 in Paracoccus denitrificans plasma membrane lack stimulation of their activities by ATP. The stimulation appears as a decrease in apparent Km values for NADH and HAR...

  3. AcEST: DK954079 [AcEST

    Lifescience Database Archive (English)

    Full Text Available TST39A01NGRL0019_H19 582 Adiantum capillus-veneris mRNA. clone: TST39A01NGRL0019_H19. 5' end seq ... ceptor] OS=Glucono... 33 0.68 sp|P12293|DHM1_PARDE Methanol ... dehydrogenase subunit 1 OS=Paracoc... 33 0.89 sp|P ... DTVSRGAAYWNGKVYFGTFDGRLI 166 >sp|P12293|DHM1_PARDE Methanol ... dehydrogenase subunit 1 OS=Paracoccus denitrifican ...

  4. Biological reduction of iron to the elemental state from ochre deposits of Skelton Beck in Northeast England

    OpenAIRE

    Rahman, Pattanathu K. S. M.; Bastola, Suvechhya

    2014-01-01

    Ochre, consequence of acid mine drainage (AMD), is iron oxides-rich soil pigments that can be found in the water drainage from historic base metal and coal mines. The anaerobic strains of Geobacter sulfurreducens and Shewanella denitrificans were used for the microbial reduction of iron from samples of ochre collected from Skelton Beck (Saltburn Orange River, NZ 66738 21588) in Northeast England. The aim of the research was to determine the ability of the two anaerobic bacteria to reduce the ...

  5. Biological reduction of iron to the elemental state from ochre deposits of Skelton Beck in Northeast England

    OpenAIRE

    PattanathuK S MRahman

    2014-01-01

    Ochre, consequence of acid mine drainage, is iron oxides-rich soil pigments that can be found in the water drainage from historic base metal and coal mines. The anaerobic strains of Geobacter sulfurreducens and Shewanella denitrificans were used for the microbial reduction of iron from samples of ochre collected from Skelton Beck (Saltburn Orange River, NZ 66738 21588) in Northeast England. The aim of the research was to determine the ability of the two anaerobic bacteria to reduce the iron p...

  6. Structure and Evolution of Chlorate Reduction Composite Transposons

    OpenAIRE

    Clark, Iain C.; Melnyk, Ryan A.; Engelbrektson, Anna; Coates, John D.

    2013-01-01

    ABSTRACT The genes for chlorate reduction in six bacterial strains were analyzed in order to gain insight into the metabolism. A newly isolated chlorate-reducing bacterium (Shewanella algae ACDC) and three previously isolated strains (Ideonella dechloratans, Pseudomonas sp. strain PK, and Dechloromarinus chlorophilus NSS) were genome sequenced and compared to published sequences (Alicycliphilus denitrificans BC plasmid pALIDE01 and Pseudomonas chloritidismutans AW-1). De novo assembly of geno...

  7. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles

    OpenAIRE

    Yinglong Su; Xiong Zheng; Yinguang Chen; Mu Li; Kun Liu

    2015-01-01

    The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total n...

  8. Differential efficacy of inhibition of mitochondrial and bacterial cytochrome bc1 complexes by center N inhibitors antimycin, ilicicolin H and funiculosin

    OpenAIRE

    Rotsaert, Frederik A. J.; Ding, Martina G.; Trumpower, Bernard L.

    2007-01-01

    We have compared the efficacy of inhibition of the cytochrome bc1 complexes from yeast and bovine heart mitochondria and Paracoccus denitrificans by antimycin, ilicicolin H, and funiculosin, three inhibitors that act at the quinone reduction site at center N of the enzyme. Although the three inhibitors have some structural features in common, they differ significantly in their patterns of inhibition. Also, while the overall folding pattern of cytochrome b around center N is similar in the enz...

  9. Influence of Light on Carbon Utilization in Aerobic Anoxygenic Phototrophs

    Czech Academy of Sciences Publication Activity Database

    Hauruseu, Dzmitry; Koblížek, Michal

    2012-01-01

    Roč. 78, č. 20 (2012), s. 7414-7419. ISSN 0099-2240 R&D Projects: GA ČR GBP501/12/G055; GA MŠk(CZ) ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : ROSEOBACTER-DENITRIFICANS * PHOTOSYNTHETIC BACTERIUM * GENOME SEQUENCE Subject RIV: EE - Microbiology, Virology Impact factor: 3.678, year: 2012

  10. Reduction of Net Sulfide Production Rate by Nitrate in Wastewater Bioreactors. Kinetics and Changes in the Microbial Community

    DEFF Research Database (Denmark)

    Villahermosa, Desiree; Corzo, Alfonso; Gonzalez, J M;

    2013-01-01

    Nitrate addition stimulated sulfide oxidation by increasing the activity of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB), decreasing the concentration of dissolved H2S in the water phase and, consequently, its release to the atmosphere of a pilot-scale anaerobic bioreactor. The effect of...... four different concentrations of nitrate (0.12, 0.24, 0.50, and 1.00 mM) was investigated for a period of 3 days in relation to sulfide concentration in two bioreactors set up at Guadalete wastewater treatment plant (Jerez de la Frontera, Spain). Physicochemical variables were measured in water and air...... initial net sulfide production in about 3 h. Addition of nitrate increased the activity of NR-SOB and decreased the activity of sulfate-reducing bacteria. Results confirmed the role of NR-SOB on hydrogen sulfide consumption coupled with nitrate reduction and sulfate recycling, revealing Sulfurimonas...

  11. Dicty_cDB: Contig-U15759-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available s 2 ... 48 2.6 1 ( DC618727 ) Lethenteron japonicum cDNA, clone: Lamprey_liver_... 48 2.6 1 ( BJ397039 ) Dictyostelium dis...uence *** SEQUENCING CANCELLED *** f... 38 1.3 2 ( DC614203 ) Lethenteron japonicum cDNA, clone: Lamprey_liv...e... 36 6.5 2 ( DC618774 ) Lethenteron japonicum cDNA, clone: Lamprey_liv...mbda K H 1.37 0.711 1.31 Matrix: blastn matrix:1 -3 Gap Penalties: Existence: 5, Extension: 2 Number of Hits...lete ge... 48 2.6 1 ( DQ229163 ) Neisseria lactamica plasmid pNL9, complete sequence. 48 2.6 1 ( CP000153 ) Sulfurimonas deni

  12. 13N,15N isotope and kinetic evidence against hyponitrite as an intermediate in dentrification.

    Science.gov (United States)

    Hollocher, T C; Garber, E; Cooper, A J; Reiman, R E

    1980-06-10

    13N- and 15N-labeling experiments were carried out with Paracoccus denitrificans, grown anaerobically on nitrate, to determine whether hyponitrite might be an obligatory intermediate in denitrification and a precursor of nitrous oxide. From experiments designed to trap [13N]- or [15N,15N]hyponitrite by dilution into authentic hyponitrite it was calculated that the intracellular concentration of a presumptive hyponitrite pool must be less than 0.4 mM. In order for a pool of this size to turn over rapidly enough to handle the flux of nitrogen during dentrifucation, the spontaneous rate of hyponitrite dehydration must be enhanced by a factor of several thousand through enzyme catalysis. Cell extracts failed to catalyze this reaction under a variety of conditions. It is concluded that hyponitrite cannot be an intermediate in dentrification. In addition, the assimilation of inorganic nitrogen was studied in P. denitrificans using 13N as tracer. At low concentrations (less than 10(-8) M) of labeled nitrate and nitrite 5 to 10% of the label was assimilated into non-volatile metabolites and 90 to 95% was reduced to N2. Similarly, with 15 mM [13N]nitrate, 5% of the label went into metabolites and 95% to N2. High pressure liquid chromatography analysis of the labeled metabolites indicated that the major pathway for assimilation of inorganic nitrogen in P. denitrificans under these conditions is through ammonia incorporation via the aspartase reaction. PMID:7372623

  13. EVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Bill W. Bogan; Wendy R. Sullivan; Kristine M. H. Cruz; Kristine L. Lowe; John J. Kilbane II

    2004-04-30

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing of pepper extracts resulted in preliminary data indicating that some pepper extracts inhibit the growth of some corrosion-associated microorganisms. This quarter additional tests were performed to more specifically investigate the ability of three pepper extracts to inhibit the growth, and to influence the metal corrosion caused by two microbial species: Desulfovibrio vulgaris, and Comomonas denitrificans. All three pepper extracts rapidly killed Desulfovibrio vulgaris, but did not appear to inhibit Comomonas denitrificans. While corrosion rates were at control levels in experiments with Desulfovibrio vulgaris that received pepper extract, corrosion rates were increased in the presence of Comomonas denitrificans plus pepper extract. Further testing with a wider range of pure bacterial cultures, and more importantly, with mixed bacterial cultures should be performed to determine the potential effectiveness of pepper extracts to inhibit MIC.

  14. Diversity of microbial communities in ocean crust below ancient hotspot seamounts along the Louisville Seamount Chain

    Science.gov (United States)

    Sylvan, J. B.; Edwards, K. J.

    2012-12-01

    The goal of Integrated Ocean Drilling Expedition 330, Louisville Seamount Trail, was to understand the motion of the Louisville hotspot during 50-80 Ma. As such, >1 km of volcanic basement was collected from five sites on four seamounts, providing an excellent chance to study how microbial populations are effected by different lithologies, different seamounts and age of basement rock along the Louisville Seamount Chain (LSC). Analysis of bacteria growing in enrichment incubations that targeted oligotrophs (with 1% or 10% Marine Broth 2216 diluted with 3% NaCl) and sulfur oxidizers reveals the presence of a diverse array of bacteria, including ɛ-proteobacteria closely related to Sulfurimonas autotrophica, β-proteobacterial methylotrophs, ζ-proteobacteria and Bacteroidetes most closely related to organisms cultured from sediments. Many of these sequences are Halomonas sulfidaeris str. Esulfude1, a bacterium originally isolated from a hydrothermal sulfide chimney. A second isolate may be a new species of Bacillus. Initial molecular analysis of bacterial communities by pyrosequencing of the 16S rRNA gene as part of the Census of Deep Life (CoDL) supports the data from the culturing work; in one sample collected 174 meters below seafloor, the most abundant bacteria detected include species from the genera Pseudomonas, Sulfurimonas, Methyloversatilis and Desulfocapsa. More CoDL samples will be analyzed in the near future. We will describe results to date on subsurface microbial diversity along the Louisville Seamount Chain from the culturing work and CoDL project and draw comparisons to data derived from younger crustal sites to try to understand how the LSC ecosystem fits into our global picture of life in ocean crust.

  15. Microbial reduction of SO[sub 2] and NO[sub x] as a means of by- product recovery/disposal from regenerable processes for the desulfurization of flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1992-01-01

    Based on the work described simultaneous SO[sub 2]/No[sub x] removal from flue gas based on direct contact of the gas with SRB and T. denitrificans co-cultures or cultures-in-series has been eliminated as a viable process concept at this time. The technical reasons are as follows: (1) NO inhibition of SO[sub 2] reduction by D. desulfuricans - Although the NO concentrations used in the experiments described above are somewhat higher than that found in a typical flue gas, it is quite possible that at lower NO concentrations (or partial pressures) the inhibiting effects will simply take longer to become apparent. (2) Nitrate suppression of NO removal - As noted previously, the cultivation of T. denitrificans in a microbial flue gas treatment system (either one or two stages) would require sulfide-limiting conditions. Therefore, the electron acceptor must be in excess, requiring nitrate in the T. denitrificans process culture. As shown in experiments described above, nitrate significantly suppresses the removal of NO from a feed gas making simultaneous SO[sub 2]/NO[sub x] removal impractical by microbial means. (3) O[sub 2] inhibition of SO[sub 2] and NO reduction - It has been demonstrated that D. desulfuricans working cultures are tolerant of up to 1.7% O[sub 2] in the feed gas. However, further increases in the O[sub 2] partial pressure in the feed gas resulted in O[sub 2] inhibition of SO[sub 2] reduction. These inhibiting levels of O[sub 2] are comparable to those concentrations found in flue gases (3). Therefore, in any process in which raw flue gas contacts a D. desulfuricans culture marginal stability at best can be expected.

  16. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by- product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, June 11, 1992--September 11, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1992-12-31

    Based on the work described simultaneous SO{sub 2}/No{sub x} removal from flue gas based on direct contact of the gas with SRB and T. denitrificans co-cultures or cultures-in-series has been eliminated as a viable process concept at this time. The technical reasons are as follows: (1) NO inhibition of SO{sub 2} reduction by D. desulfuricans - Although the NO concentrations used in the experiments described above are somewhat higher than that found in a typical flue gas, it is quite possible that at lower NO concentrations (or partial pressures) the inhibiting effects will simply take longer to become apparent. (2) Nitrate suppression of NO removal - As noted previously, the cultivation of T. denitrificans in a microbial flue gas treatment system (either one or two stages) would require sulfide-limiting conditions. Therefore, the electron acceptor must be in excess, requiring nitrate in the T. denitrificans process culture. As shown in experiments described above, nitrate significantly suppresses the removal of NO from a feed gas making simultaneous SO{sub 2}/NO{sub x} removal impractical by microbial means. (3) O{sub 2} inhibition of SO{sub 2} and NO reduction - It has been demonstrated that D. desulfuricans working cultures are tolerant of up to 1.7% O{sub 2} in the feed gas. However, further increases in the O{sub 2} partial pressure in the feed gas resulted in O{sub 2} inhibition of SO{sub 2} reduction. These inhibiting levels of O{sub 2} are comparable to those concentrations found in flue gases (3). Therefore, in any process in which raw flue gas contacts a D. desulfuricans culture marginal stability at best can be expected.

  17. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, September 11, 1992--December 11, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1992-12-31

    With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans and have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.

  18. Arsenite-Oxidizing Hydrogenobaculum Strain Isolated from an Acid-Sulfate-Chloride Geothermal Spring in Yellowstone National Park

    OpenAIRE

    Donahoe-Christiansen, Jessica; D'Imperio, Seth; Jackson, Colin R.; Inskeep, William P.; McDermott, Timothy R.

    2004-01-01

    An arsenite-oxidizing Hydrogenobaculum strain was isolated from a geothermal spring in Yellowstone National Park, Wyo., that was previously shown to contain microbial populations engaged in arsenite oxidation. The isolate was sensitive to both arsenite and arsenate and behaved as an obligate chemolithoautotroph that used H2 as its sole energy source and had an optimum temperature of 55 to 60°C and an optimum pH of 3.0. The arsenite oxidation in this organism displayed saturation kinetics and ...

  19. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment

    DEFF Research Database (Denmark)

    Finster, Kai; Liesack, Werner; Thamdrup, Bo

    1998-01-01

    A mesophilic, anaerobic, gram-negative bacterium, strain SB164P1, was enriched and isolated from oxidized marine surface sediment with elemental sulfur as the sole energy substrate in the presence of ferrihydrite. Elemental sulfur was disproportionated to hydrogen sulfide and sulfate. Growth was...... chemolithoautotrophically exclusively by the disproportionation of inorganic sulfur compounds. Comparative 16S rDNA sequencing analysis placed strain SB164P1 into the delta subclass of the class Proteobacteria. Its closest relative is Desulfocapsa thiozymogenes, and slightly more distantly related are Desulfofustis...

  20. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Bollmann, Annette [Miami University, Oxford, OH; Sedlacek, Christopher J [Miami University, Oxford, OH; Laanbroek, Hendrikus J [Netherlands Institute of Ecology (NIOO-KNAW); Suwa, Yuichi [Chuo University, Tokyo, Japan; Stein, Lisa Y [University of California, Riverside; Klotz, Martin G [University of Louisville, Louisville; Arp, D J [Oregon State University; Sayavedra-Soto, LA [Oregon State University; Lu, Megan [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Pennacchio, Len [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL)

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

  1. The potential of Methanogenic Life in the Solar System

    Science.gov (United States)

    Taubner, R.-S.; Firneis, M. G.; Leitner, J. J.; Schleper, C.; Rittmann, S. K.-M. R.

    2015-10-01

    Methanogens from the domain Archaea are obligate anaerobic chemolithoautotrophs or chemolithoheterotrophs producing methane (CH4). For the CH4-production they primarily use various C1 typecompounds (like carbon monoxide (CO), carbon dioxide (CO2), formate (HCO- 2)), but some strains are also able to utilize methanol (CH3OH), acetate, or even methylsulfides for energy production. The capability of methanogens thriving under various extreme environments on Earth is astonishing. Their enormous diversity and the similarity between their growth conditions and the environmental conditions on extraterrestrial bodies throughout the Solar System make methanogens to an ideal test object for astrobiological experiments.

  2. Dicty_cDB: Contig-U04447-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available sqt*EVLPACNKVEVHCNRSPSLAVPIKFDFNSIVVKPIEFFGNFLKHAYPQE VSANVIMLPACTYPFDAKCVIGNSIVTDSSPTSLTFNPI*fgkpipplvfkiynhcsfvn skffsffif...SPTSLTFNPI*fgkpipplvfkiynhcsfvn skffsffifinsfislispsli*ssvaslennlklffnpllrvldkstlfiilhllpnif iiy*if*kkkkx*n*ksk Frame B: kfyffyff...yyllfiiyyllfiiynlxfxiyxlxl*ylwwlwi*ndfsaskes*fsi imcdysipnlrsftsm**s*stl**itffsssyki*l*fyscetn*ifw*ffktcistr...489_2692( CP000489 |pid:none) Paracoccus denitrificans PD1222... 63 9e-09 CP000686_2380( CP000686 |pid:none) Roseif...A83149 ) hypothetical protein PA3971 [imported] - Pseudomo... 39 0.24 CP000442_840( CP000442 |pid:none) Burkholderia ambifari

  3. Dicty_cDB: Contig-U09445-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available fisffsfpskislqlgdr***nyfikiffk kkkikkkhgksi*k******y*niksifk*knk*ir*fcisiri...rvqynhdtiliihyis--- ---FFVFLFFCSFFFLFFXYKIKKKKKKKKKKKKKKKK Frame C: dfshphfifflkfyffyfnflfffsflfffsfhffhflrkylcn*eidnnkiil*kff... CAWZ13685.fwd CAWZ Helobdella robusta Primary Lat... 40 0.006 2 ( AM449950 ) Vitis vinifera contig VV78X030...d:none) Rhizobium leguminosarum bv. trifo... 65 2e-09 CP000927_3597( CP000927 |pid:none) Caulobacter sp. K31...09 CP000491_527( CP000491 |pid:none) Paracoccus denitrificans PD1222 ... 64 4e-09 CP000439_968( CP000439 |pi

  4. Dicty_cDB: Contig-U05107-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available nk*iyky Frame C: *lliiffffsikg*k*k*rkikkdyskifryknrenrtfninyqycrnktiweti*iic* nrerv*yssts*ryg*n...0.22 CP000116_1548( CP000116 |pid:none) Thiobacillus denitrificans ATCC... 37 0.22 (A3N3B5) RecName: Full=Acyl carri...R522870 |pid:none) Desulfotalea psychrophila LSv54... 35 1.1 CP000117_3627( CP000117 |pid:none) Anabaena vari...some number (1..6, M) 4 Chromosome length 5430582 Start point 4817113 End point 4...NYINYHQEN**ini*i Frame B: liinnfffffy*rikvkmkkn*krl*qni*vqk*rksnfqh*lpilqkqdhmgnylnyml k*rkslifkyqlkiwiklkqy*iv*ii*iitkri

  5. Three-dimensional model of stellacyanin and its implications for electron transfer reactivity

    DEFF Research Database (Denmark)

    Wherland, S; Farver, O; Pecht, I

    1988-01-01

    system. The structure also indicates that a carbonyl oxygen atom is near the copper, thus the site may have analogy to the Alcaligenes denitrificans azurin (Az) site, although the amino acid sequence is more homologous to that of Pc. The model indicates that aspartate 49, reductively labeled by Cr......(III), is near the copper center and homologous to the site labeled by Cr(III) on Pc. Also homologous to Pc is a tyrosine residue adjacent to the aspartate. This tyrosine has been implicated in Pc electron transfer and thus is probably involved in electron transfer reactivity of St as well. The higher...

  6. Dicty_cDB: Contig-U12776-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available openaeus vannamei hemocyte cDN... 46 1.1 1 ( FE094757 ) LV_GL_RA49C06f Litopenaeus vannamei gills cDNA li...00489 |pid:none) Paracoccus denitrificans PD1222 c... 67 2e-10 CP000672_405( CP000672 |pid:none) Haemophilus influenzae Pit...nas sp. JS666 plasmid 2, ... 62 5e-09 CP000088_1029( CP000088 |pid:none) Thermobi...none) Carboxydothermus hydrogenoforma... 60 2e-08 CP000117_3155( CP000117 |pid:none) Anabaena variabilis ATC...uences producing significant alignments: (bits) Value N ( BJ337216 ) Dictyosteliu

  7. Dicty_cDB: Contig-U15377-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available nococcus aeolicus Nankai-3, complete genome. 42 9.2 1 ( CP000302 ) Shewanella denitrificans OS217, complete ...KKKKKTNYISYI*lfk*inkk kkkkylflielni**ykkkkkkk Translated Amino Acid sequence (All Frames) Frame A: *ykniykyp... B: NIKIFINIPNPSLHTHTYTYTLTHKQNTSFNTPTHYAKKKKKKKTNYISYI*lfk*inkk kkkkylflielni**ykkkkkkk Frame C: i*kyl*ispihhftlthththshinkihhlthpl...oot... 38 0.12 2 ( AC078854 ) Homo sapiens 3q BAC RP11-480B17 (Roswell Park Can... 48 0.15 1 ( AC044904 ) Homo sapie... chromosome 8, clone RP11-350N15, com... 44 2.3 1 ( AC078816 ) Homo sapiens 3 BAC RP11-600P18 (Roswell

  8. Bacterial Carbon Storage to Value Added Products

    OpenAIRE

    Brigham, Christopher J.; Kurosawa, Kazuhiko; Rha, ChoKyun; Sinskey, Anthony J.

    2011-01-01

    PhaR from Paracoccus denitrificans functions as a repressor or autoregulator of the expression of genes encoding phasin protein (PhaP) and PhaR itself, both of which are components of polyhydroxyalkanoate (PHA) granules (A. Maehara, S. Taguchi, T. Nishiyama, T. Yamane, and Y. Doi, J. Bacteriol. 184:3992-4002, 2002). PhaR is a unique regulatory protein in that it also has the ability to bind tightly to an effector molecule, PHA polyester. In this study, by using a quartz crystal microbalance, ...

  9. Dicty_cDB: Contig-U05736-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available :none) Thermotoga lettingae TMO, compl... 89 2e-16 CP000937_828( CP000937 |pid:none) Francisella philomiragi...:none) Shewanella oneidensis MR-1, comp... 53 2e-05 AE016958_2251( AE016958 |pid:none) Myc...:none) Klebsiella pneumoniae subsp. pn... 45 0.006 U57042_1( U57042 |pid:none) Rattus norvegicus ade...:none) Francisella tularensis subsp. n... 90 1e-16 CP000812_1886( CP000812 |pid...nogaster AT04157 fu... 70 1e-10 CP000302_930( CP000302 |pid:none) Shewanella denitrificans OS217, ... 70

  10. Dicty_cDB: Contig-U15213-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available rochlorococcus marinus str. NAT... 95 4e-18 CP000937_1559( CP000937 |pid:none) Francisella philomiragi...:none) Methylobacterium nodulans ORS 2... 88 4e-16 AP006841_3263( AP006841 |pid:none) Bacteroides fragili...:none) Shewanella denitrificans OS217,... 105 4e-21 CP000115_205( CP000115 |pid:none) Nitrobacter winogra...:none) Lactobacillus gasseri ATCC 33323... 100 9e-20 AE014299_2458( AE014299 |pid:none) Shewanella oneide... sp. JS666, complete... 99 3e-19 AM902716_1733( AM902716 |pid:none) Bordetella petrii strain DSM 12... 99 3e

  11. Denitrification Response Patterns during the Transition to Anoxic Respiration and Posttranscriptional Effects of Suboptimal pH on Nitrogen Oxide Reductase in Paracoccus denitrificans▿ †

    OpenAIRE

    Bergaust, Linda; Mao, Yuejian; Bakken, Lars R.; Frostegård, Åsa

    2010-01-01

    Denitrification in soil is a major source of atmospheric N2O. Soil pH appears to exert a strong control on the N2O/N2 product ratio (high ratios at low pH), but the reasons for this are not well understood. To explore the possible mechanisms involved, we conducted an in-depth investigation of the regulation of denitrification in the model organism Paracoccus denitrificans during transition to anoxia both at pH 7 and when challenged with pHs ranging from 6 to 7.5. The kinetics of gas transform...

  12. Bacteriología de la listeriosis

    OpenAIRE

    Marcenac, Fernando M. L.

    1980-01-01

    La Listeria monocytogenes es el agente causante de la listeriosis. Pertenece al género Listeria, el que además cuenta con dos especies: L. denitrificans, L. grayi y L. murrayi. Este género está transitoriamente ubicado en el grupo Coryneforme. L. monocytogenes es un bacilo gram positivo, con cierta tendencia al pleomorfismo, pudiendo aparecer como diplococo o bajo formas filamentosas. Es aerobia o facultativa y desarrolla bien en la mayoría de los medios comunes de aislamiento. La gr...

  13. Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis

    Directory of Open Access Journals (Sweden)

    Simon Meinhard

    2011-06-01

    Full Text Available Abstract Background Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. Results The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94, 83,129 bp (pRLO149_83 and 63,532 bp (pRLO149_63. Of the 4537 genes predicted for R. litoralis, 1122 (24.7% are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. Conclusions The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic

  14. Dicty_cDB: Contig-U15216-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available roides fragilis NCTC 9343,... 62 2e-08 CP001069_627( CP001069 |pid:none) Ralstonia pickettii 12J chromos...0465_28( CP000465 |pid:none) Roseobacter denitrificans OCh 114... 39 0.20 CP001185_1119( CP001185 |pid:none) Thermosi...e RP11-762C22, WOR... 32 8.5 6 ( AP003916 ) Oryza sativa Japonica Group genomic DNA, chromos...03 comple... 83 9e-15 AC026238_6( AC026238 |pid:none) Arabidopsis thaliana chromos... ATCC 8482, ... 73 1e-11 FM992690_196( FM992690 |pid:none) Candida dubliniensis CD36 chromo

  15. Dicty_cDB: Contig-U06921-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available e) Vibrio cholerae strain Amazonia i... 64 3e-09 AE003852_1736( AE003852 |pid:non...9451_1( AY829451 |pid:none) Vibrio cholerae strain Amazonia 35... 45 0.001 AL8445...as haloplanktis ... 66 5e-10 AE008384_2976( AE008384 |pid:none) Methanosarcina maz...Roseobacter denitrificans OCh 1... 41 0.025 AE008384_2292( AE008384 |pid:none) Methanosarcina mazei strain G...e) Streptococcus equi subsp. zooepi... 54 4e-06 CP000896_1224( CP000896 |pid:none) Acholeplasma

  16. Streptomyces thermoautotrophicus does not fix nitrogen.

    Science.gov (United States)

    MacKellar, Drew; Lieber, Lucas; Norman, Jeffrey S; Bolger, Anthony; Tobin, Cory; Murray, James W; Oksaksin, Mehtap; Chang, Roger L; Ford, Tyler J; Nguyen, Peter Q; Woodward, Jimmy; Permingeat, Hugo R; Joshi, Neel S; Silver, Pamela A; Usadel, Björn; Rutherford, Alfred W; Friesen, Maren L; Prell, Jürgen

    2016-01-01

    Streptomyces thermoautotrophicus UBT1 has been described as a moderately thermophilic chemolithoautotroph with a novel nitrogenase enzyme that is oxygen-insensitive. We have cultured the UBT1 strain, and have isolated two new strains (H1 and P1-2) of very similar phenotypic and genetic characters. These strains show minimal growth on ammonium-free media, and fail to incorporate isotopically labeled N2 gas into biomass in multiple independent assays. The sdn genes previously published as the putative nitrogenase of S. thermoautotrophicus have little similarity to anything found in draft genome sequences, published here, for strains H1 and UBT1, but share >99% nucleotide identity with genes from Hydrogenibacillus schlegelii, a draft genome for which is also presented here. H. schlegelii similarly lacks nitrogenase genes and is a non-diazotroph. We propose reclassification of the species containing strains UBT1, H1, and P1-2 as a non-Streptomycete, non-diazotrophic, facultative chemolithoautotroph and conclude that the existence of the previously proposed oxygen-tolerant nitrogenase is extremely unlikely. PMID:26833023

  17. Genomic and Transcriptomic Resolution of Organic Matter Utilization Among Deep-Sea Bacteria in Guaymas Basin Hydrothermal Plumes

    Science.gov (United States)

    Li, Meng; Jain, Sunit; Dick, Gregory J.

    2016-01-01

    Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genomes. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcaceae, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes. PMID:27512389

  18. Corrigenda: Epigean and hypogean Palaemonetes sp. (Decapoda, Palaemonidae from Edwards Aquifer: An examination of trophic structure and metabolism. Subterranean Biology 14: 79–102.

    Directory of Open Access Journals (Sweden)

    Renee Bishop

    2015-06-01

    Full Text Available This study addresses the causes of the metabolic depression observed when examining the metabolism of hypogean versus epigean organisms. We examined the two current hypotheses regarding the cause of metabolic cave adaptation, a paucity of food and low oxygen availability, both necessary for ATP production, by first determining if the hypogean environment examined, Edwards Aquifer, was resource limited. Stable isotope analyses indicate that there is extensive microbial chemolithoautotrophic production providing resources for the hypogean organisms. δ13C values ( ≤30‰ were well below that of terrestrial biome indicating that C in the aquifer originates from chemolithoautotrophic inorganic carbon fixation, not photosynthetically derived material resulting from terrigenous sources. Data suggest the artesian system is a complex geochemical ecosystem providing inorganic energy sources from both methane and sulfates. Metabolism, examined via key aerobic and anaerobic proxies, and organismal proximate composition indicated there was no difference between metabolic rates and energy storage of Palaemonetes antrorum (stygobitic and Palaemonetes kadiakensis (epigean. This indicates that resources within the oxic aquifer are not limited. We demonstrate that it is necessary for one, or both, of these selective pressures to be present for metabolic cave adaptation to occur.

  19. 13N, 15N isotope and kinetic evidence against hyponitrite as an intermediate in denitrification

    International Nuclear Information System (INIS)

    13N- and 15N-labeling experiments were carried out with Paracoccus denitrificans, grown anaerobically on nitrate, to determine whether hyponitrite might be an obligatory intermediate in denitrification and a precursor of nitrous oxide. From experiments designed to trap [13N]- or [15N, 15N]hyponitrite by dilution into authentic hyponitrite it was calculated that the intracellular concentration of a presumptive hyponitrite pool must be less than 0.4 mm. In order for a pool of this size to turn over rapidly enough to handle the flux of nitrogen during denitrification, the spontaneous rate of hyponitrite dehydration must be enhanced by a factor of several thousand through enzyme catalysis. Cell extracts failed to catalyze this reaction under a variety of conditions. It is concluded that hyponitrite cannot be an intermediate in denitrification. In addition, the assimilation of inorganic nitrogen was studied in P. dentrificans using 13N as tracer. At low concentrations (-8 M) of labeled nitrate and nitrite 5 to 10% of the label was assimilated into non-volatile metabolites and 90 to 95% was reduced to N2. Similarly, with 15 mm [13N]nitrate, 5% of the label went into metabolites and 95% to N2. High pressure liquid chromatography analysis of the labeled metabolites indicated that the major pathway for assimilation of inorganic nitrogen in P. denitrificans under these conditions is through ammonia incorporation via the aspartase reaction

  20. Integrated multi-omics analyses reveal the biochemical mechanisms and phylogenetic relevance of anaerobic androgen biodegradation in the environment.

    Science.gov (United States)

    Yang, Fu-Chun; Chen, Yi-Lung; Tang, Sen-Lin; Yu, Chang-Ping; Wang, Po-Hsiang; Ismail, Wael; Wang, Chia-Hsiang; Ding, Jiun-Yan; Yang, Cheng-Yu; Yang, Chia-Ying; Chiang, Yin-Ru

    2016-08-01

    Steroid hormones, such as androgens, are common surface-water contaminants. However, literature on the ecophysiological relevance of steroid-degrading organisms in the environment, particularly in anoxic ecosystems, is extremely limited. We previously reported that Steroidobacter denitrificans anaerobically degrades androgens through the 2,3-seco pathway. In this study, the genome of Sdo. denitrificans was completely sequenced. Transcriptomic data revealed gene clusters that were distinctly expressed during anaerobic growth on testosterone. We isolated and characterized the bifunctional 1-testosterone hydratase/dehydrogenase, which is essential for anaerobic degradation of steroid A-ring. Because of apparent substrate preference of this molybdoenzyme, corresponding genes, along with the signature metabolites of the 2,3-seco pathway, were used as biomarkers to investigate androgen biodegradation in the largest sewage treatment plant in Taipei, Taiwan. Androgen metabolite analysis indicated that denitrifying bacteria in anoxic sewage use the 2,3-seco pathway to degrade androgens. Metagenomic analysis and PCR-based functional assays showed androgen degradation in anoxic sewage by Thauera spp. through the action of 1-testosterone hydratase/dehydrogenase. Our integrative 'omics' approach can be used for culture-independent investigations of the microbial degradation of structurally complex compounds where isotope-labeled substrates are not easily available. PMID:26872041

  1. Denitrification of high concentrations of nitrites and nitrates in synthetic medium with different sources of organic carbon. III. Methanol.

    Science.gov (United States)

    Błaszczyk, M; Gałka, E; Sakowicz, E; Mycielski, R

    1985-01-01

    The denitrification of nitrites and nitrates (1000 mg N/l) in medium containing methanol as a source of organic carbon was studied. Continuous cultures of mixed population of autochtonic microflora from bottom sludge of nitrogenous wastewater reservoir were set up in a chemostat-type column and packed bed reactor. The efficiency of denitrification of nitrates in packed bed reactor was 506.7 mg N/l/h whereas denitrification of nitrites was from 8.7 to 16.0 mg N/l/h depending on the granulation of the filing material. In the latter case 83% nitrogen was removed from the medium. One of the factors causing low efficiency of denitrification of nitrites is excessive alkalization of the medium in the bed. The use of a three-step bed with adjusted pH resulted in complete denitrification of nitrites with efficiency 60 mg N/l/h. The bacteria inside the bed were dominated by Paracoccus denitrificans and by Pseudomonas aeruginosa when nitrates were present. The sensitivity of P. denitrificans to high concentrations of nitrites seems to be the second factor contributing to low efficiency of denitrification with methanol as organic substrate. PMID:2412408

  2. Interdependence of two NarK domains in a fused nitrate/nitrite transporter.

    Science.gov (United States)

    Goddard, Alan D; Moir, James W B; Richardson, David J; Ferguson, Stuart J

    2008-11-01

    Nitrate uptake is essential for various bacterial processes and combines with nitrite export to form the usual initial steps of denitrification, a process that reduces nitrate to dinitrogen gas. Although many bacterial species contain NarK-like transporters that are proposed to function as either nitrate/proton symporters or nitrate/nitrite antiporters based on sequence homology, these transporters remain, in general, poorly characterized. Several bacteria appear to contain a transporter that is a fusion of two NarK-like proteins, although the significance of this arrangement remains elusive. We demonstrate that NarK from Paracoccus denitrificans is expressed as a fusion of two NarK-like transporters. NarK1 and NarK2 are separately capable of supporting anaerobic denitrifying growth but with growth defects that are partially mitigated by coexpression of the two domains. NarK1 appears to be a nitrate/proton symporter with high affinity for nitrate and NarK2 a nitrate/nitrite antiporter with lower affinity for nitrate. Each transporter requires two conserved arginine residues for activity. A transporter consisting of inactivated NarK1 fused to active NarK2 has a dramatically increased affinity for nitrate compared with NarK2 alone, implying a functional interaction between the two domains. A potential model for nitrate and nitrite transport in P. denitrificans is proposed. PMID:18823285

  3. Bioreactor performance and functional gene analysis of microbial community in a limited-oxygen fed bioreactor for co-reduction of sulfate and nitrate with high organic input.

    Science.gov (United States)

    Xu, Xi-jun; Chen, Chuan; Wang, Ai-jie; Yu, Hao; Zhou, Xu; Guo, Hong-liang; Yuan, Ye; Lee, Duu-jong; Zhou, Jizhong; Ren, Nan-qi

    2014-08-15

    Limited-oxygen mediated synergistic relationships between sulfate-reducing bacteria (SRB), nitrate-reducing bacteria (NRB) and sulfide-oxidizing bacteria (SOB, including nitrate-reducing, sulfide-oxidizing bacteria NR-SOB) were predicted to simultaneously remove contaminants of nitrate, sulfate and high COD, and eliminate sulfide generation. A lab-scale experiment was conducted to examine the impact of limited oxygen on these oxy-anions degradation, sulfide oxidation and associated microbial functional responses. In all scenarios tested, the reduction of both nitrate and sulfate was almost complete. When limited-oxygen was fed into bioreactors, S(0) formation was significantly improved up to ∼ 70%. GeoChip 4.0, a functional gene microarray, was used to determine the microbial gene diversity and functional potential for nitrate and sulfate reduction, and sulfide oxidation. The diversity of the microbial community in bioreactors was increased with the feeding of limited oxygen. Whereas the intensities of the functional genes involved in sulfate reduction did not show a significant difference, the abundance of the detected denitrification genes decreased in limited oxygen samples. More importantly, sulfide-oxidizing bacteria may alter their populations/genes in response to limited oxygen potentially to function more effectively in sulfide oxidation, especially to elemental sulfur. The genes fccA/fccB from nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB), such as Paracoccus denitrificans, Thiobacillus denitrificans, Beggiatoa sp., Thiomicrospira sp., and Thioalkalivibrio sp., were more abundant under limited-oxygen condition. PMID:24981676

  4. /sup 13/N, /sup 15/N isotope and kinetic evidence against hyponitrite as an intermediate in denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Hollocher, T.C. (Brandeis Univ., Waltham, MA); Garber, E.; Cooper, A.J.L.; Reiman, R.E.

    1980-06-10

    /sup 13/N- and /sup 15/N-labeling experiments were carried out with Paracoccus denitrificans, grown anaerobically on nitrate, to determine whether hyponitrite might be an obligatory intermediate in denitrification and a precursor of nitrous oxide. From experiments designed to trap (/sup 13/N)- or (/sup 15/N, /sup 15/N)hyponitrite by dilution into authentic hyponitrite it was calculated that the intracellular concentration of a presumptive hyponitrite pool must be less than 0.4 mm. In order for a pool of this size to turn over rapidly enough to handle the flux of nitrogen during denitrification, the spontaneous rate of hyponitrite dehydration must be enhanced by a factor of several thousand through enzyme catalysis. Cell extracts failed to catalyze this reaction under a variety of conditions. It is concluded that hyponitrite cannot be an intermediate in denitrification. In addition, the assimilation of inorganic nitrogen was studied in P. dentrificans using /sup 13/N as tracer. At low concentrations (<10/sup -8/ M) of labeled nitrate and nitrite 5 to 10% of the label was assimilated into non-volatile metabolites and 90 to 95% was reduced to N/sub 2/. Similarly, with 15 mm (/sup 13/N)nitrate, 5% of the label went into metabolites and 95% to N/sub 2/. High pressure liquid chromatography analysis of the labeled metabolites indicated that the major pathway for assimilation of inorganic nitrogen in P. denitrificans under these conditions is through ammonia incorporation via the aspartase reaction.

  5. Inhibition of NADH-ubiquinone reductase activity by N,N'-dicyclohexylcarbodiimide and correlation of this inhibition with the occurrence of energy-coupling site 1 in various organisms

    International Nuclear Information System (INIS)

    The NADH-ubiquinone reductase activity of the respiratory chains of several organisms was inhibited by the carboxyl-modifying reagent N,N'-dicyclohexylcarbodiimide (DCCD). This inhibition correlated with the presence of an energy-transducing site in this segment of the respiratory chain. Where the NADH-quinone reductase segment involved an energy-coupling site (e.g., in bovine heart and rat liver mitochondria, and in Paracoccus denitrificans, Escherichia coli, and Thermus thermophilus HB-8 membranes), DCCD acted as an inhibitor of ubiquinone reduction by NADH. By contrast, where energy-coupling site 1 was absent (e.g., in Saccharomyces cerevisiae mitochondria and BacilLus subtilis membranes), there was no inhibition of NADH-ubiquinone reductase activity by DCCD. In the bovine and P. denitrificans systems, DCCD inhibition was pseudo first order with respect to incubation time, and reaction order with respect to inhibitor concentration was close to unity, indicating that inhibition resulted from the binding of one inhibitor molecule per active unit of NADH-ubiquinone reductase. In the bovine NADH-ubiquinone reductase complex (complex I), [14C]DCCD was preferentially incorporated into two subunits of molecular weight 49,000 and 29,000. The time course of labeling of the 29,000 molecular weight subunit with [14C]DCCD paralleled the time course of inhibition of NADH-ubiquinone reductase activity

  6. INDISIM-Paracoccus, an individual-based and thermodynamic model for a denitrifying bacterium.

    Science.gov (United States)

    Araujo Granda, Pablo; Gras, Anna; Ginovart, Marta; Moulton, Vincent

    2016-08-21

    We have developed an individual-based model for denitrifying bacteria. The model, called INDISIM-Paracoccus, embeds a thermodynamic model for bacterial yield prediction inside the individual-based model INDISIM, and is designed to simulate the bacterial cell population behavior and the product dynamics within the culture. The INDISIM-Paracoccus model assumes a culture medium containing succinate as a carbon source, ammonium as a nitrogen source and various electron acceptors such as oxygen, nitrate, nitrite, nitric oxide and nitrous oxide to simulate in continuous or batch culture the different nutrient-dependent cell growth kinetics of the bacterium Paracoccus denitrificans. The individuals in the model represent microbes and the individual-based model INDISIM gives the behavior-rules that they use for their nutrient uptake and reproduction cycle. Three previously described metabolic pathways for P. denitrificans were selected and translated into balanced chemical equations using a thermodynamic model. These stoichiometric reactions are an intracellular model for the individual behavior-rules for metabolic maintenance and biomass synthesis and result in the release of different nitrogen oxides to the medium. The model was implemented using the NetLogo platform and it provides an interactive tool to investigate the different steps of denitrification carried out by a denitrifying bacterium. The simulator can be obtained from the authors on request. PMID:27179457

  7. Examining thiosulfate-driven autotrophic denitrification through respirometry.

    Science.gov (United States)

    Mora, Mabel; Guisasola, Albert; Gamisans, Xavier; Gabriel, David

    2014-10-01

    Anoxic respirometry was applied to characterize a sulfide-oxidizing nitrate-reducing (SO-NR) culture obtained from an anoxic biogas desulfurizing biotrickling filter treating high loads of H2S. Immobilized biomass extracted from the biotrickling filter was grown in a suspended culture with thiosulfate as electron donor to obtain the biomass growth yield and the S2O3(2)(-)/NO3(-) consumed ratio. Afterward, respirometry was applied to describe thiosulfate oxidation under anoxic conditions. A pure culture of Thiobacillus denitrificans was also used as a control culture in order to validate the procedure proposed in this work to characterize the SO-NR biomass. Respirometric profiles obtained with this microbial culture showed that nitrite was formed as intermediate during nitrate reduction and revealed that no competitive inhibition appeared when both electron acceptors were present in the medium. Although final bioreaction products depended on the initial S2O3(2)(-)/NO3(-) ratio, such ratio did not affect thiosulfate oxidation or denitrification rates. Moreover, respirometric profiles showed that the specific nitrite uptake rate depended on the biomass characteristics being that of a SO-NR mixed culture (39.8mgNg(-1) VSSh(-1)) higher than that obtained from a pure culture of T. denitrificans (19.7mgNg(-1) VSSh(-1)). For the first time, the stoichiometry of the two-step denitrification mechanism with thiosulfate oxidation and biomass growth associated was solved for both reactions. PMID:25065782

  8. Biological reduction of iron to the elemental state from ochre deposits of Skelton Beck in Northeast England

    Directory of Open Access Journals (Sweden)

    Pattanathu K S M Rahman

    2014-06-01

    Full Text Available Ochre, consequence of acid mine drainage, is iron oxides-rich soil pigments that can be found in the water drainage from historic base metal and coal mines. The anaerobic strains of Geobacter sulfurreducens and Shewanella denitrificans were used for the microbial reduction of iron from samples of ochre collected from Skelton Beck (Saltburn Orange River, NZ 66738 21588 in Northeast England. The aim of the research was to determine the ability of the two anaerobic bacteria to reduce the iron present in ochre and to determine the rate of the reduction process. The physico-chemical changes in the ochre sample after the microbial reduction process were observed by the production of zero-valent iron which was later confirmed by the detection of elemental Fe in XRD spectrum. The XRF results revealed that 69.16% and 84.82% of iron oxide can be reduced using G. sulfurreducens and S. denitrificans respectively after 8 days of incubation. These results could provide the basis for the development of a biohydrometallurgical process for the production of elemental iron from ochre sediments.

  9. Microbial degradation of high nitrogen contents (primarily nitrate) in industrial waste water

    International Nuclear Information System (INIS)

    This study deals with the denitrification of industrial waste water of high nitrate content, including waste water from the recovery process for nuclear material. At first the autotrophic process employing Thiob. denitrificans was investigated: kinetics, stoichiometry, application of a packed bed reactor; effect of nitrate concentration, retention time, loading and height of the reactor on denitrification. The system proved to be useful for waste water with nitrate up to 4.5 g/L; the highest rate of denitrification achieved was 1.5 g/L.h when the retention time was 2.5 h and the nitrate concentration (in-flow) 4.3 g/L (i.e. reactor loadung 41 kg NO3-/m3.d). Equally good results were obtained by the heterotrophic process: ethanol allowed a reactor loading of 60 kg NO3-/m3.d; however, in this case bacterial growth tended to clog the column. - Enrichments made with ethanol yielded Ps. aeruginosa as main component of the population; in contrast, those with methanol resulted in a mixture of Hyphomicrobium spec. and Paracoccus denitrificans; this bacterial culture was used to determine the stoichiometry of denitrification in continuous culture; it was also employed to denitrify a diluted solution of nitric acid (0.1 ml HNO3/L) which could be achieved in continuous culture using a retention time of 25 h. (orig.)

  10. Volatile fatty acids influence on the structure of microbial communities producing PHAs

    Directory of Open Access Journals (Sweden)

    Slawomir Ciesielski

    2014-06-01

    Full Text Available Polyhydroxyalkanoates (PHAs can be produced by microorganisms and are a biodegradable alternative to fossil-fuel based plastics. Currently, the focus is on reducing production costs by exploring alternative substrates for PHAs production, and on producing copolymers which are less brittle than monomers. Accordingly, this study used a substrate consisting of wastewater from waste-glycerol fermentation, supplemented with different amounts of acetic and propionic acids. These substrates were used to feed mixed microbial communities enriched from activated sludge in a sequencing batch reactor. A reactor supplemented with 2 mL of acetic acid produced 227.8 mg/L of a homopolymer of hydroxybutyrate (3HB; 4 mL of acetic acid produced 279.8 mg/L 3HB; whereas 4 mL of propionic acid produced 673.0 mg/L of a copolymer of 3HB and 3HV (hydroxyvalerate. Ribosomal Intergenic Spacer Analysis (RISA was used to show the differences between the communities created in the reactors. Thauera species predominated in biomass that produced 3HB; Paracoccus denitrificans in the biomass that produced 3HB-co-3HV. Because P. denitrificans produced the more desirable copolymer, it may be advantageous to promote its growth in PHAs-producing reactors by adding propionate.

  11. Volatile fatty acids influence on the structure of microbial communities producing PHAs.

    Science.gov (United States)

    Ciesielski, Slawomir; Przybylek, Grzegorz

    2014-01-01

    Polyhydroxyalkanoates (PHAs) can be produced by microorganisms and are a biodegradable alternative to fossil-fuel based plastics. Currently, the focus is on reducing production costs by exploring alternative substrates for PHAs production, and on producing copolymers which are less brittle than monomers. Accordingly, this study used a substrate consisting of wastewater from waste-glycerol fermentation, supplemented with different amounts of acetic and propionic acids. These substrates were used to feed mixed microbial communities enriched from activated sludge in a sequencing batch reactor. A reactor supplemented with 2 mL of acetic acid produced 227.8 mg/L of a homopolymer of hydroxybutyrate (3 HB); 4 mL of acetic acid produced 279.8 mg/L 3 HB; whereas 4 mL of propionic acid produced 673.0 mg/L of a copolymer of 3 HB and 3 HV (hydroxyvalerate). Ribosomal Intergenic Spacer Analysis (RISA) was used to show the differences between the communities created in the reactors. Thauera species predominated in biomass that produced 3 HB; Paracoccus denitrificans in the biomass that produced 3 HB-co-3 HV. Because P. denitrificans produced the more desirable copolymer, it may be advantageous to promote its growth in PHAs-producing reactors by adding propionate. PMID:25242921

  12. Diversity of prokaryotes at a shallow submarine vent of Panarea Island (Italy by high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Teresa L. Maugeri

    2013-09-01

    Full Text Available To determine microbial community composition and possible key microbial processes in the shallow-sea hydrothermal vent system off Panarea Island (Italy, we examined bacterial and archaeal communities of sediment and fluid samples from a hot vent by 16S rDNA Illumina sequencing technique. Both high abundant (>1% of total sequences, low abundant (from 0.1 to <1% and rare (< 0.1% phylogenetic groups were responsible for the distinct prokaryotic communities characterizing the heated sediment and fluid. The bacterial and archaeal communities from sediment were dominated by sequences affiliated with Rhodovulum genus (Alphaproteobacteria, including phototrophic ferrous-iron-oxidizing purple bacteria, Thiohalospira and Thiomicrospira (Gammaproteobacteria, typically involved in the sulphur cycle, and Methanococcus (Euryarchaeota. Fluid communities were dominated by anoxygenic phototrophic members of Chlorobium, followed by Thiomicrospira (Gammaproteobacteria, Sulfurimonas, Arcobacter and Sulfurospirillum (Epsilonproteobacteria, and Methanosarcina (Euryarchaeota. Obtained sequences were affiliated with prokaryotes taking a key part in the carbon, iron and sulphur cycling at the shallow hydrothermal system off Panarea Island. Despite the huge sequencing efforts, a great number of Bacteria and Archaea still remains unaffiliated at genus level, indicating that Black Point vent represents a hotspot of prokaryotic diversity.

  13. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T; Bain, TS; Barlett, MA; Dar, SA; Snoeyenbos-West, OL; Nevin, KP; Lovley, DR

    2014-01-02

    Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electron donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative.

  14. Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland

    Science.gov (United States)

    Bomberg, Malin; Nyyssönen, Mari; Pitkänen, Petteri; Lehtinen, Anne; Itävaara, Merja

    2015-01-01

    Active microbial communities of deep crystalline bedrock fracture water were investigated from seven different boreholes in Olkiluoto (Western Finland) using bacterial and archaeal 16S rRNA, dsrB, and mcrA gene transcript targeted 454 pyrosequencing. Over a depth range of 296–798 m below ground surface the microbial communities changed according to depth, salinity gradient, and sulphate and methane concentrations. The highest bacterial diversity was observed in the sulphate-methane mixing zone (SMMZ) at 250–350 m depth, whereas archaeal diversity was highest in the lowest boundaries of the SMMZ. Sulphide-oxidizing ε-proteobacteria (Sulfurimonas sp.) dominated in the SMMZ and γ-proteobacteria (Pseudomonas spp.) below the SMMZ. The active archaeal communities consisted mostly of ANME-2D and Thermoplasmatales groups, although Methermicoccaceae, Methanobacteriaceae, and Thermoplasmatales (SAGMEG, TMG) were more common at 415–559 m depth. Typical indicator microorganisms for sulphate-methane transition zones in marine sediments, such as ANME-1 archaea, α-, β- and δ-proteobacteria, JS1, Actinomycetes, Planctomycetes, Chloroflexi, and MBGB Crenarchaeota were detected at specific depths. DsrB genes were most numerous and most actively transcribed in the SMMZ while the mcrA gene concentration was highest in the deep methane rich groundwater. Our results demonstrate that active and highly diverse but sparse and stratified microbial communities inhabit the Fennoscandian deep bedrock ecosystems. PMID:26425566

  15. Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland

    Directory of Open Access Journals (Sweden)

    Malin Bomberg

    2015-01-01

    Full Text Available Active microbial communities of deep crystalline bedrock fracture water were investigated from seven different boreholes in Olkiluoto (Western Finland using bacterial and archaeal 16S rRNA, dsrB, and mcrA gene transcript targeted 454 pyrosequencing. Over a depth range of 296–798 m below ground surface the microbial communities changed according to depth, salinity gradient, and sulphate and methane concentrations. The highest bacterial diversity was observed in the sulphate-methane mixing zone (SMMZ at 250–350 m depth, whereas archaeal diversity was highest in the lowest boundaries of the SMMZ. Sulphide-oxidizing ε-proteobacteria (Sulfurimonas sp. dominated in the SMMZ and γ-proteobacteria (Pseudomonas spp. below the SMMZ. The active archaeal communities consisted mostly of ANME-2D and Thermoplasmatales groups, although Methermicoccaceae, Methanobacteriaceae, and Thermoplasmatales (SAGMEG, TMG were more common at 415–559 m depth. Typical indicator microorganisms for sulphate-methane transition zones in marine sediments, such as ANME-1 archaea, α-, β- and δ-proteobacteria, JS1, Actinomycetes, Planctomycetes, Chloroflexi, and MBGB Crenarchaeota were detected at specific depths. DsrB genes were most numerous and most actively transcribed in the SMMZ while the mcrA gene concentration was highest in the deep methane rich groundwater. Our results demonstrate that active and highly diverse but sparse and stratified microbial communities inhabit the Fennoscandian deep bedrock ecosystems.

  16. Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland.

    Science.gov (United States)

    Bomberg, Malin; Nyyssönen, Mari; Pitkänen, Petteri; Lehtinen, Anne; Itävaara, Merja

    2015-01-01

    Active microbial communities of deep crystalline bedrock fracture water were investigated from seven different boreholes in Olkiluoto (Western Finland) using bacterial and archaeal 16S rRNA, dsrB, and mcrA gene transcript targeted 454 pyrosequencing. Over a depth range of 296-798 m below ground surface the microbial communities changed according to depth, salinity gradient, and sulphate and methane concentrations. The highest bacterial diversity was observed in the sulphate-methane mixing zone (SMMZ) at 250-350 m depth, whereas archaeal diversity was highest in the lowest boundaries of the SMMZ. Sulphide-oxidizing ε-proteobacteria (Sulfurimonas sp.) dominated in the SMMZ and γ-proteobacteria (Pseudomonas spp.) below the SMMZ. The active archaeal communities consisted mostly of ANME-2D and Thermoplasmatales groups, although Methermicoccaceae, Methanobacteriaceae, and Thermoplasmatales (SAGMEG, TMG) were more common at 415-559 m depth. Typical indicator microorganisms for sulphate-methane transition zones in marine sediments, such as ANME-1 archaea, α-, β- and δ-proteobacteria, JS1, Actinomycetes, Planctomycetes, Chloroflexi, and MBGB Crenarchaeota were detected at specific depths. DsrB genes were most numerous and most actively transcribed in the SMMZ while the mcrA gene concentration was highest in the deep methane rich groundwater. Our results demonstrate that active and highly diverse but sparse and stratified microbial communities inhabit the Fennoscandian deep bedrock ecosystems. PMID:26425566

  17. Polyphasic analysis of an Azoarcus-Leptothrix-dominated bacterial biofilm developed on stainless steel surface in a gasoline-contaminated hypoxic groundwater.

    Science.gov (United States)

    Benedek, Tibor; Táncsics, András; Szabó, István; Farkas, Milán; Szoboszlay, Sándor; Fábián, Krisztina; Maróti, Gergely; Kriszt, Balázs

    2016-05-01

    Pump and treat systems are widely used for hydrocarbon-contaminated groundwater remediation. Although biofouling (formation of clogging biofilms on pump surfaces) is a common problem in these systems, scarce information is available regarding the phylogenetic and functional complexity of such biofilms. Extensive information about the taxa and species as well as metabolic potential of a bacterial biofilm developed on the stainless steel surface of a pump submerged in a gasoline-contaminated hypoxic groundwater is presented. Results shed light on a complex network of interconnected hydrocarbon-degrading chemoorganotrophic and chemolitotrophic bacteria. It was found that besides the well-known hydrocarbon-degrading aerobic/facultative anaerobic biofilm-forming organisms (e.g., Azoarcus, Leptothrix, Acidovorax, Thauera, Pseudomonas, etc.), representatives of Fe(2+)-and Mn(2+)-oxidizing (Thiobacillus, Sideroxydans, Gallionella, Rhodopseudomonas, etc.) as well as of Fe(3+)- and Mn(4+)-respiring (Rhodoferax, Geobacter, Magnetospirillum, Sulfurimonas, etc.) bacteria were present in the biofilm. The predominance of β-Proteobacteria within the biofilm bacterial community in phylogenetic and functional point of view was revealed. Investigation of meta-cleavage dioxygenase and benzylsuccinate synthase (bssA) genes indicated that within the biofilm, Azoarcus, Leptothrix, Zoogloea, and Thauera species are most probably involved in intrinsic biodegradation of aromatic hydrocarbons. Polyphasic analysis of the biofilm shed light on the fact that subsurface microbial accretions might be reservoirs of novel putatively hydrocarbon-degrading bacterial species. Moreover, clogging biofilms besides their detrimental effects might supplement the efficiency of pump and treat systems. PMID:26825521

  18. Chemolithoautotrophy supports macroinvertebrate food webs and affects diversity and stability in groundwater communities.

    Science.gov (United States)

    Hutchins, Benjamin T; Engel, Annette Summers; Nowlin, Weston H; Schwartz, Benjamin F

    2016-06-01

    The prevailing paradigm in subterranean ecology is that below-ground food webs are simple, limited to one or two trophic levels, and composed of generalist species because of spatio-temporally patchy food resources and pervasive energy limitation. This paradigm is based on relatively few studies of easily accessible, air-filled caves. However, in some subterranean ecosystems, chemolithoautotrophy can subsidize or replace surface-based allochthonous inputs of photosynthetically derived organic matter (OM) as a basal food resource and promote niche specialization and evolution of higher trophic levels. Consequently, the current subterranean trophic paradigm fails to account for variation in resources, trophic specialization, and food chain length in some subterranean ecosystems. We reevaluated the subterranean food web paradigm by examining spatial variation in the isotopic composition of basal food resources and consumers, food web structure, stygobiont species diversity, and chromophoric organic matter (CDOM), across a geochemical gradient in a large and complex groundwater system, the Edwards Aquifer in Central Texas (USA). Mean δ13C values of stygobiont communities become increasingly more negative along the gradient of photosynthetic OM sources near the aquifer recharge zone to chemolithoautotrophic OM sources closer to the freshwater-saline water interface (FWSWI) between oxygenated freshwater and anoxic, sulfide-rich saline water. Stygobiont community species richness declined with increasing distance from the FWSWI. Bayesian mixing models were used to estimate the relative importance of photosynthetic OM and chemolithoautorophic OM for stygobiont communities at three biogeochemically distinct sites. The contribution of chemolithoautotrophic OM to consumers at these sites ranged between 25% and 69% of total OM utilized and comprised as much as 88% of the diet for one species. In addition, the food web adjacent to the FWSWI had greater trophic diversity when

  19. Bacterial and archaeal diversity in an iron-rich coastal hydrothermal field in Yamagawa, Kagoshima, Japan

    DEFF Research Database (Denmark)

    Kawaichi, Satoshi; Ito, Norihiro; Yoshida, Takashi;

    2013-01-01

    . The environmental settings of the coastal hydrothermal field were similar in some degree to those of deep-sea hydrothermal environments because of its emission of H2, CO2, and sulfide from the bottom of the hot spot. The results of clone analyses based on the 16S rRNA gene led us to speculate the...... presence of a chemo-synthetic microbial ecosystem, where chemolithoautotrophic thermophiles, primarily the bacterial order Aquificales, function as primary producers using H2 or sulfur compounds as their energy source and CO2 as their carbon source, and the organic compounds synthesized by them support the...... can also function as primary producing or nitrogen-fixing bacteria....

  20. Biohydrometallurgy for nonsulfidic minerals - A review

    Energy Technology Data Exchange (ETDEWEB)

    Jain, N.; Sharma, D.K. [Indian Institute of Technology of Delhi, New Delhi (India). Center for Energy Studies

    2004-05-01

    Bioleaching is a technology applicable to metal extraction from low-grade ores, ore beneficiation, coal beneficiation, metal detoxification, and recovery of metals from waste materials. The technology is environmentally sound and it may lower operational cost and energy requirement. Whereas leaching of sulfidic minerals using chemolithoautotrophic bacteria is the most studied and commercially exploitable aspect of mineral biotechnology today, there is a dearth of literature on the dissolution of nonsulfidic minerals. Biohydrometallurgy of nonsulfidic minerals involves the action of heterotrophic microorganisms. Heterotrophic bacteria and fungi have the potential for producing acidic metabolites that are able to solubilize oxide, silicate, carbonate and hydroxide minerals by reduction, acidolysis and complexation mechanisms. It is an important aspect of biohydrometallugy that requires development to meet future needs.

  1. Arsenic speciation in shrimp and mussel from the Mid-Atlantic hydrothermal vents

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Quetel, C. R.; Munoz, R.; FialaMedioni, A.; Donard, O. F. X.

    Specimens of shrimp (Rimicaris exoculata) and mussel (Bathymodiolus puteoserpentis) were collected 3500 m below the ocean surface at the hydrothermal vents of the mid-Atlantic Ridge (TAG and Snake Pit sites, respectively). Arsenic, a potentially toxic element, is among the substances emitted by the...... hydrothermal vents. The hydrothermal vent shrimp, which are known to be a primary consumer of the primary producing chemolithoautotrophic bacteria, contained arsenic at 13 mu g g(-1) almost exclusively as arsenobetaine (AsB). Arsenic was present in the soft:issues of the mussel at 40 mu g g(-1) and the major...... of arsenic species found in the shrimp and mussel species in the deep-sea is similar to that found in their counterparts from the ocean surface. It is concluded that the autotrophic bacteria of the hydrothermal vent ecosystem and the symbiotic bacteria harboured in the mussel species are responsible...

  2. Evidence of novel plant-species specific ammonia oxidizing bacterial clades in acidic South African fynbos soils.

    Science.gov (United States)

    Ramond, Jean-Baptiste; Lako, Joseph D W; Stafford, William H L; Tuffin, Marla I; Cowan, Don A

    2015-08-01

    Ammonia-oxidizing bacteria (AOB) are essential in the biogeochemical cycling of nitrogen as they catalyze the rate-limiting oxidation of ammonia into nitrite. Since their first isolation in the late 19th century, chemolithoautotrophic AOBs have been identified in a wide range of natural (e.g., soils, sediments, estuarine, and freshwaters) and man created or impacted habitats (e.g., wastewater treatment plants and agricultural soils). However, little is known on the plant-species association of AOBs, particularly in the nutrient-starved fynbos terrestrial biome. In this study, we evaluated the diversity of AOBs in the plant canopy of three South African fynbos-specific plant species, namely Leucadendron xanthoconus, Leucospermum truncatulum and Leucadendron microcephalum, through the construction of amoA-gene clone libraries. Our results clearly demonstrate that plant-species specific and monophyletic AOB clades are present in fynbos canopy soils. PMID:25721729

  3. Arsenic speciation in shrimp and mussel from the Mid-Atlantic hydrothermal vents

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Quetel, C. R.; Munoz, R.;

    1997-01-01

    Specimens of shrimp (Rimicaris exoculata) and mussel (Bathymodiolus puteoserpentis) were collected 3500 m below the ocean surface at the hydrothermal vents of the mid-Atlantic Ridge (TAG and Snake Pit sites, respectively). Arsenic, a potentially toxic element, is among the substances emitted by the...... hydrothermal vents. The hydrothermal vent shrimp, which are known to be a primary consumer of the primary producing chemolithoautotrophic bacteria, contained arsenic at 13 mu g g(-1) almost exclusively as arsenobetaine (AsB). Arsenic was present in the soft:issues of the mussel at 40 mu g g(-1) and the major...... of arsenic species found in the shrimp and mussel species in the deep-sea is similar to that found in their counterparts from the ocean surface. It is concluded that the autotrophic bacteria of the hydrothermal vent ecosystem and the symbiotic bacteria harboured in the mussel species are responsible...

  4. Enrichment and cultivation of a sulfide-oxidizing bacteria consortium for its deploying in full-scale biogas desulfurization

    International Nuclear Information System (INIS)

    Operational experiences and strategies to get suitable chemolithoautotrophic sulfide-oxidizing biomass from activated sludge wastewater treatment plant for its deploying in a full-scale biogas desulfurization plant are described. An economic nutrient source was applied to foster microbial selection and rapid growth. Respirometry was implemented on full-scale installations to monitor the ability of the specialized bacteria consortium to oxidize reduced sulfur i.e. H2S. During the deployment in the full-scale desulfurization reactor, intermittent sulfide feed from biogas scrubbing was performed to accelerate the startup the desulfurization process. - Highlights: • A simple method for reaching high amounts of specialized sulfide-oxidizing bacterial consortium from activated sludge was developed. • The full-scale desulfurization process can be continuously monitored by respirometry allowing fast decision making if problems arise. • The dissolved sulfide concentration was estimated with an empirical correlation between measurements of ORP, dissolved oxygen and pH

  5. The establishment of mitochondria: Paracoccus and Rhodopseudomonas.

    Science.gov (United States)

    Whatley, F R

    1981-01-01

    Many aerobic bacteria (both facultative and obligate) possess a number of those biochemical features of mitochondria which are concerned with energy metabolism. However, only restricted number, notably Paracoccus denitrificans and Rhodopseudomonas spheroides, have the majority of these features. The theory of endosymbiosis proposes that a primitive eukaryote took up bacteria to yield mitochondria. The present-day Paracoccus then resembles the ancestral bacterium in many respects the primitive amoeba, Pelomyxa palustris, which lacks mitochondria but contains a permanent population of unique symbiotic bacteria, has many of the characteristics of a present-day transitional form. The evolution of mitochondria from endosymbiotic bacteria would involve their integration with the host cell both biochemically and structurally: a number of the intermediate steps are discussed. Attention is drawn to the existence in some ciliates of hydrogenosomes, which function as anaerobic mitochondria. PMID:6264827

  6. Dicty_cDB: VSF814 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 9631_1(U59631|pid:none) 180 8e-44 (Q2W9P9) Protein recA (Recombinase A). &AP007255_622(AP007255|p... 179 1e-43 protein...0489_592( CP000489 |pid:none) Paracoccus denitrificans PD1222 ... 182 2e-44 (A3PLJ2) Protein recA (Recombina...p... 180 6e-44 (Q3ST50) Protein recA (Recombinase A). &CP000115_1273(CP000115|... 180 6e-44 CP001196_1411( ...ts) Value ( P62209 ) RecName: Full=Protein recA; AltName: Full=Recombinase A... 185 2e-45 CP00...acterium populi BJ001, ... 180 8e-44 ( P95469 ) Protein recA (Recombinase A). &U5

  7. Effect of various sources of organic carbon and high nitrite and nitrate concentrations on the selection of denitrifying bacteria. II. Continuous cultures in packed bed reactors.

    Science.gov (United States)

    Błaszczyk, M

    1983-01-01

    The effect of different organic compounds, nitrites and nitrates at the concentration of 1,000 mg N/l on the quantitative and strain-specific selection of denitrifying bacteria was determined in anaerobic packed bed reactors. Both the source of carbon and nitrogen form influenced strain specificity and the frequency of occurrence of denitrifying bacteria. The frequency of denitrifying bacteria within packed bed reactor ranged in different media from 11% (glucose and nitrates) to 100% (methanol and ethanol with nitrates). A single species selection was observed in the presence of nitrites within packed bed reactor: Pseudomonas aeruginosa in medium with acetate. Pseudomonas stutzeri in medium with ethanol, Pseudomonas mendocina in medium with methanol and Pseudomonas fluorescens in medium with glucose. When nitrates were present in packed bed reactor, the dominating bacteria were: P. stutzeri in medium with acetate, P. fluorescens in medium with ethanol, Paracoccus denitrificans in medium with methanol and Alcaligenes faecalis in medium with glucose. PMID:6194668

  8. Isolation and Denitrification Characteristics of a Heterotrophic Nitrification Bacterium%一株异养硝化细菌的分离鉴定和脱氮特性研究

    Institute of Scientific and Technical Information of China (English)

    王洁; 蓝江林; 刘波

    2013-01-01

    筛选对高浓度NH3-N养殖废水具有高效硝化能力的菌株,研究其硝化性能.通过比较几种已报道的筛选方法和不同生境中异养硝化细菌筛选效果,确定了以乙酰胺为唯一碳源和氮源,从高氨氮生境中可以筛选到高效的异养硝化细菌;进一步通过富集培养分离,从沼气池出水口水中分离到一株异养硝化细菌,并根据部分长度的16S rDNA序列进行了系统发育分析.该菌株具有高效异养硝化功能,在初始氨氮浓度为104 mg· L-1的异养氨化培养基中培养12h后,氨氮和总氮去除率分别达81.7%和53.7%,最终氨氮和总氮去除率可达90.1%和61.3%,且培养液中无明显的硝酸盐氮和亚硝酸盐氮累积.16S rDNA的序列分析鉴定,该菌株与Paracoccus denitrificars具有99%相似性,结合生理生化分析认定该菌株是一株脱氮副球菌,命名为Paracoccus denitrificans FJAT-14899.筛选出的菌株Paracocc us denitrificans FJAT-14899对氨氮具有高效的去除率,显示了良好的应用前景.%The present paper dealt with isolation and denitrification characteristics of a heterotrophic nitrification bacterium,which isolated from the high NH3-N swine wastewater.Based on the screening methods published by some scientists,a isolating method in the study was put forward to used an acetamide as a sole carbon and nitrogen source to screen a heterotrophic nitrifying bacterium from the swine wastewater.An efficient heterotrophic nitrification bacterium was isolated and identified with 16S rDNA sequence.The phylogenetic analysis of the strain was performed based on the 16S rDNA sequence.The efficiency of heterotrophic nitrification was detected for the strain.The strain FJAT-14899 was identified to be Paracoccus denitrificans with the aid of 16S rDNA sequencing.The removal rates for the total concentrations of nitrogen and NH4-N were 81.7% and 53.7% in 12 h cultural time.The final removal rates of the total nitrogen and NH4

  9. Electron transfer among the CuA-, heme b- and a3-centers of Thermus thermophilus cytochrome ba3

    DEFF Research Database (Denmark)

    Farver, Ole; Chen, Ying; Fee, James A;

    2006-01-01

    The 1-methyl-nicotinamide radical (MNA(*)), produced by pulse radiolysis has previously been shown to reduce the Cu(A)-site of cytochromes aa(3), a process followed by intramolecular electron transfer (ET) to the heme a but not to the heme a(3) [Farver, O., Grell, E., Ludwig, B., Michel, H. and...... Pecht, I. (2006) Rates and equilibrium of CuA to heme a electron transfer in Paracoccus denitrificans cytochrome c oxidase. Biophys. J. 90, 2131-2137]. Investigating this process in the cytochrome ba(3) of Thermus thermophilus (Tt), we now show that MNA(*) also reduces Cu(A) with a subsequent ET to the...... heme b and then to heme a(3), with first-order rate constants 11200 s(-1), and 770 s(-1), respectively. The results provide clear evidence for ET among the three spectroscopically distinguishable centers and indicate that the binuclear a(3)-Cu(B) center can be reduced in molecules containing a single...

  10. Final Report: Molecular mechanisms and kinetics of microbial anaerobic nitrate-dependent U(IV) and Fe(II) oxidation

    Energy Technology Data Exchange (ETDEWEB)

    O' Day, Peggy A. [Univ. of California, Merced, CA (United States); Asta, Maria P. [Univ. of California, Merced, CA (United States); Kanematsu, Masakazu [Univ. of California, Merced, CA (United States); Beller, Harry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Peng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-02-27

    In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactive transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.

  11. Dicty_cDB: Contig-U11527-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available as denitrificans DSM ... 163 3e-38 CP000708_272( CP000708 |pid:none) Brucella ovis ATCC 25840 ch...e yeiT; ... 167 3e-39 CP000112_1250( CP000112 |pid:none) Desulfovibrio desulfuricans G20... 167 3e-39 CU9281...7 CU928158_2147( CU928158 |pid:none) Escherichia fergusonii ATCC 354... 161 2e-37 CP001338_1738( CP001338 |pid:non...CC 8739, com... 160 2e-37 CU928158_2146( CU928158 |pid:none) Escherichia fergusonii ATCC 354... 160 3e-37 EU...; ... 151 1e-34 CP001358_1960( CP001358 |pid:none) Desulfovibrio desulfuricans sub... 151 2e-34 CP000627_1905( CP000627 |pid:non

  12. Electrode assemblies composed of redox cascades from microbial respiratory electron transfer chains

    Energy Technology Data Exchange (ETDEWEB)

    Gates, Andrew J. [Univ. of East Anglia, Norwich (United Kingdom); Marritt, Sophie [Univ. of East Anglia, Norwich (United Kingdom); Bradley, Justin [Univ. of East Anglia, Norwich (United Kingdom); Shi, Liang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McMillan, Duncan G. [Univ. of Leeds (United Kingdom); Jeuken, Lars J. [Univ. of Leeds (United Kingdom); Richardson, David [Univ. of East Anglia, Norwich (United Kingdom); Butt, Julea N. [Univ. of East Anglia, Norwich (United Kingdom)

    2013-10-01

    Respiratory and photosynthetic electron transfer chains are dependent on vectorial electron transfer through a series of redox proteins. Examples include electron transfer from NapC to NapAB nitrate reductase in Paracoccus denitrificans and from CymA to Fcc3 (flavocytochrome c3) fumarate reductase in Shewanella oneidensis MR-1. In the present article, we demonstrate that graphite electrodes can serve as surfaces for the stepwise adsorption of NapC and NapAB, and the stepwise adsorption of CymA and Fcc3. Aspects of the catalytic properties of these assemblies are different from those of NapAB and Fcc3 adsorbed in isolation. We propose that this is due to the formation of NapC-NapAB and of CymA-Fcc3 complexes that are capable of supporting vectorial electron transfer.

  13. Microbial oxidation of mixtures of methylmercaptan and hydrogen sulfide.

    Science.gov (United States)

    Subramaniyan, A; Kolhatkar, R; Sublette, K L; Beitle, R

    1998-01-01

    Refinery spent-sulfidic caustic, containing only inorganic sulfides, has previously been shown to be amenable to biotreatment with Thiobacillus denitrificans strain F with complete oxidation of sulfides to sulfate. However, many spent caustics contain mercaptans that cannot be metabolized by this strict autotroph. An aerobic enrichment culture was developed from mixed Thiobacilli and activated sludge that was capable of simultaneous oxidation of inorganic sulfide and mercaptans using hydrogen sulfide (H2S) and methylmercaptan (MeSH) gas feeds used to simulate the inorganic and organic sulfur of a spent-sulfidic caustic. The enrichment culture was also capable of biotreatment of an actual mercaptan-containing, spent-sulfidic caustic but at lower rates than predicted by operation on MeSH and H2S fed to the culture in the gas phase, indicating that the caustic contained other inhibitory components. PMID:18576062

  14. HACEK endocarditis: state-of-the-art.

    Science.gov (United States)

    Revest, Matthieu; Egmann, Gérald; Cattoir, Vincent; Tattevin, Pierre

    2016-01-01

    The HACEK group of bacteria - Haemophilus parainfluenzae, Aggregatibacter spp. (A. actinomycetemcomitans, A. aphrophilus, A. paraphrophilus, and A. segnis), Cardiobacterium spp. (C. hominis, C. valvarum), Eikenella corrodens, and Kingella spp. (K. kingae, K. denitrificans) - are fastidious gram-negative bacteria, part of the normal microbiota of oral and upper respiratory tract in humans. Although their pathogenicity is limited, they are responsible for 1-3% of all infective endocarditis. HACEK endocarditis mostly affect patients with underlying heart disease or prosthetic valves, and are characterized by an insidious course, with a mean diagnosis delay of 1 month (Haemophilus spp.) to 3 months (Aggregatibacter and Cardiobacterium spp.). The advent of continuously monitored blood culture systems with enriched media has erased the need for extended incubation for the diagnosis of HACEK endocarditis. Medical treatment relies on third-generation cephalosporin, with a favorable outcome in 80-90% of cases, with or without cardiac surgery. PMID:26953488

  15. Microbial desulfurization of dibenzothiophene

    Energy Technology Data Exchange (ETDEWEB)

    van Afferden, M.; Schacht, S.; Beyer, M.; Klein, J.

    1988-01-01

    Concerning the sulfur removal from coal before combustion there is considerable interest in microbial methods as pyrite oxidation and elimination of organically bound sulfur from coal. Using organic sulfur compounds relevant for coal the mechanism of desulfurization was investigated. The authors isolated a defined mixed culture (FODO) able to utilize dibenzothiophene as sole sulfur source for growth, while benzoate was used as carbon source. The mixed culture FODO consists of an Alcaligenes denitrificans subspecies and a Brevibacterium species. Two metabolites of the degradation and dibenzothiophene-5-dioxide. The subsequent degradation of dibenzothiophene-5-dioxide used as sole sulfur source results in a release of sulfate ions into the medium. The results suggest a sulfur specific oxidative mechanism for removal of sulfur from dibenzothiophene.

  16. Denitrification characteristics of a sulfur autotrophic denitrification reactor

    Directory of Open Access Journals (Sweden)

    Chenxiao ZHANG

    2016-02-01

    Full Text Available The denitrification characteristics of a sulfur autotrophic denitrification reactor are investigated. The results show that domestication of sulfur autotrophic bacteria is completed within 15 days after biofilm formation in the reactor, which is shorter than other similar researches. The nitrogen removal rate remains over than 90%, and the denitrification rate reaches 18.5 mg N/(L·h with influent NO-3-N of 70 mg/L , influent pH of 8 and HRT of 4.3 h . Thiobacillus denitrificans are observed in the whole reactor when domestication finishes, while it is more abundant in the middle and lower part. The optimal influent NO-3-N concentration for the reactor is 50 mg/L, the optimal temperature is 30~35 ℃, the optimal influent pH is 7~8, and the nitrogen removal rate is over than 90%.

  17. AcEST: DK947788 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 8DWE6_NEMVE Predicted protein (Fragment) OS=Nematoste... 74 4e-12 tr|A9U5J8|A9U5J8_PHYPA Predicted protein OS=Physcomitrella pat...ne protein oxaA OS=Paracoccus denitrificans (strain Pd 1222) GN=oxaA ...|A7T248|A7T248_NEMVE Predicted protein (Fragment) OS=Nematoste... 81 2e-14 tr...|A7TCL2|A7TCL2_NEMVE Predicted protein (Fragment) OS=Nematoste... 81 3e-14 tr|A7TAG1|A7TAG1_NEMVE Predicted protein (Fra...gment) OS=Nematoste... 81 3e-14 tr|A7SUL8|A7SUL8_NEMVE Predicted protein (Fragment) OS=Nematoste... 81 3e-14 tr

  18. Dicty_cDB: Contig-U15337-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available mos... 36 7.5 AE014134_2866( AE014134 |pid:none) Drosophila melanogaster chromos... 36 7.5 ( P15924 ) RecName: Full=Desmoplak...al maintenance of chromosomes pro... 40 0.68 AE014299_1259( AE014299 |pid:none) Shewanella oneidensis MR-1, ...:none) Shewanella denitrificans OS217, ... 38 2.0 CP001001_4004( CP001001 |pid:none) Meth...) Value N ( BJ403545 ) Dictyostelium discoideum cDNA clone:dds25a15, 3' ... 1568 0.0 1 ( BJ386630 ) Dictyostelium discoide...um cDNA clone:ddc58k19, 3' ... 1568 0.0 1 ( BJ403084 ) Dictyostelium discoideum cDNA clone:dds

  19. Surface residues dynamically organize water bridges to enhance electron transfer between proteins

    CERN Document Server

    de la Lande, Aurélien; Řezáč, Jan; Sanders, Barry C; Salahub, Dennis R; 10.1073/pnas.0914457107

    2010-01-01

    Cellular energy production depends on electron transfer (ET) between proteins. In this theoretical study, we investigate the impact of structural and conformational variations on the electronic coupling between the redox proteins methylamine dehydrogenase and amicyanin from Paracoccus denitrificans. We used molecular dynamics simulations to generate configurations over a duration of 40ns (sampled at 100fs intervals) in conjunction with an ET pathway analysis to estimate the ET coupling strength of each configuration. In the wild type complex, we find that the most frequently occurring molecular configurations afford superior electronic coupling due to the consistent presence of a water molecule hydrogen-bonded between the donor and acceptor sites. We attribute the persistence of this water bridge to a "molecular breakwater" composed of several hydrophobic residues surrounding the acceptor site. The breakwater supports the function of nearby solvent-organizing residues by limiting the exchange of water molecul...

  20. Intra-field variability in microbial community associated with phase-separation-controlled hydrothermal fluid chemistry in the Mariner field, the southern Lau Basin

    Science.gov (United States)

    Takai, K.; Ishibashi, J.; Lupton, J.; Ueno, Y.; Nunoura, T.; Hirayama, H.; Horikoshi, K.; Suzuki, R.; Hamasaki, H.; Suzuki, Y.

    2006-12-01

    A newly discovered hydrothermal field called the Mariner field at the northernmost central Valu Fa Ridge (VFR) in the Lau Basin was explored and characterized by geochemical and microbiological surveys. The hydrothermal fluid (max. 365 u^C) emitting from the most vigorous vent site (Snow chimney) was boiling just beneath the seafloor at a water depth of 1908 m and two end-members of hydrothermal fluid were identified. Mineral and fluid chemistry of typical brine-rich (Snow chimney and Monk chimney) and vapor-rich (Crab Restaurant chimney) hydrothermal fluids and the host chimney structures were analyzed. Microbial community structures in three chimney structures were also investigated by culture-dependent and - independent analyses. The 16S rRNA gene clone analysis revealed that both bacterial and archaeal rRNA gene communities at the chimney surface zones were different among three chimneys. The bacterial and archaeal rRNA gene communities of the Snow chimney surface were very similar with those in the dead chimneys, suggesting concurrence of metal sulfide deposition at the inside and weathering at the surface potentially due to its large structure and size. Cultivation analysis demonstrated the significant variation in culturability of various microbial components, particularly of thermophilic H2- and/or S-oxidizing chemolithoautotrophs such as the genera Aquifex and Persephonella, among the chimney sites. The culturability of these chemolithoautotrophs might be associated with the input of gaseous energy and carbon sources like H2S, H2 and CH4 from the hydrothermal fluids, and might be affected by phase-separation- controlled fluid chemistry. In addition, inter-fields comparison of microbial community structures determined by cultivation analysis revealed novel characteristics of the microbial communities in the Mariner field of the Lau Basin among the global deep-sea hydrothermal systems.

  1. Molecular cloning, sequencing, and expression of omp-40, the gene coding for the major outer membrane protein from the acidophilic bacterium Thiobacillus ferrooxidans.

    Science.gov (United States)

    Guiliani, N; Jerez, C A

    2000-06-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. Some of the surface components of this microorganism are probably involved in adaptation to their acidic environment and in bacterium-mineral interactions. We have isolated and characterized omp40, the gene coding for the major outer membrane protein from T. ferrooxidans. The deduced amino acid sequence of the Omp40 protein has 382 amino acids and a calculated molecular weight of 40,095.7. Omp40 forms an oligomeric structure of about 120 kDa that dissociates into the monomer (40 kDa) by heating in the presence of sodium dodecyl sulfate. The degree of identity of Omp40 amino acid sequence to porins from enterobacteria was only 22%. Nevertheless, multiple alignments of this sequence with those from several OmpC porins showed several important features conserved in the T. ferrooxidans surface protein, such as the approximate locations of 16 transmembrane beta strands, eight loops, including a large external L3 loop, and eight turns which allowed us to propose a putative 16-stranded beta-barrel porin structure for the protein. These results together with the previously known capacity of Omp40 to form ion channels in planar lipid bilayers strongly support its role as a porin in this chemolithoautotrophic acidophilic microorganism. Some characteristics of the Omp40 protein, such as the presence of a putative L3 loop with an estimated isoelectric point of 7.21 allow us to speculate that this can be the result of an adaptation of the acidophilic T. ferrooxidans to prevent free movement of protons across its outer membrane. PMID:10831405

  2. Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans: a high throughput proteomics analysis.

    Science.gov (United States)

    Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J; Shabanowitz, Jeffrey; Hunt, Donald F; Jerez, Carlos A

    2007-12-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination. PMID:17911085

  3. Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin.

    Science.gov (United States)

    Klein, Frieder; Humphris, Susan E; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M; Orsi, William D

    2015-09-29

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite-calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in (13)C (δ(13)C(TOC) = -19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments. PMID:26324888

  4. Sources of organic nitrogen at the serpentinite-hosted Lost City hydrothermal field.

    Science.gov (United States)

    Lang, S Q; Früh-Green, G L; Bernasconi, S M; Butterfield, D A

    2013-03-01

    The reaction of ultramafic rocks with water during serpentinization at moderate temperatures results in alkaline fluids with high concentrations of reduced chemical compounds such as hydrogen and methane. Such environments provide unique habitats for microbial communities capable of utilizing these reduced compounds in present-day and, possibly, early Earth environments. However, these systems present challenges to microbial communities as well, particularly due to high fluid pH and possibly the availability of essential nutrients such as nitrogen. Here we investigate the source and cycling of organic nitrogen at an oceanic serpentinizing environment, the Lost City hydrothermal field (30°N, Mid-Atlantic Ridge). Total hydrolizable amino acid (THAA) concentrations in the fluids range from 736 to 2300 nm and constitute a large fraction of the dissolved organic carbon (2.5-15.1%). The amino acid distributions, and the relative concentrations of these compounds across the hydrothermal field, indicate they most likely derived from chemolithoautotrophic production. Previous studies have identified the presence of numerous nitrogen fixation genes in the fluids and the chimneys. Organic nitrogen in actively venting chimneys has δ(15) N values as low as 0.1‰ which is compatible with biological nitrogen fixation. Total hydrolizable amino acids in the chimneys are enriched in (13) C by 2-7‰ compared to bulk organic matter. The distribution and absolute δ(13) C(THAA) values are compatible with a chemolithoautotrophic source, an attribution also supported by molar organic C/N ratios in most active chimneys (4.1-5.5) which are similar to those expected for microbial communities. In total, these data indicate nitrogen is readily available to microbial communities at Lost City. PMID:23346942

  5. The Complete Genome Sequence and Analysis of the Epsilonproteobacterium Arcobacter butzleri

    Science.gov (United States)

    Miller, William G.; Parker, Craig T.; Rubenfield, Marc; Mendz, George L.; Wösten, Marc M. S. M.; Ussery, David W.; Stolz, John F.; Binnewies, Tim T.; Hallin, Peter F.; Wang, Guilin; Malek, Joel A.; Rogosin, Andrea; Stanker, Larry H.; Mandrell, Robert E.

    2007-01-01

    Background Arcobacter butzleri is a member of the epsilon subdivision of the Proteobacteria and a close taxonomic relative of established pathogens, such as Campylobacter jejuni and Helicobacter pylori. Here we present the complete genome sequence of the human clinical isolate, A. butzleri strain RM4018. Methodology/Principal Findings Arcobacter butzleri is a member of the Campylobacteraceae, but the majority of its proteome is most similar to those of Sulfuromonas denitrificans and Wolinella succinogenes, both members of the Helicobacteraceae, and those of the deep-sea vent Epsilonproteobacteria Sulfurovum and Nitratiruptor. In addition, many of the genes and pathways described here, e.g. those involved in signal transduction and sulfur metabolism, have been identified previously within the epsilon subdivision only in S. denitrificans, W. succinogenes, Sulfurovum, and/or Nitratiruptor, or are unique to the subdivision. In addition, the analyses indicated also that a substantial proportion of the A. butzleri genome is devoted to growth and survival under diverse environmental conditions, with a large number of respiration-associated proteins, signal transduction and chemotaxis proteins and proteins involved in DNA repair and adaptation. To investigate the genomic diversity of A. butzleri strains, we constructed an A. butzleri DNA microarray comprising 2238 genes from strain RM4018. Comparative genomic indexing analysis of 12 additional A. butzleri strains identified both the core genes of A. butzleri and intraspecies hypervariable regions, where <70% of the genes were present in at least two strains. Conclusion/Significance The presence of pathways and loci associated often with non-host-associated organisms, as well as genes associated with virulence, suggests that A. butzleri is a free-living, water-borne organism that might be classified rightfully as an emerging pathogen. The genome sequence and analyses presented in this study are an important first step in

  6. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    Science.gov (United States)

    Yamazaki, T.; Hozuki, T.; Arai, K.; Toyoda, S.; Koba, K.; Fujiwara, T.; Yoshida, N.

    2014-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas and produced in denitrification and nitrification by various microorganisms. Site preference (SP) of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathways. To determine representative SP values for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR) from Paracoccus denitrificans. The SP value for NOR reaction (-5.9 ± 2.1‰) showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰) was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2-) reduction (which is followed by NO reduction) to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for the NH2OH oxidation pathway possibly due to a small contribution of NO2- reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  7. Numerically dominant denitrifying bacteria from world soils.

    Science.gov (United States)

    Gamble, T N; Betlach, M R; Tiedje, J M

    1977-04-01

    Nineteen soils, three freshwater lake sediments, and oxidized poultry manure were examined to determine the dominant denitrifier populations. The samples, most shown or expected to support active denitrification, were from eight countries and included rice paddy, temperate agricultural, rain forest, organic, and waste-treated soils. Over 1,500 organisms that could grow anaerobically on nitrate agar were isolated. After purification, 146 denitrifiers were obtained, as verified by production of N(2) from NO(3) (-). These isolates were characterized by 52 properties appropriate for the Pseudomonas-Alcaligenes group. Numerical taxonomic procedures were used to group the isolates and compare them with nine known denitrifier species. The major group isolated was representative of Pseudonomas fluorescens biotype II. The second most prevalent group was representative of Alcaligenes. Other Pseudomonas species as well as members of the genus Flavobacterium, the latter previously not known to denitrify, also were identified. One-third of the isolates could not utilize glucose or other carbohydrates as sole carbon sources. Significantly, none of the numerically dominant denitrifiers we isolated resembled the most studied species: Pseudomonas denitrificans, Pseudomonas perfectomarinus, and Paracoccus denitrificans. Denitrification appears to be a property of a very diverse group of gram-negative, motile bacteria, as shown by the large number (22.6%) of ungrouped organisms. The diversity of denitrifiers from a given sample was usually high, with at least two groups present. Denitrifiers, nitrite accumulators, and organisms capable of anaerobic growth were present in the ratio of 0.20+/-0.23:0.81+/-0.23:1. There were few correlations between their numbers and the sample characteristics measured. However, the temperatures at which isolates could grow were significantly related to the temperatures of the environments from which they were isolated. Regression analysis revealed few

  8. An additional simple denitrification bioreactor using packed gel envelopes applicable to industrial wastewater treatment.

    Science.gov (United States)

    Morita, Masahiko; Uemoto, Hiroaki; Watanabe, Atsushi

    2007-08-15

    A simple denitrification bioreactor for nitrate-containing wastewater without organic compounds was developed. This bioreactor consisted of packed gel envelopes in a single tank. Each envelope comprised two plates of gels containing Paracoccus denitrificans cells with an internal space between the plates. As an electron donor for denitrification, ethanol was injected into the internal space and not directly into the wastewater. P. denitrificans cells in the gel reduced nitrate to nitrogen gas by using the injected ethanol. Nitrate-containing desulfurization wastewater derived from a coal-fired thermal power plant was continuously treated with 20 packed gel envelopes (size, 1,000 x 900 x 12 mm; surface area, 1.44 m(2)) in a reactor tank (volume 1.5 m(3)). When the total nitrogen concentration in the inflow was around 150 mg-N x L(-1), the envelopes removed approximately 60-80% of the total nitrogen, and the maximum nitrogen removal rate was 5.0 g-N x day(-1) per square meter of the gel surface. This value corresponded to the volumetric nitrogen removal performance of 0.109 kg-N x m(-3) x day(-1). In each envelope, a high utilization efficiency of the electron donor was attained, although more than the double amount of the electron donor was empirically injected in the present activated sludge system to achieve denitrification when compared with the theoretical value. The bioreactor using the envelopes would be extremely effective as an additional denitrification system because these envelopes can be easily installed in the vacant spaces of preinstalled water treatment systems, without requiring additional facilities for removing surplus ethanol and sludge. PMID:17252606

  9. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    Directory of Open Access Journals (Sweden)

    T. Yamazaki

    2013-10-01

    Full Text Available Nitrous oxide (N2O is a potent greenhouse gas and produced in denitrification and nitrification in environmental nitrogen cycle by various microorganism. Site preference (SP of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathway. To determine representative SP value for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO purified from two species of ammonia oxidizing bacteria (AOB, Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR from Paracoccus denitrificans, respectively. The SP value for NOR reaction (−5.9 ± 2.1‰ showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰ was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2– reduction (which is followed by NO reduction to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for NH2OH oxidation pathway possibly due to a small contribution of NO2– reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  10. Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Handley, KM [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Steefel, Carl I [Lawrence Berkeley National Laboratory (LBNL); Sharon, I [University of California, Berkeley; Williams, Ken [Lawrence Berkeley National Laboratory (LBNL); Miller, CS [University of California, Berkeley; Frischkorn, Kyle C [University of California, Berkeley; Chourey, Karuna [ORNL; Thomas, Brian [University of California, Berkeley; Shah, Manesh B [ORNL; Long, Phil [Pacific Northwest National Laboratory (PNNL); Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2013-01-01

    Stimulation of subsurface microorganisms to induce reductive immobilization of metals is a promising approach for bioremediation, yet the overall microbial community response is typically poorly understood. Here we used community proteogenomics to test the hypothesis that excess input of acetate activates syntrophic interactions among autotrophs and heterotrophs. A flow-through sediment column was incubated in a groundwater well of an acetate-amended aquifer. Genomic sequences from the community recovered during microbial sulfate reduction were used to econstruct, de novo, near-complete genomes for Desulfobacter (Deltaproteobacteria) and relatives of Sulfurovum and Sulfurimonas (Epsilonproteobacteria), and Bacteroidetes. Partial genomes were obtained for Clostridiales (Firmicutes) and Desulfuromonadales-like Deltaproteobacteria. The majority of proteins identified by mass spectrometry corresponded to Desulfobacter-like species, and demonstrate the role of this organism in sulfate reduction (Dsr and APS), nitrogen-fixation (Nif) and acetate oxidation to CO2 during amendment. Results suggest less abundant Desulfuromonadales and Bacteroidetes also actively contributed to CO2 production via the TCA cycle. Proteomic data indicate that sulfide was partially re-oxidized by Epsilonproteobacteria through nitrate-dependent sulfide oxidation (using Nap, Nir, Nos, SQR and Sox), with CO2 fixed using the reverse TCA cycle. Modeling shows that this reaction was thermodynamically possible, and kinetically favorable relative to acetate-dependent denitrification. We conclude that high-levels of carbon amendment aimed to stimulate anaerobic heterotrophy led to carbon fixation in co-dependent chemoautotrophs. These results have implications for understanding complex ecosystem behavior, and show that high levels of organic carbon supplementation can expand the range of microbial functionalities accessible for ecosystem manipulation.

  11. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.

    Science.gov (United States)

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit

    2009-05-01

    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity. PMID:19290520

  12. Iron-based microbial ecosystem on and below the seafloor: a case study of hydrothermal fields of the Southern Mariana Trough

    Directory of Open Access Journals (Sweden)

    Shingo eKato

    2012-03-01

    Full Text Available Microbial community structures in deep-sea hydrothermal vents fields are constrained by available energy yields provided by inorganic redox reactions, which are in turn controlled by chemical composition of hydrothermal fluids. In the past two decades, geochemical and microbiological studies have been conducted in deep-sea hydrothermal vents at three geographically different areas of the Southern Mariana Trough (SMT. A variety of geochemical data of hydrothermal fluids and an unparalleled microbiological dataset of various samples (i.e., sulfide structures of active vents, iron-rich mats, borehole fluids and ambient seawater are available for comparative analyses. Here, we summarize the geochemical and microbiological characteristics in the SMT and assess the relationship between the microbial community structures and the fluid geochemistry in the SMT by thermodynamic modeling. In the high-temperature vent fluids, aerobic sulfide-oxidation has the potential to yield large amounts of bioavailable energy in the vent fluids, which is consistent with the detection of species related to sulfide-oxidizing bacteria (such as Thiomicrospira in the Gammaproteobacteria and Sulfurimonas in the Epsilonproteobacteria. Conversely, the bioavailable energy yield from aerobic iron-oxidation reactions in the low-temperature fluids collected from man-made boreholes and several natural vents were comparable to or higher than those from sulfide-oxidation. This is also consistent with the detection of species related to iron-oxidizing bacteria (Mariprofundus in the Zetaproteobacteria in such low-temperature samples. The results of combination of microbiological, geochemical and thermodynamic analyses in the SMT provide novel insights into the presence and significance of iron-based microbial ecosystems in deep-sea hydrothermal fields.

  13. Microbiological production and ecological flux of northwestern subduction hydrothermal systems

    Science.gov (United States)

    Sunamura, M.; Okamura, K.; Noguchi, T.; Yamamoto, H.; Fukuba, T.; Yanagawa, K.

    2012-12-01

    Deep-sea hydrothermal system is one of the most important sources for heat and chemical flux from the oceanic crust to the global ocean. The rich biological community around the hydrothermal vent shows chemolithoautotrophic microbial production are important in deep sea ecosystems. More than 99% of microbiological available chemical components in hydrothermal vent fluid, e.g. sulfide, methane, hydrogen, Fe2+, and Mn2+, is released into surrounding seawater to construct hydrothermal plume, suggesting that the chemolithoautotrophic-microbial primary production in the hydrothermal plume is huge and important in the whole hydrothermal ecosystems. To understand the impact of hydrothermal plume to a microbial ecosystem and a connectivity with zooplankton, we targeted and investigated a total of 16 hydrothermal fileds (7 sites in Okinawa trough, 3 sites in Ogasawara arc, and 6 sites in Mariana arc and back arc) and investigated in several cruises under the TAIGA project in Japan. Hydrothermal fluids in the subduction system are rich in sulfide. The hydrothermal fluids in the Okinawa trough, Ogasawara arc. and Mariana trough are characterized by rich in methane, poor in other reduced chemicals, and rich in iron, respectively. The major microbial composition was a potential sulfur oxidizing microbes SUP05 in the plume ecosystems, while an aerobic methanotrophic bacteria was secondary major member in methane-rich hydrothermal systems in Okinawa trough. Microbial quantitative and spatial distribution analyses of each plume site showed that the microbial population size and community structures are influenced by original chemical components of hydrothermal fluid, e.g. sulfide, methane and iron concentration. Microbial quantitative data indicated the removal/sedimentation of microbial cells from the plume and effect of phase separation in a same vent field through construction of gas-rich or gas-poor plumes. After the correlation of plume mixing effect, we estimates that the

  14. Transient Accumulation of NO2- and N2O during Denitrification Explained by Assuming Cell Diversification by Stochastic Transcription of Denitrification Genes.

    Science.gov (United States)

    Hassan, Junaid; Qu, Zhi; Bergaust, Linda L; Bakken, Lars R

    2016-01-01

    Denitrifying bacteria accumulate [Formula: see text], NO, and N2O, the amounts depending on transcriptional regulation of core denitrification genes in response to O2-limiting conditions. The genes include nar, nir, nor and nosZ, encoding [Formula: see text]-, [Formula: see text]-, NO- and N2O reductase, respectively. We previously constructed a dynamic model to simulate growth and respiration in batch cultures of Paracoccus denitrificans. The observed denitrification kinetics were adequately simulated by assuming a stochastic initiation of nir-transcription in each cell with an extremely low probability (0.5% h-1), leading to product- and substrate-induced transcription of nir and nor, respectively, via NO. Thus, the model predicted cell diversification: after O2 depletion, only a small fraction was able to grow by reducing [Formula: see text]. Here we have extended the model to simulate batch cultivation with [Formula: see text], i.e., [Formula: see text], NO, N2O, and N2 kinetics, measured in a novel experiment including frequent measurements of [Formula: see text]. Pa. denitrificans reduced practically all [Formula: see text] to [Formula: see text] before initiating gas production. The [Formula: see text] production is adequately simulated by assuming stochastic nar-transcription, as that for nirS, but with a higher probability (0.035 h-1) and initiating at a higher O2 concentration. Our model assumes that all cells express nosZ, thus predicting that a majority of cells have only N2O-reductase (A), while a minority (B) has [Formula: see text]-, NO- and N2O-reductase. Population B has a higher cell-specific respiration rate than A because the latter can only use N2O produced by B. Thus, the ratio [Formula: see text] is low immediately after O2 depletion, but increases throughout the anoxic phase because B grows faster than A. As a result, the model predicts initially low but gradually increasing N2O concentration throughout the anoxic phase, as observed. The

  15. Identification of two domains and distal histidine ligands to the four haems in the bacterial c-type cytochrome NapC; the prototype connector between quinol/quinone and periplasmic oxido-reductases.

    Science.gov (United States)

    Cartron, Michaël L; Roldán, M Dolores; Ferguson, Stuart J; Berks, Ben C; Richardson, David J

    2002-12-01

    NapC is a tetra-haem member of a family of bacterial membrane-anchored multi-haem c -type cytochromes implicated in electron transfer between membrane quinols and periplasmic enzymes. The water-soluble tetra-haem fragment of Paracoccus pantotrophus NapC has been expressed as a periplasmic protein (NapC(sol)) in Paracoccus denitrificans, P. pantotrophus and Escherichia coli. Site-specific mutagenesis of NapC(sol), combined with spectroscopic studies, suggests that each haem iron centre has bis -histidinyl co-ordination. Four proximal ligands arise from each of four Cys-Xaa-Xaa-Cys-His haem-binding motifs; candidates for the four distal ligands are His(81), His(99), His(174) and His(194). NapC(H81A), NapC(H99A), NapC(H174A) and NapC(H194A) mutants (with alanine substituted for each of the four candidate residues) have all been purified from E. coli. In each case, one of the haems has become high-spin, as judged by the presence of a broad absorption band between 620 nm and 650 nm for the oxidized cytochrome; this feature is absent for wild-type protein and presumably arises because of the absence of the distal histidine ligand from one of the haems. NapC(H81A) and NapC(H174A) are less well expressed in E. coli than NapC(H99A) and NapC(H194A) and cannot be detected when expressed in P. denitrificans or P. pantotrophus. In vitro and in vivo complementation studies demonstrate that the soluble periplasmic NapC can mediate electron transfer from quinols to the periplasmic nitrate reductase. This capacity was retained in vitro with the NapC(H99A) and NapC(H194A) mutants but was lost in vivo. A model for the structural organization of NapC(sol) into two domains, each containing a di-haem pair, is proposed. In this model, each haem pair obtains one distal haem ligand from its own domain and a second from the other domain. The suggestion of two domains is supported by observations that the 24 kDa NapC(sol) cleaves to yield a 12 kDa haem-staining band. Determination of the

  16. Microbial control of hydrogen sulfide production

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J. [Univ. of Oklahoma, Tulsa, OK (United States)] [and others

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  17. A field demonstration of the microbial treatment of sour produced water

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L. [Univ. of Tulsa, OK (United States); Morse, D.; Raterman, K. [Amoco Production Co., Tulsa, OK (United States)

    1995-12-31

    The potential for detoxification and deodorization of sulfide-laden water (sour water) by microbial treatment was evaluated at a petroleum production site under field conditions. A sulfide-tolerant strain of the chemautotroph and facultative anaerobe, Thiobacillus denitrificans, was introduced into an oil-skimming pit of the Amoco Production Company LACT 10 Unit of the Salt Creek Field, Wyoming. Field-produced water enters this pit from the oil/water separation treatment train at an average flowrate of 5,000 bbl/D (795 m{sup 3}/D) with a potential maximum of 98,000 bbl/D (15,580 m{sup 3}/D). Water conditions at the pit inlet are 4,800 mg/l TDS, 100 mg/l sulfide, pH 7.8, and 107{degrees}F. To this water an aqueous solution of ammonium nitrate and diphosphorous pentoxide was added to provide required nutrients for the bacteria. The first 20% of the pit was aerated to a maximum depth of 5 ft (1.5 m) to facilitate the aerobic oxidation of sulfide. No provisions for pH control or biomass recovery and recycle were made. Pilot operations were initiated in October 1992 with the inoculation of the 19,000 bbl (3,020 m{sup 3}) pit with 40 lb (18.1 kg) of dry weight biomass. After a brief acclimation period, a nearly constant mass flux of 175 lb/D (80 kg/D) sulfide was established to the pit. Bio-oxidation of sulfide to elemental sulfur and sulfate was immediate and complete. Subsequent pilot operations focused upon process optimization and process sensitivity to system upsets. The process appeared most sensitive to large variations in sulfide loading due to maximum water discharge events. However, recoveries from such events could be accomplished within hours. This paper details all pertinent aspects of pilot operation, performance, and economics. Based on this body of evidence, it is suggested that the oxidation of inorganic sulfides by T denitrificans represents a viable concept for the treatment of sour water coproduced with oil and gas.

  18. Zeta-Proteobacteria dominate the formation of microbial mats in low-temperature hydrothermal vents at Loihi Seamount

    Science.gov (United States)

    Rassa, A. C.; McAllister, S. M.; Safran, S. A.; Moyer, C. L.

    2007-12-01

    Sulfurimonas, which are sulfur- and thiosulfate-oxidizing bacteria.

  19. Microbial oxidative sulfur metabolism: biochemical evidence of the membrane-bound heterodisulfide reductase-like complex of the bacterium Aquifex aeolicus.

    Science.gov (United States)

    Boughanemi, Souhela; Lyonnet, Jordan; Infossi, Pascale; Bauzan, Marielle; Kosta, Artémis; Lignon, Sabrina; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2016-08-01

    The Hdr (heterodisulfide reductase)-like enzyme is predicted, from gene transcript profiling experiments previously published, to be essential in oxidative sulfur metabolism in a number of bacteria and archaea. Nevertheless, no biochemical and physicochemical data are available so far about this enzyme. Genes coding for it were identified in Aquifex aeolicus, a Gram-negative, hyperthermophilic, chemolithoautotrophic and microaerophilic bacterium that uses inorganic sulfur compounds as electron donor to grow. We provide biochemical evidence that this Hdr-like enzyme is present in this sulfur-oxidizing prokaryote (cultivated with thiosulfate or elemental sulfur). We demonstrate, by immunolocalization and cell fractionation, that Hdr-like enzyme is associated, presumably monotopically, with the membrane fraction. We show by co-immunoprecipitation assay or partial purification, that the Hdr proteins form a stable complex composed of at least five subunits, HdrA, HdrB1, HdrB2, HdrC1 and HdrC2, present in two forms of high molecular mass on native gel (∼240 and 450 kDa). These studies allow us to propose a revised model for dissimilatory sulfur oxidation pathways in A. aeolicus, with Hdr predicted to generate sulfite. PMID:27284018

  20. Accelerated evolutionary rate in sulfur-oxidizing endosymbiotic bacteria associated with the mode of symbiont transmission.

    Science.gov (United States)

    Peek, A S; Vrijenhoek, R C; Gaut, B S

    1998-11-01

    The nearly neutral theory of molecular evolution predicts that the rate of nucleotide substitution should accelerate in small populations at sites under low selective constraint. We examined these predictions with respect to the relative population sizes for three bacterial life histories within chemolithoautotrophic sulfur-oxidizing bacteria: (1) free-living bacteria, (2) environmentally captured symbionts, and (3) maternally transmitted symbionts. Both relative rates of nucleotide substitution and relative ratios of loop, stem, and domain substitutions from 1,165 nt of the small-subunit 16S rDNA were consistent with expectations of the nearly neutral theory. Relative to free-living sulfur-oxidizing autotrophic bacteria, the maternally transmitted symbionts have faster substitution rates overall and also in low-constraint domains of 16S rDNA. Nucleotide substitition rates also differ between loop and stem positions. All of these findings are consistent with the predictions that these symbionts have relatively small effective population sizes. In contrast, the rates of nucleotide substitution in environmentally captured symbionts are slower, particularly in high-constraint domains, than in free-living bacteria. PMID:12572615

  1. Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy.

    Science.gov (United States)

    Klatt, Judith M; Meyer, Steffi; Häusler, Stefan; Macalady, Jennifer L; de Beer, Dirk; Polerecky, Lubos

    2016-04-01

    We studied the interaction between phototrophic and chemolithoautotrophic sulphide-oxidizing microorganisms in natural microbial mats forming in sulphidic streams. The structure of these mats varied between two end-members: one characterized by a layer dominated by large sulphur-oxidizing bacteria (SOB; mostly Beggiatoa-like) on top of a cyanobacterial layer (B/C mats) and the other with an inverted structure (C/B mats). C/B mats formed where the availability of oxygen from the water column was limited (45 μM) and continuously present. Here SOB were independent of the photosynthetic activity of cyanobacteria and outcompeted the cyanobacteria in the uppermost layer of the mat where energy sources for both functional groups were concentrated. Outcompetition of photosynthetic microbes in the presence of light was facilitated by the decoupling of aerobic chemolithotrophy and oxygenic phototrophy. Remarkably, the B/C mats conserved much less energy than the C/B mats, although similar amounts of light and chemical energy were available. Thus ecosystems do not necessarily develop towards optimal energy usage. Our data suggest that, when two independent sources of energy are available, the structure and activity of microbial communities is primarily determined by the continuous rather than the intermittent energy source, even if the time-integrated energy flux of the intermittent energy source is greater. PMID:26405833

  2. Enhanced Cr bioleaching efficiency from tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an air-lift reactor.

    Science.gov (United States)

    Fang, Di; Zhou, Li-Xiang

    2007-09-01

    Bioleaching process has been demonstrated to be an effective technology in removing Cr from tannery sludge, but a large quantity of dissolved organic matter (DOM) present in tannery sludge often exhibits a marked toxicity to chemolithoautotrophic bioleaching bacteria such as Acidithiobacillus thiooxidans. The purpose of the present study was therefore to enhance Cr bioleaching efficiencies through introducing sludge DOM-degrading heterotrophic microorganism into the sulfur-based sludge bioleaching system. An acid-tolerant DOM-degrading yeast strain Brettanomyces B65 was successfully isolated from a local Haining tannery sludge and it could metabolize sludge DOM as a source of energy and carbon for growth. A combined bioleaching experiment (coupling Brettanomyces B65 and A. thiooxidans TS6) performed in an air-lift reactor indicated that the rates of sludge pH reduction and ORP increase were greatly improved, resulting in enhanced Cr solubilization. Compared with the 5 days required for maximum solubilization of Cr for the control (single bioleaching process without inoculation of Brettanomyces B65), the bioleaching period was significantly shorten to 3 days for the combined bioleaching system. Moreover, little nitrogen and phosphorous were lost and the content of Cr was below the permitted levels for land application after 3 days of bioleaching treatment. PMID:17537479

  3. On the instability and evolutionary age of deep-sea chemosynthetic communities

    Science.gov (United States)

    Vrijenhoek, Robert C.

    2013-08-01

    Though not directly dependent on photosynthesis, deep-sea chemosynthetic communities have not been sheltered from catastrophic changes affecting Earth's photic zone. Instead, the constituent animals may be particularly vulnerable to large climatic changes that have historically affected ocean temperatures and circulation patterns. Chemosynthetic animals occupy narrow redox zones, mostly at hydrothermal vents, hydrocarbon seeps, or sites of organic deposition where subsurface fluids laden with reduced gases (e.g., sulfides, methane, hydrogen) meet oxygenated seawater. Dependence on chemolithoautotrophic bacteria as primary producers may render these deep-sea communities particularly susceptible to climatic changes that alter the breadth of the oxic/anoxic interface. The fossil record clearly reveals major transitions of chemosynthetic faunas during the middle to late Mesozoic, failing to support prior hypotheses that these environments harbor an extraordinary number of ancient relics and living fossils. The molecular phylogenetic analyses summarized herein support Cenozoic (extinction event, their contemporary crown taxa radiated mostly after the Paleocene/Eocene thermal maximum (PETM), which led to a widespread anoxic/dysoxic event in the world's deep-ocean basins.

  4. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.

    Science.gov (United States)

    Jeremic, Sanja; Beškoski, Vladimir P; Djokic, Lidija; Vasiljevic, Branka; Vrvić, Miroslav M; Avdalović, Jelena; Gojgić Cvijović, Gordana; Beškoski, Latinka Slavković; Nikodinovic-Runic, Jasmina

    2016-05-01

    Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu(2+), Cd(2+) and Cr(6+) and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria- Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions. PMID:26942859

  5. Sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake with an unprecedented high sulfide content.

    Science.gov (United States)

    Sorokin, Dimitry Y; Foti, Mirjam; Pinkart, Holly C; Muyzer, Gerard

    2007-01-01

    Culture-dependent and -independent techniques were used to study the diversity of chemolithoautotrophic sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake containing an unprecedentedly high sulfide concentration in the anoxic monimolimnion. Both approaches revealed the dominance of bacteria belonging to the genus Thioalkalimicrobium, which are common inhabitants of soda lakes. A dense population of Thioalkalimicrobium (up to 10(7) cells/ml) was found at the chemocline, which is characterized by a steep oxygen-sulfide gradient. Twelve Thioalkalimicrobium strains exhibiting three different phenotypes were isolated in pure culture from various locations in Soap Lake. The isolates fell into two groups according to 16S rRNA gene sequence analysis. One of the groups was closely related to T. cyclicum, which was isolated from Mono Lake (California), a transiently meromictic, haloalkaline lake. The second group, consisting of four isolates, was phylogenetically and phenotypically distinct from known Thioalkalimicrobium species and unique to Soap Lake. It represented a new species, for which we suggest the name Thioalkalimicrobium microaerophilum sp. nov. PMID:17114324

  6. Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology.

    Science.gov (United States)

    Oulas, Anastasis; Polymenakou, Paraskevi N; Seshadri, Rekha; Tripp, H James; Mandalakis, Manolis; Paez-Espino, A David; Pati, Amrita; Chain, Patrick; Nomikou, Paraskevi; Carey, Steven; Kilias, Stephanos; Christakis, Christos; Kotoulas, Georgios; Magoulas, Antonios; Ivanova, Natalia N; Kyrpides, Nikos C

    2016-04-01

    Hydrothermal vents represent a deep, hot, aphotic biosphere where chemosynthetic primary producers, fuelled by chemicals from Earth's subsurface, form the basis of life. In this study, we examined microbial mats from two distinct volcanic sites within the Hellenic Volcanic Arc (HVA). The HVA is geologically and ecologically unique, with reported emissions of CO2 -saturated fluids at temperatures up to 220°C and a notable absence of macrofauna. Metagenomic data reveals highly complex prokaryotic communities composed of chemolithoautotrophs, some methanotrophs, and to our surprise, heterotrophs capable of anaerobic degradation of aromatic hydrocarbons. Our data suggest that aromatic hydrocarbons may indeed be a significant source of carbon in these sites, and instigate additional research into the nature and origin of these compounds in the HVA. Novel physiology was assigned to several uncultured prokaryotic lineages; most notably, a SAR406 representative is attributed with a role in anaerobic hydrocarbon degradation. This dataset, the largest to date from submarine volcanic ecosystems, constitutes a significant resource of novel genes and pathways with potential biotechnological applications. PMID:26487573

  7. A kinetic study of the depyritization of oil shale HCl-kerogen concentrate by Thiobacillus ferrooxidans at different temperatures

    Directory of Open Access Journals (Sweden)

    OLGA CVETKOVIC

    2003-05-01

    Full Text Available The results of kinetic studies of bacterial depyritization of HCl-kerogen concentrate of Aleksinac (Serbia oil shale by the chemolithoautotrophic thionic bacteria Thiobacillus ferrooxidans under discontinuous laboratory conditions at various temperatures (0, 20, 28 and 37°C at a pH of ca. 1.5 are presented in this paper. Low pH prevents the occurrence of the precipitation of iron(III-ion hydrolysis products on the substrate particles and thereby reduces the process efficiency. Bacterial depyritization is developed as per kinetics of the first order. The activation energy which points to a successive mechanism of pyrite biooxidation, was computed from the Arrhenius plot. The biochemical kinetics indicators point to a high affinity of the bacteria toward pyrite but small values of Vmax, which are probably the result of decelerated metabolic processes due to the low pH value of the environment resp. the large difference of the pH between the external medium and the cell interior.

  8. Continental smokers couple mantle degassing and distinctive microbiology within continents

    Science.gov (United States)

    Crossey, Laura J.; Karlstrom, Karl E.; Schmandt, Brandon; Crow, Ryan R.; Colman, Daniel R.; Cron, Brandi; Takacs-Vesbach, Cristina D.; Dahm, Clifford N.; Northup, Diana E.; Hilton, David R.; Ricketts, Jason W.; Lowry, Anthony R.

    2016-02-01

    The discovery of oceanic black (and white) smokers revolutionized our understanding of mid-ocean ridges and led to the recognition of new organisms and ecosystems. Continental smokers, defined here to include a broad range of carbonic springs, hot springs, and fumaroles that vent mantle-derived fluids in continental settings, exhibit many of the same processes of heat and mass transfer and ecosystem niche differentiation. Helium isotope (3He/4He) analyses indicate that widespread mantle degassing is taking place in the western U.S.A., and that variations in mantle helium values correlate best with low seismic-velocity domains in the mantle and lateral contrasts in mantle velocity rather than crustal parameters such as GPS, proximity to volcanoes, crustal velocity, or composition. Microbial community analyses indicate that these springs can host novel microorganisms. A targeted analysis of four springs in New Mexico yield the first published occurrence of chemolithoautotrophic Zetaproteobacteria in a continental setting. These observations lead to two linked hypotheses: that mantle-derived volatiles transit through conduits in extending continental lithosphere preferentially above and at the edges of mantle low velocity domains. High CO2 and other constituents ultimately derived from mantle volatiles drive water-rock interactions and heterogeneous fluid mixing that help structure diverse and distinctive microbial communities.

  9. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode.

    Science.gov (United States)

    Bajracharya, Suman; ter Heijne, Annemiek; Dominguez Benetton, Xochitl; Vanbroekhoven, Karolien; Buisman, Cees J N; Strik, David P B T B; Pant, Deepak

    2015-11-01

    Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3 mM d(-1), along with methane and hydrogen at -1.1 V/Ag/AgCl. Over 160 days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45 days of run-time in the C. ljungdahlii reactor, 2.4 mM d(-1) acetate production was achieved at -0.9 V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates. PMID:26066971

  10. ATP synthesis at 100 degrees C by an ATPase purified from the hyperthermophilic archaeon Pyrodictium abyssi.

    Science.gov (United States)

    Dirmeier, R; Hauska, G; Stetter, K O

    2000-02-01

    The chemolithoautotrophic archaeon Pyrodictium abyssi isolate TAG 11 lives close to 100 degrees C and gains energy by sulfur respiration, with hydrogen as electron donor. From the membranes of this hyperthermophile, an ATPase complex was isolated. The purified enzyme consists of six major polypeptides, the 67, 51, 41, 26 and 22 kDa subunits composing the AF(1) headpiece, and the 7 kDa proteolipid of the AF(0) component. The headpiece of the enzyme restored the formation of ATP during sulfur respiration in membrane vesicles from which it had been removed by low salt treatment. Characteristics of the reconstituted activity suggest that the same enzyme is responsible for ATP formation in untreated membranes. ATP formation was neither sensitive to ionophores and uncouplers, nor to dicyclohexyl carbodiimide, but depended on closed vesicles. Both ATPase activity (up to 2 micromol per min and mg protein) as well as ATP formation (up to 0.4 micromol per min and mg membrane protein) were highest at 100 degrees C. A P/e2 ratio of close to one can be estimated for sulfur respiration with hydrogen. In addition to ATP, autoradiographic detection revealed the formation of high quantities of (33)P(i)-labeled ADP and of another compound not identified so far. PMID:10664465

  11. Purification and properties of an extremely thermostable membrane-bound sulfur-reducing complex from the hyperthermophilic Pyrodictium abyssi.

    Science.gov (United States)

    Dirmeier, R; Keller, M; Frey, G; Huber, H; Stetter, K O

    1998-03-15

    The chemolithoautotrophic archaeon Pyrodictium abyssi isolate TAG 11 gains energy by reducing sulfur with H2 to H2S. From this hyperthermophile, a sulfur-reducing complex catalyzing this reaction was purified 13.5-fold. The native complex exhibited a brownish-yellow colour and showed an apparent molecular mass of 520 kDa. SDS/PAGE revealed the presence of nine different major polypeptides with apparent molecular masses of 82, 72, 65, 50, 47, 42, 40, 30 and 24 kDa. The native complex contained 50-55 mol acid-labile sulfur, 50-55 mol iron, 1.6 mol nickel, 1.2 mol copper, 2.8 mol cytochrome b and 0.3 mol cytochrome c (all per mol native complex). The temperature optimum of the H2:sulfur oxidoreductase complex was 100 degrees C, which is consistent with the physiological growth optimum of the native organism. The complex is extremely heat stable. During 5 h incubation at 100 degrees C, no decrease in H2S-forming activity could be observed. PMID:9546664

  12. Microbial Diversity Associated with High Temperature Sulfide Deposits Along the East Pacific Rise Deep-Sea Hydrothermal Vents

    Science.gov (United States)

    Brooks, D.; Hoek, J.; Banta, A. B.; von Damm, K.; Reysenbach, A.

    2002-12-01

    In January 2002, hydrothermal chimneys were collected using DSV Alvin from active vents from 9° 17N to 9° 50N and 20° 49N to 20° 50N. Hydrothermal fluids were collected for end member chemistry prior to collecting the sulfide deposits. Chimney samples were sub-sectioned, separating surface and associated biofilm samples from inner chimney samples. Microbial diversity of sub-samples was assessed using culture-dependent and culturing-independent small subunit (16S) ribosomal RNA-based techniques. Initial bacterial diversity assessments using denaturing gradient gel electrophoresis (DGGE) support the global prevalence of epsilon Proteobacteria associated with deep-sea sulfide structures. These are closely related to the sulfur-reducing isolate Nautilia lithotrophica. The biofilm communities varied in complexity with one sample containing several 16S rRNA sequences (phylotypes, OTU's) of alpha, epsilon, and gamma Proteobacteria while others contained a single phylotype of epsilon Proteobacteria. One proteobacterial phylotype was present in all but one of the surface samples, and this sample contained unique alpha and epsilon proteobacterial sequences. The inner chimney samples lacked the most common epsilon proteobacterial 16S rRNA sequences. Enrichment culturing was restricted to selecting for thermophilic chemolithoautotrophic hydrogen-oxidizing Bacteria. The widespread distribution of Persephonella spp. was confirmed, and novel enrichments of a sheathed and as yet unidentified chemolithotroph were obtained.

  13. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Dennis G.; Jaramillo Riveri, Sebastian I.; Baxter, Douglas J.; Cannon, William R.

    2014-12-15

    We have applied a new stochastic simulation approach to predict the metabolite levels, energy flow, and material flux in the different oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on equations of state and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the selforganization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals, such as biofuels.

  14. Mineral respiration under extreme acidic conditions: from a supramolecular organization to a molecular adaptation in Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Roger, Magali; Castelle, Cindy; Guiral, Marianne; Infossi, Pascale; Lojou, Elisabeth; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2012-12-01

    Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotrophic Gram-negative bacterium that can derive energy from the oxidation of ferrous iron at pH 2 using oxygen as electron acceptor. The study of this bacterium has economic and fundamental biological interest because of its use in the industrial extraction of copper and uranium from ores. For this reason, its respiratory chain has been analysed in detail in recent years. Studies have shown the presence of a functional supercomplex that spans the outer and the inner membranes and allows a direct electron transfer from the extracellular Fe2+ ions to the inner membrane cytochrome c oxidase. Iron induces the expression of two operons encoding proteins implicated in this complex as well as in the regeneration of the reducing power. Most of these are metalloproteins that have been characterized biochemically, structurally and biophysically. For some of them, the molecular basis of their adaptation to the periplasmic acidic environment has been described. Modifications in the metal surroundings have been highlighted for cytochrome c and rusticyanin, whereas, for the cytochrome c oxidase, an additional partner that maintains its stability and activity has been demonstrated recently. PMID:23176476

  15. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell.

    Directory of Open Access Journals (Sweden)

    Wendell O Khunjar

    Full Text Available The storage of renewable electrical energy within chemical bonds of biofuels and other chemicals is a route to decreasing petroleum usage. A critical challenge is the efficient transfer of electrons into a biological host that can covert this energy into high energy organic compounds. In this paper, we describe an approach whereby biomass is grown using energy obtained from a soluble mediator that is regenerated electrochemically. The net result is a separate-stage reverse microbial fuel cell (rMFC that fixes CO₂ into biomass using electrical energy. We selected ammonia as a low cost, abundant, safe, and soluble redox mediator that facilitated energy transfer to biomass. Nitrosomonas europaea, a chemolithoautotroph, was used as the biocatalyst due to its inherent capability to utilize ammonia as its sole energy source for growth. An electrochemical reactor was designed for the regeneration of ammonia from nitrite, and current efficiencies of 100% were achieved. Calculations indicated that overall bioproduction efficiency could approach 2.7±0.2% under optimal electrolysis conditions. The application of chemolithoautotrophy for industrial bioproduction has been largely unexplored, and results suggest that this and related rMFC platforms may enable biofuel and related biochemical production.

  16. Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators.

    Science.gov (United States)

    Hödar, Christian; Moreno, Pablo; di Genova, Alex; Latorre, Mauricio; Reyes-Jara, Angélica; Maass, Alejandro; González, Mauricio; Cambiazo, Verónica

    2012-02-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium that obtains its energy from the oxidation of ferrous iron, elemental sulfur, or reduced sulfur minerals. This capability makes it of great industrial importance due to its applications in biomining. During the industrial processes, A. ferrooxidans survives to stressing circumstances in its environment, such as an extremely acidic pH and high concentration of transition metals. In order to gain insight into the organization of A. ferrooxidans regulatory networks and to provide a framework for further studies in bacterial growth under extreme conditions, we applied a genome-wide annotation procedure to identify 87 A. ferrooxidans transcription factors. We classified them into 19 families that were conserved among diverse prokaryotic phyla. Our annotation procedure revealed that A. ferrooxidans genome contains several members of the ArsR and MerR families, which are involved in metal resistance and detoxification. Analysis of their sequences revealed known and potentially new mechanism to coordinate gene-expression in response to metal availability. A. ferrooxidans inhabit some of the most metal-rich environments known, thus transcription factors identified here seem to be good candidates for functional studies in order to determine their physiological roles and to place them into A. ferrooxidans transcriptional regulatory networks. PMID:21830017

  17. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile.

    Science.gov (United States)

    Korehi, H; Blöthe, M; Sitnikova, M A; Dold, B; Schippers, A

    2013-03-01

    The marine shore sulfidic mine tailings dump at the Chañaral Bay in the Atacama Desert, northern Chile, is characterized by extreme acidity, high salinity, and high heavy metals concentrations. Due to pyrite oxidation, metals (especially copper) are mobilized under acidic conditions and transported toward the tailings surface and precipitate as secondary minerals (Dold, Environ. Sci. Technol. 2006, 40, 752-758.). Depth profiles of total cell counts in this almost organic-carbon free multiple extreme environment showed variable numbers with up to 10(8) cells g(-1) dry weight for 50 samples at four sites. Real-time PCR quantification and bacterial 16S rRNA gene diversity analysis via clone libraries revealed a dominance of Bacteria over Archaea and the frequent occurrence of the acidophilic iron(II)- and sulfur-oxidizing and iron(III)-reducing genera Acidithiobacillus, Alicyclobacillus, and Sulfobacillus. Acidophilic chemolithoautotrophic iron(II)-oxidizing bacteria were also frequently found via most-probable-number (MPN) cultivation. Halotolerant iron(II)-oxidizers in enrichment cultures were active at NaCl concentrations up to 1 M. Maximal microcalorimetrically determined pyrite oxidation rates coincided with maxima of the pyrite content, total cell counts, and MPN of iron(II)-oxidizers. These findings indicate that microbial pyrite oxidation and metal mobilization preferentially occur in distinct tailings layers at high salinity. Microorganisms for biomining with seawater salt concentrations obviously exist in nature. PMID:23373853

  18. An immunological strategy To monitor In situ the phosphate starvation state in thiobacillus ferrooxidans

    Science.gov (United States)

    Varela; Levican; Rivera; Jerez

    1998-12-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. During the process of ore bioleaching, the microorganisms are subjected to several stressing conditions, including the lack of some essential nutrients, which can affect the rates and yields of bioleaching. When T. ferrooxidans is starved for phosphate, the cells respond by inducing the synthesis of several proteins, some of which are outer membrane proteins of high molecular weight (70,000 to 80,000). These proteins were considered to be potential markers of the phosphate starvation state of these microorganisms. We developed a single-cell immunofluorescence assay that allowed monitoring of the phosphate starvation condition of this biomining microorganism by measuring the increased expression of the surface proteins. In the presence of low levels of arsenate (2 mM), the growth of phosphate-starved T. ferrooxidans cells was greatly inhibited compared to that of control nonstarved cells. Therefore, the determination of the phosphorus nutritional state is particularly relevant when arsenic compounds are solubilized during the bioleaching of different ores. PMID:9835593

  19. Isolation, cultivation and genomic analysis of magnetosome biomineralization genes of a new genus of South-seeking magnetotactic cocci within the Alphaproteobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Morillo, Viviana [Universidade Federal do Rio de Janeiro; Abreu, Fernanda [Universidade Federal do Rio de Janeiro; Araujo, Ana C [Universidade Federal do Rio de Janeiro; de Almeida, Luiz G [Laboratorio Nacional de Computacao Cientifica; Enrich-Prast, Alex [Universidade Federal do Rio de Janeiro; Farina, Marcos [Universidade Federal do Rio de Janeiro; de Vasconcelos, Ana T [Laboratorio Nacional de Computacao Cientifica; Bazylinski, Dennis A [Ames Laboratory; Lins, Ulysses [Universidade Federal do Rio de Janeiro

    2014-01-01

    Although magnetotactic bacteria (MTB) are ubiquitous in aquatic habitats, they are still considered fastidious microorganisms with regard to growth and cultivation with only a relatively low number of axenic cultures available to date. Here, we report the first axenic culture of an MTB isolated in the Southern Hemisphere (Itaipu Lagoon in Rio de Janeiro, Brazil). Cells of this new isolate are coccoid to ovoid in morphology and grow microaerophilically in semi-solid medium containing an oxygen concentration ([O2]) gradient either under chemoorganoheterotrophic or chemolithoautotrophic conditions. Each cell contains a single chain of approximately 10 elongated cuboctahedral magnetite (Fe3O4) magnetosomes. Phylogenetic analysis based on the 16S rRNA gene sequence shows that the coccoid MTB isolated in this study represents a new genus in the Alphaproteobacteria; the name Magnetofaba australis strain IT-1 is proposed. Preliminary genomic data obtained by pyrosequencing shows that M. australis strain IT-1 contains a genomic region with genes involved in biomineralization similar to those found in the most closely related magnetotactic cocci Magnetococcus marinus strain MC-1. However, organization of the magnetosome genes differs from M. marinus.

  20. Metagenomic analysis of nitrogen metabolism genes in the surface of marine sediments

    Science.gov (United States)

    Reyes, Carolina; Schneider, Dominik; Thürmer, Andrea; Dellwig, Olaf; Lipka, Marko; Daniel, Rolf; Böttcher, Michael E.; Friedrich, Michael W.

    2016-04-01

    In this study, we analysed metagenomes along with biogeochemical profiles from Skagerrak (North Sea) and Bothnian Bay (Baltic Sea) sediments, to trace the prevailing nitrogen pathways. NO3- was present in the top 5 cm below the sediment-water interface at both sites. NH4+ increased with depth below 5 cm where it overlapped with the NO3- zone. Steady state modelling of NO3- and NH4+ porewater profiles indicates zones of net nitrogen species transformations. Protease, peptidase, urease and deaminase ammonification genes were detected in metagenomes. Genes involved in ammonia oxidation (amo, hao), nitrite oxidation (nxr), denitrification (nar, nir, nor) and dissimilatory NO3- reduction to NH4+ (nap, nfr and otr) were also present. 16S rRNA gene analysis showed that the nitrifying group Nitrosopumilales and other groups involved in nitrification and denitrification (Nitrobacter, Nitrosomonas, Nitrospira, Nitrosococcus, and Nitrosonomas) appeared less abundant in Skagerrak sediments compared to Bothnian Bay sediments. Beggiatoa and Thiothrix 16S rRNA genes were also present suggesting chemolithoautotrophic NO3- reduction to NO2- or NH4+ as a possible pathway. Although anammox planctomycetes 16S rRNA genes were present in metagenomes, anammox protein-coding genes were not detected. Our results show the metabolic potential for ammonification, nitrification, NO3- reduction, and denitrification activities in Skagerrak and Bothnian Bay sediments.

  1. Isolation and characterization of Magnetospirillum from saline lagoon.

    Science.gov (United States)

    Revathy, T; Jacob, Jobin John; Jayasri, M A; Suthindhiran, K

    2016-07-01

    Magnetotactic bacteria (MTB) are aquatic prokaryotes that orient themselves to earth's magnetic field with the help of intracellular organelle magnetosomes. Although many species of MTB have been identified, the isolation of MTB is a challenging task due to the lack of systematic isolation procedure and/or commercial media. In this study, we are reporting the isolation of magnetotactic spirillum from the Pulicat lagoon, India using a systematic and selective procedure. Sampling site was chosen on the basis of physicochemical properties of the ecosystem and the catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) analysis of sediment samples. In the current study, a combination of techniques including 'capillary racetrack' Purification and gradient cultivation resulted in the isolation of magnetotactic spirilla from aquatic sediments. Based on the 16S rRNA gene sequence analysis, the strain was identified as Magnetospirillum and was designated as Magnetospirillum sp. VITRJS1. The genes responsible for magnetosome formation (mamA, B, E, F, K, M, O, P, Q, T) were successfully detected using PCR amplification. The presence of cbbM gene confirmed that the isolate is chemolithoautotroph and utilises reduced sulphur as an electron source. Furthermore, magnetosomes extracted from VITRJS1 found to be cubo-octahedral in shape and 45 nm in size. Our results indicate that the systematic procedure using sediment analysis, CARD-FISH, and a combination of isolation methods enables the selective and rapid isolation of MTB from aquatic sediment sample. PMID:27263004

  2. Snowmelt induced hydrologic perturbations drive dynamic microbiological and geochemical behaviors across a shallow riparian aquifer

    Science.gov (United States)

    Danczak, Robert; Yabusaki, Steven; Williams, Kenneth; Fang, Yilin; Hobson, Chad; Wilkins, Michael

    2016-05-01

    Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO) concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species in reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11) and Parcubacteria (OD1) that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.

  3. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution

    International Nuclear Information System (INIS)

    The aim of the present study was to find out if bacteria present in ancient gold mine could transform immobilized arsenic into its mobile form and increase its dissemination in the environment. Twenty-two arsenic-hypertolerant cultivable bacterial strains were isolated. No chemolithoautotrophs, which could use arsenite as an electron donor as well as arsenate as an electron acceptor, were identified. Five isolates exhibited hypertolerance to arsenic: up to 500 mM of arsenate. A correlation between the presence of siderophores and high resistance to arsenic was found. The results of this study show that detoxification processes based on arsenate reductase activity might be significant in dissemination of arsenic pollution. It was concluded that the activity of the described heterotrophic bacteria contributes to the mobilization of arsenic in the more toxic As(III) form and a new mechanism of arsenic mobilization from a scorodite was proposed. - The activity of the described heterotrophic bacteria leads to mobilization of arsenic and in this way contributes to the dissemination of arsenic pollution

  4. Arsenite Oxidation and Arsenite Resistance by Bacillus sp. PNKP-S2

    Directory of Open Access Journals (Sweden)

    Pranee Pattanapipitpaisal

    2015-01-01

    Full Text Available Arsenic causes human health problems after accumulate in the body for 10-15 years and arsenite [As(III] is generally regarded as being more mobile and toxic than other oxidation states. In this study, two-hundred and three bacterial strains were isolated from groundwater and soil samples collecting in Ubon Ratchathani Province, Thailand. All strains were screened for arsenic tolerant efficiency at 1-10 mM of sodium arsenite. Eighteen selected strains which had the highest resistance to 10 mM of As(III were further studied for their As(III-oxidizing activity and growth in enrichment and growth medium (EG medium supplemented with 0.58 mM of As(III. It was found that strain PNKP-S2 was able to grow in the medium with As(III as a sole energy source and had 89.11% As(III removal within 48 h. The PCR-based 16S rDNA sequencing analysis revealed that the strain PNKP-S2 was closed relative to Bacillus sp. This is the first report on Bacillus sp. chemolithoautotrophic As(III-oxidizer and this strain could be a potential candidate for application in arsenic remediation of contaminated water.

  5. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria.

    Science.gov (United States)

    Lücker, Sebastian; Wagner, Michael; Maixner, Frank; Pelletier, Eric; Koch, Hanna; Vacherie, Benoit; Rattei, Thomas; Damsté, Jaap S Sinninghe; Spieck, Eva; Le Paslier, Denis; Daims, Holger

    2010-07-27

    Nitrospira are barely studied and mostly uncultured nitrite-oxidizing bacteria, which are, according to molecular data, among the most diverse and widespread nitrifiers in natural ecosystems and biological wastewater treatment. Here, environmental genomics was used to reconstruct the complete genome of "Candidatus Nitrospira defluvii" from an activated sludge enrichment culture. On the basis of this first-deciphered Nitrospira genome and of experimental data, we show that Ca. N. defluvii differs dramatically from other known nitrite oxidizers in the key enzyme nitrite oxidoreductase (NXR), in the composition of the respiratory chain, and in the pathway used for autotrophic carbon fixation, suggesting multiple independent evolution of chemolithoautotrophic nitrite oxidation. Adaptations of Ca. N. defluvii to substrate-limited conditions include an unusual periplasmic NXR, which is constitutively expressed, and pathways for the transport, oxidation, and assimilation of simple organic compounds that allow a mixotrophic lifestyle. The reverse tricarboxylic acid cycle as the pathway for CO2 fixation and the lack of most classical defense mechanisms against oxidative stress suggest that Nitrospira evolved from microaerophilic or even anaerobic ancestors. Unexpectedly, comparative genomic analyses indicate functionally significant lateral gene-transfer events between the genus Nitrospira and anaerobic ammonium-oxidizing planctomycetes, which share highly similar forms of NXR and other proteins reflecting that two key processes of the nitrogen cycle are evolutionarily connected. PMID:20624973

  6. Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic.

    Science.gov (United States)

    Alawi, Mashal; Lipski, André; Sanders, Tina; Pfeiffer, Eva Maria; Spieck, Eva

    2007-07-01

    Permafrost-affected soils of the Siberian Arctic were investigated with regard to identification of nitrite oxidizing bacteria active at low temperature. Analysis of the fatty acid profiles of enrichment cultures grown at 4 degrees C, 10 degrees C and 17 degrees C revealed a pattern that was different from that of known nitrite oxidizers but was similar to fatty acid profiles of Betaproteobacteria. Electron microscopy of two enrichment cultures grown at 10 degrees C showed prevalent cells with a conspicuous ultrastructure. Sequence analysis of the 16S rRNA genes allocated the organisms to a so far uncultivated cluster of the Betaproteobacteria, with Gallionella ferruginea as next related taxonomically described organism. The results demonstrate that a novel genus of chemolithoautotrophic nitrite oxidizing bacteria is present in polygonal tundra soils and can be enriched at low temperatures up to 17 degrees C. Cloned sequences with high sequence similarities were previously reported from mesophilic habitats like activated sludge and therefore an involvement of this taxon in nitrite oxidation in nonarctic habitats is suggested. The presented culture will provide an opportunity to correlate nitrification with nonidentified environmental clones in moderate habitats and give insights into mechanisms of cold adaptation. We propose provisional classification of the novel nitrite oxidizing bacterium as 'Candidatus Nitrotoga arctica'. PMID:18062041

  7. Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation

    Directory of Open Access Journals (Sweden)

    Judith M Klatt

    2015-05-01

    Full Text Available Chemolithoautotrophic sulfur oxidizing bacteria (SOB couple the oxidation of reduced sulfur compounds to the production of biomass. Their role in the cycling of carbon, sulfur, oxygen and nitrogen is, however, difficult to quantify due to the complexity of sulfur oxidation pathways. We describe a generic theoretical framework for linking the stoichiometry and energy conservation efficiency of autotrophic sulfur oxidation while accounting for the partitioning of the reduced sulfur pool between the energy generating and energy conserving steps as well as between the main possible products (sulfate versus elemental sulfur. Using this framework, we show that the energy conservation efficiency varies widely among SOB with no apparent relationship to their phylogeny. Aerobic SOB equipped with reverse dissimilatory sulfite reductase tend to have higher efficiency than those relying on the complete Sox pathway, whereas for anaerobic SOB the presence of membrane-bound, as opposed to periplasmic, nitrate reductase systems appears to be linked to higher efficiency. We employ the framework to also show how limited rate measurements can be used to estimate the primary productivity of SOB without the knowledge of the sulfate-to-elemental-sulfur production ratio. Finally, we discuss how the framework can help researchers gain new insights into the activity of SOB and their niches.

  8. Generation of hydrothermal Fe-Si oxyhydroxide deposit on the Southwest Indian Ridge and its implication for the origin of ancient banded iron formations

    Science.gov (United States)

    Sun, Zhilei; Li, Jun; Huang, Wei; Dong, Hailiang; Little, Crispin T. S.; Li, Jiwei

    2015-01-01

    hydrothermal Fe-Si oxyhydroxide deposits are now known to be analogues to ancient siliceous iron formations. In this study, samples of Fe-Si oxyhydroxide deposits were collected from hydrothermal field on the Southwest Indian Ridge. An investigation of mineralization in these deposits was carried out based on a series of mineralogical and morphological methods. X-ray diffraction and selected area electron diffraction analysis show that amorphous opal and poorly crystalline ferrihydrite are the major minerals. Furthermore, some typical filament structures detected by scanning electronic microscopy examinations, probably indicating the presence of Fe-oxidizing bacteria (FeOB), are pervasive with the main constituents being Fe, Si, P, and C. We thus believe that chemolithoautotrophic FeOB play a significant role in the formation of Fe oxyhydroxide which can effectively oxidize reduced Fe(II) sourced from hydrothermal fluids. Precipitation of amorphous silica, in contrast, is only a passive process with the Fe oxyhydroxide acting as a template. The distinct microlaminae structure alternating between the Fe-rich and Si-rich bands was observed in our samples for the first time in modern seafloor hydrothermal systems. We propose that its formation was due to the episodic temperature variation of the hydrothermal fluid which controls the biogenic Fe oxyhydroxide formation and passive precipitation of silica in this system. Our results might provide a clue for the formation mechanism of ancient banded iron formations.

  9. Arsenic speciation in food chains from mid-Atlantic hydrothermal vents

    Science.gov (United States)

    Taylor, Vivien F.; Jackson, Brian P.; Siegfried, Matthew R.; Navratilova, Jana; Francesconi, Kevin A.; Kirshtein, Julie; Voytek, Mary

    2012-01-01

    Arsenic concentration and speciation were determined in benthic fauna collected from the Mid-Atlantic Ridge hydrothermal vents. The shrimp species, Rimicaris exoculata, the vent chimney-dwelling mussel, Bathymodiolus azoricus, Branchipolynoe seepensis, a commensal worm of B. azoricus and the gastropod Peltospira smaragdina showed variations in As concentration and in stable isotope (δ13C and δ15N) signature between species, suggesting different sources of As uptake. Arsenic speciation showed arsenobetaine to be the dominant species in R. exoculata, whereas in B. azoricus and B. seepensis arsenosugars were most abundant, although arsenobetaine, dimethylarsinate and inorganic arsenic were also observed, along with several unidentified species. Scrape samples from outside the vent chimneys covered with microbial mat, which is a presumed food source for many vent organisms, contained high levels of total As, but organic species were not detectable. The formation of arsenosugars in pelagic environments is typically attributed to marine algae, and the pathway to arsenobetaine is still unknown. The occurrence of arsenosugars and arsenobetaine in these deep sea organisms, where primary production is chemolithoautotrophic and stable isotope analyses indicate food sources are of vent origin, suggests that organic arsenicals can occur in a foodweb without algae or other photosynthetic life.

  10. Biomining Microorganisms: Molecular Aspects and Applications in Biotechnology and Bioremediation

    Science.gov (United States)

    Jerez, Carlos A.

    The microbial solubilization of metals using chemolithoautotrophic microorganisms has successfully been used in industrial processes called biomining to extract metals such as copper, gold, uranium and others. The most studied leaching bacteria are from the genus Acidithiobacillus belonging to the Gram-negative γ-proteobacteria. Acidithiobacillus spp. obtain their energy from the oxidation of ferrous iron, elemental sulfur, or partially oxidized sulfur compounds. Other thermophilic archaeons capable of oxidizing sulfur and iron (II) have also been known for many years, and they are mainly from the genera Sulfolobus, Acidianus, Metallosphaera and Sulfurisphaera. Recently, some mesophilic iron (II)-oxidizing archaeons such as Ferroplasma acidiphilium and F. acidarmanus belonging to the Thermoplasmales have also been isolated and characterized. Recent studies of microorganisms consider them in their consortia, integrating fundamental biological knowledge with metagenomics, metaproteomics, and other data to obtain a global picture of how a microbial community functions. The understanding of microbial growth and activities in oxidizing metal ions will be useful for improving applied microbial biotechnologies such as biomining, bioshrouding, biomonitoring and bioremediation of metals in acidic environments.

  11. Microbial communities on seafloor basalts at Dorado Outcrop reflect level of alteration and highlight global lithic clades

    Directory of Open Access Journals (Sweden)

    Michael D Lee

    2015-12-01

    Full Text Available Areas of exposed basalt along mid-ocean ridges and at seafloor outcrops serve as conduits of fluid flux into and out of a subsurface ocean, and microbe-mineral interactions can influence alteration reactions at the rock-water interface. Located on the eastern flank of the East Pacific Rise, Dorado Outcrop is a site of low-temperature (<20°C hydrothermal venting and represents a new end-member in the current survey of seafloor basalt biomes. Consistent with prior studies, a survey of 16S rRNA gene sequence diversity using universal primers targeting the V4 hypervariable region revealed much greater richness and diversity on seafloor rocks than in surrounding seawater. Overall, Gamma-, Alpha-, and Deltaproteobacteria, and Thaumarchaeota dominated the sequenced communities, together making up over half of the observed diversity, though bacterial sequences were more abundant than archaeal in all samples. The most abundant bacterial reads were closely related to the obligate chemolithoautotrophic, sulfur-oxidizing Thioprofundum lithotrophicum, suggesting carbon and sulfur cycling as dominant metabolic pathways in this system. Representatives of Thaumarchaeota were detected in relatively high abundance on the basalts in comparison to bottom water, possibly indicating ammonia oxidation. In comparison to other sequence datasets from globally distributed seafloor basalts, this study reveals many overlapping and cosmopolitan phylogenetic groups and also suggests that substrate age correlates with community structure.

  12. Hydrogenase gene distribution and H2 consumption ability within the Thiomicrospira lineage

    Directory of Open Access Journals (Sweden)

    Moritz eHansen

    2016-02-01

    Full Text Available Thiomicrospira were originally characterized as sulfur-oxidizing chemolithoautotrophs. Attempts to grow them on hydrogen failed for many years. Only recently we demonstrated hydrogen consumption among two of three tested Thiomicrospira and posited that hydrogen consumption may be more widespread among Thiomicrospira than previously assumed. Here, we investigate and compare the hydrogen consumption ability and the presence of group 1 [NiFe]-hydrogenase genes (enzyme catalyzes H22H+ + 2e- for sixteen different Thiomicrospira species. Seven of these Thiomicrospira species encoded group 1 [NiFe]-hydrogenase genes and five of these species could also consume hydrogen. All Thiomicrospira species exhibiting hydrogen consumption were from hydrothermal vents along the Mid-Atlantic ridge or Eastern Pacific ridges. The tested Thiomicrospira from Mediterranean and Western Pacific vents could not consume hydrogen. The [NiFe]-hydrogenase genes were categorized into two clusters: those resembling the hydrogenase from Hydrogenovibrio are in cluster I and are related to those from Alpha- and other Gammaproteobacteria. In cluster II, hydrogenases found exclusively in T. crunogena strains are combined and form a monophyletic group with those from Epsilonproteobacteria suggesting they were acquired through horizontal gene transfer. Hydrogen consumption appears to be common among some Thiomicrospira, given that five of the tested sixteen strains carried this trait. The hydrogen consumption ability expands their competitiveness within an environment.

  13. 'Candidatus Competibacter'-lineage genomes retrieved from metagenomes reveal functional metabolic diversity.

    Science.gov (United States)

    McIlroy, Simon J; Albertsen, Mads; Andresen, Eva K; Saunders, Aaron M; Kristiansen, Rikke; Stokholm-Bjerregaard, Mikkel; Nielsen, Kåre L; Nielsen, Per H

    2014-03-01

    The glycogen-accumulating organism (GAO) 'Candidatus Competibacter' (Competibacter) uses aerobically stored glycogen to enable anaerobic carbon uptake, which is subsequently stored as polyhydroxyalkanoates (PHAs). This biphasic metabolism is key for the Competibacter to survive under the cyclic anaerobic-'feast': aerobic-'famine' regime of enhanced biological phosphorus removal (EBPR) wastewater treatment systems. As they do not contribute to phosphorus (P) removal, but compete for resources with the polyphosphate-accumulating organisms (PAO), thought responsible for P removal, their proliferation theoretically reduces the EBPR capacity. In this study, two complete genomes from Competibacter were obtained from laboratory-scale enrichment reactors through metagenomics. Phylogenetic analysis identified the two genomes, 'Candidatus Competibacter denitrificans' and 'Candidatus Contendobacter odensis', as being affiliated with Competibacter-lineage subgroups 1 and 5, respectively. Both have genes for glycogen and PHA cycling and for the metabolism of volatile fatty acids. Marked differences were found in their potential for the Embden-Meyerhof-Parnas and Entner-Doudoroff glycolytic pathways, as well as for denitrification, nitrogen fixation, fermentation, trehalose synthesis and utilisation of glucose and lactate. Genetic comparison of P metabolism pathways with sequenced PAOs revealed the absence of the Pit phosphate transporter in the Competibacter-lineage genomes--identifying a key metabolic difference with the PAO physiology. These genomes are the first from any GAO organism and provide new insights into the complex interaction and niche competition between PAOs and GAOs in EBPR systems. PMID:24173461

  14. Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process

    International Nuclear Information System (INIS)

    Highlights: • Simultaneous heterotrophic and autotrophic denitrification was stimulated. • Simultaneous bioreduction of nitrate and chromate was achieved. • Total chromium decreased 3−–N and Cr(VI) concentrations of 75 mg/L and 10 mg/L, respectively, and 3.7 h HRT. Maximum denitrification rate was 0.5 g NO3−–N/(L.d) when the bioreactor was fed with 75 mg/L NO3−–N, 150 mg/L methanol and 10 mg/L Cr(VI). The share of autotrophic denitrification was between 12% and 50% depending on HRT, C/N ratio and Cr(VI) concentration. Effluent total chromium was below 50 μg/L provided that influent Cr(VI) concentration was equal or below 5 mg/L. DGGE results showed stable microbial community throughout the operation and the presence of sulfur oxidizing denitrifying bacteria (Thiobacillus denitrificans) and Cr(VI) reducing bacteria (Exiguobacterium spp.) in the column bed

  15. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity

    Science.gov (United States)

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining

    2014-07-01

    Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.

  16. D/H fractionation in lipids of facultative and obligate denitrifying and sulfate reducing bacteria

    Science.gov (United States)

    Osburn, M. R.; Sessions, A. L.

    2012-12-01

    The hydrogen isotopic composition of lipids has been shown to vary broadly in both cultured bacteria and in environmental samples. Culturing studies have indicated that this variability may primarily reflect metabolism; however, the limited number of organisms studied thus far prevents application of these trends to interpretation of environmental samples. Here we report D/H fractionations in anaerobic bacteria, including both facultative and obligate anaerobic organisms with a range of electron donors, acceptors, and metabolic pathways. Experiments using the metabolically flexible alphaproteobacterium Paracoccus denitrificans probe particular central metabolic pathways using a range of terminal electron acceptors. While a large range of δD values has been observed during aerobic metabolism, denitrifying cultures produce a more limited range in δD values that are more similar to each other than the corresponding aerobic culture. Data from the sulfate reducing bacteria Desulfobacterium autotrophicum and Desulfobacter hydrogenophilus indicate that chemolithoautotrophy and anaerobic heterotrophy can produce similar δD values, and are similar between bacteria despite differing metabolic pathways. These results suggest that the fractionation of D/H depends both on the specific metabolic pathway and the electron acceptor. While this is not inconsistent with previous studies, it suggests the simple correspondence between δD and metabolism previously understood from aerobic bacteria is not universally applicable.

  17. Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination

    Science.gov (United States)

    Smith, R.L.; Ceazan, M.L.; Brooks, M.H.

    1994-01-01

    Addition of hydrogen or formate significantly enhanced the rate of consumption of nitrate in slurried core samples obtained from an active zone of denitrification in a nitrate-contaminated sand and gravel aquifer (Cape Cod, Mass.). Hydrogen uptake by the core material was immediate and rapid, with an apparent K(m) of 0.45 to 0.60 ??M and a V(max) of 18.7 nmol cm-3 h-1 at 30??C. Nine strains of hydrogen-oxidizing denitrifying bacteria were subsequently isolated from the aquifer. Eight of the strains grew autotrophically on hydrogen with either oxygen or nitrate as the electron acceptor. One strain grew mixotrophically. All of the isolates were capable of heterotrophic growth, but none were similar to Paracoccus denitrificans, a well-characterized hydrogen-oxidizing denitrifier. The kinetics for hydrogen uptake during denitrification were determined for each isolate with substrate depletion progress curves; the K(m)s ranged from 0.30 to 3.32 ??M, with V(max)s of 1.85 to 13.29 fmol cell-1 h-1. Because these organisms appear to be common constituents of the in situ population of the aquifer, produce innocuous end products, and could be manipulated to sequentially consume oxygen and then nitrate when both were present, these results suggest that these organisms may have significant potential for in situ bioremediation of nitrate contamination in groundwater.

  18. Surf1, associated with Leigh syndrome in humans, is a heme-binding protein in bacterial oxidase biogenesis.

    Science.gov (United States)

    Bundschuh, Freya A; Hannappel, Achim; Anderka, Oliver; Ludwig, Bernd

    2009-09-18

    Biogenesis of mitochondrial cytochrome c oxidase (COX) relies on a large number of assembly factors, among them the transmembrane protein Surf1. The loss of human Surf1 function is associated with Leigh syndrome, a fatal neurodegenerative disorder caused by severe COX deficiency. In the bacterium Paracoccus denitrificans, two homologous proteins, Surf1c and Surf1q, were identified, which we characterize in the present study. When coexpressed in Escherichia coli together with enzymes for heme a synthesis, the bacterial Surf1 proteins bind heme a in vivo. Using redox difference spectroscopy and isothermal titration calorimetry, the binding of the heme cofactor to purified apo-Surf1c and apo-Surf1q is quantified: Each of the Paracoccus proteins binds heme a in a 1:1 stoichiometry and with Kd values in the submicromolar range. In addition, we identify a conserved histidine as a residue crucial for heme binding. Contrary to most earlier concepts, these data support a direct role of Surf1 in heme a cofactor insertion into COX subunit I by providing a protein-bound heme a pool. PMID:19625251

  19. Biomimetic Membranes for Multi-Redox Center Proteins

    Directory of Open Access Journals (Sweden)

    Renate L. C. Naumann

    2016-03-01

    Full Text Available His-tag technology was applied for biosensing purposes involving multi-redox center proteins (MRPs. An overview is presented on various surfaces ranging from flat to spherical and modified with linker molecules with nitrile-tri-acetic acid (NTA terminal groups to bind his-tagged proteins in a strict orientation. The bound proteins are submitted to in situ dialysis in the presence of lipid micelles to form a so-called protein-tethered bilayer lipid membrane (ptBLM. MRPs, such as the cytochrome c oxidase (CcO from R. sphaeroides and P. denitrificans, as well as photosynthetic reactions centers (RCs from R. sphaeroides, were thus investigated. Electrochemical and surface-sensitive optical techniques, such as surface plasmon resonance, surface plasmon-enhanced fluorescence, surface-enhanced infrared absorption spectroscopy (SEIRAS and surface-enhanced resonance Raman spectroscopy (SERRS, were employed in the case of the ptBLM structure on flat surfaces. Spherical particles ranging from µm size agarose gel beads to nm size nanoparticles modified in a similar fashion were called proteo-lipobeads (PLBs. The particles were investigated by laser-scanning confocal fluorescence microscopy (LSM and UV/Vis spectroscopy. Electron and proton transfer through the proteins were demonstrated to take place, which was strongly affected by the membrane potential. MRPs can thus be used for biosensing purposes under quasi-physiological conditions.

  20. Proton translocation during denitrification by a nitrifying--denitrifying Alcaligenes sp.

    Science.gov (United States)

    Castignetti, D; Hollocher, T C

    1983-04-01

    A heterotrophic nitrifying Alcaligenes sp. from soil was grown as a denitrifier on nitrate and subjected to oxidant pulse experiments to ascertain the apparent efficiencies of proton translocations during O2 and nitrogen-oxide respirations. With endogenous substrate as the reducing agent the leads to H+/2e- ratios, extrapolated to zero amount of oxidant per pulse, were 9.4, 3.7, 4.3 and 3.5 for O2, nitrate, nitrite and N2O, respectively. The value for O2 and those for the N-oxides are, respectively, somewhat larger and smaller than corresponding values for Paracoccus denitrificans. None of the three permeant ions employed with the Alcaligenes sp. (valinomycin-K+, thiocyanate and triphenylmethylphosphonium) was ideal for all purposes. Thiocyanate provided highest ratios for O2 but abolished the oxidant pulse response for nitrate and N2O. Valinomycin was slow to penetrate to the cytoplasmic membrane and relatively high concentrations were required for optimal performance. Triphenylmethylphosphonium enhanced passive proton permeability and diminished proton translocation at concentrations required to realize the maximal oxidant pulse response. PMID:6311094

  1. Potential nitrosamine formation and its prevention during biological denitrification of red beet juice.

    Science.gov (United States)

    Kolb, E; Haug, M; Janzowski, C; Vetter, A; Eisenbrand, G

    1997-02-01

    High nitrate intake has been shown to result in an increased risk of endogenous formation of N-nitroso compounds. Certain vegetables and vegetable juices contain high concentrations of nitrate. Biological denitrification using strains of Paracoccus denitrificans (P.d.) has been proposed as effective means to reduce nitrate contents in such vegetable juices. During this bacterial denitrification process, substantial nitrite concentrations are transiently formed. This study investigated whether N-nitrosation reactions might occur. The easily nitrosatable amine morpholine was added to red beet juice at high concentration (100 ppm) during denitrification 10 different batches of red beet juice served as raw material. Each batch was submitted to denitrification in the presence and absence of ascorbic acid. In the absence of ascorbic acid, formation of N-nitrosomorpholine (NMOR) was observed in the low ppb range (0.5-8 ppb). Addition of ascorbic acid (500 mg/litre) inhibited the formation of NMOR, except for those instances where the pH was less than 6 and/or nitrate turnover was low (high rates of nitrate turnover (> 200 mg NO3-/litre/hr), nitrosamine formation can reliably be prevented by ascorbic acid. The results show that bacterial denitrification of red beet juice high in nitrate can be accomplished without the risk of nitrosamine formation. PMID:9146735

  2. Microbial community of granules in expanded granular sludge bed reactor for simultaneous biological removal of sulfate, nitrate and lactate.

    Science.gov (United States)

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Yu, Zhenguo; Lee, Duu-Jong

    2008-07-01

    This study studied the cultivation of granules from an expanded granular sludge bed reactor that simultaneously transforms sulfates, nitrates, and oxygen to elementary sulfur, nitrogen gas, and carbon dioxides, respectively. The living cells accumulate at the granule outer layers, as revealed by the multicolor staining and confocal laser scanning microscope technique. The microbial community comprises sulfate-reducing bacteria (SRB, Desulfomicrobium sp.), heterotrophic (Pseudomonas aeruginosa and Sulfurospirillum sp.), and autotrophic denitrifiers (Sulfurovum sp. and Paracoccus denitrificans) whose population dynamics at different sulfate and nitrate loading rates are monitored with the single-strand conformation polymorphism and denaturing gradient gel electrophoresis technique. The Desulfomicrobium sp. presents one of the dominating strains following reactor startup. At high sulfate and nitrate loading rates, the heterotrophic denitrifiers overcompete autotrophic denitrifiers to reduce SRB activities. Conversely, suddenly reducing nitrate loading rates completely removes the heterotrophic denitrifier Sulfurospirillum sp. from the granules and activates the autotrophic denitrifiers. The physical fixation of different groups of functional strains in granules fine-tunes the strains' activities, and hence the reactor performance. PMID:18483736

  3. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera

    KAUST Repository

    Kiely, Patrick D.

    2010-07-15

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most (~30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m 2, whereas the original mixed culture produced up to 10 mW/m 2. Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m2) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates. © 2010 Springer-Verlag.

  4. Start-up and microbial communities of a simultaneous nitrogen removal system for high salinity and high nitrogen organic wastewater via heterotrophic nitrification.

    Science.gov (United States)

    Chen, Jiahao; Han, Yi; Wang, Yingmu; Gong, Benzhou; Zhou, Jian; Qing, Xiaoxia

    2016-09-01

    In this study, a simultaneous nitrogen removal system for high salinity and high nitrogen organic wastewater was developed in a pressurized biofilm reactor. The result showed that under the air supply rate of 200Lh(-1), salinity of 3.0±0.2%, organic load of 10kgCODm(-3)d(-1) and nitrogen loading of 0.185kgm(-3)d(-1), the reactor started up rapidly and performed stably after 30days operation. Meanwhile, a simultaneous COD and nitrogen removal was achieved in the single-stage reactor, with COD, NH4(+)-N and TN removal efficiency of 97%, 99% and 98%, respectively. Denaturing gradient gel electrophoresis profile demonstrated that simultaneous nitrogen removal could be achieved through heterotrophic nitrification-aerobic denitrification, and the pivotal microorganisms were Flavobacterium phragmitis and Paracoccus denitrificans. The microbial community of salt-tolerant halophilic microorganisms was developed successfully. This study can provide a more efficient and feasible solution to treat high salinity organic wastewater. PMID:27240235

  5. Microbial Diversity of Chromium-Contaminated Soils and Characterization of Six Chromium-Removing Bacteria

    Science.gov (United States)

    He, Zhiguo; Hu, Yuting; Yin, Zhen; Hu, Yuehua; Zhong, Hui

    2016-06-01

    Three soil samples obtained from different sites adjacent to a chromium slag heap in a steel alloy factory were taken to examine the effect of chromium contamination on soil bacterial diversity as determined by construction of 16S rDNA clone libraries and sequencing of selected clones based on restriction fragment length polymorphism (RFLP) analysis. Results revealed that Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Alphaproteobacteria occurred in all three soil samples, although the three samples differed in their total diversity. Sample 1 had the highest microbial diversity covering 12 different classes, while Sample 3 had the lowest microbial diversity. Strains of six different species were successfully isolated, one of which was identified as Zobellella denitrificans. To our knowledge, this is the first report of a strain belonging to the genus Zobellella able to resist and reduce chromium. Among all isolates studied, Bacillus odysseyi YH2 exhibited the highest Cr(VI)-reducing capability, with a total removal of 23.5 % of an initial Cr(VI) concentration of 350 mg L-1.

  6. Diversity of purple nonsulfur bacteria in shrimp ponds with varying mercury levels.

    Science.gov (United States)

    Mukkata, Kanokwan; Kantachote, Duangporn; Wittayaweerasak, Banjong; Techkarnjanaruk, Somkiet; Boonapatcharoen, Nimaradee

    2016-07-01

    This research aimed to study the diversity of purple nonsulfur bacteria (PNSB) and to investigate the effect of Hg concentrations in shrimp ponds on PNSB diversity. Amplification of the pufM gene was detected in 13 and 10 samples of water and sediment collected from 16 shrimp ponds in Southern Thailand. In addition to PNSB, other anoxygenic phototrophic bacteria (APB) were also observed; purple sulfur bacteria (PSB) and aerobic anoxygenic phototrophic bacteria (AAPB) although most of them could not be identified. Among identified groups; AAPB, PSB and PNSB in the samples of water and sediment were 25.71, 11.43 and 8.57%; and 27.78, 11.11 and 22.22%, respectively. In both sample types, Roseobacter denitrificans (AAPB) was the most dominant species followed by Halorhodospira halophila (PSB). In addition two genera, observed most frequently in the sediment samples were a group of PNSB (Rhodovulum kholense, Rhodospirillum centenum and Rhodobium marinum). The UPGMA dendrograms showed 7 and 6 clustered groups in the water and sediment samples, respectively. There was no relationship between the clustered groups and the total Hg (HgT) concentrations in the water and sediment samples used (ponds. PMID:27298580

  7. A novel approach to analyze membrane proteins by laser mass spectrometry: from protein subunits to the integral complex.

    Science.gov (United States)

    Morgner, Nina; Kleinschroth, Thomas; Barth, Hans-Dieter; Ludwig, Bernd; Brutschy, Bernhard

    2007-08-01

    A novel laser-based mass spectrometry method termed LILBID (laser-induced liquid bead ion desorption) is applied to analyze large integral membrane protein complexes and their subunits. In this method the ions are IR-laser desorbed from aqueous microdroplets containing the hydrophobic protein complexes solubilized by detergent. The method is highly sensitive, very efficient in sample handling, relatively tolerant to various buffers, and detects the ions in narrow, mainly low-charge state distributions. The crucial experimental parameter determining whether the integral complex or its subunits are observed is the laser intensity: At very low intensity level corresponding to an ultrasoft desorption, the intact complexes, together with few detergent molecules, are transferred into vacuum. Under these conditions the oligomerization state of the complex (i.e., its quaternary structure) may be analyzed. At higher laser intensity, complexes are thermolyzed into subunits, with any residual detergent being stripped off to yield the true mass of the polypeptides. The model complexes studied are derived from the respiratory chain of the soil bacterium Paracoccus denitrificans and include complexes III (cytochrome bc(1) complex) and IV (cytochrome c oxidase). These are well characterized multi-subunit membrane proteins, with the individual hydrophobic subunits being composed of up to 12 transmembrane helices. PMID:17544294

  8. Genetic tools for the investigation of Roseobacter clade bacteria

    Directory of Open Access Journals (Sweden)

    Tielen Petra

    2009-12-01

    Full Text Available Abstract Background The Roseobacter clade represents one of the most abundant, metabolically versatile and ecologically important bacterial groups found in marine habitats. A detailed molecular investigation of the regulatory and metabolic networks of these organisms is currently limited for many strains by missing suitable genetic tools. Results Conjugation and electroporation methods for the efficient and stable genetic transformation of selected Roseobacter clade bacteria including Dinoroseobacter shibae, Oceanibulbus indolifex, Phaeobacter gallaeciensis, Phaeobacter inhibens, Roseobacter denitrificans and Roseobacter litoralis were tested. For this purpose an antibiotic resistance screening was performed and suitable genetic markers were selected. Based on these transformation protocols stably maintained plasmids were identified. A plasmid encoded oxygen-independent fluorescent system was established using the flavin mononucleotide-based fluorescent protein FbFP. Finally, a chromosomal gene knockout strategy was successfully employed for the inactivation of the anaerobic metabolism regulatory gene dnr from D. shibae DFL12T. Conclusion A genetic toolbox for members of the Roseobacter clade was established. This provides a solid methodical basis for the detailed elucidation of gene regulatory and metabolic networks underlying the ecological success of this group of marine bacteria.

  9. Exploring the Molecular Basis for Selective Binding of Homoserine Dehydrogenase from Mycobacterium leprae TN toward Inhibitors: A Virtual Screening Study

    Directory of Open Access Journals (Sweden)

    Dongling Zhan

    2014-01-01

    Full Text Available Homoserine dehydrogenase (HSD from Mycobacterium leprae TN is an antifungal target for antifungal properties including efficacy against the human pathogen. The 3D structure of HSD has been firmly established by homology modeling methods. Using the template, homoserine dehydrogenase from Thiobacillus denitrificans (PDB Id 3MTJ, a sequence identity of 40% was found and molecular dynamics simulation was used to optimize a reliable structure. The substrate and co-factor-binding regions in HSD were identified. In order to determine the important residues of the substrate (l-aspartate semialdehyde (l-ASA binding, the ASA was docked to the protein; Thr163, Asp198, and Glu192 may be important because they form a hydrogen bond with HSD through AutoDock 4.2 software. neuraminidaseAfter use of a virtual screening technique of HSD, the four top-scoring docking hits all seemed to cation–π ion pair with the key recognition residue Lys107, and Lys207. These ligands therefore seemed to be new chemotypes for HSD. Our results may be helpful for further experimental investigations.

  10. [Analysis on Diversity of Denitrifying Microorganisms in Sequential Batch Bioreactor Landfill].

    Science.gov (United States)

    Li, Wei-Hua; Sun, Ying-Jie; Liu, Zi-Liang; Ma, Qiang; Yang, Qiang

    2016-01-15

    A denitrification functional microorganism gene clone library (amoA, nosZ) and the PCR-RFLP technology was constructed to investigate the microbial diversity of denitrifying microorganisms in the late period of stabilization of sequential batch bioreactor landfill. The results indicated that: the bacterial diversity of ammonia oxidizing bacteria in the aged refuse reactor was very high, and most of them were unknown groups, also, all bacteria were unculturable or had not been isolated. The phylogenetic analysis suggested that the dominant ammonia oxidizing bacteria were presumably Nitrosomonas of 6-Proteobacteria. The diversity of denitrifying bacteria in fresh refuse reactor was abundant, which mainly included Thauera and Thiobacillus of 6-Proteobacteria. As Thauera sp. has the denitrification characteristics under the condition of aerobic while Thiobacillus denitrificans has the autotrophic denitrification characteristics, it was speculated that aerobic denitrification and autotrophic denitrification might be the main pathways for nitrogen removal in the fresh refuse reactor at the late period of stabilization. Additionally, another group in the gene clone library of denitrifying bacteria may be classified as Bradyrhizobiaceae of alpha-Proteobacteria. PMID:27078976

  11. Enhanced rate of intramolecular electron transfer in an engineered purple CuA azurin

    DEFF Research Database (Denmark)

    Farver, O; Lu, Y; Ang, M C;

    1999-01-01

    The recent expression of an azurin mutant where the blue type 1 copper site is replaced by the purple CuA site of Paracoccus denitrificans cytochrome c oxidase has yielded an optimal system for examining the unique electron mediation properties of the binuclear CuA center, because both type 1 and...... CuA centers are placed in the same location in the protein while all other structural elements remain the same. Long-range electron transfer is induced between the disulfide radical anion, produced pulse radiolytically, and the oxidized binuclear CuA center in the purple azurin mutant. The rate...... blue copper azurin). The reorganization energy of the CuA center is calculated to be 0.4 eV, which is only 50% of that found for the wild-type azurin. These results represent a direct comparison of electron transfer properties of the blue and purple CuA sites in the same protein framework and provide...

  12. Diversity and abundance of bacteria in an underground oil-storage cavity

    Directory of Open Access Journals (Sweden)

    Kodama Yumiko

    2002-08-01

    Full Text Available Abstract Background Microorganisms inhabiting subterranean oil fields have recently attracted much attention. Since intact groundwater can easily be obtained from the bottom of underground oil-storage cavities without contamination by surface water, studies on such oil-storage cavities are expected to provide valuable information to understand microbial ecology of subterranean oil fields. Results DNA was extracted from the groundwater obtained from an oil-storage cavity situated at Kuji in Iwate, Japan, and 16S rRNA gene (16S rDNA fragments were amplified by PCR using combinations of universal and Bacteria-specific primers. The sequence analysis of 154 clones produced 31 different bacterial sequence types (a unique clone or group of clones with sequence similarity of > 98. Major sequence types were related to Desulfotomaculum, Acetobacterium, Desulfovibrio, Desulfobacula, Zoogloea and Thiomicrospira denitrificans. The abundance in the groundwater of bacterial populations represented by these major sequence types was assessed by quantitative competitive PCR using specific primers, showing that five rDNA types except for that related to Desulfobacula shared significant proportions (more than 1% of the total bacterial rDNA. Conclusions Bacteria inhabiting the oil-storage cavity were unexpectedly diverse. A phylogenetic affiliation of cloned 16S rDNA sequences suggests that bacteria exhibiting different types of energy metabolism coexist in the cavity.

  13. Comparative genome analysis of Pseudomonas knackmussii B13, the first bacterium known to degrade chloroaromatic compounds.

    Science.gov (United States)

    Miyazaki, Ryo; Bertelli, Claire; Benaglio, Paola; Canton, Jonas; De Coi, Nicoló; Gharib, Walid H; Gjoksi, Bebeka; Goesmann, Alexander; Greub, Gilbert; Harshman, Keith; Linke, Burkhard; Mikulic, Josip; Mueller, Linda; Nicolas, Damien; Robinson-Rechavi, Marc; Rivolta, Carlo; Roggo, Clémence; Roy, Shantanu; Sentchilo, Vladimir; Siebenthal, Alexandra Von; Falquet, Laurent; van der Meer, Jan Roelof

    2015-01-01

    Pseudomonas knackmussii B13 was the first strain to be isolated in 1974 that could degrade chlorinated aromatic hydrocarbons. This discovery was the prologue for subsequent characterization of numerous bacterial metabolic pathways, for genetic and biochemical studies, and which spurred ideas for pollutant bioremediation. In this study, we determined the complete genome sequence of B13 using next generation sequencing technologies and optical mapping. Genome annotation indicated that B13 has a variety of metabolic pathways for degrading monoaromatic hydrocarbons including chlorobenzoate, aminophenol, anthranilate and hydroxyquinol, but not polyaromatic compounds. Comparative genome analysis revealed that B13 is closest to Pseudomonas denitrificans and Pseudomonas aeruginosa. The B13 genome contains at least eight genomic islands [prophages and integrative conjugative elements (ICEs)], which were absent in closely related pseudomonads. We confirm that two ICEs are identical copies of the 103 kb self-transmissible element ICEclc that carries the genes for chlorocatechol metabolism. Comparison of ICEclc showed that it is composed of a variable and a 'core' region, which is very conserved among proteobacterial genomes, suggesting a widely distributed family of so far uncharacterized ICE. Resequencing of two spontaneous B13 mutants revealed a number of single nucleotide substitutions, as well as excision of a large 220 kb region and a prophage that drastically change the host metabolic capacity and survivability. PMID:24803113

  14. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles

    Science.gov (United States)

    Su, Yinglong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun

    2015-10-01

    The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total nitrogen removal efficiency was decreased from 98.3% to 62.1% with the increase of CuO NPs from 0.05 to 0.25 mg/L. Cellular morphology and integrity studies indicated that nanoparticles entered the cells. The proteomic bioinformatics analysis showed that CuO NPs caused regulation of proteins involved in nitrogen metabolism, electron transfer and substance transport. The down-regulation of GtsB protein (responsible for glucose transport) decreased the production of NADH (electron donor for denitrification). Also, the expressions of key electron-transfer proteins (including NADH dehydrogenase and cytochrome) were suppressed by CuO NPs, which adversely affected electrons transfer for denitrification. Further investigation revealed that CuO NPs significantly inhibited the expressions and catalytic activities of nitrate reductase and nitrite reductase. These results provided a fundamental understanding of the negative influences of CuO NPs on bacterial denitrification.

  15. Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Sahinkaya, Erkan, E-mail: erkansahinkaya@yahoo.com [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey); Kilic, Adem [Harran University, Environmental Engineering Department, Osmanbey Campus, 63000 Sanliurfa (Turkey); Calimlioglu, Beste; Toker, Yasemin [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey)

    2013-11-15

    Highlights: • Simultaneous heterotrophic and autotrophic denitrification was stimulated. • Simultaneous bioreduction of nitrate and chromate was achieved. • Total chromium decreased <50 μg/L when the influent Cr(VI) was ≤5 mg/L. -- Abstract: This study aims at evaluating simultaneous chromate and nitrate reduction using sulfur-based mixotrophic denitrification process in a column reactor packed with elemental sulfur and activated carbon. The reactor was supplemented with methanol at C/N ratio of 1.33 or 2. Almost complete denitrification was achieved at influent NO{sub 3}{sup −}–N and Cr(VI) concentrations of 75 mg/L and 10 mg/L, respectively, and 3.7 h HRT. Maximum denitrification rate was 0.5 g NO{sub 3}{sup −}–N/(L.d) when the bioreactor was fed with 75 mg/L NO{sub 3}{sup −}–N, 150 mg/L methanol and 10 mg/L Cr(VI). The share of autotrophic denitrification was between 12% and 50% depending on HRT, C/N ratio and Cr(VI) concentration. Effluent total chromium was below 50 μg/L provided that influent Cr(VI) concentration was equal or below 5 mg/L. DGGE results showed stable microbial community throughout the operation and the presence of sulfur oxidizing denitrifying bacteria (Thiobacillus denitrificans) and Cr(VI) reducing bacteria (Exiguobacterium spp.) in the column bed.

  16. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    are new to science all show high sequence identity to sequences retrieved from ORFRC subsurface. (2) Based on physiological and phylogenetic characterization, two new species of subsurface bacteria were described: the metal-reducer Geobacter daltonii, and the denitrifier Rhodanobacter denitrificans. (3) Strains isolated from the ORFRC show that Rhodanobacter species are well adapted to the contaminated subsurface. Strains 2APBS1 and 116-2 grow at high salt (3% NaCl), low pH (3.5) and tolerate high concentrations of nitrate (400mM) and nitrite (100mM). Strain 2APBS1 was demonstrated to grow at in situ acidic pHs down to 2.5. (4) R. denitrificans strain 2APBS1 is the first described Rhodanobacter species shown to denitrify. Nitrate is almost entirely converted to N2O, which may account for the large accumulation of N2O in the ORFRC subsurface. (5) G. daltonii, isolated from uranium- and hydrocarbon-contaminated subsurface sediments of the ORFRC, is the first organism from the subsurface clade of the genus Geobacter that is capable of growth on aromatic hydrocarbons. (6) High quality draft genome sequences and a complete eco-physiological description are completed for R. denitrificans strain 2APBS1 and G. daltonii strain FRC-32. (7) Given their demonstrated relevance to DOE remediation efforts and the availability of detailed genotypic/phenotypic characterization, Rhodanobacter denitrificans strain 2APBS1 and Geobacter daltonii strain FRC-32 represent ideal model organisms to provide a predictive understanding of subsurface microbial activity through metabolic modeling. Tasks II and III-Diversity and distribution of active anaerobes and Mechanisms linking electron transport and the fate of radionuclides: (1) Our study showed that members of genus Rhodanobacter and Geobacter are abundant and active in the uranium and nitrate contaminated subsurface. In the contaminant source zone of the Oak Ridge site, Rhodanobacter spp. are the predominant, active organisms detected

  17. Plasmid content and localization of the genes encoding the denitrification enzymes in two strains of Rhodobacter sphaeroides.

    Science.gov (United States)

    Schwintner, C; Sabaty, M; Berna, B; Cahors, S; Richaud, P

    1998-08-15

    Plasmid content and localization of the genes encoding the reductases of the denitrification pathway were determined in the photosynthetic bacterium Rhodobacter sphaeroides forma sp. denitrificans by transverse alternating-field electrophoresis (TAFE) and hybridization with digoxigenin-labeled homologous probes. Two large plasmids of 102 and 115 kb were found. The genes encoding the various reductases are not clustered on a single genetic unit. The nap locus (localized with a napA probe), the nirK gene and the norCB genes encoding the nitrate, nitrite and nitric oxide reductases, respectively, were found on different AseI and SnaBI digested chromosomal DNA fragments, whereas the nos locus (localized with a nosZ probe), encoding the nitrous oxide reductase, was identified on the 115-kb plasmid. Furthermore, the genes encoding two proteins of unknown function, one periplasmic and the other cytoplasmic, but whose synthesis is highly induced by nitrate, were found on a different chromosomal fragment. For comparison, the same experiments were carried out on the well-characterized strain Rhodobacter sphaeroides 2.4.1. PMID:9742704

  18. Constraining Habitable Environments on Mars by Quantifying Available Geochemical Energy

    Science.gov (United States)

    Tierney, L. L.; Jakosky, B. M.

    2009-12-01

    The search for life on Mars includes the availability of liquid water, access to biogenic elements and an energy source. In the past, when water was more abundant on Mars, a source of energy may have been the limiting factor for potential life. Energy, either from photosynthesis or chemosynthesis, is required in order to drive metabolism. Potential martian organisms most likely took advantage of chemosynthetic reactions at and below the surface. Terrestrial chemolithoautotrophs, for example, thrive off of chemical disequilibrium that exists in many environments and use inorganic redox (reduction-oxidation) reactions to drive metabolism and create cellular biomass. The chemical disequilibrium of six different martian environments were modeled in this study and analyzed incorporating a range of water and rock compositions, water:rock mass ratios, atmospheric fugacities, pH, and temperatures. All of these models can be applied to specific sites on Mars including environments similar to Meridiani Planum and Gusev Crater. Both a mass transfer geochemical model of groundwater-basalt interaction and a mixing model of groundwater-hydrothermal fluid interaction were used to estimate hypothetical martian fluid compositions that results from mixing over the entire reaction path. By determining the overall Gibbs free energy yields for redox reactions in the H-O-C-S-Fe-Mn system, the amount of geochemical energy that was available for potential chemolithoautotrophic microorganisms was quantified and the amount of biomass that could have been sustained was estimated. The quantity of biomass that can be formed and supported within a system depends on energy availability, thus sites that have higher levels and fluxes of energy have greater potential to support life. Results show that iron- and sulfur-oxidation reactions would have been the most favorable redox reactions in aqueous systems where groundwater and rock interacted at or near the surface. These types of reactions could

  19. Molecular Approaches to Understanding C & N Dynamics in MArine Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Arturo Massol; James Tiedje; Jizhong Zhou; Allan Devol

    2007-05-16

    Continental margin sediments constitute only about 10% of the total sediment surface area in the world’s oceans, nevertheless they are the dominant sites of nitrogen (N) cycling. Recent studies suggest that the oceanic nitrogen budget is unbalanced, primarily due to a higher nitrogen removal rate in contrast to the fixation rate, and it has been suggested that denitrification activity contributes significantly to this imbalance. Although denitrification in marine environments has been studied intensively at the process level, little is known about the species abundance, composition, distribution, and functional differences of the denitrifying population. Understanding the diversity of microbial populations in marine environments, their responses to various environmental factors such as NO3-, and how this impact the rate of denitrification is critical to predict global N dynamics. Environmental Microbiology has the prompt to study the influence of each microbial population on a biogeochemical process within a given ecosystem. Culture-dependent and –independent techniques using nucleic acid probes can access the identity and activity of cultured and uncultured microorganisms. Nucleic acid probes can target distintict genes which set phylogenetic relationships, such as rDNA 16S, DNA gyrase (gyrB) and RNA polymerase sigma 70 factor (rpoD). In the other hand, the genetic capabilities and their expression could be tracked using probes that target several functional genes, such as nirS, nirK, nosZ, and nifH, which are genes involved in denitrification. Selective detection of cells actively expressing functional genes within a community using In Situ Reverse Transcription-PCR (ISRT-PCR) could become a powerful culture-independent technique in microbial ecology. Here we describe an approach to study the expression of nirS genes in denitrifying bacteria. Pure cultures of Pseudomonas stutzeri and Paracoccus denitrificans, as well as co-cultures with non

  20. Microbiological influences on fracture surfaces of intact mud-stone

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. It is well recognised that microbes live in a wide range of subsurface environments including potential geological repository host rocks; and their presence can have an impact on transport processes. Microbial activity in any environment is located on chemical or physical interfaces, usually within bio-films. Their impact on transport can be physical (e.g. altering porosity) and/or chemical (e.g. changing redox conditions or altering pH) often resulting in intracellular or extracellular mineral formation or degradation. Consequently, the significance of microbial activity on the transport properties of potential host rocks for geological repositories is now being investigated. This pilot study investigates changes in transport properties that are because of microbial activity in sedimentary mud-stone rock environments at the Japan Atomic Energy Agency (JAEA) Horonobe underground research laboratory (URL) in northern Japan. The geological setting of the URL is summarised elsewhere. Geo-microbiological assessments of ground waters, from boreholes, previously drilled at Horonobe, have revealed the presence of a diverse indigenous microbiological ecosystem. The impacts of the presence of these microbes on the performance of a high-level radioactive waste (HLW) repository, using geo-microbiological data from Horonobe, has shown that denitrifying bacteria is likely to be the group of organisms with the greatest activity. Consequently, the impact of this group of organisms, specifically Pseudomonas denitrificans, on Horonobe rock transport properties, is the focus of this study. In brief, two experiments, one biotic and a 'control', were carried out using a flow-through column operated at a constant rate of fluid flow and under pressurised conditions. Changes in biological and chemical parameters were monitored throughout the experiment together with changes in confining pressure and temperature. The experiments were

  1. Variability in microbial community composition between geochemically distinct hydrothermal features at El Tatio geyser field

    Science.gov (United States)

    Franks, M. A.; Bennett, P.

    2010-12-01

    The distinctive geochemistry of the hydrothermal waters at El Tatio Geyser Field (ETGF), which includes the highest reported naturally occurring concentrations of arsenic, is a unique environment where diverse microbial mat communities inhabit many of its features. As(III) in fact is the most abundant bioavailable electron donor at ETGF and could represent an energy source for chemolithoautotrophic microorganisms. Found at concentrations of ~0.5 mM, As levels exceed the concentrations often used in microbial toxicity experiments, which suggests that novel, As-resistant taxa might be found here. This study examines four sites at ETGF, each with distinct physical and geochemical constraints. Two low temperature (~30°C) and two high temperature (~65°C) sites were included, and the geochemical variables include salinity, As and Sb concentrations, As speciation, dissolved inorganic carbon concentration, and dissolved hydrogen concentration. The microbial community at each site was determined using a combination of shotgun cloning and pyrosequencing to determine the archaeal and bacterial taxa present. Relationships between microbial community composition and water chemistry variables were tested using Unifrac to determine if any statistically significant correlations were present. Two analyses were completed; in the first, community composition was defined in terms of populations of metabolic guilds (particularly methanogenic Archaea), and in the second, phylogenetic affiliation was used. Results show that bacterial diversity exceeds archaeal diversity at each of the four sites tested, and that methanogens dominate the Archaea found at each site except one, which was mostly comprised of Crenarchaea. While each site tested had a unique microbial community composition, construction of a maximum likelihood phylogenetic tree shows ETGF sequences group together, despite differences in water chemistry. Additionally, both tree construction and BLAST results indicate the

  2. Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin

    Science.gov (United States)

    Takai, Ken; Nunoura, Takuro; Ishibashi, Jun-Ichiro; Lupton, John; Suzuki, Ryohei; Hamasaki, Hiroshi; Ueno, Yuichiro; Kawagucci, Shinsuke; Gamo, Toshitaka; Suzuki, Yohey; Hirayama, Hisako; Horikoshi, Koki

    2008-06-01

    A newly discovered hydrothermal field called the Mariner field on the Valu Fa Ridge in the southern Lau Basin was explored and characterized with geochemical and microbiological analyses. The hydrothermal fluid discharging from the most vigorous vent (Snow Chimney, maximum discharge temperature 365°C) was boiling at the seafloor at a depth of 1908 m, and two distinct end-member hydrothermal fluids were identified. The fluid chemistry of the typical Cl-enriched and Cl-depleted hydrothermal fluids was analyzed, as was the mineralogy of the host chimney structures. The variability in the fluid chemistry was potentially controlled by the subseafloor phase-separation (vapor loss process) and the microbial community activities. Microbial community structures in three chimney structures were investigated using culture-dependent and -independent techniques. The small subunit (SSU) rRNA gene clone analysis revealed that both bacterial and archaeal rRNA gene communities on the chimney surfaces differed among three chimneys. Cultivation analysis demonstrated significant variation in the culturability of various microbial components among the chimneys, particularly of thermophilic H2-oxidizing (and S-oxidizing) chemolithoautotrophs such as the genera Aquifex and Persephonella. The physical and chemical environments of chimney surface habitats are still unresolved and do not directly extrapolate the environments of possible subseafloor habitats. However, the variability in microbial community found in the chimneys also provides an insight into the different biogeochemical interactions potentially affected by the phase separation of the hydrothermal fluids in the subseafloor hydrothermal habitats. In addition, comparison with other deep-sea hydrothermal systems revealed that the Mariner field microbial communities have unusual characteristics.

  3. The small heat shock proteins from Acidithiobacillus ferrooxidans: gene expression, phylogenetic analysis, and structural modeling

    Directory of Open Access Journals (Sweden)

    Ribeiro Daniela A

    2011-12-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is an acidophilic, chemolithoautotrophic bacterium that has been successfully used in metal bioleaching. In this study, an analysis of the A. ferrooxidans ATCC 23270 genome revealed the presence of three sHSP genes, Afe_1009, Afe_1437 and Afe_2172, that encode proteins from the HSP20 family, a class of intracellular multimers that is especially important in extremophile microorganisms. Results The expression of the sHSP genes was investigated in A. ferrooxidans cells submitted to a heat shock at 40°C for 15, 30 and 60 minutes. After 60 minutes, the gene on locus Afe_1437 was about 20-fold more highly expressed than the gene on locus Afe_2172. Bioinformatic and phylogenetic analyses showed that the sHSPs from A. ferrooxidans are possible non-paralogous proteins, and are regulated by the σ32 factor, a common transcription factor of heat shock proteins. Structural studies using homology molecular modeling indicated that the proteins encoded by Afe_1009 and Afe_1437 have a conserved α-crystallin domain and share similar structural features with the sHSP from Methanococcus jannaschii, suggesting that their biological assembly involves 24 molecules and resembles a hollow spherical shell. Conclusion We conclude that the sHSPs encoded by the Afe_1437 and Afe_1009 genes are more likely to act as molecular chaperones in the A. ferrooxidans heat shock response. In addition, the three sHSPs from A. ferrooxidans are not recent paralogs, and the Afe_1437 and Afe_1009 genes could be inherited horizontally by A. ferrooxidans.

  4. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    Science.gov (United States)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-11-01

    Little is known about fixed nitrogen (N) transformation and elimination at diffuse hydrothermal vents where anoxic fluids are mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N loss pathways (denitrification, anammox) and dissimilatory nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e., temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithoautotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always bacteria up to 38%). Significant correlations were found between fixed N loss (i.e., denitrification, anammox) rates and in situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence times, we estimated that up to ~10 Tg N yr-1 could globally be removed in the subsurface biosphere of hydrothermal vents systems, thus, representing a small fraction of the total marine N loss (~275 to > 400 Tg N yr-1).

  5. Archaea and Bacteria in deep lake hypolimnion: in situ dark inorganic carbon uptake

    Directory of Open Access Journals (Sweden)

    Cristiana Callieri

    2014-02-01

    Full Text Available The interest for microorganisms inhabiting the hypolimnion and for their role in biogeochemical cycles of lakes is considerable, but knowledge is far from complete. The presence of chemolithoautotrophic Bacteria and mesophilic Archaea (e.g., Thaumarchaeota assimilating inorganic carbon in the deep hypolimnion of lakes has been ascertained. We measured, for the first time at 350 m in Lake Maggiore (Northern Italy, the prokaryotic in situ dark [14C]HCO3 incorporation with a new custom-made apparatus, which takes samples and adds tracers in situ. Thereby stress factors affecting prokaryotes during sample recovery from the depth were avoided. We tested the new instrument at different depths and conditions, performing parallel conventional on board incubations. We found that dark [14C]HCO3 incorporations had lower standard deviation in in situ incubations with respect to the on board ones, but their means were not statistically different. At 350 m we estimated an uptake of 187.7±15 μg C m–3 d–1, which is in line with the published uptake rates in aquatic systems. By inhibiting the bacterial metabolism, we found that Archaea were responsible for 28% of the total CO2 uptake. At the same depth, Thaumarchaeota, on average, constituted 11% of total DAPI counts. Dark [14C]HCO3 incorporation integrated along the aphotic water column was 65.8±5.2 mg C m–2 d–1 which corresponds to 87% of picophytoplanktonic autotrophic fixation in the euphotic layer. This study provides the first evidence of Bacteria and Archaea dark CO2 fixation in the deep hypolimnion of a subalpine lake and indicates a potentially significant prokaryotic CO2 sink.

  6. Deferrisoma paleochoriense sp. nov., a thermophilic, iron(III)-reducing bacterium from a shallow-water hydrothermal vent in the Mediterranean Sea

    Science.gov (United States)

    Perez-Rodriguez, Ileana M.; Rawls, Matthew; Coykendall, Dolly K.; Foustoukos, Dionysis I.

    2016-01-01

    A novel thermophilic, anaerobic, mixotrophic bacterium, designated strain MAG-PB1T, was isolated from a shallow-water hydrothermal vent system in Palaeochori Bay off the coast of the island of Milos, Greece. The cells were Gram-negative, rugose, short rods, approximately 1.0 μm long and 0.5 μm wide. Strain MAG-PB1T grew at 30–70 °C (optimum 60 °C), 0–50 g NaCl l− 1 (optimum 15–20 g l− 1) and pH 5.5–8.0 (optimum pH 6.0). Generation time under optimal conditions was 2.5 h. Optimal growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Fe(III), Mn(IV), arsenate and selenate were used as electron acceptors. Peptone, tryptone, Casamino acids, sucrose, yeast extract, d-fructose, α-d-glucose and ( − )-d-arabinose also served as electron donors. No growth occurred in the presence of lactate or formate. The G+C content of the genomic DNA was 66.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Deferrisoma camini, the first species of a recently described genus in the Deltaproteobacteria. Based on the 16S rRNA gene phylogenetic analysis and on physiological, biochemical and structural characteristics, the strain was found to represent a novel species, for which the name Deferrisoma palaeochoriense sp. nov. is proposed. The type strain is MAG-PB1T ( = JCM 30394T = DSM 29363T). 

  7. Sulfurifustis variabilis gen. nov., sp. nov., a sulfur oxidizer isolated from a lake, and proposal of Acidiferrobacteraceae fam. nov. and Acidiferrobacterales ord. nov.

    Science.gov (United States)

    Kojima, Hisaya; Shinohara, Arisa; Fukui, Manabu

    2015-10-01

    A novel autotrophic bacterium, strain skN76T, was isolated from sediment of a lake in Japan. As sole electron donor to support chemolithoautotrophic growth, the strain oxidized thiosulfate, tetrathionate and elemental sulfur. For growth, the optimum temperature was 42–45 °C and the optimum pH was 6.8–8.2. The cells were Gram-stain-negative, catalase-positive and oxidase-positive. The strain exhibited changes in morphology depending on growth temperature. Cells grown at the optimum temperature were rod-shaped (0.9–3.0 μm long and 0.3–0.5 μm wide), whereas a filamentous form was observed when the strain was cultured at the lowest permissive growth temperatures. The G+C content of genomic DNA was 69 mol%. The major components in the fatty acid profile were C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and summed feature 9 (iso-C17 : 1ω9c and/or 10-methyl C16 : 0). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the closest cultivated relative of strain skN76T was Acidiferrobacter thiooxydans m-1T, with sequence similarity of 93 %. On the basis of its phylogenetic and phenotypic properties, strain skN76T ( = DSM 100313T =  NBRC 110942T) is proposed as the type strain of a novel species of a novel genus, Sulfurifustis variabilis gen. nov., sp. nov. Novel taxa, Acidiferrobacteraceae fam. nov. and Acidiferrobacterales ord. nov., are also proposed to accommodate the genera Acidiferrobacter and Sulfurifustis gen. nov. PMID:26220671

  8. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.

    Science.gov (United States)

    Li, Xiaozheng; Mercado, Roel; Kernan, Timothy; West, Alan C; Banta, Scott

    2014-10-01

    Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotroph that is important in biomining and other biotechnological operations. The cells are able to oxidize inorganic iron, but the insolubility and product inhibition by Fe(3+) complicates characterization of these cultures. Here we explore the growth kinetics of A. ferrooxidans in iron-based medium in a pH range from 1.6 to 2.2. It was found that as the pH was increased from 1.6 to 2.0, the maintenance coefficient decreased while both the growth kinetics and maximum cell yield increased in the precipitate-free, low Fe(2+) concentration medium. In higher iron media a similar trend was observed at low pH, but the formation of precipitates at higher pH (2.0) hampered cell growth and lowered the specific growth rate and maximum cell yield. In order to eliminate ferric precipitates, chelating agents were introduced into the medium. Citric acid was found to be relatively non-toxic and did not appear to interfere with iron oxidation at a maximum concentration of 70 mM. Inclusion of citric acid prevented precipitation and A. ferrooxidans growth parameters resumed their trends as a function of pH. The addition of citrate also decreased the apparent substrate saturation constant (KS ) indicating a reduction in the competitive inhibition of growth by ferric ions. These results indicate that continuous cultures of A. ferrooxidans in the presence of citrate at elevated pH will enable enhanced cell yields and productivities. This will be critical as these cells are used in the development of new biotechnological applications such as electrofuel production. PMID:24771134

  9. Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments.

    Science.gov (United States)

    Terry, Lee R; Kulp, Thomas R; Wiatrowski, Heather; Miller, Laurence G; Oremland, Ronald S

    2015-12-01

    Bacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to the Comamonadaceae family and were 99% similar to previously described species. We identify these novel strains as Hydrogenophaga taeniospiralis strain IDSBO-1 and Variovorax paradoxus strain IDSBO-4. Both strains possess a gene with homology to the aioA gene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression of aioA is not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by the aioA genes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularly Acidovorax sp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [(14)C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates. PMID:26431974

  10. Carbon dioxide fixation by Metallosphaera yellowstonensis and acidothermophilic iron-oxidizing microbial communities from Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Ryan; Whitmore, Laura M.; Moran, James J.; Kreuzer, Helen W.; Inskeep, William P.

    2014-05-01

    The fixation of inorganic carbon (as carbon dioxide) has been documented in all three domains of life and results in the biosynthesis of a diverse suite of organic compounds that support the growth of heterotrophic organisms. The primary aim of this study was to assess the importance of carbon dioxide fixation in high-temperature Fe(III)-oxide mat communities and in pure cultures of one of the dominant Fe(II)-oxidizing organisms (Metallosphaera yellowstonensis strain MK1) present in situ. Protein-encoding genes of the complete 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) carbon fixation pathway were identified in pure-cultures of M. yellowstonensis strain MK1. Metagenome sequencing from the same environments also revealed genes for the 3-HP/4-HB pathway belonging to M. yellowstonensis populations, as well as genes for a complete reductive TCA cycle from Hydrogenobaculum spp. (Aquificales). Stable isotope (13CO2) labeling was used to measure the fixation of CO2 by M. yellowstonensis strain MK1, and in ex situ assays containing live Fe(III)-oxide microbial mats. Results showed that M. yellowstonensis strain MK1 fixes CO2 via the 3-HP/4-HB pathway with a fractionation factor of ~ 2.5 ‰. Direct analysis of the 13C composition of dissolved inorganic C (DIC), dissolved organic C (DOC), landscape C and microbial mat C showed that mat C is comprised of both DIC and non-DIC sources. The estimated contribution of DIC carbon to biomass C (> ~ 35%) is reasonably consistent with the relative abundance of known chemolithoautotrophs and corresponding CO2 fixation pathways detected in metagenome sequence. The significance of DIC as a major source of carbon for Fe-oxide mat communities provides a foundation for examining microbial interactions in these systems that are dependent on the activity of autotrophic organisms such as Hydrogenobaculum and Metallosphaera spp.

  11. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Jake; Bernstein, Hans C.; Jay, Z.; Kozubal, Mark; Jennings, Ryan; Tringe, Susannah G.; Inskeep, William P.

    2016-02-15

    Iron oxide microbial mats are ubiquitous geobiological features on Earth and occur in extant acidic hot springs of Yellowstone National Park (YNP), WY, USA, and form as a result of microbial processes. The relative contribution of different organisms to the development of these mat ecosystems is of specific interest. We hypothesized that chemolithoautotrophic organisms contribute to the early development and production of Fe(III)-oxide mats, which could support later-colonizing heterotrophic microorganisms. Sterile glass slides were incubated in the outflow channels of two acidic geothermal springs in YNP, and spatiotemporal changes in Fe(III)-oxide accretion and abundance of relevant community members were measured. Lithoautotrophic Hydrogenobaculum spp. were first colonizers and the most abundant taxa identified during early successional stages (7 – 40 days). Populations of M. yellowstonensis colonized after ~ 7 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized after 30 days, and emerge as the dominant functional guild in mature iron oxide mats (1 – 2 cm thick) that form after 70 – 120 days. First-order rate constants of iron oxide accretion ranged from 0.05 – 0.046 day-1, and reflected the absolute amount of iron accreted. Micro- and macroscale microterracettes were identified during iron oxide mat development, and suggest that the mass transfer of oxygen limits microbial growth. This was also demonstrated using microelectrode measurements of oxygen as a function of mat depth, which showed steep gradients in oxygen from the aqueous mat interface to ~ 1 mm. The formation and succession of amorphous Fe(III)-oxide mat communities follows a predictable pattern of distinct stages and growth. The successional stages and microbial signatures observed in these extant Fe(III)-oxide mat communities may be relevant to other past or present Fe(III)-oxide mineralizing systems.

  12. Structure of the Nitrosomonas Europaea Rh Protein

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Jayachandran, S.; Nguyen, H.-H.T.; Chan, M.K.

    2009-06-01

    Amt/MEP/Rh proteins are a family of integral membrane proteins implicated in the transport of NH3, CH(2)NH2, and CO2. Whereas Amt/MEP proteins are agreed to transport ammonia (NH3/NH4+), the primary substrate for Rh proteins has been controversial. Initial studies suggested that Rh proteins also transport ammonia, but more recent evidence suggests that they transport CO2. Here we report the first structure of an Rh family member, the Rh protein from the chemolithoautotrophic ammonia-oxidizing bacterium Nitrosomonas europaea. This Rh protein exhibits a number of similarities to its Amt cousins, including a trimeric oligomeric state, a central pore with an unusual twin-His site in the middle, and a Phe residue that blocks the channel for small-molecule transport. However, there are some significant differences, the most notable being the presence of an additional cytoplasmic C-terminal alpha-helix, an increased number of internal proline residues along the transmembrane helices, and a specific set of residues that appear to link the C-terminal helix to Phe blockage. This latter linkage suggests a mechanism in which binding of a partner protein to the C terminus could regulate channel opening. Another difference is the absence of the extracellular pi-cation binding site conserved in Amt/Mep structures. Instead, CO2 pressurization experiments identify a CO2 binding site near the intracellular exit of the channel whose residues are highly conserved in all Rh proteins, except those belonging to the Rh30 subfamily. The implications of these findings on the functional role of the human Rh antigens are discussed.

  13. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus

    Directory of Open Access Journals (Sweden)

    Stefanie eMangold

    2011-02-01

    Full Text Available Given the challenges to life at low pH, an analysis of inorganic sulfur compound oxidation was initiated in the chemolithoautotrophic extremophile Acidithiobacillus caldus. A. caldus is able to metabolize elemental sulfur and a broad range of inorganic sulfur compounds. It has been implicated in the production of environmentally damaging acidic solutions as well as participating in industrial bioleaching operations where it forms part of microbial consortia used for the recovery of metal ions. Based upon the recently published A. caldus type strain genome sequence, a bioinformatic reconstruction of elemental sulfur and inorganic sulfur compound metabolism predicted genes included: sulfide quinone reductase (sqr, tetrathionate hydrolase (tth, two sox gene clusters potentially involved in thiosulfate oxidation (soxABXYZ, sulfur oxygenase reductase (sor, and various electron transport components. RNA transcript profiles by semi-quantitative reverse transcription PCR suggested up-regulation of sox genes in the presence of tetrathionate. Extensive gel based proteomic comparisons of total soluble and membrane enriched protein fractions during growth on elemental sulfur and tetrathionate identified differential protein levels from the two Sox clusters as well as several chaperone and stress proteins up-regulated in the presence of elemental sulfur. Proteomics results also suggested the involvement of heterodisulfide reductase (HdrABC in A. caldus inorganic sulfur compound metabolism. A putative new function of Hdr in acidophiles is discussed. Additional proteomic analysis evaluated protein expression differences between cells grown attached to solid, elemental sulfur versus planktonic cells. This study has provided insights into sulfur metabolism of this acidophilic chemolithotroph and gene expression during attachment to solid elemental sulfur.

  14. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs.

    Science.gov (United States)

    Lesniewski, Ryan A; Jain, Sunit; Anantharaman, Karthik; Schloss, Patrick D; Dick, Gregory J

    2012-12-01

    Microorganisms mediate geochemical processes in deep-sea hydrothermal vent plumes, which are a conduit for transfer of elements and energy from the subsurface to the oceans. Despite this important microbial influence on marine geochemistry, the ecology and activity of microbial communities in hydrothermal plumes is largely unexplored. Here, we use a coordinated metagenomic and metatranscriptomic approach to compare microbial communities in Guaymas Basin hydrothermal plumes to background waters above the plume and in the adjacent Carmen Basin. Despite marked increases in plume total RNA concentrations (3-4 times) and microbially mediated manganese oxidation rates (15-125 times), plume and background metatranscriptomes were dominated by the same groups of methanotrophs and chemolithoautotrophs. Abundant community members of Guaymas Basin seafloor environments (hydrothermal sediments and chimneys) were not prevalent in the plume metatranscriptome. De novo metagenomic assembly was used to reconstruct genomes of abundant populations, including Marine Group I archaea, Methylococcaceae, SAR324 Deltaproteobacteria and SUP05 Gammaproteobacteria. Mapping transcripts to these genomes revealed abundant expression of genes involved in the chemolithotrophic oxidation of ammonia (amo), methane (pmo) and sulfur (sox). Whereas amo and pmo gene transcripts were abundant in both plume and background, transcripts of sox genes for sulfur oxidation from SUP05 groups displayed a 10-20-fold increase in plumes. We conclude that the biogeochemistry of Guaymas Basin hydrothermal plumes is mediated by microorganisms that are derived from seawater rather than from seafloor hydrothermal environments such as chimneys or sediments, and that hydrothermal inputs serve as important electron donors for primary production in the deep Gulf of California. PMID:22695860

  15. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    Science.gov (United States)

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan. PMID:22970260

  16. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli.

    Science.gov (United States)

    Butcher, B G; Deane, S M; Rawlings, D E

    2000-05-01

    The chromosomal arsenic resistance genes of the acidophilic, chemolithoautotrophic, biomining bacterium Thiobacillus ferrooxidans were cloned and sequenced. Homologues of four arsenic resistance genes, arsB, arsC, arsH, and a putative arsR gene, were identified. The T. ferrooxidans arsB (arsenite export) and arsC (arsenate reductase) gene products were functional when they were cloned in an Escherichia coli ars deletion mutant and conferred increased resistance to arsenite, arsenate, and antimony. Therefore, despite the fact that the ars genes originated from an obligately acidophilic bacterium, they were functional in E. coli. Although T. ferrooxidans is gram negative, its ArsC was more closely related to the ArsC molecules of gram-positive bacteria. Furthermore, a functional trxA (thioredoxin) gene was required for ArsC-mediated arsenate resistance in E. coli; this finding confirmed the gram-positive ArsC-like status of this resistance and indicated that the division of ArsC molecules based on Gram staining results is artificial. Although arsH was expressed in an E. coli-derived in vitro transcription-translation system, ArsH was not required for and did not enhance arsenic resistance in E. coli. The T. ferrooxidans ars genes were arranged in an unusual manner, and the putative arsR and arsC genes and the arsBH genes were translated in opposite directions. This divergent orientation was conserved in the four T. ferrooxidans strains investigated. PMID:10788346

  17. Heat and phosphate starvation effects on the proteome, morphology and chemical composition of the biomining bacteria Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Ribeiro, Daniela A; Maretto, Danilo A; Nogueira, Fábio C S; Silva, Márcio J; Campos, Francisco A P; Domont, Gilberto B; Poppi, Ronei J; Ottoboni, Laura M M

    2011-06-01

    Acidithiobacillus ferrooxidans is a Gram negative, acidophilic, chemolithoautotrophic bacterium that plays an important role in metal bioleaching. During bioleaching, the cells are subjected to changes in the growth temperature and nutrients starvation. The aim of this study was to gather information about the response of the A.ferrooxidans Brazilian strain LR to K2HPO4 starvation and heat stress through investigation of cellular morphology, chemical composition and differential proteome. The scanning electron microscopic results showed that under the tested stress conditions, A. ferrooxidans cells became elongated while the Fourier transform infrared spectroscopy (FT-IR) analysis showed alterations in the wavenumbers between 850 and 1,275 cm(-1), which are related to carbohydrates, phospholipids and phosphoproteins. These findings indicate that the bacterial cell surface is affected by the tested stress conditions. A proteomic analysis, using 2-DE and tandem mass spectrometry, enabled the identification of 44 differentially expressed protein spots, being 30 due to heat stress (40°C) and 14 due to K2HPO4 starvation. The identified proteins belonged to 11 different functional categories, including protein fate, energy metabolism and cellular processes. The upregulated proteins were mainly from protein fate and energy metabolism categories. The obtained results provide evidences that A. ferrooxidans LR responds to heat stress and K2HPO4 starvation by inducing alterations in cellular morphology and chemical composition of the cell surface. Also, the identification of several proteins involved in protein fate suggests that the bacteria cellular homesostasis was affected. In addition, the identification of proteins from different functional categories indicates that the A. ferrooxidans response to higher than optimal temperatures and phosphate starvation involves global changes in its physiology. PMID:25187146

  18. Genome-Enabled Modeling of Biogeochemical Processes Predicts Metabolic Dependencies that Connect the Relative Fitness of Microbial Functional Guilds

    Science.gov (United States)

    Brodie, E.; King, E.; Molins, S.; Karaoz, U.; Steefel, C. I.; Banfield, J. F.; Beller, H. R.; Anantharaman, K.; Ligocki, T. J.; Trebotich, D.

    2015-12-01

    Pore-scale processes mediated by microorganisms underlie a range of critical ecosystem services, regulating carbon stability, nutrient flux, and the purification of water. Advances in cultivation-independent approaches now provide us with the ability to reconstruct thousands of genomes from microbial populations from which functional roles may be assigned. With this capability to reveal microbial metabolic potential, the next step is to put these microbes back where they belong to interact with their natural environment, i.e. the pore scale. At this scale, microorganisms communicate, cooperate and compete across their fitness landscapes with communities emerging that feedback on the physical and chemical properties of their environment, ultimately altering the fitness landscape and selecting for new microbial communities with new properties and so on. We have developed a trait-based model of microbial activity that simulates coupled functional guilds that are parameterized with unique combinations of traits that govern fitness under dynamic conditions. Using a reactive transport framework, we simulate the thermodynamics of coupled electron donor-acceptor reactions to predict energy available for cellular maintenance, respiration, biomass development, and enzyme production. From metagenomics, we directly estimate some trait values related to growth and identify the linkage of key traits associated with respiration and fermentation, macromolecule depolymerizing enzymes, and other key functions such as nitrogen fixation. Our simulations were carried out to explore abiotic controls on community emergence such as seasonally fluctuating water table regimes across floodplain organic matter hotspots. Simulations and metagenomic/metatranscriptomic observations highlighted the many dependencies connecting the relative fitness of functional guilds and the importance of chemolithoautotrophic lifestyles. Using an X-Ray microCT-derived soil microaggregate physical model combined

  19. Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, Erik R.; Piao, Hailan; Scott, Nicole M.; Malfatti, Stephanie; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; del Rio, Tijana G.; Foster, Brian; Copeland, A.; Jansson, Janet K.; Pati, Amrita; Gilbert, Jack A.; Tringe, Susannah G.; Lorenson, Thomas D.; Hess, Matthias

    2014-01-02

    Crude oils can be major contaminants of the marine ecosystem and microorganisms play a significant role in the degradation of the main constituents of crude oil. To increase our understanding of the microbial hydrocarbon degradation process in the marine ecosystem, we collected crude oil from an active seep area located in the Santa Barbara Channel (SBC) and generated a total of about 52 Gb of raw metagenomic sequence data. The assembled data comprised ~500 Mb, representing ~1.1 million genes derived primarily from chemolithoautotrophic bacteria. Members of Oceanospirillales, a bacterial order belonging to the Deltaproteobacteria, recruited less than 2% of the assembled genes within the SBC metagenome. In contrast, the microbial community associated with the oil plume that developed in the aftermath of the Deepwater Horizon (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the SBC seep oil compared to the DWH plume oil. We hypothesize that this difference results from the SBC oil seep being mostly anaerobic, while the DWH oil plume is aerobic. Within the Archaea, the phylum Euryarchaeota, recruited more than 95% of the assembled archaeal sequences from the SBC oil seep metagenome, with more than 50% of the sequences assigned to members of the orders Methanomicrobiales and Methanosarcinales. These orders contain organisms capable of anaerobic methanogenesis and methane oxidation (AOM) and we hypothesize that these orders and their metabolic capabilities may be fundamental to the ecology of the SBC oil seep.

  20. Metagenomic Reconstruction of a Microbial Community from a CO2-driven Geyser

    Science.gov (United States)

    Emerson, J. B.; Banfield, J. F.; Thomas, B. C.

    2012-12-01

    Given that only ~1% of microorganisms are cultivable, and because microbes naturally exist in interactive consortia, it is important to include culture-independent analyses of microbial communities as we evaluate the role that microbes may play in geologic carbon sequestration. Through metagenomics, we report near-complete genomes from a microbial community dominated by iron-oxidizing Zetaproteobacteria from a CO2-driven geyser. Our study site, Crystal Geyser (Green River, Utah), is a cold (17 °C), iron-rich geyser that erupts due to pressure from soluble and free-phase CO2 accumulation in an aquifer ~500 m below the surface, and it is an established natural analog for geologic carbon sequestration. We collected 65 L of geyser water as it precipitated during an eruption in November 2009, and we sequentially filtered the water through 3.0 and 0.2 μm. DNA was extracted from the 0.2 μm filter, from which we generated 13 million 150 bp paired-end Illumina sequencing reads. We assembled near-complete genomes of neutrophilic, iron-oxidizing Mariprofundus ferrooxydans and sulfur-oxidizing Thiomicrospira crunogena. Significant genomic reconstruction was also achieved for other chemolithoautotrophic bacteria, for representatives of Candidate Division TM7 (an as yet uncultivable bacterial phylum), and for a small number of low-abundance archaea. We see evidence for a variety of metabolisms, including iron, sulfur, and complex carbon oxidation, carbon and nitrogen fixation, hydrogen metabolism, aerobic and anaerobic respiration (e.g., of sulfate and nitrate), and methanogenesis. Although the geyser community contains only ~20 populations at 0.5% or higher abundance, our results demonstrate that a CO2-saturated solution can be conducive to a thriving microbial community of diverse phylogeny and broad metabolic potential.

  1. EXAFS investigation of uranium(6) complexes formed at Acidithiobacillus ferro oxidans types

    International Nuclear Information System (INIS)

    Mining activities have brought excessive amounts of uranium into the environment. In uranium deposits a number of acidophilic chemo-litho-autotrophic bacteria have been identified which are able to oxidize sulphide minerals, elemental sulphur, ferrous iron and also (in the presence of uranium mineral) U(IV). In particular, the interaction of one representative of the group Acidithiobacillus ferro oxidans (new designation of Thiobacillus ferro oxidans) with uranium has been investigated. Uranium(VI) complex formations at the surfaces of Acidithiobacillus ferro oxidans were studied using uranium LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. In all samples uranium is co-ordinated by two axial oxygen atoms (Oax) at a distance of 1.77-1.78 angstrom. The average distance between uranium and the equatorial oxygen atoms (Oeq) is 2.35 angstrom. The co-ordination number for Oeq is 5-6. In comparison to the uranium crystal structure data, the U-Oeq distance indicates a co-ordination number of the equatorial oxygen of 5. Within the experimental error, there are no differences in the U-O bond distances between samples from the three types of A. ferro oxidans investigated. The fit to the EXAFS data of samples measured as wet pastes gave the same results as for dried samples. No significant structural differences were observed for the uranium complexes formed by the eco-types of A. ferro oxidans. However, the EXAFS spectra do indicate a formation of uranium complexes which are different from those formed by Bacilli where the bond length of 2.28 angstrom indicates a co-ordination number of 4 for the equatorial oxygen atoms. (authors)

  2. Assessing microbial processes in deep-sea hydrothermal systems by incubation at in situ temperature and pressure

    Science.gov (United States)

    McNichol, Jesse; Sylva, Sean P.; Thomas, François; Taylor, Craig D.; Sievert, Stefan M.; Seewald, Jeffrey S.

    2016-09-01

    At deep-sea hydrothermal vents, a large source of potential chemical energy is created when reducing vent fluid and oxidizing seawater mix. In this environment, chemolithoautotrophic microbes catalyze exergonic redox reactions which in turn provide the energy needed to fuel their growth and the fixation of CO2 into biomass. In addition to producing new organic matter, this process also consumes compounds contained both in vent fluid and entrained seawater (e.g. H2, NO3-). Despite their biogeochemical importance, such reactions have remained difficult to quantify due to methodological limitations. To address this knowledge gap, this study reports a novel application of isobaric gas-tight fluid samplers for conducting incubations of hydrothermal vent fluids at in situ temperature and pressure. Eighteen ~24 h incubations were carried out, representing seven distinct conditions that examine amendments consisting of different electron donors and acceptors. Microbial activity was observed in all treatments, and time series chemical measurements showed that activity was limited by electron acceptor supply, confirming predictions based on geochemical data. Also consistent with these predictions, the presence of nitrate increased rates of hydrogen consumption and yielded ammonium as a product of nitrate respiration. The stoichiometry of predicted redox reactions was also determined, revealing that the sulfur and nitrogen cycles are incompletely understood at deep-sea vents, and likely involve unknown intermediate redox species. Finally, the measured rates of redox processes were either equal to or far greater than what has been reported in previous studies where in situ conditions were not maintained. In addition to providing insights into deep-sea hydrothermal vent biogeochemistry, the methods described herein also offer a practical approach for the incubation of any deep-sea pelagic sample under in situ conditions.

  3. Bacterial and Archaeal Diversity From the Eastern Lau Spreading Center

    Science.gov (United States)

    Reysenbach, A.; Banta, A.; Kelly, S.; Kirshstein, J.; Voytek, M.

    2005-12-01

    Due to the diversity of venting styles, geological settings and variations in fluid geochemistry, the Valu Fa Ridge and Eastern Lau Spreading Center (ELSC) provide a unique opportunity to explore the effects geological and geochemical variables on patterns of microbial phylogenetic and metabolic diversity. High temperature sulfides, diffuse flow fluids and microbial mats were collected from six active vent fields on the Valu Fa Ridge and Eastern Lau Spreading Center during the R/V Melville cruise TUIM05MV. All samples were subsampled for molecular and microbial culturing purposes. The archaeal and bacterial 16S rRNA genes were amplified by PCR from a selection of samples. Additionally, the presence of Aquificales and an unidentified lineage, the DHVE archaeal group, was explored using PCR primers specific for these groups. A selection of DNAs were also screened for functional genes that are diagnostic for certain pathways, viz, aclB (reductive TCA cycle), mcrA (methanogenesis), nirS and nirK (nitrite reduction), amoA (ammonia oxidation). Culturing of thermophiles, both acidophiles and neutrophiles, was initiated. Over 20 hydrogen oxidizing (hydrogen and oxygen) or nitrate reducing (hydrogen and nitrate) chemolithoautotrophs were isolated as colonies and grow at 70 degrees C. All are related to Persephonella hydrogenophila, with the exception of 2 cultures that perhaps represent new species of Hydrogenivirga and Aquifex. Preliminary analysis of patterns of Aquificales diversity using both culturing and molecular approaches suggest that the distributions of this group alone are very different from that observed at other hydrothermal sites such as along the East Pacific Rise or Central Indian Ridge. As yet, the most commonly isolated Aquificales, P. marina, has not been detected in enrichment cultures from ELSC, and the diversity of Aquificales-related sequences is much greater than detected from sites along the EPR. It is therefore also likely, that patterns of

  4. Magnetosome-containing bacteria living as symbionts of bivalves.

    Science.gov (United States)

    Dufour, Suzanne C; Laurich, Jason R; Batstone, Rebecca T; McCuaig, Bonita; Elliott, Alexander; Poduska, Kristin M

    2014-12-01

    Bacteria containing magnetosomes (protein-bound nanoparticles of magnetite or greigite) are common to many sedimentary habitats, but have never been found before to live within another organism. Here, we show that octahedral inclusions in the extracellular symbionts of the marine bivalve Thyasira cf. gouldi contain iron, can exhibit magnetic contrast and are most likely magnetosomes. Based on 16S rRNA sequence analysis, T. cf. gouldi symbionts group with symbiotic and free-living sulfur-oxidizing, chemolithoautotrophic gammaproteobacteria, including the symbionts of other thyasirids. T. cf. gouldi symbionts occur both among the microvilli of gill epithelial cells and in sediments surrounding the bivalves, and are therefore facultative. We propose that free-living T. cf. gouldi symbionts use magnetotaxis as a means of locating the oxic-anoxic interface, an optimal microhabitat for chemolithoautotrophy. T. cf. gouldi could acquire their symbionts from near-burrow sediments (where oxic-anoxic interfaces likely develop due to the host's bioirrigating behavior) using their superextensile feet, which could transfer symbionts to gill surfaces upon retraction into the mantle cavity. Once associated with their host, however, symbionts need not maintain structures for magnetotaxis as the host makes oxygen and reduced sulfur available via bioirrigation and sulfur-mining behaviors. Indeed, we show that within the host, symbionts lose the integrity of their magnetosome chain (and possibly their flagellum). Symbionts are eventually endocytosed and digested in host epithelial cells, and magnetosomes accumulate in host cytoplasm. Both host and symbiont behaviors appear important to symbiosis establishment in thyasirids. PMID:24914799

  5. The effect of hydrology on the distribution of ammonia-oxidizing betaproteobacteria in impounded black mangroves (Avicennia germinans

    Directory of Open Access Journals (Sweden)

    Hendrikus J. eLaanbroek

    2012-04-01

    Full Text Available The distribution of species of aerobic chemolitho-autotrophic microorganisms such as the ammonia-oxidizing bacteria will be governed by pH, salinity and temperature as well as by the availability of oxygen, ammonia, carbon dioxide and other inorganic elements required for growth. Impounded mangrove forests in the Indian River Lagoon, a coastal estuary on the east coast of Florida, are dominated by mangroves, especially black mangrove (Avicennia germinans, that differ in size and density. In March 2009 the management in one of the impoundments was changed for purpose of insect control, by pumping water from the adjacent estuary. We collected soil samples in three different black mangrove habitats in this and an adjacent impoundment in 2008, 2009 and 2010, always in March, to determine the pre- and post-management effects of summer flooding on the distribution of 16s rRNA genes belonging to ammonia-oxidizing betaproteobacteria (β-AOB.At the level of 95% mutual similarity in the 16s rRNA gene, 11 different Operational Taxonomic Units were identified; the majority related to the lineages Nitrosomonas marina (57% of the total, Nitrosomonas sp. Nm143 (23% and Nitrosospira cluster 1 (18%. Higher salinities of interstitial water, probably due to severe winter drought, had a significant effect on the composition of the β-AOB in March 2009 compared to March 2008. Nitrosomonas sp. Nm143 was replaced as second important lineage by Nitrosospira cluster 1. Simultaneously with the community change, the level of potential ammonia-oxidizing activities decreased by an average of 67%. Long-term summer flooding in 2009 reduced the percentage of N. marina by half in favor of the two other major lineages, but decreased again the potential ammonia-oxidizing activities by 41% on average. No significant differences were observed between the flooded and non-flooded impoundment. There were differences in the community composition of the bacteria in the three black

  6. Biogenic Carbon on Mars: A Subsurface Chauvinistic Viewpoint

    Science.gov (United States)

    Onstott, T. C.; Lau, C. Y. M.; Magnabosco, C.; Harris, R.; Chen, Y.; Slater, G.; Sherwood Lollar, B.; Kieft, T. L.; van Heerden, E.; Borgonie, G.; Dong, H.

    2015-12-01

    A review of 150 publications on the subsurface microbiology of the continental subsurface provides ~1,400 measurements of cellular abundances down to 4,800 meter depth. These data suggest that the continental subsurface biomass is comprised of ~1016-17 grams of carbon, which is higher than the most recent estimates of ~1015 grams of carbon (1 Gt) for the marine deep biosphere. If life developed early in Martian history and Mars sustained an active hydrological cycle during its first 500 million years, then is it possible that Mars could have developed a subsurface biomass of comparable size to that of Earth? Such a biomass would comprise a much larger fraction of the total known Martian carbon budget than does the subsurface biomass on Earth. More importantly could a remnant of this subsurface biosphere survive to the present day? To determine how sustainable subsurface life could be in isolation from the surface we have been studying subsurface fracture fluids from the Precambrian Shields in South Africa and Canada. In these environments the energetically efficient and deeply rooted acetyl-CoA pathway for carbon fixation plays a central role for chemolithoautotrophic primary producers that form the base of the biomass pyramid. These primary producers appear to be sustained indefinitely by H2 generated through serpentinization and radiolytic reactions. Carbon isotope data suggest that in some subsurface locations a much larger population of secondary consumers are sustained by the primary production of biogenic CH4 from a much smaller population of methanogens. These inverted biomass and energy pyramids sustained by the cycling of CH4 could have been and could still be active on Mars. The C and H isotopic signatures of Martian CH4 remain key tools in identifying potential signatures of an extant Martian biosphere. Based upon our results to date cavity ring-down spectroscopic technologies provide an option for making these measurements on future rover missions.

  7. Role of Thiobacillus thioparus in the biodegradation of carbon disulfide in a biofilter packed with a recycled organic pelletized material.

    Science.gov (United States)

    Prenafeta-Boldú, Francesc X; Rojo, Naiara; Gallastegui, Gorka; Guivernau, Miriam; Viñas, Marc; Elías, Ana

    2014-07-01

    This study reports the biodegradation of carbon disulfide (CS2) in air biofilters packed with a pelletized mixture of composted manure and sawdust. Experiments were carried out in two lab-scale (1.2 L) biofiltration units. Biofilter B was seeded with activated sludge enriched previously on CS2-degrading biomass under batch conditions, while biofilter A was left as a negative inoculation control. This inoculum was characterized by an acidic pH and sulfate accumulation, and contained Achromobacter xylosoxidans as the main putative CS2 biodegrading bacterium. Biofilter operation start-up was unsuccessfully attempted under xerophilic conditions and significant CS2 elimination was only achieved in biofilter A upon the implementation of an intermittent irrigation regime. Sustained removal efficiencies of 90-100 % at an inlet load of up to 12 g CS2 m(-3) h(-1) were reached. The CS2 removal in this biofilter was linked to the presence of the chemolithoautotrophic bacterium Thiobacillus thioparus, known among the relatively small number of species with a reported capacity of growing on CS2 as the sole energy source. DGGE molecular profiles confirmed that this microbe had become dominant in biofilter A while it was not detected in samples from biofilter B. Conventional biofilters packed with inexpensive organic materials are suited for the treatment of low-strength CS2 polluted gases (IL enrichment or by inoculation. The importance of applying culture-independent techniques for microbial community analysis as a diagnostic tool in the biofiltration of recalcitrant compounds has been highlighted. PMID:24469405

  8. Deferrisoma paleochoriense sp. nov., a thermophilic, iron(III)-reducing bacterium from a shallow-water hydrothermal vent in the Mediterranean Sea

    Science.gov (United States)

    Perez-Rodriguez, Ileana; Rawls, Matthew; Coykendall, Dolly K.; Foustoukos, Dionysis I.

    2016-01-01

    A novel thermophilic, anaerobic, mixotrophic bacterium, designated strain MAG-PB1T, was isolated from a shallow-water hydrothermal vent system in Paleochori Bay off the coast of Milos Island, Greece. The cells were Gram-negative, rugose short rods approximately 1.0 μm in length and 0.5 μm in width. Strain MAG-PB1T grew between 30 and 70°C (optimum 60°C), 0 and 50 g NaCl l-1 (optimum 15-20 g l-1) and pH 5.5 and 8.0 (optimum pH 6.0). Generation time under optimal conditions was 2.5 hours. Optimal growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Fe(III), Mn(IV), arsenate and selenate were used as electron acceptors. Peptone, tryptone, Casamino acids, dextrose, sucrose, yeast extract, D-fructose, α-D-glucose and D-(-)-arabinose also served as electron donors. No growth occurred in the presence of lactate or formate. G + C content of the genomic DNA was 66.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Deferrisoma camini, a recently described genus in the Deltaproteobacteria. Based on the 16S rDNA phylogenetic analysis and on physiological, biochemical and structural characteristics, the strain was found to represent a novel species for which the name Deferrisoma paleochoriense sp. nov. is proposed. The type strain of Deferrisoma paleochoriense is MAG-PB1T (=JCM 30394 T; = DSM 29363T).

  9. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling

    Energy Technology Data Exchange (ETDEWEB)

    R. Quatrini; C. Appia-Ayme; Y. Denis; J. Ratouchniak; F. Veloso; J. Valdes; C. Lefimil; S. Silver; F. Roberto; O. Orellana; F. Denizot; E. Jedlicki; D. Holmes; V. Bonnefoy

    2006-09-01

    Acidithiobacillus ferrooxidans is a well known acidophilic, chemolithoautotrophic, Gram negative, bacterium involved in bioleaching and acid mine drainage. In aerobic conditions, it gains energy mainly from the oxidation of ferrous iron and/or reduced sulfur compounds present in ores. After initial oxidation of the substrate, electrons from ferrous iron or sulfur enter respiratory chains and are transported through several redox proteins to oxygen. However, the oxidation of ferrous iron and reduced sulfur compounds has also to provide electrons for the reduction of NAD(P) that is subsequently required for many metabolic processes including CO2 fixation. To help to unravel the enzymatic pathways and the electron transfer chains involved in these processes, a genome-wide microarray transcript profiling analysis was carried out. Oligonucleotides corresponding to approximately 3000 genes of the A. ferrooxidans type strain ATCC23270 were spotted onto glass-slides and hybridized with cDNA retrotranscribed from RNA extracted from ferrous iron and sulfur grown cells. The genes which are preferentially transcribed in ferrous iron conditions and those preferentially transcribed in sulfur conditions were analyzed. The expression of a substantial number of these genes has been validated by real-time PCR, Northern blot hybridization and/or immunodetection analysis. Our results support and extend certain models of iron and sulfur oxidation and highlight previous observations regarding the possible presence of alternate electron pathways. Our findings also suggest ways in which iron and sulfur oxidation may be co-ordinately regulated. An accompanying paper (Appia-Ayme et al.) describes results pertaining to other metabolic functions.

  10. Metabolic adaptation and trophic strategies of soil bacteria - C1- metabolism and sulfur chemolithotrophy in Starkeya novella

    Directory of Open Access Journals (Sweden)

    UlrikeKappler

    2013-10-01

    Full Text Available The highly diverse and metabolically versatile microbial communities found in soil environments are major contributors to the global carbon, nitrogen and sulfur cycles. We have used a combination of genome –based pathway analysis with proteomics and gene expression studies to investigate metabolic adaptation in a representative of these bacteria, Starkeya novella, which was originally isolated from agricultural soil. This bacterium was the first facultative sulfur chemolithoautotroph that was isolated and it is also able to grow with methanol and on over 39 substrates as a heterotroph. However, using glucose, fructose, methanol, thiosulfate as well as combinations of the carbon compounds with thiosulfate as growth substrates we have demonstrated here that contrary to the previous classification, S. novella is not a facultative sulfur chemolitho- and methylotroph, as the enzyme systems required for these two growth modes as always expressed at high levels. This is typical for key metabolic pathways. In addition enzymes for various pathways of carbon dioxide fixation were always expressed at high levels, even during heterotrophic growth on glucose or fructose, which suggests a role for these pathways beyond the generation of reduced carbon units for cell growth, possibly in redox balancing of metabolism. Our results then indicate that S. novella, a representative of the Xanthobacteraceae family of methylotrophic soil and freshwater dwelling bacteria, employs a mixotrophic growth strategy under all conditions tested here. As a result the contribution of this bacterium to either carbon sequestration or the release of climate active substances could vary very quickly, which has direct implications for the modelling of such processes if mixotrophy proves to be the main growth strategy for large populations of soil bacteria.

  11. Modeling Microbial Biogeochemistry from Terrestrial to Aquatic Ecosystems Using Trait-Based Approaches

    Science.gov (United States)

    King, E.; Molins, S.; Karaoz, U.; Johnson, J. N.; Bouskill, N.; Hug, L. A.; Thomas, B. C.; Castelle, C. J.; Beller, H. R.; Banfield, J. F.; Steefel, C. I.; Brodie, E.

    2014-12-01

    Currently, there is uncertainty in how climate or land-use-induced changes in hydrology and vegetation will affect subsurface carbon flux, the spatial and temporal distribution of flow and transport, biogeochemical cycling, and microbial metabolic activity. Here we focus on the initial development of a Genome-Enabled Watershed Simulation Capability (GEWaSC), which provides a predictive framework for understanding how genomic information stored in a subsurface microbiome affects biogeochemical watershed functioning, how watershed-scale processes affect microbial function, and how these interactions co-evolve. This multiscale framework builds on a hierarchical approach to multiscale modeling, which considers coupling between defined microscale and macroscale components of a system (e.g., a catchment being defined as macroscale and biogeofacies as microscale). Here, we report our progress in the development of a trait-based modeling approach within a reactive transport framework that simulates coupled guilds of microbes. Guild selection is driven by traits extracted from, and physiological properties inferred from, large-scale assembly of metagenome data. Meta-genomic, -transcriptomic and -proteomic information are also used to complement our existing biogeochemical reaction networks and contributes key reactions where biogeochemical analyses are unequivocal. Our approach models the rate of nutrient uptake and the thermodynamics of coupled electron donors and acceptors for a range of microbial metabolisms including heterotrophs and chemolitho(auto)trophs. Metabolism of exogenous substrates fuels catabolic and anabolic processes, with the proportion of energy used for each based upon dynamic intracellular and environmental conditions. In addition to biomass development, anabolism includes the production of key enzymes, such as nitrogenase for nitrogen fixation or exo-enzymes for the hydrolysis of extracellular polymers. This internal resource partitioning represents a

  12. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    Directory of Open Access Journals (Sweden)

    Yao Zhang

    Full Text Available To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4 concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4 was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4 concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  13. Diversity and phylogenetic analyses of bacteria from a shallow-waterhydrothermal vent in Milos island (Greece

    Directory of Open Access Journals (Sweden)

    Donato eGiovannelli

    2013-07-01

    Full Text Available Studies of shallow-water hydrothermal vents have been lagging behind their deep-sea counterparts. Hence, the importance of these systems and their contribution to the local and regional diversity and biogeochemistry is unclear. This study analyzes the bacterial community along a transect at the shallow-water hydrothermal vent system of Milos island, Greece. The abundance and biomass of the prokaryotic community is comparable to areas not affected by hydrothermal activity and was, on average, 1.34×108 cells g-1. The abundance, biomass and diversity of the prokaryotic community increased with the distance from the center of the vent and appeared to be controlled by the temperature gradient rather than the trophic conditions. The retrieved 16S rRNA gene fragments matched sequences from a variety of geothermal environments, although the average similarity was low (94 %, revealing previously undiscovered taxa. Epsilonproteobacteria constituted the majority of the population along the transect, with an average contribution to the total diversity of 60%. The larger cluster of 16S rRNA gene sequences was related to chemolithoautotrophic Sulfurovum spp., an Epsilonproteobacterium so far detected only at deep-sea hydrothermal vents. The presence of previously unknown lineages of Epsilonproteobacteria could be related to the abundance of organic matter in these systems, which may support alternative metabolic strategies to chemolithoautotrophy. The relative contribution of Gammaproteobacteria to the Milos microbial community increased along the transect as the distance from the center of the vent increased. Further attempts to isolate key species from these ecosystems will be critical to shed light on their evolution and ecology.

  14. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    Science.gov (United States)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-11-01

    Little is known about fixed nitrogen (N) transformation and elimination at diffuse hydrothermal vents where anoxic fluids are mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N loss pathways (denitrification, anammox) and dissimilatory nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e., temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithoautotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlations were found between fixed N loss (i.e., denitrification, anammox) rates and in situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence times, we estimated that up to ~10 Tg N yr-1 could globally be removed in the subsurface biosphere of hydrothermal vents systems, thus, representing a small fraction of the total marine N loss (~275 to > 400 Tg N yr-1).

  15. Deferrisoma palaeochoriense sp. nov., a thermophilic, iron(III)-reducing bacterium from a shallow-water hydrothermal vent in the Mediterranean Sea.

    Science.gov (United States)

    Pérez-Rodríguez, Ileana; Rawls, Matthew; Coykendall, D Katharine; Foustoukos, Dionysis I

    2016-02-01

    A novel thermophilic, anaerobic, mixotrophic bacterium, designated strain MAG-PB1T, was isolated from a shallow-water hydrothermal vent system in Palaeochori Bay off the coast of the island of Milos, Greece. The cells were Gram-negative, rugose, short rods, approximately 1.0 μm long and 0.5 μm wide. Strain MAG-PB1T grew at 30-70 °C (optimum 60 °C), 0-50 g NaCl l- 1 (optimum 15-20 g l- 1) and pH 5.5-8.0 (optimum pH 6.0). Generation time under optimal conditions was 2.5 h. Optimal growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Fe(III), Mn(IV), arsenate and selenate were used as electron acceptors. Peptone, tryptone, Casamino acids, sucrose, yeast extract, d-fructose, α-d-glucose and ( - )-d-arabinose also served as electron donors. No growth occurred in the presence of lactate or formate. The G+C content of the genomic DNA was 66.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Deferrisoma camini, the first species of a recently described genus in the Deltaproteobacteria. Based on the 16S rRNA gene phylogenetic analysis and on physiological, biochemical and structural characteristics, the strain was found to represent a novel species, for which the name Deferrisoma palaeochoriense sp. nov. is proposed. The type strain is MAG-PB1T ( = JCM 30394T = DSM 29363T). PMID:26610851

  16. Life detection strategy for Jovian's icy moons: Lessons from subglacial Lake Vostok exploration

    Science.gov (United States)

    Bulat, Sergey; Alekhina, Irina; Marie, Dominique; Petit, Jean-Robert

    2010-05-01

    The objective was to estimate the microbial content of accretion ice originating from the subglacial Lake Vostok buried beneath 4-km thick East Antarctic ice sheet with the ultimate goal to discover microbial life in this extreme icy environment. The DNA study constrained by Ancient DNA research criteria was used as a main approach. The flow cytometry was implemented in cell enumerating. As a result, both approaches showed that the accretion ice contains the very low unevenly distributed biomass indicating that the water body should also be hosting a highly sparse life. Up to now, the only accretion ice featured by mica-clay sediments presence allowed the recovery a pair of bacterial phylotypes. This unexpectedly included the chemolithoautotrophic thermophile Hydrogenophilus thermoluteolus and one more unclassified phylotype both passing numerous contaminant controls. In contrast, the deeper and cleaner accretion ice with no sediments presence and near detection limit gas content gave no reliable signals. Thus, the results obtained testify that the search for life in the Lake Vostok is constrained by a high chance of forward-contamination. The subglacial Lake Vostok seems to represent the only extremely clean giant aquatic system on the Earth providing a unique test area for searching for life on icy worlds. The life detection strategy for (sub)glacial environments elsewhere (e.g., Jovian's Europa) should be based on stringent decontamination procedures in clean-room facilities, establishment of on-site contaminant library, implementation of appropriate methods to reach detection level for signal as low as possible, verification of findings through ecological settings of a given environment and repetition at an independent laboratory within the specialized laboratory network.

  17. Enhanced metabolic versatility of planktonic sulfur-oxidizing γ-proteobacteria in an oxygen-deficient coastal ecosystem

    Directory of Open Access Journals (Sweden)

    Alejandro A. Murillo

    2014-07-01

    Full Text Available Sulfur-oxidizing Gamma-proteobacteria are abundant in marine oxygen-deficient waters, and appear to play a key role in a previously unrecognized cryptic sulfur cycle. Metagenomic analyses of members of the uncultured SUP05 lineage in the Canadian seasonally anoxic fjord Saanich Inlet (SI, hydrothermal plumes in the Guaymas Basin (GB and single cell genomics analysis of two ARCTIC96BD-19 representatives from the South Atlantic Sub-Tropical Gyre (SASG have shown them to be metabolically versatile. However, SI and GB SUP05 bacteria seem to be obligate chemolithoautotrophs, whereas ARCTIC96BD-19 has the genetic potential for aerobic respiration. Here, we present results of a metagenomic analysis of sulfur-oxidizing Gamma-proteobacteria (GSO, closely related to the SUP05/ARCTIC96BD-19 clade, from a coastal ecosystem in the eastern South Pacific (ESP. This ecosystem experiences seasonal anoxia and accumulation of nitrite and ammonium at depth, with a corresponding increase in the abundance of GSO representatives. The ESP-GSOs appear to have a significantly different gene complement than those from Saanich Inlet, Guaymas Basin and SASG. Genomic analyses of de novo assembled contigs indicate the presence of a complete aerobic respiratory complex based on the cytochrome bc1 oxidase. Furthermore, they appear to encode a complete TCA cycle and several transporters for dissolved organic carbon species, suggesting a mixotrophic lifestyle. Thus, the success of sulfur-oxidizing Gamma-proteobacteria in oxygen-deficient marine ecosystems appears due not only to their previously recognized anaerobic metabolic versatility, but also to their capacity to function under aerobic conditions using different carbon sources. Finally, members of ESP-GSO cluster also have the genetic potential for reducing nitrate to ammonium based on the nirBD genes, and may therefore facilitate a tighter coupling of the nitrogen and sulfur cycles in oxygen-deficient waters.

  18. Survey of Ability of Activated Sludge Isolated Bacteria in Removal of RB-B Dyestuff from Aqueous Medium

    Directory of Open Access Journals (Sweden)

    Z Javadi

    2011-01-01

    Full Text Available "n "n "nBackgrounds and Objectives: Reactive dyestuff has potential of toxicity, carcinogenesis and mutagenesis for mammals and aquatic organisms. The current physical and chemical methods such as adsorption, coagulation, precipitation, filtration and ... can been used for removing of dyestuff. Biological treatment which is effective and economic for decontamination of dyestuff wastewaters was preferred because of limitation and difficulty of physicochemical methods. In order to investigate the trend of pollution reduction of color compounds, ability of Remazol Black-B dyestuff removal from aqueous medium by bacterial consortium under anoxic conditions was studied."nMaterials and Methods: The mix culture of bacteria from textile industries activated sludge was enriched in luria broth medium containing RB-B dyestuff as a carbon source. Then biodegradation was assessed in 4 batch reactors. Microbial population of bacterial and decolorization quantities of samples were detected by MPN and UV-Vis spectrophotometer."nResults: Decolorization efficiency by the bacterial consortium was obtained more than 99% for 50 and 250 mg/L concentrations in 72 and 144 h (3 and 6 days respectively, while for the initial concentration of 500 mg/L was 98.1in 240 h (10 days of biodegradation period. Dyestuff reduction rate after completed removal was about 0.69, 1.74,2 mg/L/h for initial concentration of 50, 250, 500 mg/L respectively."nConclusion: Results showed that Alcaligenes denitrificans and Alcaligenes xylosoxidans bacteria"nwhich were isolated from activated sludge have good potential of RB-B dyestuff removal and this removal is depending on primary concentration of dye. Removal efficiency increased as primary concentration went up.

  19. Post-translational Modifications near the Quinone Binding Site of Mammalian Complex I*

    Science.gov (United States)

    Carroll, Joe; Ding, Shujing; Fearnley, Ian M.; Walker, John E.

    2013-01-01

    Complex I (NADH:ubiquinone oxidoreductase) in mammalian mitochondria is an L-shaped assembly of 44 protein subunits with one arm buried in the inner membrane of the mitochondrion and the orthogonal arm protruding about 100 Å into the matrix. The protruding arm contains the binding sites for NADH, the primary acceptor of electrons flavin mononucleotide (FMN), and a chain of seven iron-sulfur clusters that carries the electrons one at a time from FMN to a coenzyme Q molecule bound in the vicinity of the junction between the two arms. In the structure of the closely related bacterial enzyme from Thermus thermophilus, the quinone is thought to bind in a tunnel that spans the interface between the two arms, with the quinone head group close to the terminal iron-sulfur cluster, N2. The tail of the bound quinone is thought to extend from the tunnel into the lipid bilayer. In the mammalian enzyme, it is likely that this tunnel involves three of the subunits of the complex, ND1, PSST, and the 49-kDa subunit. An arginine residue in the 49-kDa subunit is symmetrically dimethylated on the ω-NG and ω-NG′ nitrogen atoms of the guanidino group and is likely to be close to cluster N2 and to influence its properties. Another arginine residue in the PSST subunit is hydroxylated and probably lies near to the quinone. Both modifications are conserved in mammalian enzymes, and the former is additionally conserved in Pichia pastoris and Paracoccus denitrificans, suggesting that they are functionally significant. PMID:23836892

  20. Cobalamin (coenzyme B12): synthesis and biological significance.

    Science.gov (United States)

    Roth, J R; Lawrence, J G; Bobik, T A

    1996-01-01

    This review examines deoxyadenosylcobalamin (Ado-B12) biosynthesis, transport, use, and uneven distribution among living forms. We describe how genetic analysis of enteric bacteria has contributed to these issues. Two pathways for corrin ring formation have been found-an aerobic pathway (in P. denitrificans) and an anaerobic pathway (in P. shermanii and S. typhimurium)-that differ in the point of cobalt insertion. Analysis of B12 transport in E. coli reveals two systems: one (with two proteins) for the outer membrane, and one (with three proteins) for the inner membrane. To account for the uneven distribution of B12 in living forms, we suggest that the B12 synthetic pathway may have evolved to allow anaerobic fermentation of small molecules in the absence of an external electron acceptor. Later, evolution of the pathway produced siroheme, (allowing use of inorganic electron acceptors), chlorophyll (O2 production), and heme (aerobic respiration). As oxygen became a larger part of the atmosphere, many organisms lost fermentative functions and retained dependence on newer, B12 functions that did not involve fermentation. Paradoxically, Salmonella spp. synthesize B12 only anaerobically but can use B12 (for degradation of ethanolamine and propanediol) only with oxygen. Genetic analysis of the operons for these degradative functions indicate that anaerobic degradation is important. Recent results suggest that B12 can be synthesized and used during anaerobic respiration using tetrathionate (but not nitrate or fumarate) as an electron acceptor. The branch of enteric taxa from which Salmonella spp. and E. coli evolved appears to have lost the ability to synthesize B12 and the ability to use it in propanediol and glycerol degradation. Salmonella spp., but not E. coli, have acquired by horizontal transfer the ability to synthesize B12 and degrade propanediol. The acquired ability to degrade propanediol provides the selective force that maintains B12 synthesis in this group

  1. Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen.

    Science.gov (United States)

    Flock, Ulrika; Watmough, Nicholas J; Adelroth, Pia

    2005-08-01

    The respiratory nitric oxide reductase (NOR) from Paracoccus denitrificans catalyzes the two-electron reduction of NO to N(2)O (2NO + 2H(+) + 2e(-) --> N(2)O + H(2)O), which is an obligatory step in the sequential reduction of nitrate to dinitrogen known as denitrification. NOR has four redox-active cofactors, namely, two low-spin hemes c and b, one high-spin heme b(3), and a non-heme iron Fe(B), and belongs to same superfamily as the oxygen-reducing heme-copper oxidases. NOR can also use oxygen as an electron acceptor; this catalytic activity was investigated in this study. We show that the product in the steady-state reduction of oxygen is water. A single turnover of the fully reduced NOR with oxygen was initiated using the flow-flash technique, and the progress of the reaction monitored by time-resolved optical absorption spectroscopy. Two major phases with time constants of 40 micros and 25 ms (pH 7.5, 1 mM O(2)) were observed. The rate constant for the faster process was dependent on the O(2) concentration and is assigned to O(2) binding to heme b(3) at a bimolecular rate constant of 2 x 10(7) M(-)(1) s(-)(1). The second phase (tau = 25 ms) involves oxidation of the low-spin hemes b and c, and is coupled to the uptake of protons from the bulk solution. The rate constant for this phase shows a pH dependence consistent with rate limitation by proton transfer from an internal group with a pK(a) = 6.6. This group is presumably an amino acid residue that is crucial for proton transfer to the catalytic site also during NO reduction. PMID:16060680

  2. Anoxic growth of Ensifer meliloti 1021 by N2O-reduction, a potential mitigation strategy

    Science.gov (United States)

    Bueno, Emilio; Mania, Daniel; Frostegard, Ǻsa; Bedmar, Eulogio J.; Bakken, Lars R.; Delgado, Maria J.

    2015-01-01

    Denitrification in agricultural soils is a major source of N2O. Legume crops enhance N2O emission by providing N-rich residues, thereby stimulating denitrification, both by free-living denitrifying bacteria and by the symbiont (rhizobium) within the nodules. However, there are limited data concerning N2O production and consumption by endosymbiotic bacteria associated with legume crops. It has been reported that the alfalfa endosymbiont Ensifer meliloti strain 1021, despite possessing and expressing the complete set of denitrification enzymes, is unable to grow via nitrate respiration under anoxic conditions. In the present study, we have demonstrated by using a robotized incubation system that this bacterium is able to grow through anaerobic respiration of N2O to N2. N2O reductase (N2OR) activity was not dependent on the presence of nitrogen oxyanions or NO, thus the expression could be induced by oxygen depletion alone. When incubated at pH 6, E. meliloti was unable to reduce N2O, corroborating previous observations found in both, extracted soil bacteria and Paracoccus denitrificans pure cultures, where expression of functional N2O reductase is difficult at low pH. Furthermore, the presence in the medium of highly reduced C-substrates, such as butyrate, negatively affected N2OR activity. The emission of N2O from soils can be lowered if legumes plants are inoculated with rhizobial strains overexpressing N2O reductase. This study demonstrates that strains like E. meliloti 1021, which do not produce N2O but are able to reduce the N2O emitted by other organisms, could act as even better N2O sinks. PMID:26074913

  3. Mitochondria recycle nitrite back to the bioregulator nitric monoxide

    International Nuclear Information System (INIS)

    Nitric monoxide (NO) exerts a great variety of physiological functions. L-Arginine supplies amino groups which are transformed to NO in various NO-synthase-active isoenzyme complexes. NO-synthesis is stimulated under various conditions increasing the tissue of stable NO-metabolites. The major oxidation product found is nitrite. Elevated nitrite levels were reported to exist in a variety of diseases including HIV, reperfusion injury and hypovolemic shock. Denitrifying bacteria such as Paracoccus denitrificans have a membrane bound set of cytochromes (cyt cd1, cyt bc) which were shown to be involved in nitrite reduction activities. Mammalian mitochondria have similar cytochromes which form part of the respiratory chain. Like in bacteria quinols are used as reductants of these types of cytochromes. The observation of one-e- divergence from this redox-couple to external dioxygen made us to study whether this site of the respiratory chain may also recycle nitrite back to its bioactive form NO. Thus, the aim of the present study was therefore to confirm the existence of a reductive pathway which reestablishes the existence of the bioregulator NO from its main metabolite NO2-. Our results show that respiring mitochondria readily reduce added nitrite to NO which was made visible by nitrosylation of deoxyhemoglobin. The adduct gives characteristic triplet-ESR-signals. Using inhibitors of the respiratory chain for chemical sequestration of respiratory segments we were able to identify the site where nitrite is reduced. The results confirm the ubiquinone/cyt bc1 couple as the reductant site where nitrite is recycled. The high affinity of NO to the heme-iron of cytochrome oxidase will result in an impairment of mitochondrial energy-production. ''Nitrite tolerance'' of angina pectoris patients using NO-donors may be explained in that way. (author)

  4. Bowmanella dokdonensis sp. nov., a novel exoelectrogenic bacterium isolated from the seawater of Dokdo, Korea.

    Science.gov (United States)

    Kim, Marie; Hwang, Ye-Ji; Jung, Hyun-Ju; Park, Hyunwoong; Ghim, Sa-Youl

    2016-07-01

    A Gram-negative, motile, and rod-shaped bacterial strain, UDC354(T), was isolated from the seawater of Dokdo, Korea. The strain UDC354(T) displayed optimal growth at 30-37 °C in the presence of 0-2 % (w/v) NaCl at pH 8. Strain UDC354(T) was found to contain Q-8 and 9 as isoprenoid ubiquinones; C16:0 (22.9 %), summed feature 3 (iso-C15:0 2-OH and C16:1 ω7c) (21.4 %) and C18:1 ω7c (12.2 %) as the major fatty acids; and diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine as the major polar lipids. The DNA G+C content was found to be 54.1 mol %. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain UDC354(T) belongs to the genus Bowmanella, of the family Alteromonadaceae, and is closely related to Bowmanella pacifica W3-3A(T) (95.2 %) and Bowmanella denitrificans BD1(T) (95.0 %). It was found that strain UDC354(T) is exoelectrogenic and is capable of generating 6.6 μW/cm(3) in marine broth in the microbial fuel cells. Based on the analysis of the phenotypic, chemotypic and phylogenetic characteristics, a new species, Bowmanella dokdonensis sp. nov. is proposed. The type strain is UDC354(T) (=KCTC 42147(T)=JCM 30855(T)). PMID:27040554

  5. Sequence and structure-based comparative analysis to assess, identify and improve the thermostability of penicillin G acylases.

    Science.gov (United States)

    Panigrahi, Priyabrata; Chand, Deepak; Mukherji, Ruchira; Ramasamy, Sureshkumar; Suresh, C G

    2015-11-01

    Penicillin acylases are enzymes employed by the pharmaceutical industry for the manufacture of semi-synthetic penicillins. There is a continuous demand for thermostable and alkalophilic enzymes in such applications. We have carried out a computational analysis of known penicillin G acylases (PGAs) in terms of their thermostable nature using various protein-stabilizing factors. While the presence of disulfide bridges was considered initially to screen putative thermostable PGAs from the database, various other factors such as high arginine to lysine ratio, less content of thermolabile amino acids, presence of proline in β-turns, more number of ion-pair and other non-bonded interactions were also considered for comparison. A modified consensus approach designed could further identify stabilizing residue positions by site-specific comparison between mesostable and thermostable PGAs. A most likely thermostable enzyme identified from the analysis was PGA from Paracoccus denitrificans (PdPGA). This was cloned, expressed and tested for its thermostable nature using biochemical and biophysical experiments. The consensus site-specific sequence-based approach predicted PdPGA to be more thermostable than Escherichia coli PGA, but not as thermostable as the PGA from Achromobacter xylosoxidans. Experimental data showed that PdPGA was comparatively less thermostable than Achromobacter xylosoxidans PGA, although thermostability factors favored a much higher stability. Despite being mesostable, PdPGA being active and stable at alkaline pH is an advantage. Finally, several residue positions could be identified in PdPGA, which upon mutation selectively could improve the thermostability of the enzyme. PMID:26419382

  6. Anoxic growth of Ensifer meliloti 1021 by N2O-reduction, a potential mitigation strategy

    Directory of Open Access Journals (Sweden)

    Emilio eBueno

    2015-05-01

    Full Text Available Denitrification in agricultural soils is a major source of N2O. Legume crops enhance N2O emission by providing N-rich residues, thereby stimulating denitrification, both by free-living denitrifying bacteria and by the symbiont (rhizobium within the nodules. However, there are limited data concerning N2O production and consumption by endosymbiotic bacteria associated with legume crops. It has been reported that the alfalfa endosymbiont Ensifer meliloti strain 1021, despite possessing and expressing the complete set of denitrification enzymes, is unable to grow via nitrate respiration under anoxic conditions. In the present study, we have demonstrated by using a robotized incubation system that this bacterium is able to grow through anaerobic respiration of N2O to N2. N2O reductase (N2OR activity was not dependent on the presence of nitrogen oxyanions or NO, thus the expression could be induced by oxygen depletion alone. When incubated at pH 6, E. meliloti was unable to reduce N2O, corroborating previous observations found in both, extracted soil bacteria and Paracoccus denitrificans pure cultures, where expression of functional N2O reductase is difficult at low pH. Furthermore, the presence in the medium of highly reduced C-substrates, such as butyrate, negatively affected N2OR activity. The emission of N2O from soils can be lowered if legumes plants are inoculated with rhizobial strains overexpressing N2O reductase. This study demonstrates that strains like E. meliloti 1021, which do not produce N2O but are able to reduce the N2O emitted by other organisms, could act as even better N2O sinks.

  7. Bioaugmentation with a pyridine-degrading bacterium in a membrane bioreactor treating pharmaceutical wastewater.

    Science.gov (United States)

    Wen, Donghui; Zhang, Jing; Xiong, Ruilin; Liu, Rui; Chen, Lujun

    2013-11-01

    The bacterial strain Paracoccus denitrificans W12, which could utilize pyridine as its sole source of carbon and nitrogen, was added into a membrane bioreactor (MBR) to enhance the treatment of a pharmaceutical wastewater. The treatment efficiencies investigated showed that the removal of chemical oxygen demand, total nitrogen, and total phosphorus were similar between bioaugmented and non-bioaugmented MBRs, however, significant removal of pyridine was obtained in the bioaugmented reactor. When the hydraulic retention time was 60 hr and the influent concentration of pyridine was 250-500 mg/L, the mean effluent concentration of pyridine without adding W12 was 57.2 mg/L, while the pyridine was degraded to an average of 10.2 mg/L with addition of W12. The bacterial community structure of activated sludge during the bioaugmented treatment was analyzed using polymerase chain reaction -denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that the W12 inoculum reversed the decline of microbial community diversity, however, the similarity between bacterial community structure of the original sludge and that of the sludge after bioaugmentation decreased steadily during the wastewater treatment. Sequencing of the DNA recovered from DGGE gel indicated that Flavobacteriaceae sp., Sphingobium sp., Comamonas sp., and Hyphomicrobium sp. were the dominant organisms in time sequence in the bacterial community in the bioaugmented MBR. This implied that the bioaugmentation was affected by the adjustment of whole bacterial community structure in the inhospitable environment, rather than being due solely to the degradation performance of the bacterium added. PMID:24552055

  8. Analysis of a microbial community oxidizing inorganic sulfide and mercaptans.

    Science.gov (United States)

    Duncan, K E; Sublette, K L; Rider, P A; Stepp, A; Beitle, R R; Conner, J A; Kolhatkar, R

    2001-01-01

    Successful treatment of refinery spent-sulfidic caustic (which results from the addition of sodium hydroxide solutions to petroleum refinery waste streams) was achieved in a bioreactor containing an enrichment culture immobilized in organic polymer beads with embedded powdered activated carbon (Bio-Sep). The aerobic enrichment culture had previously been selected using a gas mixture of hydrogen sulfide and methyl mercaptan (MeSH) as the sole carbon and energy sources. The starting cultures for the enrichment consisted of several different Thiobacilli spp. (T. thioparus, T. denitrificans, T. thiooxidans, and T. neopolitanus), as well as activated sludge from a refinery aerobic wastewater treatment system and sludge from an industrial anaerobic digester. Microscopic examination (light and SEM) of the beads and of microbial growth on the walls of the bioreactor revealed a great diversity of microorganisms. Further characterization was undertaken starting with culturable aerobic heterotrophic microorganisms (sequencing of PCR-amplified DNA coding for 16S rRNA, Gram staining) and by PCR amplification of DNA coding for 16S rRNA extracted directly from the cell mass, followed by the separation of the PCR products by DGGE (denaturing gradient gel electrophoresis). Eight prominent bands from the DGGE gel were sequenced and found to be closest to sequences of uncultured Cytophagales (3 bands), Gram-positive cocci (Micrococcineae), alpha proteobacteria (3 bands), and an unidentified beta proteobacterium. Culturable microbes included several genera of fungi as well as various Gram-positive and Gram-negative heterotrophic bacteria not seen in techniques using direct DNA extraction. PMID:11485441

  9. Anoxic growth of Ensifer meliloti 1021 by N2O-reduction, a potential mitigation strategy.

    Science.gov (United States)

    Bueno, Emilio; Mania, Daniel; Frostegard, Ǻsa; Bedmar, Eulogio J; Bakken, Lars R; Delgado, Maria J

    2015-01-01

    Denitrification in agricultural soils is a major source of N2O. Legume crops enhance N2O emission by providing N-rich residues, thereby stimulating denitrification, both by free-living denitrifying bacteria and by the symbiont (rhizobium) within the nodules. However, there are limited data concerning N2O production and consumption by endosymbiotic bacteria associated with legume crops. It has been reported that the alfalfa endosymbiont Ensifer meliloti strain 1021, despite possessing and expressing the complete set of denitrification enzymes, is unable to grow via nitrate respiration under anoxic conditions. In the present study, we have demonstrated by using a robotized incubation system that this bacterium is able to grow through anaerobic respiration of N2O to N2. N2O reductase (N2OR) activity was not dependent on the presence of nitrogen oxyanions or NO, thus the expression could be induced by oxygen depletion alone. When incubated at pH 6, E. meliloti was unable to reduce N2O, corroborating previous observations found in both, extracted soil bacteria and Paracoccus denitrificans pure cultures, where expression of functional N2O reductase is difficult at low pH. Furthermore, the presence in the medium of highly reduced C-substrates, such as butyrate, negatively affected N2OR activity. The emission of N2O from soils can be lowered if legumes plants are inoculated with rhizobial strains overexpressing N2O reductase. This study demonstrates that strains like E. meliloti 1021, which do not produce N2O but are able to reduce the N2O emitted by other organisms, could act as even better N2O sinks. PMID:26074913

  10. Antibiotic Sensitivity Pattern of Blood Isolates of Acinetobacter Species in a Tertiary Care Hospital: A Retrospective Analysis

    Directory of Open Access Journals (Sweden)

    P. S. Shareek

    2012-01-01

    Full Text Available Problem statement: Multi-drug resistant Acinetobacter bacterium is one of the major causes of sepsis in ICUs in tertiary care hospitals in India. In this report we describe the antibiotic sensitivity patterns of Acinetobacter species isolated from blood over a one year period at a tertiary care hospital. Approach: We retrospectively analyzed the sensitivity pattern of Acinetobacter species isolated from blood during the period 1/6/2010 to 31/5/2011. Isolation and identification were performed using the best alert system and VITEK2 respectively. Sensitivities were determined by Kirby Bauer disc diffusion and broth dilution using VITEK2 -AST cards. Results: The total number of Acinetobacter species isolated during the study period was 72, out of which 57 (79% were A. baumanii, 7 (9.7% were A. Iwofii and 3 (5.2% were A. Junii. One each from A. calcoaceticus, A. ursingii and A. denitrificans were isolated. All of the baumanii isolates were sensitive to polymyxin B and 61.4% were sensitive to tigecycline. Only 25% of the isolates in baumanii group were sensitive to meropenem and imipenem. In the non-baumanii group however, 73% were sensitive to carbapenems. Conclusion: There is a very high incidence of resistance to most antibiotics, including carbapenems. All of the Acinetobacter isolates tested are sensitive to polymyxin B. Tigecycline is the only other drug with reasonable susceptibilities, but this drug is not recommended for primary bacteriemias. If Acinetobacter sepsis is suspected, empiric therapy with polymyxins, followed by de-escalation after sensitivity results are back, is advisable.

  11. Determining the ecological impacts of organic contaminants in biosolids using a high-throughput colorimetric denitrification assay: a case study with antimicrobial agents.

    Science.gov (United States)

    Holzem, R M; Stapleton, H M; Gunsch, C K

    2014-01-01

    Land application accounts for ∼ 50% of wastewater solid disposal in the United States. Still, little is known regarding the ecological impacts of nonregulated contaminants found in biosolids. Because of the myriad of contaminants, there is a need for a rapid, high-throughput method to evaluate their ecotoxicity. Herein, we developed a novel assay that measures denitrification inhibition in a model denitrifier, Paracoccus denitrificans Pd1222. Two common (triclosan and triclocarban) and four emerging (2,4,5 trichlorophenol, 2-benzyl-4-chlorophenol, 2-chloro-4-phenylphenol, and bis(5-chloro-2-hydroxyphenyl)methane) antimicrobial agents found in biosolids were analyzed. Overall, the assay was reproducible and measured impacts on denitrification over 3 orders of magnitude exposure. The lowest observable adverse effect concentrations (LOAECs) were 1.04 μM for triclosan, 3.17 μM for triclocarban, 0.372 μM for bis-(5-chloro-2-hydroxyphenyl)methane, 4.89 μM for 2-chloro-4-phenyl phenol, 45.7 μM for 2-benzyl-4-chorophenol, and 50.6 μM for 2,4,5-trichlorophenol. Compared with gene expression and cell viability based methods, the denitrification assay was more sensitive and resulted in lower LOAECs. The increased sensitivity, low cost, and high-throughput adaptability make this method an attractive alternative for meeting the initial testing regulatory framework for the Federal Insecticide, Fungicide, and Rodenticide Act, and recommended for the Toxic Substances Control Act, in determining the ecotoxicity of biosolids-derived emerging contaminants. PMID:24410196

  12. Identification and Metabolic Mechanism of Non-fermentative Short-cut Denitrifying Phosphorus-removing Bacteria

    Institute of Scientific and Technical Information of China (English)

    LIU Hui; SUN Yanfu; JIA Xiaoshan; LI Jun; ZHOU Kangqun; QU Xiangdong; TAO Xueqin

    2013-01-01

    To investigate the characteristics and metabolic mechanism of short-cut denitrifying phosphorus-removing bacteria (SDPB) that are capable of enhanced biological phosphorus removal (EBPR) using nitrite as an electron acceptor,an aerobic/anoxic sequencing batch reactor was operated under three phases.An SDPB-strain YC was screened after the sludge enrichment and was identified by morphological,physiological,biochemical properties and 16S rDNA gene sequence analysis.Denitrifying phosphorus-removing experiments were conducted to study anaerobic and anoxic metabolic mechanisms by analyzing the changes of chemical oxygen demand (COD),phosphate,nitrite,poly-fβ-hydroxybutyrate (PHB),and glycogen.The results show that strain YC is a non-fermentative SDPB similar to Paracoccus denitrificans.As a kind of non-fermentative bacteria,the energy of strain YC was mainly generated from phosphorus release (96.2%) under anaerobic conditions with 0.32 mg P per mg synthesized PHB.Under anoxic conditions,strain YC accumulated 0.45 mg P per mg degraded PHB,which produced most of energy for phosphate accumulation (91.3%) and a little for glycogen synthesis (8.7%).This metabolic mechanism of strain YC is different from that of traditional phosphorus-accumulating organisms (PAOs).It is also found that PHB,a kind of intracellular polymer,plays a very important role in denitrifying and accumulating phosphorus by supplying sufficient energy for phosphorous accumulation and carbon sources for denitrification.Therefore,monitoring △P/△PHB and △NO2--N/△PHB is more necessary than monitoring △P/△COD,△NO2--N/△COD,or △P/△NO2--N.

  13. Bacterial Sugar 3,4-Ketoisomerases: Structural Insight into Product Stereochemistry.

    Science.gov (United States)

    Thoden, James B; Vinogradov, Evgeny; Gilbert, Michel; Salinger, Ari J; Holden, Hazel M

    2015-07-28

    3-Acetamido-3,6-dideoxy-d-galactose (Fuc3NAc) and 3-acetamido-3,6-dideoxy-d-glucose (Qui3NAc) are unusual sugars found on the lipopolysaccharides of Gram-negative bacteria and on the S-layers of Gram-positive bacteria. The 3,4-ketoisomerases, referred to as FdtA and QdtA, catalyze the third steps in the respective biosynthetic pathways for these sugars. Whereas both enzymes utilize the same substrate, the stereochemistries of their products are different. Specifically, the hydroxyl groups at the hexose C-4' positions assume the "galactose" and "glucose" configurations in the FdtA and QdtA products, respectively. In 2007 we reported the structure of the apoform of FdtA from Aneurinibacillus thermoaerophilus, which was followed in 2014 by the X-ray analysis of QdtA from Thermoanaerobacterium thermosaccharolyticum as a binary complex. Both of these enzymes belong to the cupin superfamily. Here we report a combined structural and enzymological study to explore the manner in which these enzymes control the stereochemistry of their products. Various site-directed mutant proteins of each enzyme were constructed, and their dTDP-sugar products were analyzed by NMR spectroscopy. In addition, the kinetic parameters for these protein variants were measured, and the structure of one, namely, the QdtA Y17R/R97H double mutant form, was determined to 2.3-Å resolution. Finally, in an attempt to obtain a model of FdtA with a bound dTDP-linked sugar, the 3,4-ketoisomerase domain of a bifunctional enzyme from Shewanella denitrificans was cloned, purified, and crystallized in the presence of a dTDP-linked sugar analogue. Taken together, the results from this investigation demonstrate that it is possible to convert a "galacto" enzyme into a "gluco" enzyme and vice versa. PMID:26125548

  14. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    Science.gov (United States)

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  15. Ammonia-oxidising archaea--physiology, ecology and evolution.

    Science.gov (United States)

    Schleper, Christa; Nicol, Graeme W

    2010-01-01

    Nitrification is a microbially mediated process that plays a central role in the global cycling of nitrogen and is also of economic importance in agriculture and wastewater treatment. The first step in nitrification is performed by ammonia-oxidising microorganisms, which convert ammonia into nitrite ions. Ammonia-oxidising bacteria (AOB) have been known for more than 100 years. However, metagenomic studies and subsequent cultivation efforts have recently demonstrated that microorganisms of the domain archaea are also capable of performing this process. Astonishingly, members of this group of ammonia-oxidising archaea (AOA), which was overlooked for so long, are present in almost every environment on Earth and typically outnumber the known bacterial ammonia oxidisers by orders of magnitudes in common environments such as the marine plankton, soils, sediments and estuaries. Molecular studies indicate that AOA are amongst the most abundant organisms on this planet, adapted to the most common environments, but are also present in those considered extreme, such as hot springs. The ecological distribution and community dynamics of these archaea are currently the subject of intensive study by many research groups who are attempting to understand the physiological diversity and the ecosystem function of these organisms. The cultivation of a single marine isolate and two enrichments from hot terrestrial environments has demonstrated a chemolithoautotrophic mode of growth. Both pure culture-based and environmental studies indicate that at least some AOA have a high substrate affinity for ammonia and are able to grow under extremely oligotrophic conditions. Information from the first available genomes of AOA indicate that their metabolism is fundamentally different from that of their bacterial counterparts, involving a highly copper-dependent system for ammonia oxidation and electron transport, as well as a novel carbon fixation pathway that has recently been discovered in

  16. Where microorganisms meet rocks in the Earth's Critical Zone

    Directory of Open Access Journals (Sweden)

    D. M. Akob

    2011-03-01

    Full Text Available The Earth's Critical Zone (CZ is the critical, outer shell of the Earth that provides an arena for the interplay of diverse physical, chemical, and biological processes that are fundamental for sustaining life. As microbes are the principle drivers of biogeochemical cycles, it is necessary to understand the biodiversity of the CZ unseen majority and their impact on life-sustaining processes. This review aims to summarize the factors controlling where microbes (prokaryotes and micro-eukaryotes live within the CZ and what is known to date about their diversity and function. Microbes live in all regions of the CZ down to 5 km depth, but due to changing habitat complexity, e.g., variability in pore spaces, water, oxygen, and nutrients, their functional role changes with depth. The abundance of prokaryotes and micro-eukaryotes decreases from a maximum of 1010 or 107 cells g soil−1 up to eight orders of magnitude with depth. Symbiotic mycorrhizal fungi and free-living decomposers are best understood in soil habitats, where they are up to 103 cells g soil−1. However, little is known about their identity and impact on weathering in the deep subsurface. The relatively low abundance of micro-eukaryotes in the deep subsurface suggests that these organisms are either limited in space or nutrients or unable to cope with oxygen limitations. Since deep regions of the CZ are limited in the recent input of photosynthesis-derived carbon, microbes are dependent on deposited organic material or on chemolithoautotrophic metabolism that allows for the establishment of a complete food chain independent from the surface. However, the energy flux available might only allow cell growth over tens to thousands of years. The recent development of "omics" technologies has provided microbial ecologists with methods to link the composition and function of in situ microbial communities. We should expect new metabolic

  17. Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems.

    Directory of Open Access Journals (Sweden)

    Jarrod J Scott

    Full Text Available Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests

  18. Conversion of 4-Hydroxybutyrate to Acetyl Coenzyme A and Its Anapleurosis in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Carbon Fixation Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, AB; Adams, MWW; Kelly, RM

    2014-03-25

    The extremely thermoacidophilic archaeon Metallosphaera sedula (optimum growth temperature, 73 degrees C, pH 2.0) grows chemolithoautotrophically on metal sulfides or molecular hydrogen by employing the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) carbon fixation cycle. This cycle adds two CO2 molecules to acetyl coenzyme A (acetyl-CoA) to generate 4HB, which is then rearranged and cleaved to form two acetyl-CoA molecules. Previous metabolic flux analysis showed that two-thirds of central carbon precursor molecules are derived from succinyl-CoA, which is oxidized to malate and oxaloacetate. The remaining one-third is apparently derived from acetyl-CoA. As such, the steps beyond succinyl-CoA are essential for completing the carbon fixation cycle and for anapleurosis of acetyl-CoA. Here, the final four enzymes of the 3HP/4HB cycle, 4-hydroxybutyrate-CoA ligase (AMP forming) (Msed_0406), 4-hydroxybutyryl-CoA dehydratase (Msed_1321), crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase (Msed_0399), and acetoacetyl-CoA beta-ketothiolase (Msed_0656), were produced recombinantly in Escherichia coli, combined in vitro, and shown to convert 4HB to acetyl-CoA. Metabolic pathways connecting CO2 fixation and central metabolism were examined using a gas-intensive bioreactor system in which M. sedula was grown under autotrophic (CO2-limited) and heterotrophic conditions. Transcriptomic analysis revealed the importance of the 3HP/4HB pathway in supplying acetyl-CoA to anabolic pathways generating intermediates in M. sedula metabolism. The results indicated that flux between the succinate and acetyl-CoA branches in the 3HP/4HB pathway is governed by 4-hydroxybutyrate-CoA ligase, possibly regulated posttranslationally by the protein acetyltransferase (Pat)/Sir2-dependent system. Taken together, this work confirms the final four steps of the 3HP/4HB pathway, thereby providing the framework for examining connections between CO2 fixation and central metabolism in M. sedula.

  19. Hydrothermal mixing: Fuel for life in the deep-sea

    Science.gov (United States)

    Hentscher, M.; Bach, W.; Amend, J.; McCollom, T.

    2009-04-01

    Deep-sea hydrothermal vent systems show a wide range of fluid compositions and temperatures. They reach from highly alkaline and reducing, like the Lost City hydrothermal field, to acidic and reducing conditions, (e. g., the Logatchev hydrothermal field) to acidic and oxidizing conditions (e. g., island arc hosted systems). These apparently hostile vent systems are generally accompanied by high microbial activity forming the base of a food-web that often includes higher organisms like mussels, snails, or shrimp. The primary production is boosted by mixing of chemically reduced hydrothermal vent fluids with ambient seawater, which generates redox disequilibria that serve as energy source for chemolithoautotrophic microbial life. We used geochemical reaction path models to compute the affinities of catabolic (energy-harvesting) and anabolic (biosynthesis) reactions along trajectories of batch mixing between vent fluids and 2 °C seawater. Geochemical data of endmember hydrothermal fluids from 12 different vent fields (Lost City, Rainbow, Logatchev, TAG, EPR 21 °N, Manus Basin, Mariana Arc, etc.) were included in this reconnaissance study of the variability in metabolic energetics in global submarine vent systems. The results show a distinction between ultramafic-hosted and basalt-hosted hydrothermal systems. The highest energy yield for chemolithotrophic catabolism in ultramafic-hosted hydrothermal systems is reached at low temperature and under slightly aerobic to aerobic conditions. The dominant reactions, for example at Rainbow or Lost City, are the oxidation of H2, Fe2+ and methane. At temperatures >60 °C, anaerobic metabolic reactions, e. g., sulphate reduction and methanogenesis, become more profitable. In contrast, basalt-hosted systems, such as TAG and 21 °N EPR uniformly indicate H2S oxidation to be the catabolically dominant reaction over the entire microbial-relevant temperature range. Affinities were calculated for the formation of individual cellular

  20. Metagenomic Assembly of the Dominant Zetaproteobacteria in an Iron-oxidizing Hydrothermal Microbial Mat

    Science.gov (United States)

    Moyer, C. L.; Fullerton, H.

    2013-12-01

    Iron is the fourth most abundant element in the Earth's crust and is potentially one of the most abundant energy sources on the earth as an electron donor for chemolithoautotrophic growth coupled to Fe(II) oxidation. Despite the rapid abiotic oxidation rate of iron, many microbes have adapted to feeding off this fleeting energy source. One such bacterial class is the Zetaproteobacteria. Iron-dominated microbial mat material was collected with a small-scale syringe sampler from Loihi Seamount, Hawaii. From this sample, gDNA was extracted and prepared for paired-end Illumina sequencing. Reconstruction of SSU rDNA genes using EMERGE allowed for comparison to previous SSU rDNA surveys. Clone libraries and qPCR show these microbial mats to be dominated by Zetaproteobacteria. Results from our in silico reconstruction confirm these initial findings. RDP classification of the EMERGE reconstructed sequences resulted in 44% of the community being identified as Zetaproteobacteria. The most abundant SSU rDNA has 99% similarity to Zeta OTU-2, and only a 94% similarity to M. ferrooxidans PV-1. Zeta OTU-2 has been shown to be the most cosmopolitan population in iron-dominated hydrothermal systems from across Pacific Ocean. Metagenomic assembly has resulted in many contigs with high identity to M. ferrooxidans as identified, by BLAST. However, with large differences in SSU rRNA similarity, M. ferrooxidans PV-1 is not an adequate reference. Current work is focusing on reconstruction of the dominant microbial mat member, without the use of a reference genome through an iterative assembly approach. The resulting 'pan-genome' will be compared to other Zetaproteobacteria (at the class level) and the functional ecology of this cosmopolitan microbial mat community member will be extrapolated. Thus far, we have detected multiple housekeeping genes involved in DNA replication, transcription and translation. The most abundant metabolic gene we have found is Aconitase, a key enzyme in the

  1. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments.

    Directory of Open Access Journals (Sweden)

    Xuexia Jiang

    Full Text Available Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB. In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III. Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating

  2. Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions

    Science.gov (United States)

    Bauermeister, Anja; Rettberg, Petra; Flemming, Hans-Curt

    2014-08-01

    The question of life on Mars has been in focus of astrobiological research for several decades, and recent missions in orbit or on the surface of the planet are constantly expanding our knowledge on Martian geochemistry. For example, massive stratified deposits have been identified on Mars containing sulfate minerals and iron oxides, which suggest the existence of acidic aqueous conditions in the past, similar to acidic iron- and sulfur-rich environments on Earth. Acidophilic organisms thriving in such habitats could have been an integral part of a possibly widely extinct Martian ecosystem, but remains might possibly even exist today in protected subsurface niches. The chemolithoautotrophic strain Acidithiobacillus ferrooxidans was selected as a model organism to study the metabolic capacities of acidophilic iron-sulfur bacteria, especially regarding their ability to grow with in situ resources that could be expected on Mars. The experiments were not designed to accurately simulate Martian physical conditions (except when certain single parameters such as oxygen partial pressure were considered), but rather the geochemical environment that can be found on Mars. A. ferrooxidans could grow solely on the minerals contained in synthetic Mars regolith mixtures with no added nutrients, using either O2 as an external electron acceptor for iron oxidation, or H2 as an external electron donor for iron reduction, and thus might play important roles in the redox cycling of iron on Mars. Though the oxygen partial pressure of the Martian atmosphere at the surface was not sufficient for detectable iron oxidation and growth of A. ferrooxidans during short-term incubation (7 days), alternative chemical O2-generating processes in the subsurface might yield microhabitats enriched in oxygen, which principally are possible under such conditions. The bacteria might also contribute to the reductive dissolution of Fe3+-containing minerals like goethite and hematite, which are

  3. Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations

    Directory of Open Access Journals (Sweden)

    Chandran Kartik

    2010-03-01

    Full Text Available Abstract Background Nitrosomonas europaea is a widely studied chemolithoautotrophic ammonia oxidizing bacterium. While significant work exists on the ammonia oxidation pathway of N. europaea, its responses to factors such as dissolved oxygen limitation or sufficiency or exposure to high nitrite concentrations, particularly at the functional gene transcription level are relatively sparse. The principal goal of this study was to investigate responses at the whole-cell activity and gene transcript levels in N. europaea 19718 batch cultures, which were cultivated at different dissolved oxygen and nitrite concentrations. Transcription of genes coding for principal metabolic pathways including ammonia oxidation (amoA, hydroxylamine oxidation (hao, nitrite reduction (nirK and nitric oxide reduction (norB were quantitatively measured during batch growth, at a range of DO concentrations (0.5, 1.5 and 3.0 mg O2/L. Measurements were also conducted during growth at 1.5 mg O2/L in the presence of 280 mg-N/L of externally added nitrite. Results Several wide ranging responses to DO limitation and nitrite toxicity were observed in N. europaea batch cultures. In contrast to our initial hypothesis, exponential phase mRNA concentrations of both amoA and hao increased with decreasing DO concentrations, suggesting a mechanism to metabolize ammonia and hydroxylamine more effectively under DO limitation. Batch growth in the presence of 280 mg nitrite-N/L resulted in elevated exponential phase nirK and norB mRNA concentrations, potentially to promote utilization of nitrite as an electron acceptor and to detoxify nitrite. This response was in keeping with our initial hypothesis and congruent with similar responses in heterotrophic denitrifying bacteria. Stationary phase responses were distinct from exponential phase responses in most cases, suggesting a strong impact of ammonia availability and metabolism on responses to DO limitation and nitrite toxicity. In general

  4. The Perennial Blooming of MGII and Their Correlation with MGI in the Pearl River Estuary, China

    Science.gov (United States)

    Xie, W.

    2015-12-01

    Marine Group (MG) I and MG II Archaea were first reported over two decades ago. While significant progress has been made on MG I, the progress on MG II has been noticeable slower. The common understanding is that while MG I mainly function as chemolithoautotrophs growing on ammonia and live predominantly in deeper water, MG II live heterotrophically and reside mostly in the photic zone. While some MG I lineages that could conduct ammonium oxidation are frequently found in terrestrial environments, MG II are exclusively found in marine environments and thus named Thalassoarchaea. A few studies showed MG IIs were sporadically blooming in coastal waters and may be influenced by the level of eutrophication between seasons, which inhibited the enrichment and cultivation for MGII. In this study, we quantified the abundance of planktonic MGI (represented by archaeal amoA gene) and MGII (16S rRNA gene) using qPCR in the water column of different salinities (A: 0.8‰; B: 18.1‰; C: 23.9‰: D: 31‰) in the Pearl River Estuary over a 12-month period. The results showed that the abundance of MGII in site C (8.5±10.1×107 copies/L) was significantly higher than the other three sites (A: 3.5±8.8×105 copies/L; B: 2.7±4.5×107 copies/L; D: 2.2±4.4×107 copies/L) in all seasons, indicating the perennial blooming of MGII that might be due to the optimal combination of available organic carbon and salinity at this site. We also observed that the correlation between MGI and MGII became better toward the marine water and was significant at site D (R2: A, 0.06; B, 0.1; C, 0.24; D, 0.64), indicating the potential functional relationship between them with increasing salinity. This allowed us to hypothesize that the growth of MGI in the coastal site is more dependent on release of ammonia from organic matter degradation by MGII and other heterotrophic organisms. The Pearl River estuary may be an ideal environment for testing this hypothesis, which may provide insight into the

  5. Contemporary microbes in hypersaline springs that contain fossil carbon

    Science.gov (United States)

    Ziolkowski, L. A.; Mykytczuk, N. C.; Whyte, L.; Slater, G. F.

    2011-12-01

    On Axel Heiberg Island, near 80 oN in the Canadian Arctic, perennial hypersaline springs provide a unique environment for cold-active microbes. The neutral pH Gypsum Hill springs originate in a gypsum diaper and flow through 600 m of continuous permafrost before reaching the surface at ~6 oC, 7.5 % NaCl, low dissolved inorganic carbon and rich in both sulfate and sulfide (Pollard et al., 2009). In the first part of the year, when ambient temperatures dip as low as -40 oC, filamentous streamers are abundant under the snow covered run-off channels. These microbial assemblages are not present during the summer, when the snow cover has melted. Culture- and molecular-based analyses of the 16S rRNA gene indicated that the streamers are dominated by a chemolithoautotrophic sulfur-oxidizing Thiomicrospira species and under in situ conditions the streamers oxidized sulfide and thiosulfate and also fixed CO2 (Perreault et al., 2008). We characterized the isotopic composition (13C and 14C) of the microbial community biomarkers as phospholipid fatty acid (PLFA) and glycolipid fatty acid (GLFA) methyl esters. These components represent the cell membranes of the viable microbial community, which are quickly hydrolyzed after cell death and provide insight into the carbon cycling of the organisms. Even though isotopic measurements of the bulk biomass indicate carbon and nitrogen limitation within the system, the streamers are rich in biomass with greater than 109 cells/g. While the PLFA and GLFA profiles were similar, indicating a predominantly gram-negative bacteria community, the 13C composition of these two lipid types was different. The PLFA δ13C indicated a dominant autotrophic signal, while the δ13C of the GLFA had a more heterotrophic signal. While the streamers grow yearly, their 14C age based on the lipid results was 6400 years, indicating utilization of a carbon source that is 14C depleted. We hypothesize that these microbes are using 14C depleted dissolved inorganic

  6. Biogeochemistry and natural attenuation of nitrate in groundwater at an explosives test facility

    International Nuclear Information System (INIS)

    An interdisciplinary study was conducted to characterize the distribution and fate of NO3- in groundwater at Lawrence Livermore National Laboratory (LLNL) Site 300, a high-explosives test facility in the semi-arid Altamont Hills of California. Site 300 groundwater contains NO3- concentrations ranging from 200 mg NO3-/L. Several lines of evidence strongly suggest that denitrification is naturally attenuating NO3- in the confined, O2-depleted region of the bedrock aquifer under study (Tnbs2): (a) both NO3- and dissolved O2(DO) concentrations in groundwater decrease dramatically as groundwater flows from unconfined to confined aquifer conditions, (b) stable isotope signatures (i.e., δ15N and δ18O) of groundwater NO3- indicate a trend of isotopic enrichment that is characteristic of denitrification, and (c) dissolved N2 gas, the product of denitrification, was highly elevated in NO3--depleted groundwater in the confined region of the Tnbs2 aquifer. Long-term NO3- concentrations were relatively high and constant in recharge-area monitoring wells (typically 70-100 mg NO3-/L) and relatively low and constant in the downgradient confined region (typically 3-/L), suggesting a balance between rates of NO3- loading and removal by denitrification. Chemolithoautotrophic denitrification with pyrite as the electron donor is plausible in the Tnbs2 aquifer, based on the low dissolved organic C concentrations (2-4 as groundwater flows from aerobic, unconfined to anoxic, confined aquifer conditions. Nitrate sources were investigated by experimentally determining the δ15N and δ18O signatures of NO3- from three potential anthropogenic sources of NO3- at Site 300: Ba(NO3)2 (mock explosive), HNO3, and photolysis of the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). The isotopic signatures of these potential NO3- sources were markedly different than those of NO3- in Tnbs2 groundwater samples, suggesting that other sources must contribute significantly to the NO3- loading at

  7. Genome implosion elicits host-confinement in Alcaligenaceae: evidence from the comparative genomics of Tetrathiobacter kashmirensis, a pathogen in the making.

    Directory of Open Access Journals (Sweden)

    Wriddhiman Ghosh

    Full Text Available This study elucidates the genomic basis of the evolution of pathogens alongside free-living organisms within the family Alcaligenaceae of Betaproteobacteria. Towards that end, the complete genome sequence of the sulfur-chemolithoautotroph Tetrathiobacter kashmirensis WT001(T was determined and compared with the soil isolate Achromobacter xylosoxidans A8 and the two pathogens Bordetella bronchiseptica RB50 and Taylorella equigenitalis MCE9. All analyses comprehensively indicated that the RB50 and MCE9 genomes were almost the subsets of A8 and WT001(T, respectively. In the immediate evolutionary past Achromobacter and Bordetella shared a common ancestor, which was distinct from the other contemporary stock that gave rise to Tetrathiobacter and Taylorella. The Achromobacter-Bordetella precursor, after diverging from the family ancestor, evolved through extensive genome inflation, subsequent to which the two genera separated via differential gene losses and acquisitions. Tetrathiobacter, meanwhile, retained the core characteristics of the family ancestor, and Taylorella underwent massive genome degeneration to reach an evolutionary dead-end. Interestingly, the WT001(T genome, despite its conserved architecture, had only 85% coding density, besides which 578 out of its 4452 protein-coding sequences were found to be pseudogenized. Translational impairment of several DNA repair-recombination genes in the first place seemed to have ushered the rampant and indiscriminate frame-shift mutations across the WT001(T genome. Presumably, this strain has just come out of a recent evolutionary bottleneck, representing a unique transition state where genome self-degeneration has started comprehensively but selective host-confinement has not yet set in. In the light of this evolutionary link, host-adaptation of Taylorella clearly appears to be the aftereffect of genome implosion in another member of the same bottleneck. Remarkably again, potent virulence factors

  8. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    Directory of Open Access Journals (Sweden)

    A. Bourbonnais

    2012-11-01

    Full Text Available Little is known about fixed nitrogen (N transformation and elimination at diffuse hydrothermal vents where anoxic fluids are mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N loss pathways (denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e., temperature, pH, nutrients, H2S and N2O concentrations as well as the biodiversity and abundance of chemolithoautotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR assays. Denitrification was the dominant N loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l−1 day−1. In comparison, anammox rates were always < 5 nmol N l−1 day−1 and below the detection limit at most of the sites. DNRA rates were up to ~150 nmol N l−1 day−1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%. Significant correlations were found between fixed N loss (i.e., denitrification, anammox rates and in situ nitrate and dissolved inorganic nitrogen (DIN deficits in the fluids, indicating that DIN availability may ultimately regulate N loss in the subsurface

  9. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM) Like Instrument Protocols

    Science.gov (United States)

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-01-01

    Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from approx 10(exp 2) to 10(exp 7) cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500 C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20 C followed by trap heating and analysis by GC/Ms. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The distribution of pyrolysis products extracted from the

  10. Where microorganisms meet rocks in the Earth's Critical Zone

    Directory of Open Access Journals (Sweden)

    D. M. Akob

    2011-12-01

    Full Text Available The Critical Zone (CZ is the Earth's outer shell where all the fundamental physical, chemical, and biological processes critical for sustaining life occur and interact. As microbes in the CZ drive many of these biogeochemical cycles, understanding their impact on life-sustaining processes starts with an understanding of their biodiversity. In this review, we summarize the factors controlling where terrestrial CZ microbes (prokaryotes and micro-eukaryotes live and what is known about their diversity and function. Microbes are found throughout the CZ, down to 5 km below the surface, but their functional roles change with depth due to habitat complexity, e.g. variability in pore spaces, water, oxygen, and nutrients. Abundances of prokaryotes and micro-eukaryotes decrease from 1010 or 107 cells g soil−1 or rock−1, or ml water−1 by up to eight orders of magnitude with depth. Although symbiotic mycorrhizal fungi and free-living decomposers have been studied extensively in soil habitats, where they occur up to 103 cells g soil−1, little is known regarding their identity or impact on weathering in the deep subsurface. The relatively low abundance of micro-eukaryotes in the deep subsurface suggests that they are limited in space, nutrients, are unable to cope with oxygen limitations, or some combination thereof. Since deep regions of the CZ have limited access to recent photosynthesis-derived carbon, microbes there depend on deposited organic material or a chemolithoautotrophic metabolism that allows for a complete food chain, independent from the surface, although limited energy flux means cell growth may take tens to thousands of years. Microbes are found in all regions of the CZ and can mediate important biogeochemical processes, but more work is needed to understand how microbial populations influence the links between different regions of the CZ and weathering

  11. Where microorganisms meet rocks in the Earth's Critical Zone

    Science.gov (United States)

    Akob, D. M.; Küsel, K.

    2011-12-01

    The Critical Zone (CZ) is the Earth's outer shell where all the fundamental physical, chemical, and biological processes critical for sustaining life occur and interact. As microbes in the CZ drive many of these biogeochemical cycles, understanding their impact on life-sustaining processes starts with an understanding of their biodiversity. In this review, we summarize the factors controlling where terrestrial CZ microbes (prokaryotes and micro-eukaryotes) live and what is known about their diversity and function. Microbes are found throughout the CZ, down to 5 km below the surface, but their functional roles change with depth due to habitat complexity, e.g. variability in pore spaces, water, oxygen, and nutrients. Abundances of prokaryotes and micro-eukaryotes decrease from 1010 or 107 cells g soil-1 or rock-1, or ml water-1 by up to eight orders of magnitude with depth. Although symbiotic mycorrhizal fungi and free-living decomposers have been studied extensively in soil habitats, where they occur up to 103 cells g soil-1, little is known regarding their identity or impact on weathering in the deep subsurface. The relatively low abundance of micro-eukaryotes in the deep subsurface suggests that they are limited in space, nutrients, are unable to cope with oxygen limitations, or some combination thereof. Since deep regions of the CZ have limited access to recent photosynthesis-derived carbon, microbes there depend on deposited organic material or a chemolithoautotrophic metabolism that allows for a complete food chain, independent from the surface, although limited energy flux means cell growth may take tens to thousands of years. Microbes are found in all regions of the CZ and can mediate important biogeochemical processes, but more work is needed to understand how microbial populations influence the links between different regions of the CZ and weathering processes. With the recent development of "omics" technologies, microbial ecologists have new methods that

  12. Chemoautotrophic Bacterial Production in the Redoxycline of an Ice-Covered Antarctic Lake (Invited)

    Science.gov (United States)

    Mikucki, J.; Kong, W.; Priscu, J. C.; Morgan-Kiss, R.

    2010-12-01

    Chemolithoautotrophic organisms obtain energy for growth from inorganic substrates and use simple inorganic carbon molecules to construct biomass. As such, chemosynthetic processes are tightly linked to biogeochemical cycles. In polar regions, winter darkness shuts down photosynthetic inputs and the contribution of chemosynthesis to total ecosystem energetics and carbon fixation may be significant. Few reports exist on chemosynthesis in polar environments and the rates of these processes remain largely unexplored. Here we present data on chemoautotrophic activity in the redoxycline (~15m depth) of the permanently ice-covered Lake Bonney in the McMurdo Dry Valleys, Antarctica (MCM). Rates of radio-labeled bicarbonate incorporation were measured under light and dark conditions using whole community and bacterial sized-fraction (< 3 μm) samples. Rates of uptake in the bacterial sized-fraction (0.18 μg C L-1 d-1) were comparable to that of heterotrophic bacterial activity (0.16 μg C L-1 d-1) as measured by radio-labeled thymidine incorporation. Molecular analyses of the (cbbM) Rubisco gene, a key enzyme in the Calvin cycle, revealed relatives to the Thiobacillus genera confirming the genomic potential for in situ bacterial carbon fixation. Further, quantification of cbbM gene copy number by real time PCR from samples collected throughout the trophogenic zones of the west and east lobes of Lake Bonney confirmed that chemotrophic bacteria harboring form II RubisCO are restricted to depths at or below the redoxycline of the west lobe. These data provide insight into the structure-function relationship between the microbial consortia and carbon budget and imply that chemoautotrophic production in the MCM may provide a significant source of previously un-quantified fixed carbon to the lake system. Studies on other icy systems, including dark, isolated subglacial environments report evidence for chemolithoautotrophy suggesting that chemoautotrophic production can sustain

  13. Search for Life in Deep Time and Space: The role of Precambrian rocks in analogue research

    Science.gov (United States)

    Sherwood Lollar, B.; Sutcliffe, C. N.; Ballentine, C. J.; Onstott, T. C.; Lau, C. Y. M.; Magnabosco, C.; Slater, G.; Moser, D. P.

    2014-12-01

    Deep saline fracture fluids have been found in billion year old rocks throughout the Precambrian shields of Canada, Fennoscandia and South Africa - geologic terrains that make up more than 70% of the Earth's continental crust. Dissolved gases in these fluids are dominated by methane and higher hydrocarbons, some of the most radiogenic noble gas signatures ever reported, and up to mM concentrations of H2, making these environments as H2-rich as marine hydrothermal vents and spreading centers. Although the discovery of microbial ecosystems sustained by H2-producing water-rock reactions in the deep ocean vents transformed thinking about where life may have originated on Earth and the search for life on other worlds, such as Europa, the billion year old rocks of Precambrian shields have been under-investigated to date as analogs. Noble gas studies have provided a range of residence times from millions to tens of millions of years for the subsurface fracture fluids in South Africa. Holland et al. (2013) reported residence times of more than a billion years for fracture waters from 2.4 km depth from mines in Northern Canada - revealing an ancient previously unexplored hydrosphere[1]. Analyses of the DNA, RNA and amino acids from some of these fracture waters reveal an active biosphere supported by chemolithoautotrophs that alters the stable isotopic composition of C, N, and S aqueous and gaseous species. The discovery that ancient fluid environments capable of supporting life can remain isolated for up to billions of years in the Precambrian crust changes our understanding of the extent of the Earth's crust, and by inference Mars' crust, that may be habitable, and the role that such potential buried biomes play in preserving, evolving and propagating life on planetary timescales. Mars, like the Precambrian shields on Earth, is dominated by tectonically quiescent geologic terrains which are billions of years old, some with serpentinized ultramafic rocks capable of

  14. Microbial anaerobic methane cycling in the subseafloor at the Von Damm hydrothermal vent field, Mid-Cayman Rise

    Science.gov (United States)

    Huber, J. A.; Reveillaud, J. C.; Stepanauskas, R.; McDermott, J. M.; Sylva, S. P.; Seewald, J.

    2013-12-01

    The Mid-Cayman Rise (MCR) is Earth's deepest and slowest spreading mid-ocean ridge located in the western Caribbean. With an axial rift valley floor at a depth of ~4200-6500 m, it represents one of the deepest sections of ridge crest worldwide. In 2009, the world's deepest hydrothermal vents (Piccard at 4960 m) and an ultramafic-influenced system only 20 km away on top of an oceanic core complex (Von Damm at 2350 m) were discovered along the MCR. Each site is hosted in a distinct geologic setting with different thermal and chemical regimes. The Von Damm site is a particularly interesting location to examine chemolithoautotrophic subseafloor microbial communities due to the abundant hydrogen, methane, and organic compounds in the venting fluids. Here, we used a combination of stable isotope tracing, next-generation sequencing, and single cell techniques to determine the identity, activity, and genomic repertoire of subseafloor anaerobic archaea involved in methane cycling in hydrothermal fluids venting at the Von Damm site. Molecular sequencing of phylogenetic marker genes revealed the presence of diverse archaea that both generate and consume methane across a geochemical and thermal spectrum of vents. Stable isotope tracing experiments were used to detect biological utilization of formate and dissolved inorganic carbon, and methane generation at 70 °C under anaerobic conditions. Results indicate that methanogenesis with formate as a substrate is occurring at 70 °C at two Von Damm sites, Ginger Castle and the Main Orifice. The results are consistent with thermodynamic predictions for carbon speciation at the temperatures encountered at the ultramafic-hosted Von Damm, where formate is predicted to be thermodynamically stable, and may thus serve as a an important source of carbon. Diverse thermophilic methanogenic archaea belonging to the genera Methanothermococcus were detected at all vent sites with both 16S rRNA tag sequencing and single cell sorting. Other

  15. Rates of N2 production and diversity and abundance of functional genes associated with denitrification and anaerobic ammonium oxidation in the sediment of the Amundsen Sea Polynya, Antarctica

    Science.gov (United States)

    Choi, Ayeon; Cho, Hyeyoun; Kim, Sung-Han; Thamdrup, Bo; Lee, SangHoon; Hyun, Jung-Ho

    2016-01-01

    A combination of molecular microbiological analyses and metabolic rate measurements was conducted to elucidate the diversity and abundance of denitrifying and anaerobic ammonium oxidation (anammox) bacteria and the nitrogen gas (N2) production rates in sediment underlying the highly productive polynya (Stns. 10 and 17) and the sea-ice zone on the outer shelf (Stn. 83) of the Amundsen Sea, Antarctica. Despite the high water column productivity, the N2 production rates by denitrification (0.04-0.31 nmol N cm-3sed. h-1) and anammox (0.13-0.26 nmol N cm-3 sed. h-1) were lower than those measured in other polar regions. In contrast, gene copy number (106-107 copies cm-3 of nirS and nosZ genes targeting denitirifiers and 105-107 copies cm-3 of 16S rRNA genes related to anammox bacteria) of the two bacterial groups at Stn. 17 was similar compared to those of other organic-rich environments. The majority of the nirS sequences were affiliated with Gammaproteobacteria (54% and 61% of the total nirS gene at Stns. 17 and 83, respectively), which were closely related to Pseudomonas aeruginosa. Most nosZ sequences (92% and 72% of the total nosZ genes at Stns. 17 and 83, respectively) were related to the Alphaproteobacteria, which were closely related to Ruegeria pomeroyi and Roseobacter denitrificans. Most (98%) of the sequences related to anammox bacteria were affiliated with Candidatus Scalindua at Stn. 17. Consequently, despite the low metabolic activity, the abundance and composition of most denitrifying and anammox bacteria detected from the ASP were similar to those reported from a variety of marine environments. Our results further imply that increased labile organic matter production resulting from a shift of the phytoplankton community from Phaeocystis to diatoms in response to rapid melting of sea ice stimulates metabolic activities of the denitrifying and anammox bacteria, thereby enhancing the N removal process in the ASP.

  16. A Tale of Two Gases: Isotope Effects Associated with the Enzymatic Production of H2 and N2O

    Science.gov (United States)

    Yang, H.; Gandhi, H.; Kreuzer, H. W.; Moran, J.; Hill, E. A.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.; Hegg, E. L.

    2014-12-01

    experiments were performed with bacterial nitric oxide reductase from Paracoccus denitrificans (cNOR). In this case both Nα and Nβ exhibited inverse isotope effects, while O had a normal isotope effect. Together, these data highlight the utility in using stable isotopes as both tracers and mechanistic probes when studying metabolic processes.

  17. Open source approaches to establishing Roseobacter clade bacteria as synthetic biology chassis for biogeoengineering

    Science.gov (United States)

    Boeing, Philipp; Wolfenden, Bethan; Smith, Patrick; Beaufoy, William; Rose, Simon; Ratisai, Tonderai; Zaikin, Alexey

    2016-01-01

    Aim. The nascent field of bio-geoengineering stands to benefit from synthetic biologists’ efforts to standardise, and in so doing democratise, biomolecular research methods. Roseobacter clade bacteria comprise 15–20% of oceanic bacterio-plankton communities, making them a prime candidate for establishment of synthetic biology chassis for bio-geoengineering activities such as bioremediation of oceanic waste plastic. Developments such as the increasing affordability of DNA synthesis and laboratory automation continue to foster the establishment of a global ‘do-it-yourself’ research community alongside the more traditional arenas of academe and industry. As a collaborative group of citizen, student and professional scientists we sought to test the following hypotheses: (i) that an incubator capable of cultivating bacterial cells can be constructed entirely from non-laboratory items, (ii) that marine bacteria from the Roseobacter clade can be established as a genetically tractable synthetic biology chassis using plasmids conforming to the BioBrickTM standard and finally, (iii) that identifying and subcloning genes from a Roseobacter clade species can readily by achieved by citizen scientists using open source cloning and bioinformatic tools. Method. We cultivated three Roseobacter species, Roseobacter denitrificans, Oceanobulbus indolifexand Dinoroseobacter shibae. For each species we measured chloramphenicol sensitivity, viability over 11 weeks of glycerol-based cryopreservation and tested the effectiveness of a series of electroporation and heat shock protocols for transformation using a variety of plasmid types. We also attempted construction of an incubator-shaker device using only publicly available components. Finally, a subgroup comprising citizen scientists designed and attempted a procedure for isolating the cold resistance anf1 gene from Oceanobulbus indolifexcells and subcloning it into a BioBrickTM formatted plasmid. Results. All species were stable

  18. Far from superficial: microbial diversity associated with the skin and mucus of fish

    Science.gov (United States)

    Cipriano, Rocco C.; Dove, Alistair

    2011-01-01

    During horizontal or water-borne infection involving an obligate pathogen (e.g. – Aeromonas salmonicida, cause of furunculosis), the pathogen interacted with and influenced the microbial diversity of the dermal mucus of fish. Prior to infection, the prevalent bacterial flora cultured from juvenile Atlantic salmon (Salmo salar) included Pseudomonas fluorescens, Comomonas terrigenia, Acinetobacter sp., Moraxella sp., Pseudomonas dimunita, Alcaligenes denitrificans, Pseudomonas pseudoalcaligenes, and Pseudomonas alcaligenes, Serratia liquefaciens, Aeromonas hydrophila, other motile Aeromonas spp., and Corynebacterium aquaticum. After A. salmonicida was initially detected in this population as an external mucus infection, Acinetobacter sp., Moraxella sp., C. terrigenia, P. fluorescens, and P. dimunita, Staphylococcus sp., and A. hydrophila, were also present in appreciable numbers. Within several weeks, however, the A. salmonicida infection amplified and composed 78% of the total flora in the mucus. Only P. dimunita (4%). P. fluorescens (2%), and C. terrigenia (1%) were cultured at that time and more than a third of these fish showed evidence of a systemic A. salmonicida infection within their kidneys. Eight weeks after oral oxytetracycline treatments, A. salmonicida was no longer isolated from the mucus or kidneys of any fish and glucose inert or other oxidative microbes (e.g., P. fluorescens, C. terrigenia, Acinetobacter sp., Moraxella sp.) were beginning to repopulate the external surface of the salmon in increasing frequency. Still present and composing fairly large percentages of the total flora were A. hydrophila, as well as Enterobacter sp., and P. putrefaciens. A normal microbial diversity was re-established as the fish recovered. In another investigation, reduced biological diversity was noted in the dermal mucus among smallmouth bass that were sampled from the Jackson River (Covington, VA). In these fish, A. hydrophila and P. putrefaciens were the two

  19. The kinetic and isotopic competence of nitric oxide as an intermediate in denitrification.

    Science.gov (United States)

    Goretski, J; Hollocher, T C

    1990-01-15

    Rates of NO uptake by five denitrifying bacteria were estimated by NO-electrode and gas chromatography methods under conditions of rather low cell densities and [NOaq]. The rates so measured, VmaxNO, represent lower limits for the true value of that parameter, but nevertheless exceed Vmax for nitrite uptake, VmaxNi, by a factor of two typically. Previous estimates under suboptimal conditions had placed VmaxNO at 0.3-0.5 of VmaxNi (St. John, R. T., and Hollocher, T. C. (1977) J. Biol. Chem. 252, 212-218; Garber, E. A. E., and Hollocher, T.C. (1981) J. Biol. Chem. 256, 5459-5465). The steady-state [NOaq] during denitrification of nitrite by nitrate-grown cells was less than or equal to 1 microM. The above observations, taken with a recent direct estimate for the KmNO for NO uptake of 0.4 microM (Zafiriou, O. C., Hanley, Q. S., and Snyder, G. (1989) J. Biol. Chem. 264, 5694-5699), would allow NO to be a free intermediate between nitrite and N2O with steady-state concentrations of less than or equal to 0.4 microM. As the result of special conditions during cell growth or differential inhibition by azide, it was possible to establish systems that accumulated NO during denitrification of nitrite. In all such cases, VmaxNO less than VmaxNi, and the time required to reach the maximum [NOaq] corresponded closely to the time needed to exhaust the nitrite. A semiquantitative isotope experiment with Paracoccus denitrificans demonstrated the trapping of 15NO from 15NO2- in a pool of NOaq. A quantitative isotope method using low densities of the same bacterium showed that 15N from 15NO2- and 14N from NOg combine randomly to form N2O during the simultaneous denitrification of 15NO2- and NO. The result requires that the pathways from nitrite and NO share a common mononitrogen intermediate. Results to the contrary obtained at high cell densities (first two references cited above) are now believed to have been due to technical artifacts. The present results are consistent with the

  20. Open source approaches to establishing Roseobacter clade bacteria as synthetic biology chassis for biogeoengineering.

    Science.gov (United States)

    Borg, Yanika; Grigonyte, Aurelija Marija; Boeing, Philipp; Wolfenden, Bethan; Smith, Patrick; Beaufoy, William; Rose, Simon; Ratisai, Tonderai; Zaikin, Alexey; Nesbeth, Darren N

    2016-01-01

    Aim. The nascent field of bio-geoengineering stands to benefit from synthetic biologists' efforts to standardise, and in so doing democratise, biomolecular research methods. Roseobacter clade bacteria comprise 15-20% of oceanic bacterio-plankton communities, making them a prime candidate for establishment of synthetic biology chassis for bio-geoengineering activities such as bioremediation of oceanic waste plastic. Developments such as the increasing affordability of DNA synthesis and laboratory automation continue to foster the establishment of a global 'do-it-yourself' research community alongside the more traditional arenas of academe and industry. As a collaborative group of citizen, student and professional scientists we sought to test the following hypotheses: (i) that an incubator capable of cultivating bacterial cells can be constructed entirely from non-laboratory items, (ii) that marine bacteria from the Roseobacter clade can be established as a genetically tractable synthetic biology chassis using plasmids conforming to the BioBrick(TM) standard and finally, (iii) that identifying and subcloning genes from a Roseobacter clade species can readily by achieved by citizen scientists using open source cloning and bioinformatic tools. Method. We cultivated three Roseobacter species, Roseobacter denitrificans, Oceanobulbus indolifexand Dinoroseobacter shibae. For each species we measured chloramphenicol sensitivity, viability over 11 weeks of glycerol-based cryopreservation and tested the effectiveness of a series of electroporation and heat shock protocols for transformation using a variety of plasmid types. We also attempted construction of an incubator-shaker device using only publicly available components. Finally, a subgroup comprising citizen scientists designed and attempted a procedure for isolating the cold resistance anf1 gene from Oceanobulbus indolifexcells and subcloning it into a BioBrick(TM) formatted plasmid. Results. All species were stable

  1. Anaerobic Nitrate-Dependent Metal Bio-Oxidation

    Science.gov (United States)

    Weber, K.; Knox, T.; Achenbach, L. A.; Coates, J. D.

    2007-12-01

    TPSY, was also capable of nitrate- dependent U(IV) oxidation (8 μM over 24 hours, pseudo first order rate constant of 0.12 ± 0.02 hr-1) in washed cell suspensions. Further biochemical investigation of nitrate-dependent U(IV) oxidation in strain TPSY revealed the expression of several putative high molecular weight proteins specific to this metabolism. Together with the previously described metabolic ability of Geobacter metallireducens (Finneran et al. 2002) and Thiobacillus denitrificans (Beller 2005), these data indicate that anaerobic, metal oxidation may be a ubiquitous microbial metabolism.

  2. ENVIROMENTALLY BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)

    Energy Technology Data Exchange (ETDEWEB)

    J. Robert Paterek; Gemma Husmillo; Amrutha Daram; Vesna Trbovic

    2003-10-31

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter includes the application of the method of fractionation of the extracts by high performance liquid chromatography (HPLC); determination of antimicrobial activities of the new extracts and fractions using a growth inhibition assay, and evaluation of the extracts' ability to inhibit biofilm formation. We initiated the delivery system for these new biocides in the test cell and in mixtures of foam components and biocides/anti-biofilms. A total of 51 fractions collected by HPLC from crude extracts that were obtained from three varieties of Capsicum sp. (Serrano, Habanero, Chile de Arbol) were subjected to growth inhibition tests against two SRB strains, D. vulgaris and D. desulfuricans. Five fractions showed growth inhibition against both strains while seven inhibited D. desulfuricans only. The crude extracts did not show growth inhibition on both strains but were proven to be potent in preventing the formation of biofilm. Growth inhibition tests of the same set of crude extracts against Comamonas denitrificans did not show positive results. The fractions will be subjected to biofilm inhibition and dissociation assay as well. The delivery system to be evaluated first was foam. The ''foam pig'' components of surfactants and water were tested with the biocide addition. The first chemical and physical parameters to be tested were pH and surfactants. Tests using the fractionated pepper extracts are progressing rapidly. Gas chromatographic analysis

  3. Development of biological platform for the autotrophic production of biofuels

    Science.gov (United States)

    Khan, Nymul

    The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO 2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E's (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country's petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpae. energy.gov/ProgramsProjects/Electrofuels.aspx). The Electrofuels initiative aimed to develop liquid biofuels that avoid the issues encountered in the current generation of biofuels: (1) the reliance of biomass-derived technologies on the inefficient process of photosynthesis, (2) the relatively energy- and resource-intensive nature of agronomic processes, and (3) the occupation of large areas of arable land for feedstock production. The process proceeds by the capture of solar energy into electrical energy via photovoltaic cells, using the generated electricity to split water into molecular hydrogen (H2) and oxygen (O2), and feeding these gases, along with carbon dioxide (CO2) emitted from point sources such as a biomass or coal-fired power plant, to a microbial bioprocessing platform. The proposed microbial bioprocessing platform leverages a chemolithoautotrophic microorganism (Rhodobacter capsulatus or Ralstonia eutropha) naturally able to utilize these gases as growth substrates, and genetically modified to produce a triterpene hydrocarbon fuel

  4. Microbiology and optimization of hydrogen fermentation and bioelectricity production

    Energy Technology Data Exchange (ETDEWEB)

    Makinen, A.

    2013-11-01

    yield. Pentose fermentation was accompanied by production of acetate, butyrate and formate, while in hexose fermentation the main soluble end product was lactate. In CSTR Hisarkoy enrichment culture produced H{sub 2} from xylose with the maximum average H{sub 2} yield and production rate of 1.97 mol/mol xylose and 7.3 mmol/h/L, respectively, at suboptimal temperature of 45 deg C for meso- and thermophiles. At 45 deg C microbial community consisted of only two bacterial strains affiliated to Clostridium acetobutylicum and Cirtobacter freundii. An exoeletrogenic culture was enriched on xylose from compost sample in MFCs. In enrichment phase electricity production in MFCs was accompanied with ethanol production. The main bacterium responsible of xylose degradation was xylanolytic Ruminobacillus xylanolyticum and the main bacteria responsible for electricity production were denitrifiers Paracoccus pantotrophus, Comamonas denitrificans and Alicycliphilus denitrificans. Anode potential had a significant effect on current production in MFCs. Compost enrichment culture was able to produce electricity from xylose at poised anode potential of 0.4 V vs standard hydrogen electrode (SHE) having the maximum current density and Coulombic efficiency (CE) of 1.65 A/m{sup 2} and 37 %, respectively. Lower anode potentials of 0.1 or -0.2 V vs SHE didn't lead to current production. Optimum operational parameters for bioelectricity production from xylose by compost enrichment culture were without mixing, external resistance of 100 ohm, 0.5 g/L xylose and pH 7. High current density and CE of 1.74 A/m{sup 2} and 82 %, respectively, were obtained. This is the highest CE obtained with xylose in two-chamber MFC reported in the literature. This very efficient exoelectrogenic culture was dominated by Geobacter species, including G. sulfurreducens, which were enriched on anode biofilm. Xylose fermenters, including Escherichia coli, Sphaerochaeta sp. TQ1, and Bacteroides sp. were present in

  5. Chemically Specific Cellular Imaging of Biofilm Formation

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J L; Schaldach, C; Horn, J; Gjersing, E; Maxwell, R

    2006-02-09

    This document and the accompanying manuscripts summarize the technical accomplishments for our one-year LDRD-ER effort. Biofilm forming microbes have existed on this planet for billions of years and make up 60% of the biological mass on earth. Such microbes exhibit unique biochemical pathways during biofilm formation and play important roles in human health and the environment. Microbial biofilms have been directly implicated in, for example, product contamination, energy losses, and medical infection that cost the loss of human lives and billions of dollars. In no small part due to the lack of detailed understanding, biofilms unfortunately are resistant to control, inhibition, and destruction, either through treatment with antimicrobials or immunological defense mechanisms of the body. Current biofilm research has concentrated on the study of biofilms in the bulk. This is primarily due to the lack of analytical and physical tools to study biofilms non-destructively, in three dimensions, and on the micron or sub-micron scale. This has hindered the development of a clear understanding of either the early stage mechanisms of biofilm growth or the interactions of biofilms with their environment. Enzymatic studies have deduced a biochemical reaction that results in the oxidation of reduced sulfur species with the concomitant reduction of nitrate, a common groundwater pollutant, to dinitrogen gas by the bacterium, Thiobacillus denitrificans (TD). Because of its unique involvement in biologically relevant environmental pathways, TD is scheduled for genome sequencing in the near future by the DOE's Joint Genome Institute and is of interest to DOE's Genomes to Life Program. As our ecosystem is exposed to more and more nitrate contamination large scale livestock and agricultural practices, a further understanding of biofilm formation by organisms that could alleviate these problems is necessary in order to protect out biosphere. However, in order to study this

  6. Benthic mineralization and nutrient exchange over the inner continental shelf of western India

    Directory of Open Access Journals (Sweden)

    A. K. Pratihary

    2013-06-01

    Full Text Available The western Indian continental shelf is one of most productive coastal systems of the world ocean. This system undergoes extreme change in oxygen regime being normoxic from November to May and suboxic/anoxic from June to October owing to the biogeochemical response to cyclical monsoonal influence. In order to understand its impact on benthic mineralization, nutrient exchange and in turn on the shelf ecosystem, we carried out first ever intact core incubation experiments by covering two contrasting seasons i.e. Spring intermonsoon and fall intermonsoon (late southwest monsoon. The results show that the shelf sediments act as a perennial net source of DIN, PO43– and SiO44– to the overlying water column. DIN efflux increased from 1.4 to 3.21 mmol m–2 d–1 from April to October of which NH4+ comprises 59–100%. During oxic regime about 75% of diffusing NH4+ appears to be nitrified (2.55 mmol m–2 d–1 of which about 77% remains coupled to benthic denitrification. Consequently 58% of NH4+ flux gets lost in active coupled nitrification-denitrification process causing substantial N loss (1.98 mmol m–2 d–1 in the sediment. The continental shelf sediment switches over from being a NO3– source during oxic regime to a NO3– sink during low oxygen regime. During suboxia benthic denitrification being fed by NO3– from overlying water causes N loss at a rate of 1.04 mmol m–2 d–1. N loss continues even in sulfidic condition during October possibly through chemolithoautotrophic denitrification at a potential rate of 3.21 mmol m–2 d–1. PO43– flux increased more than 4 fold during October as compared to April due to reductive dissolution of Fe and Mn oxides. The SiO44– flux increases during anoxia due to higher availability of siliceous ooze as a result of diatom blooms during the monsoon season. Porewater was found to be enriched with NH4+, PO43– and SiO44– while depleted in NO3– and NO2– in these organic rich sediments

  7. Benthic mineralization and nutrient exchange over the inner continental shelf of western India

    Science.gov (United States)

    Pratihary, A. K.; Naqvi, S. W. A.; Narvenkar, G.; Kurian, S.; Naik, H.; Naik, R.; Manjunatha, B. R.

    2014-05-01

    The western Indian continental shelf is one of the most productive coastal systems of the world ocean. This system experiences extreme changes in its oxygen regime, being normoxic from November to May and suboxic (denitrifying)/anoxic from June to October, owing to the biogeochemical response to cyclical monsoonal influence. In order to understand the impact of the seasonally varying oxygen regime on benthic mineralization, nutrient exchange and, in turn, on the shelf ecosystem, we carried out the first ever intact-core incubations during two contrasting seasons - spring intermonsoon and fall intermonsoon (late southwest monsoon) at a 28 m-deep fixed site on the inner shelf off Goa, dominated by fine-grained cohesive sediments. The results showed that incomplete sediment oxygen consumption (SOC) occurred during April as opposed to the complete SOC and subsequent sulfide flux observed in the fall intermonsoon incubations. The sediments acted as a perennial net source of DIN (dissolved inorganic nitrogen i.e. NO3- + NO2- + NH4+), PO43- and SiO44- to the overlying water column. The efflux of DIN increased from 1.4 to 3.74 mmol m-2 d-1 from April to October, of which NH4+ flux comprised 59-100%. During the oxic regime, ∼75% of diffusing NH4+ appeared to be nitrified (2.55 mmol m-2 d-1), of which ∼77% remained coupled to benthic denitrification. Consequently, 58% of NH4+ flux was lost in active coupled nitrification-denitrification, resulting in substantial N loss (1.98 mmol m-2 d-1) in the sediments. The continental shelf sediments switched over from being a NO3- source during the oxic regime to a NO3- sink during the anoxic regime. During suboxia, benthic denitrification that is fed by NO3- from the overlying water caused N loss at the rate of 1.04 mmol m-2 d-1. Nitrogen loss continued even under sulfidic conditions during October, possibly through the chemolithoautotrophic denitrification, at a potential rate of 3.21 mmol m-2 d-1. Phosphate flux increased more

  8. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM)-like Instrument Protocols

    Science.gov (United States)

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-12-01

    Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB [Popa et al. 2012]. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry [Mahaffy et al. 2012]. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from ~102 to 107 cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500°C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20°C followed by trap heating and analysis by GC/MS. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis [Stalport et al. 2012]. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The

  9. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    Science.gov (United States)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  10. Deliberations on Microbial Life in the Subglacial Lake Vostok, East Antarctica

    Science.gov (United States)

    Bulat, S.; Alekhina, I.; Lipenkov, V.; Lukin, V.; Marie, D.; Petit, J.

    2004-12-01

    The objective was to estimate microbial contents of accretion (lake originating) ice from the Lake Vostok buried beneath 4-km thick East Antarctic ice sheet with the ultimate goal to discover microbial life in this extreme icy environment featured by no light, close to freezing point temperature, ultra-low DOC contents, and an excess of oxygen. The PCR based bacterial and archaeal 16S ribosomal RNA gene sequencing constrained by Forensic Biology and Ancient DNA research criteria was used as a main approach. Epifluorescent and confocal microscopies as well as flow cytometry were implemented. DNA study showed that the accretion ice is essentially bacteria- and archaea-free. Up to now, the only accretion ice type 1 featured by mica-clay sediments presence and namely one horizon of four studied (3607m) allowed the recovery a few bacterial phylotypes. This unexpectedly included the chemolithoautotrophic thermophile Hydrogenophilus thermoluteolus and two more unclassified phylotypes all passing numerous contaminant controls. In contrast, the deeper and cleaner accretion ice 2 (three cores) with no sediments presence and near detection limit gas contents gave no reliable signals. The microbes detected in accretion ice 1 are unbelievable to resist an excess of oxygen in the lake water body (700 - 1300 mg O2/l). They are supposed to be thriving in rather warm anoxic sediments in deep faults at the lake bottom and sporadically flushing out along with sediments to the lake veins in a shallow depth bay due to a seismotectonic activity likely operating in the lake environment. A few geophysical and geological evidences support this scenario. In the bay the presence of mica-clay sediments, higher accretion rate due to relief rise and likely oxygen-depleted upper layer of water can provide microbes with a chance to escape the high oxygen tension by the rapid entrapment into accretion ice 1. Sediment-free accretion ice 2, which forms above a deeper part of the lake, shows no

  11. The Mineralogical and Chemical Case for Habitability at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Blake, David Frederick; Vaniman, David; Grotzinger, John P.; Conrad, Pamela Gales; Ming, Douglas W.; Bish, David L.; Farmer, Jack D.; Bristow, Thomas

    2013-01-01

    Sediments of the Yellowknife Bay formation (Gale crater) include the Sheepbed member, a mudstone cut by light-toned veins. Two drill samples, John Klein and Cumberland, were collected and analyzed by the CheMin XRD/XRF instrument and the Sample Analysis at Mars (SAM) evolved gas and isotopic analysis suite of instruments. Drill cuttings were also analyzed by the Alpha Particle X-ray Spectrometer (APXS) for bulk composition. The CheMin XRD analysis shows that the mudstone contains basaltic minerals (Fe-forsterite, augite, pigeonite, plagioclase), as well as Fe-oxide/hydroxides, Fe-sulfides, amorphous materials, and trioctahedral phyllosilicates. SAM evolved gas analysis of higher-temperature OH matches the CheMin XRD estimate of 20% clay minerals in the mudstone. The light-toned veins contain Ca-sulfates; anhydrite and bassanite are detected by XRD but gypsum is also indicated from Mastcam spectral mapping. These sulfates appear to be almost entirely restricted to late-diagenetic veins. The sulfate content of the mudstone matrix itself is lower than other sediments analyzed on Mars. The presence of phyllosilicates indicates that the activity of water was high during their formation and/or transport and deposition (should they have been detrital). Lack of chlorite places limits on the maximum temperature of alteration (likely <100 C). The presence of Ca-sulfates rather than Mg- or Fe-sulfates suggests that the pore water pH was near-neutral and of relatively low ionic strength (although x-ray amorphous Mg-and Fe- sulfates could be present and undetectable by CheMin). The presence of Fe and S in both reduced and oxidized states represents chemical disequilibria that could have been utilized by chemolithoautotrophic biota, if present. When compared to the nearby Rocknest sand shadow mineralogy or the normative mineralogy of Martian soil, both John Klein and Cumberland exhibit a near-absence of olivine and a surplus of magnetite (7-9% of the crystalline component). The

  12. Destruction and Sequestration of H2O on Mars

    Science.gov (United States)

    Clark, Benton

    2016-07-01

    The availability of water in biologically useable form on any planet is a quintessential resource, even if the planet is in a zone habitable with temperature regimes required for growth of organisms (above -18 °C). Mars and most other planetary objects in the solar system do not have sufficient liquid water at their surfaces that photosynthesis or chemolithoautotrophic metabolism could occur. Given clear evidence of hydrous mineral alteration and geomorphological constructs requiring abundant supplies of liquid water in the past, the question arises whether this H2O only became trapped physically as ice, or whether there could be other, more or less accessible reservoirs that it has evolved into. Salts containing S or Cl appear to be ubiquitous on Mars, having been measured in soils by all six Mars landed missions, and detected in additional areas by orbital investigations. Volcanoes emit gaseous H2S, S, SO2, HCl and Cl2. A variety of evidence indicates the geochemical fate of these gases is to be transformed into sulfates, chlorides, chlorates and perchlorates. Depending on the gas, the net reaction causes the destruction of between one and up to eight molecules of H2O per atom of S or Cl (although hydrogen atoms are also released, they are lost relatively rapidly to atmospheric escape). Furthermore, the salt minerals formed often incorporate H2O into their crystalline structures, and can result in the sequestration of up to yet another six (sometimes, more) molecules of H2O. In addition, if the salts are microcrystalline or amorphous, they are potent adsorbents for H2O. In certain cases, they are even deliquescent under martian conditions. Finally, the high solubility of the vast majority of these salts (with notable exception of CaSO4) can result in dense brines with low water activity, aH, as well as cations which can be inimical to microbial metabolism, effectively "poisoning the well." The original geologic materials on Mars, igneous rocks, also provide some

  13. Low-temperature hydration, oxidation and hydrogen production from Oman peridotite

    Science.gov (United States)

    Miller, H. M.; Mayhew, L.; Templeton, A. S.

    2013-12-01

    Peridotite in the shallow subsurface undergoes hydration and oxidation (serpentinization) during reactions with percolating fluids, generating hydrogen gas and releasing magnesium, iron, and calcium into solution. In the presence of fluids enriched in dissolved carbon dioxide, extensive precipitation of carbonate minerals occurs. This reaction has large-scale implications for mitigating climate change by providing a stable, geological carbon repository. The Samail Ophiolite in Oman contains large quantities of ultramafic rocks that are currently undergoing serpentinization at low temperatures (30°C) and forming carbonate minerals. The production of hydrogen gas provides an electron donor for subsurface chemolithoautotrophic life which can contribute to carbon cycling in the subsurface as microorganisms utilize carbon dioxide as an inorganic carbon source. Serpentinization reactions require the oxidation of Fe (II) to Fe (III) to reduce water to H2, but the mechanisms of hydrogen generation in low-temperature systems is poorly characterized. To address this question, we conducted low temperature (100°C) water-rock reactions with Oman peridotite, measured H2 and characterized the speciation of Fe-bearing minerals before and after water-rock interaction using micro-X-ray Absorption Near Edge Structure (μXANES) spectra obtained from Stanford Synchrotron Radiation Lightsource. The experimental water-rock reactions produce H2 at a pH of 9, which corresponds with observations of ultrabasic springs in the Samail ophiolite and the presence of H2 in these spring waters. Significant hydrogen production occurs for two and a half months of reaction, peaking at 400 nmol/gram of reacted peridotite and then steadily decreases with time. These maximum values of hydrogen production from Oman peridotite are greater than observed by our laboratory and others during aqueous alteration of San Carlos peridotite and isolated pyroxenes and olivines (e.g. Mayhew et al. 2013 [1]). The

  14. Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers

    Science.gov (United States)

    Koh, Dong-Chan; Mayer, Bernhard; Lee, Kwang-Sik; Ko, Kyung-Seok,

    2010-10-01

    Sources and transformation processes of nitrate in groundwater from shallow aquifers were investigated in an agricultural area in the mid-western part of South Korea using a multi-tracer approach including δ 2H and δ 18O values of water, δ 15N and δ 18O values of nitrate, Cl/Br ratios and chlorofluorocarbons (CFCs). The study area was comprised of four land-use types with natural areas at higher altitudes, upland areas with fruit orchards, paddy fields and residential areas at lower elevations. The isotopic composition of water was suitable for distinguishing groundwater that had infiltrated in the higher elevation natural areas with lower δ 2H and δ 18O values from groundwater underneath paddy fields that was characterized by elevated δ 2H and δ 18O values due to evaporation. δ 18O-H 2O values and Cl - concentrations indicated that groundwater and contaminant sources were derived from three land-use types: natural areas, residential areas and paddy fields. Groundwater age determination based on CFCs showed that nitrate contamination of groundwater is primarily controlled by historic nitrogen loadings at least in areas with higher nitrate contamination. Nitrate sources were identified using the stable isotope composition of nitrate and Cl/Br ratios. Higher δ 15N-NO 3- values and Cl/Br ratios of 300 to 800 in residential areas indicated that waste water and septic effluents were major nitrate sources whereas lower δ 15N-NO 3- values and Cl/Br ratios of 100 to 700 in upland areas suggested that synthetic fertilizers constituted a major source of nitrate contamination of aquifers. With only few exceptions in the natural area, contributions of atmospheric nitrate were insignificant due to the resetting of δ 18O-NO 3- values via immobilization and re-mineralization of nitrate in the soil zone. In groundwater underneath paddy fields, 30% of samples had δ 18O-NO 3- values at least 2‰ higher than expected for nitrate formed by chemolithoautotrophic

  15. Molecular Diversity and Activity of Methanogens in the Subseafloor at Deep-Sea Hydrothermal Vents of the Pacific Ocean (Invited)

    Science.gov (United States)

    Huber, J. A.; Merkel, A.; Holden, J. F.; Lilley, M. D.; Butterfield, D. A.

    2009-12-01

    Methanogenesis is thought to represent one of the most ancient metabolic pathways on Earth, and methanogens may serve as important primary producers in warm crustal habitats at deep-sea hydrothermal vents. Many of these obligate chemolithoautotrophs depend solely on geochemically-derived energy and carbon sources and grow at high temperatures under strictly anaerobic conditions. A combined geochemical and microbiological approach was used to determine the distribution and molecular diversity of methanogens in low temperature diffuse vent fluids from the Endeavour Segment R2K ISS site, as well as Axial Seamount and volcanoes of the Mariana Arc. Geochemical data from hot and adjacent warm diffuse vent fluids provided chemical indicators to guide sample selection for detailed polymerase chain reaction (PCR)-based analysis of the key enzyme for methane formation, methyl-coenzyme M reductase (mcrA), as well as archaeal 16S rRNA genes. At most Endeavour vent sites, hydrogen concentrations were too low to support hydrogenotrophic methanogensis directly and only one diffuse site, Easter Island, had a positive signal for the mcrA gene. These sequences were most closely related to members of the order Methanococcales, as well as anaerobic methane oxidizers (ANME-1). The presence of ANME, which are rarely found in non-sedimented marine environments, is another line of evidence supporting the occurrence of buried sediments at Endeavour. At Axial, a number of diffuse vents have strong chemical indicators of methanogenesis. Methanogenic communities were detected at 3 sites on the southeast side of the caldera: the northern end of the 1998 lava flow, the International District, and on the pre-1987 lava flow. Time series work at Marker 113 showed that in 4 different years over the last 6 years methanogenic communities are active and abundant, suggesting a stable anaerobic, warm subseafloor habitat. Results show that members of the order Methanococcales dominate at this site

  16. 洋底热液喷口系统的微生物成矿研究进展%THE RECENT PROGRESS OF SUBMARINE HYDROTHERMAL BIOMINERALIZATION

    Institute of Scientific and Technical Information of China (English)

    孙治雷; 何拥军; 李军; 齐崇阳; 李季伟; 刘维亮

    2011-01-01

    The study of biomineralization in modern hydrothermal vent system is one of the keys to the research and the exploring of the early history of the earth, the evolution of life, the subsurface biosphere and the study of terrestrial planets (such as the Mar). It has in the past decade become one of the focuses of geobiological research with the application of the microelectronic technology and molecular biology technology. Available information indicates that microorganisms play a critical role in the formation of oxy-hydroxides (for instance, Fe, Mn, S or Si oxyhydroxide) and silicates in the hydrothermal systems of the earth. Furthermore, the biomineralization of modern chemolithoautotrophic microorganisms has been iden-tified to be the nexus of the interaction between the geoshpere and the biosphere and one of the forces to push forward the in-depth study of bioscience and geosciences In this paper, we summarized the ongoing research of hydrothermal bionmieralzaiton, including the biogenic minerals, the microbial biodiversity and the interactions between the minerals and microorganisms. In the foreseeable future, the research of hydrothermal biomineralization will inspire both the development of geosciences and biosciences and deepen our understanding of the earth history, life evolution and even astrobiology.%现代洋底热液喷口系统的微生物成矿研究进展是地球自身发展、生命演化、洋底下的生物圈层以及天文微生物探索工作得以有效开展的重要保障.近10余年来,随着微电子和分子生物学技术的发展,热液系统微生物成矿研究得以拓展和深入,逐渐成为地质微生物学研究的一个热点领域.当前在全球的热液喷口系统已经发现微生物在包括Fe、Mn、S、Si的氧化物以及硅酸盐矿物的形成过程中起到了重要甚至关键性的作用,同时热液喷口系统依赖于无机化能代谢活动存在的微生物的矿化成为人们理解生命形式与无机

  17. Start-up of a completely autotrophic nitrogen removal process in a three- dimensional electrode-biofilm reactor%三维电极生物膜反应器全程自养脱氮的启动研究

    Institute of Scientific and Technical Information of China (English)

    郭劲松; 杨琳; 陈猷鹏; 方芳; 唐金晶

    2012-01-01

    A completely autotrophic nitrogen removal process was started up in a three-dimensional electrode-biofilm reactor for artificial ammonia wastewater treatment. The titanium rod coated with a thin layer of ruthenium was used as anode to generate oxygen. In the aerobic area, NH4^+-N was oxidized to NO3^- -N or NO2^- -N by nitrifying bacteria. The active carbon fiber-felt was used as cathode to generate hydrogen. And in this anaerobic area, the denitrification was completed while hydrogen was acted as the electron donor. A lot of carbon particles were filled in tbe cathode area used as three- dimensional electrode. Nitrification and denitrification process were controlled by adjusting dissolved oxygen and pH values under the condition that the initial concentration of ammonia-nitrogen was 30 mg·L^-1 , the hydraulic retention time was 24h and the temperature was 30℃. After biofilm was formed and stabilized, the removal rate of NH4^+-N and TN achieved 97.8% and 92.4% respectively. It was indicated that the completely autotrophic nitrogen removal was started up successfully. The scanning electron microscopy showed that the bacteria on surface of activated carbon fiber felt were mainly short rod-shaped Pseudomonas, while the bacteria on the surface of the activated carbon particles were Micrococcus denitrificans. They both belong to hydrogen autotrophic denitrifying bacteria. In the reactor, the stable autotrophic nitrogen system was gradually established.%采用人工配制氨氮废水,对三维电极生物膜反应器进行全程自养脱氮的启动研究.反应器中阳极采用钌涂层钛棒,在阳极区电解水产氧供硝化菌进行硝化反应;阴极采用活性炭纤维毡,并在阴极区填充活性炭颗粒构建三维电极,在阴极区电解水产氢供反硝化菌完成反硝化过程.在进水NH4^+-N浓度30mg·L^-1、温度30℃、HRT为24h的试验条件下,通过调节DO和pH实现对硝化和反硝化反应的控制.结果

  18. Liquid Chromatography Applied to Space System

    Science.gov (United States)

    Poinot, Pauline; Chazalnoel, Pascale; Geffroy, Claude; Sternberg, Robert; Carbonnier, Benjamin

    Viking results. Proc Natl Acad Sci U.S.A 103:89-94 Bada JL, Ehrenfreund P, Grunthaner F et al (2008) Urey: Mars Organic and Oxidant Detector. Space Sci Rev 135: 269-279. doi: 10.1007/s11214-007-9213-3 doi_10.1073_pnas.0604210103 Schulze-Makuch D, Head JN, Houtkooper JM et al (2012) The Biological Oxidant and Life Detection (BOLD) mission: A proposal for a mission to Mars. Planet Space Sci 67:57-69. doi: 10.1016/j.pss.2012.03.008 Parro V, Rodríguez-Manfredi JA, Briones C et al (2005) Instrument development to search for biomarkers on mars: Terrestrial acidophile, iron-powered chemolithoautotrophic communities as model systems. Planet Space Sci 53:729-737. doi:10.1016/j.pss.2005.02.003 Sims MR, Cullen DC, Rix CS et al (2012) Development status of the life marker chip instrument for ExoMars. Planet Space Sci 72:129-137. doi:10.1016/j.pss.2012.04.007

  19. Biooxidación de concentrados de arsenopirita por Acidithiobacillus ferrooxidans en erlenmeyer agitados

    Directory of Open Access Journals (Sweden)

    Juan David Ospina

    2012-03-01

    los microorganismos, sugiriendo que a menor tamaño del sustrato empleado mayor dificultad se le presenta al microorganismo para oxidar el mineral. Palabras clave: arsénico; lixiviación; quimiolitótrofos; ATP. Abstract Arsenopyrite biooxidation process was evaluated with A. ferrooxidans ATCC 23270. The microorganisms were previously adapted to mineral and two different Tyler mesh sizes, 200 (~75μm and 325 (~45μm. Also, the mineral concentration was made by DRX and MOLPP/LR under ASTM D 2799. The microorganisms were adapted through gradual decreasing of ferrous sulphate in successive state and subsequent arsenopyrite concentration increase. Finally, biooxidation process was carried out without Fe2+. After thirty days of process, Arsenic bioleaching was 7550 mgL-1(18,7% and 2850 mgL-1 (7,1% for the 200 and 325 Tyler meshes, respectively. On the other hand, bacterial growth curve showed, between 6 and 21 days of process that the average bacterial population was 1,70x108 cel.mL‐1 y de 8,00x107 cel.mL‐1for 200 and 325 Tyler mesh respectively. For this reason, the particle size played an important role in the adaption kinetics of microorganism. The results showed that the microorganism oxide the larger particle size of the mineral easier.  Keywords: arsenic; lixiviation; chemolithoautotrophic; ATP.

  20. New Understanding on Metabolism of Anaerobic Ammonium Oxidation Bacteria Based on Metagenomics Technology%基于宏基因组技术获得的对厌氧氨氧化菌代谢的新理解

    Institute of Scientific and Technical Information of China (English)

    丁爽; 郑平; 陆慧锋; 唐崇俭

    2012-01-01

    厌氧氨氧化菌(Anaerobic ammonium oxidation bacteria,AAOB)是化能自养菌,由于其生理代谢的奇异性、细胞结构的特殊性以及对氮素循环的重要性,已成为环境工程、微生物以及海洋生物学等领域的研究热点.然而.AAOB未能实现纯培养的现状已成为AAOB代谢途径研究的巨大障碍近年来兴起的宏基因组技术(Metagenomics)为AAOB代谢途径的研究提供了新手段.采用宏基因组技术,可直接研究微生物群体中某特定微生物基因组的结构与功能,摆脱了传统微生物学研究对纯培养的依赖,使未培养微生物的认识和开发成为可能本文首先简述获取AAOB宏基因组信息的过程,然后通过比较由传统代谢研究方法和宏基因组技术获得的AAOB代谢途径的研究成果,论述基于宏基因组技术获得的对AAOB代谢的新理解,得出以下结果和结论:1)AAOB的碳素固定途径为乙酰辅酶A途径,碳素固定的还原力来自NADH或者QH2;2)AAOB氮素转化的重要中问产物是NO,而非NH2OH,并提出了以NO为核心的AAOB代谢的改进模型;3)AAOB的ATP合成途径为氧化磷酸化,推测的电子传递途径为N2H4-QH2-细胞色素bc1 复合体;细胞色素bc1复合体再将电子用于NO2还原和N2H4合成AAOB的宏基因组技术使AAOB代谢途径的研究更具方向性.随着分子生物学理论和技术的不断发展,宏基因组学的升级技术(如宏转录组学、宏蛋白质组学)将为AAOB代谢途径的研究提供新的方法与平台.%Anaerobic ammonium oxidation bacteria (AAOB) belong to chemolitho-autotrophs. AAOB have become one of the research hotspots in the field of environmental engineering, microbiology and oceanography because of their specificities in metabolism, cell structure and nitrogen cycle. However, AAOB can not been cultivated in pure culture, which has become a great obstacle to study their metabolic pathways in further. Nowadays, fast-developing metagenomics provides

  1. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sinskey, Anthony J. [MIT; Worden, Robert Mark [Michigan State University MSU; Brigham, Christopher [MIT; Lu, Jingnan [MIT; Quimby, John Westlake [MIT; Gai, Claudia [MIT; Speth, Daan [MIT; Elliott, Sean [Boston University; Fei, John Qiang [MIT; Bernardi, Amanda [MIT; Li, Sophia [MIT; Grunwald, Stephan [MIT; Grousseau, Estelle [MIT; Maiti, Soumen [MSU; Liu, Chole [MSU

    2013-12-16

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide